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Preface 
Artificial Intelligence (AI) is a big field, and this is a big book. We have tried to explore the full 
breadth of the field, which encompasses logic, probability, and continuous mathematics; perception, 
reasoning, learning, and action; and everything from rr~icroelectror~ic devices to robotic planetary 
explorers. The book is also big because we go into some depth in presenting results, although we 
strive to cover only the most central ideas in the main part of each chapter. Pointers are given to 
further results in the bibliographical notes at the end of each chapter. 

The subtitle of this book is "A Modern Approach." The intended meaning of this rather empty 
phrase is that we have tried to synthesize what is now known into a common framework, rather than 
trying to explain each subfield of A1 in its own historical context. We apologize to those whose 
subfields are, as a result, less recognizable than they might otherwiise have been. 

The main unifying theme is the idea of an intelligent agent. We define A1 as the study of 
agents that receive percepts from the environment and perform actions. Each such agent implements a 
function that maps percept sequences to actions, and we cover different ways to represent these func- 
tions, such as production systems, reactive agents, real-time cortditional planners, neural networks, 
and decision-theoretic systems. We explain the role of learning as extending the reach of the designer 
into unknown environments, and we show how that role constrains agent design, favoring explicit 
knowledge representation and reasoning. We treat robotics and vision not as independently defined 
problems, but as occurring in the service of achieving goals. We stress the importance of the task 
environment in determining the appropriate agent design. 

Our primary aim is to convey the ideas that have emerged over the past fifty years of A1 research 
and the past two millenia of related work. We have tried to avoid excessive formality in the presen- 
tation of these ideas while retaining precision. Wherever appropriate, we have included pseudocode 
algorithms to make the ideas concrete; our pseudocode is described briefly in Appendix B. Implemen- 
tations in several programming languages are available on the book's Web site, aima.cs.berkeley.edu. 

This book is primarily intended for use in an undergraduate course or course sequence. It can 
also be used in a graduate-level course (perhaps with the addition of some of the primary sources 
suggested in the bibliographical notes). Because of its comprehensive coverage and large number of 
detailed algorithms, it is useful as a primary reference volume for A1 graduate students and profes- 
sionals wishing to branch out beyond their own subfield. The only prerequisite is familiarity with 
basic concepts of computer science (algorithms, data structures, complexity) at a sophomore level. 
Freshman calculus is useful for understanding neural networks and statistical learning in detail. Some 
of the required mathematical background is supplied in Appendix A. 

Overview of the book 
The book is divided into eight parts. Part I, Artificial Intelligence, offers a view of the A1 enterprise 
based around the idea of intelligent agents-systems that can decide what to do and then do it. Part 
11, Problem Solving, concentrates on methods for deciding what to do when one needs to think ahead 
several steps-for example in navigating across a country or playing chess. Part 111, Knowledge and 
Reasoning, discusses ways to represent knowledge about the world-how it works, what it is currently 
like, and what one's actions inight do-and how to reason logically with that knowledge. Part IV, 
Planning, then discusses how to use these reasoning methods to decide what to do, particularly by 
constructing plans. Part V, Uncertain Knowledge and Reasoning, is analogous to Parts I11 and IV, 
but it concentrates on reasoning and decision making in the presence of uncertainty about the world, 
as might be faced, for example, by a system for medical diagnosis and treatment. 

Together, Parts 11-V describe that part of the intelligent agent responsible for reaching decisions. 
Part VI, Learning, describes methods for generating the knowledge required by these decision-making 
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components. Part VII, Communicating, Perceiving, and Acting, describes ways in which an intel- 
ligent agent can perceive its environment so as to know what is going on, whether by vision, touch, 
hearing, or understanding language, and ways in which it can turn its plans into real actions, either as 
robot motion or as natural language utterances. Finally, Part VIII, Conclusions, analyzes the past and 
future of A1 and the philosophical and ethical implications of artificial intelligence. 

Changes from the first edition 
Much has changed in A1 since the publication of the first edition in 1995, and much has changed in this 
book. Every chapter has been significantly rewritten to reflect the latest work in the field, to reinterpret 
old work in a way that is more cohesive with new findings, and to improve the pedagogical flow of 
ideas. Followers of A1 should be encouraged that current techniques are much more practical than 
those of 1995; for example the planning algorithms in the first edition could generate plans of only 
dozens of steps, while the algorithms in this edition scale up to tens of thousands of steps. Similar 
orders-of-magnitude improvements are seen in probabilistic inference, language processing, and other 
subfields. The following are the most notable changes in the book: 

In Part I, we acknowledge the historical contributions of control theory, game theory, economics, 
and neuroscience. This helps set the tone for a more integrated coverage of these ideas in 
subsequent chapters. 

In Part 11, online search algorithms are covered and a new chapter on constraint satisfaction has 
been added. The latter provides a natural connection to the material on logic. 

In Part 111, propositional logic, which was presented as a stepping-stone to first-order logic in 
the first edition, is now presented as a useful representation language in its own right, with fast 
inference algorithms and circuit-based agent designs. The chapters on first-order logic have 
been reorganized to present the material more clearly and we have added the Internet shopping 
domain as an example. 

In Part IV, we include newer planning methods such as GRAPHPLAN and satisfiability-based 
planning, and we increase coverage of scheduling, conditional planning, hierarchcal planning, 
and multiagent planning. 

In Part V, we have augmented the material on Bayesian networks with new algorithms, such 
as variable elimination and Markov Chain Monte Carlo, and we have created a new chapter on 
uncertain temporal reasoning, covering hidden Markov models, Kalman filters, and dynamic 
Bayesian networks. The coverage of Markov decision processes is deepened, and we add sec- 
tions on game theory and mechanism design. 

In Part VI, we tie together work in statistical, symbolic, and neural learning and add sections on 
boosting algorithms, the EM algorithm, instance-based learning, and kernel methods (support 
vector machines). 
In Part VII, coverage of language processing adds sections on discourse processing and gram- 
mar induction, as well as a chapter on probabilistic language models, with applications to in- 
formation retrieval and machine translation. The coverage of robotics stresses the integration of 
uncertain sensor data, and the chapter on vision has updated material on object recognition. 
In Part VIII, we introduce a section on the ethical implications of AI. 

Using this book 
The book has 27 chapters, each requiring about a week's worth of lectures, so working through the 
whole book requires a two-semester sequence. Alternatively, a course can be tailored to suit the inter- 
ests of the instructor and student. Through its broad coverage, the book can be used to support such 
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courses, whether they are short, introductory undergraduate courses or specialized graduate courses on 
advanced topics. Sample syllabi from the more than 600 universities and colleges that have adopted 
the first edition are shown on the Web at aima.cs.berkeley.edu, along with suggestions to help you find 
a sequence appropriate to your needs. 

The book includes 385 exercises. Exercises requiring significant programming are marked with 
a keyboard icon. These exercises can best be solved by taking advantage of the code repository at 

- - aima.cs.berke1ey.edu. Some of them are large enough to be considered term projects. A. number of p q  exercises require some investigation of the literature; these are marked with a book icon. 
Throughout the book, important points are marked with a pointing icon. We have included an 

extensive index of around 10,000 items to make it easy to ffind things in the book. Wherever a new 
NEW TERM term is first defined, it is also marked in the margin. 

Using the Web site 
At the aima.cs.berkeley.edu Web site you will find: 

implementations of the algorithms in the book in several programming languages, 
a list of over 600 schools that have used the book, many with links to online course materials, 
an annotated list of over 800 links to sites around the ~ ~ e b  with useful A1 content, 
a chapter by chapter list of supplementary material and links, 
instructions on how to join a discussion group for the book, 
instructions on how to contact the authors with questions or comments, 

0 instructions on how to report errors in the book, in the likely event that some exist, and 
copies of the figures in the book, along with slides and other material for instructors. 
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In which we try to explain why we consider artijficial intelligence to be a subject 
most worthy of study, and in which we try to decide what exactly it is, this being a 
good thing to decide before embarking. 

ARTIFICIAL 
INTELLIGENCE 

We call ourselves Homo sapiens-man the wise-because our mental capacities are so im- 
portant to us. For thousands of years, we have tried to understand how we think; that is, how 
a mere handful of stuff can perceive, understand, predict, arid manipulate a world far larger 
and more complicated than itself. The field of artificial intelligence, or AI, goes further still: 
it attempts not just to understand but also to build intelligent entities. 

A1 is one of the newest sciences. Work started in earnest soon after World War 11, and 
the name itself was coined in 1956. Along with molecular biology, A1 is regularly cited as 
the "field I would most like to be in" by scientists in other disciplines. A student in physics 
might reasonably feel that all the good ideas have already been taken by Galileo, Newton, 
Einstein, and the rest. AI, on the other hand, still has openings for several full-time Einsteins. 

A1 currently encompasses a huge variety of subfields, ranging from general-purpose 
areas, such as learning and perception to such specific tasks as playing chess, proving math- 
ematical theorems, writing poetry, and diagnosing diseases. A1 systematizes and automates 
intellectual tasks and is therefore potentially relevant to any sphere of human intellectual 
activity. In this sense, it is truly a universal field. 

1.1 WHAT IS AI? -- 

We have claimed that A1 is exciting, but we have not said what it is. Definitions of artificial 
intelligence according to eight textbooks are shown in Figure 11.1. These definitions vary 
along two main dimensions. Roughly, the ones on top are concerned with thought processes 
and reasoning, whereas the ones on the bottom address behavior. The definitions on the left 
measure success in terms of fidelity to human performance, whereas the ones on the right 

RATIONALITY measure against an ideal concept of intelligence, which we will call rationality. A system is 
rational if it does the "right thing," given what it knows. 
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Systems that think like humans 

"The exciting new effort to make comput- 
ers think . . . machines with minds, in the 
full and literal sense." (Haugeland, 1985) 

"[The automation of] activities that we 
associate with human thinking, activities 
such as decision-making, problem solv- 
ing, learning . . ." (Bellman, 1978) 

Systems that think rationally 

"The study of mental faculties through the 
use of computational models." 
(Chamiak and McDermott, 1985) 

"The study of the computations that make 
it possible to perceive, reason, and act." 
(Winston, 1992) 

Historically, all four approaches to A1 have been followed. As one might expect, a 
tension exists between approaches centered around humans and approaches centered around 
rationality.' A human-centered approach must be an empirical science, involving hypothesis 
and experimental confirmation. A rationalist approach involves a combination of mathemat- 
ics and engineering. Each group has both disparaged and helped the other. Let us look at the 
four approaches in more detail. 

Systems that act like humans 

"The art of creating machines that per- 
form functions that require intelligence 
when performed by people." (Kurzweil, 
1990) 

"The study of how to make computers do 
things at which, at the moment, people are 
better." (Rich and Knight, 1991) 

Acting humanly: The Turing Test approach 

Systems that act rationally 

"Computational Intelligence is the study 
of the design of intelligent agents." (Poole 
et al., 1998) 

"A1 . . .is concerned with intelligent be- 
havior in artifacts." (Nilsson, 1998) 

TURING TEST The %ring Test, proposed by Alan Turing (195O), was designed to provide a satisfactory 

operational definition of intelligence. Rather than proposing a long and perhaps controversial 
list of qualifications required for intelligence, he suggested a test based on indistinguishability 
from undeniably intelligent entities-human beings. The computer passes the test if a human 
interrogator, after posing some written questions, cannot tell whether the written responses 
come from a person or not. Chapter 26 discusses the details of the test and whether a computer 
is really intelligent if it passes. For now, we note that programming a computer to pass the test 
provides plenty to work on. The computer would need to possess the following capabilities: 

Figure 1.1 Some definitions of artificial intelligence, organized into four categories. 

NATURALLANGUAGE 0 natural language processing to enable it to communicate successfully in English. PROCESSING 
- 

We should point out that, by distinguishing between human and rational behavior, we are not suggesting that 
humans are necessarily "irrational" in the sense of "emotionally unstable" or "insane." One merely need note 
that we are not perfect: we are not all chess grandmasters, even those of us who know all the rules of chess; and, 
unfortunately, not everyone gets an A on the exam. Some systematic errors in human reasoning are cataloged by 
Kahneman et al. (1982). 
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KNOWLEDGE 
REPRESENTATION 

AUTOMATED 
REASONING 

MACHINE LEARNING 

TOTAL TURING TEST 

COMPUTER VISION 

ROBOTICS 

COGNITIVE SCIENCE 

0 knowledge representation to store what it knows or liears; 

0 automated reasoning to use the stored inforrnation to answer questions and to draw 
new conclusions; 

0 machine learning to adapt to new circumstances and to detect and extrapolate patterns. 

Turing's test deliberately avoided direct physical interaction between the interrogator and the 
computer, because physical simulation of a person is unnecessary for intelligence. However, 
the so-called total Turing Test includes a video signal so that the interrogator can test the 
subject's perceptual abilities, as well as the opportunity for the interrogator to pass physical 
objects "through the hatch." To pass the total Turing Test, th~e computer will need 

computer vision to perceive objects, and 

0 robotics to manipulate objects and move about. 

These six disciplines compose most of AI, and Turing deserves credit for designing a test 
that remains relevant 50 years later. Yet A1 researchers have devoted little effort to passing 
the Turing test, believing that it is more important to study the underlying principles of in- 
telligence than to duplicate an exemplar. The quest for "arti.ficia1 flight" succeeded when the 
Wright brothers and others stopped imitating birds and learned about aerodynamics. Aero- 
nautical engineering texts do not define the goal of their field as making "machines that fly 
so exactly like pigeons that they can fool even other pigeons." 

Thinking humanly: The cognitive modeling approach 

If we are going to say that a given program thinks like a human, we must have some way of 
determining how humans think. We need to get inside the actual workings of human minds. 
There are two ways to do this: through introspectior~-trying to catch our own thoughts as 
they go by-and through psychological experiments. Once we have a sufficiently precise 
theory of the mind, it becomes possible to express the theor,y as a computer program. If the 
program's input/output and timing behaviors match corresponding human behaviors, that is 
evidence that some of the program's mechanisms could also be operating in humans. For ex- 
ample, Allen Newel1 and Herbert Simon, who developed GPS, the "General Problem Solver" 
(Newel1 and Simon, 1961), were not content to have their program solve problems correctly. 
They were more concerned with comparing the trace of its reasoning steps to traces of human 
subjects solving the same problems. The interdisciplinary field of cognitive science brings 
together computer models from A1 and experimental techniques from psychology to try to 
construct precise and testable theories of the workings of the human mind. 

Cognitive science is a fascinating field, worthy of an encyclopedia in itself (Wilson 
and Keil, 1999). We will not attempt to describe what is known of human cognition in this 
book. We will occasionally comment on similarities or difierences between AI techniques 
and human cognition. Real cognitive science, however, is necessarily based on experimental 
investigation of actual humans or animals, and we assume that the reader has access only to 
a computer for experimentation. 

In the early days of A1 there was often confusion between the approaches: an author 
would argue that an algorithm performs well on a task and that it is therefore a good model 
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of human performance, or vice versa. Modern authors separate the two kinds of claims; 
this distinction has allowed both A1 and cognitive science to develop more rapidly. The two 
fields continue to fertilize each other, especially in the areas of vision and natural language. 
Vision in particular has recently made advances via an integrated approach that considers 
neurophysiological evidence and computational models. 

Thinking rationally: The "laws of thought" approach 

The Greek philosopher Aristotle was one of the first to attempt to codify "right thinking," that 
SYLLOGISMS is, irrefutable reasoning processes. His syllogisms provided patterns for argument structures 

that always yielded correct conclusions when given correct premises-for example, "Socrates 
is a man; all men are mortal; therefore, Socrates is mortal." These laws of thought were 

LOGIC supposed to govern the operation of the mind; their study initiated the field called logic. 
Logicians in the 19th century developed a precise notation for statements about all kinds 

of things in the world and about the relations among them. (Contrast this with ordinary arith- 
metic notation, which provides mainly for equality and inequality statements about numbers.) 
By 1965, programs existed that could, in principle, solve any solvable problem described in 

LOGICIST logical n ~ t a t i o n . ~  The so-called logicist tradition within artificial intelligence hopes to build 
on such programs to create intelligent systems. 

There are two main obstacles to this approach. First, it is not easy to take informal 
knowledge and state it in the formal terms required by logical notation, particularly when the 
knowledge is less than 100% certain. Second, there is a big difference between being able to 
solve a problem "in principle" and doing so in practice. Even problems with just a few dozen 
facts can exhaust the computational resources of any computer unless it has some guidance 
as to which reasoning steps to try first. Although both of these obstacles apply to any attempt 
to build computational reasoning systems, they appeared first in the logicist tradition. 

Acting rationally: The rational agent approach 

AGENT An agent is just something that acts (agent comes from the Latin agere, to do). But computer 
agents are expected to have other attributes that distinguish them from mere "programs," 
such as operating under autonomous control, perceiving their environment, persisting over a 
prolonged time period, adapting to change, and being capable of taking on another's goals. A 

RATIONALAGENT rational agent is one that acts so as to achieve the best outcome or, when there is uncertainty, 
the best expected outcome. 

In the "laws of thought" approach to AI, the emphasis was on correct inferences. Mak- 
ing correct inferences is sometimes part of being a rational agent, because one way to act 
rationally is to reason logically to the conclusion that a given action will achieve one's goals 
and then to act on that conclusion. On the other hand, correct inference is not all of ratio- 
nality, because there are often situations where there is no provably correct thing to do, yet 
something must still be done. There are also ways of acting rationally that cannot be said to 
involve inference. For example, recoiling from a hot stove is a reflex action that is usually 
more successful than a slower action taken after careful deliberation. 

If there is no solution, the program might never stop looking for one. 
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All the skills needed for the Turing Test are there to allow rational actions. Thus, we 
need the ability to represent knowledge and reason \with it because this enables us to reach 
good decisions in a wide variety of situations. We need to be able to generate comprehensible 
sentences in natural language because saying those sentences helps us get by in a complex 
society. We need learning not just for erudition, but because having a better idea of how the 
world works enables us to generate more effective strategies for dealing with it. We need 
visual perception not just because seeing is fun, but 1.0 get a better idea of what an action 
might achieve-for example, being able to see a tasty morsel helps one to move toward it. 

For these reasons, the study of A1 as rational-agent design has at least two advantages. 
First, it is more general than the "laws of thought" approach, because correct inference is just 
one of several possible mechanisms for achieving ratiornality. Second, it is more amenable to 
scientific development than are approaches based on human behavior or human thought be- 
cause the standard of rationality is clearly defined and conipletely general. Human behavior, 
on the other hand, is well-adapted for one specific eilvironn~ent and is the product, in part, 
of a complicated and largely unknown evolutionary pirocess that still is far from producing 
perfection. This book will therefore concentrate on general principles of rational agents and 
on components for constructing them. We will see that despite the apparent simplicity with 
which the problem can be stated, an enormous variety of issues come up when we try to solve 
it. Chapter 2 outlines some of these issues in more detail. 

One important point to keep in mind: We will see before too long that achieving perfect 
rationality-always doing tlle right thing-is not feasible in complicated environments. The 
computational demands are just too high. For most of the book, however, we will adopt the 
working hypothesis that perfect rationality is a good starting point for analysis. It simplifies 
the problem and provides the appropriate setting for most of the foundational material in 

LIMITED 
RATIONALITY the field. Chapters 6 and 17 deal explicitly with the issue of limited rationality-acting 

appropriately when there is not enough time to do all the comiputations one might like. 

In this section, we provide a brief history of the disciplines that contributed ideas, viewpoints, 
and techniques to AI. Like any history, this one is forc~ed to (concentrate on a small number 
of people, events, and ideas and to ignore others that (also were important. We organize the 
history around a series of questions. We certainly would not vvish to give the impression that 
these questions are the only ones the disciplines address or that the disciplines have all been 
working toward A1 as their ultimate fruition. 

Philosophy (428 B . c .-present) 

Can formal rules be used to draw valid conclusions? 

How does the mental mind arise from a physical brain? 

Where does knowledge come from? 

How does knowledge lead to action? 
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Aristotle (384-322 B.C.) was the first to formulate a precise set of laws governing the ratio- 
nal part of the mind. He developed an informal system of syllogisms for proper reasoning, 
which in principle allowed one to generate conclusions mechanically, given initial premises. 
Much later, Ramon Lull (d. 13 15) had the idea that useful reasoning could actually be carried 
out by a mechanical artifact. His "concept wheels" are on the cover of this book. Thomas 
Hobbes (1588-1679) proposed that reasoning was like numerical computation, that "we add 
and subtract in our silent thoughts." The automation of computation itself was already well 
under way; around 1500, Leonardo da Vinci (1452-1519) designed but did not build a me- 
chanical calculator; recent reconstructions have shown the design to be functional. The first 
known calculating machine was constructed around 1623 by the German scientist Wilhelm 
Schickard (1592-1635), although the Pascaline, built in 1642 by Blaise Pascal (1623-1662), 
is more famous. Pascal wrote that "the arithmetical machine produces effects which appear 
nearer to thought than all the actions of animals." Gottfried Wilhelm Leibniz (1646-1716) 
built a mechanical device intended to carry out operations on concepts rather than numbers, 
but its scope was rather limited. 

Now that we have the idea of a set of rules that can describe the formal, rational part 
of the mind, the next step is to consider the mind as a physical system. RenC Descartes 
(1596-1650) gave the first clear discussion of the distinction between mind and matter and of 
the problems that arise. One problem with a purely physical conception of the mind is that it 
seems to leave little room for free will: if the mind is governed entirely by physical laws, then 
it has no more free will than a rock "deciding" to fall toward the center of the earth. Although 
a strong advocate of the power of reasoning, Descartes was also a proponent of dualism. He 
held that there is a part of the human mind (or soul or spirit) that is outside of nature, exempt 
from physical laws. Animals, on the other hand, did not possess this dual quality; they could 
be treated as machines. An alternative to dualism is materialism, which holds that the brain's 
operation according to the laws of physics constitutes the mind. Free will is simply the way 
that the perception of available choices appears to the choice process. 

Given a physical mind that manipulates knowledge, the next problem is to establish the 
source of knowledge. The empiricism movement, starting with Francis Bacon's (1561-1626) 
Novum is characterized by a dictum of John Locke (1632-1704): "Nothing is in 
the understanding, which was not first in the senses." David Hume's (171 1-1776) A Treatise 
of Human Nature (Hume, 1739) proposed what is now known as the principle of induction: 
that general rules are acquired by exposure to repeated associations between their elements. 
Building on the work of Ludwig Wittgenstein (1889-1951) and Bertrand Russell (1872- 
1970), the famous Vienna Circle, led by Rudolf Carnap (1891-1970), developed the doctrine 

mM of logical positivism. This doctrine holds that all knowledge can be characterized by logical 
theories connected, ultimately, to observation sentences that correspond to sensory inputs.4 
The confirmation theory of Carnap and Carl Hempel (1905-1997) attempted to understand 
how knowledge can be acquired from experience. Carnap's book The Logical Structure of 

An update of Aristotle's Organon, or instrument of thought. 
In this picture, all meaningful statements can be verified or falsified either by analyzing the meaning of the 

words or by carrying out experiments. Because this rules out most of metaphysics, as was the intention, logical 
positivism was unpopular in some circles. 
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the World (1928) defined an explicit computational procedure for extracting knowledge from 
elementary experiences. It was probably the first theory of mind as a computational process. 

The final element in the philosophical picture of the mind is the connection between 
knowledge and action. This question is vital to AI, because intelligence requires action as well 
as reasoning. Moreover, only by understanding how actions are justified can we understand 
how to build an agent whose actions are justifiable (or rational). Aristotle argued that actions 
are justified by a logical connection between goals and knowledge of the action's outcome 
(the last part of this extract also appears on the front cover of this book): 

But how does it happen that thinking is sometimes accompanied by action and sometimes 
not, sometimes by motion, and sometimes not? It looks as if almost the same thing 
happens as in the case of reasoning and making inferences about unchanging objects. But 
in that case the end is a speculative proposition . . . whereas here the conclusion which 
results from the two premises is an action. . . . I neeld covering; a cloak is a covering. I 
need a cloak. What I need, I have to make; I need a cloak. I have to make a cloak. And 
the conclusion, the "I have to make a cloak:' is an action. (I'Jussbaum, 1978, p. 40) 

In the Nicomachean Ethics (Book 111. 3, 11 12b), Aristotle further elaborates on this topic, 
suggesting an algorithm: 

We deliberate not about ends, but about means. For a doctor does not deliberate whether 
he shall heal, nor an orator whether he shall persuade, . . . They assume the end and 
consider how and by what means it is attained, and if it seems easily and best produced 
thereby; while if it is achieved by one means only they consider how it will be achieved 
by this and by what means this will be achieved, till they come to the first cause, . . . and 
what is last in the order of analysis seems to be first in the order of becoming. And if we 
come on an impossibility, we give up the search, e.g. if we need money and this cannot 
be got; but if a thing appears possible we try to do it. 

Aristotle's algorithm was implemented 2300 years later by Newel1 and Simon in their GPS 
program. We would now call it a regression planning system. (See Chapter 1 1 .) 

Goal-based analysis is useful, but does not say what 110 do when several actions will 
achieve the goal, or when no action will achieve it completely. Antoine Arnauld (1612-1694) 
correctly described a quantitative formula for deciding what action to take in cases like this 
(see Chapter 16). John Stuart Mill's (1806-1873) book Utilitarianism (Mill, 1863) promoted 
the idea of rational decision criteria in all spheres of human activity. The more formal theory 
of decisions is discussed in the following section. 

Mathematics (c. 800-present) 

o What are the formal rules to draw valid conclusi~ons? 
What can be computed? 

e How do we reason with uncertain information? 

Philosophers staked out most of the important ideas of k1, but the leap to a formal science re- 
quired a level of mathematical formalization in three fundamt:ntal areas: logic, computation, 
and probability. 

The idea of formal logic can be traced back to the philosophers of ancient Greece (see 
Chapter 7), but its mathematical development really began with the work of George Boole 
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(1 8 15-1 864), who worked out the details of propositional, or Boolean, logic (Boole, 1847). 
In 1879, Gottlob Frege (1848-1925) extended Boole's logic to include objects and relations, 
creating the first-order logic that is used today as the most basic knowledge representation 
system.5 Alfred Tarski (1902-1983) introduced a theory of reference that shows how to 
relate the objects in a logic to objects in the real world. The next step was to determine the 
limits of what could be done with logic and computation. 

ALGORITHM The first nontrivial algorithm is thought to be Euclid's algorithm for computing great- 
est common denominators. The study of algorithms as objects in themselves goes back to 
al-Khowarazmi, a Persian mathematician of the 9th century, whose writings also introduced 
Arabic numerals and algebra to Europe. Boole and others discussed algorithms for logical 
deduction, and, by the late 19th century, efforts were under way to formalize general math- 
ematical reasoning as logical deduction. In 1900, David Hilbert (1862-1943) presented a 
list of 23 problems that he correctly predicted would occupy mathematicians for the bulk of 
the century. The final problem asks whether there is an algorithm for deciding the truth of 
any logical proposition involving the natural numbers-the famous Entscheidungsproblem, 
or decision problem. Essentially, Hilbert was asking whether there were fundamental limits 
to the power of effective proof procedures. In 1930, Kurt Godel (1906-1978) showed that 
there exists an effective procedure to prove any true statement in the first-order logic of Frege 
and Russell, but that first-order logic could not capture the principle of mathematical induc- 
tion needed to characterize the natural numbers. In 1931, he showed that real limits do exist. 

lNCoMPLETENEss His incompleteness theorem showed that in any language expressive enough to describe the THEOREM 

properties of the natural numbers, there are true statements that are undecidable in the sense 
that their truth cannot be established by any algorithm. 

This fundamental result can also be interpreted as showing that there are some functions 
on the integers that cannot be represented by an algorithm-that is, they cannot be computed. 
This motivated Alan Turing (1912-1954) to try to characterize exactly which functions are 
capable of being computed. This notion is actually slightly problematic, because the notion 
of a computation or effective procedure really cannot be given a formal definition. However, 
the Church-Turing thesis, which states that the Turing machine (Turing, 1936) is capable of 
computing any computable function, is generally accepted as providing a sufficient definition. 
Turing also showed that there were some functions that no Turing machine can compute. For 
example, no machine can tell in general whether a given program will return an answer on a 
given input or run forever. 

Although undecidability and noncomputability are important to an understanding of 
INTRACTABILITY computation, the notion of intractability has had a much greater impact. Roughly speak- 

ing, a problem is called intractable if the time required to solve instances of the problem 
grows exponentially with the size of the instances. The distinction between polynomial and 
exponential growth in complexity was first emphasized in the mid-1960s (Cobham, 1964; Ed- 
monds, 1965). It is important because exponential growth means that even moderately large 
instances cannot be solved in any reasonable time. Therefore, one should strive to divide 

Frege's proposed notation for first-order logic never became popular, for reasons that are apparent immediately 
from the example on the front cover. 
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the overall problem of generating intelligent behavior into tractable subproblems rather than 
intractable ones. 

NP-COMPLETENESS How can one recognize an intractable problem? The theory of NP-completeness, pio- 
neered by Steven Cook (1971) and Richard Karp (1972), provides a method. Cook and Karp 
showed the existence of large classes of canonical cornbinat.oria1 search and reasoning prob- 
lems that are NP-complete. Any problem class to which the: class of NP-complete problems 
can be reduced is likely to be intractable. (Although it has not been proved that NP-complete 
problems are necessarily intractable, most theoreticians believe it.) These results contrast 
with the optimism with which the popular press greeted the first computers-"Electronic 
Super-Brains" that were "Faster than Einstein!" Despite the increasing speed of computers, 
careful use of resources will characterize intelligent systems. Put crudely, the world is an 
extremely large problem instance! In recent years, A1 has helped explain why some instances 
of NP-complete problems are hard, yet others are easy (Cheeseman et al., 1991). 

Besides logic and computation, the third gretit contribution of mathematics to A1 is 
PROBABILITY the theory of probability. The Italian Gerolamo Cardano (1501-1576) first framed the idea 

of probability, describing it in terms of the possible outcomes of gambling events. Prob- 
ability quickly became an invaluable part of all the quantitative sciences, helping to deal 
with uncertain measurements and incomplete theories. Pierre Fermat (1 60 1-1 665), Blaise 
Pascal (1623-1662), James Bernoulli (1654-1705), F'ierre Laplace (1749-1827), and oth- 
ers advanced the theory and introduced new statistical methods. Thomas Bayes (1702-1 761) 
proposed a rule for updating probabilities in the light of new evidence. Bayes' rule and the re- 
sulting field called Bayesian analysis form the basis of most modern approaches to uncertain 
reasoning in A1 systems. 

Economics (1776-present) 

a How should we make decisions so as to maximize payoff? 

o How should we do this when others may not go along? 

a How should we do this when the payoff may be f,x in the future? 

The science of economics got its start in 1776, when Scottish philosopher Adam Smith 
(1723-1790) published An Inquiry into the Nature and Causes of the Wealth of Nations. 
While the ancient Greeks and others had made contributions to economic thought, Smith was 
the first to treat it as a science, using the idea that economies can be thought of as consist- 
ing of individual agents maximizing their own economic well-being. Most people think of 
economics as being about money, but economists will say that they are really studying how 
people make choices that lead to preferred outcomes. The mathematical treatment of "pre- 
ferred outcomes7' or utility was first formalized by Lkon Walras (pronounced "Valrasse") 
(1834- 1910) and was improved by Frank Ramsey (193 1) and later by John von Neumann and 
Oskar Morgenstern in their book The Theory of Games and Economic Behavior (1944). 

DECISION THEORY Decision theory, which combines probability theory with utility theory, provides a for- 
mal and complete framework for decisions (economic or otherwise) made under uncertainty- 
that is, in cases where probabilistic descriptions appropriately capture the decision-maker's 
environment. This is suitable for "large" economies where each agent need pay no attention 
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to the actions of other agents as individuals. For "small" economies, the situation is much 
more like a game: the actions of one player can significantly affect the utility of another 
(either positively or negatively). Von Neumann and Morgenstern's development of game 

GAMETHEORY theory (see also Luce and Raiffa, 1957) included the surprising result that, for some games, 
a rational agent should act in a random fashion, or at least in a way that appears random to 
the adversaries. 

For the most part, economists did not address the third question listed above, namely, 
how to make rational decisions when payoffs from actions are not immediate but instead re- 
sult from several actions taken in sequence. This topic was pursued in the field of operations 

OPERATIONS 
RESEARCH research, which emerged in World War I1 from efforts in Britain to optimize radar installa- 

tions, and later found civilian applications in complex management decisions. The work of 
Richard Bellman (1957) formalized a class of sequential decision problems called Markov 
decision processes, which we study in Chapters 17 and 2 1. 

Work in economics and operations research has contributed much to our notion of ra- 
tional agents, yet for many years A1 research developed along entirely separate paths. One 
reason was the apparent complexity of making rational decisions. Herbert Simon (1 91 6- 
2001), the pioneering A1 researcher, won the Nobel prize in economics in 1978 for his early 

SATISFICING work showing that models based on satisficing-making decisions that are "good enough," 
rather than laboriously calculating an optimal decision-gave a better description of actual 
human behavior (Simon, 1947). In the 1990s, there has been a resurgence of interest in 
decision-theoretic techniques for agent systems (Wellman, 1995). 

Neuroscience (1861-present) 

How do brains process information? 

NEUROSCIENCE Neuroscience is the study of the nervous system, particularly the brain. The exact way in 
which the brain enables thought is one of the great mysteries of science. It has been appre- 
ciated for thousands of years that the brain is somehow involved in thought, because of the 
evidence that strong blows to the head can lead to mental incapacitation. It has also long been 
known that human brains are somehow different; in about 335 B.C. Aristotle wrote, "Of all 
the animals, man has the largest brain in proportion to his size." Still, it was not until the 
middle of the 18th century that the brain was widely recognized as the seat of consciousness. 
Before then, candidate locations included the heart, the spleen, and the pineal gland. 

Paul Broca's (1824-1880) study of aphasia (speech deficit) in brain-damaged patients 
in 1861 reinvigorated the field and persuaded the medical establishment of the existence of 
localized areas of the brain responsible for specific cognitive functions. In particular, he 
showed that speech production was localized to a portion of the left hemisphere now called 

NEURONS Broca's area7 By that time, it was known that the brain consisted of nerve cells or neurons, 
but it was not until 1873 that Carnillo Golgi (1843-1926) developed a staining technique 
allowing the observation of individual neurons in the brain (see Figure 1.2). This technique 

Since then, it has been discovered that some species of dolphins and whales have relatively larger brains. The 
large size of human brains is now thought to be enabled in part by recent improvements in its cooling system. 

Many cite Alexander Hood (1824) as a possible prior source. 



Section 1.2. The Foundations of Artificial Intelligence 11 

Axon from another cell 

I Synapses 

Cell body or Soma 

Figure 1.2 The parts of a nerve cell or neuron. Each neuron consists of a cell body, 
or soma, that contains a cell nucleus. Branching out from the cell body are a number of 
fibers called dendrites and a single long fiber called the axon. The axon stretches out for 
a long distance, much longer than the scale in this diagram indicates. Typically they are 1 
cm long (100 times the diameter of the cell body), but can reach up to 1 meter. A neuron 
makes connections with 10 to 100,000 other neurons at junctions called synapses. Signals are 
propagated from neuron to neuron by a complicated electrochemical reaction. The signals 
control brain activity in the short term, and also enable long-term changes in the position 
and connectivity of neurons. These mechanisms are thought to form the basis for learning 
in the brain. Most information processing goes on in Ihe cerebral cortex, the outer layer of 
the brain. The basic organizational unit appears to be a column of tissue about 0.5 mm in 
diameter, extending the full depth of the cortex, which is about 4 mm in humans. A column 
contains about 20,000 neurons. 

was used by Santiago Ramon y Cajal (1852-1934) in his pioneering studies of the brain's 
neuronal structures.' 

We now have some data on the mapping between areas of the brain and the parts of the 
body that they control or from which they receive senstory input. Such mappings are able to 
change radically over the course of a few weeks, and some animals seem to have multiple 
maps. Moreover, we do not fully understand how other areas can take over functions when 
one area is damaged. There is almost no theory on how an individual memory is stored. 

The measurement of intact brain activity began1 in 1929 with the invention by Hans 
Berger of the electroencephalograph (EEG). The recent development of functional magnetic 
resonance imaging (fMRI) (Ogawa et al., 1990) is giving neuroscientists unprecedentedly 
detailed images of brain activity, enabling measurements that correspond in interesting ways 
to ongoing cognitive processes. These are augmented by advances in single-cell recording of 

Golgi persisted in his belief that the brain's functions were carried out primarily in a continuous medium in 
which neurons were embedded, whereas Cajal propounded the "neuronal doctrine." The two shared the Nobel 
prize in 1906 but gave rather antagonistic acceptance speeches. 
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Figure 1.3 A crude comparison of the raw computational resources available to computers 
(circa 2003) and brains. The computer's numbers have all increased by at least a factor of 10 
since the first edition of this book, and are expected to do so again this decade. The brain's 
numbers have not changed in the last 10,000 years. 

neuron activity. Despite these advances, we are still a long way from understanding how any 
of these cognitive processes actually work. 

The truly amazing conclusion is that a collection of simple cells can lead to thought, 
action, and consciousness or, in other words, that brains cause minds (Searle, 1992). The 
only real alternative theory is mysticism: that there is some mystical realm in which minds 
operate that is beyond physical science. 

Brains and digital computers perform quite different tasks and have different properties. 
Figure 1.3 shows that there are 1000 times more neurons in the typical human brain than there 
are gates in the CPU of a typical high-end computer. Moore's Law9 predicts that the CPU's 
gate count will equal the brain's neuron count around 2020. Of course, little can be inferred 
from such predictions; moreover, the difference in storage capacity is minor compared to the 
difference in switching speed and in parallelism. Computer chips can execute an instruction 
in a nanosecond, whereas neurons are millions of times slower. Brains more than make up 
for this, however, because all the neurons and synapses are active simultaneously, whereas 
most current computers have only one or at most a few CPUs. Thus, even though a computer 
is a million times faster in raw switching speed, the brain ends up being 100,000 times faster 
at what it does. 

Psychology (1879-present) 

a How do humans and animals think and act? 

The origins of scientific psychology are usually traced to the work of the German physi- 
cist Hermann von Helmholtz (1 82 1-1 894) and his student Wilhelm Wundt (1 832-1920). 
Helmholtz applied the scientific method to the study of human vision, and his Handbook 
of Physiological Optics is even now described as "the single most important treatise on the 
physics and physiology of human vision" (Nalwa, 1993, p.15). In 1879, Wundt opened the 
first laboratory of experimental psychology at the University of Leipzig. Wundt insisted on 
carefully controlled experiments in which his workers would perform a perceptual or associa- 

Moore's Law says that the number of transistors per square inch doubles every 1 to 1.5 years. Human brain 
capacity doubles roughly every 2 to 4 million years. 
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tive task while introspecting on their thought processes. The careful controls went a long way 
toward making psychology a science, but the subjective nature of the data made it unlikely 
that an experimenter would ever disconfirm his or her own theories. Biologists studying 
animal behavior, on the other hand, lacked introspective data and developed an objective 
methodology, as described by H. S. Jennings (1906)l in his influential work Behavior of the 

BEHAVIORISM Lower Organisms. Applying this viewpoint to humans, the bel~aviorism movement, led by 
John Watson (1878-1958), rejected any theory involving rnental processes on the grounds 
that introspection could not provide reliable evidence. Behaviorists insisted on studying only 
objective measures of the percepts (or stiwzulus) given to an1 animal and its resulting actions 
(or response). Mental constructs such as knowledge, beliefs, goals, and reasoning steps were 
dismissed as unscientific "folk psychology." Behaviorism discovered a lot about rats and pi- 
geons, but had less success at understanding humans. Nevertheless, it exerted a strong hold 
on psychology (especially in the United States) from about I1920 to 1960. 

The view of the brain as an information-processing device, which is a principal charac- 
COGNITIVE 
PSYCHOLOGY teristic of cognitive psychology, can be traced back at least to the works of William ~ames" 

(1 842-19 10). Helmholtz also insisted that perception involved a form of unconscious log- 
ical inference. The cognitive viewpoint was largely eclipsed by behaviorism in the United 
States, but at Cambridge's Applied Psychology Unit, directed by Frederic Bartlett (1886- 
1969), cognitive modeling was able to flourish. The Nature of Explanation, by Bartlett's 
student and successor Kenneth Craik (1943), forcefully reestablished the legitimacy of such 
"mental" terms as beliefs and goals, arguing that they are just as scientific as, say, using 
pressure and temperature to talk about gases, despite their being made of molecules that have 
neither. Craik specified the three key steps of a knowledge-based agent: (1) the stimulus must 
be translated into an internal representation, (2) the representation is manipulated by cogni- 
tive processes to derive new internal representations, and ( 3 )  these are in turn retranslated 
back into action. He clearly explained why this was a good design for an agent: 

If the organism carries a "small-scale model" of external reality and of its own possible 
actions within its head, it is able to try out various alternatives, conclude which is the best 
of them, react to future situations before they arise, utilize the knowledge of past events 
in dealing with the present and future, and in every way to react in a much fuller, safer, 
and more competent manner to the emergencies which face it. (Craik, 1943) 

After Craik's death in a bicycle accident in 194.5, his work was continued by Don- 
ald Broadbent, whose book Perception and Communication (1958) included some of the 
first information-processing models of psychological phenomena. Meanwhile, in the United 
States, the development of computer modeling led to the creation of the field of cognitive 

COGNITIVESCIENCE science. The field can be said to have started at a workshop in September 1956 at MIT. (We 
shall see that this is just two months after the conferelnce at which A1 itself was "born.") At 
the workshop, George Miller presented The Magic Number Seven, Noam Chomsky presented 
Three Models of Language, and Allen Newel1 and Herbert Simon presented The Logic The- 
ory Machine. These three influential papers showed how coniputer models could be used to 

lo William James was the brother of novelist Henry James. It is said that Henry wrote fiction as if it were 
psychology and William wrote psychology as if it were fiction. 
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address the psychology of memory, language, and logical thinlung, respectively. It is now a 
common view among psychologists that "a cognitive theory should be like a computer pro- 
gram" (Anderson, 1980), that is, it should describe a detailed information-processing mecha- 
nism whereby some cognitive function might be implemented. 

Computer engineering (1940-present) 

How can we build an efficient computer? 

For artificial intelligence to succeed, we need two things: intelligence and an artifact. The 
computer has been the artifact of choice. The modern digital electronic computer was in- 
vented independently and almost simultaneously by scientists in three countries embattled in 
World War 11. The first operational computer was the electromechanical Heath ~obinson," 
built in 1940 by Alan Turing's team for a single purpose: deciphering German messages. In 
1943, the same group developed the Colossus, a powerful general-purpose machine based 
on vacuum tubes.12 The first operational programmable computer was the 2-3, the inven- 
tion of Konrad Zuse in Germany in 1941. Zuse also invented floating-point numbers and the 
first high-level programming language, Plankalkiil. The first electronic computer, the ABC, 
was assembled by John Atanasoff and his student Clifford Berry between 1940 and 1942 
at Iowa State University. Atanasoff's research received little support or recognition; it was 
the ENIAC, developed as part of a secret military project at the University of Pennsylvania 
by a team including John Mauchly and John Eckert, that proved to be the most influential 
forerunner of modern computers. 

In the half-century since then, each generation of computer hardware has brought an 
increase in speed and capacity and a decrease in price. Performance doubles every 18 months 
or so, with a decade or two to go at this rate of increase. After that, we will need molecular 
engineering or some other new technology. 

Of course, there were calculating devices before the electronic computer. The earliest 
automated machines, dating from the 17th century, were discussed on page 6. The first pro- 
grammable machine was a loom devised in 1805 by Joseph Marie Jacquard (1752-1834) that 
used punched cards to store instructions for the pattern to be woven. In the mid-19th century, 
Charles Babbage (1792-1871) designed two machines, neither of which he completed. The 
"Difference Engine," which appears on the cover of this book, was intended to compute math- 
ematical tables for engineering and scientific projects. It was finally built and shown to work 
in 1991 at the Science Museum in London (Swade, 1993). Babbage's "Analytical Engine" 
was far more ambitious: it included addressable memory, stored programs, and conditional 
jumps and was the first artifact capable of universal computation. Babbage's colleague Ada 
Lovelace, daughter of the poet Lord Byron, was perhaps the world's first programmer. (The 
programming language Ada is named after her.) She wrote programs for the unfinished Ana- 
lytical Engine and even speculated that the machine could play chess or compose music. 

l1 Heath Robinson was a cartoonist famous for his depictions of whimsical and absurdly compl~cated conbap- 
tions for everyday tasks such as buttering toast. 
l2 In the postwar period, Turing wanted to use these computers for A1 research-for example, one of the first 
chess programs (Turing et al., 1953). His efforts were blocked by the British government. 
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A1 also owes a debt to the software side of computer science, which has supplied the 
operating systems, programming languages, and tools needed to write modern programs (and 
papers about them). But this is one area where the debt has been repaid: work in A.1 has pio- 
neered many ideas that have made their way back to mainstream computer science, including 
time sharing, interactive interpreters, personal computers with windows and mice, rapid de- 
velopment environments, the linked list data type, automatic storage management, and key 
concepts of symbolic, functional, dynamic, and object-oriented programming. 

Control theory and Cybernetics (1948-present) 

0 How can artifacts operate under their own control? 

Ktesibios of Alexandria (c. 250 B.c.) built the first self-controlling machine: a water clock 
with a regulator that kept the flow of water running through it at a constant, predictable pace. 
This invention changed the definition of what an artifact could do. Previously, only living 
things could modify their behavior in response to changes in the environment. Other examples 
of self-regulating feedback control systems include the steam engine governor, created by 
James Watt (1736-1 8 19), and the thermostat, invented by Colnelis Drebbel (1 572-1633), 
who also invented the submarine. The mathematical theory of stable feedback systems was 
developed in the 19th century. 

CONTROL THEORY The central figure in the creation of what is now called control theory was Norbert 
Wiener (1894-1964). Wiener was a brilliant mathematician who worked with Bertrand Rus- 
sell, among others, before developing an interest in biological and mechanical controll systems 
and their connection to cognition. Like Craik (who also used control systems as psycholog- 
ical models), Wiener and his colleagues Arturo Rosenblueth and Julian Bigelow challenged 
the behaviorist orthodoxy (Rosenblueth et al., 1943). They viewed purposive behavior as 
arising from a regulatory mechanism trying to minimize "error"-the difference between 
current state and goal state. In the late 1940s, Wiener, along with Warren McCulloch, Walter 
13itts, and John von Neumann, organized a series of conferences that explored the nevv mathe- 
matical and computationall models of cognition and influenced many other researchers in the 

CYBERNE~ ICS behavioral sciences. Wiener's book Cybernetics (1948) became a bestseller and avvoke the 
public to the possibility of artificially intelligent machines. 

Modern control theory, especially the branch known as stochastic optimal control, has 
OBJECTIVE 
FUNCTION as its goal the design of systems that maximize an objective function over time. This roughly 

matches our view of AH: designing systems that behave optimally. Why, then, are A1 and con- 
trol theory two different fields, especially given the close connections among their founders? 
The answer lies in the close coupling between the mathematical techniques that were familiar 
to the participants and the corresponding sets of problems that were encompassed in each 
world view. Calculus and matrix algebra, the tools of control theory, lend themselves to sys- 
tems that are describable b,y fixed sets of continuous variables; furthermore, exact analysis is 
typically feasible only for linear systems. A1 was founded in part as a way to escape from the 
limitations of the mathematics of control theory in the 1950s. The tools of logical inference 
and computation allowed A1 researchers to consider some problems such as language, vision, 
and planning, that fell completely outside the control theorist's purview. 
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Linguistics (1957-present) 

How does language relate to thought? 

In 1957, B. F. Skinner published Verbal Behavior. This was a comprehensive, detailed ac- 
count of the behaviorist approach to language learning, written by the foremost expert in the 
field. But curiously, a review of the book became as well known as the book itself, and served 
to almost kill off interest in behaviorism. The author of the review was Noam Chomsky, who 
had just published a book on his own theory, Syntactic Structures. Chomsky showed how 
the behaviorist theory did not address the notion of creativity in language-it did not explain 
how a child could understand and make up sentences that he or she had never heard before. 
Chomsky's theory-based on syntactic models going back to the Indian linguist Panini (c. 
350 ~.c.)-could explain this, and unlike previous theories, it was formal enough that it 
could in principle be programmed. 

Modem linguistics and AI, then, were "born" at about the same time, and grew up 
together, intersecting in a hybrid field called computational linguistics or natural language 
processing. The problem of understanding language soon turned out to be considerably more 
complex than it seemed in 1957. Understanding language requires an understanding of the 
subject matter and context, not just an understanding of the structure of sentences. This might 
seem obvious, but it was not widely appreciated until the 1960s. Much of the early work in 
knowledge representation (the study of how to put knowledge into a form that a computer 
can reason with) was tied to language and informed by research in Linguistics, which was 
connected in turn to decades of work on the philosophical analysis of language. 

With the background material behind us, we are ready to cover the development of A1 itself. 

The gestation of artificial intelligence (1943-1955) 

The first work that is now generally recognized as A1 was done by Warren McCulloch and 
Walter Pitts (1943). They drew on three sources: knowledge of the basic physiology and 
function of neurons in the brain; a formal analysis of propositional logic due to Russell and 
Whitehead; and Turing's theory of computation. They proposed a model of artificial neurons 
in which each neuron is characterized as being "on" or "off," with a switch to "on" occurring 
in response to stimulation by a sufficient number of neighboring neurons. The state of a 
neuron was conceived of as "factually equivalent to a proposition which proposed its adequate 
stimulus." They showed, for example, that any computable function could be computed by 
some network of connected neurons, and that all the logical connectives (and, or, not, etc.) 
could be implemented by simple net structures. McCulloch and Pitts also suggested that 
suitably defined networks could learn. Donald Hebb (1949) demonstrated a simple updating 
rule for modifying the connection strengths between neurons. His rule, now called Hebbian 
learning, remains an influential model to this day. 
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Two undergraduate students at Harvard, Marvin Minsky and Dean Edmonds, built the 
first neural network computer in 1950. The SNARC, as it was called, used 3000 vacuum 
tubes and a surplus automatic pilot mechanism from a B-24 bomber to simulate a network of 
40 neurons. Later, at Princeton, Minsky studied universal computation in neural networks. 
His Ph.D. committee was skeptical about whether this kind of work should be considered 
mathematics, but von Neumann reportedly said, "If it isn't now, it will be someday." Minsky 
was later to prove influential theorems showing the limitations of neural network research. 

There were a number of early examples of work that can be characterized as AI, but it 
was Alan Turing who first articulated a complete vision of A1 in his 1950 article "Comput- 
ing Machinery and Intelligence." Therein, he introduced the Turing test, machine learning, 
genetic algorithms, and reinforcement learning. 

The birth of artificial intelligence (1956) 

Princeton was home to another influential figure in AI, John McCarthy. After graduation, 
McCarthy moved to Dartmouth College, which was to become the official birthplace of the 
field. McCarthy convinced Minsky, Claude Shannon, and Nathaniel Rochester to help him 
bring together U.S. researchers interested in automata theory, neural nets, and the study of 
intelligence. They organized a two-month workshop at Dartmouth in the summer of 1956. 
There were 10 attendees in all, including Trenchard More from Princeton, Arthur Samuel 
from IBM, and Ray Solomonoff and Oliver Selfridge from MIT. 

Two researchers from Carnegie Tech,13 Allen Newell and Herbert Simon, rather stole 
the show. Although the others had ideas and in some cases programs for particular appli- 
cations such as checkers, Newel1 and Simon already had a reasoning program, the Logic 
Theorist (LT), about which Simon claimed, "We have invented a computer program capable 
of thinking non-numerically, and thereby solved the venerable mind-body problem."14 Soon 
after the workshop, the program was able to prove most of the theorems in Chapter 2 of Rus- 
sell and Whitehead's Principia Mathernatica. Russell was reportedly delighted when Simon 
showed him that the program had come up with a proof for one theorem that was shorter than 
the one in Principia. The editors of the Journal of Symbolic Logic were less impressed; they 
rejected a paper coauthored by Newell, Simon, and Logic Theorist. 

The Dartmouth workshop did not lead to any new breakthroughs, but it did introduce 
all the major figures to each other. For the next 20 years, the field would be dominated by 
these people and their students and colleagues at MIT, CMU, Stanford, and IBM. Perhaps 
the longest-lasting thing to come out of the workshop was an agreement to adopt McCarthy's 
new name for the field: artificial intelligence. Perhaps "computational rationality" would 
have been better, but "AI" has stuck. 

Looking at the proposal for the Dartmouth workshop (McCarthy et al., 1955), we can 
see why it was necessary for A1 to become a separate field. Why couldn't all the work done 

l3 NOW Carnegie Mellon University (CMU). 
l4 Newel1 and Simon also invented a list-processing language, IPL, to write LT. They had no compiler, and 
translated it into machine code by hand. To avoid errors, they worked in parallel, calling out binary numbers to 
each other as they wrote each instruction to make sure they agreed. 
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in A1 have taken place under the name of control theory, or operations research, or decision 
theory, which, after all, have objectives similar to those of AI? Or why isn't A1 a branch 
of mathematics? The first answer is that A1 from the start embraced the idea of duplicating 
human faculties like creativity, self-improvement, and language use. None of the other fields 
were addressing these issues. The second answer is methodology. A1 is the only one of these 
fields that is clearly a branch of computer science (although operations research does share 
an emphasis on computer simulations), and A1 is the only field to attempt to build machines 
that will function autonomously in complex, changing environments. 

Early enthusiasm, great expectations (1952-1969) 

The early years of A1 were full of successes-in a limited way. Given the primitive computers 
and programming tools of the time, and the fact that only a few years earlier computers 
were seen as things that could do arithmetic and no more, it was astonishing whenever a 
computer did anything remotely clever. The intellectual establishment, by and large, preferred 
to believe that "a machine can never do X." (See Chapter 26 for a long list of X's gathered 
by Turing.) A1 researchers naturally responded by demonstrating one X after another. John 
McCarthy referred to this period as the "Look, Ma, no hands!" era. 

Newel1 and Simon's early success was followed up with the General Problem Solver, 
or GPS. Unlike Logic Theorist, this program was designed from the start to imitate human 
problem-solving protocols. Within the limited class of puzzles it could handle, it turned out 
that the order in which the program considered subgoals and possible actions was similar to 
that in which humans approached the same problems. Thus, GPS was probably the first pro- 
gram to embody the "thinking humanly" approach. The success of GPS and subsequent pro- 
grams as models of cognition led Newel1 and Simon (1976) to formulate the famous physical 

PHyslCALSYMBOL symbol system hypothesis, which states that "a physical symbol system has the necessary and SYSTEM 

sufficient means for general intelligent action." What they meant is that any system (human 
or machine) exhibiting intelligence must operate by manipulating data structures composed 
of symbols. We will see later that this hypothesis has been challenged from many directions. 

At IBM, Nathaniel Rochester and his colleagues produced some of the first A1 pro- 
grams. Herbert Gelernter (1959) constructed the Geometry Theorem Prover, which was 
able to prove theorems that many students of mathematics would find quite tricky. Starting 
in 1952, Arthur Samuel wrote a series of programs for checkers (draughts) that eventually 
learned to play at a strong amateur level. Along the way, he disproved the idea that comput- 
ers can do only what they are told to: his program quickly learned to play a better game than 
its creator. The program was demonstrated on television in February 1956, creating a very 
strong impression. Like Turing, Samuel had trouble finding computer time. Working at night, 
he used machines that were still on the testing floor at IBM's manufacturing plant. Chapter 6 
covers game playing, and Chapter 21 describes and expands on the learning techniques used 
by Samuel. 

John McCarthy moved from Dartmouth to MIT and there made three crucial contribu- 
tions in one historic year: 1958. In MIT A1 Lab Memo No. 1, McCarthy defined the high-level 
language Lisp, which was to become the dominant A1 programming language. Lisp is the 
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second-oldest major high-level language in current use, one year younger than FORTRAN. 
With Lisp, McCarthy had the tool he needed, but access to scarce and expensive computing 
resources was also a serious problem. In response, he and others at MIT invented time shar- 
ing. Also in 1958, McCarthy published a paper entitled Programs with Common Sense, in 
which he described the Advice Taker, a hypothetical program that can be seen as the first 
complete A1 system. Like the Logic Theorist and Geometry Theorem Prover, McCarthy's 
program was designed to use knowledge to search for solutions to problems. But unlike the 
others, it was to embody general knowledge of the world. For example, he showed how some 
simple axioms would enable the program to generate a plan to drive to the airport to catch 
a plane. The program was also designed so that it could accept new axioms in the normal 
course of operation, thereby allowing it to achieve competence in new areas without being 
reprogrammed. The Advice Taker thus embodied the central principles of knowledge repre- 
sentation and reasoning: that it is useful to have a formal, explicit representation of the world 
and of the way an agent's actions affect the world and to be able to manipulate these repre- 
sentations with deductive processes. It is remarkable how much of the 1958 paper remains 
relevant even today. 

1958 also marked the year that Marvin Minsky moved to MIT. His initial collabora- 
tion with McCarthy did not last, however. McCarthy stressed representation and reasoning 
in formal logic, whereas Minsky was more interested in getting programs to work and even- 
tually developed an anti-logical outlook. In 1963, McCarthy started the A1 lab at Stanford. 
His plan to use logic to build the ultimate Advice Taker was advanced by J. A. Robinson's 
discovery of the resolution method (a complete theorem-proving algorithm for first-order 
logic; see Chapter 9). Work at Stanford emphasized general-purpose methods for logical 
reasoning. Applications of logic included Cordell Green's question-answering and planning 
systems (Green, 1969b) and the Shakey robotics project at the new Stanford Research Insti- 
tute (SRI). The latter project, discussed further in Chapter 25, was the first to demonstrate the 
complete integration of logical reasoning and physical activity. 

Minsky supervised a series of students who chose limited problems that appeared to 
MICROWORLDS require intelligence to solve. These limited domains became known as microworlds. James 

Slagle's SAINT program (1963a) was able to solve closed-form calculus integration problems 
typical of first-year college courses. Tom Evans's ANALOGY program (1968) solved geomet- 
ric analogy problems that appear in IQ tests, such as the one in Figure 1.4. Daniel Bobrow's 
STUDENT program (1967) solved algebra story problems, such as the following: 

If the number of customers Tom gets is twice the square of 20 percent of the number 
of advertisements he runs, and the number of advertisements he runs is 45, what is the 
number of customers Tom gets? 

The most famous microvvorld was the blocks world, which consists of a set of solid blocks 
placed on a tabletop (or more often, a simulation of a tabletop), as shown in Figure 1.5. 
A typical task in this world is to rearrange the blocks in a certain way, using a robot hand 
that can pick up one block at a time. The blocks world was home to the vision project of 
David Huffman (1971), the vision and constraint-propagation work of David Waltz (1975), 
the learning theory of Patrick Winston (1970), the natural language understanding program 
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Figure 1.4 An example problem solved by Evans's ANALOGY program. 

Figure 1.5 A scene from the blocks world. SHRDLU (Winograd, 1972) has just completed 
the command, "Find a block which is taller than the one you are holding and put it in the box." 

of Terry Winograd (1972), and the planner of Scott Fahlman (1974). 
Early work building on the neural networks of McCulloch and Pitts also flourished. 

The work of Winograd and Cowan (1963) showed how a large number of elements could 
collectively represent an individual concept, with a corresponding increase in robustness and 
parallelism. Hebb's learning methods were enhanced by Bernie Widrow (Widrow and Hoff, 
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1960; Widrow, 1962), who called his networks adalines, and by Frank Rosenblatt (1962) 
with his perceptrons. Rosenblatt proved the perceptron convergence theorem, showing 
that his learning algorithm could adjust the connection strengths of a perceptron to match any 
input data, provided such a match existed. These topics are covered in Chapter 20. 

A dose of reality (1966-1973) 

From the beginning, A1 researchers were not shy about making predictions of their coming 
successes. The following statement by Herbert Simon in 1957 is often quoted: 

It is not my aim to surprise or shock you-but the simplest way 1 can summarize is to say 
that there are now in the world machines that think, that learn and that create. Moreover, 
their ability to do these things is going to increase rapidly until-in a visible future-the 
range of problems they can handle will be coextensive with the range to which the human 
mind has been applied. 

Terms such as "visible future" can be interpreted in various ways, but Simon also made a 
more concrete prediction: that within 10 years a computer would be chess champion, and a 
significant mathematical theorem would be proved by machine. These predictions came true 
(or approximately true) within 40 years rather than 10. Simon's over-confidence was due 
to the promising performance of early A1 systems on simple examples. In almost all cases. 
however, these early systems turned out to fail miserably when tried out on wider selections 
of problems and on more difficult problems. 

The first kind of difficulty arose because most early programs contained little or no 
knowledge of their subject matter; they succeeded by means of simple syntactic manipula- 
tions. A typical story occurred in early machine translation efforts, which were generously 
funded by the U.S. National Research Council in an attempt to speed up the translation of 
Russian scientific papers in the wake of the Sputnik launch in 1957. It was thought ini- 
tially that simple syntactic transformations based on the grammars of Russian and English, 
and word replacement using an electronic dictionary, would suffice to preserve the exact 
meanings of sentences. The fact is that translation requires general knowledge of the subject 
matter in order to resolve ambiguity and establish the content of the sentence. The famous 
re-translation of "the spirit is willing but the flesh is weak" as "the vodka is good but the 
meat is rotten7' illustrates the difficulties encountered. In 1966, a report by an advisory com- 
mittee found that "there has been no machine translation of general scientific text, and none 
is in immediate prospeclt." All U.S. government funding for academic translation projects 
was canceled. Today, machine translation is an imperfect but widely used tool for technical, 
commercial, government, and Internet documents. 

The second kind of difficulty was the intractability of many of the problems that A1 was 
attempting to solve. Most of the early A1 programs solved problems by trying oul different 
combinations of steps until the solution was found. This strategy worked initially because 
microworlds contained very few objects and hence very few possible actions and very short 
solution sequences. Before the theory of computational complexity was developed, it was 
widely thought that "scaling up" to larger problems was simply a matter of faster hardware 
and larger memories. The optimism that accompanied the development of resolution theorem 
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proving, for example, was soon dampened when researchers failed to prove theorems involv- 
ing more than a few dozen facts. The fact that a program can find a solution in principle does 
not mean that the program contains any of the mechanisms needed toJind it in practice. 

The illusion of unlimited computational power was not confined to problem-solving 
MACHINE EVOLUTION programs. Early experiments in machine evolution (now called genetic algorithms) (Fried- 

berg, 1958; Friedberg et al., 1959) were based on the undoubtedly correct belief that by 
making an appropriate series of small mutations to a machine code program, one can gener- 
ate a program with good performance for any particular simple task. The idea, then, was to 
try random mutations with a selection process to preserve mutations that seemed useful. De- 
spite thousands of hours of CPU time, almost no progress was demonstrated. Modern genetic 
algorithms use better representations and have shown more success. 

Failure to come to grips with the "combinatorial explosion" was one of the main criti- 
cisms of A1 contained in the Lighthill report (Lighthill, 1973), which formed the basis for the 
decision by the British government to end support for A1 research in all but two universities. 
(Oral tradition paints a somewhat different and more colorful picture, with political ambitions 
and personal animosities whose description is beside the point.) 

A third difficulty arose because of some fundamental limitations on the basic structures 
being used to generate intelligent behavior. For example, Minsky and Papert's book Percep- 
trons (1969) proved that, although perceptrons (a simple form of neural network) could be 
shown to learn anything they were capable of representing, they could represent very little. 
In particular, a two-input perceptron could not be trained to recognize when its two inputs 
were different. Although their results did not apply to more complex, multilayer networks, 
research funding for neural-net research soon dwindled to almost nothing. Ironically, the new 
back-propagation learning algorithms for multilayer networks that were to cause an enor- 
mous resurgence in neural-net research in the late 1980s were actually discovered first in 
1969 (Bryson and Ho, 1969). 

Knowledge-based systems: The key to power? (1969-1979) 

The picture of problem solving that had arisen during the first decade of A1 research was of 
a general-purpose search mechanism trying to string together elementary reasoning steps to 

WEAK METHODS find complete solutions. Such approaches have been called weak methods, because, although 
general, they do not scale up to large or difficult problem instances. The alternative to weak 
methods is to use more powerful, domain-specific knowledge that allows larger reasoning 
steps and can more easily handle typically occurring cases in narrow areas of expertise. One 
might say that to solve a hard problem, you have to almost know the answer already. 

The DENDRAL program (Buchanan et al., 1969) was an early example of this approach. 
It was developed at Stanford, where Ed Feigenbaum (a former student of Herbert Simon), 
Bruce Buchanan (a philosopher turned computer scientist), and Joshua Lederberg (a Nobel 
laureate geneticist) teamed up to solve the problem of inferring molecular structure from the 
information provided by a mass spectrometer. The input to the program consists of the ele- 
mentary formula of the molecule (e.g., CsHI3NO2) and the mass spectrum giving the masses 
of the various fragments of the molecule generated when it is bombarded by an electron beam. 
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For example, the mass spectrum might contain a peak at m = 15, corresponding to the mass 
of a methyl (CH3) fragment. 

The naive version of the program generated all possible structures consistent with the 
formula, and then predicted what mass spectrum would be observed for each, comparing this 
with the actual spectrum. As one might expect, this is intractable for decent-sized molecules. 
The DENDRAL researchers consulted analytical chemists and found that they worked by look- 
ing for well-known patterns of peaks in the spectrum that suggested common substructures in 
the molecule. For example, the following rule is used to recognize a ketone (C=O) subgroup 
(which weighs 28): 

if there are two peaks at XI and 2 2  such that 
(a) XI + 2 2  = M + 28 (M is the mass of the whole molecule); 
(b) zl - 28 is a high peak; 
(c) xz - 28 is a high peak; 
(d) At least one of XI and xz is high. 
then there is a ketone subgroup 

Recognizing that the molecule contains a particular substructure reduces the number of pos- 
sible candidates enormously. DENDRAL was powerful because 

All the relevant theoretical knowledge to solve these problems has been mapped over from 
its general form in the [spectrum prediction component] ("first principles") to efficient 
special forms ("cookbook recipes"). (Feigenbaum et al., 1971) 

The significance of DENDRAL was that it was the first successful knowledge-intensive sys- 
tem: its expertise derived from large numbers of special-purpose rules. Later systems also 
incorporated the main theme of McCarthy's Advice Taker approach-the clean separation of 
the knowledge (in the form of rules) from the reasoning component. 

With this lesson in mind, Feigenbaum and others at Stanford began the Heuristic Pro- 
gramming Project (HPP), to investigate the extent to which the new methodology of expert 

EXPERTSYSTEMS systems could be applied to other areas of human expertise. The next major effort was in 
the area of medical diagnosis. Feigenbaum, Buchanan, and Dr. Edward Shortliffe developed 
MYCIN to diagnose blood infections. With about 450 rules, MYCIN was able to perform 
as well as some experts, and considerably better than junior doctors. It also contained two 
major differences from DENDRAL. First, unlike the DENDRAL rules, no general theoretical 
model existed from which the MYCIN rules could be deduced. They had to be acquired from 
extensive interviewing of experts, who in turn acquired them from textbooks, other experts, 
and direct experience of cases. Second, the rules had to reflect the uncertainty associated with 
medical knowledge. MYCIN incorporated a calculus of uncertainty called certainty factors 
(see Chapter 14), which seemed (at the time) to fit well with how doctors assessed the impact 
of evidence on the diagnosis. 

The importance of domain knowledge was also apparent in the area of understanding 
natural language. Although Winograd's SHRDLU system for understanding natural language 
had engendered a good deal of excitement, its dependence on syntactic analysis caused some 
(of the same problems as occurred in the early machine translation work. It was able to 
{overcome ambiguity and understand pronoun references, but this was mainly because it was 
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FRAMES 

designed specifically for one area-the blocks world. Several researchers, including Eugene 
Charniak, a fellow graduate student of Winograd's at MIT, suggested that robust language 
understanding would require general knowledge about the world and a general method for 
using that knowledge. 

At Yale, the linguist-turned-AI-researcher Roger Schank emphasized this point, claim- 
ing, "There is no such thing as syntax," which upset a lot of linguists, but did serve to start a 
useful discussion. Schank and his students built a series of programs (Schank and Abelson, 
1977; Wilensky, 1978; Schank and Riesbeck, 1981; Dyer, 1983) that all had the task of under- 
standing natural language. The emphasis, however, was less on language per se and more on 
the problems of representing and reasoning with the knowledge required for language under- 
standing. The problems included representing stereotypical situations (Cullingford, 1981), 
describing human memory organization (Rieger, 1976; Kolodner, 1983), and understanding 
plans and goals (Wilensky, 1983). 

The widespread growth of applications to real-world problems caused a concurrent in- 
crease in the demands for workable knowledge representation schemes. A large number 
of different representation and reasoning languages were developed. Some were based on 
logic-for example, the Prolog language became popular in Europe, and the PLANNER fam- 
ily in the United States. Others, following Minsky's idea of frames (1975), adopted a more 
structured approach, assembling facts about particular object and event types and arranging 
the types into a large taxonomic hierarchy analogous to a biological taxonomy. 

A1 becomes an industry (1980-present) 

The first successful commercial expert system, R 1, began operation at the Digital Equipment 
Corporation (McDermott, 1982). The program helped configure orders for new computer 
systems; by 1986, it was saving the company an estimated $40 million a year. By 1988, 
DEC7s A1 group had 40 expert systems deployed, with more on the way. Du Pont had 100 
in use and 500 in development, saving an estimated $10 million a year. Nearly every major 
U.S. corporation had its own A1 group and was either using or investigating expert systems. 

In 198 1, the Japanese announced the "Fifth Generation" project, a 10-year plan to build 
intelligent computers running Prolog. In response the United States formed the Microelec- 
tronics and Computer Technology Corporation (MCC) as a research consortium designed to 
assure national competitiveness. In both cases, A1 was part of a broad effort, including chip 
design and human-interface research. However, the A1 components of MCC and the Fifth 
Generation projects never met their ambitious goals. In Britain, the Alvey report reinstated 
the funding that was cut by the Lighthill report.15 

Overall, the A1 industry boomed from a few million dollars in 1980 to billions of dollars 
in 1988. Soon after that came a period called the "A1 Winter," in which many companies 
suffered as they failed to deliver on extravagant promises. 

l5 TO save embarrassment, a new field called IKBS (Intelligent Knowledge-Based Systems) was invented because 
Artificial Intelligence had been officially canceled. 
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The return of neural networks (1986-present) 

Although computer science had largely abandoned the field of neural networks in the late 
1970s, work continued in other fields. Physicists such as John Hopfield (1982) used tech- 
niques from statistical mechanics to analyze the storage and optimization properties of net- 
works, treating collections of nodes like collections of atoms. Psychologists includ.ing David 
Rumelhart and Geoff Hnton continued the study of neural-net models of mem0r.y. As we 
discuss in Chapter 20, the real impetus came in the mid-1980s when at least four different 
groups reinvented the back-propagation learning algorithm first found in 1969 by Bryson and 
Ho. The algorithm was applied to many learning problems in computer science and psychol- 
ogy, and the widespread dissemination of the results in the collection Parallel Distributed 
Processing (Rumelhart and McClelland, 1986) caused great excitement. 

CONNEI:TIONIST These so-called connectionist models of intelligent systems were seen by some as di- 
rect competitors both to the symbolic models promoted by Newel1 and Simon and to the 
logicist approach of McCarthy and others (Smolensky, 1988). It might seem obvious that 
at some level humans manipulate symbols-in fact, Terrence Deacon's book The Symbolic 
Species (1997) suggests that this is the dejining characteristic of humans, but the most ardent 
connectionists questioned whether symbol manipulation had any real explanatory role in de- 
tailed models of cognition. This question remains unanswered, but the current view is that 
connectionist and symbolic approaches are complementary, not competing. 

A1 becomes a science (1987-present) 

Recent years have seen a revolution in both the content and the methodology of work in 
artificial intelligence.16 It is now more common to build on existing theories than to propose 
brand new ones, to base claims on rigorous theorems or hard experimental evidence rather 
than on intuition, and to show relevance to real-world applications rather than toy examples. 

A1 was founded in part as a rebellion against the limitations of existing fields like control 
theory and statistics, but now it is embracing those fields. As David McAllester (1998) put it, 

In the early period of A1 it seemed plausible that new forms of symbolic computation, 
e.g., frames and semantic networks, made much of classical theory obsolete. This led to 
a form of isolationism in which A1 became largely separated from the rest of computer 
science. This isolationism is currently being abandoned. There is a recognition that 
machine learning should not be isolated from information theory, that uncertain reasoning 
should not be isolated from stochastic modeling, that search should not be isolated from 
classical optimization and control, and that automated reasoning should not be isolated 
from formal methods and static analysis. 

In terms of methodology, A1 has finally come firmly under the scientific method. 'To be ac- 
cepted, hypotheses must be subjected to rigorous empirical experiments, and the results must 

- - 

l6 Some have characterized this change as a victory of the neats-those who think that A1 theories should be 
grounded in mathematical rigor-over the scruffies-those who would rather try out lots of ideas, write some 
programs, and then assess what seems to be working. Both approaches are important. A shift toward neatness 
implies that the field has reached a level of stability and maturity. Whether that stability will be disrupted by a 
new scruffy idea is another question. 
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be analyzed statistically for their importance (Cohen, 1995). Through the use of the Internet 
and shared repositories of test data and code, it is now possible to replicate experiments. 

The field of speech recognition illustrates the pattern. In the 1970s, a wide variety of 
different architectures and approaches were tried. Many of these were rather ad hoc and 
fragile, and were demonstrated on only a few specially selected examples. In recent years, 
approaches based on hidden Markov models (HMMs) have come to dominate the area. Two 
aspects of HMMs are relevant. First, they are based on a rigorous mathematical theory. This 
has allowed speech researchers to build on several decades of mathematical results developed 
in other fields. Second, they are generated by a process of training on a large corpus of 
real speech data. This ensures that the performance is robust, and in rigorous blind tests the 
HMMs have been improving their scores steadily. Speech technology and the related field of 
handwritten character recognition are already making the transition to widespread industrial 
and consumer applications. 

Neural networks also fit this trend. Much of the work on neural nets in the 1980s was 
done in an attempt to scope out what could be done and to learn how neural nets differ from 
"traditional" techniques. Using improved methodology and theoretical frameworks, the field 
arrived at an understanding in which neural nets can now be compared with corresponding 
techniques from statistics, pattern recognition, and machine learning, and the most promising 
technique can be applied to each application. As a result of these developments, so-called 

DATA MINING data mining technology has spawned a vigorous new industry. 
Judea Pearl's (1988) Probabilistic Reasoning in Intelligent Systems led to a new accep- 

tance of probability and decision theory in AI, following a resurgence of interest epitomized 
by Peter Cheeseman's (1985) article "In Defense of Probability." The Bayesian network 
formalism was invented to allow efficient representation of, and rigorous reasoning with, 
uncertain knowledge. This approach largely overcomes many problems of the probabilistic 
reasoning systems of the 1960s and 1970s; it now dominates A1 research on uncertain reason- 
ing and expert systems. The approach allows for learning from experience, and it combines 
the best of classical A1 and neural nets. Work by Judea Pearl (1982a) and by Eric Horvitz and 
David Heckerman (Horvitz and Heckerman, 1986; Horvitz et al., 1986) promoted the idea of 
normative expert systems: ones that act rationally according to the laws of decision theory 
and do not try to imitate the thought steps of human experts. The windowsTM operating sys- 
tem includes several normative diagnostic expert systems for correcting problems. Chapters 
13 to 16 cover this area. 

Similar gentle revolutions have occurred in robotics, computer vision, and knowledge 
representation. A better understanding of the problems and their complexity properties, com- 
bined with increased mathematical sophistication, has led to workable research agendas and 
robust methods. In many cases, formalization and specialization have also led to fragmenta- 
tion: topics such as vision and robotics are increasingly isolated from "mainstream" A1 work. 
The unifying view of A1 as rational agent design is one that can bring unity back to these 
disparate fields. 
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The emergence of intelligent agents (1995-present) 

Perhaps encouraged by the progress in solving the subproblems of AI, researchers have also 
started to look at the "whole agent" problem again. The work of Allen Newell, John Laird, 
and Paul Rosenbloom on SOAR (Newell, 1990; Laird et al., 1987) is the best-known example 
of a complete agent architecture. The so-called situated movement aims to understand the 
workings of agents embedded in real environments with continuous sensory inputs. One 
of the most important environments for intelligent agents is the Internet. AS systems have 
become so common in web-based applications that the "-bot" suffix has entered everyday 
language. Moreover, AS technologies underlie many Internet tools, such as search engines, 
recommender systems, and Web site construction systems. 

Besides the first edition of this text (Russell and Norvig, 1995), other receilt texts have 
also adopted the agent perspective (Poole et al., 1998; Nilsson, 1998). One consequence of 
trying to build complete agents is the realization that the previously isolated subfiields of A1 
might need to be reorganized somewhat when their results are to be tied together. In particular, 
it is now widely appreciated that sensory systems (vision, sonar, speech recognition, etc.) 
cannot deliver perfectly reliable information about the environment. Hence, reasoning and 
planning systems must be able to handle uncertainty. A second major consequence of the 
agent perspective is that A1 has been drawn into much closer contact with other filelds, such 
as control theory and economics, that also deal with agents. 

1.4 THE STATE OF THE L ~ R T  

What can A1 do today? A concise answer is difficult, because there are so many activities in 
so many subfields. Here we sample a few applications; others appear throughout the book. 

Autonomous planning and scheduling: A hundred million miles from Earth, NASA's 
Remote Agent program became the first on-board autonomous planning program ito control 
the scheduling of operations for a spacecraft (Jonsson et al., 2000). Remote Agent generated 
plans from high-level goals specified from the ground, and it monitored the operation of the 
spacecraft as the plans were executed-detecting, diagnosing, and recovering from problems 
as they occurred. 

Game playing: IBM's Deep Blue became the first computer program to defeat the 
world champion in a chess match when it bested Garry Kasparov by a score of 3.5 to 2.5 in 
an exhibition match (Goodman and Keene, 1997). Kasparov said that he felt a "new kind of 
intelligence" across the board from him. Newsweek magazine described the match as "The 
brain's last stand." The value of IBM's stock increased by $18 billion. 

Autonomous control: The ALVINN computer vision system was trained to steer a car 
to keep it following a lane. St was placed in CMU's NAVLAB computer-controlled minivan 
and used to navigate across the United States-for 2850 miles it was in control of steering the 
vehicle 98% of the time. A human took over the other 2%, mostly at exit ramps. NAVLAB has 
video cameras that transmit road images to ALVINN, which then computes the best direction 
to steer, based on experience from previous training runs. 
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Diagnosis: Medical diagnosis programs based on probabilistic analysis have been able 
to perform at the level of an expert physician in several areas of medicine. Heckerman (1991) 
describes a case where a leading expert on lymph-node pathology scoffs at a program's diag- 
nosis of an especially difficult case. The creators of the program suggest he ask the computer 
for an explanation of the diagnosis. The machine points out the major factors influencing its 
decision and explains the subtle interaction of several of the symptoms in this case. Eventu- 
ally, the expert agrees with the program. 

Logistics Planning: During the Persian Gulf crisis of 1991, U.S. forces deployed a 
Dynamic Analysis and Replanning Tool, DART (Cross and Walker, 1994), to do automated 
logistics planning and scheduling for transportation. This involved up to 50,000 vehicles, 
cargo, and people at a time, and had to account for starting points, destinations, routes, and 
conflict resolution among all parameters. The AI planning techniques allowed a plan to be 
generated in hours that would have taken weeks with older methods. The Defense Advanced 
Research Project Agency (DARPA) stated that this single application more than paid back 
DARPA's 30-year investment in AI. 

Robotics: Many surgeons now use robot assistants in microsurgery. HipNav (DiGioia 
et al., 1996) is a system that uses computer vision techniques to create a three-dimensional 
model of a patient's internal anatomy and then uses robotic control to guide the insertion of a 
hip replacement prosthesis. 

Language understanding and problem solving: PROVERB (Littman et al., 1999) is a 
computer program that solves crossword puzzles better than most humans, using constraints 
on possible word fillers, a large database of past puzzles, and a variety of information sources 
including dictionaries and online databases such as a list of movies and the actors that appear 
in them. For example, it determines that the clue "Nice Story" can be solved by "ETAGE 
because its database includes the clue/solution pair "Story in FranceIETAGE?' and because it 
recognizes that the patterns "Nice X7 and "X in France" often have the same solution. The 
program does not know that Nice is a city in France, but it can solve the puzzle. 

These are just a few examples of artificial intelligence systems that exist today. Not 
magic or science fiction-but rather science, engineering, and mathematics, to which this 
book provides an introduction. 

This chapter defines A1 and establishes the cultural background against which it has devel- 
oped. Some of the important points are as follows: 

a Different people think of A1 differently. Two important questions to ask are: Are you 
concerned with thinking or behavior? Do you want to model humans or work from an 
ideal standard? 
In this book, we adopt the view that intelligence is concerned mainly with rational 
action. Ideally, an intelligent agent takes the best possible action in a situation. We 
will study the problem of building agents that are intelligent in this sense. 
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Philosophers (going back to 400 B.c.) made A1 conceivable by considering the ideas 
that the mind is in some ways like a machine, that it operates on knowledge encoded in 
some internal language, and that thought can be used to choose what actions to take. 
Mathematicians provided the tools to manipulate statements of logical certainty as well 
as uncertain, probabilistic statements. They also set the groundwork for understanding 
computation and reasoning about algorithms. 
Economists formalized the problem of making decisions that maximize the expected 
outcome to the decision-maker. 

Psychologists adopted the idea that humans and animals can be considered information- 
processing machines. Linguists showed that language use fits into this model. 

Computer engineers provided the artifacts that make A1 applications possibbz. A1 pro- 
grams tend to be large, and they could not work without the great advances in speed and 
memory that the computer industry has provided. 

Control theory deals with designing devices that act optimally on the basis of feedback 
from the environment. Initially, the mathematical tools of control theory were quite 
different from AI, but the fields are coming closer together. 
The history of A1 has had cycles of success, misplaced optimism, and resulting cutbacks 
in enthusiasm and funding. There have also been cycles of introducing new creative 
approaches and systematically refining the best ones. 
A1 has advanced more rapidly in the past decade because of greater use of the scientific 
method in experimenting with and comparing approaches. 

Recent progress in understanding the theoretical basis for intelligence has gone hand in 
hand with improvements in the capabilities of real systems. The subfields of A1 have 
become more integrated, and A1 has found common ground with other disciplines. 

BIBLIOGRAI'HICAL AND HISTORICAL NOTES 

The methodological status of artificial intelligence is investigated in The Sciences of the Ar- 
t$cial, by Herb Simon (1981), which discusses research areas concerned with coinplex ar- 
tifacts. It explains how A1 can be viewed as both science and mathematics. Cohen (1995) 
gives an overview of experimental methodology within AI. Ford and Hayes (1995) give an 
opinionated view of the usefulness of the Turing Test. 

ArtiJicial Intelligence: The Very Idea, by John Haugeland (1985) gives a readable ac- 
count of the philosophical and practical problems of AI. Cognitive science is well described 
by several recent texts (Johnson-Laird, 1988; Stillings et al., 1995; Thagard, 1996) and by 
the Encyclopedia of the Cognitive Sciences (Wilson and Keil, 1999). Baker (1989) covers 
the syntactic part of modern linguistics, and Chierchia and McConnell-Ginet (1990) cover 
semantics. Jurafsky and Martin (2000) cover computational linguistics. 

Early A1 is described in Feigenbaum and Feldman's Computers and Thought (1963), 
Minsky's Semantic Information Processing (1968), and the Machine Intelligence series edited 
by Donald Michie. A large number of influential papers have been anthologized by Webber 
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and Nilsson (1981) and by Luger (1995). Early papers on neural networks are collected in 
Neurocomputing (Anderson and Rosenfeld, 1988). The Encyclopedia of AI (Shapiro, 1992) 
contains survey articles on almost every topic in AI. These articles usually provide a good 
entry point into the research literature on each topic. 

The most recent work appears in the proceedings of the major A1 conferences: the bi- 
ennial International Joint Conference on A1 (IJCAI), the annual European Conference on A1 
(ECAI), and the National Conference on AI, more often known as AAAI, after its sponsoring 
organization. The major journals for general A1 are Artificial Intelligence, Computational 
Intelligence, the IEEE Transactions on Pattern Analysis and Machine Intelligence, IEEE In- 
telligent Systems, and the electronic Journal ofArtiJicial Intelligence Research. There are also 
many conferences and journals devoted to specific areas, which we cover in the appropriate 
chapters. The main professional societies for A1 are the American Association for Artificial 
Intelligence (AAAI), the ACM Special Interest Group in Artificial Intelligence (SIGART), 
and the Society for Artificial Intelligence and Simulation of Behaviour (AISB). AAAI's AI 
Magazine contains many topical and tutorial articles, and its website, aaai.org, contains news 
and background information. 

These exercises are intended to stimulate discussion, and some might be set as term projects. 
Alternatively, preliminary attempts can be made now, and these attempts can be reviewed 
after the completion of the book. 

1.1 Define in your own words: (a) intelligence, (b) artificial intelligence, (c) agent. 

1.2 Read Turing's original paper on A1 (Turing, 1950). In the paper, he discusses several 
potential objections to his proposed enterprise and his test for intelligence. Which objec- 
tions still carry some weight? Are his refutations valid? Can you think of new objections 
arising from developments since he wrote the paper? In the paper, he predicts that, by the 
year 2000, a computer will have a 30% chance of passing a five-minute Turing Test with an 
unskilled interrogator. What chance do you think a computer would have today? In another 
50 years? 

1.3 Every year the Loebner prize is awarded to the program that comes closest to passing 
a version of the Turing test. Research and report on the latest winner of the Loebner prize. 
What techniques does it use? How does it advance the state of the art in AI? 

1.4 There are well-known classes of problems that are intractably difficult for computers, 
and other classes that are provably undecidable. Does this mean that A1 is impossible? 

1.5 Suppose we extend Evans's ANALOGY program so that it can score 200 on a standard 
IQ test. Would we then have a program more intelligent than a human? Explain. 

1.6 How could introspection-reporting on one's inner thoughts-be inaccurate? Could I 
be wrong about what I'm thinking? Discuss. 
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1.7 Examine the A1 literature to discover whether the following tasks can currently be 
solved by computers: 

a. Playing a decent game of table tennis (ping-pong). 

b. Driving in the center of Cairo. 

c. Buying a week's worth of groceries at the market. 

d. Buying a week's worth of groceries on the web. 

e. Playing a decent game of bridge at a competitive level. 

f. Discovering and proving new mathematical theorems. 

g. Writing an intentionally funny story. 

h. Giving competent legal advice in a specialized area of law. 

i. Translating spoken English into spoken Swedish in real time. 

j. Performing a complex surgical operation. 

For the currently infeasible tasks, try to find out what the difficulties are and predict when, if 
ever, they will be overcome. 

1.8 Some authors have claimed that perception and motor skills are the most important part 
of intelligence, and that '"higher level" capacities are necessarily parasitic-simple add-ons to 
these underlying facilities. Certainly, most of evolution and a large part of the brain have been 
devoted to perception and motor slulls, whereas A1 has found tasks such as game playing and 
logical inference to be easier, in many ways, than perceiving and acting in the real world. Do 
you think that AI's traditional focus on higher-level cognitive abilities is misplaced? 

1.9 Why would evolution tend to result in systems that act rationally? What goals are such 
systems designed to achieve? 

1.10 Are reflex actions (such as moving your hand away from a hot stove) rational? Are 
they intelligent? 

1.11 "Surely computers cannot be intelligent-they can do only what their programmers 
tell them." Is the latter statement true, and does it imply the former? 

1.12 "Surely animals cannot be intelligent-they can do only what their genes tell them." 
Is the latter statement true, and does it imply the former? 

1.13 "Surely animals, humans, and computers cannot be intelligent-they can do only what 
their constituent atoms are told to do by the laws of physics." Is the latter statement true, and 
does it imply the former? 
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2 INTELLIGENT AGENTS 

In which we discuss the nature of agents, pe@ect or otherwise, the diversity of 
environments, and the resulting menagerie of agent types. 

Chapter 1 identified the concept of rational agents as central to our approach to arti- 
ficial intelligence. In this chapter, we make this notion more concrete. We will see that the 
concept of rationality can be applied to a wide variety of agents operating in any imaginable 
environment. Our plan in this book is to use this concept to develop a small set of design 
principles for building successful agents-systems that can reasonably be called intelligent. 

We will begin by examining agents, environments, and the coupling between them. The 
observation that some agents behave better than others leads naturally to the idea of a rational 
agent-one that behaves as well as possible. How well an agent can behave depends on 
the nature of the environment; some environments are more difficult than others. We give a 
crude categorization of environments and show how properties of an environment influence 
the design of suitable agents for that environment. We describe a number of basic "skeleton" 
agent designs, which will be fleshed out in the rest of the book. 

2.1 AGENTS AND ENVIRONMENTS 

ENVIRONMENT An agent is anything that can be viewed as perceiving its environment through sensors and 
SENSOR acting upon that environment through actuators. This simple idea is illustrated in Figure 2.1. 
ACTUATOR A human agent has eyes, ears, and other organs for sensors and hands, legs, mouth, and other 

body parts for actuators. A robotic agent might have cameras and infrared range finders for 
sensors and various motors for actuators. A software agent receives keystrokes, file contents, 
and network packets as sensory inputs and acts on the environment by displaying on the 
screen, writing files, and sending network packets. We will make the general assumption that 
every agent can perceive its own actions (but not always the effects). 

PERCEPT We use the term percept to refer to the agent's perceptual inputs at any given instant. An 
PERCEPTSEQUENCE agent's percept sequence is the complete history of everything the agent has ever perceived. 

In general, an agent's choice of action at any given instant can depend on the entire percept 
sequence observed to date. If we can specify the agent's choice of action for every possible 
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Figure 2.1 Agents interact with environments through sensors and actuators. 7 
percept sequence, then we have said more or less everything there is to say about the agent. 

AGENT FUNCTION Mathematically speaking, we say that an agent's behavior is described by the agent function 
that maps any given percept sequence to an action. 

We can imagine tabulating the agent function that describes any given agent; for most 
agents, this would be a very large table-infinite, in fact, unless we place a bouind on the 
length of percept sequences we want to consider. Given an agent to experiment with, we can, 
in principle, construct this table by trying out all possible percept sequences and recording 
which actions the agent does in response.' The table is, of course, an external characterization 
of the agent. Internally, Ihe agent function for an artificial agent will be implemented by an 

AGENTPROGRAM agent program. It is important to keep these two ideas distinct. The agent function is an 
abstract mathematical description; the agent program is a concrete implementation, running 
on the agent architecture. 

To illustrate these ideas, we will use a very simple example-the vacuum-cleaner world 
shown in Figure 2.2. This world is so simple that we can describe everything that happens; it's 
also a made-up world, so we can invent many variations. This particular world has just two 
locations: squares A and B. The vacuum agent perceives which square it is in and1 whether 
there is dirt in the square. It can choose to move left, move right, suck up the dirt, or do 
nothing. One very simple agent function is the following: if the current square is dirty, then 
suck, otherwise move to the other square. A partial tabulation of this agent function is shown 
in Figure 2.3. A simple agent program for this agent function is given later in the chapter, in 
Figure 2.8. 

Looking at Figure 2.3, we see that various vacuum-world agents can be defined simply 
za by filling in the right-hand column in various ways. The obvious question, then, is this: What 

If the agent uses some randomization to choose its actions, then we would have to try each sequence many 
times to identify the probability of each action. One might imagine that acting randomly is rather silly, but we'll 
:see later in this chapter that it can be very intelligent. 
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Figure 2.2 A vacuum-cleaner world with just two locations. 

I Percept sequence 1 Action 1 
[A, Clean] 
[A, Dirty] 
[B,  Clean] 
[B, Dirty] 
[A,  Clean], [A,  Clean] 
[A,  Clean], [A,  Dirty] 

[A,  Clean], [A,  Clean], [A,  Clean] 
[A,  Clean], [A,  Clean], [A,  Dirty] 

Right 
Suck 

Left 
Suck 
Right 
Suck 

Right 
Suck 

Figure 2.3 Partial tabulation of a simple agent function for the vacuum-cleaner world 
shown in Figure 2.2. 

is the right way to Jill out the table? In other words, what makes an agent good or bad, 
intelligent or stupid? We answer these questions in the next section. 

Before closing this section, we will remark that the notion of an agent is meant to be a 
tool for analyzing systems, not an absolute characterization that divides the world into agents 
and non-agents. One could view a hand-held calculator as an agent that chooses the action of 
displaying "4" when given the percept sequence "2 + 2 =," but such an analysis would hardly 
aid our understanding of the calculator. 

RATIONALAGENT A rational agent is one that does the right thing-conceptually speaking, every entry in 
the table for the agent function is filled out correctly. Obviously, doing the right thing is 
better than doing the wrong thing, but what does it mean to do the right thing? As a first 
approximation, we will say that the right action is the one that will cause the agent to be 
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most successful. Therefore, we will need some way to measure success. Together with the 
description of the environment and the sensors and actuators of the agent, this will provide a 
complete specification of the task facing the agent. Given this, we can define more precisely 
what it means to be rational. 

Performance measures 

A performance measure embodies the criterion for success of an agent's behaviior. When MEASURE 

an agent is plunked down in an environment, it generates a sequence of actions according 
to the percepts it receives. This sequence of actions causes the environment to go through a 
sequence of states. If the sequence is desirable, then the agent has performed well. Obviously, 
there is not one fixed measure suitable for all agents. We could ask the agent for a subjective 
opinion of how happy it is with its own performance, but some agents would be unable 
to answer, and others would delude them~elves.~ Therefore, we will insist on an objective 
performance measure, typically one imposed by the designer who is constructing the agent. 

Consider the vacuum-cleaner agent from the preceding section. We might propose to 
measure performance by the amount of dirt cleaned up in a single eight-hour shift. With a 
rational agent, of course, what you ask for is what you get. A rational agent can maximize this 
performance measure by cleaning up the dirt, then dumping it all on the floor, then cleaning 
it up again, and so on. A more suitable performance measure would reward the agent for 
having a clean floor. For example, one point could be awarded for each clean square at each 
time step (perhaps with a penalty for electricity consumed and noise generated). As a general 
rule, it is better to design per$ormance measures according to what one actually wants in the 
environment, rather than according to how one thinks the agent should behave. 

The selection of a performance measure is not always easy. For example, the notion 
of "clean floor" in the preceding paragraph is based on average cleanliness over time. Yet 
the same average cleanliness can be achieved by two different agents, one of which does a 
mediocre job all the time: while the other cleans energetically but takes long breaks. Which 
is preferable might seem to be a fine point of janitorial science, but in fact it is a deep philo- 
sophical question with far-reaching implications. Which is better-a reckless life of highs 
and lows, or a safe but humdrum existence? Which is better-an economy where everyone 
lives in moderate poverty, or one in which some live in plenty while others are very poor? We 
will leave these questions as an exercise for the diligent reader. 

Rationality 

What is rational at any given time depends on four things: 

The performance measure that defines the criterion of success. 

The agent's prior knowledge of the environment. 

The actions that the agent can perform. 

The agent's percept sequence to date. 

Human agents in particular are notorious for "sour grapesx-believing they did not really want something after 
not getting it, as in, "Oh well, never mind, I didn't want that stupid Nobel prize anyway." 
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~ ~ { , N $ ~ ~ N , ~ ~ { T  This leads to a definition of a rational agent: 

For each possible percept sequence, a rational agent should select an action that is ex- 
pected to maximize its performance measure, given the evidence provided by the percept 
sequence and whatever built-in knowledge the agent has. 

Consider the simple vacuum-cleaner agent that cleans a square if it is dirty and moves to the 
other square if not; this is the agent function tabulated in Figure 2.3. Is this a rational agent? 
That depends! First, we need to say what the performance measure is, what is known about 
the environment, and what sensors and actuators the agent has. Let us assume the following: 

The performance measure awards one point for each clean square at each time step, 
over a "lifetime" of 1000 time steps. 
The "geography" of the environment is known a priori (Figure 2.2) but the dirt distri- 
bution and the initial location of the agent are not. Clean squares stay clean and sucking 
cleans the current square. The Lefi and Right actions move the agent left and right 
except when this would take the agent outside the environment, in which case the agent 
remains where it is. 
The only available actions are Left, Right, Suck ,  and NoOp (do nothing). 
The agent correctly perceives its location and whether that location contains dirt. 

We claim that under these circumstances the agent is indeed rational; its expected perfor- 
mance is at least as high as any other agent's. Exercise 2.4 asks you to prove this. 

One can see easily that the same agent would be irrational under different circum- 
stances. For example, once all the dirt is cleaned up it will oscillate needlessly back and 
forth; if the performance measure includes a penalty of one point for each movement left or 
right, the agent will fare poorly. A better agent for this case would do nothing once it is sure 
that all the squares are clean. If clean squares can become dirty again, the agent should occa- 
sionally check and re-clean them if needed. If the geography of the environment is unknown, 
the agent will need to explore it rather than stick to squares A and B. Exercise 2.4 asks you 
to design agents for these cases. 

Omniscience, learning, and autonomy 

OMNISCIENCE We need to be careful to distinguish between rationality and omniscience. An omniscient 
agent knows the actual outcome of its actions and can act accordingly; but omniscience is 
impossible in reality. Consider the following example: I am walking along the Champs 
ElysCes one day and I see an old friend across the street. There is no traffic nearby and I'm 
not otherwise engaged, so, being rational, I start to cross the street. Meanwhile, at 33,000 
feet, a cargo door falls off a passing air~iner,~ and before I make it to the other side of the 
street I am flattened. Was I irrational to cross the street? It is unlikely that my obituary would 
read "Idiot attempts to cross street." 

This example shows that rationality is not the same as perfection. Rationality max- 
imizes expected performance, while perfection maximizes actual performance. Retreating 
from a requirement of perfection is not just a question of being fair to agents. The point is 

See N. Henderson, "New door latches urged for Boeing 747 jumbo jets," Washington Post, August 24, 1989. 
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that if we expect an agent to do what turns out to be the best action after the fact, it will be 
impossible to design an agent to fulfill this specification-unless we improve the peirformance 
of crystal balls or time machines. 

Our definition of rationality does not require omniscience, then, because the rational 
choice depends only on the percept sequence to date. We must also ensure that we haven't 
inadvertently allowed the agent to engage in decidedly underintelligent activities. ]For exam- 
ple, if an agent does not look both ways before crossing a busy road, then its percept sequence 
will not tell it that there is a large truck approaching at high speed. Does our definition of 
rationality say that it's now OK to cross the road? Far from it! First, it would not be rational 
to cross the road given this uninformative percept sequence: the risk of accident from cross- 
ing without looking is too great. Second, a rational agent should choose the "looking" action 
before stepping into the street, because looking helps maximize the expected performance. 
Doing actions in order ro modih future percepts-sometimes called information gather- 

INFORMATION 
GATHERING ing-is an important part of rationality and is covered in depth in Chapter 16. A second 
EXPLORATION example of information gathering is provided by the exploration that must be undertaken by 

a vacuum-cleaning agent in an initially unknown environment. 
LEARNING Our definition requires a rational agent not only to gather information, but also to learn 

as much as possible from what it perceives. The agent's initial configuration could reflect 
some prior knowledge of the environment, but as the agent gains experience this may be 
modified and augmented. There are extreme cases in which the environment is completely 
known a priori. In such cases, the agent need not perceive or learn; it simply acts correctly. 
Of course, such agents are very fragile. Consider the lowly dung beetle. After digging its nest 
and laying its eggs, it fetches a ball of dung from a nearby heap to plug the entrance. If the ball 
of dung is removed from its grasp en route, the beetle continues on and pantomimes plugging 
the nest with the nonexistent dung ball, never noticing that it is missing. Evolution has built an 
assumption into the beetle's behavior, and when it is violated, unsuccessful behavior results. 
Slightly more intelligent is the sphex wasp. The female sphex will dig a burrow, go out 
and sting a caterpillar and drag it to the burrow, enter the burrow again to check all is well, 
drag the caterpillar inside, and lay its eggs. The caterpillar serves as a food source when the 
eggs hatch. So far so good, but if an entomologist moves the caterpillar a few inches away 
while the sphex is doing the check, it will revert back to the "drag" step of its plan, and will 
continue the plan without modification, even after dozens of caterpillar-moving interventions. 
The sphex is unable to learn that its innate plan is failing, and thus will not change it. 

Successful agents split the task of computing the agent function into three different 
periods: when the agent is being designed, some of the computation is done by its designers; 
when it is deliberating on its next action, the agent does more computation; and as it learns 
from experience, it does even more computation to decide how to modify its behavior. 

To the extent that an agent relies on the prior knowledge of its designer rather than 
AUTONOMY on its own percepts, we say that the agent lacks autonomy. A rational agent should be 

autonomous-it should learn what it can to compensate for partial or incorrect prior knowl- 
edge. For example, a vacuum-cleaning agent that learns to foresee where and when additional 
dirt will appear will do better than one that does not. As a practical matter, one seldom re- 
quires complete autonomy from the start: when the agent has had little or no experience, it 
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would have to act randomly unless the designer gave some assistance. So, just as evolution 
provides animals with enough built-in reflexes so that they can survive long enough to learn 
for themselves, it would be reasonable to provide an artificial intelligent agent with some 
initial knowledge as well as an ability to learn. After sufficient experience of its environment, 
the behavior of a rational agent can become effectively independent of its prior knowledge. 
Hence, the incorporation of learning allows one to design a single rational agent that will 
succeed in a vast variety of environments. 

Now that we have a definition of rationality, we are almost ready to think about building ratio- 
TASK nal agents. First, however, we must think about task environments, which are essentially the 

"problems" to which rational agents are the "solutions." We begin by showing how to specify 
a task environment, illustrating the process with a number of examples. We then show that 
task environments come in a variety of flavors. The flavor of the task environment directly 
affects the appropriate design for the agent program. 

Specifying the task environment 

PEAS 

In our discussion of the rationality of the simple vacuum-cleaner agent, we had to specify 
the performance measure, the environment, and the agent's actuators and sensors. We will 
group all these together under the heading of the task environment. For the acronymically 
minded, we call this the PEAS (Performance, Environment, Actuators, Sensors) description. 
In designing an agent, the first step must always be to specify the task environment as fully 
as possible. 

The vacuum world was a simple example; let us consider a more complex problem: 
an automated taxi driver. We will use this example throughout the rest of the chapter. We 
should point out, before the reader becomes alarmed, that a fully automated taxi is currently 
somewhat beyond the capabilities of existing technology. (See page 27 for a description 
of an existing driving robot, or look at recent proceedings of the conferences on Intelligent 
Transportation Systems.) The full driving task is extremely open-ended. There is no limit to 
the novel combinations of circumstances that can arise-another reason we chose it as a focus 
for discussion. Figure 2.4 summarizes the PEAS description for the taxi's task environment. 
We discuss each element in more detail in the following paragraphs. 

First, what is the performance measure to which we would like our automated driver 
to aspire? Desirable qualities include getting to the correct destination; minimizing fuel con- 
sumption and wear and tear; minimizing the trip time and/or cost; minimizing violations of 
traffic laws and disturbances to other drivers; maximizing safety and passenger comfort; max- 
imizing profits. Obviously, some of these goals conflict, so there will be tradeoffs involved. 

Next, what is the driving environment that the taxi will face? Any taxi driver must 
deal with a variety of roads, ranging from rural lanes and urban alleys to 12-lane freeways. 
The roads contain other traffic, pedestrians, stray animals, road works, police cars, puddles, 
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(Type ( 1  Performance Environment Actuators Sensors 
Measure 

Taxi driver Safe: fast, legal, 
comfortable trip, 
maximize profits 

1 Figure 2.4 PEAS description of the task environment for an automated taxi. 1 
C 

and potholes. The taxi must also interact with potential and actual passengers. There are also 
some optional choices. The taxi might need to operate in Southern California, where snow 
is seldom a problem, or in Alaska, where it seldom is not. It could always be driving on the 
right, or we might want it to be flexible enough to drive on the left when in Britain or Japan. 
Obviously, the more restricted the environment, the easier the design problem. 

The actuators available to an automated taxi will be more or less the same as those 
available to a human driver: control over the engine through the accelerator and control over 
steering and braking. In ;addition, it will need output to a display screen or voice synthesizer 
to talk back to the passengers, and perhaps some way to communicate with other vehicles, 
politely or otherwise. 

To achieve its goals in the driving environment, the taxi will need to know where it is, 
what else is on the road, and how fast it is going. Its basic sensors should therefore include 
one or more controllable TV cameras, the speedometer, and the odometer. To control the 
vehicle properly, especially on curves, it should have an accelerometer; it will also need to 
know the mechanical stxte of the vehicle, so it will need the usual array of engine and elec- 
trical system sensors. It might have instruments that are not available to the average human 
driver: a satellite global positioning system (GPS) to give it accurate position information 
with respect to an electronic map, and infrared or sonar sensors to detect distances to other 
cars and obstacles. Finally, it will need a keyboard or microphone for the passenger  to request 
a destination. 

In Figure 2.5, we h~ave sketched the basic PEAS elements for a number of additional 
agent types. Further examples appear in Exercise 2.5. It may come as a surprise to some 
readers that we include in our list of agent types some programs that operate in the entirely 
artificial environment defined by keyboard input and character output on a screen. "Surely," 
one might say, "this is not a real environment, is it?" In fact, what matters is not the dis- 
tinction between "real" and "artificial" environments, but the complexity of the relationship 
among the behavior of the agent, the percept sequence generated by the environment, and the 
performance measure. Some "real" environments are actually quite simple. For example, a 
robot designed to inspect parts as they come by on a conveyor belt can make use of a num- 
ber of simplifying assumptions: that the lighting is always just so, that the only thing on the 
conveyer belt will be parts of a kind that it knows about, and that there are only two actions 
(accept or reject). 

Roads, other 
traffic, 
pedestrians, 
customers 

Steering, 
accelerator, 
brake, signal, 

Cameras, sonar, 
speedometer, 
GPS, odometer, 

horn, display accelerometer, 
engine sensors, 
key boar'd 
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SOFTWARE AGENTS In contrast, some software agents (or software robots or softbots) exist in rich, un- 
SOFTBOTS limited domains. Imagine a softbot designed to fly a flight simulator for a large commercial 

airplane. The simulator is a very detailed, complex environment including other aircraft and 
ground operations, and the software agent must choose from a wide variety of actions in real 
time. Or imagine a softbot designed to scan Internet news sources and show the interesting 
items to its customers. To do well, it will need some natural language processing abilities, 
it will need to learn what each customer is interested in, and it will need to change its plans 
dynamically-for example, when the connection for one news source goes down or when a 
new one comes online. The Internet is an environment whose complexity rivals that of the 
physical world and whose inhabitants include many artificial agents. 

Agent Type 

Medical 
diagnosis system 

Satellite image 
analysis system 

Part-picking 
robot 

Refinery 
controller 

Interactive 
English tutor 

Figure 2.5 

Properties of task environments 

The range of task environments that might arise in A1 is obviously vast. We can, however, 
identify a fairly small number of dimensions along which task environments can be catego- 
rized. These dimensions determine, to a large extent, the appropriate agent design and the 

Performance 
Measure 

Healthy patient, 
minimize costs, 
lawsuits 

Correct image 
categorization 

Percentage of 
parts in correct 
bins 

Maximize purity, 
yield, safety 

Maximize 
student's score 
on test 

Examples of agent types and their PEAS descriptions. 

Environment 

Patient, hospital, 
staff 

Downlink from 
orbiting satellite 

Conveyor belt 
with parts; bins 

Refinery, 
operators 

Set of students, 
testing agency 

Actuators 

Display 
questions, tests, 
diagnoses, 
treatments, 
referrals 

Display 
categorization of 
scene 

Jointed arm and 
hand 

Valves, pumps, 
heaters, displays 

Display 
exercises, 
suggestions, 
corrections 

Sensors 

Keyboard entry 
of symptoms, 
findings, patient's 
answers 

Color pixel 
arrays 

Camera, joint 
angle sensors 

Temperature, 
pressure, 
chemical sensors 

Keyboard entry 
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applicability of each of the principal families of techniques for agent implementation. First, 
we list the dimensions, then we analyze several task environments to illustrate the ideas. The 
definitions here are informal; later chapters provide more precise statements and examples of 
each kind of environment. 

FULLY OBSERVABLE 0 Fully observable vs. partially observable. 
If an agent's sensors give it access to the complete state of the environment at each 
point in time, then we say that the task environment is fully ob~ervable.~ A task envi- 
ronment is effectively fully observable if the sensors detect all aspects that are relevant 
to the choice of action; relevance, in turn, depends on the performance measure. Fully 
observable environments are convenient because the agent need not maintain any in- 
ternal state to keep track of the world. An environment might be partially observable 
because of noisy and inaccurate sensors or because parts of the state are simplly missing 
from the sensor data-for example, a vacuum agent with only a local dirt sensor cannot 
tell whether there is dirt in other squares, and an automated taxi cannot see what other 
drivers are thinking. 

DETERMINISTIC 0 Deterministic vs. stochastic. 
STOCHASTIC If the next state of the environment is completely determined by the current state and 

the action executed by the agent, then we say the environment is deterministic; other- 
wise, it is stochastic. In principle, an agent need not worry about uncertainty in a fully 
observable, deterministic environment. If the environment is partially observable, how- 
ever, then it could appear to be stochastic. This is particularly true if the environment 
is complex, making it hard to keep track of all the unobserved aspects. Thus, it is often 
better to think of an environment as deterministic or stochastic from the point of view of 
the agent. Taxi driving is clearly stochastic in this sense, because one can never predict 
the behavior of traffic exactly; moreover, one's tires blow out and one's engine seizes 
up without warning. The vacuum world as we described it is deterministic, but varia- 
tions can include stochastic elements such as randomly appearing dirt and an unreliable 
suction mechanism (Exercise 2.12). If the environment is deterministic except for the 

STRATEGIC actions of other agents, we say that the environment is strategic. 
EPISODIC 0 Episodic vs. sequentiaL5 
SEQUENTIAL In an episodic task environment, the agent's experience is divided into atomic episodes. 

Each episode consists of the agent perceiving and then performing a single action. Cru- 
cially, the next episode does not depend on the actions taken in previous episodes. In 
episodic environments, the choice of action in each episode depends only on the episode 
itself. Many classification tasks are episodic. For example, an agent that has to spot de- 
fective parts on an assembly line bases each decision on the current part, regardless 
of previous decisions; moreover, the current decision doesn't affect whether the next 

The first edition of this book used the terms accessible and inaccessible instead of fully and partia~lly observ- 
able; nondeterministic instead of stochastic; and nonepisodic instead of sequential. The new terminology is 
more consistent with established usage. 

The word "sequential" is also used in computer science as the antonym of "parallel." The two mleanings are 
largely unrelated. 
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STATIC 

DYNAMIC 

SEMIDYNAMIC 

part is defective. In sequential environments, on the other hand, the current decision 
could affect all future decisions. Chess and taxi driving are sequential: in both cases, 
short-term actions can have long-term consequences. Episodic environments are much 
simpler than sequential environments because the agent does not need to think ahead. 

0 Static vs, dynamic. 
If the environment can change while an agent is deliberating, then we say the environ- 
ment is dynamic for that agent; otherwise, it is static. Static environments are easy to 
deal with because the agent need not keep looking at the world while it is deciding on 
an action, nor need it worry about the passage of time. Dynamic environments, on the 
other hand, are continuously asking the agent what it wants to do; if it hasn't decided 
yet, that counts as deciding to do nothing. If the environment itself does not change 
with the passage of time but the agent's performance score does, then we say the envi- 
ronment is semidynamic. Taxi driving is clearly dynamic: the other cars and the taxi 
itself keep moving while the driving algorithm dithers about what to do next. Chess, 
when played with a clock, is semidynamic. Crossword puzzles are static. 

DISCRETE 0 Discrete vs. continuous. 
CONTINUOUS The discrete/continuous distinction can be applied to the state of the environment, to 

the way time is handled, and to the percepts and actions of the agent. For example, a 
discrete-state environment such as a chess game has a finite number of distinct states. 
Chess also has a discrete set of percepts and actions. Taxi driving is a continuous- 
state and continuous-time problem: the speed and location of the taxi and of the other 
vehicles sweep through a range of continuous values and do so smoothly over time. 
Taxi-driving actions are also continuous (steering angles, etc.). Input from digital cam- 
eras is discrete, strictly speaking, but is typically treated as representing continuously 
varying intensities and locations. 

SINGLE AGENT 0 Single agent vs. multiagent. 
MULTIAGENT The distinction between single-agent and multiagent environments may seem simple 

enough. For example, an agent solving a crossword puzzle by itself is clearly in a 
single-agent environment, whereas an agent playing chess is in a two-agent environ- 
ment. There are, however, some subtle issues. First, we have described how an entity 
may be viewed as an agent, but we have not explained which entities must be viewed as 
agents. Does an agent A (the taxi driver for example) have to treat an object B (another 
vehicle) as an agent, or can it be treated merely as a stochastically behaving object, 
analogous to waves at the beach or leaves blowing in the wind? The key distinction is 
whether B's behavior is best described as maximizing a performance measure whose 
value depends on agent A's behavior. For example, in chess, the opponent entity B is 
trying to maximize its performance measure, which, by the rules of chess, minimizes 
agent A's performance measure. Thus, chess is a competitive multiagent environment. 
In the taxi-driving environment, on the other hand, avoiding collisions maximizes the 
performance measure of all agents, so it is a partially cooperative multiagent environ- 
ment. It is also partially competitive because, for example, only one car can occupy a 
parking space. The agent-design problems arising in multiagent environments are often 

COMPETITIVE 

COOPERATIVE 
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- - - - -  

Figure 2.6 Examples of task environments and their characteristics. 

Task Environment 

Crossword puzzle 
Chess with a clock 

Poker 
Backgammon 

Taxi dnving 
Medical diagnosis 

Image-analysis 
Part-picking robot 

Refinery controller 
Interactive English tutor 

quite different from those in single-agent environments; for example, communication 
often emerges as a rational behavior in multiagent environments; in some partially ob- 
servable competitive environments, stochastic behavior is rational because it avoids 
the pitfalls of predictability. 

Observable Deterministic Episodic Static Discrete Agents 

Fully Deterministic Sequential Static Discrete Single 
Fully Strategic Sequential Semi Discrete Multi 

Partially Stochastic Sequential Static Discrete Multi 
Fully Stochastic Sequential Static Discrete Multi 

Partially Stochastic Sequential Dynamic Continuons Multi 
Partially Stochastic Sequential Dynamic Continuous Single 

Fully Deterministic Episodic Semi Continuou.~ Single 
Partially Stochastic Episodic Dynamic Continuous Single 

Partially Stochastic Sequential Dynamic Continuous Single 
Partially Stochastic Sequential Dynamic Discrete Multi 

As one might expect, the hardest case is partially observable, stochastic, sequential, dynamic, 
continuous, and multiagent. It also turns out that most real situations are so cornplex that 
whether they are really deterministic is a moot point. For practical purposes, they must be 
treated as stochastic. Taxi driving is hard in all these senses. 

Figure 2.6 lists the properties of a number of familiar environments. Note that the an- 
swers are not always cut and dried. For example, we have listed chess as fully observable; 
strictly speaking, this is false because certain rules about castling, en passant capture, and 
draws by repetition require remembering some facts about the game history that are not ob- 
servable as part of the board state. These exceptions to observability are of course minor 
compared to those faced by the taxi driver, the English tutor, or the medical diagnosis system. 

Some other answers in the table depend on how the task environment is defined. We 
have listed the medical-diagnosis task as single-agent because the disease process in a patient 
is not profitably modeled as an agent; but a medical-diagnosis system might also have to 
deal with recalcitrant patients and skeptical staff, so the environment could have a niultiagent 
aspect. Furthermore, medical diagnosis is episodic if one conceives of the task as selecting a 
diagnosis given a list of s:ymptoms; the problem is sequential if the task can include proposing 
a series of tests, evaluating progress over the course of treatment, and so on. Also, many 
environments are episodic at higher levels than the agent's individual actions. For example, 
a chess tournament consists of a sequence of games; each game is an episode, be~cause (by 
and large) the contribution of the moves in one game to the agent's overall performance is 
not affected by the moves in its previous game. On the other hand, decision making within a 
single game is certainly sequential. 
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The code repository associated with this book (aima.cs.berkeley.edu) includes imple- 
mentations of a number of environments, together with a general-purpose environment simu- 
lator that places one or more agents in a simulated environment, observes their behavior over 
time, and evaluates them according to a given performance measure. Such experiments are 
often carried out not for a single environment, but for many environments drawn from an en- 
vironment class. For example, to evaluate a taxi driver in simulated traffic, we would want to CLASS 

run many simulations with different traffic, lighting, and weather conditions. If we designed 
the agent for a single scenario, we might be able to take advantage of specific properties 
of the particular case but might not identify a good design for driving in general. For this 
reason, the code repository also includes an environment generator for each environment GENERATOR 

class that selects particular environments (with certain likelihoods) in which to run the agent. 
For example, the vacuum environment generator initializes the dirt pattern and agent location 
randomly. We are then interested in the agent's average performance over the environment 
class. A rational agent for a given environment class maximizes this average performance. 
Exercises 2.7 to 2.12 take you through the process of developing an environment cIass and 
evaluating various agents therein. 

So far we have talked about agents by describing behavior-the action that is performed 
after any given sequence of percepts. Now, we will have to bite the bullet and talk about 

AGENTPROGRAM how the insides work. The job of A1 is to design the agent program that implements the 
agent function mapping percepts to actions. We assume this program will run on some sort 

ARCHITECTURE of computing device with physical sensors and actuators-we call this the architecture: 

agent = architecture +program . 

Obviously, the program we choose has to be one that is appropriate for the architecture. If the 
program is going to recommend actions like Walk, the architecture had better have legs. The 
architecture might be just an ordinary PC, or it might be a robotic car with several onboard 
computers, cameras, and other sensors. In general, the architecture makes the percepts from 
the sensors available to the program, runs the program, and feeds the program's action choices 
to the actuators as they are generated. Most of this book is about designing agent programs, 
although Chapters 24 and 25 deal directly with the sensors and actuators. 

Agent programs 

The agent programs that we will design in this book all have the same skeleton: they take the 
current percept as input from the sensors and return an action to the actuatom6 Notice the 
difference between the agent program, which takes the current percept as input, and the agent 
function, which takes the entire percept history. The agent program takes just the current 

There are other choices for the agent program skeleton; for example, we could have the agent programs be 
coroutines that run asynchronously with the environment. Each such coroutine has an input and output port and 
consists of a loop that reads the input port for percepts and writes actions to the output port. 
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function TABLE-DRIVEN-AGENT(~~~C~P~) returns an action 
static: percepts, a sequence, initially empty 

table,  a table of actions, indexed by percept sequences, initially fully specified 

append percept to the end of percepts 
act ion +- L ~ O K ~ ~ ( p e r c e p t s ,  table) 
return ac t ion  

Figure 2.7 The TABLE-DRIVEN-AGENT program is invoked for each new percept and 
returns an action each time. It keeps track of the percept sequence using its own private data 
structure. 

percept as input because nothing more is available from the environment; if the agent's actions 
depend on the entire percept sequence, the agent will have to remember the percepts. 

We will describe the agent programs via the simple pseudocode language that is defined 
in Appendix B. (The online code repository contains implementations in real programming 
languages.) For example, Figure 2.7 shows a rather trivial agent program that keeps track of 
the percept sequence and then uses it to index into a table of actions to decide what to do. 
The table represents explicitly the agent function that the agent program embodies. To build a 
rational agent in this way, we as designers must construct a table that contains the appropriate 
action for every possible percept sequence. 

It is instructive to consider why the table-driven approach to agent construction is 
doomed to failure. Let P be the set of possible percepts and let T be the lifetiime of the 
agent (the total number olf percepts it will receive). The lookup table will contain c:= ('PIt 
entries. Consider the automated taxi: the visual input from a single camera comes in at the 
rate of roughly 27 megabytes per second (30 frames per second, 640 x 480 pixels with 24 
bits of color information). This gives a lookup table with over 10250~000~000~000 entries for an 
hour's driving. Even the lookup table for chess-a tiny, well-behaved fragment of the real 
world-would have at least entries. The daunting size of these tables (the number of 
atoms in the observable universe is less than los0) means that (a) no physical agent in this 
universe will have the space to store the table, (b) the designer would not have time to create 
the table, (c) no agent could ever learn all the right table entries from its experienc~e, and (d) 
even if the environment is simple enough to yield a feasible table size, the designer still has 
no guidance about how to fill in the table entries. 

Despite all this, TABLE-DRIVEN-AGENT does do what we want: it implements the 
desired agent function. The key challenge for A1 is to find out how to write programs that, 
to the extent possible, produce rational behavior from a small amount of code rather than 
from a large number of table entries. We have many examples showing that this can be done 
successfully in other areas: for example, the huge tables of square roots used by engineers 
and schoolchildren prior to the 1970s have now been replaced by a five-line pro~gram for 
Newton's method running on electronic calculators. The question is, can A1 do for general 
intelligent behavior what Newton did for square roots? We believe the answer is yes. 
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I function R ~ ~ ~ ~ ~ - V ~ c u u ~ - A ~ ~ ~ ~ ( [ 1 o c a t i o n , s t a t u s ] )  returns an action I 
if status = Dirty then return Suck 
else if location = A then return Right 
else if location = B then return Left 

Figure 2.8 The agent program for a simple reflex agent in the two-state vacuum environ- 
ment. This program implements the agent function tabulated in Figure 2.3. 

In the remainder of this section, we outline four basic kinds of agent program that 
embody the principles underlying almost all intelligent systems: 

Simple reflex agents; 

Model-based reflex agents; 

Goal-based agents; and 

Utility-based agents. 

We then explain in general terms how to convert all these into learning agents. 

Simple reflex agents 
REFLEX The simplest kind of agent is the simple reflex agent. These agents select actions on the basis AGENT 

of the current percept, ignoring the rest of the percept history. For example, the vacuum agent 
whose agent function is tabulated in Figure 2.3 is a simple reflex agent, because its decision 
is based only on the current location and on whether that contains dirt. An agent program for 
this agent is shown in Figure 2.8. 

Notice that the vacuum agent program is very small indeed compared to the correspond- 
ing table. The most obvious reduction comes from ignoring the percept history, which cuts 
down the number of possibilities from 4T to just 4. A further, small reduction comes from 
the fact that, when the current square is dirty, the action does not depend on the location. 

Imagine yourself as the driver of the automated taxi. If the car in front brakes, and its 
brake lights come on, then you should notice this and initiate braking. In other words, some 
processing is done on the visual input to establish the condition we call "The car in front is 
braking." Then, this triggers some established connection in the agent program to the action 

CONDITION-ACTION RULE "initiate braking." We call such a connection a condition-action rule: written as 

if car-in-front-is-braking then initiate-braking. 

Humans also have many such connections, some of which are learned responses (as for driv- 
ing) and some of which are innate reflexes (such as blinking when something approaches the 
eye). In the course of the book, we will see several different ways in which such connections 
can be learned and implemented. 

The program in Figure 2.8 is specific to one particular vacuum environment. A more 
general and flexible approach is first to build a general-purpose interpreter for condition- 

Also called situation-action rules, productions, or if-then rules. 



Section 2.4. The Structure of Agents 47 

Figure 2.9 Schematic diagram of a simple reflex agent. 

function S I M P L E - R E F L E X - A G E N T ( ~ ~ T - C ~ ~ ~ )  returns an action 
static: rules, a set of condition-action rules 

state + I N T E R P R E T - I [ N P U T ( ~ ~ ~ ~ ~ ~ ~ )  
rule + R U L E - M A T C H ( ~ ~ ~ ~ ~ ,  rules) 
action + R U L E - A C T I O N [ ~ ~ ~ ~ ]  
return action 

Figure 2.10 A simple reflex agent. It acts according to a rule whose condition matches 
the current state, as defined by the percept. 

action rules and then to create rule sets for specific task environments. Figure 2.9 gives the 
structure of this general program in schematic form, showing how the condition-action rules 
allow the agent to make the connection from percept to action. (Do not worry if this seems 
trivial; it gets more interesting shortly.) We use rectangles to denote the current internal state 
of the agent's decision process and ovals to represent the background information used in 
the process. The agent program, which is also very simple, is shown in Figure 2.10. The 
INTERPRET-INPUT funcl-ion generates an abstracted description of the current state from the 
percept, and the RULE-MATCH function returns the first rule in the set of rules that matches 
the given state description. Note that the description in terms of "rules" and "matching" is 
purely conceptual; actual implementations can be as simple as a collection of logic gates 
implementing a Boolean circuit. 

Simple reflex agents have the admirable property of being simple, but they turn out to 
be of very limited intelligence. The agent in Figure 2.10 will work only if the correct deci- 
sion can be made on the basis of only the current percept-that is, only if the envi~onrnent is 
fully observable. Even a little bit of unobservability can cause serious trouble. For example, 
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the braking rule given earlier assumes that the condition car-in-front-is-braking can be deter- 
mined from the current percept-the current video image-if the car in front has a centrally 
mounted brake light. Unfortunately, older models have different configurations of taillights, 
brake lights, and turn-signal lights, and it is not always possible to tell from a single image 
whether the car is braking. A simple reflex agent driving behind such a car would either brake 
continuously and unnecessarily, or, worse, never brake at all. 

We can see a similar problem arising in the vacuum world. Suppose that a simple reflex 
vacuum agent is deprived of its location sensor, and has only a dirt sensor. Such an agent 
has just two possible percepts: [Dirty] and [Clean]. It can Suck in response to [Dirty]; what 
should it do in response to [Clean]? Moving Lefl fails (for ever) if it happens to start in 
square A, and moving Right fails (for ever) if it happens to start in square B. Infinite loops 
are often unavoidable for simple reflex agents operating in partially observable environments. 

RANDOMIZATION Escape from infinite loops is possible if the agent can randomize its actions. For ex- 
ample, if the vacuum agent perceives [Clean], it might flip a coin to choose between Left and 
Right. It is easy to show that the agent will reach the other square in an average of two steps. 
Then, if that square is dirty, it will clean it and the cleaning task will be complete. Hence, a 
randomized simple reflex agent might outperform a deterministic simple reflex agent. 

We mentioned in Section 2.3 that randomized behavior of the right kind can be rational 
in some multiagent environments. In single-agent environments, randomization is usually not 
rational. It is a useful trick that helps a simple reflex agent in some situations, but in most 
cases we can do much better with more sophisticated deterministic agents. 

Model-based reflex agents 

The most effective way to handle partial observability is for the agent to keep track of the 
part of the world it can't see now. That is, the agent should maintain some sort of internal 

INTERNALSTATE state that depends on the percept history and thereby reflects at least some of the unobserved 
aspects of the current state. For the braking problem, the internal state is not too extensive- 
just the previous frame from the camera, allowing the agent to detect when two red lights at 
the edge of the vehicle go on or off simultaneously. For other driving tasks such as changing 
lanes, the agent needs to keep track of where the other cars are if it can't see them all at once. 

Updating this internal state information as time goes by requires two kinds of knowl- 
edge to be encoded in the agent program. First, we need some information about how the 
world evolves independently of the agent-for example, that an overtalung car generally will 
be closer behind than it was a moment ago. Second, we need some information about how 
the agent's own actions affect the world-for example, that when the agent turns the steering 
wheel clockwise, the car turns to the right or that after driving for five minutes northbound 
on the freeway one is usually about five miles north of where one was five minutes ago. This 
knowledge about "how the world worksn-whether implemented in simple Boolean circuits 
or in complete scientific theories-is called a model of the world. An agent that uses such a 

MODEL-BASED 
AGENT model is called a model-based agent. 

Figure 2.1 1 gives the structure of the reflex agent with internal state, showing how the 
current percept is combined with the old internal state to generate the updated description 
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GOAL 

Figure 2.11 A model-based reflex agent. 7 
function REFLEX-AGENT-WITH-STATE(~~~C~~~) returns an action 

static: state ,  a description of the current world state 
rules, a set of condition-action rules 
act ion,  the most recent action, initially none 

state +- U P D A T E - S T A T E ( ~ ~ ~ ~ ~ ,  actiol2, percept) 
rule +- R u ~ ~ - M ~ T c H ( s t a t e ,  rules)  
act ion t R U L E - A C T I O N [ ~ ~ ~ ~ ]  
return act ion 

Figure 2.12 A model-based reflex agent. It keeps track of the current state of the world 
using an internal model. It then chooses an action in the same way as the reflex agent. 

of the current state. The agent program is shown in Figure 2.12. The interesting part is the 
function UPDATE-STATE, which is responsible for creating the new internal state description. 
As well as interpreting the new percept in the light of existing knowledge about the state, it 
uses information about how the world evolves to keep track of the unseen parts of the world, 
and also must know about what the agent's actions do to the state of the world. Detailed 
examples appear in Chapters 10 and 17. 

Goal-based agents 

Knowing about the current state of the environment is not always enough to decide what 
to do. For example, at a road junction, the taxi can turn left, turn right, or go straight on. 
The correct decision depends on where the taxi is trying to get to. In other words, as well 
as a current state description, the agent needs some sort of goal information that describes 
situations that are desirable-for example, being at the passenger's destination. The agent 
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Figure 2.13 A model-based, goal-based agent. It keeps track of the world state as well as 
a set of goals it is trying to achieve, and chooses an action that will (eventually) lead to the 
achievement of its goals. 

program can combine this with information about the results of possible actions (the same 
information as was used to update internal state in the reflex agent) in order to choose actions 
that achieve the goal. Figure 2.13 shows the goal-based agent's structure. 

Sometimes goal-based action selection is straightforward, when goal satisfaction results 
immediately from a single action. Sometimes it will be more tricky, when the agent has 
to consider long sequences of twists and turns to find a way to achieve the goal. Search 
(Chapters 3 to 6) and planning (Chapters 11 and 12) are the subfields of A1 devoted to 
finding action sequences that achieve the agent's goals. 

Notice that decision making of this kind is fundamentally different from the condition- 
action rules described earlier, in that it involves consideration of the future-both "What will 
happen if I do such-and-such?' and "Will that make me happy?'In the reflex agent designs, 
this information is not explicitly represented, because the built-in rules map directly from 
percepts to actions. The reflex agent brakes when it sees brake lights. A goal-based agent, in 
principle, could reason that if the car in front has its brake lights on, it will slow down. Given 
the way the world usually evolves, the only action that will achieve the goal of not hitting 
other cars is to brake. 

Although the goal-based agent appears less efficient, it is more flexible because the 
knowledge that supports its decisions is represented explicitly and can be modified. If it starts 
to rain, the agent can update its knowledge of how effectively its brakes will operate; this will 
automatically cause all of the relevant behaviors to be altered to suit the new conditions. For 
the reflex agent, on the other hand, we would have to rewrite many condition-action rules. 
The goal-based agent's behavior can easily be changed to go to a different location. The reflex 
agent's rules for when to turn and when to go straight will work only for a single destination; 
they must all be replaced to go somewhere new. 
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Utility-based agents 

Goals alone are not really enough to generate high-quality behavior in most environments. 
For example, there are many action sequences that will get the taxi to its destination (thereby 
achieving the goal) but some are quicker, safer, more reliable, or cheaper than oth~ers. Goals 
just provide a crude binary distinction between "happy" and "unhappy" states, whereas a 
more general performance measure should allow a comparison of different world states ac- 
cording to exactly how happy they would make the agent if they could be achieved. Because 
"happy" does not sound very scientific, the customary terminology is to say that if one world 

UTILITY state is preferred to another, then it has higher utility for the agent.' 
UTILITY FUNCTION A utility function maps a state (or a sequence of states) onto a real number, which 

describes the associated degree of happiness. A complete specification of the utility function 
allows rational decisions in two lunds of cases where goals are inadequate. First, when there 
are conflicting goals, only some of which can be achieved (for example, speed and safety), 
the utility function specifies the appropriate tradeoff. Second, when there are several goals 
that the agent can aim for, none of which can be achieved with certainty, utility provides a 
way in which the likelihood of success can be weighed up against the importance of the goals. 

In Chapter 16, we will show that any rational agent must behave as if it possesses a 
utility function whose expected value it tries to maximize. An agent that possesses an explicit 
utility function therefore can make rational decisions, and it can do so via a general-purpose 
algorithm that does not depend on the specific utility function being maximized. In this way, 
the "global" definition of rationality-designating as rational those agent functions that have 
the highest performance-is turned into a "local" constraint on rational-agent d~esigns that 
can be expressed in a simple program. 

The utility-based agent structure appears in Figure 2.14. Utility-based agent programs 
appear in Part V, where we design decision malung agents that must handle the uncertainty 
inherent in partially observable environments. 

Learning agents 

We have described agent programs with various methods for selecting actions. We have 
not, so far, explained how the agent programs come into being. In his famous early paper, 
Turing (1950) considers the idea of actually programming his intelligent machines by hand. 
He estimates how much work this might take and concludes "Some more expeditious method 
seems desirable." The imethod he proposes is to build learning machines and then to teach 
them. In many areas of AS, this is now the preferred method for creating state-of-the-art 
systems. Learning has another advantage, as we noted earlier: it allows the agenl: to operate 
in initially unknown environments and to become more competent than its initial knowledge 
alone might allow. In this section, we briefly introduce the main ideas of learning agents. 
In almost every chapter of the book, we will comment on opportunities and methods for 
learning in particular kinds of agents. Part VI goes into much more depth on ithe various 
learning algorithms themselves. 

The word "utility" here refers to "the quality of being useful," not to the electric company or water works. 
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Figure 2.14 A model-based, utility-based agent. It uses a model of the world, along with 
a utility function that measures its preferences among states of the world. Then it chooses the 
action that leads to the best expected utility, where expected utility is computed by averaging 
over all possible outcome states, weighted by the probability of the outcome. 

A learning agent can be divided into four conceptual components, as shown in Fig- 
LEARNINGELEMENT ure 2.15. The most important distinction is between the learning element, which is re- 

sponsible for making improvements, and the performance element, which is responsible for ELEMENT 

selecting external actions. The performance element is what we have previously considered 
to be the entire agent: it takes in percepts and decides on actions. The learning element uses 

CRITIC feedback from the critic on how the agent is doing and determines how the performance 
element should be modified to do better in the future. 

The design of the learning element depends very much on the design of the performance 
element. When trying to design an agent that learns a certain capability, the first question is 
not "How am I going to get it to learn this?" but "What kind of performance element will my 
agent need to do this once it has learned how?'Given an agent design, learning mechanisms 
can be constructed to improve every part of the agent. 

The critic tells the learning element how well the agent is doing with respect to a fixed 
performance standard. The critic is necessary because the percepts themselves provide no 
indication of the agent's success. For example, a chess program could receive a percept 
indicating that it has checkmated its opponent, but it needs a performance standard to know 
that this is a good thing; the percept itself does not say so. It is important that the performance 
standard be fixed. Conceptually, one should think of it as being outside the agent altogether, 
because the agent must not modify it to fit its own behavior. 

PROBLEM 
GENERATOR The last component of the learning agent is the problem generator. It is responsible 

for suggesting actions that will lead to new and informative experiences. The point is that 
if the performance element had its way, it would keep doing the actions that are best, given 
what it knows. But if the agent is willing to explore a little, and do some perhaps suboptimal 
actions in the short run, it might discover much better actions for the long run. The problem 
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Performance standard 7 

Figure 2.15 A general model of learning agents. 7 
generator's job is to suggest these exploratory actions. This is what scientists do when they 
carry out experiments. Galileo did not think that dropping rocks from the top of a tower in 
Pisa was valuable in itself. He was not trying to break the rocks, nor to modify tht: brains of 
unfortunate passers-by. His aim was to modify his own brain, by identifying a better theory 
of the motion of objects. 

To make the overall design more concrete, let us return to the automated taxi example. 
The performance element consists of whatever collection of knowledge and procedures the 
taxi has for selecting its driving actions. The taxi goes out on the road and drives, using 
this performance element. The critic observes the world and passes information along to the 
learning element. For example, after the taxi makes a quick left turn across three lanes of 
traffic, the critic observes the shocking language used by other drivers. From this experience, 
the learning element is able to formulate a rule saying this was a bad action, and the perfor- 
mance element is modified by installing the new rule. The problem generator miglht identify 
certain areas of behavior in need of improvement and suggest experiments, such as trying out 
the brakes on different road surfaces under different conditions. 

The learning element can make changes to any of the "knowledge" components shown 
in the agent diagrams (Figures 2.9,2.11,2.13, and 2.14). The simplest cases involve learning 
directly from the percept sequence. Observation of pairs of successive states of th~e environ- 
ment can allow the agent. to learn "How the world evolves," and observation of the results of 
its actions can allow the agent to learn "What my actions do." For example, if the 1 axi exerts 
a certain braking pressure when driving on a wet road, then it will soon find out how much 
deceleration is actually achieved. Clearly, these two learning tasks are more difficult if the 
environment is only partially observable. 

The forms of learning in the preceding paragraph do not need to access thie external 
performance standard-in a sense, the standard is the universal one of making predictions 
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that agree with experiment. The situation is slightly more complex for a utility-based agent 
that wishes to learn utility information. For example, suppose the taxi-driving agent receives 
no tips from passengers who have been thoroughly shaken up during the trip. The external 
performance standard must inform the agent that the loss of tips is a negative contribution to 
its overall performance; then the agent might be able to learn that violent maneuvers do not 
contribute to its own utility. In a sense, the performance standard distinguishes part of the 
incoming percept as a reward (or penalty) that provides direct feedback on the quality of the 
agent's behavior. Hard-wired performance standards such as pain and hunger in animals can 
be understood in this way. This issue is discussed further in Chapter 21. 

In summary, agents have a variety of components, and those components can be repre- 
sented in many ways within the agent program, so there appears to be great variety among 
learning methods. There is, however, a single unifying theme. Learning in intelligent agents 
can be summarized as a process of modification of each component of the agent to bring the 
components into closer agreement with the available feedback information, thereby improv- 
ing the overall performance of the agent. 

This chapter has been something of a whirlwind tour of AI, which we have conceived of as 
the science of agent design. The major points to recall are as follows: 

An agent is something that perceives and acts in an environment. The agent function 
for an agent specifies the action taken by the agent in response to any percept sequence. 

The performance measure evaluates the behavior of the agent in an environment. A 
rational agent acts so as to maximize the expected value of the performance measure, 
given the percept sequence it has seen so far. 

A task environment specification includes the performance measure, the external en- 
vironment, the actuators, and the sensors. In designing an agent, the first step must 
always be to specify the task environment as fully as possible. 

Task environments vary along several significant dimensions. They can be fully or par- 
tially observable, deterministic or stochastic, episodic or sequential, static or dynamic, 
discrete or continuous, and single-agent or multiagent. 

The agent program implements the agent function. There exists a variety of basic 
agent-program designs, reflecting the kind of information made explicit and used in 
the decision process. The designs vary in efficiency, compactness, and flexibility. The 
appropriate design of the agent program depends on the nature of the environment. 

Simple reflex agents respond directly to percepts, whereas model-based reflex agents 
maintain internal state to track aspects of the world that are not evident in the current 
percept. Goal-based agents act to achieve their goals, and utility-based agents try to 
maximize their own expected "happiness." 

All agents can improve their performance through learning. 
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BIEILIOGRAPHICAL AND HISTORICAL NOTES 

The central role of action in intelligence-the notion of practical reasoning-gales back at 
least as far as Aristotle's Nicomachean Ethics. Practical reasoning was also the subject of 
McCarthy's (1958) influential paper "Programs with Common Sense." The fields of robotics 
and control theory are, by their very nature, concerned principally with the construction of 

CONTROLLER physical agents. The cortcept of a controller in control theory is identical to that of ,an agent in 
AI. Perhaps surprisingly, A1 has concentrated for most of its history on isolated components 
of agents-question-answering systems, theorem-provers, vision systems, and so on-rather 
than on whole agents. The discussion of agents in the text by Genesereth and Nilsson (1987) 
was an influential exception. The whole-agent view is now widely accepted in th~e field and 
is a central theme in recent texts (Poole et al., 1998; Nilsson, 1998). 

Chapter 1 traced the roots of the concept of rationality in philosophy and ecoinomics. In 
AI, the concept was of peripheral interest until the mid-1980s, when it began to suffuse many 
discussions about the proper technical foundations of the field. A paper by Jon Doyle (1983) 
predicted that rational agent design would come to be seen as the core mission of' AI, while 
other popular topics would spin off to form new disciplines. 

Careful attention to the properties of the environment and their consequences for ratio- 
nal agent design is most apparent in the control theory tradition-for example, classical con- 
trol systems (Dorf and Bishop, 1999) handle fully observable, deterministic environments; 
stochastic optimal control (Kumar and Varaiya, 1986) handles partially observable, stochas- 
tic environments; and hybrid control (Henzinger and Sastry, 1998) deals with environments 
containing both discrete and continuous elements. The distinction between fully and partially 
observable environments is also central in the dynamic programming literature developed 
in the field of operations research (Puterman, 1994), which we will discuss in Chapter 17. 

Reflex agents were the primary model for psychological behaviorists such as Skinner 
(1953), who attempted to reduce the psychology of organisms strictly to inputloutput or stim- 
ulus/response mappings. The advance from behaviorism to functionalism in pr;ychology, 
which was at least partly driven by the application of the computer metaphor to agents (Put- 
nam, 1960; Lewis, 1966), introduced the internal state of the agent into the picture. Most 
work in A1 views the iclea of pure reflex agents with state as too simple to provide much 
leverage, but work by Rosenschein (1985) and Brooks (1986) questioned this assumption 
(see Chapter 25). In recent years, a great deal of work has gone into finding efficient al- 
gorithms for keeping track of complex environments (Hamscher et al., 1992). The Remote 
Agent program that controlled the Deep Space One spacecraft (described on page 27) is a 
particularly impressive example (Muscettola et al., 1998; Jonsson et al., 2000). 

Goal-based agents are presupposed in everything from Aristotle's view of practical rea- 
soning to McCarthy's early papers on logical AI. Shakey the Robot (Fikes and Nilsson, 
1971; Nilsson, 1984) was the first robotic embodiment of a logical, goal-based agent. A 
full logical analysis of goal-based agents appeared in Genesereth and Nilsson (1987), and a 
goal-based programming methodology called agent-oriented programming was developed by 
Shoham (1993). 
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The goal-based view also dominates the cognitive psychology tradition in the area of 
problem solving, beginning with the enormously influential Human Problem Solving (Newel1 
and Simon, 1972) and running through all of Newell's later work (Newell, 1990). Goals, 
further analyzed as desires (general) and intentions (currently pursued), are central to the 
theory of agents developed by Bratman (1987). This theory has been influential both in 
natural language understanding and multiagent systems. 

Horvitz et al. (1988) specifically suggest the use of rationality conceived as the maxi- 
mization of expected utility as a basis for AI. The text by Pearl (1988) was the first in A1 to 
cover probability and utility theory in depth; its exposition of practical methods for reasoning 
and decision making under uncertainty was probably the single biggest factor in the rapid 
shift towards utility-based agents in the 1990s (see Part V). 

The general design for learning agents portrayed in Figure 2.15 is classic in the machine 
learning literature (Buchanan et al., 1978; Mitchell, 1997). Examples of the design, as em- 
bodied in programs, go back at least as far as Arthur Samuel's (1959, 1967) learning program 
for playing checkers. Learning agents are discussed in depth in Part VI. 

Interest in agents and in agent design has risen rapidly in recent years, partly because 
of the growth of the Internet and the perceived need for automated and mobile softbots (Et- 
zioni and Weld, 1994). Relevant papers are collected in Readings in Agents (Huhns and 
Singh, 1998) and Foundations of Rational Agency (Wooldridge and Rao, 1999). Multiagent 
Systems (Weiss, 1999) provides a solid foundation for many aspects of agent design. Confer- 
ences devoted to agents include the International Conference on Autonomous Agents, the In- 
ternational Workshop on Agent Theories, Architectures, and Languages, and the International 
Conference on Multiagent Systems. Finally, Dung Beetle Ecology (Hanski and Cambefort, 
1991) provides a wealth of interesting information on the behavior of dung beetles. 

2.1 Define in your own words the following terms: agent, agent function, agent program, 
rationality, autonomy, reflex agent, model-based agent, goal-based agent, utility-based agent, 
learning agent. 

2.2 Both the performance measure and the utility function measure how well an agent is 
doing. Explain the difference between the two. 

2.3 This exercise explores the differences between agent functions and agent programs. 

a. Can there be more than one agent program that implements a given agent function? 
Give an example, or show why one is not possible. 

b. Are there agent functions that cannot be implemented by any agent program? 
c. Given a fixed machine architecture, does each agent program implement exactly one 

agent function? 
d. Given an architecture with n bits of storage, how many different possible agent pro- 

grams are there? 
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2.4 Let us examine the rationality of various vacuum-cleaner agent functions. 

a. Show that the simple vacuum-cleaner agent function described in Figure 2.3 is indeed 
rational under the assumptions listed on page 36. 

b. Describe a rational agent function for the modified performance measure that deducts 
one point for each movement. Does the corresponding agent program require internal 
state? 

c. Discuss possible agent designs for the cases in which clean squares can become dirty 
and the geography of the environment is unknown. Does it make sense for the agent to 
learn from its experience in these cases? If so, what should it learn? 

2.5 For each of the foll.owing agents, develop a PEAS description of the task environment: 

a. Robot soccer player; 

b. Internet book-shopping agent; 
c. Autonomous Mars rover; 

d. Mathematician's theorem-proving assistant. 

2.6 For each of the agent types listed in Exercise 2.5, characterize the environment accord- 
ing to the properties given in Section 2.3, and select a suitable agent design. 

1jfiEjE~p The following exercises all concern the implementation of environments and ageints for the 
vacuum-cleaner world. 

2.7 Implement a performance-measuring environment simulator for the vacuum-cleaner 
world depicted in Figure 2.2 and specified on page 36. Your implementation should be modu- 
lar, so that the sensors, actuators, and environment characteristics (size, shape, dirt placement, 
etc.) can be changed easily. (Note: for some choices of programming language and operating 
system there are already implementations in the online code repository.) 

2.8 Implement a simple reflex agent for the vacuum environment in Exercise 2.7. Run 
the environment simulator with this agent for all possible initial dirt configurations and agent 
locations. Record the agent's performance score for each configuration and its overall1 average 
score. 

2.9 Consider a modified version of the vacuum environment in Exercise 2.7, in which the 
agent is penalized one point for each movement. 

a. Can a simple reflex agent be perfectly rational for this environment? Explain. 

b. What about a reflex agent with state? Design such an agent. 
c. How do your answers to a and b change if the agent's percepts give it the cleanldirty 

status of every square in the environment? 

2.10 Consider a modified version of the vacuum environment in Exercise 2.7, in ,which the 
geography of the environment-its extent, boundaries, and obstacles-is unknown, as is the 
initial dirt configuration. (The agent can go Up and Down as well as Left and Right.) 

a. Can a simple reflex agent be perfectly rational for this environment? Explain. 
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b. Can a simple reflex agent with a randomized agent function outperform a simple reflex 
agent? Design such an agent and measure its performance on several environments. 

c. Can you design an environment in which your randomized agent will perform very 
poorly? Show your results. 

d. Can a reflex agent with state outperform a simple reflex agent? Design such an agent 
and measure its performance on several environments. Can you design a rational agent 
of this type? 

2.11 Repeat Exercise 2.10 for the case in which the location sensor is replaced with a 
"bump" sensor that detects the agent's attempts to move into an obstacle or to cross the 
boundaries of the environment. Suppose the bump sensor stops working; how should the 
agent behave? 

2.12 The vacuum environments in the preceding exercises have all been deterministic. Dis- 
cuss possible agent programs for each of the following stochastic versions: 

a. Murphy's law: twenty-five percent of the time, the Suck action fails to clean the floor if 
it is dirty and deposits dirt onto the floor if the floor is clean. How is your agent program 
affected if the dirt sensor gives the wrong answer 10% of the time? 

b. Small children: At each time step, each clean square has a 10% chance of becoming 
dirty. Can you come up with a rational agent design for this case? 



3 SOLVING PROBLEMS BY 
SEARCHING 

In which we see how an agent can find a sequence of actions that achieves its 
goals, when no single action will do. 

The simplest agents discussed in Chapter 2 were the reflex agents, which base their actions on 
a direct mapping from states to actions. Such agents cannot operate well in environments for 
which this mapping would be too large to store and would take too long to learn. Goal-based 
agents, on the other hand, can succeed by considering future actions and the desirability of 
their outcomes. 

PROBLEM-SOLVING 
AGENT This chapter describes one kind of goal-based agent called a problem-solving agent. 

Problem-solving agents decide what to do by finding sequences of actions that lead to desir- 
able states. We start by defining precisely the elements that constitute a "problem" and its 
"solution," and give several examples to illustrate these definitions. We then describe sev- 
eral general-purpose search algorithms that can be used to solve these problems and compare 
the advantages of each algorithm. The algorithms are uninformed, in the sense that they 
are given no information about the problem other than its definition. Chapter 4 deals with 
informed search algorithms, ones that have some idea of where to look for solutioins. 

This chapter uses concepts from the analysis of algorithms. Readers unfanuliar with 
the concepts of asymptotic complexity (that is, 00 notation) and NP-completeness should 
consult Appendix A. 

Intelligent agents are supposed to maximize their performance measure. As we mentioned 
in Chapter 2, achieving this is sometimes simplified if the agent can adopt a goal and aim at 
satisfying it. Let us first look at why and how an agent might do this. 

Imagine an agent in the city of Arad, Romania, enjoying a touring holiday. Tlie agent's 
performance measure contains many factors: it wants to improve its suntan, improve its Ro- 
manian, take in the sights, enjoy the nightlife (such as it is), avoid hangovers, and so on. The 
decision problem is a complex one involving many tradeoffs and careful reading of guide- 
books. Now, suppose the agent has a nonrefundable ticket to fly out of Bucharest the follow- 
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ing day. In that case, it makes sense for the agent to adopt the goal of getting to Bucharest. 
Courses of action that don't reach Bucharest on time can be rejected without further consid- 
eration and the agent's decision problem is greatly simplified. Goals help organize behavior 

GOAL FORMULATION by limiting the objectives that the agent is trying to achieve. Goal formulation, based on the 
current situation and the agent's performance measure, is the first step in problem solving. 

We will consider a goal to be a set of world states-exactly those states in which the 
goal is satisfied. The agent's task is to find out which sequence of actions will get it to a goal 
state. Before it can do this, it needs to decide what sorts of actions and states to consider. If it 
were to try to consider actions at the level of "move the left foot forward an inch" or "turn the 
steering wheel one degree left," the agent would probably never find its way out of the parking 
lot, let alone to Bucharest, because at that level of detail there is too much uncertainty in the 

PROBLEM 
FORMULATION world and there would be too many steps in a solution. Problem formulation is the process 

of deciding what actions and states to consider, given a goal. We will discuss this process in 
more detail later. For now, let us assume that the agent will consider actions at the level of 
driving from one major town to another. The states it will consider therefore correspond to 
being in a particular town.' 

Our agent has now adopted the goal of driving to Bucharest, and is considering where 
to go from Arad. There are three roads out of Arad, one toward Sibiu, one to Timisoara, and 
one to Zerind. None of these achieves the goal, so unless the agent is very familiar with the 
geography of Romania, it will not know which road to f01low.~ In other words, the agent will 
not know which of its possible actions is best, because it does not know enough about the 
state that results from taking each action. If the agent has no additional knowledge, then it is 
stuck. The best it can do is choose one of the actions at random. 

But suppose the agent has a map of Romania, either on paper or in its memory. The 
point of a map is to provide the agent with information about the states it might get itself 
into, and the actions it can take. The agent can use this information to consider subsequent 
stages of a hypothetical journey via each of the three towns, trying to find a journey that 
eventually gets to Bucharest. Once it has found a path on the map from Arad to Bucharest, 
it can achieve its goal by carrying out the driving actions that correspond to the legs of the 
journey. In general, an agent with several immediate options of unknown value can decide 
what to do by jrst examining diflerent possible sequences of actions that lead to states of 
known value, and then choosing the best sequence. 

SEARCH This process of looking for such a sequence is called search. A search algorithm takes a 
SOLUTION problem as input and returns a solution in the form of an action sequence. Once a solution is 
EXECUTION found, the actions it recommends can be carried out. This is called the execution phase. Thus, 

we have a simple "formulate, search, execute" design for the agent, as shown in Figure 3.1. 
After formulating a goal and a problem to solve, the agent calls a search procedure to solve 
it. It then uses the solution to guide its actions, doing whatever the solution recommends as 

Notice that each of these "states" actually corresponds to a large set of world states, because a real world state 
specifies every aspect of reality. It is important to keep in mind the distinction between states in problem solving 
and world states. 

We are assuming that most readers are in the same position and can easily imagine themselves to be as clueless 
as our agent. We apologize to Romanian readers who are unable to take advantage of this pedagogical device. 
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function SIMPLE-PROELEM-SOLVING-AGENT(~~~C~P~) returns an action 
inputs: percept, a percept 
static: seq, an action sequence, initially empty 

state, some description of the current world state 
goal, a goal, initially null 
problem, a problem formulation 

state c U P D A T E - ~ T A T E ( S ~ ~ ~ ~ ,  percept) 
if seq is empty then do 

goal + F O R M U L A T E - G O A L ( ~ ~ ~ ~ ~ )  
problem + F O R M U L A T E - P R O B L E M ( ~ ~ ~ ~ ~ ,  goal) 
seq + S ~ ~ ~ c ~ ( p r o b l e m )  

action t F I R S T ( S ~ ~ )  
seq + REsT(seq) 
return action 

Figure 3.1 A simple problem-solving agent. It first formulates a goal and a problem, 
searches for a sequence of actions that would solve the problem, and then executes the actions 
one at a time. When this is complete, it formulates another goal and starts over. Note that 
when it is executing the sequence it ignores its percepts: it assumes that the solution it has 
found will always work. 

the next thing to do-typically, the first action of the sequence-and then removing that step 
from the sequence. Once the solution has been executed, the agent will formulate aL new goal. 

We first describe the process of problem formulation, and then devote the bulk of the 
chapter to various algorithms for the SEARCH function. We will not discuss the workings of 
the UPDATE-STATE and FORMULATE-GOAL functions further in this chapter. 

Before plunging into the details, let us pause briefly to see where prob1e:m-solving 
agents fit into the discussion of agents and environments in Chapter 2. The agent design 
in Figure 3.1 assumes that the environment is static, because formulating and solving the 
problem is done without paying attention to any changes that might be occurring in the envi- 
ronment. The agent design also assumes that the initial state is known; knowing it is easiest 
if the environment is observable. The idea of enumerating "alternative courses of action" 
assumes that the environment can be viewed as discrete. Finally, and most impol-tantly, the 
agent design assumes that the environment is deterministic. Solutions to problems are single 
sequences of actions, so they cannot handle any unexpected events; moreover, solutions are 
executed without paying attention to the percepts! An agent that carries out its plans with its 
eyes closed, so to speak., must be quite certain of what is going on. (Control theorists call 

OPEN-LOOP this an open-loop system, because ignoring the percepts breaks the loop between agent and 
environment.) All these assumptions mean that we are dealing with the easiest kinds of en- 
vironments, which is one reason this chapter comes early on in the book. Section 3.6 takes a 
brief look at what happens when we relax the assumptions of observability and determinism. 
Chapters 12 and 17 go into much greater depth. 
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Well-defined problems and solutions 

PROBLEM A problem can be defined formally by four components: 

STATE SPACE 

PATH COST 

INITIAL STATE The initial state that the agent starts in. For example, the initial state for our agent in 
Romania might be described as In(Arad). 

A description of the possible actions available to the agent. The most common for- 
SUCCESSOR 
FUNCTION mulation3 uses a successor function. Given a particular state x, SUCCESSOR-FN(x) 

returns a set of (action, successor) ordered pairs, where each action is one of the legal 
actions in state x and each successor is a state that can be reached from x by applying 
the action. For example, from the state In(Arad), the successor function for the Roma- 
nia problem would return 

{ (  Go(Sibzu), In(Sibiu)) , (Go( Timisoara), In( Tzmisoara)), (Go(Zerznd), In(Zerind))) 

Together, the initial state and successor function implicitly define the state space of the 
problem-the set of all states reachable from the initial state. The state space forms a 
graph in which the nodes are states and the arcs between nodes are actions. (The map 
of Romania shown in Figure 3.2 can be interpreted as a state space graph if we view 

PATH each road as standing for two driving actions, one in each direction.) A path in the state 
space is a sequence of states connected by a sequence of actions. 

GOAL TEST The goal test, which determines whether a given state is a goal state. Sometimes there 
is an explicit set of possible goal states, and the test simply checks whether the given 
state is one of them. The agent's goal in Romania is the singleton set {In(Bucharest)). 
Sometimes the goal is specified by an abstract property rather than an explicitly enumer- 
ated set of states. For example, in chess, the goal is to reach a state called "checkmate," 
where the opponent's king is under attack and can't escape. 

A path cost function that assigns a numeric cost to each path. The problem-solving 
agent chooses a cost function that reflects its own performance measure. For the agent 
trying to get to Bucharest, time is of the essence, so the cost of a path might be its length 
in kilometers. In this chapter, we assume that the cost of a path can be described as the 

STEP COST sum of the costs of the individual actions along the path. The step cost of taking action 
a to go from state x to state y is denoted by c(x ,  a ,  y). The step costs for Romania are 
shown in Figure 3.2 as route distances. We will assume that step costs are n ~ n n e ~ a t i v e . ~  

The preceding elements define a problem and can be gathered together into a single data 
structure that is given as input to a problem-solving algorithm. A solution to a problem is 
a path from the initial state to a goal state. Solution quality is measured by the path cost 

OPTIMALSOLUTION function, and an optimal solution has the lowest path cost among all solutions. 

Formulating problems 

In the preceding section we proposed a formulation of the problem of getting to Bucharest in 
terms of the initial state, successor function, goal test, and path cost. This formulation seems 
- 

An alternative formulation uses a set of operators that can be applied to a state to generate successors. 
The implications of negative costs are explored in Exercise 3.17. 
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Figure 3.2 A simplified road map of part of Romania. I 
reasonable, yet it omits a great many aspects of the real world. Compare the sirnple state 
description we have chosen, In(Arad), to an actual cross-country trip, where the state of the 
world includes so many things: the traveling companions, what is on the radio, the scenery 
out of the window, whether there are any law enforcement officers nearby, how far lit is to the 
next rest stop, the condition of the road, the weather, and so on. All these considerations are 
left out of our state descriptions because they are irrelevant to the problem of finding a route 

ABSTRACTION to Bucharest. The process of removing detail from a representation is called abstraction. 
In addition to abstracting the state description, we must abstract the actions themselves. 

A driving action has many effects. Besides changing the location of the vehicle and its occu- 
pants, it takes up time, consumes fuel, generates pollution, and changes the agent (as they say, 
travel is broadening). In our formulation, we take into account only the change in location. 
Also, there are many actions that we will omit altogether: turning on the radio, lookling out of 
the window, slowing down for law enforcement officers, and so on. And of course, we don't 
specify actions at the level of "turn steering wheel to the left by three degrees." 

Can we be more precise about defining the appropriate level of abstraction? Think of the 
abstract states and actions we have chosen as corresponding to large sets of detailed world 
states and detailed action sequences. Now consider a solution to the abstract pro1)lem: for 
example, the path from Arad to Sibiu to Rimnicu Vilcea to Pitesti to Bucharest. This abstract 
solution corresponds to a large number of more detailed paths. For example, we could drive 
with the radio on between Sibiu and Rimnicu Vilcea, and then switch it off for the rest of 
the trip. The abstraction is valid if we can expand any abstract solution into a soluti~on in the 
more detailed world; a sufficient condition is that for every detailed state that is "in Arad," 
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there is a detailed path to some state that is "in Sibiu," and so on. The abstraction is useful 
if carrying out each of the actions in the solution is easier than the original problem; in this 
case they are easy enough that they can be carried out without further search or planning by 
an average driving agent. The choice of a good abstraction thus involves removing as much 
detail as possible while retaining validity and ensuring that the abstract actions are easy to 
carry out. Were it not for the ability to construct useful abstractions, intelligent agents would 
be completely swamped by the real world. 

The problem-solving approach has been applied to a vast array of task environments. We 
list some of the best known here, distinguishing between toy and real-world problems. A toy 

TOY PROBLEM problem is intended to illustrate or exercise various problem-solving methods. It can be given 
a concise, exact description. This means that it can be used easily by different researchers 

REAL-WORLD 
PROBLEM to compare the performance of algorithms. A real-world problem is one whose solutions 

people actually care about. They tend not to have a single agreed-upon description, but we 
will attempt to give the general Aavor of their formulations. 

Toy problems 

The first example we will examine is the vacuum world first introduced in Chapter 2. (See 
Figure 2.2.) This can be formulated as a problem as follows: 

0 States: The agent is in one of two locations, each of which might or might not contain 
dirt. Thus there are 2 x 22 = 8 possible world states. 

0 Initial state: Any state can be designated as the initial state. 
0 Successor function: This generates the legal states that result from trying the three 

actions (Left, Right, and Suck). The complete state space is shown in Figure 3.3. 

0 Goal test: This checks whether all the squares are clean. 
0 Path cost: Each step costs 1, so the path cost is the number of steps in the path. 

Compared with the real world, this toy problem has discrete locations, discrete dirt, reliable 
cleaning, and it never gets messed up once cleaned. (In Section 3.6, we will relax these 
assumptions.) One important thing to note is that the state is determined by both the agent 
location and the dirt locations. A larger environment with n locations has n 2n states. 

The 8-puzzle, an instance of which is shown in Figure 3.4, consists of a 3 x 3 board with 
eight numbered tiles and a blank space. A tile adjacent to the blank space can slide into the 
space. The object is to reach a specified goal state, such as the one shown on the right of the 
figure. The standard formulation is as follows: 

0 States: A state description specifies the location of each of the eight tiles and the blank 
in one of the nine squares. 

0 Initial state: Any state can be designated as the initial state. Note that any given goal 
can be reached from exactly half of the possible initial states (Exercise 3.4). 
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Figure 3.3 The state space for the vacuum world. Arcs denote actions: L = Left, R = 
Right, S = Suck. 

0 Successor function: This generates the legal states that result from trying the four 
actions (blank moves Left, Right, Up, or Down). 

0 Goal test: This checks whether the state matches the goal configuration shown in Fig- 
ure 3.4. (Other goal configurations are possible.) 

0 Path cost: Each step costs 1, so the path cost is the number of steps in the path. 

What abstractions have we included here? The actions are abstracted to their begin- 
ning and final states, ignoring the intermediate locations where the block is slidiing. We've 
abstracted away actions such as shaking the board when pieces get stuck, or extracting the 
pieces with a knife and putting them back again. We're left with a description of tlhe rules of 
the puzzle, avoiding all the details of physical manipulations. 

Start State Goal State 1 
Figure 3.4 A typical instance of the 8-puzzle. I 
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SLIDING-BLOCK 
PUZZLES The 8-puzzle belongs to the family of sliding-block puzzles, which are often used as 

test problems for new search algorithms in AI. This general class is known to be NP-complete, 
so one does not expect to find methods significantly better in the worst case than the search 
algorithms described in this chapter and the next. The 8-puzzle has 9!/2 = 181,440 reachable 
states and is easily solved. The 15-puzzle (on a 4 x 4 board) has around 1.3 trillion states, and 
random instances can be solved optimally in a few milliseconds by the best search algorithms. 
The 24-puzzle (on a 5 x 5 board) has around loz5 states, and random instances are still quite 
difficult to solve optimally with current machines and algorithms. 

8-QUEENS PROBLEM The goal of the 8-queens problem is to place eight queens on a chessboard such that 
no queen attacks any other. (A queen attacks any piece in the same row, column or diago- 
nal.) Figure 3.5 shows an attempted solution that fails: the queen in the rightmost column is 
attacked by the queen at the top left. 

Figure 3.5 Almost a solution to the 8-queens problem. (Solution is left as an exercise.) 

Although efficient special-purpose algorithms exist for this problem and the whole n- 
queens family, it remains an interesting test problem for search algorithms. There are two 

INCREMENTAL main kinds of formulation. An incremental formulation involves operators that augment 
the state description, starting with an empty state; for the 8-queens problem, this means that 

~ ~ ~ ~ & f i ~ ~ A T E  each action adds a queen to the state. A complete-state formulation starts with all 8 queens 
on the board and moves them around. In either case, the path cost is of no interest because 
only the final state counts. The first incremental formulation one might try is the following: 

Q States: Any arrangement of 0 to 8 queens on the board is a state. 

Q Initial state: No queens on the board. 

Q Successor function: Add a queen to any empty square. 

Q Goal test: 8 queens are on the board, none attacked. 
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In this formulation, we have 64 . 63 . . .57 3 1.8 x 1014 possible sequences to investigate. A 
better formulation would prohibit placing a queen in any square that is already attacked: 

0 States: Arrangements of n queens (0 < n 5 8), one per column in the leftmost n 
columns, with no queen attacking another are states. 

0 Successor function: Add a queen to any square in the leftmost empty co lum~~ such that 
it is not attacked b:y any other queen. 

This formulation reduces the 8-queens state space from 3 x 1014 to just 2,057, and solutions 
are easy to find. On the other hand, for 100 queens the initial formulation has roughly 10400 
states whereas the improved formulation has about states (Exercise 3.5). Thils is a huge 
reduction, but the improved state space is still too big for the algorithms in this chapter to 
handle. Chapter 4 describes the complete-state formulation and Chapter 5 gives a simple 
algorithm that makes even the million-queens problem easy to solve. 

Real-world problems 

We have already seen how the route-finding problem is defined in terms of specified loca- PROBLIiM 

tions and transitions along links between them. Route-finding algorithms are used iin a variety 
of applications, such as routing in computer networks, military operations planning, and air- 
line travel planning systems. These problems are typically complex to specify. Consider a 
simplified example of an airline travel problem specified as follows: 

0 States: Each is represented by a location (e.g., an airport) and the current tim~e. 
0 Initial state: This is specified by the problem. 
0 Successor function: This returns the states resulting from taking any scheduled flight 

(perhaps further specified by seat class and location), leaving later than the current time 
plus the within-airport transit time, from the current airport to another. 
Goal test: Are we at the destination by some prespecified time? 

0 Path cost: This depends on monetary cost, waiting time, flight time, customs and im- 
migration procedures, seat quality, time of day, type of airplane, frequent-flyer mileage 
awards, and so on. 

Commercial travel advice systems use a problem formulation of this kind, with many addi- 
tional complications to handle the byzantine fare structures that airlines impose. Any sea- 
soned traveller knows, however, that not all air travel goes according to plan. A really good 
system should include contingency plans-such as backup reservations on alternate flights- 
to the extent that these are justified by the cost and likelihood of failure of the original plan. 

TOURING PROBLEMS Touring problems are closely related to route-finding problems, but with an important 
difference. Consider, for example, the problem, "Visit every city in Figure 3.2 at least once, 
starting and ending in Bucharest." As with route finding, the actions correspond to trips 
between adjacent cities. The state space, however, is quite different. Each state must include 
not just the current location but also the set of cities the agent has visited. So the initial 
state would be "In Bucharest; visited {Bucharest}," a typical intermediate state would be "In 
Vaslui; visited {Bucharest,Urziceni,Vaslui)," and the goal test would check whether the agent 
is in Bucharest and all 20 cities have been visited. 
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TRAVELING 
SALESPERSON 
PROBLEM 

The traveling salesperson problem (TSP) is a touring problem in which each city 
must be visited exactly once. The aim is to find the shortest tour. The problem is known to 
be NP-hard, but an enormous amount of effort has been expended to improve the capabilities 
of TSP algorithms. In addition to planning trips for traveling salespersons, these algorithms 
have been used for tasks such as planning movements of automatic circuit-board drills and of 
stocking machines on shop floors. 

VLSI LAYOUT A VLSI layout problem requires positioning millions of components and connections 
on a chip to minimize area, minimize circuit delays, minimize stray capacitances, and max- 
imize manufacturing yield. The layout problem comes after the logical design phase, and is 
usually split into two parts: cell layout and channel routing. In cell layout, the primitive 
components of the circuit are grouped into cells, each of which performs some recognized 
function. Each cell has a fixed footprint (size and shape) and requires a certain number of 
connections to each of the other cells. The aim is to place the cells on the chip so that they 
do not overlap and so that there is room for the connecting wires to be placed between the 
cells. Channel routing finds a specific route for each wire through the gaps between the cells. 
These search problems are extremely complex, but definitely worth solving. In Chapter 4, we 
will see some algorithms capable of solving them. 

ROBOT NAVIGATION Robot navigation is a generalization of the route-finding problem described earlier. 
Rather than a discrete set of routes, a robot can move in a continuous space with (in principle) 
an infinite set of possible actions and states. For a circular robot moving on a flat surface, 
the space is essentially two-dimensional. When the robot has arms and legs or wheels that 
must also be controlled, the search space becomes many-dimensional. Advanced techniques 
are required just to make the search space finite. We examine some of these methods in 
Chapter 25. In addition to the complexity of the problem, real robots must also deal with 
errors in their sensor readings and motor controls. 

AUTOMATIC 
ASSEMBLY 
SEQUENCING 

Automatic assembly sequencing of complex objects by a robot was first demonstrated 
by FREDDY (Michie, 1972). Progress since then has been slow but sure, to the point where 
the assembly of intricate objects such as electric motors is economically feasible. In assembly 
problems, the aim is to find an order in which to assemble the parts of some object. If the 
wrong order is chosen, there will be no way to add some part later in the sequence without 
undoing some of the work already done. Checking a step in the sequence for feasibility is a 
difficult geometrical search problem closely related to robot navigation. Thus, the generation 
of legal successors is the expensive part of assembly sequencing. Any practical algorithm 
must avoid exploring all but a tiny fraction of the state space. Another important assembly 

PROTEINDESIGN problem is protein design, in which the goal is to find a sequence of amino acids that will 
fold into a three-dimensional protein with the right properties to cure some disease. 

In recent years there has been increased demand for software robots that perform In- 
INTERNET 
SEARCHING 

ternet searching, looking for answers to questions, for related information, or for shopping 

deals. This is a good application for search techniques, because it is easy to conceptualize the 
Internet as a graph of nodes (pages) connected by links. A full description of Internet search 
is deferred until Chapter 10. 
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3.3 SEA.RCHING FOR SOLUTIONS 

Having formulated some problems, we now need to solve them. This is done by a search 
through the state space. This chapter deals with search techniques that use an explilcit search 

SEARCH TREE tree that is generated by the initial state and the successor function that together define the 
state space. In general, we may have a search graph rather than a search tree, when the 
same state can be reached from multiple paths. We defer consideration of this important 
complication until Section 3.5. 

Figure 3.6 shows some of the expansions in the search tree for finding a route from 
SEARCIHNODE Arad to Bucharest. The root of the search tree is a search node corresponding to the initial 

state, In(Arad). The first step is to test whether this is a goal state. Clearly it is not, but 
it is important to check so that we can solve trick problems like "starting in Arad, get to 
Arad." Because this is not a goal state, we need to consider some other states. This is done 

EXPANDING by expanding the current state; that is, applying the successor function to the cur~ent state, 
GENERATTING thereby generating a new set of states. In this case, we get three new states: In(Sibiu), 

In(Timisoara), and In(Zerind). Now we must choose which of these three possjbilities to 
consider further. 

This is the essence of search-following up one option now and putting the others aside 
for later, in case the first choice does not lead to a solution. Suppose we choose Sibiu first. 
We check to see whether it is a goal state (it is not) and then expand it to get In(Arad), 
In(Fagaras), In(Oradea), and In(RimnicuVi1cea). We can then choose any of these four, or 
go back and choose Timisoara or Zerind. We continue choosing, testing, and expanding until 
either a solution is found or there are no more states to be expanded. The choice of which 

SEARCH STRATEGY state to expand is determined by the search strategy. The general tree-search algorithm is 
described informally in Figure 3 .I.  

It is important to distinguish between the state space and the search tree. For the route 
finding problem, there are only 20 states in the state space, one for each city. But there are 
an infinite number of paths in this state space, so the search tree has an infinite number of 
nodes. For example, the lhree paths Arad-Sibiu, Arad-Sibiu-Arad, Arad-Sibiu-Alrad-Sibiu 
are the first three of an infinite sequence of paths. (Obviously, a good search algorithm avoids 
following such repeated paths; Section 3.5 shows how.) 

There are many ways to represent nodes, but we will assume that a node is a data 
structure with five components: 

STATE: the state in the state space to which the node corresponds; 
PARENT-NODE: the node in the search tree that generated this node; 
ACTION: the action that was applied to the parent to generate the node; 
PATH-COST: the cost, traditionally denoted by g ( n ) ,  of the path from the initial state to 
the node, as indicated by the parent pointers; and 
DEPTH: the number of steps along the path from the initial state. 

It is important to remember the distinction between nodes and states. A node is a boolkkeeping 
'data structure used to represent the search tree. A state corresponds to a configurati~on of the 



70 Chapter 3. Solving Problems by Searching 

world. Thus, nodes are on particular paths, as defined by PARENT-NODE pointers, whereas 
states are not. Furthermore, two different nodes can contain the same world state, if that state 
is generated via two different search paths. The node data structure is depicted in Figure 3.8. 

We also need to represent the collection of nodes that have been generated but not yet 
FRINGE expanded-this collection is called the fringe. Each element of the fringe is a leaf node, that 
LEAF NODE 

(c) After expanding Sibiu 

,- ., ,.- 8 -.., . . 

Figure 3.6 Partial search trees for finding a route from Arad to Bucharest. Nodes that 
have been expanded are shaded; nodes that have been generated but not yet expanded are 
outlined in bold; nodes that have not yet been generated are shown in faint dashed lines. 

function T R E E - ~ E A R C H ( ~ ~ O ~ ~ ~ ~ ,  strategy) returns a solution, or failure 
initialize the search tree using the initial state of problem 
ioop do 

if there are no candidates for expansion then return failure 
choose a leaf node for expansion according to strategy 
if the node contains a goal state then return the corresponding solution 
else expand the node and add the resulting nodes to the search tree 

Figure 3.7 An informal description of the general tree-search algorithm. 
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QUEUE 

Figure 3.8 Nodes are the data structures from which the search tree is constructed. Each 
has a parent, a state, and various bookkeeping fields. Arrows point from child to parent. 

is, a node with no successors in the tree. In Figure 3.6, the fringe of each tree consis1:s of those 
nodes with bold outlines. The simplest representation of the fringe would be a set of nodes. 
The search strategy then would be a function that selects the next node to be expanded from 
this set. Although this is conceptually straightforward, it could be computationally e:xpensive, 
because the strategy function might have to look at every element of the set to choosie the best 
one. Therefore, we will assume that the collection of nodes is implemented as a queue. The 
operations on a queue are as follows: 

r M ~ ~ E - Q u ~ u ~ ( e l e m e n t ,  . . .) creates a queue with the given element(s). 

E ~ p T ~ ? ( q u e u e )  returns true only if there are no more elements in the queue. 

r FIRsT(queue) returns the first element of the queue. 

r R E M O V E - F I R S T ( ~ ~ ~ ~ ~ )  returns F~RsT(queue) and removes it from the queue. 

r INsE~T(elernent, queue) inserts an element into the queue and returns the resulting 
queue. (We will see that different types of queues insert elements in different orders.) 

r I N s ~ ~ ~ - A ~ L ( e i e r n e n t s ,  queue) inserts a set of elements into the queue and returns the 
resulting queue. 

With these definitions, we can write the more formal version of the general tree-search algo- 
rithm shown in Figure 3.9. 

Measuring problem-solving performance 

The output of a problem-solving algorithm is either failure or a solution. (Some algorithms 
might get stuck in an infinite loop and never return an output.) We will evaluate an algorithm's 
performance in four ways: 

COMPLElrENESS 0 Completeness: Is the algorithm guaranteed to find a solution when there is one? 
OPTIMALUTY 0 Optimality: Does the strategy find the optimal solution, as defined on page 62? 
TIME COMPLEXITY 0 Time complexity: How long does it take to find a solution? 
SPACE COMPLEXITY 0 Space complexity: How much memory is needed to perform the search? 
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I function T l t ~ E - S ~ ~ n ~ ~ ( p r o b l e m ,  fringe) returns a solution, or failure 

fringe + INSERT(MAKE-NODE(~NITIAL-STATE[~~~~~~~]), fringe) 
loop do 

if EMPTY?( fringe) then return failure 
node c R E M O V E - F I R S T ( ~ ~ ~ ~ ~ ~ )  
if G o ~ ~ - T ~ s T [ p r o b l e m ]  applied to STATE[node] succeeds 

then return S o ~ U ~ I o ~ ( n o d e )  
fringe t I N S E R T - A L L ( E X P A N D ( ~ O ~ ~ ,  problem), fringe) 

function E X P A N D ( ~ O ~ ~ ,  problem) returns a set of nodes 

successors t the empty set 
for each (action, result) in S U C C E S S O R - F N [ ~ ~ ~ ~ ~ ~ ~ ] ( S T A T E [ ~ ~ ~ ~ ] )  do 

s t a new NODE 

STATE[S] +- result 
PARENT-NODE[S] +- node 
ACTION[S] t action 
PATH-COST[s] c P A T H - C O S T [ ~ ~ ~ ~ ]  + S T E P - C O S T ( S T A T E [ ~ O ~ ~ ] ,  action, result) 
DEPTH[s] + D ~ p T ~ [ n o d e ]  + 1 
add s to successors 

return successors 

Figure 3.9 The general tree-search algorithm. (Note that the fringe argument must be an 
empty queue, and the type of the queue will affect the order of the search.) The SOLUTION 

function returns the sequence of actions obtained by following parent pointers back to the 
root. 

Time and space complexity are always considered with respect to some measure of the prob- 
lem difficulty. In theoretical computer science, the typical measure is the size of the state 
space graph, because the graph is viewed as an explicit data structure that is input to the 
search program. (The map of Romania is an example of this.) In AI, where the graph is 
represented implicitly by the initial state and successor function and is frequently infinite, 

BRANCHINGFACTOR complexity is expressed in terms of three quantities: 13, the branching factor or maximum 
number of successors of any node; d, the depth of the shallowest goal node; and m, the 
maximum length of any path in the state space. 

Time is often measured in terms of the number of nodes generated5 during the search, 
and space in terms of the maximum number of nodes stored in memory. 

SEARCH COST To assess the effectiveness of a search algorithm, we can consider just the search cost- 
which typically depends on the time complexity but can also include a term for memory 

TOTAL COST usage-or we can use the total cost, which combines the search cost and the path cost of the 
solution found. For the problem of finding a route from Arad to Bucharest, the search cost 

Some texts measure time in terms of the number of node expansions instead. The two measures differ by at 
most a factor of b. It seems to us that the execution time of a node expansion increases with the number of nodes 
generated in that expansion. 
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is the amount of time taken by the search and the solution cost is the total length of the path 
in kilometers. Thus, to compute the total cost, we have to add kilometers and milliseconds. 
There is no "official exchange rate" between the two, but it might be reasonable in this case to 
convert kilometers into milliseconds by using an estimate of the car's average speed (because 
time is what the agent cares about). This enables the agent to find an optimal tradeoff point 
at which further computation to find a shorter path becomes counterproductive. The more 
general problem of tradeoffs between different goods will be taken up in Chapter 16. 

UNINFORMED 
SEARCH This section covers five search strategies that come under the heading of uninformed search 

(also called blind search). The term means that they have no additional information about 
states beyond that provided in the problem definition. All they can do is generate successors 
and distinguish a goal state from a nongoal state. Strategies that know whether one non- 

INFORMED SEARCH goal state is "more promising" than another are called informed search or heuristic search 
HEURISTICSEARCH strategies; they will be covered in Chapter 4. All search strategies are distinguished by the 

order in which nodes are expanded. 

Breadth-first search 

BREADTH-FIRST SEARCH Breadth-first search is a simple strategy in which the root node is expanded first, then all the 
successors of the root node are expanded next, then their successors, and so on. In general, 
all the nodes are expanded at a given depth in the search tree before any nodes at the next 
level are expanded. 

Breadth-first search can be implemented by calling TREE-SEARCH with an empty 
fringe that is a first-in-first-out (FIFO) queue, assuring that the nodes that are visited first 
will be expanded first. In other words, calling TREE-SEARCH(~~O~~~~,FIFO-QU~EUE()) re- 
sults in a breadth-first search. The FIFO queue puts all newly generated successors at the end 
of the queue, which means that shallow nodes are expanded before deeper nodes. Figure 3.10 
shows the progress of the search on a simple binary tree. 

We will evaluate breadth-first search using the four criteria from the previous section. 
We can easily see that it is complete-if the shallowest goal node is at some finite depth d, 
breadth-first search will eventually find it after expanding all shallower nodes (prolvided the 
branching factor b is finite). The shallowest goal node is not necessarily the optimal one; 
technically, breadth-first search is optimal if the path cost is a nondecreasing function of the 
depth of the node. (For example, when all actions have the same cost.) 

So far, the news about breadth-first search has been good. To see why it is not always the 
strategy of choice, we have to consider the amount of time and memory it takes to complete a 
search. To do this, we consider a hypothetical state space where every state has b successors. 
The root of the search tree generates b nodes at the first level, each of which generates b more 
nodes, for a total of b2 at the second level. Each of these generates b more nodes, yielding b3 

nodes at the third level, and so on. Now suppose that the solution is at depth d. In the worst 
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case, we would expand all but the last node at level d (since the goal itself is not expanded), 
generating bdS1 - b nodes at level d f 1. Then the total number of nodes generated is 

Every node that is generated must remain in memory, because it is either part of the fringe 
or is an ancestor of a fringe node. The space complexity is, therefore, the same as the time 
complexity (plus one node for the root). 

Those who do complexity analysis are worried (or excited, if they like a challenge) by 
exponential complexity bounds such as O(bdsl). Figure 3.1 1 shows why. It lists the time and 
memory required for a breadth-first search with branching factor b = 10, for various values 
of the solution depth d. The table assumes that 10,000 nodes can be generated per second and 
that a node requires 1000 bytes of storage. Many search problems fit roughly within these 
assumptions (give or take a factor of 100) when run on a modern personal computer. 

There are two lessons to be learned from Figure 3.11. First, the memory requirements 
are a bigger problem for breadth9rst search than is the execution time. 3 1 hours would not 
be too long to wait for the solution to an important problem of depth 8, but few computers 
have the terabyte of main memory it would take. Fortunately, there are other search strategies 
that require less memory. 

The second lesson is that the time requirements are still a major factor. If your problem 
has a solution at depth 12, then (given our assumptions) it will take 35 years for breadth-first 
search (or indeed any uninformed search) to find it. In general, exponential-complexity search 
problems cannot be solved by uninformed methods for any but the smallest instances. 

Depth Nodes Time Memory 

2 1100 . l l  seconds 1 megabyte 
4 111,100 11 seconds 106 megabytes 
6 lo7 19 minutes 10 gigabytes 
8 lo9 3 1 hours 1 terabytes 

10 1011 129 days 10 1 terabytes 
12 1013 35 years 10 petabytes 
14 l0l5 3,523 years 1 exabyte 

Figure 3.11 Time and memory requirements for breadth-first search. The numbers shown 
assume branching factor b = 10; 10,000 nodes/second; 1000 byteshode. 
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UNIFORM-COST 
SEARCH 

Uniform-cost search 

Breadth-first search is optimal when all step costs are equal, because it always expands the 
shallowest unexpanded node. By a simple extension, we can find an algorithm that is optimal 
with any step cost function. Instead of expanding the shallowest node, uniform-cost search 
expands the node n with the lowest path cost. Note that if all step costs are equal, this is 
identical to breadth-first search. 

Uniform-cost search does not care about the number of steps a path has, but only about 
their total cost. Therefore, it will get stuck in an infinite loop if it ever expands a node that 
has a zero-cost action leading back to the same state (for example, a NoOp action). We can 
guarantee completeness provided the cost of every step is greater than or equal to siome small 
positive constant c. This condition is also sufficient to ensure optimality. It means that the 
cost of a path always increases as we go along the path. From this property, it is easy to see 
that the algorithm expands nodes in order of increasing path cost. Therefore, the: first goal 
node selected for expansion is the optimal solution. (Remember that TREE-SEARCH applies 
the goal test only to the nodes that are selected for expansion.) We recommend trying the 
algorithm out to find the shortest path to Bucharest. 

Uniform-cost search is guided by path costs rather than depths, so its complexity cannot 
easily be characterized in terms of b and d. Instead, let C* be the cost of the optimal solution, 
and assume that every action costs at least E .  Then the algorithm's worst-case time and space 
complexity is O(bl+Lc*l"l), which can be much greater than bd. This is because uniform-cost 
search can, and often does, explore large trees of small steps before exploring paths involving 
large and perhaps useful steps. When all step costs are equal, of course, bl+LC*/" is just bd. 

Depth-first search 

Depth-first search always expands the deepest node in the current fringe of the search tree. 
The progress of the search is illustrated in Figure 3.12. The search proceeds immediately 
to the deepest level of the search tree, where the nodes have no successors. As those nodes 
are expanded, they are dropped from the fringe, so then the search "backs up" to the next 
shallowest node that still has unexplored successors. 

This strategy can be implemented by TREE-SEARCH with a last-in-first-out (LIFO) 
queue, also known as a stack. As an alternative to the TREE-SEARCH implementation, it is 
common to implement depth-first search with a recursive function that calls itself oln each of 
its children in turn. (A recursive depth-first algorithm incorporating a depth limit is shown in 
Figure 3.13.) 

Depth-first search has very modest memory requirements. It needs to store only a single 
path from the root to a leaf node, along with the remaining unexpanded sibling nodes for each 
node on the path. Once a node has been expanded, it can be removed from memory as soon 
as all its descendants have been fully explored. (See Figure 3.12.) For a state space with 
branching factor b and maximum depth m, depth-first search requires storage of only b m  + 1 
nodes. Using the same assumptions as Figure 3.11, and assuming that nodes at the same 
depth as the goal node have no successors, we find that depth-first search would require 118 
kilobytes instead of 10 petabytes at depth d = 12, a factor of 10 billion times less space. 
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Figure 3.12 Depth-first search on a binary tree. Nodes that have been expanded and have 
no descendants in the fringe can be removed from memory; these are shown in black. Nodes 
at depth 3 are assumed to have no successors and M is the only goal node. 

A variant of depth-first search called backtracking search uses still less memory. In 
backtracking, only one successor is generated at a time rather than all successors; each par- 
tially expanded node remembers which successor to generate next. In this way, only O(m) 
memory is needed rather than O(bm). Backtracking search facilitates yet another memory- 
saving (and time-saving) trick: the idea of generating a successor by modifying the current 
state description directly rather than copying it first. This reduces the memory requirements 
to just one state description and O(m) actions. For this to work, we must be able to undo 
each modification when we go back to generate the next successor. For problems with large 
state descriptions, such as robotic assembly, these techniques are critical to success. 

The drawback of depth-first search is that it can make a wrong choice and get stuck 
going down a very long (or even infinite) path when a different choice would lead to a solution 
near the root of the search tree. For example, in Figure 3.12, depth-first search will explore 
the entire left subtree even if node C is a goal node. If node J were also a goal node, then 
depth-first search would return it as a solution; hence, depth-first search is not optimal. If 
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function DEPTH-LIMITED-SEARCH(~~O~~~~, limit) returns a solution, or failurelcutoff 
return RECURSIVE-]L~LS(~AKE-NODE(INITIAL-STATE[~~O~~~]), problem, limit) 

function R E C U R S I V E - D L S ( ~ O ~ ~ ,  problem, limit) returns a solution, or failurelcutoff 
cuto8-occurred? t false 
if GoAL-TEsT[~~o~~~~](STATE[~O~~]) then return S O L U T I O N ( ~ O ~ ~ )  
else if DEp~H[node] = limit then return cut08 
else for each successor in E X P A N D ( ~ O ~ ~ ,  problem) do 

result + RECURSIVE-DLS(successor, problem, limit) 
if result = cut08 then cutog-occurred? +true 
else if result # failure then return result 

if cutofl-occurred? then return cut08 else return failure 

Figure 3.13 A recursive implementation of depth-limited search. 1 
the left subtree were of unbounded depth but contained no solutions, depth-first search would 
never terminate; hence, it is not complete. In the worst case, depth-first search will generate 
all of the O(bm) nodes in the search tree, where m is the maximum depth of any niode. Note 
that m can be much larger than d (the depth of the shallowest solution), and is infinite if the 
tree is unbounded. 

Depth-limited search 

The problem of unbounded trees can be alleviated by supplying depth-first search with a pre- 
determined depth limit l. That is, nodes at depth l are treated as if they have no successors. 
This approach is called depth-limited search. The depth limit solves the infinite-path prob- SEARCH 

lem. Unfortunately, it also introduces an additional source of incompleteness if we choose 
t < d, that is, the shallowest goal is beyond the depth limit. (This is not unlikeky when d 
is unknown.) Depth-limited search will also be nonoptimal if we choose ! > d. Its time 
complexity is O(be) and its space complexity is O(bl).  Depth-first search can be viewed as a 
special case of depth-limited search with ! = GO. 

Sometimes, depth limits can be based on knowledge of the problem. For example, on 
the map of Romania there are 20 cities. Therefore, we know that if there is a solutiom, it must 
be of length 19 at the longest, so ! = 19 is a possible choice. But in fact if we studied the 
map carefully, we would discover that any city can be reached from any other city ity at most 

DIAMETER 9 steps. This number, known as the diameter of the state space, gives us a better depth limit, 
which leads to a more efficient depth-limited search. For most problems, however, we will 
not know a good depth limit until we have solved the problem. 

Depth-limited search can be implemented as a simple modification to the general tree- 
search algorithm or to the recursive depth-first search algorithm. We show the pseudocode for 
I-ecursive depth-limited search in Figure 3.13. Notice that depth-limited search can terminate 
with two kinds of failure: the standard failure value indicates no solution; the cutclff value 
indicates no solution within the depth limit. 



7 8 Chapter 3. Solving Problems by Searching 

Iterative deepening depth-first search 
ITERATIVE Iterative deepening search (or iterative deepening depth-first search) is a general strategy, 

often used in combination with depth-first search, that finds the best depth limit. It does this 
by gradually increasing the limit-first 0, then 1, then 2, and so on-until a goal is found. 
This will occur when the depth limit reaches d, the depth of the shallowest goal node. The 
algorithm is shown in Figure 3.14. Iterative deepening combines the benefits of depth-first 
and breadth-first search. Like depth-first search, its memory requirements are very modest: 
O(bd) to be precise. Like breadth-first search, it is complete when the branching factor is 
finite and optimal when the path cost is a nondecreasing function of the depth of the node. 
Figure 3.15 shows four iterations of ITERATIVE-DEEPENING-SEARCH on a binary search 
tree, where the solution is found on the fourth iteration. 

Iterative deepening search may seem wasteful, because states are generated multiple 
times. It turns out this is not very costly. The reason is that in a search tree with the same 
(or nearly the same) branching factor at each level, most of the nodes are in the bottom level, 
so it does not matter much that the upper levels are generated multiple times. In an iterative 
deepening search, the nodes on the bottom level (depth d) are generated once, those on the 
next to bottom level are generated twice, and so on, up to the children of the root, which are 
generated d times. So the total number of nodes generated is 

N(1DS) = (d) b + (d - l)b2 + . . . + (1) bd , 
which gives a time complexity of O(bd). We can compare this to the nodes generated by a 
breadth-first search: 

N(BFS) = b + b2 + . . . + bd + (bdtl - b) . 

Notice that breadth-first search generates some nodes at depth d+ 1, whereas iterative deepen- 
ing does not. The result is that iterative deepening is actually faster than breadth-first search, 
despite the repeated generation of states. For example, if b = 10 and d = 5 ,  the numbers are 

In general, iterative deepening is the preferred uninformed search method when there is a 
large search space and the depth of the solution is not known. 

function ITERATIVE-DEEPENING-SEARCH(~~O~~~~) returns a solution, or failure 
inputs: problem, a problem 

for depth t 0 to oo do 
result t DEPTH-LIMITED-SEARCH(~~~~~~~, depth) 
if result # cutoff then return result 

Figure 3.14 The iterative deepening search algorithm, which repeatedly applies depth- 
limited search with increasing limits. It terminates when a solution is found or if the depth- 
limited search returns failure, meaning that no solution exists. 
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Figure 3.15 Four iterations of iterative deepening search on a binary tree. I 
Iterative deepening search is analogous to breadth-first search in that it explores a com- 

plete layer of new nodes at each iteration before going on to the next layer. It would seem 
worthwhile to develop an iterative analog to uniform-cost search, inheriting the latter algo- 
rithm's optimality guarantees while avoiding its memory requirements. The idea is to use 
increasing path-cost limits instead of increasing depth limits. The resulting algorithm, called 

ITERATIVE: 
LENGTHENING iterative lengthening search, is explored in Exercise 3.1 1. It turns out, unfortunately, that 
SEARCH 

iterative lengthening incurs substantial overhead compared to uniform-cost search. 

Bidirectional search 

The idea behind bidirectional search is to run two simultaneous searches-one forward from 
the initial state and the other backward from the goal, stopping when the two searches meet 
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Figure 3.16 A schematic view of a bidirectional search that is about to succeed, when a 
branch from the start node meets a branch from the goal node. 

in the middle (Figure 3.16). The motivation is that bd12 + bdI2 is much less than bd, or in the 
figure, the area of the two small circles is less than the area of one big circle centered on the 
start and reaching to the goal. 

Bidirectional search is implemented by having one or both of the searches check each 
node before it is expanded to see if it is in the fringe of the other search tree; if so, a solution 
has been found. For example, if a problem has solution depth d = 6, and each direction runs 
breadth-first search one node at a time, then in the worst case the two searches meet when 
each has expanded all but one of the nodes at depth 3. For b = 10, this means a total of 22,200 
node generations, compared with 1 1,111,100 for a standard breadth-first search. Checking a 
node for membership in the other search tree can be done in constant time with a hash table, 
so the time complexity of bidirectional search is 0(bd12). At least one of the search trees must 
be kept in memory so that the membership check can be done, hence the space complexity 
is also 0(bd12). This space requirement is the most significant weakness of bidirectional 
search. The algorithm is complete and optimal (for uniform step costs) if both searches are 
breadth-first; other combinations may sacrifice completeness, optimality, or both. 

The reduction in time complexity makes bidirectional search attractive, but how do 
PREDECESSORS we search backwards? This is not as easy as it sounds. Let the predecessors of a state x, 

Pred(x), be all those states that have x as a successor. Bidirectional search requires that 
Pred (x) be efficiently computable. The easiest case is when all the actions in the state space 
are reversible, so that Pred (x) = Succ(x). Other cases may require substantial ingenuity. 

Consider the question of what we mean by "the goal" in searching "backward from the 
goal." For the 8-puzzle and for finding a route in Romania, there is just one goal state, so the 
backward search is very much like the forward search. If there are several explicitly listed goal 
states-for example, the two dirt-free goal states in Figure 3.3-then we can construct a new 
dummy goal state whose immediate predecessors are all the actual goal states. Alternatively, 
some redundant node generations can be avoided by viewing the set of goal states as a single 
state, each of whose predecessors is also a set of states-specifically, the set of states having 
a corresponding successor in the set of goal states. (See also Section 3.6.) 

The most difficult case for bidirectional search is when the goal test gives only an im- 
plicit description of some possibly large set of goal states-for example, all the states satisfy- 
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ing the "checkmate" goal test in chess. A backward search would need to construct compact 
descriptions of "all states that lead to checkmate by move ml" and so on; and those descrip- 
tions would have to be tested against the states generated by the forward search. There is no 
general way to do this efficiently. 

Comparing uninformed search strategies 

Figure 3.17 compares search strategies in terms of the four evaluation criteria set forth in 
Section 3.4. 

Up to this point, we have all but ignored one of the most important complications to the 
search process: the possibility of wasting time by expanding states that have alre,ady been 
encountered and expanded before. For some problems, this possibility never comes up; the 
state space is a tree and there is only one path to each state. The efficient formulation of the 8- 
queens problem (where each new queen is placed in the leftmost empty column) is efficient in 
large part because of this--each state can be reached only through one path. If we formulate 
the 8-queens problem so that a queen can be placed in any column, then each state with n 
'queens can be reached by n! different paths. 

For some problems, repeated states are unavoidable. This includes all problen~s where 
the actions are reversible, such as route-finding problems and sliding-blocks puzzles. The 
:search trees for these problems are infinite, but if we prune some of the repeated states, 
we can cut the search tree down to finite size, generating only the portion of the tree that 
spans the state-space graph. Considering just the search tree up to a fixed depth, it is easy to 
jind cases where eliminating repeated states yields an exponential reduction in search cost. 
In the extreme case, a state space of size d + 1 (Figure 3.18(a)) becomes a tree with 2d 

RECTANG~IMR GRID leaves (Figure 3.18(b)). k more realistic example is the rectangular grid as illustrated in 
Figure 3.18(c). On a grid, each state has four successors, so the search tree including repeated 

Criterion 

Complete? 
Time 
Space 
Optimal? 

Breadth- Uniform- Depth- Depth- Iterative Bidirectional 
First Cost First Limited Deepening (if applicable) 

Yesa Y ~ s ~ , ~  No No Yesa Jlesald 
O(bdf l )  0(b1+LC*/'l) O(bm) O(be) O(bd) 0 (bd/ ')  
O(bd+l) O(bl+ LC'lel) O(bm) O(bt) 0 (bd) ~ ( b ~ / ~ )  

YesC Yes No No Yesc ~ l e s ~ > ~  

Figure 3.17 Evaluation of search strategies. b is the branching factor; d is the depth of 
the shallowest solution; m is the maximum depth of the search tree; 1 is the depth limit. 
Superscript caveats are as follows: a complete if b is finite; complete if step costs 2 E for 
positive E ;  optimal if step costs are all identical; if both directions use breadth-first search. 
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states has 4d leaves; but there are only about 2d2 distinct states within d steps of any given 
state. For d = 20, this means about a trillion nodes but only about 800 distinct states. 

Repeated states, then, can cause a solvable problem to become unsolvable if the al- 
gorithm does not detect them. Detection usually means comparing the node about to be 
expanded to those that have been expanded already; if a match is found, then the algorithm 
has discovered two paths to the same state and can discard one of them. 

For depth-first search, the only nodes in memory are those on the path from the root to 
the current node. Comparing those nodes to the current node allows the algorithm to detect 
looping paths that can be discarded immediately. This is fine for ensuring that finite state 
spaces do not become infinite search trees because of loops; unfortunately, it does not avoid 
the exponential proliferation of nonlooping paths in problems such as those in Figure 3.18. 
The only way to avoid these is to keep more nodes in memory. There is a fundamental tradeoff 
between space and time. Algorithms that forget their history are doomed to repeat it. 

If an algorithm remembers every state that it has visited, then it can be viewed as ex- 
ploring the state-space graph directly. We can modify the general TREE-SEARCH algorithm 

CLOSED LIST to include a data structure called the closed list, which stores every expanded node. (The 
OPEN LIST fringe of unexpanded nodes is sometimes called the open list.) If the current node matches a 

node on the closed list, it is discarded instead of being expanded. The new algorithm is called 
GRAPH-SEARCH (Figure 3.19). On problems with many repeated states, GRAPH-SEARCH 

is much more efficient than TREE-SEARCH. Its worst-case time and space requirements are 
proportional to the size of the state space. This may be much smaller than O(bd). 

Optimality for graph search is a tricky issue. We said earlier that when a repeated 
state is detected, the algorithm has found two paths to the same state. The GRAPH-SEARCH 

algorithm in Figure 3.19 always discards the newly discovered path; obviously, if the newly 
discovered path is shorter than the original one, GRAPH-SEARCH could miss an optimal 
solution. Fortunately, we can show (Exercise 3.12) that this cannot happen when using either 

f 
(a> (b) (c> 

Figure 3.18 State spaces that generate an exponentially larger search tree. (a) A state 
space in which there are two possible actions leading from A to B, two from B to C, and so on. 
The state space contains d + 1 states, where d is the maximum depth. (b) The corresponding 
search tree, which has 2d branches corresponding to the 2d paths through the space. (c) A 
rectangular grid space. States within 2 steps of the initial state (A) are shown in gray. 
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function G R A P H - S E A R C H ( ~ ~ O ~ ~ ~ ~ ,  fr inge)  returns a solution, or failure 

closed t an empty set 
fringe t INSERT(MAKE-NoDE(INITIAL-STATE[~~O~~~~]), f r inge )  
loop do 

if EMPTY?( fr inge)  then return failure 
node c R E M O V E - F I R S T ( ~ ~ ~ ~ ~ ~ )  
if GoAL-TEsT[~~o~~~~](STATE[~O~~]) then return S O L U T I O N ( ~ O ~ ~ )  
if s T A T ~ [ n o d e ]  is not in closed then 

add S T A T E [ ~ O ~ ~ ]  to closed 
fringe +- I N S E R T - A L L ( E X P A N D ( ~ O ~ ~ ,  p r o b l e m ) , b i n g e )  

Figure 3.19 The general graph-search algorithm. The set closed can be implemented with 
a hash table to allow efficient checking for repeated states. This algorithm assumes that the 
first path to a state s is the cheapest (see text). 

uniform-cost search or breadth-first search with constant step costs; hence, these two optimal 
tree-search strategies are also optimal graph-search strategies. Iterative deepening search, 
on the other hand, uses depth-first expansion and can easily follow a suboptimal path to a 
node before finding the optimal one. Hence, iterative deepening graph search needs to check 
whether a newly discovered path to a node is better than the original one, and if so, it might 
need to revise the depths and path costs of that node's descendants. 

Note that the use of a closed list means that depth-first search and iterative deepening 
search no longer have linear space requirements. Because the GRAPH-SEARCH algorithm 
keeps every node in memory, some searches are infeasible because of memory limitations. 

3.6 SEARCHING WITH PARTIAL INFORMATION 

In Section 3.3 we assumed that the environment is fully observable and deterministic and that 
the agent knows what the effects of each action are. Therefore, the agent can calcula.te exactly 
which state results from any sequence of actions and always knows which state it is in. Its 
percepts provide no new information after each action. What happens when knowle~dge of the 
states or actions is incomplete? We find that different types of incompleteness lead to three 
distinct problem types: 

1. Sensorless problems (also called conformant problems): If the agent has no sensors 
at all, then (as far as it knows) it could be in one of several possible initial states, and 
each action might therefore lead to one of several possible successor states. 

2. Contingency problems: If the environment is partially observable or if actions are 
uncertain, then the agent's percepts provide new information after each action. Each 
possible percept defines a contingency that must be planned for. A problem is called 
adversarial if the uncertainty is caused by the actions of another agent. 
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I Figure 3.20 The eight possible states of the vacuum world. I 

3. Exploration problems: When the states and actions of the environment are unknown, 
the agent must act to discover them. Exploration problems can be viewed as an extreme 
case of contingency problems. 

As an example, we will use the vacuum world environment. Recall that the state space has 
eight states, as shown in Figure 3.20. There are three actions-Left, Right, and Suck-and the 
goal is to clean up all the dirt (states 7 and 8). If the environment is observable, deterministic, 
and completely known, then the problem is trivially solvable by any of the algorithms we 
have described. For example, if the initial state is 5, then the action sequence [Right,Suck] 
will reach a goal state, 8. The remainder of this section deals with the sensorless and contin- 
gency versions of the problem. Exploration problems are covered in Section 4.5, adversarial 
problems in Chapter 6. 

Sensorless problems 

Suppose that the vacuum agent knows all the effects of its actions, but has no sensors. Then 
it knows only that its initial state is one of the set {1,2,3,4,5,6,7,8).  One might suppose 
that the agent's predicament is hopeless, but in fact it can do quite well. Because it knows 
what its actions do, it can, for example, calculate that the action Right will cause it to be in 
one of the states {2,4,6,8), and the action sequence [Right,Suck] will always end up in one 
of the states {4,8}. Finally, the sequence [Right,Suck,Left,Suck] is guaranteed to reach the 

COERCION goal state 7 no matter what the start state. We say that the agent can coerce the world into 
state 7, even when it doesn't know where it started. To summarize: when the world is not 
fully observable, the agent must reason about sets of states that it might get to, rather than 

BELIEF STATE single states. We call each such set of states a belief state, representing the agent's current 
belief about the possible physical states it might be in. (In a fully observable environment, 
each belief state contains one physical state.) 
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Figure 3.21 The reachable portion of the belief state space for the deterministic, 'sensor- 
less vacuum world. Each shaded box corresponds to a single belief state. At any given point, 
the agent is in a particular belief state but does not know which physical state it is in. The 
initial belief state (complete ignorance) is the top center box. Actions are represented by 
labeled arcs. Self-loops are omitted for clarity. 

To solve sensorless problems, we search in the space of belief states rather than physical 
states. The initial state is a belief state, and each action maps from a belief state to another 
belief state. An action is applied to a belief state by unioning the results of applying the 
action to each physical state in the belief state. A path now connects several belief states, 
and a solution is now a path that leads to a belief state, all of whose members are goal states. 
Figure 3.21 shows the reachable belief-state space for the deterministic, sensorless vacuum 
world. There are only 12 reachable belief states, but the entire belief state space contains 
every possible set of physical states, i.e., 28 = 256 belief states. In general, if the physical 
state space has S states, the belief state space has 2' belief states. 

Our discussion of sensorless problems so far has assumed deterministic actions, but the 
analysis is essentially un~changed if the environment is nondeterministic-that is, if actions 
may have several possible outcomes. The reason is that, in the absence of sensors, the agent 
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CONTINGENCY 
PROBLEM 

has no way to tell which outcome actually occurred, so the various possible outcomes are 
just additional physical states in the successor belief state. For example, suppose the environ- 
ment obeys Murphy's Law: the so-called Suck action sometimes deposits dirt on the carpet 
but only if there is no dirt there already.6 Then, if Suck is applied in physical state 4 (see 
Figure 3.20), there are two possible outcomes: states 2 and 4. Applied to the initial belief 
state, {1 ,2 ,3 ,4 ,5 ,6 ,7 ,8) ,  Suck now leads to the belief state that is the union of the out- 
come sets for the eight physical states. Calculating this, we find that the new belief state is 
{1 ,2 ,3 ,4 ,5 ,6 ,7 ,8) .  So, for a sensorless agent in the Murphy's Law world, the Suck action 
leaves the belief state unchanged! In fact, the problem is unsolvable. (See Exercise 3.18.) In- 
tuitively, the reason is that the agent cannot tell whether the current square is dirty and hence 
cannot tell whether the Suck action will clean it up or create more dirt. 

Contingency problems 

When the environment is such that the agent can obtain new information from its sensors 
after acting, the agent faces a contingency problem. The solution to a contingency problem 
often takes the form of a tree, where each branch may be selected depending on the percepts 
received up to that point in the tree. For example, suppose that the agent is in the Murphy's 
Law world and that it has a position sensor and a local dirt sensor, but no sensor capable of 
detecting dirt in other squares. Thus, the percept [L, Dirty] means that the agent is in one of 
the states {1,3). The agent might formulate the action sequence [Suck, Right, Suck]. Suclung 
would change the state to one of {5,7), and moving right would then change the state to one 
of {6,8). Executing the final Suck action in state 6 takes us to state 8, a goal, but executing it 
in state 8 might take us back to state 6 (by Murphy's Law), in which case the plan fails. 

By examining the belief-state space for this version of the problem, it can easily be 
determined that no fixed action sequence guarantees a solution to this problem. There is, 
however, a solution if we don't insist on aJixed action sequence: 

[Suck, Right, if[R,Dirtyj then Suck] 

This extends the space of solutions to include the possibility of selecting actions based on 
contingencies arising during execution. Many problems in the real, physical world are con- 
tingency problems, because exact prediction is impossible. For this reason, many people keep 
their eyes open while walking around or driving. 

Contingency problems sometimes allow purely sequential solutions. For example, con- 
sider a fully observable Murphy's Law world. Contingencies arise if the agent performs a 
Suck action in a clean square, because dirt might or might not be deposited in the square. 
As long as the agent never does this, no contingencies arise and there is a sequential solution 
from every initial state (Exercise 3.18). 

The algorithms for contingency problems are more complex than the standard search 
algorithms in this chapter; they are covered in Chapter 12. Contingency problems also lend 
themselves to a somewhat different agent design, in which the agent can act before it has 
found a guaranteed plan. This is useful because rather than considering in advance every 

We assume that most readers face similar problems and can sympathize with our agent. We apologize to 
owners of modem, efficient home appliances who cannot take advantage of this pedagogical device. 
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possible contingency that might arise during execution, it is often better to start acting and 
see which contingencies do arise. The agent can then continue to solve the problem, taking 

INTERLEAVING into account the additional information. This type of interleaving of search and execution is 
also useful for exploration problems (see Section 4.5) and for game playing (see Chapter 6). 

This chapter has introduced methods that an agent can use to select actions in environments 
that are deterministic, observable, static, and completely known. In such cases, the: agent can 
construct sequences of actions that achieve its goals; this process is called search. 

Before an agent can start searching for solutions, it must formulate a goal and then use 
the goal to formulate a problem. 
A problem consists of four parts: the initial state, a set of actions, a goal test function, 
and a path cost function. The environment of the problem is represented by a state 
space. A path through the state space from the initial state to a goal state is a solution. 
A single, general TREE-SEARCH algorithm can be used to solve any problem; specific 
variants of the algorithm embody different strategies. 
Search algorithms are judged on the basis of completeness, optimality, time complex- 
ity, and space complexity. Complexity depends on b, the branching factor in the state 
space, and d, the depth of the shallowest solution. 
Breadth-first search selects the shallowest unexpanded node in the search tree for 
expansion. It is complete, optimal for unit step costs, and has time and space complexity 
of O(bd+l). The space complexity makes it impractical in most cases. Uniform-cost 
search is similar to breadth-first search but expands the node with lowest path cost, 
g ( n ) .  It is complete and optimal if the cost of each step exceeds some positive bound E.  

Depth-first search selects the deepest unexpanded node in the search tree for expan- 
sion. It is neither complete nor optimal, and has time complexity of O(bm) and space 
complexity of O(bm),  where m is the maximum depth of any path in the state space. 
Depth-limited search imposes a fixed depth limit on a depth-first search. 
Iterative deepening search calls depth-limited search with increasing limits until a 
goal is found. It is complete, optimal for unit step costs, and has time complexity of 
0 (bd) and space complexity of 0 (bd) . 
Bidirectional search can enormously reduce time complexity, but it is not always ap- 
plicable and may require too much space. 
When the state space is a graph rather than a tree, it can pay off to check for repeated 
states in the search tree. The GRAPH-SEARCH algorithm eliminates all duplicate states. 
When the environment is partially observable, the agent can apply search algorithms in 
the space of belief states, or sets of possible states that the agent might be in. In some 
cases, a single solution sequence can be constructed; in other. cases, the agent needs a 
contingency plan to handle unknown circumstances that may arise. 
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BIBLIOGRAPHICAL AND HISTORICAL NOTES 

Most of the state-space search problems analyzed in this chapter have a long history in the 
literature and are less trivial than they might seem. The missionaries and cannibals prob- 
lem used in Exercise 3.9 was analyzed in detail by Amarel (1968). It had been considered 
earlier in A1 by Simon and Newel1 (1961), and in operations research by Bellman and Drey- 
fus (1962). Studies such as these and Newel1 and Simon's work on the Logic Theorist (1957) 
and GPS (1961) led to the establishment of search algorithms as the primary weapons in the 
armory of 1960s A1 researchers and to the establishment of problem solving as the canonical 
A1 task. Unfortunately, very little work was done on the automation of the problem formu- 
lation step. A more recent treatment of problem representation and abstraction, including 
A1 programs that themselves perform these tasks (in part), is in Knoblock (1990). 

The 8-puzzle is a smaller cousin of the 15-puzzle, which was invented by the famous 
American game designer Sam Loyd (1959) in the 1870s. The 15-puzzle quickly achieved 
immense popularity in the United States, comparable to the more recent sensation caused by 
Rubik's Cube. It also quickly attracted the attention of mathematicians (Johnson and Story, 
1879; Tait, 1880). The editors of the American Journal of Mathematics stated "The '15' 
puzzle for the last few weeks has been prominently before the American public, and may 
safely be said to have engaged the attention of nine out of ten persons of both sexes and all 
ages and conditions of the community. But this would not have weighed with the editors to 
induce them to insert articles upon such a subject in the American Journal ofMathematics, but 
for the fact that . . ." (there follows a summary of the mathematical interest of the 15-puzzle). 
An exhaustive analysis of the 8-puzzle was carried out with computer aid by Schofield (1967). 
Ratner and Warmuth (1986) showed that the general n x n version of the 15-puzzle belongs 
to the class of NP-complete problems. 

The 8-queens problem was first published anonymously in the German chess maga- 
zine Schach in 1848; it was later attributed to one Max Bezzel. It was republished in 1850 
and at that time drew the attention of the eminent mathematician Carl Friedrich Gauss, who 
attempted to enumerate all possible solutions, but found only 72. Nauck published all 92 
solutions later in 1850. Netto (1901) generalized the problem to n queens, and Abramson 
and Yung (1989) found an O ( n )  algorithm. 

Each of the real-world search problems listed in the chapter has been the subject of 
a good deal of research effort. Methods for selecting optimal airline flights remain propri- 
etary for the most part, but Carl de Marcken (personal communication) has shown that airline 
ticket pricing and restrictions have become so convoluted that the problem of selecting an 
optimal flight is formally undecidable. The traveling-salesperson problem is a standard com- 
binatorial problem in theoretical computer science (Lawler, 1985; Lawler et al., 1992). Karp 
(1972) proved the TSP to be NP-hard, but effective heuristic approximation methods were de- 
veloped (Lin and Kernighan, 1973). Arora (1998) devised a fully polynomial approximation 
scheme for Euclidean TSPs. VLSI layout methods are surveyed by Shahookar and Mazumder 
(1991), and many layout optimization papers appear in VLSI journals. Robotic navigation 
and assembly problems are discussed in Chapter 25. 
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Uninformed search algorithms for problem solving are a central topic of classical com- 
puter science (Horowitz and Sahni, 1978) and operations research (Dreyfus, 1969); Deo and 
Pang (1984) and Gallo and Pallottino (1988) give more recent surveys. Breadth-first search 
was formulated for solving mazes by Moore (1959). The method of dynamic program- 
ming (Bellman and Dreyfus, 1962), which systematically records solutions for all subprob- 
lems of increasing lengths, can be seen as a form of breadth-first search on graphs. The 
two-point shortest-path algorithm of Dijkstra (1959) is the origin of uniform-cost search. 

A version of iterative deepening designed to make efficient use of the chess clock was 
first used by Slate and Atkin (1977) in the CHESS 4.5 game-playing program, but the appli- 
cation to shortest path graph search is due to Korf (1985a). Bidirectional search, which was 
introduced by Pohl(1969, 1971), can also be very effective in some cases. 

Partially observable and nondeterministic environments have not been studied in great 
depth within the problem-solving approach. Some efficiency issues in belief-state search 
have been investigated by Genesereth and Nourbakhsh (1993). Koenig and Simmons (1998) 
studied robot navigation from an unknown initial position, and Erdmann and Mason (1988) 
studied the problem of robotic manipulation without sensors, using a continuou~s form of 
belief-state search. Contingency search has been studied within the planning subfield. (See 
Chapter 12.) For the most part, planning and acting with uncertain information have been 
handled using the tools of probability and decision theory (see Chapter 17). 

The textbooks by Nilsson (1971, 1980) are good general sources of information about 
classical search algorithms. A comprehensive and more up-to-date survey can be found 
in Korf (1988). Papers about new search algorithms-which, remarkably, continue to be 
discovered-appear in journals such as Artijicial Intelligence. 

3.1 Define in your own words the following terms: state, state space, search tree, search 
node, goal, action, successor function, and branching factor. 

3.2 Explain why problem formulation must follow goal formulation. 

3.3 Suppose that LEGAL-ACTIONS(~) denotes the set of actions that are legal in state s ,  
and  RESULT(^, s) denotes the state that results from performing a legal action a i~n state s. 
Define SUCCESSOR-FN in terms of LEGAL-ACTIONS and RESULT, and vice versa. 

3.4 Show that the 8-puzzle states are divided into two disjoint sets, such that n'o state in 
one set can be transformed into a state in the other set by any number of moves. (~Yint: See 
Berlekamp et al. (1982).) Devise a procedure that will tell you which class a given state is in, 
and explain why this is a good thing to have for generating random states. 

3.5 Consider the n-queens problem using the "efficient" incremental formulation given on 
page 67. Explain why the state space size is at least $'% and estimate the largest n for which 
exhaustive exploration is feasible. (Hint: Derive a lower bound on the branching factor by 
considering the maximum number of squares that a queen can attack in any column.) 
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3.6 Does a finite state space always lead to a finite search tree? How about a finite state 
space that is a tree? Can you be more precise about what types of state spaces always lead to 
finite search trees? (Adapted from Bender, 1996.) 

3.7 Give the initial state, goal test, successor function, and cost function for each of the 
following. Choose a formulation that is precise enough to be implemented. 

a. You have to color a planar map using only four colors, in such a way that no two 
adjacent regions have the same color. 

b. A 3-foot-tall monkey is in a room where some bananas are suspended from the 8-foot 
ceiling. He would like to get the bananas. The room contains two stackable, movable, 
climbable 3-foot-high crates. 

c. You have a program that outputs the message "illegal input record" when fed a certain 
file of input records. You know that processing of each record is independent of the 
other records. You want to discover what record is illegal. 

d. You have three jugs, measuring 12 gallons, 8 gallons, and 3 gallons, and a water faucet. 
You can fill the jugs up or empty them out from one to another or onto the ground. You 
need to measure out exactly one gallon. 

3.8 Consider a state space where the start state is number 1 and the successor function for 
state n returns two states, numbers 2n and 2n + 1. 

a. Draw the portion of the state space for states 1 to 15. 
b. Suppose the goal state is 11. List the order in which nodes will be visited for breadth- 

first search, depth-limited search with limit 3, and iterative deepening search. 

c. Would bidirectional search be appropriate for this problem? If so, describe in detail 
how it would work. 

d. What is the branching factor in each direction of the bidirectional search? 

e. Does the answer to (c) suggest a reformulation of the problem that would allow you to 
solve the problem of getting from state 1 to a given goal state with almost no search? 

/gasjEp 3.9 The missionaries and cannibals problem is usually stated as follows. Three mission- 
aries and three cannibals are on one side of a river, along with a boat that can hold one or two 
people. Find a way to get everyone to the other side, without ever leaving a group of rnis- 
sionaries in one place outnumbered by the cannibals in that place. This problem is famous in 
A1 because it was the subject of the first paper that approached problem formulation from an 
analytical viewpoint (Amarel, 1968). 

a. Formulate the problem precisely, making only those distinctions necessary to ensure a 
valid solution. Draw a diagram of the complete state space. 

b. Implement and solve the problem optimally using an appropriate search algorithm. Is it 
a good idea to check for repeated states? 

c. Why do you think people have a hard time solving this puzzle, given that the state space 
is so simple? 
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IgigigF 3.10 Implement two versions of the successor function for the 8-puzzle: one that generates 
all the successors at once by copying and editing the 8-puzzle data structure, and one that 
generates one new successor each time it is called and works by modifying the parent state 
directly (and undoing the modifications as needed). Write versions of iterative deepening 
depth-first search that use these functions and compare their performance. 

I-ggEp 3.11 On page 79, we mentioned iterative lengthening search, an iterative analog of uni- 
form cost search. The idea is to use increasing limits on path cost. If a node is generated 
whose path cost exceeds the current limit, it is immediately discarded. For each new itera- 
tion, the limit is set to the lowest path cost of any node discarded in the previous iteration. 

a. Show that this algorithm is optimal for general path costs. 
b. Consider a uniform tree with branching factor b, solution depth d, and unit step costs. 

How many iterations will iterative lengthening require? 
c. Now consider step costs drawn from the continuous range [ O , l ]  with a minimum posi- 

tive cost E .  How many iterations are required in the worst case? 
d. Implement the algorithm and apply it to instances of the 8-puzzle and traveling sales- 

person problems. Compare the algorithm's performance to that of uniform-cost search, 
and comment on your results. 

3.12 Prove that uniform-cost search and breadth-first search with constant step costs are 
optimal when used with the GRAPH-SEARCH algorithm. Show a state space with varying step 
costs in which GRAPH-SEARCH using iterative deepening finds a suboptimal solutj~on. 

3.13 Describe a state space in which iterative deepening search performs much worse than 
depth-first search (for example, O(n2) vs. O(n)) .  

\jfEiJEp 3.14 Write a program that will take as input two Web page URLs and find a path of links 
from one to the other. What is an appropriate search strategy? Is bidirectional search a good 
idea? Could a search engine be used to implement a predecessor function? 

= 3.15 Consider the problem of finding the shortest path between two points on a plane that 
has convex polygonal obstacles as shown in Figure 3.22. T h s  is an idealization of the problem 
that a robot has to solve to navigate its way around a crowded environment. 

a. Suppose the state space consists of all positions (x, y) in the plane. How many states 
are there? How many paths are there to the goal? 

b. Explain briefly why the shortest path from one polygon vertex to any other in the scene 
must consist of straight-line segments joining some of the vertices of the polygons. 
Define a good state space now. How large is this state space? 

c. Define the necessary functions to implement the search problem, including a successor 
function that takes a vertex as input and returns the set of vertices that can be reached in 
a straight line from the given vertex. (Do not forget the neighbors on the same polygon.) 
Use the straight-line distance for the heuristic function. 

d. Apply one or more of the algorithms in this chapter to solve a range of problems in the 
domain, and comment on their performance. 
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Figure 3.22 A scene with polygonal obstacles. 

3.16 We can turn the navigation problem in Exercise 3.15 into an environment as follows: 

The percept will be a list of the positions, relative to the agent, of the visible vertices. 
The percept does not include the position of the robot! The robot must learn its own po- 
sition from the map; for now, you can assume that each location has a different "view." 
Each action will be a vector describing a straight-line path to follow. If the path is 
unobstructed, the action succeeds; otherwise, the robot stops at the point where its path 
first intersects an obstacle. If the agent returns a zero motion vector and is at the goal 
(which is fixed and known), then the environment should teleport the agent to a random 
location (not inside an obstacle). 

a The performance measure charges the agent 1 point for each unit of distance traversed 
and awards 1000 points each time the goal is reached. 

a. Implement this environment and a problem-solving agent for it. The agent will need 
to formulate a new problem after each teleportation, which will involve discovering its 
current location. 

b. Document your agent's performance (by having the agent generate suitable commentary 
as it moves around) and report its performance over 100 episodes. 

c. Modify the environment so that 30% of the time the agent ends up at an unintended 
destination (chosen randomly from the other visible vertices if any, otherwise no move 
at all). This is a crude model of the motion errors of a real robot. Modify the agent 
so that when such an error is detected, it finds out where it is and then constructs a 
plan to get back to where it was and resume the old plan. Remember that sometimes 
getting back to where it was might also fail! Show an example of the agent successfully 
overcoming two successive motion errors and still reaching the goal. 

d. Now try two different recovery schemes after an error: (1) Head for the closest vertex 
on the original route; and (2) replan a route to the goal from the new location. Compare 
the performance of the three recovery schemes. Would the inclusion of search costs 
affect the comparison? 
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e. Now suppose that there are locations from which the view is identical. (For example, 
suppose the world is a grid with square obstacles.) What kind of problem does the agent 
now face? What do solutions look like? 

3.17 On page 62, we said that we would not consider problems with negative path costs. In 
this exercise, we explore this in more depth. 

a. Suppose that actions can have arbitrarily large negative costs; explain why this possi- 
bility would force any optimal algorithm to explore the entire state space. 

b. Does it help if we insist that step costs must be greater than or equal to some negative 
constant c? Consider both trees and graphs. 

c. Suppose that there is a set of operators that form a loop, so that executing the set in some 
order results in no net change to the state. If all of these operators have neg<ative cost, 
what does this imply about the optimal behavior for an agent in such an environment? 

d. One can easily imagine operators with high negative cost, even in domai~~s such as 
route finding. For example, some stretches of road might have such beautiful scenery 
as to far outweigh the normal costs in terms of time and fuel. Explain, in precise terms, 
within the context (of state-space search, why humans do not drive round scenic loops 
indefinitely, and explain how to define the state space and operators for route ,finding so 
that artificial agents can also avoid looping. 

e. Can you think of a real domain in which step costs are such as to cause looping? 

3.18 Consider the sensorless, two-location vacuum world under Murphy's Law. Draw the 
belief state space reachable from the initial belief state {1,2 ,3 ,4 ,5 ,6 ,7 ,8) ,  and explain why 
the problem is unsolvable. Show also that if the world is fully observable then .there is a 
solution sequence for each possible initial state. \--* 3.19 Consider the vacuum-world problem defined in Figure 2.2. 

a. Which of the algorithms defined in this chapter would be appropriate for this problem? 
Should the algorithm check for repeated states? 

b. Apply your chosen algorithm to compute an optimal sequence of actions for a 3 x 3 
world whose initial state has dirt in the three top squares and the agent in the center. 

c. Construct a search agent for the vacuum world, and evaluate its performance in a set of 
3 x 3 worlds with probability 0.2 of dirt in each square. Include the search co!;t as well 
as path cost in the performance measure, using a reasonable exchange rate. 

d. Compare your best search agent with a simple randomized reflex agent that sucks if 
there is dirt and otherwise moves randomly. 

e. Consider what would happen if the world were enlarged to n x n. How does the per- 
formance of the search agent and of the reflex agent vary with n? 



In which we see how information about the state space can prevent algorithms 
from blundering about in the dark. 

: 

Chapter 3 showed that uninformed search strategies can find solutions to problems by system- 
atically generating new states and testing them against the goal. Unfortunately, these strate- 
gies are incredibly inefficient in most cases. This chapter shows how an informed search 
strategy-one that uses problem-specific knowledge-can find solutions more efficiently. 
Section 4.1 describes informed versions of the algorithms in Chapter 3, and Section 4.2 ex- 
plains how the necessary problem-specific information can be obtained. Sections 4.3 and 4.4 
cover algorithms that perform purely local search in the state space, evaluating and modify- 
ing one or more current states rather than systematically exploring paths from an initial state. 
These algorithms are suitable for problems in which the path cost is irrelevant and all that 
matters is the solution state itself. The family of local-search algorithms includes methods 
inspired by statistical physics (simulated annealing) and evolutionary biology (genetic al- 
gorithms). Finally, Section 4.5 investigates online search, in which the agent is faced with a 
state space that is completely unknown. 

INFORMED SEARCH AND 4 EXPLORATION 

INFORMED SEARCH This section shows how an informed search strategy--one that uses problem-specific knowl- 
edge beyond the definition of the problem itself-can find solutions more efficiently than an 
uninformed strategy. 

BEST-FIRST SEARCH The general approach we will consider is called best-first search. Best-first search is 
an instance of the general TREE-SEARCH or GRAPH-SEARCH algorithm in which a node is 

EVALUATION 
FUNCTION selected for expansion based on an evaluation function, f (n) . Traditionally, the node with 

the lowest evaluation is selected for expansion, because the evaluation measures distance to 
the goal. Best-first search can be implemented within our general search framework via a 
priority queue, a data structure that will maintain the fringe in ascending order of f -values. 

The name "best-first search7' is a venerable but inaccurate one. After all, if we could 
really expand the best node first, it would not be a search at all; it would be a straight march to 
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the goal. All we can do is choose the node that appears to be best according to the evaluation 
function. If the evaluation function is exactly accurate, then this will indeed ble the best 
node; in reality, the evaluation function will sometimes be off, and can lead the search astray. 
Nevertheless, we will stick with the name "best-first search," because "seemingly-best-first 
search" is a little awkward. 

There is a whole family of BEST-FIRST-SEARCH algorithms with different evaluation 
HEURISTIC 
FUNCTION functions.' A key component of these algorithms is a heuristic f ~ n c t i o n , ~  denoted h(n):  

h(n) = estimated cost of the cheapest path from node n to a goal node. 

For example, in Romania, one might estimate the cost of the cheapest path from Arad to 
Bucharest via the straight-line distance from Arad to Bucharest. 

Heuristic functions are the most common form in which additional knowledge of the 
problem is imparted to the search algorithm. We will study heuristics in more depth in Sec- 
tion 4.2. For now, we will consider them to be arbitrary problem-specific functions, with one 
constraint: if n is a goal node, then h(n) = 0. The remainder of this section covers two ways 
to use heuristic information to guide search. 

Greedy best-first search 

Greedy best-first search3 tries to expand the node that is closest to the goal, on the: grounds SEARCH 

that this is likely to lead to a solution quickly. Thus, it evaluates nodes by using just the 
heuristic function: f ( n )  = h(n).  

Let us see how this works for route-finding problems in Romania, using the straight- 
line distance heuristic, which we will call hsLD. If the goal is Bucharest, we will need to DlSTANCli 

know the straight-line distances to Bucharest, which are shown in Figure 4.1. For example, 
hsLD(In(Arad)) = 366. Notice that the values of hsLD cannot be computed from the prob- 
lem description itself. Moreover, it takes a certain amount of experience to know that hSLD 
is correlated with actual road distances and is, therefore, a useful heuristic. 

Arad 366 Mehadia 24 1 
Bucharest 0 Neamt 234 
Craiova 160 Oradea 380 
Drobeta 242 Pitesti 100 
Eforie 161 Rimnicu Vilcea 193 
Fagaras 176 Sibiu 253 
Giurgiu 77 Timisoara 329 
Hirsova 151 Urziceni 80 
Iasi 226 Vaslui 199 
Lugoj 244 Zerind 374 

Figure 4.1 Values of ~SLD-straight-line distances to B u c h a r e s t .  

Exercise 4.3 asks you to show that this family includes several familiar uninformed algorithms. 
"heuristic function h(n) takes a node as input, but it depends only on the state at that node. 

Our first edition called this greedy search; other authors have called it best-first search. Our mare general 
usage of the latter tern follows Pearl (1984). 
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(a) The initial state 

(c) After expanding Sibiu 

d& <&$& 

(d) After expanding Fagaras 

253 0 

Figure 4.2 Stages in a greedy best-first search for Bucharest using the straight-line dis- 
tance heuristic hsto. Nodes are labeled with their h-values. 

Figure 4.2 shows the progress of a greedy best-first search using hsLD to find a path 
from Arad to Bucharest. The first node to be expanded from Arad will be Sibiu, because it 
is closer to Bucharest than either Zerind or Timisoara. The next node to be expanded will 
be Fagaras, because it is closest. Fagaras in turn generates Bucharest, which is the goal. 
For this particular problem, greedy best-first search using hsLD finds a solution without ever 
expanding a node that is not on the solution path; hence, its search cost is minimal. It is 
not optimal, however: the path via Sibiu and Fagaras to Bucharest is 32 kilometers longer 
than the path through Rimnicu Vilcea and Pitesti. This shows why the algorithm is called 
"greedy2'-at each step it tries to get as close to the goal as it can. 

Minimizing h(n) is susceptible to false starts. Consider the problem of getting from 
Iasi to Fagaras. The heuristic suggests that Neamt be expanded first, because it is closest 
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to Fagaras, but it is a dead end. The solution is to go first to Vaslui-a step that is actually 
farther from the goal according to the heuristic-and then to continue to Urziceni, Bucharest, 
and Fagaras. In this case, then, the heuristic causes unnecessary nodes to be expanded. Fur- 
thermore, if we are not careful to detect repeated states, the solution will never be found-the 
search will oscillate between Neamt and Iasi. 

Greedy best-first search resembles depth-first search in the way it prefers to follow a 
single path all the way to the goal, but will back up when it hits a dead end. It suffers from 
the same defects as depth-first search-it is not optimal, and it is incomplete (becixuse it can 
start down an infinite path and never return to try other possibilities). The worst-case time 
and space complexity is O(bm), where m is the maximum depth of the search space. With a 
good heuristic function, however, the complexity can be reduced substantially. Tlie amount 
of the reduction depends on the particular problem and on the quality of the heuristic. 

A* search: Minimizing the total estimated solution cost 

A* SEARCH The most widely-known form of best-first search is called A* search (pronounced "A-star 
search"). It evaluates nodes by combining g(n),  the cost to reach the node, and h(n.), the cost 
to get from the node to the goal: 

Since g(n) gives the path cost from the start node to node n ,  and h(n)  is the estirnated cost 
of the cheapest path from n to the goal, we have 

f (n) = estimated cost of the cheapest solution through n 

Thus, if we are trying to find the cheapest solution, a reasonable thing to try first is the 
node with the lowest value of g(n) + h(n) .  It turns out that this strategy is more than just 
reasonable: provided that the heuristic function h(n)  satisfies certain conditions, K search is 
both complete and optimal. 

The optimality of A* is straightforward to analyze if it is used with TREE-SEARCH. 
ADMISSIBLE 
HEURISTIC In this case, A* is optimal if h(n)  is an admissible heuristic-that is, provided that h(n)  

never overestimates the cost to reach the goal. Admissible heuristics are by nature optimistic, 
because they think the cost of solving the problem is less than it actually is. Since g(n) is the 
exact cost to reach n,  we have as immediate consequence that f ( n )  never overestimates the 
true cost of a solution through n. 

An obvious example of an admissible heuristic is the straight-line distance hsLD that 
we used in getting to Bucharest. Straight-line distance is admissible because the shortest path 
between any two points is a straight line, so the straight line cannot be an overestimate. In 
Figure 4.3, we show the progress of an A* tree search for Bucharest. The values of g are 
computed from the step costs in Figure 3.2, and the values of hsLD are given in Figure 4.1. 
Notice in particular that Bucharest first appears on the fringe at step (e), but it is noit selected 
for expansion because its f -cost (450) is higher than that of Pitesti (417). Another way to 
say this is that there might be a solution through Pitesti whose cost is as low as 417, so the 
algorithm will not settle for a solution that costs 450. From this example, we can extract 
a general proof that A* using TREE-SEARCH is optimal if h(n)  is admissible. Suppose a 
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(a) The initial state 
366=0+366 

(b) After expanding Arad 

393=140+253 

(c) After expanding Sibiu 

646=280+366 415=239+176 671=291+380 413=220+193 

(d) After expanding Rimnicu Vilce 

526=366+160 417=317+100 553=300+253 

(e) After expanding Fagaras 

591=338+253 450=450+0 526=366+160 417=317+100 553=300+253 

(f) After expanding Pitesti 

418=418+0 615=455+160 607=414+193 

Figure 4.3 Stages in an A* search for Bucharest. Nodes are labeled with f = g + h. The 
h values are the straight-line distances to Bucharest taken from Figure 4.1. 
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suboptimal goal node G2 appears on the fringe, and let the cost of the optimal soluti~on be C*. 
Then, because G2 is suboptimal and because h(G2) = 0 (true for any goal node), vie know 

f (G2) = g(G2) + h(G2) = g(G2) > C* . 
Now consider a fringe node n that is on an optimal solution path-for example, Pitesti in the 
example of the preceding paragraph. (There must always be such a node if a solution exists.) 
If h(n) does not overestimate the cost of completing the solution path, then we know that 

f (n)  = g(n) + h(n) 5 C* . 
Now we have shown that f (n)  5 C* < f (G2), so G2 will not be expanded anti A* must 
return an optimal solution. 

If we use the GRAPH-SEARCH algorithm of Figure 3.19 instead of TREE-SEARCH, 
then this proof breaks down. Suboptimal solutions can be returned because GRAPH-SEARCH 

can discard the optimal path to a repeated state if it is not the first one generated. (See 
Exercise 4.4.) There are two ways to fix this problem. The first solution is to extend 
GRAPH-SEARCH so that it discards the more expensive of any two paths found to the same 
node. (See the discussion in Section 3.5.) The extra bookkeeping is messy, but it does guar- 
antee optimality. The second solution is to ensure that the optimal path to any repeated state is 
always the first one followed-as is the case with uniform-cost search. This property holds if 

CONSISTENCY we impose an extra requirement on h(n), namely the requirement of consistency (also called 
MONOTONICIN monotonicity). A heuristic h(n) is consistent if, for every node n and every successor n' of 

n generated by any action a, the estimated cost of reaching the goal from n is no greater than 
the step cost of getting to n' plus the estimated cost of reaching the goal from n': 

h(n) 5 c(n, a, n') t h(nf) . 
TRlANGLli 
INEQUALIN This is a form of the general triangle inequality, which stipulates that each side of ;I triangle 

cannot be longer than the sum of the other two sides. Here, the triangle is formed by n, n', 
and the goal closest to n. It is fairly easy to show (Exercise 4.7) that every consistent heuristic 
is also admissible. The most important consequence of consistency is the following: A* using 
GRAPH-SEARCH is optimal $h(n) is consistent. 

Although consistency is a stricter requirement than admissibility, one has to wlork quite 
hard to concoct heuristics that are admissible but not consistent. All the admissible heuristics 
we discuss in this chapter are also consistent. Consider, for example, hsLD. We know that 
Ithe general triangle inequality is satisfied when each side is measured by the straight-line 
distance, and that the straight-line distance between n and n' is no greater than c(n,  a, n'). 
IHence, hsLD is a consistent heuristic. 

Another important consequence of consistency is the following: Zf h(n) is consistent, 
then the values off (n)  along any path are nondecueasing. The proof follows directly from 
the definition of consistency. Suppose n' is a successor of n; then g(n') = g(n) + c(n, a ,  n') 
for some a, and we have 

f ( n f )  = g(nf) + h(nf) = g(n) + c(n, a ,  n') + h(nf) 2 g(n) + h(n) = f (n)  . 
It follows that the sequence of nodes expanded by A* using GRAPH-SEARCH is in nonde- 
creasing order of f (n). Hence, the first goal node selected for expansion must be an optimal 
solution, since all later nodes will be at least as expensive. 
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Figure 4.4 Map of Romania showing contours at f = 380, f = 400 and f = 420, with 
Arad as the start state. Nodes inside a given contour have f -costs less than or equal to the 
contour value. 

The fact that f -costs are nondecreasing along any path also means that we can draw 
CONTOURS contours in the state space, just like the contours in a topographic map. Figure 4.4 shows an 

example. Inside the contour labeled 400, all nodes have f (n)  less than or equal to 400, and so 
on. Then, because A* expands the fringe node of lowest f -cost, we can see that an A* search 
fans out from the start node, adding nodes in concentric bands of increasing f -cost. 

With uniform-cost search (A* search using h(n) = O), the bands will be "circular" 
around the start state. With more accurate heuristics, the bands will stretch toward the goal 
state and become more narrowly focused around the optimal path. If C* is the cost of the 
optimal solution path, then we can say the following: 

A* expands all nodes with f (n) < C*. 
A* might then expand some of the nodes right on the "goal contour" (where f (n)  = C*) 
before selecting a goal node. 

Intuitively, it is obvious that the first solution found must be an optimal one, because goal 
nodes in all subsequent contours will have higher f -cost, and thus higher g-cost (because all 
goal nodes have h(n) = 0). Intuitively, it is also obvious that A* search is complete. As we 
add bands of increasing f ,  we must eventually reach a band where f is equal to the cost of 
the path to a goal state.4 

Notice that A* expands no nodes with f (n)  > C*-for example, Timisoara is not 
expanded in Figure 4.3 even though it is a child of the root. We say that the subtree below 

PRUNING Timisoara is pruned; because hsLD is admissible, the algorithm can safely ignore this subtree 

* Completeness requires that there be only finitely many nodes with cost less than or equal to C*, a condition 
that is true if all step costs exceed some finite t and if b is finite. 
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while still guaranteeing optimality. The concept of pruning-eliminating possibilities from 
consideration without having to examine them-is important for many areas of AI. 

One final observation is that among optimal algorithms of this type-algorithms that 
extend search paths from the root-A* is optimally efficient for any given heuristic function. 
That is, no other optimal algorithm is guaranteed to expand fewer nodes than A* (except 
possibly through tie-breaking among nodes with f (n) = C*). This is because any algorithm 
that does not expand all nodes with f (n) < C* runs the risk of missing the optimal solution. 

That A* search is complete, optimal, and optimally efficient among all such algorithms 
is rather satisfying. Unfortunately, it does not mean that A* is the answer to all our searching 
needs. The catch is that, for most problems, the number of nodes within the goal contour 
search space is still exponential in the length of the solution. Although the proof of the result 
is beyond the scope of this book, it has been shown that exponential growth will occur unless 
the error in the heuristic function grows no faster than the logarithm of the actual path cost. 
In mathematical notation, the condition for subexponential growth is that 

where h* (n) is the true cost of getting from n to the goal. For almost all heuristics in practical 
use, the error is at least proportional to the path cost, and the resulting exponential growth 
eventually overtakes any computer. For this reason, it is often impractical to insist on finding 
an optimal solution. One can use variants of A* that find suboptimal solutions quickly, or one 
can sometimes design heuristics that are more accurate, but not strictly admissible. In any 
case, the use of a good heuristic still provides enormolus savings compared to the use of an 
uninformed search. In Section 4.2, we will look at the question of designing good heuristics. 

Computation time is not, however, A*'s main drawback. Because it keeps all generated 
nodes in memory (as do all GRAPH-SEARCH algorithms), A* usually runs out of space long 
before it runs out of time. For this reason, A* is not practical for many large-scale prob- 
lems. Recently developed algorithms have overcome the space problem without sacrificing 
optimality or completeness, at a small cost in execution time. These are discussed next. 

Memory-bounded heuristic search 

The simples1 way to reduce memory requirements for A" is to adapt the idea of iterative deep- 
ening to the heuristic search context, resulting in the iterative-deepening A" (IDA*) algorithm. 
The main difference between IDA* and standard iterative deepening is that the cutoff used 
is the f -cost (g + h) rather than the depth; at each iteration, the cutoff value is the small- 
est f -cost of any node that exceeded the cutoff on the previous iteration. IDA* is practical 
for many problems with unit step costs and avoids the substantial overhead associated with 
keeping a sorted queue of nodes. Unfortunately, it suffers from the same difficulties with real- 
valued costs as does the iterative version of uniform-cost search described in Exercise 3.11. 
This section briefly examines two more recent memory-bounded algorithms, called RBFS 
and MA*. 

RECURSIVE 
BEST-FIRST SEARCH Recursive best-first search (RBFS) is a simple recursive algorithm that attempts to 

mimic the operation of standard best-first search, but using only linear space. The algorithm is 
shown in Figure 4.5. Its structure is similar to that of a recursive depth-first search, but rather 
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function RECURSIVE-BE~T-FIR~T-SEARCH(~~O~~~~) returns a solution, or failure 
RBFS(problem, MAKE-NoDE(INITIAL-STATE[~~O~~~~]), oo) 

function RBFS(problem, node, f-limit) returns a solution, or failure and a new f -cost limit 
if GoAL-TEsT[~~o~~~~](STATE[~O~~]) then return node 
successors +- E X P A N D ( ~ O ~ ~ ,  problem) ' if successors is empty then return failure, oo 
for each s in successors do 

f [sl +max(g(s )  + h(s ) ,  f [nodel) 
repeat 

best +the lowest f -value node in successors 
i f f  [best] > f-limit then return failure, f [best] 
alternative +- the second-lowest f -value among successors 
result, f [best] + RBFS(problem, best,min( f-limit, alternative)) 
if result # failure then return result 

Figure 4.5 The algorithm for recursive best-first search. 1 
than continuing indefinitely down the current path, it keeps track of the f-value of the best 
alternative path available from any ancestor of the current node. If the current node exceeds 
this limit, the recursion unwinds back to the alternative path. As the recursion unwinds, RBFS 
replaces the f -value of each node along the path with the best f -value of its children. In this 
way, RBFS remembers the f -value of the best leaf in the forgotten subtree and can therefore 
decide whether it's worth reexpanding the subtree at some later time. Figure 4.6 shows how 
RBFS reaches Bucharest. 

RBFS is somewhat more efficient than IDA*, but still suffers from excessive node re- 
generation. In the example in Figure 4.6, RBFS first follows the path via Rimnicu Vilcea, 
then "changes its mind" and tries Fagaras, and then changes its mind back again. These mind 
changes occur because every time the current best path is extended, there is a good chance 
that its f -value will increase-h is usually less optimistic for nodes closer to the goal. When 
this happens, particularly in large search spaces, the second-best path might become the best 
path, so the search has to backtrack to follow it. Each mind change corresponds to an iteration 
of IDA*, and could require many reexpansions of forgotten nodes to recreate the best path and 
extend it one more node. 

Like A*, RBFS is an optimal algorithm if the heuristic function h(n) is admissible. Its 
space complexity is linear in the depth of the deepest optimal solution, but its time complexity 
is rather difficult to characterize: it depends both on the accuracy of the heuristic function and 
on how often the best path changes as nodes are expanded. Both IDA* and RBFS are subject to 
the potentially exponential increase in complexity associated with searching on graphs (see 
Section 3.5), because they cannot check for repeated states other than those on the current 
path. Thus, they may explore the same state many times. 

IDA* and RBFS suffer from using too little memory. Between iterations, IDA* retains 
only a single number: the current f -cost limit. RBFS retains more information in memory, 
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MA' 

SMA' 

(a) After expanding Arad, Sibiu, 
and Rimnicu Vilcea 

(a) After expandi 
and Rimnicu Vilcea 

(b) After unwinding back to Sibiu 
and expanding Fagaras 

(c) After switching back to Rimnicu Vilcea 
and expanding Pitesti 

9 

(c) After switching back to Rimnicu Vilcea 
and expanding Pitesti 

Figure 4.6 Stages in an RBFS search for the shortest route to Bucharest. The f-limit 
value for each recursive call is shown on top of each current node. (a) The path via Rimnicu 
Vilcea is followed until the current best leaf (Pitesti) has a value that is worse than the best 
alternative path (Fagaras). (b) The recursion unwinds and the best leaf value of the forgotten 
subtree (417) is backed up to Rimnicu Vilcea; then Fagaras is expanded, revealing a best 
leaf value of 450. (c) The recursion unwinds and the best leaf value of the forgotten subtree 
(450) is backed up to Fagaras; then Rirnnicu Vilcea is expanded. This time, because the best 
alternative path (through Timisoara) costs at least 447, the expansion continues to Bucharest. 

J 

but it uses only linear space: even if more memory were available, RBFS has no way to make 
use of it. 

It seems sensible, therefore, to use all available memory. Two algorithms that do this 
are MA* (memory-bounded A*) and SMA* (simplified MA*). We will describe SMA*, which 
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is-well-simpler. SMA* proceeds just like A*, expanding the best leaf until memory is full. 
At this point, it cannot add a new node to the search tree without dropping an old one. SMA* 
always drops the worst leaf node-the one with the highest f-value. Like RBFS, SMA* 
then backs up the value of the forgotten node to its parent. In this way, the ancestor of a 
forgotten subtree knows the quality of the best path in that subtree. With this information, 
SMA* regenerates the subtree only when all otherpaths have been shown to look worse than 
the path it has forgotten. Another way of saying this is that, if all the descendants of a node n 
are forgotten, then we will not know which way to go from n, but we will still have an idea 
of how worthwhile it is to go anywhere from n. 

The complete algorithm is too complicated to reproduce here,5 but there is one subtlety 
worth mentioning. We said that SMA* expands the best leaf and deletes the worst leaf. What 
if all the leaf nodes have the same f -value? Then the algorithm might select the same node 
for deletion and expansion. SMA* solves this problem by expanding the newest best leaf and 
deleting the oldest worst leaf. These can be the same node only if there is only one leaf; in that 
case, the current search tree must be a single path from root to leaf that fills all of memory. 
If the leaf is not a goal node, then even if it is on an optimal solution path, that solution is 
not reachable with the available memory. Therefore, the node can be discarded exactly as if 
it had no successors. 

SMA* is complete if there is any reachable solution-that is, if d, the depth of the 
shallowest goal node, is less than the memory size (expressed in nodes). It is optimal if any 
optimal solution is reachable; otherwise it returns the best reachable solution. In practical 
terms, SMA* might well be the best general-purpose algorithm for finding optimal solutions, 
particularly when the state space is a graph, step costs are not uniform, and node generation 
is expensive compared to the additional overhead of maintaining the open and closed lists. 

On very hard problems, however, it will often be the case that SMA* is forced to switch 
back and forth continually between a set of candidate solution paths, only a small subset of 

THRASHING which can fit in memory. (This resembles the problem of thrashing in disk paging systems.) 
Then the extra time required for repeated regeneration of the same nodes means that problems 
that would be practically solvable by A*, given unlimited memory, become intractable for 
SMA*. That is to say, memory limitations can make a problem intractable from the point of 
view of computation time. Although there is no theory to explain the tradeoff between time 
and memory, it seems that this is an inescapable problem. The only way out is to drop the 
optimality requirement. 

Learning to search better 

We have presented several fixed strategies-breadth-first, greedy best-first, and so on-that 
have been designed by computer scientists. Could an agent learn how to search better? The 
answer is yes, and the method rests on an important concept called the metalevel state space. SPACE 

Each state in a metalevel state space captures the internal (computational) state of a program 
STATE that is searching in an object-level state space such as Romania. For example, the internal SPACE 

state of the A* algorithm consists of the current search tree. Each action in the metalevel state 

A rough sketch appeared in the first edition of this book. 
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space is a computation step that alters the internal state; for example, each computation step 
in A* expands a leaf node and adds its successors to the tree. Thus, Figure 4.3, which shows 
a sequence of larger and larger search trees, can be seten as depicting a path in the metalevel 
state space where each state on the path is an object-level search tree. 

Now, the path in Figure 4.3 has five steps, including one step, the expansion of Fagaras, 
that is not especially helpful. For harder problems, th~ere will be many such missteps, and a 
metalevel learning algorithm can learn from these experiences to avoid exploring unpromis- 
ing subtrees. The techniques used for this kind of learning are described in Chapter 21. The 
goal of leaning is to minimize the total cost of problem solving, trading off computational 
expense and path cost. 

In this section, we will look at heuristics for the 8-puzzle, in order to shed light on the nature 
of heuristics in general. 

The 8-puzzle was one of the earliest heuristic search problems. As mentioned in Sec- 
tion 3.2, the object of the puzzle is to slide the tiles horizontally or vertically into the empty 
space until the configuration matches the goal configuration (Figure 4.7). 

Start State Goal State 

Figure 4.7 A typical instance of the 8-puzzle. The s~olution p- is 26 steps long. 

The average solution cost for a randomly generated %-puzzle instance is about 22 steps. 
The branching factor is about 3. (When the empty tile is in the middle, there are four possible 
moves; when it is in a corner there are two; and when it is along an edge there are three.) This 
means that an exhaustive search to depth 22 would look at about 322 = 3.1 x lo1' states. By 
keeping track of repeated states, we could cut this down by a factor of about 170,000, because 
there are only 9!/2 = 181,440 distinct states that are reachable. (See Exercise 3.4.) This is 
a manageable number, but the corresponding number for the 15-puzzle is roughly 1013, so 
the next order of business is to find a good heuristic function. If we want to find the shortest 
solutions by using #, we need a heuristic function that never overestimates the number of 
steps to the goal. There is a long history of such heuristics for the 15-puzzle; here are two 
commonly-used candidates: 
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MANHATTAN 
DISTANCE 

hl = the number of misplaced tiles. For Figure 4.7, all of the eight tiles are out of 
position, so the start state would have hl = 8. hl is an admissible heuristic, because it 
is clear that any tile that is out of place must be moved at least once. 

h2 = the sum of the distances of the tiles from their goal positions. Because tiles 
cannot move along diagonals, the distance we will count is the sum of the horizontal 
and vertical distances. This is sometimes called the city block distance or Manhattan 
distance. h2 is also admissible, because all any move can do is move one tile one step 
closer to the goal. Tiles 1 to 8 in the start state give a Manhattan distance of 

h 2 = 3 + l + 2 + 2 + 2 + 3 + 3 + 2 = 1 8 .  

As we would hope, neither of these overestimates the true solution cost, which is 26. 

The effect of heuristic accuracy on performance 
EFFECTIVE FACTOR One way to characterize the quality of a heuristic is the effective branching factor b*. If the 

total number of nodes generated by A* for a particular problem is N, and the solution depth 
is d, then b* is the branching factor that a uniform tree of depth d would have to have in order 
to contain N + 1  nodes. Thus, 

N + 1  = 1 + b* + (b*)2 + . . . + ( b * ) d .  

For example, if A* finds a solution at depth 5 using 52 nodes, then the effective branching 
factor is 1.92. The effective branching factor can vary across problem instances, but usually 
it is fairly constant for sufficiently hard problems. Therefore, experimental measurements of 
b* on a small set of problems can provide a good guide to the heuristic's overall usefulness. 
A well-designed heuristic would have a value of b* close to 1, allowing fairly large problems 
to be solved. 

To test the heuristic functions hl and ha, we generated 1200 random problems with 
solution lengths from 2 to 24 (100 for each even number) and solved them with iterative 
deepening search and with A* tree search using both hl and h2. Figure 4.8 gives the average 
number of nodes generated by each strategy and the effective branching factor. The results 
suggest that h2 is better than hl,  and is far better than using iterative deepening search. On our 
solutions with length 14, A* with hz is 30,000 times more efficient than uninformed iterative 
deepening search. 

One might ask whether h2 is always better than hl. The answer is yes. It is easy to see 
from the definitions of the two heuristics that, for any node n, h2(n)  2 hl (n). We thus say 

DOMINATION that hZ dominates hl. Domination translates directly into efficiency: A* using h2 will never 
expand more nodes than A* using hl (except possibly for some nodes with f (n) = C*). The 
argument is simple. Recall the observation on page 100 that every node with f (n) < C* will 
surely be expanded. This is the same as saying that every node with h(n) < C* - g(n) will 
surely be expanded. But because ha is at least as big as hl for all nodes, every node that is 
surely expanded by A* search with ha will also surely be expanded with hl, and hl might 
also cause other nodes to be expanded as well. Hence, it is always better to use a heuristic 
function with higher values, provided it does not overestimate and that the computation time 
for the heuristic is not too large. 
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Inventing admissible heuristic functions 

d 

2 
4 
6 
8 

10 
12 
14 

We have seen that both hl (misplaced tiles) and 1~~ (Manhattan distance) are fairly good 
heuristics for the 8-puzzle and that hz is better. How might one have come up with h2? Is it 
possible for a computer to invent such a heuristic mechanically? 

hl and hz are estimates of the remaining path length[ for the 8-puzzle, but they are 
also perfectly accurate path lengths for simpl.$ed versions of the puzzle. If the rules of the 
puzzle were changed so that a tile could move anywhere, instead of just to the adjacent empty 
square, then hl would give the exact number of steps in the shortest solution. Similarly, if 
a tile could move one square in any direction, even onto an occupied square, then h2 would 
give the exact number of steps in the shortest solution. A pro~blem with fewer restrictions on 

RELAXED PROBLEM the actions is called a relaxed problem. The cost of an optimal solution to a relaxedproblem 
is an admissible heuristic for the original problem. The heuristic is admissible because 
the optimal solution in the original problem is, by defj~nition, also a solution in the relaxed 
problem and therefore must be at least as expensive as the optimal solution in the relaxed 
problem. Because the derived heuristic is an exact cost for the relaxed problem, it must obey 
the triangle inequality and is therefore consistent (see page 99). 

If a problem definition is written down in a formal1 language, it is possible to construct 
relaxed problems a~tornat ical l~ .~  For example, if the 8-puzzle actions are described as 

A tile can move from square A to square B if 
A is horizontally or vertically adjacent to B an(d B is blank, 

In Chapters 8 and 11, we will describe formal languages suitable for this task; with formal descriptions that 
can be manipulated, the construction of relaxed problems can be automated. For now, we will use English. 

Search Cost 

1 ;;:: 1 ;:: 1 ,I - 7276 676 
18094 1219 - 

- 39135 1641 - 

IDS 

10 
112 
680 

6384 
47127 

3644035 
- 

Effective Branching Factor 

Figure 4.8 Comparison of the search costs and effective branching factors for the 
ITERATI VE-DEEPENING-SEARCH and A* algorithms ,with hl , h2. Data are averaged over 
100 instances of the &puzzle, for various solution lengths. 
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we can generate three relaxed problems by removing one or both of the conditions: 

(a) A tile can move from square A to square B if A is adjacent to B. 
(b) A tile can move from square A to square B if B is blank. 
(c) A tile can move from square A to square B. 

From (a), we can derive hz (Manhattan distance). The reasoning is that h2 would be the 
proper score if we moved each tile in turn to its destination. The heuristic derived from (b) is 
discussed in Exercise 4.9. From (c), we can derive hl (misplaced tiles), because it would be 
the proper score if tiles could move to their intended destination in one step. Notice that it is 
crucial that the relaxed problems generated by this technique can be solved essentially without 
search, because the relaxed rules allow the problem to be decomposed into eight independent 
subproblems. If the relaxed problem is hard to solve, then the values of the corresponding 
heuristic will be expensive to ~ b t a i n . ~  

A program called ABSOLVER can generate heuristics automatically from problem def- 
initions, using the "relaxed problem" method and various other techniques (Prieditis, 1993). 
ABSOLVER generated a new heuristic for the 8-puzzle better than any preexisting heuristic 
and found the first useful heuristic for the famous Rubik's cube puzzle. 

One problem with generating new heuristic functions is that one often fails to get one 
"clearly best" heuristic. If a collection of admissible heuristics hl . . . h, is available for a 
problem, and none of them dominates any of the others, which should we choose? As it turns 
out, we need not make a choice. We can have the best of all worlds, by defining 

h(n) = max{hl (n),  . . . , h,(n) ) . 

This composite heuristic uses whichever function is most accurate on the node in question. 
Because the component heuristics are admissible, h is admissible; it is also easy to prove that 
h is consistent. Furthermore, h dominates all of its component heuristics. 

SUBPROBLEM Admissible heuristics can also be derived from the solution cost of a subproblem of 
a given problem. For example, Figure 4.9 shows a subproblem of the 8-puzzle instance 
in Figure 4.7. The subproblem involves getting tiles 1, 2, 3, 4 into their correct positions. 
Clearly, the cost of the optimal solution of this subproblem is a lower bound on the cost of 
the complete problem. It turns out to be substantially more accurate than Manhattan distance 
in some cases. 

PAUERN DATABASES The idea behind pattern databases is to store these exact solution costs for every pos- 
sible subproblem instance-in our example, every possible configuration of the four tiles and 
the blank. (Notice that the locations of the other four tiles are irrelevant for the purposes of 
solving the subproblem, but moves of those tiles do count towards the cost.) Then, we com- 
pute an admissible heuristic hDB for each complete state encountered during a search simply 
by looking up the corresponding subproblem configuration in the database. The database 
itself is constructed by searching backwards froin the goal state and recording the cost of 
each new pattern encountered; the expense of this search is amortized over many subsequent 
problem instances. 

Note that a perfect heuristic can be obtained simply by allowing h to run a full breadth-first search "on the 
sly." Thus, there is a tradeoff between accuracy and computation time for heuristic functions. 
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Start State Goal State 

Figure 4.9 A subproblem of the 8-puzzle instance given in Figure 4.7. The task is to get 
tiles 1, 2, 3, and 4 into their correct positions, without worrying about what happens to the 
other tiles. 

The choice of 1-2-3-4 is fairly arbitrary; we could also construct databases for 5-6-7-8, 
and for 2-4-64, and so on. Each database yields an admissible heuristic, and these heuristics 
can be combined, as explained earlier, by taking the maximum value. A combined heuristic of 
this lund is much more accurate than the Manhattan distance; the number of nodes generated 
when solving random 15-puzzles can be reduced by a factor of 1000. 

One might wonder whether the heuristics obtained from the 1-2-3-4 database and the 
5-6-7-8 could be added, since the two subproblems seem not to overlap. Would this still give 
an admissible heuristic? The answer is no, because the solutions of the 1-2-3-4 subproblem 
and the 5-6-7-8 subproblem for a given state will almost certainly share some moves-it is 
unlikely that 1-2-3-4 can be moved into place without touching 5-6-7-8, and vice versa. But 
what if we don't count those moves? That is, we record niot the total cost of solving the 
1-2-3-4 subproblem, but just the number of moves involving 1-2-3-4. Then it is easy to see 
that the sum of the two costs is still a lower bound on the cost of solving the entire problem. 
This is the idea behind disjoint pattern databases. Using such databases, it is possible to DATABASES 

solve random 15-puzzles in a few milliseconds-the numbes of nodes generated is reduced 
by a factor of 10,000 compared with using Manhattan distance. For 24-puzzles, a speedup of 
roughly a million can be obtained. 

Disjoint pattern databases work for sliding-tile ]puzzles because the problem can be 
divided up in such a way that each move affects only onie subproblem-because only one tile 
is moved at a time. For a problem such as Rubik's cube, this kind of subdivision cannot be 
done because each move affects 8 or 9 of the 26 cubies. Currently, it is not clear how to define 
disjoint databases for such problems. 

Learning heuristics from experience 

A heuristic function h(n) is supposed to estimate the cost of a solution beginning from the 
state at node n. How could an agent construct such a function? One solution was given in the 
preceding section-namely, to devise relaxed problems for which an optimal solution can be 
found easily. Another solution is to learn from experience. "E.xperience" here means solving 
lots of 8-puzzles, for instance. Each optimal solution to an 8-puzzle problem provides ex- 
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amples from which h(n) can be learned. Each example consists of a state from the solution 
path and the actual cost of the solution from that point. From these examples, an inductive 
learning algorithm can be used to construct a function h(n) that can (with luck) predict solu- 
tion costs for other states that arise during search. Techniques for doing just this using neural 
nets, decision trees, and other methods are demonstrated in Chapter 18. (The reinforcement 
learning methods described in Chapter 21 are also applicable.) 

FEATURES Inductive learning methods work best when supplied with features of a state that are 
relevant to its evaluation, rather than with just the raw state description. For example, the 
feature "number of misplaced tiles" might be helpful in predicting the actual distance of a 
state from the goal. Let's call this feature XI (n). We could take 100 randomly generated 
8-puzzle configurations and gather statistics on their actual solution costs. We might find that 
when XI (n) is 5, the average solution cost is around 14, and so on. Given these data, the 
value of XI can be used to predict h(n). Of course, we can use several features. A second 
feature xz(n) might be "number of pairs of adjacent tiles that are also adjacent in the goal 
state." How should XI (n) and xa(n) be combined to predict h(n)? A common approach is 
to use a linear combination: 

h(n) = clx~(n) + c2x~(n) . 

The constants cl and ca are adjusted to give the best fit to the actual data on solution costs. 
Presumably, cl should be positive and c2 should be negative. 

4.3 LOCAL SEARCH ALGORITHMS AND OPTIMIZATION PROBLEMS 

The search algorithms that we have seen so far are designed to explore search spaces sys- 
tematically. This systematicity is achieved by keeping one or more paths in memory and by 
recording which alternatives have been explored at each point along the path and which have 
not. When a goal is found, the path to that goal also constitutes a solution to the problem. 

In many problems, however, the path to the goal is irrelevant. For example, in the 8- 
queens problem (see page 66), what matters is the final configuration of queens, not the order 
in which they are added. This class of problems includes many important applications such as 
integrated-circuit design, factory-floor layout, job-shop scheduling, automatic programming, 
telecommunications network optimization, vehicle routing, and portfolio management. 

If the path to the goal does not matter, we might consider a different class of algo- 
LOCALSEARCH rithms, ones that do not worry about paths at all. Local search algorithms operate using 
CURRENTSTATE a single current state (rather than multiple paths) and generally move only to neighbors 

of that state. Typically, the paths followed by the search are not retained. Although local 
search algorithms are not systematic, they have two key advantages: (1) they use very little 
memory-usually a constant amount; and (2) they can often find reasonable solutions in large 
or infinite (continuous) state spaces for which systematic algorithms are unsuitable. 

In addition to finding goals, local search algorithms are useful for solving pure op- 
OPTIMIZATION 
PROBLEMS timization problems, in which the aim is to find the best state according to an objective 
OBJECTIVE 
FUNCTION function. Many optimization problems do not fit the "standard" search mode1 introduced in 
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Chapter 3. For example, nature provides an objectiv~e function-reproductive fitness-that 
Darwinian evolution could be seen as attempting to optimize, but there is no "goal test" and 
no "path cost" for this problem. 

To understand local search, we will find it very useful to consider the state space land- 
STATE SPACE 
LANDSCAPE scape (as in Figure 4.10). A landscape has both "localtion" (defined by the state) and "eleva- 

tion" (defined by the value of the heuristic cost function or objective function). If elevation 
GLOBALMINIMUM corresponds to cost, then the aim is to find the lowest valley-a global minimum; if eleva- 

tion corresponds to an objective function, then the aim is to find the highest peak-a global 
GLOBALMAXIMUM maximum,. (You can convert from one to the other just by inserting a minus sign.) Local 

search algorithms explore this landscape. A complete, local search algorithm always finds a 
goal if one exists; an optimal algorithm always finds a, global minimum/maximum. 

maximum 

I I b state space 
current 

state 

Figure 4.10 A one-dimensional state space landscape in which elevation corresponds to 
the objective function. The aim is to find the global maximum. Hill-climbing search modifies 

I the current state to try to improve it, as shown by the an-ow. The various topographic features 
are defined in the text. 

Hill-climbing search 

HILL-CLIMBING The hill-climbing search algorithm is shown in Figure 4.1 1. It is simply a loop that continu- 
ally moves in the direction of increasing value-that is, uphill. It terminates when it reaches a 
"peak" where no neighbor has a higher value. The algorithm does not maintain a search tree, 
so the current node data structure need only record the state and its objective function value. 
Hill-climbing does not look ahead beyond the immediate neighbors of the current state. This 
resembles trying to find the top of Mount Everest in a thick fog while suffering from amnesia. 

To illustrate hill-climbing, we will use the 8-queens problem introduced on page 66. 
Local-search algorithms typically use a complete-state formulation, where each state has 
8 queens on the board, one per column. The successor function returns all possible states 
generated by moving a single queen to another square in the same column (so each state has 



112 Chapter 4. Informed Search and Exploration 

function H I L L - C L I M B I N G ( ~ ~ ~ ~ ~ ~ ~ )  returns a state that is a local maximum 
inputs: problem, a problem 
local variables: current, a node 

neighbor, a node 

current +- MAKE-NODE(INITIAL-STATE[~~O~~~~]) 
loop do 

neighbor +- a highest-valued successor of curren.t 
if VA~uE[neighbor] < VALUE[current] then return S ~ ~ ~ ~ [ c u r r e n t ]  
current t neighbor 

Figure 4.11 The hill-climbing search algorithm (steepest ascent version), which is the 
most basic local search technique. At each step the current node is replaced by the best 
neighbor; in this version, that means the neighbor with the highest VALUE, but if a heuristic 
cost estimate h is used, we would find the neighbor with the lowest h. 

(a) (b) 

Figure 4.12 (a) An 8-queens state with heuristic cost estimate h = 17, showing the value 
of h for each possible successor obtained by moving a queen within its column. The best 
moves are marked. (b) A local minimum in the 8-queens state space; the state has h = 1 but 
every successor has a higher cost. 

8 x 7 = 56 successors). The heuristic cost function h is the number of pairs of queens that 
are attacking each other, either directly or indirectly. The global minimum of this function 
is zero, which occurs only at perfect solutions. Figure 4.12(a) shows a state with h = 17. 
The figure also shows the values of all its successors, with the best successors having h = 12. 
Hill-climbing algorithms typically choose randomly among the set of best successors, if there 
is more than one. 
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GREEDY LOCAL 
SEARCH Hill climbing is sometimes called greedy local s'earch because it grabs a good neighbor 

state without thinking ahead about where to go next. Althou~gh greed is considered one of the 
seven deadly sins, it turns out that greedy algorithms often perform quite well. Hill climbing 
often makes very rapid progress towards a solution, be'cause it is usually quite easy to improve 
a bad state. For example, from the state in Figure 4.12(a), it takes just five steps to reach the 
state in Figure 4.12(b), which has h = 1 and is very nearly a solution. Unfortunately, hill 
climbing often gets stuck for the following reasons: 

SHOULDER 

0 Local maxima: a local maximum is a peak that is higher than each of its neighboring 
states, but lower than the global maximum. H[ill-climbing algorithms that reach the 
vicinity of a local maximum will be drawn upwards towards the peak, but will then be 
stuck with nowhere else to go. Figure 4.10 illusfrates the problem schematically. More 
concretely, the state in Figure 4.12(b) is in fact a local maximum (i.e., a local minimum 
for the cost h); every move of a single queen makes the situation worse. 

0 Ridges: a ridge is shown in Figure 4.13. Ridges result in a sequence of local maxima 
that is very difficult for greedy algorithms to navigate. 

0 Plateaux: a plateau is an area of the state space landscape where the evaluation function 
is flat. It can be a flat local maximum, from which no uphill exit exists, or a shoulder, 
from which it is possible to make progress. (See Figure 4.10.) A hill-climbing search 
might be unable to find its way off the plateau. 

In each case, the algorithm reaches a point at which no progress is being made. Starting from 
a randomly generated %queens state, steepest-ascent hill climbing gets stuck 86% of the time, 
solving only 14% of problem instances. It works quickly, taking just 4 steps on average when 
it succeeds and 3 when it gets stuck-not bad for a state space with 88 "N 17 million states. 

The algorithm in Figure 4.11 halts if it reaches a plateau where the best successor has 
the same value as the current state. Might it not be a good idea to keep going-to allow a 

SIDEWAYSMOVE sideways move in the hope that the plateau is really a shoulder, as shown in Figure 4. lo? The 
answer is usually yes, but we must take care. If we always allow sideways moves when there 
are no uphill moves, an infinite loop will occur whenlever the algorithm reaches a flat local 
maximum that is not a shoulder. One common solution is to put a limit on the number of con- 
secutive sidleways moves allowed. For example, we could allow up to, say, 100 consecutive 
sideways moves in the %queens problem. This raises the percentage of problem instances 
solved by hill-climbing from 14% to 94%. Success comes at a cost: the algorithm averages 
roughly 21 steps for each successful instance and 64 for each failure. 

STOCHASTIC HILL 
CLIMBING Many variants of hill-climbing have been invented. Stochastic hill climbing chooses at 

random from among the uphill moves; the probability of selection can vary with the steepness 
of the uphK1 move. This usually converges more slowly than steepest ascent, but in some 

FIRS~CHOIcEH'LL CLIMBING state landscapes it finds better solutions. First-choice hill climbing implements stochastic 
hill climbing by generating successors randomly until one is generated that is better than the 
current state. This is a good strategy when a state has many (e.g., thousands) of successors. 
Exercise 4.16 asks you to investigate. 

The hill-climbing algorithms described so far are incomplete-they often fail to find 
a goal when one exists because they can get stuck on local maxima. Random-restart hill 
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Figure 4.13 Illustration of why ridges cause difficulties for hill-climbing. The grid of 
states (dark circles) is superimposed on a ridge rising from left to right, creating a sequence 
of local maxima that are not directly connected to each other. From each local maximum, all 
the available actions point downhill. 

climbing adopts the well known adage, "If at first you don't succeed, try, try again." It 
conducts a series of hill-climbing searches from randomly generated initial  state^,^ stopping 
when a goal is found. It is complete with probability approaching 1, for the trivial reason that 
it will eventually generate a goal state as the initial state. If each hill-climbing search has a 
probability p of success, then the expected number of restarts required is l i p .  For 8-queens 
instances with no sideways moves allowed, p x 0.14, so we need roughly 7 iterations to find 
a goal (6 failures and 1 success). The expected number of steps is the cost of one successful 
iteration plus ( 1  -p ) /p  times the cost of failure, or roughly 22 steps. When we allow sideways 
moves, 1i0.94 % 1.06 iterations are needed on average and ( 1  x 21)+(0.06/0.94) x 64 x 25 
steps. For 8-queens, then, random-restart hill climbing is very effective indeed. Even for three 
million queens, the approach can find solutions in under a m i n ~ t e . ~  

The success of hill climbing depends very much on the shape of the state-space land- 
scape: if there are few local maxima and plateaux, random-restart hill climbing will find a 
good solution very quickly. On the other hand, many real problems have a landscape that 
looks more like a family of porcupines on a flat floor, with miniature porcupines living on the 
tip of each porcupine needle, ad injinitum. NP-hard problems typically have an exponential 
number of local maxima to get stuck on. Despite this, a reasonably good local maximum can 
often be found after a small number of restarts. 

Generating a random state from an implicitly specified state space can be a hard problem in itself. 
Luby et al. (1993) prove that it is best, in some cases, to restart a randomized search algorithm after a particular, 

fixed amount of time and that this can be much more efficient than letting each search continue indefinitely. 
Disallowing or limiting the number of sideways moves is an example of this. 
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Simulated annealing search 

A hill-climbing algorithm that never makes "downhill" moves towards states with lower value 
(or higher cost) is guaranteed to be incomplete, because it can get stuck on a local maximum. 
In contrast, a purely random walk-that is, moving to a successor chosen uniformly at ran- 
dom from the set of successors-is complete, but extremely inefficient. Therefore, it seems 
reasonable to try to combine hill climbing with a random walk in some way that yields both 

SlMUlATED 
ANNEALING efficiency and completeness. Simulated annealing is such an algorithm. In metallurgy, an- 

nealing is the process used to temper or harden metals and glass by heating them to a high 
temperature and then gradually cooling them, thus alllowing the material to coalesce into a 
low-energy crystalline state. To understand simulated annealing, let's switch our point of 

GRADIENTDESCENT view from hill climbing to gradient descent (i.e., minimizing cost) and imagine the task of 
getting a ping-pong ball into the deepest crevice in a bumpy surface. If we just let the ball 
roll, it will come to rest at a local minimum. If we shake the surface, we can bounce the ball 
out of the local minimum. The trick is to shake just hard enough to bounce the ball out of 
local minima, but not hard enough to dislodge it from the global minimum. The simulated- 
annealing solution is to start by shaking hard (i.e., at a high temperature) and then gradually 
reduce the intensity of the shaking (i.e., lower the temperature). 

The innermost loop of the simulated-annealing algorithm (Figure 4.14) is quite similar 
to hill climbing. Instead of picking the best move, however, it picks a random move. If the 
move improves the situation, it is always accepted. Otherwise, the algorithm accepts the move 
with some probability less than 1. The probability decreases exponentially with the "badness7' 
of the move-the amount A E  by which the evaluation is worsened. The probability also 
decreases as the "temperature" T goes down: " bad  moves are more likely to be allowed at 
the start when temperature is high, and they become more unlikely as T decreases. One can 
prove that if the schedule lowers T slowly enough, the algorithm will find a global optimum 
with probability approaching 1. 

Simulated annealing was first used extensively to solve VLSl layout problems in the 
early 1980s. It has been applied widely to factory scheduling and other large-scale optimiza- 
tion tasks. In Exercise 4.16, you are asked to compare its performance to that of random- 
restart hill climbing on the n-queens puzzle. 

Local beam search 

Keeping just one node in memory might seem to be an extreme reaction to the problem of 
LOCAL BEAM 
SEARCH memory limitations. The local beam search algorithmlo keeps track of k states rather than 

just one. It begins with k randomly generated states. At each step, all the successors of all k 
states are generated. If any one is a goal, the algorithm halts. Otherwise, it selects the k best 
successors from the complete list and repeats. 

At first sight, a local beam search with k states imight seem to be nothing more than 
running k random restarts in parallel instead of in sequence. In fact, the two algorithms 
are quite different. In a random-restart search, each search process runs independently of 

lo  Local beam search is an adaptation of beam search, which is a path-based algorithm. 
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function S I M U L A T E D - A N N E A L I N G ( ~ ~ ~ ~ ~ ~ ~ ,  schedule) returns a solution state 
inputs: problem, a problem 

schedule, a mapping from time to "temperature" 
local variables: current, a node 

next, a node 
T ,  a "temperature" controlling the probability of downward steps 

current + MAKE-NoDE(INITIAL-STATE[~~~~~~~]) 
for t+  l tooodo 

T + schedule[t] 
if T = 0 then return current 
next t a randomly selected successor of current 
AE + V A L U E [ ~ ~ X ~ ]  - VALU~[current] 
if AE > 0 then current +- next 
else current + next only with probability eAEIT 

I Figure 4.14 The simulated annealing search algorithm, a version of stochastic hill climb- / 
( ing where some downhill moves are allowed. Downhill moves are accepted readily early in 1 

the annealing schedule and then less often as time goes on. The schedule input determines 
the value of T as a function of time. 

the others. In a local beam search, useful information is passed among the k parallel search 
threads. For example, if one state generates several good successors and the other k - 1 states 
all generate bad successors, then the effect is that the first state says to the others, "Come over 
here, the grass is greener!" The algorithm quickly abandons unfruitful searches and moves 
its resources to where the most progress is being made. 

In its simplest form, local beam search can suffer from a lack of diversity among the 
k states-they can quickly become concentrated in a small region of the state space, making 
the search little more than an expensive version of hill climbing. A variant called stochastic 

sToCHAsTICBEAM SEARCH beam search, analogous to stochastic hill climbing, helps to alleviate this problem. Instead 
of choosing the best k from the the pool of candidate successors, stochastic beam search 
chooses k successors at random, with the probability of choosing a given successor being 
an increasing function of its value. Stochastic beam search bears some resemblance to the 
process of natural selection, whereby the "successors" (offspring) of a "state" (organism) 
populate the next generation according to its "value" (fitness). 

Genetic algorithms 

GENETIC 
ALGORITHM 

A genetic algorithm (or GA) is a variant of stochastic beam search in which successor states 

are generated by combining two parent states, rather than by modifying a single state. The 
analogy to natural selection is the same as in stochastic beam search, except now we are 
dealing with sexual rather than asexual reproduction. 

Like beam search, GAS begin with a set of k randomly generated states, called the 
POPULATION population. Each state, or individual, is represented as a string over a finite alphabet-most 
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(a) (b) (c) (4 (el 
Initial Population Fitness Function Selection Crossover Mutation 

Figure 4.15 The genetic algorithm. The initial population in (a) is raiked by the fitness 
function in (b), resulting in pairs for mating in (c). They produce offspring in (d), which are 
subject to mutation in (e). 

/ Figure 4.16 The 8-queens states corresponding to the first two parents in Figure 4.15(c) I 
and the first offspring in Figure 4.15(d). The shaded columns are lost in the crossover step 
and the unshaded columns are retained. 

commonly, a string of 0s and 1s. For example, an 8-queens state must specify the positions of 
8 queens, each in a column of 8 squares, and so requires 8 x logz 8 = 24 bits. Alternatively, 
the state clould be represented as 8 digits, each in the range from 1 to 8. (We will see later 
that the two encoding behave differently.) Figure 4.15(a) shows a population of four 8-digit 
strings representing 8-queens states. 

The production of the next generation of states is shown in Figure 4.15(b)-(e). In (b), 
FITNESSFUNCTION each state is rated by the evaluation function or (in C;A terminology) the fitness function. 

A fitness function should return higher values for better states, so, for the 8-queens problem 
we use the number of nonattacking pairs of queens, which has a value of 28 for a solution. 
The values of the four states are 24, 23, 20, and 11. Iin this particular variant of the genetic 
algorithm, ithe probability of being chosen for reproducing is directly proportional to the 
fitness score, and the percentages are shown next to the raw scores. 

In (c), a random choice of two pairs is selected for reproduction, in accordance with the 
probabilities in (b). Notice that one individual is selected twice and one not at all. 'l For each 

l1 There are many variants of this selection rule. The method of culling, in which all individuals below a given 
threshold are dliscarded, can be shown to converge faster than the random version (Baum et al., 1995). 
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CROSSOVER pair to be mated, a crossover point is randomly chosen from the positions in the string. In 
Figure 4.15 the crossover points are after the third digit in the first pair and after the fifth digit 
in the second pair. l2 

In (d), the offspring themselves are created by crossing over the parent strings at the 
crossover point. For example, the first child of the first pair gets the first three digits from the 
first parent and the remaining digits from the second parent, whereas the second child gets 
the first three digits from the second parent and the rest from the first parent. The %queens 
states involved in this reproduction step are shown in Figure 4.16. The example illustrates 
the fact that, when two parent states are quite different, the crossover operation can produce 
a state that is a long way from either parent state. It is often the case that the population is 
quite diverse early on in the process, so crossover (like simulated annealing) frequently takes 
large steps in the state space early in the search process and smaller steps later on when most 
individuals are quite similar. 

MUTATION Finally, in (e), each location is subject to random mutation with a small independent 
probability. One digit was mutated in the first, third, and fourth offspring. In the 8-queens 
problem, this corresponds to choosing a queen at random and moving it to a random square 
in its column. Figure 4.17 describes an algorithm that implements all these steps. 

Like stochastic beam search, genetic algorithms combine an uphill tendency with ran- 
dom exploration and exchange of information among parallel search threads. The primary 
advantage, if any, of genetic algorithms comes from the crossover operation. Yet it can be 
shown mathematically that, if the positions of the genetic code is permuted initially in a ran- 
dom order, crossover conveys no advantage. Intuitively, the advantage comes from the ability 
of crossover to combine large blocks of letters that have evolved independently to perform 
useful functions, thus raising the level of granularity at which the search operates. For ex- 
ample, it could be that putting the first three queens in positions 2, 4, and 6 (where they do 
not attack each other) constitutes a useful block that can be combined with other blocks to 
construct a solution. 

SCHEMA The theory of genetic algorithms explains how this works using the idea of a schema, 
which is a substring in which some of the positions can be left unspecified. For example, 
the schema 246""""" describes all 8-queens states in which the first three queens are in 
positions 2, 4, and 6 respectively. Strings that match the schema (such as 24613578) are 
called instances of the schema. It can be shown that, if the average fitness of the instances of 
a schema is above the mean, then the number of instances of the schema within the population 
will grow over time. Clearly, this effect is unlikely to be significant if adjacent bits are totally 
unrelated to each other, because then there will be few contiguous blocks that provide a 
consistent benefit. Genetic algorithms work best when schemas correspond to meaningful 
components of a solution. For example, if the string is a representation of an antenna, then 
the schemas may represent components of the antenna, such as reflectors and deflectors. A 
good component is likely to be good in a variety of different designs. This suggests that 
successful use of genetic algorithms requires careful engineering of the representation. 

l2 It is here that the encoding matters. If a 24-bit encoding is used instead of 8 digits, then the crossover point 
has a 213 chance of being in the middle of a digit, which results in an essentially arbitrary mutation of that digit. 



Section 4.4. Local Search in Continuous Spaces 119 

function ~~ENETIC-ALGORITHM(~O~U~U~~O~, FITNESS-FN) returns an individual 
inputs: population, a set of individuals 

FITNESS-FN,  a function that measures the fitn'ess of an individual 

repeat 
new-population t empty set 
loop for i from 1 to S~zE(popu~a t ion)  do 

x  t R ~ ~ ~ o ~ - S ~ ~ ~ c ~ ~ o ~ ( p o p u l a t i o n ,  FITNESS-FN)  
y  +- R A N D ~ M - ~ E L E C T I ~ N ( ~ ~ ~ U ~ ~ ~ ~ ~ ~ ,  FITNESS-FN) 
child +- REPRODUCE(X, y)  
if (small random probability) then child t M~rT~TE(chi1d) 
add child to new-population 

population c new-popu2ation 
until some individual is fit enough, or enough time has elapsed 
return the best individual in population, according to FITNESS-FN 

function REPRODUCE(X, y) returns an individual 
inputs: x ,  y, parent individuals 

n  t LENGTH($) 
c  c random number from 1 to n  
return A P P E N D ( ~ U B S T R I N G ( X ,  1 ,  c),  SUBSTRING(^, c  + 1, n ) )  

Figure 4.17 A genetic algorithm. The algorithm is; the same as the one diagrammed in 
Figure 4.15, with one variation: in this more popular version, each mating of two parents 
produces only one offspring, not two. 

In practice, genetic algorithms have had a widespread impact on optimization problems, 
such as circuit layout and job-shop scheduling. At present, it is not clear whether the appeal 
of genetic algorithms arises from their performance or from their aesthetically pleasing origins 
in the theory of evolution. Much work remains to be done to identify the conditions under 
which genetic algorithms perform well. 

In Chapter 2, we explained the distinction between discrete and continuous environments, 
pointing out that most real-world environments are co~itinuous. Yet none of the algorithms 
we have described can handle continuous state spaces-the successor function would in most 
cases return infinitely many states! This section provides a very brief introduction to some 
local search techniques for finding optimal solutions in continuous spaces. The literature 
on this topic is vast; many of the basic techniques originated in the 17th century, after the 
development of calculus by Newton and ~e ibn iz . ' ~  We will find uses for these techniques at 

l3 A basic knowledge of multivariate calculus and vector arithmetic is useful when one is reading this section. 
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EVOLUTION AND SEARCH 

The theory of evolution was developed in Charles Darwin's On the Origin of 
Species by Means of Natural Selection (1859). The central idea is simple: varia- 
tions (known as mutations) occur in reproduction and will be preserved in succes- 
sive generations approximately in proportion to their effect on reproductive fitness. 

Darwin's theory was developed with no knowledge of how the traits of organ- 
isms can be inherited and modified. The probabilistic laws governing these pro- 
cesses were first identified by Gregor Mendel (1866), a monk who experimented 
with sweet peas using what he called artificial fertilization. Much later, Watson and 
Crick (1953) identified the structure of the DNA molecule and its alphabet, AGTC 
(adenine, guanine, thymine, cytosine). In the standard model, variation occurs both 
by point mutations in the letter sequence and by "crossover" (in which the DNA of 
an offspring is generated by combining long sections of DNA from each parent). 

The analogy to local search algorithms has already been described; the princi- 
pal difference between stochastic beam search and evolution is the use of sexual re- 
production, wherein successors are generated from multiple organisms rather than 
just one. The actual mechanisms of evolution are, however, far richer than most 
genetic algorithms allow. For example, mutations can involve reversals, duplica- 
tions, and movement of large chunks of DNA; some viruses borrow DNA from one 
organism and insert it in another; and there are transposable genes that do nothing 
but copy themselves many thousands of times within the genome. There are even 
genes that poison cells from potential mates that do not carry the gene, thereby 
increasing their chances of replication. Most important is the fact that the genes 
themselves encode the mechanisms whereby the genome is reproduced and trans- 
lated into an organism. In genetic algorithms, those mechanisms are a separate 
program that is not represented within the strings being manipulated. 

Darwinian evolution might well seem to be an inefficient mechanism, having 
generated blindly some or so organisms without improving its search heuris- 
tics one iota. Fifty years before Darwin, however, the otherwise great French natu- 
ralist Jean Lamarck (1809) proposed a theory of evolution whereby traits acquired 
by adaptation during an organism's lifetime would be passed on to its offspring. 
Such a process would be effective, but does not seem to occur in nature. Much 
later, James Baldwin (1 896) proposed a superficially similar theory: that behavior 
learned during an organism's lifetime could accelerate the rate of evolution. Unlike 
Lamarck's, Baldwin's theory is entirely consistent with Darwinian evolution, be- 
cause it relies on selection pressures operating on individuals that have found local 
optima among the set of possible behaviors allowed by their genetic makeup. Mod- 
ern computer simulations confirm that the "Baldwin effect" is real, provided that 
"ordinary" evolution can create organisms whose internal performance measure is 
somehow correlated with actual fitness. 
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several places in the book, including the chapters on learning, vision, and robotics. In short, 
anything th~at deals with the real world. 

Let us begin with an example. Suppose we want to place three new airports anywhere 
in Romania, such that the sum of squared distances from each city on the map (Figure 3.2) 
to its nearest airport is minimized. Then the state space i~s defined by the coordinates of 
the airports: (xl, yl), (x2, y2), and (x3, y3). This is a six-dimensional space; we also say 
that states ,we defined by six variables. (In general, states are defined by an n-dimensional 
vector of variables, x.) Moving around in this space corresponds to moving one or more of 
the airports on the map. The objective function f (xl , yl , x:~, yz, 2 3 ,  ys) is relatively easy to 
compute for any particular state once we compute the closest cities, but rather tricky to write 
down in general. 

One way to avoid continuous problems is simply to discretize the neighborhood of each 
state. For example, we can move only one airport at a time in either the x or y direction by 
a fixed amount f 6. With 6 variables, this gives 12 possible successors for each state. We 
can then apply any of the local search algorithms described previously. One can also ap- 
ply stochastic hill climbing and simulated annealing directly, without discretizing the space. 
These algorithms choose successors randomly, which can be done by generating random vec- 
tors of length 6. 

GRADIENT There are many methods that attempt to use the gradient of the landscape to find a 
maximum. The gradient of the objective function is a vector V f that gives the magnitude and 
direction of the steepest slope. For our problem, we have 

In some cases, we can find a maximum by solving the equation V f = 0. (This could be done, 
for example, if we were placing just one airport; the solution is the arithmetic mean of all the 
cities' coordinates.) In many cases, however, this equation cannot be solved in closed form. 
For example, with three airports, the expression for the gradient depends on what cities are 
closest to each airport in the current state. This means we can compute the gradient locally 
but not globally. Even so, we can still perform steepest-ascent hill climbing by updating the 
current state via the formula 

where a is a small constant. In other cases, the obje'ctive function might not be available 
in a differentiable form at all-for example, the value of a particular set of airport locations 
may be determined by running some large-scale ecoinomic simulation package. In those 

EMPIRICAL 
GRADIENT cases, a so-,called empirical gradient can be determined by evaluating the response to small 

increments and decrements in each coordinate. Empirical gradient search is the same as 
steepest-ascent hill climbing in a discretized version of the state space. 

Hidden beneath the phrase "a is a small consta.n.t9' lies a huge variety of methods for 
adjusting a .  The basic problem is that, if a is too small, too many steps are needed; if a 

LINE SEARCH is too large, the search could overshoot the maximum. The technique of line search tries to 
overcome this dilemma by extending the current gradient direction-usually by repeatedly 
doubling a-until f starts to decrease again. The point at which this occurs becomes the new 
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current state. There are several schools of thought about how the new direction should be 
chosen at this point. 

NEWON-RAPHSON For many problems, the most effective algorithm is the venerable Newton-Raphson 
method (Newton, 1671; Raphson, 1690). This is a general technique for finding roots of 
functions-that is, solving equations of the form g(x) = 0. It works by computing a new 
estimate for the root x according to Newton's formula 

To find a maximum or minimum of f, we need to find x such that the gradient is zero (i.e., 
Of(x) = 0). Thus g(x) in Newton's formula becomes V f (x), and the update equation can 
be written in matrix-vector form as 

x +- x - H,'(x)v f (x) , 
HESSIAN where Hj(x) is the Hessian matrix of second derivatives, whose elements Hij are given 

by a2 f /axiaxj. Since the Hessian has n2 entries, Newton-Raphson becomes expensive in 
high-dimensional spaces, and many approximations have been developed. 

Local search methods suffer from local maxima, ridges, and plateaux in continuous 
state spaces just as much as in discrete spaces. Random restarts and simulated annealing can 
be used and are often helpful. High-dimensional continuous spaces are, however, big places 
in which it is easy to get lost. 

CONSTRAINED 
OPTIMIZATION A final topic with which a passing acquaintance is useful is constrained optimization. 

An optimization problem is constrained if solutions must satisfy some hard constraints on the 
values of each variable. For example, in our airport-siting problem, we might constrain sites 
to be inside Romania and on dry land (rather than in the middle of lakes). The difficulty of 
constrained optimization problems depends on the nature of the constraints and the objec- 

LINEAR tive function. The best-known category is that of linear programming problems, in which 
constraints must be linear inequalities forming a convex region and the objective function is 
also linear. Linear programming problems can be solved in time polynomial in the number 
of variables. Problems with different types of constraints and objective functions have also 
been studied-quadratic programming, second-order conic programming, and so on. 

4.5 ONLINE SEARCH AGENTS AND UNKNOWN ENVIRONMENTS 

OFFLINESEARCH SO far we have concentrated on agents that use offline search algorithms. They compute a 
complete solution before setting foot in the real world (see Figure 3. I), and then execute the 

ONLINE SEARCH solution without recourse to their percepts. In contrast, an online search14 agent operates 
by interleaving computation and action: first it takes an action, then it observes the environ- 
ment and computes the next action. Online search is a good idea in dynamic or semidynamic 
domains-domains where there is a penalty for sitting around and computing too long. On- 
line search is an even better idea for stochastic domains. In general, an offline search would 
- - 

l4 The term "online" is commonly used in computer science to refer to algorithms that must process input data 
as they are received, rather than waiting for the entire input data set to become available. 
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have to come up with an exponentially large continger~cy plan that considers all possible hap- 
penings, while an online search need only consider what actually does happen. For example, 
a chess playing agent is well-advised to make its first move long before it has figured out the 
complete course of the game. 

Online search is a necessary idea for an exploratiorn problem, where the states and 
actions are unknown to the agent. An agent in this state of Ignorance must use its actions as 
experiments to determine what to do next, and hence must interleave computation and action. 

The canonical example of online search is a robot that is placed in a new building and 
must explore it to build a map that it can use for getting froin A to B. Methods for escaping 
from labyrinths-required knowledge for aspiring heroes of antiquity-are also examples of 
online search algorithms. Spatial exploration is not tlhe only form of exploration, however. 
Consider a newborn baby: it has many possible actions, but knows the outcomes of none of 
them, and it has experienced only a few of the possib~le states that it can reach. The baby's 
gradual discovery of how the world works is, in part, am online search process. 

Online search problems 

An online search problem can be solved only by an agent executing actions, rather than by a 
purely computational process. We will assume that the agent knows just the following: 

ACTIONS(S), which returns a list of actions allowed in state s ;  
The step-cost function c(s ,  a ,  sl)-note that this cannot be used until the agent knows 
that sf is the outcome; and 
GOAL-TEST(S). 

Note in particular that the agent cannot access the successors of a state except by actually 
trying all the actions in that state. For example, in the maze problem shown in Figure 4.18, 
the agent does not know that going Up from ( 1 , l )  leads to (1,2); nor, having done that, does 
it know that going Down will take it back to (1,l). This degree of ignorance can be reduced 
in some applications-for example, a robot explorer might know how its movement actions 
work and be ignorant only of the locations of obstacles. 

We wrll assume that the agent can always recognize a state that it has visited before, and 
we will assume that the actions are deterministic. (These last two assumptions are relaxed in 
Chapter 17.) Finally, the agent might have access to an ,sdmissible heuristic function h(s) that 
estimates the distance from the current state to a goal state. For example, in Figure 4.18, the 
agent might know the location of the goal and be able to use the Manhattan distance heuristic. 

Typically, the agent's objective is to reach a goal state while minimizing cost. (Another 
possible objective is simply to explore the entire environment.) The cost is the total path cost 
of the path that the agent actually travels. It is common to compare this cost with the path 
cost of the path the agent would follow if it knew the search space in advance-that is, the 
actual shortest path (or shortest complete exploration). In the language of online algorithms, 

COMPETITIVE RATIO this is called the competitive ratio; we would like it to be as small as possible. 
Although this sounds like a reasonable request, it is easy to see that the best achievable 

competitive ratio is infinite in some cases. For example,, if some actions are irreversible, the 
online search might accidentally reach a dead-end state from which no goal state is reachable. 
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1 2 3 

Figure 4.18 A simpIe maze problem. The agent starts at S and must reach G, but knows 
nothing of the environment. 

(a> (b) 

Figure 4.19 (a) Two state spaces that might lead an online search agent into a dead end. 
Any given agent will fail in at least one of these spaces. (b) A two-dimensional environment 
that can cause an online search agent to follow an arbitrarily inefficient route to the goal. 
Whichever choice the agent makes, the adversary blocks that route with another long, thin 
wall, so that the path followed is much longer than the best possible path. 

Perhaps you find the term "accidentally" unconvincing-after all, there might be an algorithm 
that happens not to take the dead-end path as it explores. Our claim, to be more precise, is that 
no algorithm can avoid dead ends in all state spaces. Consider the two dead-end state spaces 
in Figure 4.19(a). To an online search algorithm that has visited states S and A, the two state 
spaces look identical, so it must make the same decision in both. Therefore, it will fail in 

ADVERSARY 
ARGUMENT one of them. This is an example of an adversary argument-we can imagine an adversary 

that constructs the state space while the agent explores it and can put the goals and dead ends 
wherever it likes. 
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Dead ends are a real difficulty for robot exploration--staircases, ramps, cliffs, and all 
kinds of natural terrain present opportunities for irreversible actions. To make progress, we 

SAFELY EXPLORABLE will simply assume that the state space is safely explorable-that is, some goal state is reach- 
able from every reachable state. State spaces with reversible actions, such as mazes and 
8-puzzles, can be viewed as undirected graphs and are clearly safely explorable. 

Even in safely explorable environments, no bounded competitive ratio can be guaran- 
teed if there are paths of unbounded cost. This is easy to show in environments with irre- 
versible actions, but in fact it remains true for the reversible case as well, as Figure 4.19(b) 
shows. For this reason, it is common to describe the performance of online search algorithms 
in terms of the size of the entire state space rather than just the depth of the shallowest goal. 

Online search agents 

After each action, an online agent receives a percept telling it what state it has reached; from 
this information, it can augment its map of the environment. The current map is used to 
decide where to go next. This interleaving of planning and action means that online search 
algorithms are quite different from the offline search algorithms we have seen previously. 
For example, offline algorithms such as A* have the ability to expand a node in one part 
of the space and then immediately expand a node in ainother part of the space, because node 
expansion involves simulated rather than real actions. An online algorithm, on the other hand, 
can expand only a node that it physically occupies. To avoicl traveling all the way across the 
tree to expand the next node, it seems better to expand nodes in a local order. Depth-first 
search has exactly this property, because (except when backtracking) the next node expanded 
is a child of the previous node expanded. 

An online depth-first search agent is shown in Figure 4.20. This agent stores its map 
in a table, result[a, s], that records the state resulting from executing action a in state s. 
Whenever an action from the current state has not been explored, the agent tries that action. 
The difficulty comes when the agent has tried all the actions in a state. In offline depth-first 
search, the state is simply dropped from the queue; in an online search, the agent has to 
backtrack physically. In depth-first search, this means going back to the state from which the 
agent entered the current state most recently. That is achieved by keeping a table that lists, 
for each state, the predecessor states to which the agent has riot yet backtracked. If the agent 
has run out of states to which it can backtrack, then its search is complete. 

We recommend that the reader trace through the progress of ONLINE-DFS-AGENT 

when applied to the maze given in Figure 4.18. It is fairly easy to see that the agent will, in 
the worst case, end up traversing every link in the state space exactly twice. For exploration, 
this is optimal; for finding a goal, on the other hand, the agent's competitive ratio could be 
arbitrarily bad if it goes off on a long excursion when there is a goal right next to the initial 
state. An online variant of iterative deepening solves this problem; for an environment that is 
a uniform tree, the competitive ratio of such an agent is a small constant. 

Because of its method of backtracking, ONLINE-DFS-AGENT works only in state 
spaces where the actions are reversible. There are slightly more complex algorithms that 
work in general state spaces, but no such algorithm has a bounded competitive ratio. 
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function ONLINE-DFS-AGENT(S' )  returns an action 
inputs: s', a percept that identifies the current state 
static: result, a table, indexed by action and state, initially empty 

unexplored, a table that lists, for each visited state, the actions not yet tried 
un.backtracked, a table that lists, for each visited state, the backtracks not yet tried 
s ,  a ,  the previous state and action, initially null 

if GOAL-TEST(S')  then return stop 
if s' is a new state then unexp1ored[s1] t ACTIONS(S ' )  
if s is not null then do 

result[a, s] +- s' 
add s to the front of unbacktracked[sl] 

if unexplored[s

f

] is empty then 
if unbacktracked[s

f

] is empty then return stop 
else a +- an action b such that result[b, s

f

]  = P~~(unbacktracked[s '] )  
else a t Po~(unezplored[s'])  
s c s '  
return a 

Figure 4.20 An online search agent that uses depth-first exploration. The agent is appli- 
cable only in bidirected search spaces. 

Online local search 

Like depth-first search, hill-climbing search has the property of locality in its node expan- 
sions. In fact, because it keeps just one current state in memory, hill-climbing search is 
already an online search algorithm! Unfortunately, it is not very useful in its simplest form 
because it leaves the agent sitting at local maxima with nowhere to go. Moreover, random 
restarts cannot be used, because the agent cannot transport itself to a new state. 

RANDOM WALK Instead of random restarts, one might consider using a random walk to explore the 
environment. A random walk simply selects at random one of the available actions from the 
current state; preference can be given to actions that have not yet been tried. It is easy to 
prove that a random walk will eventually find a goal or complete its exploration, provided 
that the space is finite.15 On the other hand, the process can be very slow. Figure 4.21 shows 
an environment in which a random walk will take exponentially many steps to find the goal, 
because, at each step, backward progress is twice as likely as forward progress. The example 
is contrived, of course, but there are many real-world state spaces whose topology causes 
these kinds of "traps" for random walks. 

Augmenting hill climbing with memory rather than randomness turns out to be a more 
effective approach. The basic idea is to store a "current best estimate" H ( s )  of the cost to 
reach the goal from each state that has been visited. H ( s )  starts out being just the heuristic 

l5 The infinite case is much more tricky. Random walks are complete on infinite one-dimensional and two 
dimensional grids, but not on three-dimensional grids! In the latter case, the probability that the walk ever returns 
to the starting point is only about 0.3405. (See Hughes, 1995, for a general introduction.) 
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S c G c v 
Figure 4.21 An environment in which a random walk will take exponentially many steps 
to find the goal. 

estimate h ( s )  and is updated as the agent gains experience in the state space. Figure 4.22 
shows a simple example in a one-dimensional state space. In (a), the agent seems to be stuck 
in a flat local minimum at the shaded state. Rather than staying where it is, the agent should 
follow what seems to be the best path to the goal based on the current cost estimates for its 
neighbors. The estimated cost to reach the goal through a neighbor s

f 

is the cost to get to 
s

f 

plus the estimated cost to get to a goal from there-that is, c(s ,  a, s

f

)  + H ( s t ) .  In the 
example, there are two actions with estimated costs 1 + 9 and 1 + 2, so it seems best to move 
right. Now, it is clear that the cost estimate of 2 for the shaded state was overly optimistic. 
Since the best move cost 1 and led to a state that is at least 2 steps from a goal, the shaded 
state must be at least 3 steps from a goal, so its H should be updated accordingly, as shown 
in Figure 4.22(b). Continuing this process, the agent will move back and forth twice more, 
updating H each time and "flattening out" the local minimum until it escapes to the right. 

LRTA' An agent implementing this scheme, which is callled learning real-time A* (LRTA*), is 
shown in Figure 4.23. Like ONLINE-DFS-AGENT, it builds a map of the environment using 
the result table. It updates the cost estimate for the state it has just left and then chooses the 
"apparently best" move according to its current cost estimates. One important detail is that 
actions that have not yet been tried in a state s are always assumed to lead immediately to the 

tirC:Ml$DER goal with the least possible cost, namely h ( s ) .  This optimism under uncertainty encourages 
the agent to explore new, possibly promising paths. 

An LRTA* agent is guaranteed to find a goal in any finite, safely explorable environment. 
Unlike A*, however, it is not complete for infinite state spaces--there are cases where it can be 
led infinitely astray. It can explore an environment of n states in O(n2) steps in the worst case, 
but often does much better. The LRTA* agent is just one of a large family of online agents that 
can be defined by specifying the action selection rule and the update rule in different ways. 
We will disc,uss this family, which was developed originally for stochastic environments, in 
Chapter 21. 

Learning in online search 

The initial ignorance of online search agents provides several opportunities for learning. First, 
the agents learn a "map" of the environment-more precisely, the outcome of each action in 
each state-simply by recording each of their experiences. (Notice that the assumption of 
deterministic environments means that one experience is enough for each action.) Second, 
the local search agents acquire more accurate estimates of the value of each state by using 
local updating mles, as in LRTA*. In Chapter 21 we will see that these updates eventually 
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Figure 4.22 Five iterations of LRTA* on a one-dimensional state space. Each state is 
labeled with H ( s ) ,  the current cost estimate to reach a goal, and each arc is labeled with its 

1 step cost. The shaded state marks the location of the agent, and the updated values at each 1 
iteration are circled. 

function LRTA*-AGENT(S') returns an action 
inputs: st, a percept that identifies the current state 
static: result, a table, indexed by action and state, initially empty 

H ,  a table of cost estimates indexed by state, initially empty 
s, a, the previous state and action, initially null 

if GOAL-TEST(S') then return stop 
if s' is a new state (not in H )  then H[st]  t h(st) 
unless s is null 

result[a, s] +- st 

H[s] t min LRTA*-COST(& b, result[b, s] ,  H )  
b~ ACTIONS(S) 

a t an action b in ACTIONS(S')  that minimizes LRTA*-COST(S', b, result[b, s t] ,  H )  
s t s t  
return a 

function LRTA*-Cos~(s ,  a, s', H )  returns a cost estimate 
if st is undefined then return h ( s )  
else return c(s, a, st) + H[st] 

Figure 4.23 LRTA*-AGENT selects an action according to the values of neighboring 
states, which are updated as the agent moves about the state space. 
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converge to exact values for every state, provided that the agent explores the state space in the 
right way. Once exact values are known, optimal decisi~ons can be taken simply by moving to 
the highest-valued successor-that is, pure hill climbing is then an optimal strategy. 

If you followed our suggestion to trace the behavior of ONLINE-DFS- AGENT in the 
environment of Figure 4.18, you will have noticed that the agent is not very bright. For 
example, after it has seen that the Up action goes from (1,l) to (1,2), the agent still has no 
idea that the Down action goes back to (1,1), or that rthe Ujq action also goes from (2,l) to 
(2,2), from (2,2) to (2,3), and so on. In general, we  would like the agent to learn that Up 
increases the y-coordinate unless there is a wall in the way, that Down reduces it, and so on. 
For this to happen, we need two things. First, we need a formal and explicitly manipulable 
representation for these kinds of general rules; so far, cve have hidden the information inside 
the black box called the successor function. Part I11 is devoted to this issue. Second, we need 
algorithms that can construct suitable general rules from the specific observations made by 
the agent. These are covered in Chapter 18. 

This chapter has examined the application of heurist~ics to reduce search costs. We have 
looked at a number of algorithms that use heuristics and found that optimality comes at a stiff 
price in terns of search cost, even with good heuristics. 

Best-first search is just GRAPH-SEARCH where the minimum-cost unexpanded nodes 
(according to some measure) are selected for expansion. Best-first algorithms typically 
use a heuristic function h(n) that estimates the cost of a solution from n. 

0 Greedy best-first search expands nodes with minimal h(n). It is not optimal, but is 
often efficient. 

A* search expands nodes with minimal f (n)  = g(n) + h(n). A* is complete and 
optimal, provided that we guarantee that h(n) is  admjssible (for TREE-SEARCH) or 
consistent (for GRAPH-SEARCH). The space complexity of A* is still prohibitive. 

0 The performance of heuristic search algorithms dlepencls on the quality of the heuris- 
tic function. Good heuristics can sometimes be constructed by relaxing the problem 
definition, by precomputing solution costs for subproblems in a pattern database, or by 
learning from experience with the problem class. 

RBFS and SMA* are robust, optimal search algorithms that use limited amounts of 
memory; given enough time, they can solve problems that A* cannot solve because it 
runs out of memory. 

Local search methods such as hill climbing operate on complete-state formulations, 
keeping only a small number of nodes in memory. Several stochastic algorithms have 
been developed, including simulated annealing, which returns optimal solutions when 
given an appropriate cooling schedule. Many locall search methods can also be used to 
solve problems in continuous spaces. 
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A genetic algorithm is a stochastic hill-climbing search in which a large population of 
states is maintained. New states are generated by mutation and by crossover, which 
combines pairs of states from the population. 
Exploration problems arise when the agent has no idea about the states and actions of 
its environment. For safely explorable environments, online search agents can build a 
map and find a goal if one exists. Updating heuristic estimates from experience provides 
an effective method to escape from local minima. 

BIBLIOGRAPHICAL AND HISTORICAL NOTES 

The use of heuristic information in problem solving appears in an early paper by Simon 
and Newel1 (1958), but the phrase "heuristic search" and the use of heuristic functions that 
estimate the distance to the goal came somewhat later (Newell and Ernst, 1965; Lin, 1965). 
Doran and Michie (1966) conducted extensive experimental studies of heuristic search as 
applied to a number of problems, especially the 8-puzzle and the 15-puzzle. Although Doran 
and Michie carried out theoretical analyses of path length and "penetrance" (the ratio of path 
length to the total number of nodes examined so far) in heuristic search, they appear to have 
ignored the information provided by current path length. The A* algorithm, incorporating the 
current path length into heuristic search, was developed by Hart, Nilsson, and Raphael (1968), 
with some later corrections (Hart et al., 1972). Dechter and Pearl (1985) demonstrated the 
optimal efficiency of A*. 

The original A* paper introduced the consistency condition on heuristic functions. The 
monotone condition was introduced by Pohl(1977) as a simpler replacement, but Pearl (1984) 
showed that the two were equivalent. A number of algorithms predating A* used the equiva- 
lent of open and closed lists; these include breadth-first, depth-first, and uniform-cost search 
(Bellman, 1957; Dijkstra, 1959). Bellman's work in particular showed the importance of 
additive path costs in simplifying optimization algorithms. 

Pohl (1970, 1977) pioneered the study of the relationship between the error in heuris- 
tic functions and the time complexity of A*. The proof that A* runs in linear time if the 
error in the heuristic function is bounded by a constant can be found in Pohl (1977) and 
in Gaschnig (1979). Pearl (1984) strengthened this result to allow a logarithmic growth in 
the error. The "effective branching factor" measure of the efficiency of heuristic search was 
proposed by Nilsson (197 1). 

There are many variations on the A* algorithm. Pohl(1973) proposed the use of dynamic 
weighting, which uses a weighted sum f,(n) = wgg(n) + whh(n) of the current path length 
and the heuristic function as an evaluation function, rather than the simple sum f (n) = g(n)  + 
h(n )  used in A*. The weights wg and wh are adjusted dynamically as the search progresses. 
Pohl's algorithm can be shown to be E-admissible-that is, guaranteed to find solutions within 
a factor 1 + E of the optimal solution-where E is a parameter supplied to the algorithm. The 
same property is exhibited by the AT algorithm (Pearl, 1984), which can select any node from 
the fringe provided its f -cost is within a factor 1 + E of the lowest- f -cost fringe node. The 
selection can be done so as to minimize search cost. 
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A* arid other state-space search algorithms are closely related to the branch-and-bound 
techniques that are widely used in operations research (Lawler and Wood, 1966). The 
relationships between state-space search and branch-and-bound have been investigated in 
depth (Kumar and Kanal, 1983; Nau et al., 1984; Kuimar er al., 1988). Martelli and Monta- 
nari (1978) demonstrate a connection between dynamic programming (see Chapter 17) and 
certain types of state-space search. Kumar and Kanal (1988) attempt a "grand unification" of 
heuristic search, dynamic programming, and branch-and-bound techniques under the name 
of CDP-the "composite decision process." 

Because computers in the late 1950s and early 1960s had at most a few thousand words 
of main memory, mernory-bounded heuristic search was an early research topic. The Graph 
Traverser (Doran and Michie, 1966), one of the earliest search programs, commits to an 
operator after searching best first up to the memory limit. IDA* (Korf, 1985a, 1985b) was the 
first widely used optimal, memory-bounded, heuristic search algorithm, and a large number 
of variants have been developed. An analysis of the efficiency of IDA* and of its difficulties 
with real-valued heuristics appears in Patrick et al. (1992). 

RBFS (Korf, 1991, 1993) is actually somewhat more complicated than the algorithm 
shown in Figure 4.5, which is closer to an independently developed algorithm called iterative 
expansion, or IE (Russell, 1992). RBFS uses a lower bound as well as the upper bound; the 
two algoritl~ms behave identically with admissible heuristics, but RBFS expands nodes in 
best-first order even with an inadmissible heuristic. The idea of keeping track of the best 
alternative path appeared earlier in Bratko's (1986) elegant Yrolog implementation of and 
in the DTA* algorithm (Russell and Wefald, 1991). The latter work also discusses metalevel 
state spaces and metalevel learning. 

The MA* algorithm appeared in Chakrabarti et 01. (1989). SMA*, or Simplified Mx, 
emerged from an attempt: to implement MA* as a comparison algorithm for IE (Russell, 1992). 
Kaindl and Khorsand (1994) have applied SMA* to produce a bidirectional search algorithm 
that is substantially faster than previous algorithms. Ko~f  and Zhang (2000) describe a divide- 
and-conqueiW approach, and Zhou and Hansen (2002) i~ntroduce memory-bounded A* graph 
search. Korf (1995) surveys memory-bounded search techniques. 

The idea that admissible heuristics can be derived by problem relaxation appears in the 
seminal paper by Held and Karp (1970), who used the the minimum-spanning-tree heuristic 
to solve the TSP. (See Exercise 4.8.) 

The automation of the relaxation process was implemented successfully by Priedi- 
tis (1993), building on earlier work with Mostow (Mostow and Prieditis, 1989). The use 
of pattern databases to derive admissible heuristics is due to Gasser (1995) and Culberson 
and Schaeffer (1998); disjoint pattern datlabases are described by Korf and Felner (2002). 
The probabilistic interpretation of heuristics was investigated in depth by Pearl (1984) and 
Hansson and Mayer (1989). 

By far the most comprehensive source on heuristics and heuristic search algorithms 
is Pearl's (1984) Heuristics text. This book provides especially good coverage of the wide 
variety of offshoots and variations of A*, including rigorous proofs of their formal properties. 
Kana1 and Kumar (1988) present an anthology of important articles on heuristic search. New 
results on search algorithms appear regularly in the journal Art$cial Intelligence. 



132 Chapter 4. Informed Search and Exploration 

Local-search techniques have a long history in mathematics and computer science. In- 
deed, the Newton-Raphson method (Newton, 1671; Raphson, 1690) can be seen as a very 
efficient local-search method for continuous spaces in which gradient information is avail- 
able. Brent (1973) is a classic reference for optimization algorithms that do not require such 
information. Beam search, which we have presented as a local-search algorithm, originated 
as a bounded-width variant of dynamic programming for speech recognition in the HARPY 

system (Lowerre, 1976). A related algorithm is analyzed in depth by Pearl (1984, Ch. 5). 
The topic of local search has been reinvigorated in recent years by surprisingly good 

results for large constraint satisfaction problems such as n-queens (Minton et al., 1992) and 
logical reasoning (Selman et al., 1992) and by the incorporation of randomness, multiple 
simultaneous searches, and other improvements. This renaissance of what Christos Papadi- 
mitriou has called "New Age" algorithms has also sparked increased interest among theoret- 
ical computer scientists (Koutsoupias and Papadimitriou, 1992; Aldous and Vazirani, 1994). 

TABU SEARCH In the field of operations research, a variant of hill climbing called tabu search has gained 
popularity (Glover, 1989; Glover and Laguna, 1997). Drawing on models of limited short- 
term memory in humans, this algorithm maintains a tabu list of k previously visited states that 
cannot be revisited; as well as improving efficiency when searching graphs, this can allow the 
algorithm to escape from some local minima. Another useful improvement on hill climb- 
ing is the STAGE algorithm (Boyan and Moore, 1998). The idea is to use the local maxima 
found by random-restart hill climbing to get an idea of the overall shape of the landscape. 
The algorithm fits a smooth surface to the set of local maxima and then calculates the global 
maximum of that surface analytically. This becomes the new restart point. The algorithm 
has been shown to work in practice on hard problems. (Gomes et al., 1998) showed that 
the run time distributions of systematic backtracking algorithms often have a heavy-tailed 

HEAVY-TAILED olsTRleUrloN distribution, which means that the probability of a very long run time is more than would be 
predicted if the run times were normally distributed. This provides a theoretical justification 
for random restarts. 

Simulated annealing was first described by arkpatrick et al. (1983), who borrowed 
directly from the Metropolis algorithm (which is used to simulate complex systems in 
physics (Metropolis et al., 1953) and was supposedly invented at a Los Alamos dinner party). 
Simulated annealing is now a field in itself, with hundreds of papers published every year. 

Finding optimal solutions in continuous spaces is the subject matter of several fields, 
including optimization theory, optimal control theory, and the calculus of variations. 
Suitable (and practical) entry points are provided by Press et al. (2002) and Bishop (1995). 
Linear programming (LP) was one of the first applications of computers; the simplex algo- 
rithm (Wood and Dantzig, 1949; Dantzig, 1949) is still used despite worst-case exponential 
complexity. Karmarkar (1984) developed a practical polynomial-time algorithm for LP. 

Work by Sewall Wright (1931) on the concept of a fitness landscape was an impor- 
tant precursor to the development of genetic algorithms. In the 1950s, several statisticians, 
including Box (1957) and Friedman (1959), used evolutionary techniques for optimization 

EVOLUTION 
STRATEGIES 

problems, but it wasn't until Rechenberg (1965, 1973) introduced evolution strategies to 
solve optimization problems for airfoils that the approach gained popularity. In the 1960s 
and 1970s, John Holland (1975) championed genetic algorithms, both as a useful tool and 
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as a method to expand our understanding of adaptation, biological or otherwise (Holland, 
ARTIFICIALLIFE 1995). The artificial life movement (Langton, 1995) takes this idea one step further, view- 

ing the products of genetic algorithms as organisms rather than solutions to problems. Work 
in this field by Hinton and Nowlan (1987) and Ackley and Littman (1991) has done much 
to clarify the implications of the Baldwin effect. For general background on evolution, we 
strongly recommend Smith and Szathmhry (1999). 

Most comparisons of genetic algorithms to other approaches (especially stochastic hill- 
climbing) have found that the genetic algorithms are slower to converge (O'Reilly and Op- 
pacher, 1994; Mitchell et al., 1996; Juels and Wattenberg, 1996; Baluja, 1997). Such findings 
are not universally popular within the GA communit:y, but recent attempts within that com- 
munity to understand population-based search as an approximate form of Bayesian learning 
(see Chapter 20) might help to close the gap between Ithe field and its critics (Pelikan et al., 
1999). The theory of quadratic dynamical systems may also explain the performance of 
GAS (Rabani et aZ., 1998). See Lohn et al. (2001) for an example of GAS applied to antenna 
design, and Larrafiaga et al. (1999) for an application to the traveling salesperson problem. 

GENETIC 
PROGRAMMING The field of genetic programming is closely related to genetic algorithms. The princi- 

pal difference is that the representations that are mutated and combined are programs rather 
than bit strings. The programs are represented in the form of expression trees; the expressions 
can be in a standard language such as Lisp or can be specialty designed to represent circuits, 
robot controllers, and so on. Crossover involves splicing together subtrees rather than sub- 
strings. This form of mutation guarantees that the offspring are well-formed expressions, 
which would not be the case if programs were manipulated as strings. 

Recent interest in genetic programming was spurred by John Koza's work (Koza, 1992, 
1994), but it goes back at least to early experiments with machine code by Friedberg (1958) 
and with finite-state automata by Fogel et al. (1966). As with genetic algorithms, there is 
debate about the effectiveness of the technique. Koza et al. (1999) describe a variety of 
experiments on the automated design of circuit devices using genetic programming. 

The journals Evolutionary Conzputation and IEEE Tran,sactions on Evolutionary Com- 
putation cover genetic algorithms and genetic progranlmning; articles are also found in Com- 
plex Systems, Adaptive Behavior, and Art$cial L$e. 'The main conferences are the Inter- 
national Conference on Genetic Algorithms and the Conference on Genetic Programming, 
recently merged to form the Genetic and Evolutionary Computation Conference. The texts 
by Melanie Mitchell (1996) and David Fogel (2000) give good overviews of the field. 

Algorithms for exploring unknown state spaces have been of interest for many centuries. 
Depth-first search in a maze can be implemented by keeping one's left hand on the wall; loops 
can be avoided by marlung each junction. Depth-first search fails with irreversible actions; the 

EULERIANGRAPHS more general problem of exploring of Eulerian graphs (i.e., graphs in which each node has 
equal numbers of incoming and outgoing edges) was solved by an algorithm due to Hierholzer 
(1873). The first thorough algorithmic study of the exploration problem for arbitrary graphs 
was carried out by Deng and Papadimitriou (1990), who developed a completely general 
algorithm, but showed that no bounded competitive ratilo is possible for exploring a general 
graph. Papadimitriou and Yannakalus (1991) examined the question of finding paths to a goal 
in geometric path-planning environments (where all actions are reversible). They showed that 
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a small competitive ratio is achievable with square obstacles, but with general rectangular 
obstacles no bounded ratio can be achieved. (See Figure 4.19.) 

The LRTA* algorithm was developed by Korf (1990) as part of an investigation into 
REAL-TIMESEARCH real-time search for environments in which the agent must act after searching for only a 

fixed amount of time (a much more common situation in two-player games). LRTA* is in 
fact a special case of reinforcement learning algorithms for stochastic environments (Barto 
et al., 1995). Its policy of optimism under uncertainty-always head for the closest unvisited 
state--can result in an exploration pattern that is less efficient in the uninformed case than 
simple depth-first search (Koenig, 2000). Dasgupta et al. (1994) show that online iterative 
deepening search is optimally efficient for finding a goal in a uniform tree with no heuristic 
information. Several informed variants on the LRTA* theme have been developed with dif- 
ferent methods for searching and updating within the known portion of the graph (Pemberton 
and Korf, 1992). As yet, there is no good understanding of how to find goals with optimal 
efficiency when using heuristic information. 

PARALLEL SEARCH The topic of parallel search algorithms was not covered in the chapter, partly because it 
requires a lengthy discussion of parallel computer architectures. Parallel search is becoming 
an important topic in both A1 and theoretical computer science. A brief introduction to the 
A1 literature can be found in Mahanti and Daniels (1993). 

4.1 Trace the operation of A* search applied to the problem of getting to Bucharest from 
Lugoj using the straight-line distance heuristic. That is, show the sequence of nodes that the 
algorithm will consider and the f ,  g, and h score for each node. 

4.2 The heuristic path algorithm is a best-first search in which the objective function is 
f ( n )  = (2 - w)g(n) + wh(n). For what values of w is this algorithm guaranteed to be 
optimal? (You may assume that h is admissible.) What kind of search does this perform 
when w = O? When w = l? When w = 2? 

4.3 Prove each of the following statements: 

a. Breadth-first search is a special case of uniform-cost search. 

b. Breadth-first search, depth-first search, and uniform-cost search are special cases of 
best-first search. 

c. Uniform-cost search is a special case of A* search. 

1-p 4.4 Devise a state space in which A* using GRAPH-SEARCH returns a suboptimal solution 
with an h(n) function that is admissible but inconsistent. 

4.5 We saw on page 96 that the straight-line distance heuristic leads greedy best-first search 
astray on the problem of going from Iasi to Fagaras. However, the heuristic is perfect on the 
opposite problem: going from Fagaras to Iasi. Are there problems for which the heuristic is 
misleading in both directions? 
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4.6 Invent a heuristic function for the 8-puzzle that sometirnes overestimates, and show how 
it can lead to a suboptimal solution on a particular problem. (You can use a computer to help 
if you want.) Prove that, if h never overestimates by more than c, A* using h returns a solution 
whose cost exceeds that of the optimal solution by no more than c. 

4.7 Prove that if a heuristic is consistent, it must be admissible. Construct an admissible 
heuristic that is not consistent. 

4.8 The traveling salesperson problem (TSP) can be solved via the minimum spanning tree 
(MST) heuristic, which is used to estimate the cost of completing a tour, given that a partial 
tour has already been constructed. The MST cost of a set of cities is the smallest sum of the 
link costs of any tree that connects all the cities. 

a. Show how this heuristic can be derived from a relaxed version of the TSP. 

b. Show that the MST heuristic dominates straight-:line distance. 

c. Write a problem generator for instances of the TSP where cities are represented by 
random points in the unit square. 

d. Find an efficient algorithm in the literature for constructing the MST, and use it with an 
admissible search algorithm to solve instances of the TSP. 

4.9 On page 108, we defined the relaxation of the &-puzzle in which a tile can move from 
square A to square B if B is blank. The exact solution of this problem defines Gaschnig's 
heuristic (Gaschnig, 1979). Explain why Gaschnig's heuristic is at least as accurate as hl 
(misplaced tiles), and show cases where it is more accurate than both hl and h2 (Manhattan 
distance). Can you suggest a way to calculate Gaschnig's heuristic efficiently? 

1-ia 4.10 We gave two simple heuristics for the 8-puzzle:: Manhattan distance and misplaced 
tiles. Several heuristics in the literature purport to improve on this-see, for example, Nils- 
son (1971), Mostow and Prieditis (1989), and Hansson et al. (1992). Test these claims by 
implementing the heuristics and comparing the perform;znce of the resulting algorithms. 

4.11 Give the name of the algorithm that results from each of the following special cases: 

a. Local beam search with k = 1. 

b. Local beam search with one initial state and no limit on the number of states retained. 

c. Simulated annealing with T = 0 at all times (and omitting the termination test). 

d. Genetic algorithm with population size N = 1. 

4.12 Sometimes there is no good evaluation function for a problem, but there is a good 
comparison method: a way to tell whether one node is better than another, without assigning 
numerical values to either. Show that this is enough to do a best-first search. Is there an 
analog of A*? 

4.13 Relate the time complexity of LRTA* to its space complexity. 

4.14 Suppose that an agent is in a 3 x 3 maze environment like the one shown in Fig- 
ure 4.18. The agent knows that its initial location is (1,1)1, that the goal is at (3 ,3) ,  and that the 
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four actions Up, Down, Left, Right have their usual effects unless blocked by a wall. The 
agent does not know where the internal walls are. In any given state, the agent perceives the 
set of legal actions; it can also tell whether the state is one it has visited before or a new state. 

a. Explain how this online search problem can be viewed as an offline search in belief state 
space, where the initial belief state includes all possible environment configurations. 
How large is the initial belief state? How large is the space of belief states? 

b. How many distinct percepts are possible in the initial state? 

c. Describe the first few branches of a contingency plan for this problem. How large 
(roughly) is the complete plan? 

Notice that this contingency plan is a solution for every possible environment fitting the given 
description. Therefore, interleaving of search and execution is not strictly necessary even in 
unknown environments. 

\@i@Ep 4.15 In this exercise, we will explore the use of local search methods to solve TSPs of the 
type defined in Exercise 4.8. 

a. Devise a hill-climbing approach to solve TSPs. Compare the results with optimal solu- 
tions obtained via the A* algorithm with the MST heuristic (Exercise 4.8). 

b. Devise a genetic algorithm approach to the traveling salesperson problem. Compare 
results to the other approaches. You may want to consult Larraiiaga et al. (1999) for 
some suggestions for representations. 

1giSjqF 4.16 Generate a large number of 8-puzzle and 8-queens instances and solve them (where 
possible) by hill climbing (steepest-ascent and first-choice variants), hill climbing with ran- 
dom restart, and simulated annealing. Measure the search cost and percentage of solved 
problems and graph these against the optimal solution cost. Comment on your results. 

\ m p  4.17 In this exercise, we will examine hill climbing in the context of robot navigation, using 
the environment in Figure 3.22 as an example. 

a. Repeat Exercise 3.16 using hill climbing. Does your agent ever get stuck in a local 
minimum? Is it possible for it to get stuck with convex obstacles? 

b. Construct a nonconvex polygonal environment in which the agent gets stuck. 

c.  Modify the hill-climbing algorithm so that, instead of doing a depth-1 search to decide 
where to go next, it does a depth-k search. It should find the best k-step path and do 
one step along it, and then repeat the process. 

d. Is there some k for which the new algorithm is guaranteed to escape from local minima? 

e. Explain how LRTA* enables the agent to escape from local minima in this case. 

I(gggiEp 4.18 Compare the performance of A* and RBFS on a set of randomly generated problems 
in the 8-puzzle (with Manhattan distance) and TSP (with MST-see Exercise 4.8) domains. 
Discuss your results. What happens to the performance of RBFS when a small random num- 
ber is added to the heuristic values in the 8-puzzle domain? 



CONSTRAINT 5 SATISFACTION PROBLEMS 

In which we see how treating states as more than just little black boxes leads to the 
invention of a range ofpowe&l new search methods and a deeper understanding 
of problem structure and complexity. 

Chapters 3 and 4 explored the idea that problems can be solved by searching in a 
space of states. These states can be evaluated by domain-specific heuristics and tested to 
see whether they are goal states. From the point of view of the search algorithm, however, 

BLACK BOX each state is a black box with no discernible internal ~~tructure. It is represented by an arbi- 
trary data structure that can be accessed only by the problem-,specific routines-the successor 
function, heuristic function, and goal test. 

This chapter examines constraint satisfaction p~roblems, whose states and goal test 
REPRESENTATION conform to a standard, structured, and very simple representation (Section 5.1). Search al- 

gorithms can be defined that take advantage of the structure of states and use general-purpose 
rather than problem-spec$c heuristics to enable the solution of large problems (Sections 5.2- 
5.3). Perhaps most importantly, the standard representation of the goal test reveals the struc- 
ture of the problem itself (Section 5.4). This leads to methods for problem decomposition 
and to an understanding of the intimate connection between the structure of a problem and 
the difficulty of solving it. 

CONSTRAINT 
SATISFACTION Formally speaking, a constraint satisfaction problem (or CSP) is defined by a set of vari- 
PROBLEM 
VARIABLES ables, XI, X2,. . . , Xn, and a set of constraints, C1, (72,. . . , C,. Each variable Xi has a 
CONSTRAINTS nonempty domain Di of possible values. Each constraint Ci involves some subset of the 
DOMAIN variables and specifies the allowable combinations of values for that subset. A state of the 
VALUES problem is defined by an assignment of values to some or all of the variables, {Xi = vi, X j  = 
ASSIGNMENT vj, . . .). An assignment that does not violate any constraints is called a consistent or legal 
CONSISTENT assignment. A complete assignment is one in which every variable is mentioned, and a so- 

lution to a CSP is a complete assignment that satisfies all the constraints. Some CSPs also 
OBJECTIVE 
FUNCTION require a solution that maximizes an objective function. 
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So what does all this mean? Suppose that, having tired of Romania, we are looking 
at a map of Australia showing each of its states and territories, as in Figure 5.l(a), and that 
we are given the task of coloring each region either red, green, or blue in such a way that no 
neighboring regions have the same color. To formulate this as a CSP, we define the variables 
to be the regions: WA, NT, Q, NSW, V ,  SA, and T .  The domain of each variable is the set 
{red ,  green, blue). The constraints require neighboring regions to have distinct colors; for 
example, the allowable combinations for WA and NT are the pairs 

{ ( r e d ,  green),  ( red ,  blue),  (green, red) ,  (green, blue),  (blue,  red) ,  (blue,  green))  . 

(The constraint can also be represented more succinctly as the inequality WA # NT, pro- 
vided the constraint satisfaction algorithm has some way to evaluate such expressions.) There 
are many possible solutions, such as 

{ WA= red, NT = green, Q = red, NSW = green, V =  red, SA= blue, T =  red ). 

CONSTRAINTGRAPH It is helpful to visualize a CSP as a constraint graph, as shown in Figure 5.l(b). The nodes 
of the graph correspond to variables of the problem and the arcs correspond to constraints. 

Treating a problem as a CSP confers several important benefits. Because the repre- 
sentation of states in a CSP conforms to a standard pattern-that is, a set of variables with 
assigned values-the successor function and goal test can be written in a generic way that 
applies to all CSPs. Furthermore, we can develop effective, generic heuristics that require 
no additional, domain-specific expertise. Finally, the structure of the constraint graph can 
be used to simplify the solution process, in some cases giving an exponential reduction in 
complexity. The CSP representation is the first, and simplest, in a series of representation 
schemes that will be developed throughout the book. 

Tasmania 

(a) (b) 

Figure 5.1 (a) The principal states and territories of Australia. Coloring this map can be 
viewed as a constraint satisfaction problem. The goal is to assign colors to each region so 
that no neighboring regions have the same color. (b) The map-coloring problem represented 
as a constraint graph. 



Section 5.1. Constraint Satisfaction Problems 139 

FINITE DOMAINS 

BOOLEAN CSPS 

INFINITE DOMAINS 

CONSTRAINT 
LANGUAGE 

LINEAR 
CONSTRAINTS 

NONLINEAR 
CONSTRAINTS 

CONTINUOUS 
DOMAINS 

It is fairly easy to see that a CSP can be given an incremental formulation as a standard 
search problem as follows: 

0 Initial state: the empty assignment {), in which all variables are unassigned. 
0 Successor function: a value can be assigned to any unassigned variable, provided that 

it does not conflict with previously assigned variables. 

0 Goal test: the current assignment is complete. 
0 Path cost: a constant cost (e.g., 1) for every step. 

Every soluf on must be a complete assignment and therefore appears at depth n if there are 
n variables. Furthermore, the search tree extends only to depth n. For these reasons, depth- 
first search algorithms are popular for CSPs. (See Section 5.2.) It is also the case that the 
path by which a solution is reached is irrelevant. Hence, we can also use a complete-state 
formulation, in which every state is a complete assignment that might or might not satisfy 
the constraints. Local search methods work well for this formulation. (See Section 5.3.) 

The simplest kind of CSP involves variables that are discrete and have finite domains. 
Map-coloring problems are of this kind. The 8-queens problem described in Chapter 3 can 
also be viewed as a finite-domain CSP, where the variables Q1, . . . , Q8 are the positions of 
each queen in columns 1, . . . , 8  and each variable has the domain {1,2,3,4,5,6,7,8).  If the 
maximum domain size of any variable in a CSP is d,  then the number of possible complete 
assignments is O(dn)-that is, exponential in the number of variables. Finite-domain CSPs 
include Boolean CSPs, whose variables can be either true or false. Boolean CSPs include 
as special cases some NP-complete problems, such as 3SAT. (See Chapter 7.) In the worst 
case, therefore, we cannot expect to solve finite-domain CSPs in less than exponential time. 
In most practical applications, however, general-purpose CSP algorithms can solve problems 
orders of magnitude larger than those solvable via the general-purpose search algorithms that 
we saw in Chapter 3. 

Discrete variables can also have infinite domains-for example, the set of integers or 
the set of strings. For example, when scheduling construction jobs onto a calendar, each job's 
start date is a variable and the possible values are integer numbers of days from the current 
date. With infinite domains, it is no longer possible to1 describe constraints by enumerating 
all allowed combinations of values. Instead, a constraint language must be used. For ex- 
ample, if Jobl,  which takes five days, must precede Jobs, then we would need a constraint 
language of algebraic inequalities such as StartJobl + 5 5 StartJobs. It is also no longer 
possible to solve such constraints by enumerating all possible assignments, because there are 
infinitely many of them. Special solution algorithms (which we will not discuss here) exist 
for linear constraints on integer variables-that is, constraints, such as the one just given, 
in which each variable appears only in linear form. It can be shown that no algorithm exists 
for solving general nonlinear constraints on integer variables. In some cases, we can reduce 
integer constraint problems to finite-domain problems rsimply by bounding the values of all 
the variables. For example, in a scheduling problem, we can set an upper bound equal to the 
total length of all the jobs to be scheduled. 

Constraint satisfaction problems with continuous (domains are very common in the real 
world and ar~e widely studied in the field of operations research. For example, the scheduling 
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of experiments on the Hubble Space Telescope requires very precise timing of observations; 
the start and finish of each observation and maneuver are continuous-valued variables that 
must obey a variety of astronomical, precedence, and power constraints. The best-known 
category of continuous-domain CSPs is that of linear programming problems, where con- 
straints must be linear inequalities forming a convex region. Linear programming problems 
can be solved in time polynomial in the number of variables. Problems with different types of 
constraints and objective functions have also been studied-quadratic programming, second- 
order conic programming, and so on. 

In addition to examining the types of variables that can appear in CSPs, it is useful to 
look at the types of constraints. The simplest type is the unary constraint, which restricts the 
value of a single variable. For example, it could be the case that South Australians actively 
dislike the color green. Every unary constraint can be eliminated simply by preprocessing 
the domain of the corresponding variable to remove any value that violates the constraint. A 
binary constraint relates two variables. For example, SA # NSW is a binary constraint. A 
binary CSP is one with only binary constraints; it can be represented as a constraint graph, as 
in Figure 5.1 (b). 

Higher-order constraints involve three or more variables. A familiar example is pro- 
vided by cryptarithmetic puzzles. (See Figure 5.2(a).) It is usual to insist that each letter in 
a cryptarithmetic puzzle represent a different digit. For the case in Figure 5.2(a)), this would 
be represented as the six-variable constraint AlldiSf(F, T, U, W, R, 0). Alternatively, it can 
be represented by a collection of binary constraints such as F # T. The addition constraints 
on the four columns of the puzzle also involve several variables and can be written as 

where XI, X2, and X3 are auxiliary variables representing the digit (0 or 1) carried over into 
the next column. Higher-order constraints can be represented in a constraint hypergraph, 
such as the one shown in Figure 5.2(b). The sharp-eyed reader will have noticed that the 
AlldzSf constraint can be broken down into binary constraints-F # T, F # U, and so on. 
In fact, as Exercise 5.11 asks you to prove, every higher-order, finite-domain constraint can 
be reduced to a set of binary constraints if enough auxiliary variables are introduced. Because 
of this, we will deal only with binary constraints in this chapter. 

The constraints we have described so far have all been absolute constraints, violation 
of which rules out a potential solution. Many real-world CSPs include preference constraints 
indicating which solutions are preferred. For example, in a university timetabling problem, 
Prof. X might prefer teaching in the morning whereas Prof. Y prefers teaching in the after- 
noon. A timetable that has Prof. X teaching at 2 p.m. would still be a solution (unless Prof. X 
happens to be the department chair), but would not be an optimal one. Preference constraints 
can often be encoded as costs on individual variable assignments-for example, assigning 
an afternoon slot for Prof. X costs 2 points against the overall objective function, whereas a 
morning slot costs 1. With this formulation, CSPs with preferences can be solved using opti- 
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F O U R  

(a) (b) 

Figure 5.2 (a) A cryptarithmetic problem. Each letter stands for a distinct digit; the aim is 
to find a substitution of digits for letters such that the resultirig sum is arithmetically correct, 
with the added restriction that no leading zeroes are alllowed. (b) The constraint hypergraph 
for the cryptarithmetic problem, showing the Alldzff constraint as well as the column addition 
constraints. Each constraint is a square box connected to the variables it constrains. 

mization search methods, either path-based or local. We do not discuss such CSPs further in 
this chapter, but we provide some pointers in the bibliographiical notes section. 

5.2 BACKTRACKING SEARCH FOR CSPS 

The preced~ng section gave a formulation of CSPs as search problems. Using this formula- 
tion, any of the search algorithms from Chapters 3 and 4 can solve CSPs. Suppose we apply 
breadth-first search to the generic CSP problem formulation given in the preceding section. 
We quickly notice something terrible: the branching factor at the top level is nd, because any 
of d values can be assigned to any of n variables. At the next level, the branching factor is 
(n - l)d, and so on for n levels. We generate a tree with n! . dn leaves, even though there are 
only dn possible complete assignments! 

Our seemingly reasonable but naYve problem formulation has ignored a crucial property 
COMMUTATWITY common to all CSPs: commutativity. A problem is commutative if the order of application 

of any given set of actions has no effect on the outcome. This is the case for CSPs be- 
cause, when assigning values to variables, we reach the same partial assignment, regardless 
of order. Therefore, all CSP search algorithms generale successors by considering possible 
assignments for only a single variable at each node in the search tree. For example, at the 
root node of a search tree for coloring the map of Australia, we might have a choice between 
SA = red ,  SA = green,  and SA = blue,  but we would never choose between SA = red and 
WA = blue. With this restriction, the number of leaves is dn, as we would hope. 

BACKTRACKING 
SEARCH The term backtracking search is used for a depth-first search that chooses values for 

one variable at a time and backtracks when a variable h~as no legal values left to assign. The 
algorithm is shown in Figure 5.3. Notice that it uses, iln effect, the one-at-a-time method of 
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function BACKTRACKING-SEARCH(CSP) returns a solution, or failure 
return RECURSIVE-BACKTRACKING({ }, csp) 

I function R E C U R S I V E - B A C K T R A C K I N G ( ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ,  csp) returns a solution, or failure 

1 if assignment is complete then return assignment 
var t SELECT-UNASSIGNED-VARIABLE(VARIABLES[CS~ assignment, csp) 

' for each value in ORDER-DOMAIN-VALUES(~~~, assignment, csp) do 
if value is consistent with assignment according to C O N S T R A I N T S [ ~ S ~ ]  then 

add {var  = value) to assignment 
result + R E C U R S I V E - B A C K T R A C K I N G ( ~ S ~ ~ ~ ~ ~ ~ ~ ~ ,  c ~ p )  
if result # failure then return result 
remove {war = value) from assignment 

return failure 

Figure 5.3 A simple backtracking algorithm for constraint satisfaction problems. The 
algorithm is modeled on the recursive depth-first search of Chapter 3. The functions 
SELECT-UNASSIGNED-VARIABLE and ORDER-DOMAIN-VALUES can be used to imple- 
ment the general-purpose heuristics discussed in the text. 

Figure 5.4 Part of the search tree generated by simple backtracking for the map-coloring 
problem in Figure 5.1. 

incremental successor generation described on page 76. Also, it extends the current assign- 
ment to generate a successor, rather than copying it. Because the representation of CSPs is 
standardized, there is no need to supply BACKTRACKING-SEARCH with a domain-specific 
initial state, successor function, or goal test. Part of the search tree for the Australia problem 
is shown in Figure 5.4, where we have assigned variables in the order WA, NT, Q, . . .. 

Plain backtracking is an uninformed algorithm in the terminology of Chapter 3, so we 
do not expect it to be very effective for large problems. The results for some sample problems 
are shown in the first column of Figure 5.5 and confirm our expectations. 

In Chapter 4 we remedied the poor performance of uninformed search algorithms by 
supplying them with domain-specific heuristic functions derived from our knowledge of the 
problem. It turns out that we can solve CSPs efficiently without such domain-specific knowl- 
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Problem 11 Backtracking ( BT+MRV / Forward Checking ( FC+MRV / Min-Conflicts 1 
(> 1,000K) (> 1,000K) I <  60 i 6  

n-Queens (> 40,OOOK) 13,500K (> 40,000K.) 817K 
Zebra 3,859K 351C 0.5K 
Random 1 415K 3K 26K 2K 
Random 2 942K 27K 771C 15K 

Figure 5.5 Comparison of various CSP algorithms on various problems. The algorithms 
from left to right, are simple backtracking, backtracking with the MRV heuristic, forward 
checking, forward checking with MRV, and minimum conflicts local search. Listed in each 
cell is the median number of consistency checks (over five runs) required to solve the prob- 
lem; note that all entries except the two in the upper right are in thousands (K). Numbers in 
parentheses mean that no answer was found in the allot~ted number of checks. The first prob- 
lem is finding a 4-coloring for the 50 states of the United States of America. The remaining 
problems are taken from Bacchus and van Run (1995), Table 1. The second problem counts 
the total number of checks required to solve all n-Queens problems for n from 2 to 50. The 
third is the "Zebra Puzzle," as described in Exercise 5.13. The last two are artificial random 
problems. (Min-conflicts was not run on these.) The results suggest that forward checking 
with the MRV heuristic is better on all these problems than the other backtracking algorithms, 
but not always better than min-conflicts local search. 

edge. Instead, we find general-purpose methods that address the following questions: 

1. Which variable should be assigned next, and in what order should its values be tried? 

2. What are the implications of the current variable assignments for the other unassigned 
variables? 

3. When a path fails-that is, a state is reached in which a variable has no legal values- 
can the search avoid repeating this failure in subsequent paths? 

The subsections that follow answer each of these questions in turn. 

Variable and value ordering 

The backtraclung algorithm contains the line 

war t SELECT-UNASSIGNED-VARIABLE(VARIABLES[CS~], assignment, csp). 

By default, SELECT-UNASSIGNED-VARIABLE simply selects the next unassigned variable 
in the order given by the list VARIABLES[~S~]. This static variable ordering seldom results in 
the most efficient search. For example, after the assignments for WA = red and NT = green, 
there is only one possible value for SA, so it makes sense to assign SA = blue next rather than 
assigning Q. In fact, after SA is assigned, the choices for Q, NS W, and V are all forced. This 
intuitive idea-choosing the variable with the fewest "legal" values-is called the minirilum 
remaining values (MRV) heuristic. It also has been called the "most constrained variable" or VALUES 

"fail-first" heuristic, the latter because it picks a variable that is most likely to cause a failure 
soon, thereby pruning the search tree. If there is a variable X with zero legal values remain- 
ing, the MRV heuristic will select X and failure will be detected immediately-avoiding 
pointless searches through other variables which always will fail when X is finally selected. 
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The second column of Figure 5.5, labeled BT+MRV, shows the performance of this heuristic. 
The performance is 3 to 3,000 times better than simple backtracking, depending on the prob- 
lem. Note that our performance measure ignores the extra cost of computing the heuristic 
values; the next subsection describes a method that makes this cost manageable. 

The MRV heuristic doesn't help at all in choosing the first region to color in Australia, 
DEGREE HEURISTIC because initially every region has three legal colors. In this case, the degree heuristic comes 

in handy. It attempts to reduce the branching factor on future choices by selecting the vari- 
able that is involved in the largest number of constraints on other unassigned variables. In 
Figure 5.1, SA is the variable with highest degree, 5; the other variables have degree 2 or 3, 
except for T, which has 0. In fact, once SA is chosen, applying the degree heuristic solves the 
problem without any false steps-you can choose any consistent color at each choice point 
and still arrive at a solution with no backtracking. The minimum remaining values heuristic 
is usually a more powerful guide, but the degree heuristic can be useful as a tie-breaker. 

Once a variable has been selected, the algorithm must decide on the order in which to 
LEAST- 
CONSTRAINING- examine its values. For this, the least-constraining-value heuristic can be effective in some 
VALUE 

cases. It prefers the value that rules out the fewest choices for the neighboring variables in 
the constraint graph. For example, suppose that in Figure 5.1 we have generated the partial 
assignment with WA = red and NT = green, and that our next choice is for Q. Blue would 
be a bad choice, because it eliminates the last legal value left for Q's neighbor, SA. The 
least-constraining-value heuristic therefore prefers red to blue. In general, the heuristic is 
trying to leave the maximum flexibility for subsequent variable assignments. Of course, if we 
are trying to find all the solutions to a problem, not just the first one, then the ordering does 
not matter because we have to consider every value anyway. The same holds if there are no 
solutions to the problem. 

Propagating information through constraints 

So far our search algorithm considers the constraints on a variable only at the time that the 
variable is chosen by SELECT-UNASSIGNED-VARIABLE. But by looking at some of the 
constraints earlier in the search, or even before the search has started, we can drastically 
reduce the search space. 

Forward checking 

FORWARD 
CHECKING One way to make better use of constraints during search is called forward checking. When- 

ever a variable X is assigned, the forward checking process looks at each unassigned variable 
Y that is connected to X by a constraint and deletes from Y's domain any value that is in- 
consistent with the value chosen for X. Figure 5.6 shows the progress of a map-coloring 
search with forward checking. There are two important points to notice about this exam- 
ple. First, notice that after assigning WA = red and Q = green, the domains of NT and SA 
are reduced to a single value; we have eliminated branching on these variables altogether by 
propagating information from WA and Q. The MRV heuristic, which is an obvious part- 
ner for forward checking, would automatically select SA and NT next. (Indeed, we can 
view forward checking as an efficient way to incrementally compute the information that the 
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Initial domains 
A.fter WA=red 
After Q=green 
After V=blue 

Figure 5.6 The progress of a map-coloring search with forward checking. WA = red 
is assigned first; then forward chechng deletes red from the domains of the neighboring 
variables NT and SA. After Q = green, green is deleted from the domains of NT, SA, and 
NS W. After V = blue,  blue is deleted from the domains of NSW and SA, leaving SA with 
no legal values. 

8 
8 
(R 

MRV heuristic needs to do its job.) A second point to notice is that, after V = blue, the 
domain of SA is empty. Hence, forward checking has detected that the partial assignment 
{ WA = red, Q = green, V = blue) is inconsistent with the constraints of the problem, and 
the algorithm will therefore backtrack immediately. 

Constraint propagation 

G B  
B 

Although forward checking detects many inconsistencies, it does not detect all of them. For 
example, consider the third row of Figure 5.6. It shows that when WA is red and Q is green, 
both N T  and SA are forced to be blue. But they are ,adjacent and so cannot have the same 
value. Forward checking does not detect this as an inconsistency, because it does not look far 

CONSTRAINT PROPAGATION enough ahead. Constraint propagation is the general term for propagating the implications 
of a constraint on one variable onto other variables; xn this case we need to propagate from 
WA and Q onto N T  and SA, (as was done by forward checking) and then onto the constraint 
between N T  and SA to detect the inconsistency. And we want to do this fast: it is no good 
reducing the amount of search if we spend more time propagating constraints than we would 
have spent doing a simple search. 

ARC CONSISTENCY The idea of arc consistency provides a fast method of constraint propagation that is 
substantially stronger than forward checking. Here, ''arc" refers to a directed arc in the con- 
straint graph, such as the arc from SA to NS W. Given the current domains of SA and NS W, 
the arc is consistent if, for every value x of SA, there is some value y of NS W that is consis- 
tent with x. In the third row of Figure 5.6, the current domains of SA and NSW are {blue) 
and {red, blue) respectively. For SA = blue, there is a consistent assignment for NSW, 
namely, NSW = red; therefore, the arc from SA to I1JS'W is consistent. On the other hand, 
the reverse arc from NS W to SA is not consistent: for Ithe assignment NS W = blue, there is 
no consistent assignment for SA. The arc can be made consistent by deleting the value blue 
from the domain of NS W. 

We can also apply arc consistency to the arc from SA to NT at the same stage in the 
search process. The third row of the table in Figure 5.6 shows that both variables have the 
domain {blue). The result is that blue must be deleted from the domain of SA, leaving the 
domain empty. Thus, applying arc consistency has resulted ira early detection of an inconsis- 
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function AC-3( csp) returns the CSP, possibly with reduced domains 
inputs: csp, a binary CSP with variables {XI, X 2 ,  . . . , Xn} 
local variables: queue, a queue of arcs, initially all the arcs in csp 

while queue is not empty do 
(Xi, Xj)  +- R E M O V E - F I R S T ( ~ ~ ~ ~ ~ )  
if REMOVE-INCONSISTENT-VALUES(X~, Xj) then 

for each Xk in NEIGHBORS[~~]  - {Xj) do 
add ( X k ,  Xi) to queue 

function REMOVE-INCONSISTENT-VALUES(X~, Xj) returns true iff we remove a value 
removed +false 
for each x in  DOMAIN[^^] do 

if no value y in  DOMAIN[^^] allows (x,y) to satisfy the constraint between Xi and X j  
then delete x from DoMAIN[X~]; removed +- true 

return removed 

Figure 5.7 The arc consistency algorithm AC-3. After applying AC-3, either every arc 
is arc-consistent, or some variable has an empty domain, indicating that the CSP cannot be 
made arc-consistent (and thus the CSP cannot be solved). The name "AC-3" was used by the 
algorithm's inventor (Mackworth, 1977) because it's the third version developed in the paper. 

tency that is not detected by pure forward checking. 
Arc consistency checking can be applied either as a preprocessing step before the be- 

ginning of the search process, or as a propagation step (like forward checking) after every 
assignment during search. (The latter algorithm is sometimes called MAC, for Maintaining 
Arc Consistency.) In either case, the process must be applied repeatedly until no more incon- 
sistencies remain. This is because, whenever a value is deleted from some variable's domain 
to remove an arc inconsistency, a new arc inconsistency could arise in arcs pointing to that 
variable. The full algorithm for arc consistency, AC-3, uses a queue to keep track of the arcs 
that need to be checked for inconsistency. (See Figure 5.7.) Each arc (Xi, Xj) in turn is 
removed from the agenda and checked; if any values need to be deleted from the domain of 
Xi, then every arc (Xk, Xi) pointing to Xi must be reinserted on the queue for checking. The 
complexity of arc consistency checking can be analyzed as follows: a binary CSP has at most 
0(n2) arcs; each arc (Xk, Xi) can be inserted on the agenda only d times, because Xi has 
at most d values to delete; checking consistency of an arc can be done in 0(d2) time; so the 
total worst-case time is 0(n2d3). Although this is substantially more expensive than forward 
checking, the extra cost is usually worthwhile.' 

Because CSPs include 3SAT as a special case, we do not expect to find a polynomial- 
time algorithm that can decide whether a given CSP is consistent. Hence, we deduce that arc 
consistency does not reveal every possible inconsistency. For example, in Figure 5.1, the par- 
tial assignment { WA = red, NS W = red) is inconsistent, but AC-3 will not find the incon- 

I The AC-4 algorithm, due to Mohr and Henderson (1986), runs in O(n2d2). See Exercise 5.10. 
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K-CONSISTENCY sistency. Stronger forms of propagation can be defined using the notion called k-consistency. 
A CSP is k-consistent if, for any set of k - 1 variables and for any consistent assignment to 
those variables, a consistent value can always be assigned to any kth variable. For example, 
1-consistency means that each individual variable by itself is consistent; this is also called 

NODECONSISTENCY node consistency. 2-consistency is the same as arc consistency. 3-consistency means that 
any pair of adjacent variables can always be extended to a third neighboring variable; this is 

PATH CONSISTENCY also called path consistency. 
STRONGLY 
K-CONSISTENT A gra.ph is strongly k-consistent if it is k-consistent and is also (k - 1)-consistent, 

(k - 2)-consistent, . . . all the way down to 1-consistent. Now suppose we have a CSP problem 
with n nodes and make it strongly n-consistent (i.e., strongly k-consistent for k = n). We can 
then solve the problem with no backtracking. First, we choose a consistent value for XI. We 
are then guaranteed to be able to choose a value for X 2  because the graph is 2-consistent, for 
X S  because it is 3-consistent, and so on. For each variable &, we need only search through 
the d values in the domain to find a value consistent with XI, . . . , Xi-b We are guaranteed to 
find a solution in time O(nd). Of course, there is no free lunch: any algorithm for establishing 
n-consistency must take time exponential in n in the worst c,ase. 

There is a broad middle ground between n-consistenc:y and arc consistency: running 
stronger co~nsistency checks will take more time, but will have a greater effect in reducing 
the branching factor and detecting inconsistent partial assignments. It is possible to calculate 
the smallest value k such that running k-consistency einsures that the problem can be solved 
without backtracking (see Section 5.4), but this is often impractical. In practice, determining 
the appropriate level of consistency checking is mostly an empirical science. 

Handling special constraints 

Certain types of constraints occur frequently in real problems and can be handled using 
special-purpose algorithms that are more efficient than the general-purpose methods de- 
scribed so far. For example, the Alldifl constraint says that all the variables involved must 
have distinct values (as in the cryptarithmetic problem). One simple form of inconsistency 
detection for Alldzf constraints works as follows: if there iue m variables involved in the 
constraint, and if they have n possible distinct values altogether, and m > n, then the con- 
straint cannot be satisfied. 

This leads to the following simple algorithm: First, remove any variable in the con- 
straint that has a singleton domain, and delete that variable's value from the domains of the 
remaining variables. Repeat as long as there are singleton variables. If at any point an empty 
domain is produced or there are more variables than domain values left, then an inconsistency 
has been detected. 

We can use this method to detect the inconsistency in the partial assignment { WA = red, 
NS W = red) for Figure 5.1. Notice that the variables SA, NT, and Q are effectively con- 
nected by an Alldzfl constraint because each pair must be a different color. After applying 
AC-3 with the partial assignment, the domain of each variable is reduced to {green, blue). 
That is, we have three variables and only two colors, so the Alldzf constraint is violated. 
Thus, a simple consistency procedure for a higher-order constraint is sometimes more effec- 
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tive than applying arc consistency to an equivalent set of binary constraints. 
RESOURCE 
CONSTRAINT Perhaps the most important higher-order constraint is the resource constraint, some- 

times called the utmost constraint. For example, let PA1, . . . , PA4 denote the numbers of 
personnel assigned to each of four tasks. The constraint that no more than 10 personnel are 
assigned in total is written as atmost ( l0 ,  PAI, PA2, PA3, PA4). An inconsistency can be 
detected simply by checlung the sum of the minimum values of the current domains; for 
example, if each variable has the domain { 3 , 4 , 5 , 6 ) ,  the utmost constraint cannot be satis- 
fied. We can also enforce consistency by deleting the maximum value of any domain if it is 
not consistent with the minimum values of the other domains. Thus, if each variable in our 
example has the domain {2 ,3 ,  4 , 5 , 6 ) ,  the values 5 and 6 can be deleted from each domain. 

For large resource-limited problems with integer values-such as logistical problems 
involving moving thousands of people in hundreds of vehicles-it is usually not possible to 
represent the domain of each variable as a large set of integers and gradually reduce that 
set by consistency checking methods. Instead, domains are represented by upper and lower 
bounds and are managed by bounds propagation. For example, let's suppose there are two 
flights, 271 and 272, for which the planes have capacities 165 and 385, respectively. The 
initial domains for the numbers of passengers on each flight are then 

Flight271 E [ O ,  1651 and Flight272 E [O,  3851 . 
Now suppose we have the additional constraint that the two flights together must carry 420 
people: Flight271 + Flight272 E [420,420]. Propagating bounds constraints, we reduce the 
domains to 

Flight271 E 135,1651 and Flight272 E [255,385] . 
We say that a CSP is bounds-consistent if for every variable X, and for both the lower bound 
and upper bound values of X, there exists some value of Y that satisfies the constraint be- 

BOUNDS ,,o,ATlo, tween X and Y, for every variable Y. This kind of bounds propagation is widely used in 
practical constraint problems. 

Intelligent backtracking: looking backward 

The BACKTRACKING-SEARCH algorithm in Figure 5.3 has a very simple policy for what to 
do when a branch of the search fails: back up to the preceding variable and try a different 

~!$$&'$,!~AL value for it. This is called chronological backtracking, because the most recent decision 
point is revisited. In this subsection, we will see that there are much better ways. 

Consider what happens when we apply simple backtracking in Figure 5.1 with a fixed 
variable ordering Q ,  NSW, V, T ,  SA, WA, NT. Suppose we have generated the partial 
assignment { Q  = red, NSW = green, V = blue, T = red). When we try the next variable, 
SA, we see that every value violates a constraint. We back up to T and try a new color 
for Tasmania! Obviously this is silly-recoloring Tasmania cannot resolve the problem with 
South Australia. 

A more intelligent approach to backtracking is to go all the way back to one of the 
CONFLICTSET set of variables that caused the failure. This set is called the conflict set; here, the conflict 

set for SA is {Q,  NSW, V). In general, the conflict set for variable X is the set of previ- 
BACKJUMPING ously assigned variables that are connected to X by constraints. The backjumping method 
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backtracks to the most recent variable in the conflict set; in this case, backjumping would 
jump over Tasmania and try a new value for V. This is easily implemented by modifying 
BACKTRACKING-SEARCH so that it accumulates the conflict set while checking for a legal 
value to assign. If no legal value is found, it should return the most recent element of the 
conflict set along with the failure indicator. 

The sharp-eyed reader will have noticed that forward checking can supply the conflict 
set with no extra work: whenever forward checking based on an assignment to X deletes a 
value frorn Y's domain, it should add X to Y's conflict set. Also, every time the last value is 
deleted from Y's domain, the variables in the conflict set of Y are added to the conflict set of 
X. Then, when we get to Y, we know immediately where to backtrack if needed. 

The eagle-eyed reader will have noticed something odd: backjumping occurs when 
every value in a domain is in conflict with the current assignment; but forward checking 
detects this event and prevents the search from ever reaching such a node! In fact, it can be 
shown that every branch pruned by backjumping is a130 pruned by lorward checking. Hence, 
simple backjumping is redundant in a forward-checking search or, indeed, in a search that 
uses stronger consistency chechng, such as MAC. 

Despite the observations of the preceding paragraph, the idea behind backjumping re- 
mains a good one: to backtrack based on the reasons for failure. Backjumping notices failure 
when a variable's domain becomes empty, but in many cases a branch is doomed long before 
this occurs. Consider again the partial assignment { IVA = red, NS W = red) (which, from 
our earlier discussion, is inconsistent). Suppose we try T = red next and then assign NT,  Q, 
V, SA. We know that no assignment can work for these last four variables, so eventually we 
run out of values to try at NT. Now, the question is, where to backtrack? Backjumping cannot 
work, because N T  does have values consistent with the preceding assigned variables-NT 
doesn't have a complete conflict set of preceding variables that caused it to fail. We know, 
however, that the four variables NT, Q, V, and SA, taken together, failed because of a set of 
preceding variables, which must be those variables wl~iich directly conflict with the four. This 
leads to a deeper notion of the conflict set for a variable such as NT: it is that set of preced- 
ing variables that caused NT,  together with any subsequent variables, to have no consistent 
solution. In this case, the set is WA and NS W, so the algorithm should backtrack to NS W 
and skip over Tasmania. A backjumping algorithm that uses conflict sets defined in this way 

j E c E  is called conflict-directed backjumping. 
We must now explain how these new conflict sets are computed. The method is in 

fact very simple. The "terminal7' failure of a branch of the search always occurs because a 
variable's domain becomes empty; that variable has a standard conflict set. In our example, 
SA fails, and its conflict set is (say) { WA, NT, Q) .  We backjump to Q, and Q absorbs 
the conflict set from SA (minus Q itself, of course) into its own direct conflict set, which is 
{NT, NS W); the new conflict set is { WA, NT, NSMT). That is, there is no solution from 
Q onwards, given the preceding assignment to { WA; ?\IT, NSW). Therefore, we backtrack 
to NT, the most recent of these. N T  absorbs { WA, NT,  NSW) - {NT) into its own 
direct conflict set { WA}, giving { WA, NSW) (as stated in the previous paragraph). Now 
the algorithm backjumps to NSW, as we would hope. To summarize: let XX, be the current 
variable, and let c o n f ( X J )  be its conflict set. If every possible value for XJ fails, backjump 
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to the most recent variable Xi in conf (Xj), and set 

conf (Xi) +- conf (Xi) u conf (Xj) - {Xi) . 
Conflict-directed backjumping takes us back to the right point in the search tree, but doesn't 

CONSTRAINT 
LEARNING prevent us from making the same mistakes in another branch of the tree. Constraint learning 

actually modifies the CSP by adding a new constraint that is induced from these conflicts. 

5.3 LOCAL SEARCH FOR CONSTRAINT SATISFACTION PROBLEMS 

Local-search algorithms (see Section 4.3) turn out to be very effective in solving many CSPs. 
They use a complete-state formulation: the initial state assigns a value to every variable, 
and the successor function usually works by changing the value of one variable at a time. 
For example, in the 8-queens problem, the initial state might be a random configuration of 
8 queens in 8 columns, and the successor function picks one queen and considers moving it 
elsewhere in its column. Another possibility would be start with the 8 queens, one per column 
in a permutation of the 8 rows, and to generate a successor by having two queens swap rows.2 
We have actually already seen an example of local search for CSP solving: the application of 
hill climbing to the n-queens problem (page 112). The application of WALKSAT (page 223) 
to solve satisfiability problems, which are a special case of CSPs, is another. 

In choosing a new value for a variable, the most obvious heuristic is to select the value 
MIN-CONFLICTS that results in the minimum number of conflicts with other variables-the min-conflicts 

heuristic. The algorithm is shown in Figure 5.8 and its application to an 8-queens problem is 
diagrammed in Figure 5.9 and quantified in Figure 5.5. 

Min-conflicts is surprisingly effective for many CSPs, particularly when given a reason- 
able initial state. Its performance is shown in the last column of Figure 5.5. Amazingly, on 
the n-queens problem, if you don't count the initial placement of queens, the runtime of min- 
conflicts is roughly independent of problem size. It solves even the million-queens problem 
in an average of 50 steps (after the initial assignment). This remarkable observation was the 
stimulus leading to a great deal of research in the 1990s on local search and the distinction be- 
tween easy and hard problems, which we take up in Chapter 7. Roughly speaking, n-queens 
is easy for local search because solutions are densely distributed throughout the state space. 
Min-conflicts also works well for hard problems. For example, it has been used to schedule 
observations for the Hubble Space Telescope, reducing the time taken to schedule a week of 
observations from three weeks (!) to around 10 minutes. 

Another advantage of local search is that it can be used in an online setting when the 
problem changes. This is particularly important in scheduling problems. A week's airline 
schedule may involve thousands of flights and tens of thousands of personnel assignments, 
but bad weather at one airport can render the schedule infeasible. We would like to repair the 
schedule with a minimum number of changes. This can be easily done with a local search 
algorithm starting from the current schedule. A backtracking search with the new set of 

Local search can easily be extended to CSPs with objective functions. In that case, all the techniques for hill 
climbing and simulated annealing can be applied to optimize the objective function. 
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function M I N - C O N F L I C T S ( C S ~ ,  max-steps) returns a solution or failure 
inputs: csp, a constraint satisfaction problem 

max-steps, the number of steps allowed before giving up 

current + an initial complete assignment for csp 
for i = 1 to max-steps do 

if current is a solution for csp then return current 
var t a randomly chosen, conflicted variable from V A R I A B L E S [ C . S ~ ]  
value t the value v for var that minimizes C O N F L I C T S ( ~ ~ ~ ,  v ,  current, csp) 
set var = value in current 

return failure 

Figure 5.8 The MIN-CONFLICTS algorithm for solving CSPs by local search. The initial 
state may be chosen randomly or by a greedy assignment process that chooses a minimal- 
conflict value for each variable in turn. The CONFLICTS function counts the number of 
constraints violated by a particular value, given the rest of the current assignment. 

Figure 5.9 A two-step solution for an &-queens problem using min-conflicts. At each 
stage, a queen is chosen for reassignment in its colunnn. The number of conflicts (in this 
case, the number of attacking queens) is shown in each square. The algorithm moves the 
queen to the min-conflict square, breaking ties randomly. 

constraints usually requires much more time and might find a solution with many changes 
from the current schedule. 

In this section, we examine ways in which the structure of the problem, as represented by the 
constraint graph, can be used to find solutions quickly. ;Most 13f the approaches here are very 
general and are applicable to other problems besides CSPs, for example probabilistic reason- 
ing. After all, the only way we can possibly hope to deal with the real world is to decompose 
it into many subproblems. Looking again at Figure 5.l(b) with a view to identifying problem 
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structure, one fact stands out: Tasmania is not connected to the mainland.3 Intuitively, it is ob- 

$/:p':#[LEETS vious that coloring Tasmania and coloring the mainland are independent subproblems-any 
solution for the mainland combined with any solution for Tasmania yields a solution for the 

CONNECTED whole map. Independence can be ascertained simply by looking for connected components 
of the constraint graph. Each component corresponds to a subproblem CSPi. If assignment 
S, is a solution of CSP,, then U, S, is a solution of U, CSP,. Why is this important? Con- 
sider the following: suppose each CSP, has c variables from the total of n variables, where 
c is a constant. Then there are n /c  subproblems, each of which takes at most dC work to 
solve. Hence, the total work is O(dcn/c), which is linear in n; without the decomposition, 
the total work is O(dn), which is exponential in n. Let's make this more concrete: dividing a 
Boolean CSP with n = 80 into four subproblems with c = 20 reduces the worst-case solution 
time from the lifetime of the universe down to less than a second. 

Completely independent subproblems are delicious, then, but rare. In most cases, the 
subproblems of a CSP are connected. The simplest case is when the constraint graph forms a 
tree: any two variables are connected by at most one path. Figure 5.10(a) shows a schematic 
e x a m ~ l e . ~  We will show that any tree-structured CSP can be solved in time linear in the 
number of variables. The algorithm has the following steps: 

1. Choose any variable as the root of the tree, and order the variables from the root to the 
leaves in such a way that every node's parent in the tree precedes it in the ordering. (See 
Figure 5.10(b).) Label the variables XI, . . . , X, in order. Now, every variable except 
the root has exactly one parent variable. 

2. For j from n down to 2, apply arc consistency to the arc (Xi, Xj), where Xi is the 
parent of Xj, removing values from DOMAIN[&] as necessary. 

3. For j from 1 to n, assign any value for Xj consistent with the value assigned for Xi, 
where Xi is the parent of Xj. 

There are two key points to note. First, after step 2 the CSP is directionally arc-consistent, 
so the assignment of values in step 3 requires no backtracking. (See the discussion of k- 
consistency on page 147.) Second, by applying the arc-consistency checks in reverse order in 
step 2, the algorithm ensures that any deleted values cannot endanger the consistency of arcs 
that have been processed already. The complete algorithm runs in time O(nd2). 

Now that we have an efficient algorithm for trees, we can consider whether more general 
constraint graphs can be reduced to trees somehow. There are two primary ways to do this, 
one based on removing nodes and one based on collapsing nodes together. 

The first approach involves assigning values to some variables so that the remaining 
variables form a tree. Consider the constraint graph for Australia, shown again in Fig- 
ure 5.1 l(a). If we could delete South Australia, the graph would become a tree, as in (b). 
Fortunately, we can do this (in the graph, not the continent) by fixing a value for SA and 
deleting from the domains of the other variables any values that are inconsistent with the 
value chosen for SA. 

A careful cartographer or patriotic Tasmanian might object that Tasmania should not be colored the same as 
its nearest mainland neighbor, to avoid the impression that it might be part of that state. 

Sadly, very few regions of the world, with the possible exception of Sulawesi, have tree-structured maps. 
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CYCLE CUTSET 

/ Figure 5.10 (a) The constraint graph of a tree-structured CSP. (b) A linear ordering of the 1 
variables consistent with the tree with A as the root. 

Now, any solution for the CSP after SA and its constraints are removed will be con- 
sistent with the value chosen for SA. (This works for binary CSPs; the situation is more 
complicatecl with higher-order constraints.) Therefore, we can solve the remaining tree with 
the algoritlm given above and thus solve the whole problem. Of course, in the general case 
(as opposed to map coloring) the value chosen for SA could be the wrong one, so we would 
need to try each of them. The general algorithm is as follows: 

1. Choose a subset S from VARIABLES[CS~] such that the constraint graph becomes a tree 
after removal of S. S is called a cycle cutset. 

2. For each possible assignment to the variables in S that satisfies all constraints on S, 

(a) remove from the domains of the remaining variables any values that are inconsis- 
tent with the assignment for S, and 

(b) If the remaining CSP has a solution, return it together with the assignment for S. 

If the cycle cutset has size c, then the total runtime is O(dC . (n - c)d". If the graph is 
"nearly a tree7' then c will be small and the savings over straight backtracking will be huge. 
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In the worst case, however, c can be as large as (n - 2). Finding the smallest cycle cutset is 
NP-hard, but several efficient approximation algorithms are known for this task. The overall 

CUTSET algorithmic approach is called cutset conditioning; we will see it again in Chapter 14, where 
it is used for reasoning about probabilities. 

TREE 
DECOMPOSITION The second approach is based on constructing a tree decomposition of the constraint 

graph into a set of connected subproblems. Each subproblem is solved independently, and the 
resulting solutions are then combined. Like most divide-and-conquer algorithms, this works 
well if no subproblem is too large. Figure 5.12 shows a tree decomposition of the map- 
coloring problem into five subproblems. A tree decomposition must satisfy the following 
three requirements: 

Every variable in the original problem appears in at least one of the subproblems. 
If two variables are connected by a constraint in the original problem, they must appear 
together (along with the constraint) in at least one of the subproblems. 

If a variable appears in two subproblems in the tree, it must appear in every subproblem 
along the path connecting those subproblems. 

The first two conditions ensure that all the variables and constraints are represented in the 
decomposition. The third condition seems rather technical, but simply reflects the constraint 
that any given variable must have the same value in every subproblem in which it appears; 
the links joining subproblems in the tree enforce this constraint. For example, SA appears in 
all four of the connected subproblems in Figure 5.12. You can verify from Figure 5.11 that 
this decomposition makes sense. 

Figure 5.12 A tree decomposition of the constraint graph in Figure 5.1 l(a). 

We solve each subproblem independently; if any one has no solution, we know the en- 
tire problem has no solution. If we can solve all the subproblems, then we attempt to construct 
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a global solution as follows. First, we view each subproblem as a "mega-variable" whose do- 
main is the set of all solutions for the subproblem. For example, the leftmost subproblems in 
Figure 5.12 is a map-coloring problem with three variables and hence has six solutions-one 
is { WA = r e d ,  SA = blue ,  NT  = green ) .  Then, we solve the constraints connecting the 
subproblems using the efficient algorithm for trees given earlier. The constraints between 
subproblems simply insist that the subproblem solutions agree on their shared variables. For 
example, given the solution { WA = r e d ,  SA = blue ,  NT  = greeen) for the first subproblem, 
the only consistent solution for the next subproblem is {SA I= blue ,  NT = green ,  Q = r ed ) .  

A given constraint graph admits many tree decompoc;itions; in choosing a decompo- 
TREE WIDTH sition, the aim is to make the subproblems as small as possible. The tree width of a tree 

decomposition of a graph is one less than the size of iihe largest subproblem; the tree width 
of the graph itself is defined to be the minimum tree width among all its tree decompositions. 
If a graph has tree width w, and we are given the corresponding tree decomposition, then the 
problem can be solved in O(ndW+') time. Hence, CSPs with constraint graphs of bounded 
tree width are solvable in polynomial time. Unfortunately, finding the decomposition with 
minimal tree width is 1VP-hard, but there are heuristic methods that work well in practice. 

0 Constraint satisfaction problems (or CSPs) consist of variables with constraints on 
them. Many important real-world problems can be described as CSPs. The structure of 
a CSP can be represented by its constraint graph. 

0 Backtracking search, a form of depth-first search, is commonly used for solving CSPs. 

a The minimum remaining values and degree heuristics are domain-independent meth- 
ods for deciding which variable to choose next in a backtracking search. The least- 
constraining-value heuristic helps in ordering the variable values. 

a By propagating the consequences of the partial assignments that it constructs, the back- 
tracking algorithm can reduce greatly the branching factor of the problem. Forward 
checking is the simplest method for doing this. Arc consistency enforcement is a more 
powerful technique, but can be more expensive to run. 

a Backtracking occurs when no legal assignment can be found for a variable. Conflict- 
directed backjumping backtracks directly to the source of the problem. 

0 Local search using the min-conflicts heuristic has been applied to constraint satisfaction 
problems with great success. 

o The complexity of solving a CSP is strongly related to the structure of its constraint 
graph. Tree-structured problems can be solved in linear time. Cutset conditioning can 
reduce a general CSP to a tree-structured one and is very efficient if a small cutset can 
be found. Tree decomposition techniques transform the CSP into a tree of subproblems 
and are efficient if the tree width of the constraint graphi is small. 
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BIBLIOGRAPHICAL AND HISTORICAL NOTES 

The earliest work related to constraint satisfaction dealt largely with numerical constraints. 
Equational constraints with integer domains were studied by the Indian mathematician Brah- 

DlOPHANTlNE 
EQUATIONS magupta in the seventh century; they are often called Diophantine equations, after the Greek 

mathematician Diophantus (c. 200-284), who actually considered the domain of positive ra- 
tionals. Systematic methods for solving linear equations by variable elimination were studied 
by Gauss (1829); the solution of linear inequality constraints goes back to Fourier (1827). 

Finite-domain constraint satisfaction problems also have a long history. For example, 
GRAPH COLORING graph coloring (of which map coloring is a special case) is an old problem in mathematics. 

According to Biggs et al. (1986), the four-color conjecture (that every planar graph can be 
colored with four or fewer colors) was first made by Francis Guthrie, a student of De Morgan, 
in 1852. It resisted solution--despite several published claims to the contrary-until a proof 
was devised, with the aid of a computer, by Appel and Haken (1977). 

Specific classes of constraint satisfaction problems occur throughout the history of 
computer science. One of the most influential early examples was the SKETCHPAD sys- 
tem (Sutherland, 1963), which solved geometric constraints in diagrams and was the fore- 
runner of modern drawing programs and CAD tools. The identification of CSPs as a general 
class is due to Ugo Montanari (1974). The reduction of higher-order CSPs to purely binary 
CSPs with auxiliary variables (see Exercise 5.1 1) is due originally to the 19th-century logi- 
cian Charles Sanders Peirce. It was introduced into the CSP literature by Dechter (1990b) and 
was elaborated by Bacchus and van Beek (1998). CSPs with preferences among solutions are 
studied widely in the optimization literature; see Bistarelli et al. (1997) for a generalization 
of the CSP framework to allow for preferences. The bucket-elimination algorithm (Dechter, 
1999) can also be applied to optimization problems. 

Backtracking search for constraint satisfaction is due to Bitner and Reingold (1975), 
although they trace the basic algorithm back to the 19th century. Bitner and Reingold also 
introduced the MRV heuristic, which they called the most-constrained-variable heuristic. 
Brelaz (1979) used the degree heuristic as a tie-breaker after applying the MRV heuristic. 
The resulting algorithm, despite its simplicity, is still the best method for k-coloring arbitrary 
graphs. Haralick and Elliot (1980) proposed the least-constraining-value heuristic. 

Constraint propagation methods were popularized by Waltz's (1975) success on poly- 
hedral line-labeling problems for computer vision. Waltz showed that, in many problems, 
propagation completely eliminates the need for backtracking. Montanari (1 974) introduced 
the notion of constraint networks and propagation by path consistency. Alan Mackworth 
(1977) proposed the AC-3 algorithm for enforcing arc consistency as well as the general idea 
of combining backtracking with some degree of consistency enforcement. AC-4, a more 
efficient arc consistency algorithm, was developed by Mohr and Henderson (1986). Soon af- 
ter Mackworth's paper appeared, researchers began experimenting with the tradeoff between 
the cost of consistency enforcement and the benefits in terms of search reduction. Haralick 
and Elliot (1980) favored the minimal forward checking algorithm described by McGregor 
(1979), whereas Gaschnig (1979) suggested full arc consistency checking after each variable 
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assignment-an algorithm later called MAC by Sabin and Freuder (1994). The latter paper 
provides somewhat convincing evidence that, on harder CS13s, full arc consistency checlung 
pays off. Freuder (1978, 1982) investigated the notion of k-consistency and its relationship 
to the complexity of solving CSPs. Apt (1999) describes a generic algorithmic framework 
within which consistency propagation algorithms can be analyzed. 

Special methods for handling higher-order constraints have been developed primarily 
within the context of constraint logic programming. Marriott and Stuckey (1998) pro- 
vide excellent coverage of research in this area. The Alldzfl constraint was studied by Regin 
(1994). Bounds constraints were incorporated into constraint logic programming by Van Hen- 
tenryck et al. (1998). 

The basic backjumping method is due to John (3aschnig (1977, 1979). Kondrak and 
van Beek (1997) showed that this algorithm is essentially subsumed by forward checking. 
Conflict-directed backjumping was devised by Prosser (1993). The most general and pow- 
erful form of intelligent backtracking was actually developed very early on by Stallman and 

DEPENDENCY- 
DIRECTED 
BACKTRACKING 

Sussman (1977). Their technique of dependency-directed backtracking led to the develop- 
ment of truth maintenance systems (Doyle, 1979), which we will discuss in Section 10.8. 
The connection between the two areas is analyzed by de Kleer (1989). 

The work of Stallman and Sussman also introduced the idea of constraint record- 
CONSTRAINT 
RECORDING ing, in which partial results obtained by search can be saved and reused later in the search. 

The idea was introduced formally into backtracking search by Dechter (1990a). Backmark- 
BACKMARKING ing (Gaschnig, 1979) is a particularly simple method in which consistent and inconsistent 

pairwise assignments are saved and used to avoid rechecking constraints. Backmarking can 
be combined with conflict-directed backjumping; Kortdrak and van Beek (1997) present a 
hybrid algoirithm that provably subsumes either metblod taken separately. The method of 

DYNAMIC dynamic backtracking (Ginsberg, 1993) retains successful partial assignments from later 
subsets of variables when backtracking over an earlier choice that does not invalidate the 
later success. 

Local search in constraint satisfaction problems was popularized by the work of Kirk- 
patrick et al. (1983) on simulated annealing (see Chapter 4), which is widely used for 
scheduling problems. The min-con.icts heuristic was first proposed by Gu (1989) and was de- 
veloped independently by Minton et al. (1992). Sosic and Gu (1994) showed how it could be 
applied to solve the 3,000,000 queens problem in less than a minute. The astounding success 
of local search using min-conflicts on the n-queens problem led to a reappraisal of the nature 
and prevalence of "easy" and "hard problems. Peter Cheeseman et al. (1991) explored the 
difficulty of randomly generated CSPs and discovered that almost all such problems either 
are trivially easy or have no solutions. Only if the parameters of the problem generator are 
set in a certain narrow range, within which roughly half of the problems are solvable, do we 
find "hard" problem instances. We discuss this phenomenon further in Chapter 7. 

Work relating the structure and complexity of CSPs originates with Freuder (1985), who 
showed that search on arc-consistent trees works without any backtracking. A similar result, 
with extensions to acyclic hypergraphs, was developed in the database community (Beeri 
et al., 1983). Since those papers were published, there has been a great deal of progress in 
developing more general results relating the complexity of solving a CSP to the structure of 
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its constraint graph. The notion of tree width was introduced by the graph theorists Robertson 
and Seymour (1 986). Dechter and Pearl (1 987, 1989), building on the work of Freuder, ap- 
plied the same notion (which they called induced width) to constraint satisfaction problems 
and developed the tree decomposition approach sketched in Section 5.4. Drawing on this 
work and on results from database theory, Gottlob et al. (1999a, 1999b) developed a notion, 
hypertree width, that is based on the characterization of the CSP as a hypergraph. In addi- 
tion to showing that any CSP with hypertree width w can be solved in time O(nW+' log n), 
they also showed that hypertree width subsumes all previously defined measures of "width" 
in the sense that there are cases where the hypertree width is bounded and the other measures 
are unbounded. 

There are several good surveys of CSP techniques, including those by Kumar (1992), 
Dechter and Frost (1999), and Bartak (2001); and the encyclopedia articles by Dechter (1992) 
and Mackworth (1992). Pearson and Jeavons (1997) survey tractable classes of CSPs, cover- 
ing both structural decomposition methods and methods that rely on properties of the domains 
or constraints themselves. Kondrak and van Beek (1997) give an analytical survey of back- 
tracking search algorithms, and Bacchus and van Run (1995) give a more empirical survey. 
The texts by Tsang (1993) and by Marriott and Stuckey (1998) go into much more depth 
than has been possible in this chapter. Several interesting applications are described in the 
collection edited by Freuder and Mackworth (1994). Papers on constraint satisfaction ap- 
pear regularly in Artificial Intelligence and in the specialist journal, Constraints. The primary 
conference venue is the International Conference on Principles and Practice of Constraint 
Programming, often called CP. 

- 

EXERCISES 

5.1 Define in your own words the terms constraint satisfaction problem, constraint, back- 
tracking search, arc consistency, backjumping and rnin-conflicts. 

5.2 How many solutions are there for the map-coloring problem in Figure 5. l ?  

5.3 Explain why it is a good heuristic to choose the variable that is most constrained, but 
the value that is least constraining in a CSP search. 

5.4 Consider the problem of constructing (not solving) crossword  puzzle^:^ fitting words 
into a rectangular grid. The grid, which is given as part of the problem, specifies which 
squares are blank and which are shaded. Assume that a list of words (i.e., a dictionary) is 
provided and that the task is to fill in the blank squares using any subset of the list. Formulate 
this problem precisely in two ways: 

a. As a general search problem. Choose an appropriate search algorithm, and specify a 
heuristic function, if you think one is needed. Is it better to fill in blanks one letter at a 
time or one word at a time? 

Ginsberg et al. (1990) discuss several methods for constructing crossword puzzles. Littman et al. (1999) tackle 
the harder problem of solving them. 
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b. As a constraint satisfaction problem. Should the variables be words or letters? 

Which formulation do you think will be better? Why? 

5.5 Give precise formulations for each of the following as constraint satisfaction problems: 

FLOOR-PLANNING a. Rectilinear floor-planning: find nonoverlapping places in a large rectangle for a num- 
ber of smaller rectangles. 

CLASS SCHEDULING b. Class scheduling: There is a fixed number of professors and classrooms, a list of classes 
to be offered, and a list of possible time slots for classes. Each professor has a set of 
classes that he or she can teach. 

5.6 Solve the cryptarithmetic problem in Figure 5.2 by hand, using backtracking, forward 
checking, and the MRV and least-constraining-value heuristics. 

5.7 Figure 5.5 tests out various algorithms on the n-queens problem. Try these same al- 
gorithms on map-coloring problems generated randomly as follows: scatter n points on the 
unit square; selecting a point X at random, connect X by a straight line to the nearest point 
Y such that X is not already connected to Y and the line crosses no other line; repeat the 
previous step until no more connections are possible. Construct the performance table for the 
largest n you can manage, using both d = 3 and d = 4 colors. Comment on your results. 

5.8 Use the AC-3 algorithm to show that arc consistency is able to detect the inconsistency 
of the partial assignment { WA = red, V = blue) for the probllem shown in Figure 5.1. 

5.9 What is the worst-case complexity of running AC-3 on a tree-structured CSP? 

5.10 AC-3 puts back on the queue every arc (XI,, Xi) whenever any value is deleted from 
the domain of Xi, even if each value of XI, is consistent with several remaining values of Xi. 
Suppose that, for every arc (XI,, Xi), we keep track of the number of remaining values of Xi 
that are consistent with each value of XI,. Explain how to update these numbers efficiently 
and hence show that arc consistency can be enforced in total time O(n2d2).  

5 . 1  Show how a single ternary constraint such as " A  + B = C" can be turned into three 
binary constraints by using an auxiliary variable. You may assume finite domains. (Hint: 
consider a new variable that takes on values which are pairs of other values, and consider 
constraints such as "X is the first element of the pair Y.") Next, show how constraints with 
more than three variables can be treated similarly. Finally, show how unary constraints can be 
eliminated by altering the domains of variables. This completes the demonstration that any 
CSP can be transformed into a CSP with only binary constraints. 

5.12 Suppose that a graph is known to have a cycle cutset of 110 more than k nodes. Describe 
a simple algorithm for finding a minimal cycle cutset whose runtime is not much more than 
O ( n k )  for a CSP with n variables. Search the literature for methods for finding approximately 
minimal cycle cutsets in time that is polynomial in the size of the cutset. Does the existence 
of such algorithms make the cycle cutset method practical? 

5.13 Consider the following logic puzzle: In five houses, each with a different color, live 
5 persons of different nationalities, each of whom prefer a different brand of cigarette, a 
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different drink, and a different pet. Given the following facts, the question to answer is 
''Where does the zebra live, and in which house do they drink water?" 

The Englishman lives in the red house. 
The Spaniard owns the dog. 
The Norwegian lives in the first house on the left. 
Kools are smoked in the yellow house. 
The man who smokes Chesterfields lives in the house next to the man with the fox. 
The Norwegian lives next to the blue house. 
The Winston smoker owns snails. 
The Lucky Strike smoker drinks orange juice. 
The Ukrainian drinks tea. 
The Japanese smokes Parliaments. 
Kools are smoked in the house next to the house where the horse is kept. 
Coffee is drunk in the green house. 
The Green house is immediately to the right (your right) of the ivory house. 
Milk is drunk in the middle house. 

Discuss different representations of this problem as a CSP. Why would one prefer one repre- 
sentation over another? 



In which we examine the problems that arise when we try to plan ahead in a world 
where other agents are planning against us. 

Chapter 2 introduced multiagent environments, in which any given agent will need to con- 
sider the actions of other agents and how they affect its own welfare. The unpredictability 
of these other agents can introduce many possible colntingencies into the agent's problem- 
solving process, as discussed in Chapter 3. The distinction between cooperative and compet- 
itive multiagent environments was also introduced in Chapter 2. Competitive environments, 
in which the agents' goals are in conflict, give rise to adversarial search problems-often 

GAMES known as games. 
Mathematical game theory, a branch of economics, views any multiagent environment 

as a game provided that the impact of each agent on the others is "significant," regardless of 
whether the agents are cooperative or competitive.' In AI, .'gamesn are usually of a rather 
specialized kind-what game theorists call deterministic, turn-taking, two-player, zero-sum 

ZERO-SUM GAMES games of perfect information. In our terminology, this means deterministic, fully observable 
PERFECT 
INFORMATION environments in which there are two agents whose actions must alternate and in which the 

utility values at the end of the game are always equal and opposite. For example, if one 
player wins a game of chess (+I), the other player necessarily loses (-1). It is this opposition 
between the agents' utility functions that makes the situation adversarial. We will consider 
multiplayer games, non-zero-sum games, and stochastic games briefly in this chapter, but will 
delay discussion of game theory proper until Chapter 17. 

Games have engaged the intellectual faculties of humans-sometimes to an alarming 
degree-for as long as civilization has existed. For A1 researchers, the abstract nature of 
games makes them an appealing subject for study. The state of a game is easy to represent, 
and agents are usually restricted to a small number of actions whose outcomes are defined by 

Environments with very many agents are best viewed as econo~nies rather than games. 
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precise rules. Physical games, such as croquet and ice hockey, have much more complicated 
descriptions, a much larger range of possible actions, and rather imprecise rules defining 
the legality of actions. With the exception of robot soccer, these physical games have not 
attracted much interest in the A1 community. 

Game playing was one of the first tasks undertaken in AI. By 1950, almost as soon as 
computers became programmable, chess had been tackled by Konrad Zuse (the inventor of the 
first programmable computer and the first programming language), by Claude Shannon (the 
inventor of information theory), by Norbert Wiener (the creator of modern control theory), 
and by Alan Turing. Since then, there has been steady progress in the standard of play, to the 
point that machines have surpassed humans in checkers and Othello, have defeated human 
champions (although not every time) in chess and backgammon, and are competitive in many 
other games. The main exception is Go, in which computers perform at the amateur level. 

Games, unlike most of the toy problems studied in Chapter 3, are interesting because 
they are too hard to solve. For example, chess has an average branching factor of about 35, 
and games often go to 50 moves by each player, so the search tree has about 35 loo or 10 154 

nodes (although the search graph has "only" about 10 40 distinct nodes). Games, like the real 
world, therefore require the ability to make some decision even when calculating the optimal 
decision is infeasible. Games also penalize inefficiency severely. Whereas an implementation 
of A* search that is half as efficient will simply cost twice as much to run to completion, a 
chess program that is half as efficient in using its available time probably will be beaten into 
the ground, other things being equal. Game-playing research has therefore spawned a number 
of interesting ideas on how to make the best possible use of time. 

We begin with a definition of the optimal move and an algorithm for finding it. We 
then look at techniques for choosing a good move when time is limited. Pruning allows us 
to ignore portions of the search tree that make no difference to the final choice, and heuristic 
evaluation functions allow us to approximate the true utility of a state without doing a com- 
plete search. Section 6.5 discusses games such as backgammon that include an element of 

IMPERFECT 
INFORMATION chance; we also discuss bridge, which includes elements of imperfect information because 

not all cards are visible to each player. Finally, we look at how state-of-the-art game-playing 
programs fare against human opposition and at directions for future developments. 

We will consider games with two players, whom we will call MAX and MIN for reasons that 
will soon become obvious. MAX moves first, and then they take turns moving until the game 
is over. At the end of the game, points are awarded to the winning player and penalties are 
given to the loser. A game can be formally defined as a kind of search problem with the 
following components: 

The initial state, which includes the board position and identifies the player to move. 

A successor function, which returns a list of (move, state) pairs, each indicating a legal 
move and the resulting state. 
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TERMINALTEST a A terminal test, which determines when the galme is over. States where the game has 
ended are called terminal states. 

a A utility function (also called an objective function or payoff function), which gives 
a numeric value for the terminal states. In chess, the outcome is a win, loss, or draw, 
with values +1, -1, or 0. Some games have a wider ,variety of possible outcomes; the 
payoffs in backgammon range from +I92 to -192. This chapter deals mainly with 
zero-sum games, although we will briefly mention non-zero-sum games. 

GAME TREE The initial state and the legal moves for each side define the game tree for the game. Fig- 
ure 6.1 shows part of the game tree for tic-tac-toe (noughts and crosses). From the initial 
state, MAX has nine possible moves. Play alternates between MAX'S placing an x and MIN'S 

placing an o until we reach leaf nodes corresponding to ter.mina1 states such that one player 
has three in a row or all the squares are filled. The number on each leaf node indicates the 
utility value of the terminal state from the point of view of MAX; high values are assumed to 
be good for MAX and bad for MIN (which is how the players get their names). It is MAX'S job 
to use the search tree (particularly the utility of terminal states) to determine the best move. 

Optimal strategies 

In a normal search problem, the optimal solution would be a sequence of moves leading to a 
goal state-a terminal state that is a win. In a game, on the other hand, MIN has something 

STRATEGY to say about it. MAX therefore must find a contingent strategy, which specifies MAX'S move 
in the initial state, then MAX'S moves in the states res~~lting from every possible response by 
MIN, then MAX'S moves in the states resulting from every possible response by MIN to those 
moves, and so on. Roughly speaking, an optimal strategy leads to outcomes at least as good 
as any other strategy when one is playing an infallible oppoinent. We will begin by showing 
how to find this optimal strategy, even though it should be infeasible for MAX to compute it 
for games more complex than tic-tac-toe. 

Even a simple game like tic-tac-toe is too complex for us to draw the entire game tree, 
so we will switch to the trivial game in Figure 6.2. The possible moves for MAX at the root 
node are labeled a l ,  a2, and as. The possible replies to a1 for MIN are bl,  ba, bs, and so on. 
This particular game ends after one move each by M A X  and MIN. (In game parlance, we say 

PLY that this tree is one move deep, consisting of two half-moves, each of which is called a ply.) 
The utilities of the terminal states in this game range from 2 lo 14. 

Given a game tree, the optimal strategy can be determined by examining the minimax 
MINIMAXVALUE value of each node, which we write as MINIMAX- VALUE(^). The minimax value of a node 

is the utility (for MAX) of being in the corresponding state, assuming that both players play 
optimally from there to the end of the game. Obviously, the minimax value of a terminal 
state is just its utility. Furthermore, given a choice, MAX will prefer to move to a state of 
maximum value, whereas MIN prefers a state of minirnum value. So we have the following: 

MINIMAX- VALUE(^) = 

UTILITY(~)  if n is a terminal state 
maxsEsuccessors(n) MINIMAX-VALUE(S) if n is a MAX node 
rninsESuccessors(n) MINIMAX-VALUE(S) if n is a MIN node. 
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TERMINAL 

Utility -1 0 +1 

( Figure 6.1 A (partial) search tree for the game of tic-tac-toe. The top node is the initial 
state, and MAX moves first, placing an X in an empty square. We show part of the search tree, 
giving alternating moves by MIN (0) and MAX, until we eventually reach terminal states, 

I which can be assigned utilities according to the rules of the game. 

MAX 

MLN 

3 12 8 2 4 6  14 5 2 

Figure 6.2 A two-ply game tree. The A nodes are "MAX nodes," in which it is MAX'S 

turn to move, and the D nodes are "MIN nodes." The terminal nodes show the utility values 
for MAX; the other nodes are labeled with their minimax values. MAX'S best move at the root 
is a l ,  because it leads to the successor with the highest minimax value, and MIN'S best reply 
is bl,  because it leads to the successor with the lowest minimax value. 

Let us apply these definitions to the game tree in Figure 6.2. The terminal nodes on the 
bottom level are already labeled with their utility values. The first MIN node, labeled B, has 
three successors with values 3, 12, and 8, so its minimax value is 3. Similarly, the other two 
MIN nodes have minimax value 2. The root node is a MAX node; its successors have minimax 
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MINIMAX DECISION values 3, 2, and 2; so it has a minimax value of 3. We can also identify the minimax decision 
at the root: action a1 is the optimal choice for MAX because it leads to the successor with the 
highest minimax value. 

This definition of optimal play for MAX assumes that MIN also plays optimally-it 
maximizes the worst-case outcome for MAX. What if lH1N does not play optimally? Then it 
is easy to show (Exercise 6.2) that MAX will do even better. There may be other strategies 
against suboptimal opponents that do better than the minimax strategy; but these strategies 
necessarily do worse against optimal opponents. 

The minimax algorithm 

MINIMAX ALGORITHM The minimax algorithm (Figure 6.3) computes the minimax decision from the current state. 
It uses a simple recursive computation of the minimax values of each successor state, directly 
implementing the defining equations. The recursion proceecls all the way down to the leaves 

BACKED UP of the tree, and then the minimax values are backed up through the tree as the recursion 
unwinds. For example, in Figure 6.2, the algorithm first recurses down to the three bottom- 
left nodes, and uses the UTILITY function on them to discover that their values are 3, 12, and 
8 respectively. Then it takes the minimum of these values, 3, and returns it as the backed-up 
value of node B. A similar process gives the backed up values of 2 for C and 2 for D. Finally, 
we take the maximum of 3,2,  and 2 to get the backed-up value of 3 for the root node. 

The minimax algorithm performs a complete depth-first exploration of the game tree. 
If the maximum depth of the tree is m, and there are b legal moves at each point, then the 
time complexity of the minimax algorithm is O(b m) .  The space complexity is O(bm) for 
an algorithm that generates all successors at once, or O(m) for an algorithm that generates 
successors one at a time (see page 76). For real games, of course, the time cost is totally 
impractical, but this algorithm serves as the basis for the mathematical analysis of games and 
for more practical algorithms. 

Optimal decisions in multiplayer games 

Many popular games allow more than two players. Let us examine how to extend the minimax 
idea to multiplayer games. This is straightforward from the technical viewpoint, but raises 
some interesting new conceptual issues. 

First, we need to replace the single value for each nocle with a vector of values. For 
example, in a three-player game with players A, B, and C,  a vector (vA, v ~ ,  vc) is associated 
with each node. For terminal states, this vector gives the utility of the state from each player's 
viewpoint. (In two-player, zero-sum games, the two-element kector can be reduced to a single 
value because the values are always opposite.) The simplest way to implement this is to have 
the UTILITY function return a vector of utilities. 

Now we have to consider nonterminal states. Consider the node marked X in the game 
tree shown in Figure 6.4. In that state, player C chooses what to do. The two choices lead 
to terminal states with utility vectors (21A = 1, vg = 2, v~ = 6) and (vA = 4, va = 2, v c  = 3). 
Since 6 is bigger than 3, C should choose the first move. This rneans that if state X is reached, 
subsequent play will lead to a terminal state with utilities (vll = 1, v~ = 2, v c  = 6). Hence, 



166 Chapter 6. Adversarial Search 

function M I N I M A X - D E C I S I O N ( ~ ~ ~ ~ ~ )  returns a n  act ion 
inputs: state, current state in game 

v  +- M A X - V A L U E ( S ~ U ~ ~ )  
return the action in S U C C E S S O R S ( ~ ~ ~ ~ ~ )  with value v  

function M A x - V ~ L l J E ( s t a t e )  returns a  utility value 
if T E R M I N A L - T E S T ( ~ ~ ~ ~ ~ )  then return U T I L I T Y ( S ~ U ~ ~ )  
v  + -00 

for a, s  in S u c c ~ s s o ~ s ( s t a t e )  do 
v  t M A X ( V ,  M I N - V A L U E ( S ) )  

return v 

function M I N - ~ A L U E ( S ~ ~ ~ ~ )  returns a  utility value 
if T E R M I N A L - T E S T ( ~ ~ ~ ~ ~ )  then return U T I L I T Y ( S ~ U ~ ~ )  
V + O O  

for a ,  s  in S u c c ~ s s o ~ s ( s t a t e )  do 
v  t M I N ( V ,  M A X - V A L U E ( S ) )  

return v  

Figure 6.3 An algorithm for calculating minimax decisions. It returns the action corre- 
sponding to the best possible move, that is, the move that leads to the outcome with the 
best utility, under the assumption that the opponent plays to minimize utility. The functions 
MAX-VALUE and MIN-VALUE go through the whole game tree, all the way to the leaves, to 
determine the backed-up value of a state. 

to move 
A 

(1,2,6) (4,2,3) (6, 1,2) (7,4, 1) 5 1 1 (1,5,2) (7,7, 1) (5,4,5) 

Figure 6.4 The first three ply of a game tree with three players (A, B, C). Each node is 
labeled with values from the viewpoint of each player. The best move is marked at the root. 

the backed-up value of X is this vector. In general, the backed-up value of a node n is the 
utility vector of whichever successor has the highest value for the player choosing at n. 

Anyone who plays multiplayer games, such as ~ i ~ l o m a c ~ ~ ~ ,  quickly becomes aware 
that there is a lot more going on than in two-player games. Multiplayer games usually involve 

ALLIANCES alliances, whether formal or informal, among the players. Alliances are made and broken 
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as the game proceeds. How are we to understand such behavior? Are alliances a natural 
consequence of optimal strategies for each player in a multiplayer game? It turns out that 
they can be. For example suppose A and B are in weak positions and C is in a stronger 
position. Then it is often optimal for both A and B to attack C rather than each other, lest 
C destroy each of them individually. In this way, colKaboration emerges from purely selfish 
behavior. Of course, as soon as C weakens under the joint onslaught, the alliance loses its 
value, and either A or B could violate the agreement. In some cases, explicit alliances merely 
make concrete what would have happened anyway. In other cases there is a social stigma to 
breaking an alliance, so players must balance the immediate advantage of breaking an alliance 
against the long-term disadvantage of being perceived as untrustworthy. See Section 17.6 for 
more on these complications. 

If the game is not zero-sum, then collaboration can also occur with just two players. 
Suppose, for example, that there is a terminal state with utilities (vA = 1000, v~ = 1000), and 
that 1000 is the highest possible utility for each player. Then the optimal strategy is for both 
players to do everything possible to reach this state--that is, the players will automatically 
cooperate to achieve a mutually desirable goal. 

ALPHA-BETA 
PRUNING 

The problem with minimax search is that the numbeir of game states it has to examine is 
exponential in the number of moves. Unfortunately we can't eliminate the exponent, but we 
can effectively cut it in half. The trick is that it is possible to compute the correct minimax 
decision without looking at every node in the game tree. That is, we can borrow the idea 
of pruning from Chapter 4 in order to eliminate large parts of the tree from consideration. 
The particular technique we will examine is called alpha-beta pruning. When applied to a 
standard minimax tree, it returns the same move as minimax would, but prunes away branches 
that cannot possibly influence the final decision. 

Consider again the two-ply game tree from Figure 6.2. Let's go through the calculation 
of the optimal decision once more, this time paying careful attention to what we know at 
each point in the process. The steps are explained in Figure 6.5. The outcome is that we can 
identify the minimax decision without ever evaluating two of the leaf nodes. 

Another way to look at this is as a simplification of the formula for MINIMAX-VALUE.  
Let the two unevaluated successors of node C in Figure 6.5 have values x and y and let z be 
the minimum of x and y. The value of the root node is given by 

M I N I M A X - V A L U E ( ~ O O ~ )  = max(min(3,12,8),  min(2,  s, y ) ,  m i n ( l 4 , 5 , 2 ) )  

= max(3,  min(2,  x ,  y), 2 )  

= max(3,  z ,  2)  where ;s 5 2 
- - 3. 

In other words, the value of the root and hence the minimax decision are independent of the 
values of the pruned leaves x and y. 
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Figure 6.5 Stages in the calculation of the optimal decision for the game tree in Figure 6.2. 
At each point, we show the range of possible values for each node. (a) The first leaf below 
B has the value 3. Hence, B, which is a MIN node, has a value of at most 3. (b) The second 
leaf below B has a value of 12; MIN would avoid this move, so the value of B is still at most 
3. (c) The third leaf below B has a value of 8; we have seen all B's successors, so the value 
of B is exactly 3. Now, we can infer that the value of the root is at least 3, because MAX has 
a choice worth 3 at the root. (d) The first leaf below C has the value 2. Hence, C, which is 
a MIN node, has a value of at most 2. But we know that B is worth 3, so MAX would never 
choose C. Therefore, there is no point in loohng at the other successors of C. This is an 
example of alpha-beta pruning. (e) The first leaf below D has the value 14, so D is worth at 
most 14. This is still higher than MAX'S best alternative (i.e., 3), so we need to keep exploring 
D's successors. Notice also that we now have bounds on all of the successors of the root, so 
the root's value is also at most 14. (f) The second successor of D is worth 5,  so again we 
need to keep exploring. The third successor is worth 2, so now D is worth exactly 2. MAX'S 

decision at the root is to move to B, giving a value of 3. 

Alpha-beta pruning can be applied to trees of any depth, and it is often possible to 
prune entire subtrees rather than just leaves. The general principle is this: consider a node n 
somewhere in the tree (see Figure 6.6), such that Player has a choice of moving to that node. 
If Player has a better choice m either at the parent node of n or at any choice point further up, 
then n will never be reached in actual play. So once we have found out enough about n (by 
examining some of its descendants) to reach this conclusion, we can prune it. 

Remember that minimax search is depth-first, so at any one time we just have to con- 
sider the nodes along a single path in the tree. Alpha-beta pruning gets its name from the 
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Figure 6.6 Alpha-beta pruning: the general case. If m is lbetter than n for Player, we will 
never get to n in play. 

following two parameters that describe bounds on the backed.-up values that appear anywhere 
along the path: 

a = the value of the best (i.e., highest-value) choice we have found so far at any choice point 
along the path for MAX. 

p = the value of the best (i.e., lowest-value) choice we have found so far at any choice point 
along the path for MIN. 

Alpha-beta search updates the values of a and /3 as it goes along and prunes the remaining 
branches at a node (i.e., terminates the recursive call) as soon as the value of the current 
node is known to be worse than the current a or p value for MAX or MIN, respectively. The 
complete algorithm is given in Figure 6.7. We encourage the reader to trace its behavior when 
applied to the tree in Figure 6.5. 

The effectiveness of alpha-beta pruning is highly dependent on the order in which the 
successors are examined. For example, in Figure 6.5(e) and (0, we could not prune any 
successors of D at all because the worst successors (from the point of view of MIN) were 
generated first. If the third successor had been generated first, we would have been able to 
prune the other two. This suggests that it might be worthwhile to try to examine first the 
successors that are likely to be best. 

If we assume that this can be done,2 then it turns out that alpha-beta needs to examine 
only 0 ( b m i 2 )  nodes to pick the best move, instead of O ( b m )  for minimax. This means that 
the effective branching factor becomes & instead of b--for chess, 6 instead of 35. Put 
another way, alpha-beta can look ahead roughly twice as far as minimax in the same amount 
of time. If successors are examined in random order rather than best-first, the total number of 
nodes examined will be roughly ~ ( b ~ ~ / ~ )  for moderate b. For chess, a fairly simple ordering 
function (such as trying captures first, then threats, then forward moves, and then backward 
moves) gets you to within about a factor of 2 of the best-.case 0 ( b m l 2 )  result. Adding dynamic 

Obviously, it cannot be done perfectly; otherwise the ordering function could be used to play a perfect game! 
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function ALPHA-BETA-SEARCH(~~~~~) returns an action 
inputs: state, current state in game 

' u +- M A X - ~ A L U E ( S ~ ~ ~ ~ ,  -a, f oo) 
return the action in SUCCESSORS(state) with value v  

function M A X - V A L U E ( ~ ~ ~ ~ ~ ,  a, /3) returns a utility value 
inputs: state, current state in game 

a ,  the value of the best alternative for M A X  along the path to state 
p ,  the value of the best alternative for M I N  along the path to state 

if T E R M I N A L - T E S T ( ~ ~ ~ ~ ~ )  then return U T I ~ l T ~ ( s t a t e )  
v t - 0 0  
for a ,  s  in S U C C E S S O R S ( ~ ~ ~ ~ ~ )  do 

u +- M A X ( U ,  MIN-VALUE(S,  a ,  P ) )  
if u 2 /3 then return v  
a t M A x ( a ,  v )  

return u 

function M I N - ~ A L U E ( S ~ ~ ~ ~ ,  a ,  p)  returns a utility value 
inputs: state, current state in game 

a, the value of the best alternative for MA X  along the path to state 
p,  the value of the best alternative for M I N  along the path to state 

if T E R M I N A L - T E S T ( ~ ~ ~ ~ ~ )  then return u ~ I L I ~ ~ ( s t a t e )  
v+-+cc 
for a ,  s in  SUCCESSOR^(^^^^^) do 

v  t M I N ( U ,  MAX-VALUE(% a, P ) )  
if v  5 a: then return v  
P +- M I N ( P ,  u )  

return v  

Figure 6.7 The alpha-beta search algorithm. Notice that these routines are the same as 
the M I N I M A X  routines in Figure 6.3, except for the two lines in each of MIN-VALUE and 
MAX-VALUE that maintain a and /3 (and the bookkeeping to pass these parameters along). 

move-ordering schemes, such as trying first the moves that were found to be best last time, 
brings us quite close to the theoretical limit. 

In Chapter 3, we noted that repeated states in the search tree can cause an exponential 
increase in search cost. In games, repeated states occur frequently because of transposi- 

TRANSPOSITIONS tions-different permutations of the move sequence that end up in the same position. For 
example, if White has one move a1 that can be answered by Black with bl and an unre- 
lated move a2 on the other side of the board that can be answered by b2, then the sequences 
[al ,  bl , a2 , b2] and [al , b2, az,  bl] both end up in the same position (as do the permutations 
beginning with a2). It is worthwhile to store the evaluation of this position in a hash table the 
first time it is encountered, so that we don't have to recompute it on subsequent occurrences. 
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TRANsPoslTloN TABLE The hash table of previously seen positions is traditionally (called a transposition table; it is 
essentially identical to the closed list in GRAPH-SEARCH (page 83). Using a transposition 
table can have a dramatic effect, sometimes as much as doubling the reachable search depth 
in chess. On the other hand, if we are evaluating a million nodes per second, it is not practical 
to keep all of them in the transposition table. Various strategies have been used to choose the 
most valuable ones. 

The minimax algorithm generates the entire game search space, whereas the alpha-beta algo- 
rithm allows us to prune large parts of it. However, alpha-beta still has to search all the way 
to terminal states for at least a portion of the search space. This depth is usually not practical, 
because moves must be made in a reasonable amount of tiime-typically a few minutes at 
most. Shannon's 1950 paper, Programming a computer for playing chess, proposed instead 
that programs should cut off the search earlier and apply a heuristic evaluation function 
to states in the search, effectively turning nonterminal nodes into terminal leaves. In other 
words, the suggestion is to alter minimax or alpha-beta in two ways: the utility function is 
replaced by a heuristic evaluation function EVAL, which gives an estimate of the position's 

CUTOFF TEST utility, and the terminal test is replaced by a cutoff test that decides when to apply EVAL. 

Evaluation functions 

An evaluation function returns an estimate of the expected utility of the game from a given 
position, just as the heuristic functions of Chapter 4 return an estimate of the distance to 
the goal. The idea of an estimator was not new when Shannon proposed it. For centuries, 
chess players (and aficionados of other games) have developed ways of judging the value of 
a position, because humans are even more limited in the amount of search they can do than 
are computer programs. It should be clear that the performance of a game-playing program 
is dependent on the quality of its evaluation function. An inaccurate evaluation function will 
guide an agent toward positions that turn out to be Lost. How exactly do we design good 
evaluation functions? 

First, the evaluation function should order the terminal states in the same way as the 
true utility function; otherwise, an agent using it miglht select suboptimal moves even if it 
can see ahead all the way to the end of the game. Second, the computation must not take too 
long! (The evaluation function could call MINIMAX-DECISION as a subroutine and calculate 
the exact value of the position, but that would defeat the whole purpose: to save time.) Third, 
for nonterminal states, the evaluation function should be strongly correlated with the actual 
chances of winning. 

One might well wonder about the phrase "chances of winning." After all, chess is not 
a game of chance: we know the current state with certainty, and there are no dice involved. 
But if the search must be cut off at nonterminal states, then the algorithm will necessarily 
be uncertain about the final outcomes of those states. This type of uncertainty is induced by 
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computational, rather than informational, limitations. Given the limited amount of computa- 
tion that the evaluation function is allowed to do for a given state, the best it can do is make 
a guess about the final outcome. 

Let us make this idea more concrete. Most evaluation functions work by calculating 
FEATURES various features of the state-for example, the number of pawns possessed by each side 

in a game of chess. The features, taken together, define various categories or equivalence 
classes of states: the states in each category have the same values for all the features. Any 
given category, generally speaking, will contain some states that lead to wins, some that lead 
to draws, and some that lead to losses. The evaluation function cannot know which states 
are which, but it can return a single value that reflects the proportion of states with each 
outcome. For example, suppose our experience suggests that 72% of the states encountered 
in the category lead to a win (utility +I); 20% to a loss (-I), and 8% to a draw (0). Then a 

EXPECTEDVALUE reasonable evaluation for states in the category is the weighted average or expected value: 
(0.72 x +1) + (0.20 x -1) + (0.08 x 0 )  = 0.52. In principle, the expected value can be 
determined for each category, resulting in an evaluation function that works for any state. As 
with terminal states, the evaluation function need not return actual expected values, as long 
as the ordering of the states is the same. 

In practice, this kind of analysis requires too many categories and hence too much 
experience to estimate all the probabilities of winning. Instead, most evaluation functions 
compute separate numerical contributions from each feature and then combine them to find 

MATERIALVALUE the total value. For example, introductory chess books give an approximate material value 
for each piece: each pawn is worth 1, a knight or bishop is worth 3, a rook 5,  and the queen 9. 
Other features such as "good pawn structure" and "king safety" might be worth half a pawn, 
say. These feature values are then simply added up to obtain the evaluation of the position. 
A secure advantage equivalent to a pawn gives a substantial likelihood of winning, and a 
secure advantage equivalent to three pawns should give almost certain victory, as illustrated 
in Figure 6.8(a). Mathematically, this kind of evaluation function is called a weighted linear 
function, because it can be expressed as FUNCTION 

n 

EVAL(S) = W I ~ I ( S )  + W Z ~ Z ( S )  + . . . + w n f n ( s )  = E w 2 f , ( s )  , 
2=1 

where each w, is a weight and each f, is a feature of the position. For chess, the f ,  could be 
the numbers of each kind of piece on the board, and the w, could be the values of the pieces 
(1 for pawn, 3 for bishop, etc.). 

Adding up the values of features seems like a reasonable thing to do, but in fact it 
involves a very strong assumption: that the contribution of each feature is independent of the 
values of the other features. For example, assigning the value 3 to a bishop ignores the fact 
that bishops are more powerful in the endgame, when they have a lot of space to maneuver. 
For this reason, current programs for chess and other games also use nonlinear combinations 
of features. For example, a pair of bishops might be worth slightly more than twice the value 
of a single bishop, and a bishop is worth more in the endgame than at the beginning. 

The astute reader will have noticed that the features and weights are not part of the 
rules of chess! They come from centuries of human chess-playing experience. Given the 
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(a) White to move (b) White to move 

Figure 6.8 Two slightly different chess positions. In (a), black has an advantage of a 
knight and two pawns and will win the game. In (b), black will lose after white captures the 

linear form of the evaluation, the features and weights result in the best approximation to 
the true ordering of states by value. In particular, experience suggests that a secure material 
advantage of more than one point will probably win the game, all other things being equal; 
a three-point advantage is sufficient for near-certain victory. In games where this kind of 
experience is not available, the weights of the evaluation function can be estimated by the 
machine learning techniques of Chapter 18. Reassuringly, applying these techniques to chess 
has confirmed that a bishop is indeed worth about three pawns. 

Cutting off search 

The next step is to modify ALPHA-BETA-SEARCH so that it will call the heuristic EVAL 

function when it is appropriate to cut off the search. In terms of implementation, we replace 
the two lines in Figure 6.7 that mention TERMINAL-TIEST with the following line: 

if cu~0FF-TEST(state, depth) then return EVA,L(state) 

We also must arrange for some bookkeeping so that the current depth is incremented on each 
recursive call. The most straightforward approach to controlling the amount of search is to set 
a fixed depth limit, so that C u ~ o l T - T ~ s ~ ( s t a t e ,  depth) returns true for all depth greater than 
some fixed depth d. (It must also return true for all terminal states, just as TERMINAL-TEST 

did.) The depth d is chosen so that the amount of time used will not exceed what the rules of 
the game allow. 

A more robust approach is to apply iterative deepening, as defined in Chapter 3. When 
time runs out, the program returns the move selected by the deepest completed search. How- 
ever, these approaches can lead to errors due to the approximate nature of the evaluation 
function. Consider again the simple evaluation function for chess based on material advan- 
tage. Suppose the program searches to the depth limit, reaching the position in Figure 6.8(b), 
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where Black is ahead by a knight and two pawns. It would report this as the heuristic value 
of the state, thereby declaring that the state will likely lead to a win by Black. But White's 
next move captures Black's queen with no compensation. Hence, the position is really won 
for White, but this can be seen only by looking ahead one more ply. 

Obviously, a more sophisticated cutoff test is needed. The evaluation function should be 
QUIESCENCE applied only to positions that are quiescent-that is, unlikely to exhibit wild swings in value 

in the near future. In chess, for example, positions in which favorable captures can be made 
are not quiescent for an evaluation function that just counts material. Nonquiescent positions 
can be expanded further until quiescent positions are reached. This extra search is called a 

QUIESCENCE 
SEARCH quiescence search; sometimes it is restricted to consider only certain types of moves, such 

as capture moves, that will quickly resolve the uncertainties in the position. 
HORIZON EFFECT The horizon effect is more difficult to eliminate. It arises when the program is facing 

a move by the opponent that causes serious damage and is ultimately unavoidable. Consider 
the chess game in Figure 6.9. Black is ahead in material, but if White can advance its pawn 
from the seventh row to the eighth, the pawn will become a queen and create an easy win 
for White. Black can forestall this outcome for 14 ply by checking White with the rook, 
but inevitably the pawn will become a queen. The problem with fixed-depth search is that it 
believes that these stalling moves have avoided the queening move-we say that the stalling 
moves push the inevitable queening move "over the search horizon" to a place where it cannot 
be detected. 

As hardware improvements lead to deeper searches, one expects that the horizon effect 
will occur less frequently-very long delaying sequences are quite rare. The use of singular 

SINGULAR 
EXTENSIONS extensions has also been quite effective in avoiding the horizon effect without adding too 

much search cost. A singular extension is a move that is "clearly better" than all other moves 
in a given position. A singular-extension search can go beyond the normal depth limit without 
incurring much cost because its branching factor is 1. (Quiescence search can be thought of 
as a variant of singular extensions.) In Figure 6.9, a singular extension search will find the 
eventual queening move, provided that black's checking moves and white's king moves can 
be identified as "clearly better" than the alternatives. 

So far we have talked about cutting off search at a certain level and about doing alpha- 
beta pruning that provably has no effect on the result. It is also possible to do forward 

FORWARD PRUNING pruning, meaning that some moves at a given node are pruned immediately without further 
consideration. Clearly, most humans playing chess only consider a few moves from each 
position (at least consciously). Unfortunately, the approach is rather dangerous because there 
is no guarantee that the best move will not be pruned away. This can be disastrous if applied 
near the root, because every so often the program will miss some "obvious" moves. Forward 
pruning can be used safely in special situations-for example, when two moves are symmetric 
or otherwise equivalent, only one of them need be considered-or for nodes that are deep in 
the search tree. 

Combining all the techniques described here results in a program that can play cred- 
itable chess (or other games). Let us assume we have implemented an evaluation function 
for chess, a reasonable cutoff test with a quiescence search, and a large transposition table. 
Let us also assume that, after months of tedious bit-bashing, we can generate and evaluate 
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Black to move 

Figure 6.9 The horizon effect. A series of checks by the black rook forces the inevitable 
queening move by white "over the horizon" and makes this position look like a win for black, 
when it is really a win for white. 

around a million nodes per second on the latest PC, allowing us to search roughly 200 million 
nodes per move under standard time controls (three minutes per move). The branching factor 
for chess is about 35, on average, and 355 is about 50 imillion, so if we used minimax search 
we could look ahead only about five plies. Though not incompetent, such a program can be 
fooled easily by an average human chess player, who can occasionally plan six or eight plies 
ahead. With alpha-beta search we get to about 10 ply, which results in an expert level of 
play. Section 6.7 describes additional pruning techniques that can extend the effective search 
depth to roughly 14 plies. To reach grandmaster status we would need an extensively tuned 
evaluation function and a large database of optimal opening and endgame moves. It wouldn't 
hurt to have a supercomputer to run the program on. 

In real life, there are many unpredictable external events that put us into unforeseen situations. 
Many games mirror this unpredictability by including a random element, such as the throwing 
of dice. In this way, they take us a step nearer reality, and it is worthwhile to see how this 
affects the decision-making process. 

Backgammon is a typical game that combines luck and skill. Dice are rolled at the 
beginning of a player's turn to determine the legal moves. In the backgammon position of 
Figure 6.10, for example, white has rolled a 6-5, and has four possible moves. 

Although White knows what his or her own legal moves are, White does not know what 
Black is going to roll and thus does not know what Black's legal moves will be. That means 
White cannot construct a standard game tree of the sort we saw in chess and tic-tac-toe. A 
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0 

25 

Figure 6.10 A typical backgammon position. The goal of the game is to move all one's 
pieces off the board. White moves clockwise toward 25, and black moves counterclockwise 
toward 0. A piece can move to any position unless there are multiple opponent pieces there; 
if there is one opponent, it is captured and must start over. In the position shown, White has 
rolled 6-5 and must choose among four legal moves: (5-10,5-1 I), (5-11,19-24), (5-10,1@- 
16), and (5-11,ll-16). 

TERMINAL 2 -I 1 -1 1 

Figure 6.11 Schematic game tree for a backgammon position. 
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CHANCENODES game tree in backgammon must include chance nodes in addition to M A X  and M I N  nodes. 
Chance nodes are shown as circles in Figure 6.11. The branches leading from each chance 
node denote the possible dice rolls, and each is labeled with the roll and the chance that it 
will occur. There are 36 ways to roll two dice, each equally likely; but because a 6-5 is the 
same as a 5-6, there are only 21 distinct rolls. The six doubles (1-1 through 6-6) have a 1/36 
chance of coming up, the other 15 distinct rolls a 1/18 chance each. 

The next step is to understand how to make correct decisions. Obviously, we still want 
to pick the move that leads to the best position. However, the resulting positions do not 
have definite minimax values. Instead, we can only calcula~te the expected value, where the 
expectation is taken over all the possible dice rolls that could occur. This leads us to generalize 

EXPECTIMINIMAX VALUE the minimax value for deterministic games to an expectiminimax value for games with 
chance nodes. Terminal nodes and M A X  and M I N  nodes (for which the dice roll is known) 
work exactly the same way as before; chance nodes are evaluated by taking the weighted 
average of the values resulting from all possible dice rolls, that is, 

E X P E C T I M I N I M A X ( ~ )  = 

U T I L I T Y ( ~ )  if n is a terminal state 

 ma^^^^^^^^^^^^^(^) E X P E C T I M I N I M A X ( S )  if n is a M A X  node 

m i n s ~ ~ u c c e s s o r s ( n )  E X P E C T I M I N I M A X ( S )  if n is a M I N  node 
~sESuccessors(n)  P ( s )  . E X P E C T I M I N I M A . I : ( S )  if n is a chance node 

where the successor function for a chance node n simply augments the state of n with each 
possible dice roll to produce each successor s and P ( s )  is the probability that that dice roll 
occurs. These equations can be backed up recursively all the way to the root of the tree, just 
as in minimax. We lea.ve the details of the algorithm as an exercise. 

Position evaluation in games with chance nodes 

As with minimax, the obvious approximation to make with expectiminimax is to cut the 
search off at some point and apply an evaluation function to each leaf. One might think that 
evaluation functions for games such as backgammon slhould be just like evaluation functions 
for chess-they just need to give higher scores to better positions. But in fact, the presence of 
chance nodes means that one has to be more careful about what the evaluation values mean. 
Figure 6.12 shows what happens: with an evaluation functilon that assigns values [I, 2, 3, 
41 to the leaves, move A1 is best; with values [I, 210, 30, 4001, move A2 is best. Hence, 
the program behaves totally differently if we make a change in the scale of some evaluation 
values! It turns out that, to avoid this sensitivity, the evaluaiion function must be a positive 
linear transformation of the probability of winning from a polsition (or, more generally, of the 
expected utility of the position). This is an important and general property of situations in 
which uncertainty is involved, and we discuss it further in Chapter 16. 

Complexity of expectiminimax 

If the program knew in advance all the dice rolls that would occur for the rest of the game, 
solving a game with dice would be just like solving a game without dice, which minimax 
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MAX 

CHANCE 

MIN 

Figure 6.12 An order-preserving transformation on leaf values changes the best move. 1 
does in O(bm) time. Because expectiminimax is also considering all the possible dice-roll 
sequences, it will take O(bmnm), where n is the number of distinct rolls. 

Even if the search depth is limited to some small depth d, the extra cost compared with 
that of minimax makes it unrealistic to consider looking ahead very far in most games of 
chance. In backgammon n is 21 and b is usually around 20, but in some situations can be as 
high as 4000 for dice rolls that are doubles. Three plies is probably all we could manage. 

Another way to think about the problem is this: the advantage of alpha-beta is that 
it ignores future developments that just are not going to happen, given best play. Thus, it 
concentrates on likely occurrences. In games with dice, there are no likely sequences of 
moves, because for those moves to take place, the dice would first have to come out the right 
way to make them legal. This is a general problem whenever uncertainty enters the picture: 
the possibilities are multiplied enormously, and forming detailed plans of action becomes 
pointless, because the world probably will not play along. 

No doubt it will have occurred to the reader that perhaps something like alpha-beta 
pruning could be applied to game trees with chance nodes. It turns out that it can. The 
analysis for MIN and MAX nodes is unchanged, but we can also prune chance nodes, using 
a bit of ingenuity. Consider the chance node C in Figure 6.1 1 and what happens to its value 
as we examine and evaluate its children. Is it possible to find an upper bound on the value 
of C before we have looked at all its children? (Recall that this is what alpha-beta needs to 
prune a node and its subtree.) At first sight, it might seem impossible, because the value of C 
is the average of its children's values. Until we have looked at all the dice rolls, this average 
could be anything, because the unexamined children might have any value at all. But if we 
put bounds on the possible values of the utility function, then we can arrive at bounds for the 
average. For example, if we say that all utility values are between +3 and -3, then the value 
of leaf nodes is bounded, and in turn we can place an upper bound on the value of a chance 
node without looking at all its children. 
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Card games 

Card games are interesting for many reasons besides tlheir connection with gambling. Among 
the huge variety of games, we will focus on those in which cards are dealt randomly at the 
beginning of the game, with each player receiving a hand of cards that is not visible to the 
other players. Such games include bridge, whist, heats, and some forms of poker. 

At first sight, it might seem that card games are just like dice games: the cards are 
dealt randomly and determine the moves available to each player, but all the dice are rolled 
at the beginning! We will pursue this observation further. It will turn out to be quite useful in 
practice. It is also quite wrong, for interesting reasons. 

Imagine two players, MAX and MIN, playing some practice hands of four-card two 
handed bridge with all the cards showing. The hands are as follows, with MAX to play first: 

MAX: 0 6  0 6  4 9 8  MIN: v 4  4 2  4 , 1 0 5 .  

Suppose that MAX leads the 4 9. MIN must now follow suit, playing either the 4 10 or the 
4 5. MIN plays the 4 10 and wins the trick. MIN goes nexl. and leads the ) 2. MAX has no 
spades (and so cannot win the trick) and therefore must throw away some card. The obvious 
choice is the 0 6 because the other two remaining cards are winners. Now, whichever card 
MIN leads for the next trick, MAX will win both remaining tricks and the game will be tied at 
two tricks each. It is easy to show, using a suitable vaviant of minimax (Exercise 6.12), that 
MAX'S lead of the 4 9 is in fact an optimal choice. 

Now let's modify MIN'S hand, replacing the V 4 with the 0 4: 

MAX: 0 6 0 6 4 9 8  MIN: 0 4 4 2 4 1 0 5 ,  

The two cases are entirely symmetric: play will be identical, except that on the second trick 
MAX will throw away the V 6. Again, the game will be tied at two tricks each and the lead of 
the 4 9 is an optimal choice. 

So far, so good. Now let's hide one of MIN's cards: MAX knows that MIN has either 
the first hand (with the V 4) or the second hand (with the 0 4), but has no idea which. MAX 

reasons as follows: 

The ) 9 is an optimal choice against MIN'S first hand and against MIN'S second hand, so 
it must be optimal now because I know that MIN has one of the two hands. 

More generally, MAX is using what we might call "averaging over clairvoyancy." The idea 
is to evaluate a given course of action when there are unseen cards by first computing the 
minimax value of that action for each possible deal of the cards, and then computing the 
expected value over all deals using the probability of each deal. 

If you think t h s  is reasonable (or if you have no idea because you don't understand 
bridge), consider the following story: 

Day 1: Road A leads to a heap of gold pieces; Road B leads to a fork. Take the left fork 
and you'll find a mound of jewels, but take the right fork and you'll be run over by a bus. 
Day 2: Road A leads to a heap of gold pieces; Road B leads to a fork. Take the right fork 
and you'll find a mound of jewels, but take the left fork and you'll be run over by a bus. 
Day 3: Road A leads to a heap of gold pieces; Road B leads to a fork. Guess correctly and 
you'll find a mound of jewels, but guess incorrectly and you'll be run over by a bus. 
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Obviously, it's not unreasonable to take Road B on the first two days. No sane person, though, 
would take Road B on Day 3. Yet this is exactly what averaging over clairvoyancy suggests: 
Road B is optimal in the situations of Day 1 and Day 2; therefore it is optimal on Day 3, 
because one of the two previous situations must hold. Let us return to the card game: after 
MAX leads the ) 9, MIN wins with the 4 10. As before, MIN leads the 4 2, and now MAX is 
at the fork in the road without any instructions. If MAX throws away the V 6 and MIN still has 
the V 4, the 4 becomes a winner and MAX loses the game. Similarly, If MAX throws away 
the 0 6 and MIN still has the 0 4, MAX also loses. Therefore, playing the 4 9 first leads to a 
situation where MAX has a 50% chance of losing. (It would be much better to play the V 6 
and the 0 6 first, guaranteeing a tied game.) 

The lesson to be drawn from all this is that when information is missing, one must 
consider what informatiorz one will have at each point in the game. The problem with MAX'S 

algorithm is that it assumes that in each possible deal, play will proceed as if all the cards 
are visible. As our example shows, this leads MAX to act as if all future uncertainty will be 
resolved when the time comes. MAX'S algorithm will also never decide to gather information 
(or provide information to a partner), because within each deal there's no need to do so; yet 
in games such as bridge, it is often a good idea to play a card that will help one discover 
things about one's opponent's cards or that will tell one's partner about one's own cards. 
These kinds of behaviors are generated automatically by an optimal algorithm for games of 
imperfect information. Such an algorithm searches not in the space of world states (hands 
of cards), but in the space of belief states (beliefs about who has which cards, with what 
probabilities). We will be able to explain the algorithm properly in Chapter 17, once we have 
developed the necessary probabilistic machinery. In that chapter, we will also expand on 
one final and very important point: in games of imperfect information, it's best to give away 
as little information to the opponent as possible, and often the best way to do this is to act 
unpredictably. This is why restaurant hygiene inspectors do random inspection visits. 

One might say that game playing is to A1 as Grand Prix motor racing is to the car indus- 
try: state-of-the-art game programs are blindingly fast, incredibly well-tuned machines that 
incorporate very advanced engineering techniques, but they aren't much use for doing the 
shopping. Although some researchers believe that game playing is somewhat irrelevant to 
mainstream AI, it continues to generate both excitement and a steady stream of innovations 
that have been adopted by the wider community. 

CHESS Chess: In 1957, Herbert Simon predicted that within 10 years computers would beat the 
human world champion. Forty years later, the Deep Blue program defeated Garry Kasparov 
in a six-game exhibition match. Simon was wrong, but only by a factor of 4. Kasparov wrote: 

The decisive game of the match was Game 2, which left a scar in my memory . . . we saw 
something that went well beyond our wildest expectations of how well a computer would 
be able to foresee the long-term positional consequences of its decisions. The machine 
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refused to move to a position that had a decisive short-term advantage-showing a very 
human sense of danger. (Kasparov, 1997) 

Deep Blue was developed by Murray Campbell, Feng-Hsiung Hsu, and Joseph Hoane at 
IBM (see Campbell et al., 2002), building on the Deep T'hought design developed earlier 
by Campbell and Hsu at Carnegie Mellon. The wii~ming rnachine was a parallel computer 
with 30 IBM RSt6000 processors running the "software search" and 480 custom VLSl chess 
processors that performed move generation (including move ordering), the "hardware search" 
for the last few levels of the tree, and the evaluation of leaf nodes. Deep Blue searched 126 
million nodes per second on average, with a peak speed of 330 million nodes per second. It 
generated up to 30 billion positions per move, reaching depth 14 routinely. The heart of the 
machine is a standard iterative-deepening alpha-beta s~earch with a transposition table, but the 
key to its success seems to have been its ability to generate extensions beyond the depth limit 
for sufficiently interesting lines of forcingtforced moves. In some cases the search reached a 
depth of 40 plies. The evaluation function had over 8000 features, many of them describing 
highly specific patterns of pieces. An "opening book" of about 4000 positions was used, as 
well as a database of 700,000 grandmaster games from which consensus recommendations 
could be extracted. The system also used a large endgame database of solved positions, 
containing all positions with five pieces and many with six pieces. This database has the effect 
of substantially extending the effective search depth, allowing Deep Blue to play perfectly in 
some cases even when it is many moves away from checkmate. 

The success of Deep Blue reinforced the widely held belief that progress in computer 
game-playing has come primarily from ever-more-powerful hardware-a view encouraged 
by IBM. Deep Blue's creators, on the other hand, state that the search extensions and eval- 
uation function were also critical (Campbell et al., 2002). I\.loreover, we know that several 
recent algorithmic improvements have allowed programs running on standard PCs to win 
every World Computer-Chess Championship since 1992, often defeating massively parallel 
opponents that could search 1000 times more nodes. A variety of pruning heuristics are used 
to reduce the effective branching factor to less than 3 (compared with the actual branching 

NULL MOVE factor of about 35). The most important of these is the null move heuristic, which generates 
a good lower bound on the value of a position, using a shallow search in which the oppo- 
nent gets to move twice at the beginning. This lower lbiound often allows alpha-beta pruning 

FUTILITY PRUNING without the expense of a full-depth search. Also important is futility pruning, which helps 
decide in advance which moves will cause a beta cutoff in the successor nodes. 

The Deep Blue team declined a chance for a rematch with Kasparov. Instead, the 
most recent major competition in 2002 featured the pi-ogram FRITZ against world cham- 
pion Vladimir Kramnik. The eight game match ended in a draw. The conditions of the match 
were much more favorable to the human, and the hardware was an ordinary PC, not a super- 
computer. Still, Krarnnik commented that "It is now clear that the top program and the world 
champion are approximately equal." 

CHECKERS Checkers: Beginning in 1952, Arthur Samuel of IBM, working in his spare time, developed 
a checkers program that learned its own evaluation fil~~etion by playing itself thousands of 
times. We describe this idea in more detail in Chapter 21. Samuel's program began as a 
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novice, but after only a few days' self-play had improved itself beyond Samuel's own level 
(although he was not a strong player). In 1962 it defeated Robert Nealy, a champion at "blind 
checkers," through an error on his part. Many people felt that this meant computers were su- 
perior to people at checkers, but this was not the case. Still, when one considers that Samuel's 
computing equipment (an IBM 704) had 10,000 words of main memory, magnetic tape for 
long-term storage, and a .000001-GHz processor, the win remains a great accomplishment. 

Few other people attempted to do better until Jonathan Schaeffer and colleagues de- 
veloped Chinook, which runs on regular PCs and uses alpha-beta search. Chinook uses a 
precomputed database of all 444 billion positions with eight or fewer pieces on the board to 
make its endgame play flawless. Chinook came in second in the 1990 U.S. Open and earned 
the right to challenge for the world championship. It then ran up against a problem, in the 
form of Marion Tinsley. Dr. Tinsley had been world champion for over 40 years, losing only 
three games in all that time. In the first match against Chinook, Tinsley suffered his fourth and 
fifth losses, but won the match 20.5-18.5. The world championship match in August 1994 
between Tinsley and Chinook ended prematurely when Tinsley had to withdraw for health 
reasons. Chinook became the official world champion. 

Schaeffer believes that, with enough computing power, the database of endgames could 
be enlarged to the point where a forward search from the initial position would always reach 
solved positions, i.e., checkers would be completely solved. (Chinook has announced a win 
as early as move 5.) This kind of exhaustive analysis can be done by hand for 3 x 3 tic-tac-toe 
and has been done by computer for Qubic (4 x 4 x 4 tic-tac-toe), Go-Moku (five in a row), and 
Nine-Men's Morris (Gasser, 1998). Remarkable work by Ken Thompson and Lewis Stiller 
(1992) solved all five-piece and some six-piece chess endgames, making them available on 
the Internet. Stiller discovered one case where a forced mate existed but required 262 moves; 
this caused some consternation because the rules of chess require some "progress" to occur 
within 50 moves. 

OTHELLO Othello, also called Reversi, is probably more popular as a computer game than as a board 
game. It has a smaller search space than chess, usually 5 to 15 legal moves, but evaluation 
expertise had to be developed from scratch. In 1997, the Logistello program (Buro, 2002) 
defeated the human world champion, Takeshi Murakami , by six games to none. It is generally 
acknowledged that humans are no match for computers at Othello. 

BACKGAMMON Backgammon: Section 6.5 explained why the inclusion of uncertainty from dice rolls makes 
deep search an expensive luxury. Most work on backgammon has gone into improving 
the evaluation function. Gerry Tesauro (1992) combined Samuel's reinforcement learning 
method with neural network techniques (Chapter 20) to develop a remarkably accurate eval- 
uator that is used with a search to depth 2 or 3. After playing more than a million training 
games against itself, Tesauro7s program, TD-GAMMON, is reliably ranked among the top 
three players in the world. The program's opinions on the opening moves of the game have 
in some cases radically altered the received wisdom. 

Go is the most popular board game in Asia, requiring at least as much discipline from its 
professionals as chess. Because the board is 19 x 19, the branching factor starts at 361, 
which is too daunting for regular search methods. Up to 1997 there were no competent 
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programs at all, but now programs often play respectable moves. Most of the best programs 
combine pattern recognition techniques (when the fc~llowing pattern of pieces appears, this 
move should be considered) with limited search (decide whether these pieces can be captured, 
staying within the local area). The strongest programs at the time of writing are probably 
Chen Zhixing's Goemate and Michael Reiss' Go4++, each rated somewhere around 10 kyu 
(weak amateur). Go is an area that is likely to benefit from intensive investigation using more 
sophisticated reasoning methods. Success may come from finding ways to integrate several 
lines of local reasoning about each of the many, loosely connected "subgames" into which 
Go can be decomposed. Such techniques would be of enormous value for intelligent systems 
in general. 

BRIDGE Bridge is a game of imperfect information: a player's cards are hidden from the other players. 
Bridge is also a multiplayer game with four players instead of two, although the players are 
paired into two teams. As we saw in Section 6.5, optimal play in bridge can include elements 
of information-gathering, communication, bluffing, and careful weighing of probabilities. 
Many of these techniques are used in the Bridge ~ a r o n ~ "  program (Smith et al., 1998), 
which won the 1997 computer bridge championship. VVhile it does not play optimally, Bridge 
Baron is one of the few successful game-playing systems to use complex, hierarchical plans 
(see Chapter 12) involving high-level ideas such as finessing and squeezing that are familiar 
to bridge players. 

The GIB program (Ginsberg, 1999) won the 2000 championship quite decisively. GIB 
uses the "averaging over clairvoyancy" method, with two crucial modifications. First, rather 
than examining how well each choice works for every possible arrangement of the hidden 
cards--of which there can be up to 10 million-it examines a random sample of 100 arrange- 
ments. Second, GIB uses explanation-based generalization to compute and cache general 
rules for optimal play in various standard classes of situations. This enables it to solve each 
deal exactly. GIB's tactical accuracy makes up for its inability to reason about information. 
It finished 12th in a field of 35 in the par contest (involving just play of the hand) at the 1998 
human world championship, far exceeding the expectations of many human experts. 

Because calculating optimal decisions in games is intractable in most cases, all algorithms 
must make some assumptions and approximations. The standard approach, based on mini- 
max, evaluation functions, and alpha-beta, is just one ,way to (do this. Probably because it was 
proposed so early on, the standard approach had been develloped intensively and dominates 
other methods in tournament play. Some in the field believe that this has caused game playing 
to become divorced from the mainstream of A1 research, because the standard approach no 
longer provides much room for new insight into general questions of decision making. In this 
section, we look at the alternatives. 

First, let us consider minimax. Minimax selects an optimal move in a given search 
tree provided that the leaf node evaluations are exactly correct. In reality, evaluations are 
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1 Figure 6.13 A two-ply game tree for which minimax may be inappropriate. 

usually crude estimates of the value of a position and can be considered to have large errors 
associated with them. Figure 6.13 shows a two-ply game tree for which minimax seems 
inappropriate. Minimax suggests taking the right-hand branch, whereas it is quite likely that 
the true value of the left-hand branch is higher. The minimax choice relies on the assumption 
that all of the nodes labeled with values 100, 101, 102, and 100 are actually better than the 
node labeled with value 99. However, the fact that the node labeled 99 has siblings labeled 
1000 suggests that in fact it might have a higher true value. One way to deal with this problem 
is to have an evaluation that returns a probability distribution over possible values. Then 
one can calculate the probability distribution for the parent's value using standard statistical 
techniques. Unfortunately, the values of sibling nodes are usually highly correlated, so this 
can be an expensive calculation, requiring hard to obtain information. 

Next, we consider the search algorithm that generates the tree. The aim of an algorithm 
designer is to specify a computation that runs quickly and yields a good move. The most 
obvious problem with the alpha-beta algorithm is that it is designed not just to select a good 
move, but also to calculate bounds on the values of all the legal moves. To see why this 
extra information is unnecessary, consider a position in which there is only one legal move. 
Alpha-beta search still will generate and evaluate a large, and totally useless, search tree. Of 
course, we can insert a test into the algorithm, but this merely hides the underlying problem: 
many of the calculations done by alpha-beta are largely irrelevant. Having only one legal 
move is not much different from having several legal moves, one of which is fine and the 
rest of which are obviously disastrous. In a "clear favorite" situation like this, it would be 
better to reach a quick decision after a small amount of search than to waste time that could 
be more productively used later on a more problematic position. This leads to the idea of the 
utility of a node expansion. A good search algorithm should select node expansions of high 
utility-that is, ones that are likely to lead to the discovery of a significantly better move. If 
there are no node expansions whose utility is higher than their cost (in terms of time), then 
the algorithm should stop searching and make a move. Notice that this works not only for 
clear-favorite situations, but also for the case of symmetrical moves, for which no amount of 
search will show that one move is better than another. 

METAREASONING This kind of reasoning about what computations to do is called metareasoning (rea- 
soning about reasoning). It applies not just to game playing, but to any kind of reasoning 
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at all. All computations are done in the service of trying to reach better decisions, all have 
costs, and all have some likelihood of resulting in a certain improvement in decision quality. 
Alpha-beta incorporates the simplest kind of metareasoning, namely, a theorem to the effect 
that certain branches of the tree can be ignored without loss. It is possible to do much better. 
In Chapter 16, we will see how these ideas can be made precise and implementable. 

Finally, let us reexamine the nature of search itself. Algorithms for heuristic search and 
for game playing work by generating sequences of concrete states, starting from the initial 
state and then applying an evaluation function. Clearly, this is not how humans play games. In 
chess, one often has a particular goal in mind-for example, trapping the opponent's queen- 
and can use this goal to selectively generate plausible plans for achieving it. This kind of goal- 
directed reasoning or planning sometimes eliminates combinatorial search altogether. (See 
Part IV.) David Wilkins' (1980) PARADISE is the only program to have used goal-directed 
reasoning successfully in chess: it was capable of solving some chess problems requiring an 
18-move combination. As yet there is no good understanding of how to combine the two 
kinds of algorithm into a robust and efficient system, although Bridge Baron might be a step 
in the right direction. A fully integrated system would be a significant achievement not just 
for game-playing research, but also for A1 research iin general, because it would be a good 
basis for a general intelligent agent. 

We have looked at a variety of games to understand what optimal play means and to under- 
stand how to play well in practice. The most important ideas are as follows: 

A game can be defined by the initial state (how the board is set up), the legal actions in 
each state, a terminal test (which says when the game is over), and a utility function 
that applies to terminal states. 

In two-player zero-sum games with perfect information, the minimax algorithm can 
select optimal moves using a depth-first enumeration of the game tree. 

The alpha-beta search algorithm computes the same optimal move as minimax, but 
achieves much greater efficiency by eliminating subtrees that are provably irrelevant. 

Usually, it is not feasible to consider the whole ga.me tree (even with alpha-beta), so we 
need to cut the search off at some point and apply an evaluation function that gives an 
estimate of the utility of a state. 

e Games of chance can be handled by an extension to the minimax algorithm that evalu- 
ates a chance node by taking the average utility of all its children nodes, weighted by 
the probability of each child. 

Optimal play in games of imperfect information, such as bridge, requires reasoning 
about the current and future belief states of each player. A simple approximation can 
be obtained by averaging the value of an action over each possible configuration of 
missing information. 
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Programs can match or beat the best human players in checkers, Othello, and backgam- 
mon and are close behind in bridge. A program has beaten the world chess champion 
in one exhibition match. Programs remain at the amateur level in Go. 

BIBLIOGRAPHICAL AND HISTORICAL NOTES 

The early history of mechanical game playing was marred by numerous frauds. The most no- 
torious of these was Baron Wolfgang von Kempelen's (1734-1804) "The Turk," a supposed 
chess-playing automaton that defeated Napoleon before being exposed as a magician's trick 
cabinet housing a human chess expert (see Levitt, 2000). It played from 1769 to 1854. In 
1846, Charles Babbage (who had been fascinated by the Turk) appears to have contributed 
the first serious discussion of the feasibility of computer chess and checkers (Morrison and 
Morrison, 1961). He also designed, but did not build, a special-purpose machine for playing 
tic-tac-toe. The first true game-playing machine was built around 1890 by the Spanish engi- 
neer Leonardo Torres y Quevedo. It specialized in the " K R K  (king and rook vs. king) chess 
endgame, guaranteeing a win with king and rook from any position. 

The minimax algorithm is often traced to a paper published in 1912 by Ernst Zennelo, 
the developer of modern set theory. The paper unfortunately contained several errors and 
did not describe minimax correctly. A solid foundation for game theory was developed in 
the seminal work Theory of Games and Economic Behavior (von Neumann and Morgen- 
stern, 1944), which included an analysis showing that some games require strategies that are 
randomized (or otherwise unpredictable). See Chapter 17 for more information. 

Many influential figures of the early computer era were intrigued by the possibility of 
computer chess. Konrad Zuse (1945), the first person to design a programmable computer, 
developed fairly detailed ideas about how it might be done. Norbert Wiener's (1948) influen- 
tial book Cybernetics discussed one possible design for a chess program, including the ideas 
of minimax search, depth cutoffs, and evaluation functions. Claude Shannon (1950) laid out 
the basic principles of modern game-playing programs in much more detail than Wiener. He 
introduced the idea of quiescence search and described some ideas for selective (nonexhaus- 
tive) game-tree search. Slater (1950) and the commentators on his article also explored the 
possibilities for computer chess play. In particular, I. J. Good (1950) developed the notion of 
quiescence independently of Shannon. 

In 195 1, Alan Turing wrote the first computer program capable of playing a full game 
of chess (see Turing et al., 1953). But Turing's program never actually ran on a computer; it 
was tested by hand simulation against a very weak human player, who defeated it. Meanwhile 
D. G. Prinz (1952) had written, and actually run, a program that solved chess problems, 
although it did not play a full game. Alex Bernstein wrote the first program to play a full 
game of standard chess (Bernstein and Roberts, 1958; Bernstein et al., 1958h3 

John McCarthy conceived the idea of alpha-beta search in 1956, although he did not 
publish it. The NSS chess program (Newel1 et al., 1958) used a simplified version of alpha- 

Newell et al. (1958) mention a Russian program, BESM, that may have predated Bernstein's program. 
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beta; it was the first chess program to do so. According to Nilsson (1971), Arthur Samuel's 
checkers program (Samuel, 1959, 1967) also used alpha-beta, although Samuel did not men- 
tion it in the published reports on the system. Papers describing alpha-beta were published 
in the early 1960s (Hart and Edwards, 1961; Brudno, 1963; Slagle, 1963b). An implementa- 
tion of full alpha-beta is described by Slagle and Dixon (1969) in a program for playing the 
game of Kalah. Alpha-beta was also used by the "Kotok-McCarthy" chess program written 
by a student of John McCarthy (Kotok, 1962). Knuth and Moore (1975) provide a history 
of alpha-beta, along with a proof of its correctness and a time complexity analysis. Their 
analysis of alpha-beta with random successor ordering showed an asymptotic complexity of 
O((b/log b)d), which seemed rather dismal because the effective branching factor b/log b is 
not much less than b itself. They then realized that the asymptotic formula is accurate only for 
b > 1000 or so, whereas the often-quoted ~ ( b ~ ~ / ~ )  applies  to the range of branching factors 
encountered in actual games. Pear1 (1982b) shows alpha-b~eta to be asymptotically optimal 
among all fixed-depth game-tree search algorithms. 

The first computer chess match featured the Kotok-McCarthy program and the " ITEP 
program written in the mid-1960s at Moscow's Institute of Theoretical and Experimental 
Physics (Adelson-Velsky et al., 1970). This intercontinental match was played by telegraph. 
It ended with a 3-1 victory for the ITEP program in 1967. The first chess program to compete 
successfully with humans was MacHack 6 (Greenbla~tt et al., 1967). Its rating of approxi- 
mately 1400 was well above the novice level of 1000, but it fell far short of the rating of 2800 
or more that would have been needed to fulfill Herb Simon's 1957 prediction that a computer 
program would be world chess champion within 10 years (Simon and Newell, 1958). 

Beginning with the first ACM North American Computer-Chess Championship in 1970, 
competition among chess programs became serious. Programs in the early 1970s became ex- 
tremely complicated, with various kinds of tricks for eliminating some branches of search, 
for generating plausible moves, and so on. In 1974, the first World Computer-Chess Champi- 
onship was held in Stockholm and won by Kaissa (Adelson-Velsky et al., 1975), another pro- 
gram from ITEP. Kaissa used the much more straightforwarcf approach of exhaustive alpha- 
beta search combined with quiescence search. The donninanct: of this approach was confirmed 
by thc convincing victory of CHESS 4.6 in the 1977 World Computer-Chess Championship. 
CHESS 4.6 examined up to 400,000 positions per move and had a rating of 1900. 

A later version of Greenblatt's MacHack 6 was the first chess program to run on cus- 
tom hardware designed specifically for chess (Moussouris et al., 1979), but the first pro- 
gram to achieve notable success through the use of custom hardware was Belle (Condon 
and Thompson, 1982). Belle's move generation and position evaluation hardware enabled 
it to explore several million positions per move. Belle achieved a rating of 2250, becoming 
the first master-level program. The HITECH system, also a special-purpose computer, was de- 
signed by former World Correspondence Chess Champion Hans Berliner and his student Carl 
Ebeling at CMU to allow rapid calculation of evaluation functions (Ebeling, 1987; Berliner 
and Ebeling, 1989). Generating about 10 million positions per move, HITECH became North 
American computer champion in 1985 and was the first program to defeat a human grand- 
master, in 1987. Deep Thought, which was also developecl at CMU, went further in the 
direction of pure search speed (Hsu et al., 1990). It achieved a rating of 2551 and was the 
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forerunner of Deep Blue. The Fredkin Prize, established in 1980, offered $5000 to the first 
program to achieve a master rating, $10,000 to the first program to achieve a USCF (United 
States Chess Federation) rating of 2500 (near the grandmaster level), and $100,000 for the 
first program to defeat the human world champion. The $5000 prize was claimed by Belle in 
1983, the $10,000 prize by Deep Thought in 1989, and the $100,000 prize by Deep Blue for 
its victory over Garry Kasparov in 1997. It is important to remember that Deep Blue's suc- 
cess was due to algorithmic improvements as well as hardware (Hsu, 1999; Campbell et al., 
2002). Techniques such as the null-move heuristic (Beal, 1990) have led to programs that 
are quite selective in their searches. The last three World Computer-Chess Championships in 
1992, 1995, and 1999 were won by programs running on standard PCs. Probably the most 
complete description of a modern chess program is provided by Ernst Heinz (2000), whose 
DARKTHOUGHT program was the highest-ranked noncommercial PC program at the 1999 
world championships. 

Several attempts have been made to overcome the problems with the "standard ap- 
proach" that were outlined in Section 6.7. The first selective search algorithm with some 
theoretical grounding was probably B* (Berliner, 1979), which attempts to maintain interval 
bounds on the possible value of a node in the game tree, rather than giving it a single point- 
valued estimate. Leaf nodes are selected for expansion in an attempt to refine the top-level 
bounds until one move is "clearly best.'' Palay (1985) extends the B* idea using probability 
distributions on values in place of intervals. David McAllester's (1988) conspiracy number 
search expands leaf nodes that, by changing their values, could cause the program to prefer a 
new move at the root. MGSS* (Russell and Wefald, 1989) uses the decision-theoretic tech- 
niques of Chapter 16 to estimate the value of expanding each leaf in terms of the expected 
improvement in decision quality at the root. It outplayed an alpha-beta algorithm at Othello 
despite searching an order of magnitude fewer nodes. The MGSS* approach is, in principle, 
applicable to the control of any form of deliberation. 

Alpha-beta search is in many ways the two-player analog of depth-first branch-and- 
bound, which is dominated by A* in the single-agent case. The SSS* algorithm (Stockman, 
1979) can be viewed as a two-player A* and never expands more nodes than alpha-beta to 
reach the same decision. The memory requirements and computational overhead of the queue 
make SSS* in its original form impractical, but a linear-space version has been developed 
from the RBFS algorithm (Korf and Chickering, 1996). Plaat et al. (1996) developed a new 
view of SSS* as a combination of alpha-beta and transposition tables, showing how to over- 
come the drawbacks of the original algorithm and developing a new variant called MTDW 
that has been adopted by a number of top programs. 

D. F. Beal (1980) and Dana Nau (1980, 1983) studied the weaknesses of minimax ap- 
plied to approximate evaluations. They showed that under certain independence assumptions 
about the distribution of leaf values in the tree, minimaxing can yield values at the root that 
are actually less reliable than the direct use of the evaluation function itself. Pearl's book 
Heuristics (1984) partially explains this apparent paradox and analyzes many game-playing 
algorithms. Baum and Smith (1997) propose a probability-based replacement for minimax, 
showing that it results in better choices in certain games. There is still little theory of the 
effects of cutting off search at different levels and applying evaluation functions. 
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The expectiminimax algorithm was proposed by Doinald Michie (1966), although of 
course it follows directly from the principles of game-tree evaluation due to von Neumann 
and Morgenstern. Bruce Ballard (1983) extended alpha-beta pruning to cover trees with 
chance nodes. The first successful backgammon program was BKG (Berliner, 1977, 1980b); 
it used a complex, manually constructed evaluation function and searched only to depth 1. It 
was the first program to defeat a human world champion at a major classic game (Berliner, 
1980a). Berliner readily acknowledged that this was a very short exhibition match (not a 
world championship match) and that BKG was very lucky with the dice. Work by Gerry 
Tesauro, first on NEUROGAMMON (Tesauro, 1989) and later on TD-GAMMON (Tesauro, 
1995), showed that much better results could be obtained via reinforcement learning, which 
we will cover in Chapter 21. 

Checkers, rather than chess, was the first of the classic games fully played by a com- 
puter. Christopher Strachey (1952) wrote the first working program for checkers. Schaeffer 
(1997) gives a highly readable, "warts and all" account of ihe development of his Chinook 
world champion checkers program. 

The first Go-playing programs were developed somewhat later than those for checkers 
and chess (Lefkovitz, 1960; Remus, 1962) and have progressed more slowly. Ryder (1971) 
used a pure search-based approach with a variety of selective pruning methods to overcome 
the enormous branching factor. Zobrist (1970) used c~onditi~on-action rules to suggest plau- 
sible moves when known patterns appeared. Reitmain and Wilcox (1979) combined rules 
and search to good effect, and most modem programs have followed this hybrid approach. 
Miiller (2002) summarizes the state of the art of computerized Go and provides a wealth of 
references. Anshelevich (2000) uses related techniques for the game of Hex. The Computer 
Go Newsletrer, published by the Computer Go Association, describes current developments. 

Papers on computer game playing appear in a variety of venues. The rather misleadingly 
named conference proceedings Heuristic Programming in Arf$cial Intelligence report on the 
Computer Olympiads, which include a wide variety of games. There are also several edited 
collections of important papers on game-playing rese,arch (Levy, 1988a, 1988b; Marsland 
and Schaeffer, 1990). The International Computer Chess A,ssociation (ICCA), founded in 
1977, publishes the quarterly ICGA Journal (formerly the ICCA Journal). Important papers 
have been published in the serial anthology Advances in Computer Chess, starting with Clarke 
(1977). Volume 134 of the journal Artijicial Intelligence (2002) contains descriptions of state- 
of-the-art programs for chess, Othello, Hex, shogi, Go, backgammon, poker, ~ c r a b b l e . ~ ~ a n d  
other games. 

6.1 This problem exercises the basic concepts of gamle playing, using tic-tac-toe (noughts 
and crosses) as an example. We define X ,  as the number of rows, columns, or diagonals 
with exactly n X's and no 0's. Similarly, 0, is the number of rows, columns, or diagonals 
with just n 0 's .  The utility function assigns +1 to any position with X g  = 1 and -1 to any 
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position with O3 = 1. All other terminal positions have utility 0. For nonterminal positions, 
we use a linear evaluation function defined as Eva1 ( s )  = 3X2 (s) +XI (s) - ( 3 0 2  (s) +Ol (s)). 

a. Approximately how many possible games of tic-tac-toe are there? 

b. Show the whole game tree starting from an empty board down to depth 2 (i.e., one X 
and one 0 on the board), taking symmetry into account. 

c.  Mark on your tree the evaluations of all the positions at depth 2. 
d. Using the minimax algorithm, mark on your tree the backed-up values for the positions 

at depths 1 and 0, and use those values to choose the best starting move. 

e. Circle the nodes at depth 2 that would not be evaluated if alpha-beta pruning were 
applied, assuming the nodes are generated in the optimal order for alpha-betapruning. 

6.2 Prove the following assertion: for every game tree, the utility obtained by MAX using 
minimax decisions against a suboptimal MIN will be never be lower than the utility obtained 
playing against an optimal MIN. Can you come up with a game tree in which MAX can do 
still better using a suboptimal strategy against a suboptimal MIN? 

6.3 Consider the two-player game described in Figure 6.14. 

a. Draw the complete game tree, using the following conventions: 

Write each state as ( sA ,  s g )  where s~ and sg denote the token locations. 
Put each terminal state in a square boxes and write its game value in a circle. 
Put loop states (states that already appear on the path to the root) in double square 
boxes. Since it is not clear how to assign values to loop states, annotate each with 
a "?" in a circle. 

b. Now mark each node with its backed-up minimax value (also in a circle). Explain how 
you handled the "?" values and why. 

c. Explain why the standard minimax algorithm would fail on this game tree and briefly 
sketch how you might fix it, drawing on your answer to (b). Does your modified algo- 
rithm give optimal decisions for all games with loops? 

d. This 4-square game can be generalized to n squares for any n > 2. Prove that A wins 
if n is even and loses if n is odd. 

Figure 6.14 The starting position of a simple game. Player A moves first. The two players 
take turns moving, and each player must move his token to an open adjacent space in either 
direction. If the opponent occupies an adjacent space, then a player may jump over the 
opponent to the next open space if any. (For example, if A is on 3 and B is on 2, then A may 
move back to 1.) The game ends when one player reaches the opposite end of the board. If 
player A reaches space 4 first, then the value of the game to A is +1; if player B reaches - - 
space 1 first, then the value of the game to A is -1. 
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\ggiqp 6.4 Implement move generators and evaluation functions for one or more of the following 
games: Kalah, Othello, checkers, and chess. Constnuct a general alpha-beta game-playing 
agent that uses your implementation. Compare the eEect of increasing search depth, improv- 
ing move ordering, and improving the evaluation function. How close does your effective 
branching factor come to the ideal case of perfect move ordering? 

6.5 Develop a formal proof of correctness for alpha-beta pruning. To do this, consider the 
situation shown in Figure 6.15. The question is whether to prune node nj, which is a max- 
node and a descendant of node nl. The basic idea is to prune it if and only if the minimax 
value of nl can be shown to be independent of the value of nj. 

a. The value of nl is given by 

Find a similar expression for n2 and hence an expression for nl in terms of nj. 

b. Let li be the minimum (or maximum) value of the nodes to the left of node ni at depth i, 
whose minimax value is already known. Similarly, let r.i be the minimum (or maximum) 
value of the unexplored nodes to the right of ni at depth i. Rewrite your expression for 
nl in terms of the li and ri values. 

c .  Now reformulate the expression to show that in order to affect nl, nj must not exceed 
a certain bound derived from the li values. 

d. Repeat the process for the case where nj is a rnin-node. 

1-p 6.6 Implement the expectiminimax algorithm and the *-alpha-beta algorithm, which is de- 
scribed by Ballard (1983), for pruning game trees with chance nodes. Try them on a game 
such as backgammon and measure the pruning effectiveness of *-alpha-beta. 

I 
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6.7 Prove that with a positive linear transformation of leaf values (i.e., transforming a value 
x to ax + b where a > O), the choice of move remains unchanged in a game tree, even when 
there are chance nodes. 

6.8 Consider the following procedure for choosing moves in games with chance nodes: 

a Generate some die-roll sequences (say, 50) down to a suitable depth (say, 8). 

e With known die rolls, the game tree becomes deterministic. For each die-roll sequence, 
solve the resulting deterministic game tree using alpha-beta. 

a Use the results to estimate the value of each move and to choose the best. 

Will this procedure work well? Why (not)? 

6.9 Describe and implement a real-time, multiplayer game-playing environment, where 
time is part of the environment state and players are given fixed time allocations. 

6.10 Describe or implement state descriptions, move generators, terminal tests, utility func- 
tions, and evaluation functions for one or more of the following games: Monopoly, Scrabble, 
bridge (assuming a given contract), and poker (choose your favorite variety). 

6.11 Consider carefully the interplay of chance events and partial information in each of the 
games in Exercise 6.10. 

a. For which is the standard expectirninimax model appropriate? Implement the algorithm 
and run it in your game-playing agent, with appropriate modifications to the game- 
playing environment. 

b. For which would the scheme described in Exercise 6.8 be appropriate? 

c. Discuss how you might deal with the fact that in some of the games, the players do not 
have the same knowledge of the current state. 

6.12 The minimax algorithm assumes that players take turns moving, but in card games 
such as whist and bridge, the winner of the previous trick plays first on the next trick. 

a. Modify the algorithm to work properly for these games. You may assume that a function 
WINNER(S) is available that reports which player won the trick just completed (if any). 

b. Draw the game tree for the first pair of hands shown on page 179. 

6.13 The Chinook checkers program makes extensive use of endgame databases, which 
provide exact values for every position with eight or fewer pieces. How might such databases 
be generated efficiently? 

6.14 Discuss how well the standard approach to game playing would apply to games such 
as tennis, pool, and croquet, which take place in a continuous physical state space. 

6.15 Describe how the minimax and alpha-beta algorithms change for two-player, non- 
zero-sum games in which each player has his or her own utility function. You may assume 
that each player knows the other's utility function. If there are no constraints on the two 
terminal utilities, is it possible for any node to be pruned by alpha-beta? 
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6.16 Suppose you have a chess program that can evaluate 1 million nodes per second. De- 
cide on a compact representation of a game state for storage in a transposition table. About 
how many entries can you fit in a 500MB in-memory table? Will that be enough for the three 
minutes of search allocated for one move? How many table lookups can you do in the time it 
would take to do one evaluation? Now suppose the transposition table is larger than can fit in 
memory. About how many evaluations could you do in the time it takes to do one disk seek 
with standard disk hardware? 



7 LOGICAL AGENTS 

In which we design agents that can form representations of the would, use a pro- 
cess of inference to derive new representations about the world, and use these new 
representations to deduce what to do. 

This chapter introduces knowledge-based agents. The concepts that we discuss-the repre- 
sentation of knowledge and the reasoning processes that bring knowledge to life-are central 
to the entire field of artificial intelligence. 

Humans, it seems, know things and do reasoning. Knowledge and reasoning are also 
important for artificial agents because they enable successful behaviors that would be very 
hard to achieve otherwise. We have seen that knowledge of action outcomes enables problem- 
solving agents to perfornl well in complex environments. A reflex agent could only find its 
way from Arad to Bucharest by dumb luck. The knowledge of problem-solving agents is, 
however, very specific and inflexible. A chess program can calculate the legal moves of its 
king, but does not know in any useful sense that no piece can be on two different squares 
at the same time. Knowledge-based agents can benefit from knowledge expressed in very 
general forms, combining and recombining information to suit myriad purposes. Often, this 
process can be quite far removed from the needs of the moment-as when a mathematician 
proves a theorem or an astronomer calculates the earth's life expectancy. 

Knowledge and reasoning also play a crucial role in dealing with partially obsemable 
environments. A knowledge-based agent can combine general knowledge with current per- 
cepts to infer hidden aspects of the current state prior to selecting actions. For example, a 
physician diagnoses a patient-that is, infers a disease state that is not directly observable- 
prior to choosing a treatment. Some of the knowledge that the physician uses is in the form of 
rules learned from textbooks and teachers, and some is in the form of patterns of association 
that the physician may not be able to consciously describe. If it's inside the physician's head, 
it counts as knowledge. 

Understanding natural language also requires inferring hidden state, namely, the inten- 
tion of the speaker. When we hear, "John saw the diamond through the window and coveted 
it," we know "it" refers to the diamond and not the window-we reason, perhaps uncon- 
sciously, with our knowledge of relative value. Similarly, when we hear, "John threw the 
brick through the window and broke it," we know "it" refers to the window. Reasoning allows 
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us to cope with the virtually infinite variety of utterances using a finite store of commonsense 
knowledge. Problem-solving agents have difficulty with this kind of ambiguity because their 
representation of contingency problems is inherently exponential. 

Our final reason for studying knowledge-based agents is their flexibility. They are able 
to accept new tasks in the form of explicitly described goals, they can achieve competence 
quickly by being told or learning new knowledge about the environment, and they can adapt 
to changes in the environment by updating the relevant knowledge. 

We begin in Section 7.1 with the overall agent design. Section 7.2 introduces a simple 
new environment, the wumpus world, and illustrates the operation of a knowledge-based 
agent without going into any technical detail. Then, In Section 7.3, we explain the general 
principles of logic. Logic will be the primary vehicle for representing knowledge throughout 
Part 111 of the book. The knowledge of logical agents is always definite--each proposition is 
either true or false in the world, although the agent may be agnostic about some propositions. 

Logic has the pedagogical advantage of being a simple example of a representation for 
knowledge-based agents, but logic has some severe limitations. Clearly, a large portion of the 
reasoning carried out by humans and other agents in partially observable environments de- 
pends on handling knowledge that is uncertain. Logic cannot represent this uncertainty well, 
so in Part V we cover probability, which can. In Part VI and Part VII we cover many repre- 
sentations, including some based on continuous mathematics such as mixtures of Gaussians, 
neural networks, and other representations. 

Section 7.4 of this chapter defines a simple logic called propositional logic. While 
much less expressive than first-order logic (Chapter 8), propositional logic serves to illustrate 
all the basic concepts of logic. There is also a well-d~~veloped technology for reasoning in 
propositional logic, which we describe in sections 7.5 and 7.6. Finally, Section 7.7 combines 
the concept of logical agents with the technology of propositional logic to build some simple 
agents for the wumpus world. Certain shortcomings in propositional logic are identified, 
motivating the development of more powerful logics in subsequent chapters. 

KNOWLEDGE BASE The central component of a knowledge-based agent is its knowledge base, or KB. Informally, 
SENTENCE a knowledge base is a set of sentences. (Here "sentence" is used as a technical term. It is 

related but is not identical to the sentences of English and other natural languages.) Each sen- 
KNOWLEDGE 
REPRESENTATION tence is expressed in a language called a knowledge representation language and represents 
LANGUAGE 

some assertion about the world. 
There must be a way to add new sentences to the knowledge base and a way to query 

what is known. The standard names for these tasks are TELL and ASK, respectively. Both 
INFERENCE tasks may involve inference-that is, deriving new sentences from old. In logical agents, 
LOGICALAGENTS which are the main subject of study in this chapter, inference must obey the fundamental 

requirement that when one ASKS a question of the knowledge base, the answer should follow 
from what has been told (or rather,  TELL^^) to the knowledge base previously. Later in the 
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function KB-A~EN~(percept) returns an action 
static: KB, a knowledge base 

t ,  a counter, initially 0, indicating time 

TELL(KB, M A K E - P E R C E P T - S E N T E N C E ( ~ ~ ~ ~ ~ ~ ~ ,  t ) )  
action t AsK(KB, MAKE-ACTION- QUERY(^)) 
TELL(KB, MAKE-ACTION-SENTENCE(~~~~~~, t ) )  
t t t + l  
return action 

Figure 7.1 A generic knowledge-based agent. 

chapter, we will be more precise about the crucial word "follow." For now, take it to mean 
that the inference process should not just make things up as it goes along. 

Figure 7.1 shows the outline of a knowledge-based agent program. Like all our agents, 
it takes a percept as input and returns an action. The agent maintains a knowledge base, KB, 
which may initially contain some background knowledge. Each time the agent program is KNOWLEDGE 

called, it does three things. First, it TELLS the knowledge base what it perceives. Second, 
it ASKS the knowledge base what action it should perform. In the process of answering 
this query, extensive reasoning may be done about the current state of the world, about the 
outcomes of possible action sequences, and so on. Third, the agent records its choice with 
TELL and executes the action. The second TELL is necessary to let the knowledge base know 
that the hypothetical action has actually been executed. 

The details of the representation language are hidden inside three functions that im- 
plement the interface between the sensors and actuators and the core representation and rea- 
soning system. MAKE-PERCEPT-SENTENCE constructs a sentence asserting that the agent 
perceived the given percept at the given time. MAKE-ACTION-QUERY constructs a sentence 
that asks what action should be done at the current time. Finally, MAKE-ACTION-SENTENCE 

constructs a sentence asserting that the chosen action was executed. The details of the infer- 
ence mechanisms are hidden inside TELL and ASK. Later sections will reveal these details. 

The agent in Figure 7.1 appears quite similar to the agents with internal state described 
in Chapter 2. Because of the definitions of TELL and ASK, however, the knowledge-based 
agent is not an arbitrary program for calculating actions. It is amenable to a description at the 

KNOWLEDGELEVEL knowledge level, where we need specify only what the agent knows and what its goals are, 
in order to fix its behavior. For example, an automated taxi might have the goal of delivering 
a passenger to Marin County and might know that it is in San Francisco and that the Golden 
Gate Bridge is the only link between the two locations. Then we can expect it to cross the 
Golden Gate Bridge because it knows that that will achieve its goal. Notice that this analysis 

lMPLEMENTATloN is independent of how the taxi works at the implementation level. It doesn't matter whether LEVEL 

its geographical knowledge is implemented as linked lists or pixel maps, or whether it reasons 
by manipulating strings of symbols stored in registers or by propagating noisy signals in a 
network of neurons. 
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As we mentioned in the introduction to the chapter, one can build a knowledge-based 
agent simply by TEL~irzg it what it needs to know. The agent's initial program, before 
it starts to receive percepts, is built by adding one by one the sentences that represent the 
designer's knowledge of the environment. Designing the representation language to make it 
easy to express this knowledge in the form of sentences simplifies the construction problem 

DECLARATIVE enormously. This is called the declarative approach to system building. In contrast, the 
procedural approach encodes desired behaviors directly as program code; minimizing the 
role of explicit representation and reasoning can result in a much more efficient system. We 
will see agents of both kinds in Section 7.7. In the 1970s and 1980s, advocates of the two 
approaches engaged m heated debates. We now uiiderstand that a successful agent must 
combine both declarative and procedural elements in its design. 

In addition to  TELL^^^ it what it needs to know, we can provide a knowledge-based 
agent with mechanisms that allow it to learn for itself. These mechanisms, which are dis- 
cussed in Chapter 18, create general knowledge about the environment out of a series of 
percepts. This knowledge can be incorporated into the agent's knowledge base and used for 
decision making. In this way, the agent can be fully autononious. 

All these capabilities-representation, reasoning, and learning-rest on the centuries- 
long development of the theory and technology of logic. Before explaining that theory and 
technology, however, we will create a simple world with which to illustrate them. 

WUMPUS WORLD The wumpus world is a cave consisting of rooms connected by passageways. Lurking some- 
where in the cave is the wumpus, a beast that eats anyone who enters its room. The wumpus 
can be shot by an agent, but the agent has only one ar,row. Some rooms contain bottomless 
pits that will trap anyone who wanders into these rooins (except for the wumpus, which is 
too big to fall in). The only mitigating feature of living in this environment is the possibility 
of finding a heap of gold. Although the wumpus world is rather tame by modern computer 
game standards, it makes an excellent testbed environment for intelligent agents. Michael 
Genesereth was the first to suggest this. 

A sample wumpus world is shown in Figure 7.2. The precise definition of the task 
environment is given, as suggested in Chapter 2, by the PEAS description: 

0 Performance measure: +I000 for piclung up the gold, -1000 for falling into a pit or 
being eaten by the wumpus, -1 for each action taken and -10 for using up the arrow. 

0 Environment: A 4 x 4 grid of rooms. The agent always starts in the square labeled 
[1,1], facing to the right. The locations of the gold and the wumpus are chosen ran- 
domly, with a uniform distribution, from the squares other than the start square. In 
addition, each square other than the start can be a pit, wnth probability 0.2. 

0 Actuators: The agent can move forward, turn left by 90°, or turn right by 90". The 
agent dies a miserable death if it enters a square containing a pit or a live wumpus. (It 
is safe, albeit smelly, to enter a square with a dead wunlpus.) Moving forward has no 
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effect if there is a wall in front of the agent. The action Grab can be used to pick up an 
object that is in the same square as the agent. The action Shoot can be used to fire an 
arrow in a straight line in the direction the agent is facing. The arrow continues until it 
either hits (and hence kills) the wumpus or hits a wall. The agent only has one arrow, 
so only the first Shoot action has any effect. 

0 Sensors: The agent has five sensors, each of which gives a single bit of information: 

- In the square containing the wumpus and in the directly (not diagonally) adjacent 
squares the agent will perceive a stench. 

- In the squares directly adjacent to a pit, the agent will perceive a breeze. 

- In the square where the gold is, the agent will perceive a glitter. 

- When an agent walks into a wall, it will perceive a bump. 

- When the wumpus is killed, it emits a woeful scream that can be perceived any- 
where in the cave. 

The percepts will be given to the agent in the form of a list of five symbols; for example, 
if there is a stench and a breeze, but no glitter, bump, or scream, the agent will receive 
the percept [Stench, Breeze, None, None, None]. 

Exercise 7.1 asks you to define the wumpus environment along the various dimensions given 
in Chapter 2. The principal difficulty for the agent is its initial ignorance of the configuration 
of the environment; overcoming this ignorance seems to require logical reasoning. In most 
instances of the wumpus world, it is possible for the agent to retrieve the gold safely. Occa- 
sionally, the agent must choose between going home empty-handed and risking death to find 
the gold. About 21% of the environments are utterly unfair, because the gold is in a pit or 
surrounded by pits. 

Let us watch a knowledge-based wumpus agent exploring the environment shown in 
Figure 7.2. The agent's initial knowledge base contains the rules of the environment, as listed 

- 

I Figure 7.2 A typical wurnpus world. The agent is in the bottom left corner. ! 
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previously; in particular, it knows that it is in [1,1] and that [1,1] is a safe square. We will see 
how its knowledge evolves as new percepts arrive and actions are taken. 

The first percept is [None, None, None, None, None], from which the agent can con- 
clude that its neighboring squares are safe. Figure 7.3(a) shovts the agent's state of knowledge 
at this point. We list (some of) the sentences in the howledge base using letters such as B 
(breezy) and OK (safe, neither pit nor wumpus) marked in the appropriate squares. Fig- 
ure 7.2, on the other hand, depicts the world itself. 

I Figure 7.3 The first step taken by the agent in the wumpus world. (a) The initial sit- / 
uation, after percept [None, None, None, None, None]. (b) After one move, with percept 
[None, Breeze, None, None, None]. 

From the fact that there was no stench or breeze in [1,1], the agent can infer that [1,2] 
and [2,1] are free of dangers. They are marked with an OK to indicate this. A cautious agent 
will move only into a square that it knows is OK. Let u~s suppose the agent decides to move 
forward to [2,1], giving the scene in Figure 7.3(b). 

The agent detects a breeze in [2,1], so there must be a prt in a neighboring square. The 
pit cannot be in [I, 11, by the rules of the game, so there must be a pit in [2,2] or [3,1] or both. 
The notation P? in Figure 7.3(b) indicates a possible pit in those squares. At this point, there 
is only one known square that is OK and has not been visited yet. So the prudent agent will 
turn around, go back to [I, 11, and then proceed to [1,2]. 

The new percept in [1,2] is [Stench, None, None, None, None], resulting in the state 
of knowledge shown in Figure 7.4(a). The stench in [1,2] means that there must be a wumpus 
nearby. But the wumpus cannot be in [1,1], by the rules of the game, and it cannot be in [2,2] 
(or the agent would have detected a stench when it was in [2,1]). Therefore, the agent can 
infer that the wumpus is in [1,3]. The notation W! indicates this. Moreover, the lack of a 
Breeze in [1,2] implies that there is no pit in [2,2]. Yet we already inferred that there must 
be a pit in either [2,2] or [3,1], so this means it must be in [3,1]. This is a fairly difficult 
inference, because it combines knowledge gained at different times in different places and 
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relies on the lack of a percept to make one crucial step. The inference is beyond the abilities 
of most animals, but it is typical of the kind of reasoning that a logical agent does. 

The agent has now proved to itself that there is neither a pit nor a wumpus in [2,2], so 
it is OK to move there. We will not show the agent's state of knowledge at [2,2]; we just 
assume that the agent turns and moves to [2,3],  giving us Figure 7.4(b). In [2,3], the agent 
detects a glitter, so it should grab the gold and thereby end the game. 

In each case where the agent draws a conclusion from the available information, that 
conclusion is guaranteed to be correct the available information is correct. This is a 
fundamental property of logical reasoning. In the rest of this chapter, we describe how to 
build logical agents that can represent the necessary information and draw the conclusions 
that were described in the preceding paragraphs. 

This section provides an overview of all the fundamental concepts of logical representation 
and reasoning. We postpone the technical details of any particular form of logic until the next 
section. We will instead use informal examples from the wumpus world and from the familiar 
realm of arithmetic. We adopt this rather unusual approach because the ideas of logic are far 
more general and beautiful than is commonly supposed. 

In Section 7.1, we said that knowledge bases consist of sentences. These sentences 
SYNTAX are expressed according to the syntax of the representation language, which specifies all the 

sentences that are well formed. The notion of syntax is clear enough in ordinary arithmetic: 
"x + y = 4" is a well-formed sentence, whereas "x2y+ =" is not. The syntax of logical 

(a) 0 

Figure 7.4 Two later stages in the progress of the agent. (a) After the third move, 
with percept [Stench, None, None, None, None]. (b) After the fifth move, with percept 
[Stench, Breeze, Glitter, None, None]. 

=Agent 
B =Breeze 
G = Glitter, Gold 
OK = Safe square 
P = Pit 
S =Stench 
V = Visited 
W = Wumpus 

1,4 

1,s W! 

1 2  

v 
OK 

1,l 

v 
OK 

4,4 

4,3 

4 2  

4 1  

1,4 

'3 W! 

l y 2 a  

S 
OK 

1 , 1  

v 
OK 

3,4 

3,3 p? 

3 2  

3,1 p! 

2,4 p? 

2 , 3 a  

S G 
B 

2 2  

v 
OK 

2-1 

v 
OK 

4,4 

4,3 

4 2  

4,l 

2,4 

2 3  

2,2 

OK 

2,l 

V 
OK 

3,4 

3,3 

3 2  

3,l p! 



Section 7.3. Logic 20 1 

languages (and of arithmetic, for that matter) is usually designed for writing papers and books. 
There are literally dozens of different syntaxes, some with lots of Greek letters and exotic 
mathematical symbols, and some with rather visually appealing diagrams with arrows and 
bubbles. In all cases, however, sentences in an agent's knowledge base are real physical 
configurations of (parts of) the agent. Reasoning will involve generating and manipulating 
those configurations. 

SEMANTICS A logic must also define the semantics of the language. Loosely speaking, semantics 
has to do with the "meaning" of sentences. In logic:, the definition is more precise. The 

TRUTH semantics of the language defines the truth of each s,entence with respect to each possible 
PosslaLE WORLD world. For example, the usual semantics adopted for arithimetic specifies that the sentence 

"x + y = 4" is true in a world where x is 2 and y is 2, but false in a world where x is 1 
and y is 1.' In standard logics, every sentence must be either true or false in each possible 
world-there is no "in b e t ~ e e n . " ~  

MODEL When we need to be precise, we will use the term mo(de1 in place of "possible world." 
(We will also use the phrase "m is a model of a!" to mean that sentence a is true in model 
m.) Whereas possible worlds might be thought of as (:potentially) real environments that the 
agent might or might not be in, models are mathematical ab:stractions, each of which simply 
fixes the truth or falsehood of every relevant sentence. Informally, we may think of x and 
y as the number of men and women sitting at a table playilng bridge, for example, and the 
sentence x + y = 4 is true when there are four in total; formally, the possible models are just 
all possible assignments of numbers to the variables 17: and y. Each such assignment fixes the 
truth of any sentence of arithmetic whose variables are x and y. 

Now that we have a notion of truth, we are ready to tallk about logical reasoning. This 
ENTAILMENT involves the relation of logical entailment between sentences-the idea that a sentence fol- 

lows 1ogicaEly from another sentence. In mathematical notation, we write as 

to mean that the sentence a! entails the sentence p. The folrmal definition of entailment is 
this: a I= p if and only if, in every model in which a is true, ,f3 is also true. Another way to 
say this is that if a! is true, then p must also be true. Informally, the truth of ,,!3 is "contained" 
in the truth of a. The relation of entailment is farnilia from. arithmetic; we are happy with 
the idea that the sentence x + y = 4 entails the sentence 4 = x: + y. Obviously, in any model 
where x + y = 4--such as the model in which x is 2 am~d y is 2-it is the case that 4 = x t y. 
We will see shortly that a knowledge base can be considered a statement, and we often talk 
of a knowledge base entailing a sentence. 

We can apply the same kind of analysis to the wumpus-world reasoning example given 
in the preceding section. Consider the situation in Figure 7.3(b): the agent has detected 
nothing in [1,1] and a breeze in [2,1 I. These percepts, combined with the agent's knowledge 
of the rules of the wumpus world (the PEAS description on page 197), constitute the KB. The 

The reader will no doubt have noticed the similarity between the notion of truth of sentences and the notion of 
satisfaction of constraints in Chapter 5. This is no accident-constralmnt languages are indeed logics and constraint 
solving is a form of logical reasoning. 
FUZZY logic, discussed in Chapter 14, allows for degrees of truth. 
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(a> (b) 

Figure 7.5 Possible models for the presence of pits in squares [1,2], [2,2], and [3,1], given 
observations of nothing in [1,1] and a breeze in [2,1]. (a) Models of the knowledge base and 
a1 (no pit in [1,2]). (b) Models of the knowledge base and a2 (no pit in [2,2]). 

agent is interested (among other things) in whether the adjacent squares [1,2], [2,2], and [3,1] 
contain pits. Each of the three squares might or might not contain a pit, so (for the purposes 
of this example) there are 23 = 8 possible models. These are shown in Figure 7.5.3 

The KB is false in models that contradict what the agent knows-for example, the KB 
is false in any model in which [1,2] contains a pit, because there is no breeze in [1,1]. There 
are in fact just three models in which the KB is true, and these are shown as a subset of the 
models in Figure 7.5. Now let us consider two possible conclusions: 

a1 = "There is no pit in [1,2] ." 
a2 = "There is no pit in [2,2]." 

We have marked the models of a1 and a:! in Figures 7.5(a) and 7.5(b) respectively. By 
inspection, we see the following: 

in every model in which KB is true, a1 is also true. 

Hence, KB + cul : there is no pit in [I ,2]. We can also see that 

in some models in which KB is true, a2 is false. 

Hence, KB az: the agent cannot conclude that there is no pit in [2,2]. (Nor can it conclude 
that there is a pit in [2,21.)~ 

The preceding example not only illustrates entailment, but also shows how the defini- 
tion of entailment can be applied to derive conclusions-that is, to carry out logical infer- 

LOGICAL INFERENCE ence. The inference algorithm illustrated in Figure 7.5 is called model checking, because it 
MODELCHECKING enumerates all possible models to check that a is true in all models in which KB is true. 

Although the figure shows the models as partial wumpus worlds, they are really nothing more than assignments 
of true and false to the sentences "there is a pit in [1,2]" etc. Models, in the mathematical sense, do not need to 
have 'orrible 'airy wumpuses in them. 

The agent can calculate theprobability that there is a pit in [2,2]; Chapter 13 shows how. 
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In understanding entailment and inference, it might help to think of the set of all conse- 
quences of KB as a haystack and of a as a needle. Entailment is like the needle being in the 
haystack; inference is like finding it. This distinction is embodied in some formal notation: if 
an inference algorithm i can derive a from KB, we write 

which is pronounced "a is derived from KB by i" or "2 derives a from KB." 
SOUND An inference algorithm that derives only entailed sentences is called sound or truth- 
TRUTH.PRESERVING preserving. Soundness is a highly desirable property. An unsound inference procedure es- 

sentially makes things up as it goes along-it announces the discovery of nonexistent needles. 
It is easy to see that model checking, when it is applicable,5 is a sound procedure. 

COMPLETENESS The property of completeness is also desirable: an inference algorithm is complete if 
it can derive any sentence that is entailed. For real haystacks, which are finite in extent, 
it seems obvious that a systematic examination can always decide whether the needle is in 
the haystack. For many knowledge bases, however, the haystack of consequences is infinite, 
and completeness becomes an important issue.6 Fortunately, there are complete inference 
procedures for logics that are sufficiently expressive to handle many knowledge bases. 

We have described a reasoning process whose conclusions are guaranteed to be true 
in any world in which the premises are true; in particular, if KB is true in the real world, 
then any sentence ol derivedfrorn KB by a sound inference procedure is also true in the real 
world. So, while an inference process operates on "syntaxw--internal physical configurations 
such as bits in registers or patterns of electrical blips in brains-the process corresponds 
to the real-world relationship whereby some aspect of the real world is the case7 by virtue 
of other aspects of the real world being the case. This correspondence between world and 
representation is illustrated in Figure 7.6. 

Sentences - - -~ ~- 

Representation 2 

-' Sentence 
Entails r l 

World 

Aspects of the - Aspect of the 
real world Follows real world 

Figure 7.6 Sentences are physical configurations of the agent, and reasoning is a process 
of constructing new physical configurations from old ones. Logical reasoning should en- 
sure that the new configurations represent aspects of th~e world that actually follow from the 

Model checking works if the space of models is finite-for example, in wumpus worlds of fixed size. For 
arithmetic, on the other hand, the space of models is infinite: even if we restrict ourselves to the integers, there 
are infinitely many pairs of values for x and y in the sentence x + y = 4. 

Compare with the case of infinite search spaces in Chapter 3, where depth-first search is not complete. 
As Wittgenstein (1922) put it in his famous Tractatus: "The world is everything that is the case." 
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The final issue that must be addressed by an account of logical agents is that of ground- 
GROUNDING ing-the connection, if any, between logical reasoning processes and the real environment in 

which the agent exists. In particular, how do we know that KB is true in the real world? (Af- 
ter all, KB is just "syntax" inside the agent's head.) This is a philosophical question about 
which many, many books have been written. (See Chapter 26.) A simple answer is that the 
agent's sensors create the connection. For example, our wumpus-world agent has a smell sen- 
sor. The agent program creates a suitable sentence whenever there is a smell. Then, whenever 
that sentence is in the knowledge base, it is true in the real world. Thus, the meaning and truth 
of percept sentences are defined by the processes of sensing and sentence construction that 
produce them. What about the rest of thc agent's knowledge, such as its belief that wumpuses 
cause smells in adjacent squares? This is not a direct representation of a single percept, but 
a general rule-derived, perhaps, from perceptual experience but not identical to a statement 
of that experience. General rules like this are produced by a sentence construction process 
called learning, which is the subject of Part VI. Learning is fallible. It could be the case that 
wumpuses cause smells except on February 29 in leap years, which is when they take their 
baths. Thus, KB may not be true in the real world, but with good learning procedures there 
is reason for optimism. 

PRoPoslTloNAL LOGIC We now present a very simple logic called propositional logic.8 We cover the syntax of 
propositional logic and its semantics-the way in which the truth of sentences is determined. 
Then we look at entailment-the relation between a sentence and another sentence that fol- 
lows from it-and see how this leads to a simple algorithm for logical inference. Everything 
takes place, of course, in the wumpus world. 

Syntax 

ATOMIC SENTENCES The syntax of propositional logic defines the allowable sentences. The atomic sentences- 
PROPOSITION 
SYMBOL the indivisible syntactic elements-consist of a single proposition symbol. Each such sym- 

bol stands for a proposition that can be true or false. We will use uppercase names for 
symbols: P, Q, R, and so on. The names are arbitrary but are often chosen to have some 
mnemonic value to the reader. For example, we might use W1,3 to stand for the proposition 
that the wumpus is in [1,3]. (Remember that symbols such as TVI,3 are atomic, i.e., W, I, 
and 3 are not meaningful parts of the symbol.) There are two proposition symbols with fixed 
meanings: True is the always-true proposition and False is the always-false proposition. 

COMPLEX 
SENTENCES 

Complex sentences are constructed from simpler sentences using logical connectives. 
LOGICAL There are five connectives in common use: 

NEGATION 1 (not). A sentence such as 1W1,3 is called the negation of A literal is either an 
LITERAL atomic sentence (a positive literal) or a negated atomic sentence (a negative literal). 

Propositional logic is also called Boolean logic, after the logician George Boole (1815-1864). 



Section 7.4. Propositional Logic: A Very Simple Logic 205 

A (and). A sentence whose main connective is A,  such as W1,3 A P3,~,  is called a con- 
CONJUNCTION junction; its parts are the conjuncts. (The A looks like an "A" for "And.") 
DISJUNCTION V (or). A sentence using V, such as ( W I , ~  A P3,~)  \/ W2,2.. is a disjunction of the disjuncts 

( W I , ~  A P3,l) and W2,z. (Historically, the V comes from the Latin "vel," which means 
"or." For most people, it is easier to remember as an upside-down A.) 

IMPLICATION + (implies). A sentence such as ( W I , ~  A P ~ J )  + -1W2,2 is called an implication (or con- 
PREMISE ditional). Its premise or antecedent is (W1,3 A P3,i), i~nd its conclusion or consequent 
CONCLUSION is T W ~ , ~ .  Implications are also known as rules lor if-then statements. The implication 

symbol is sometimes written in other books as 3 or -t. 

BICONDITIONAL % (if and only if). The sentence Wlj3 H 7Wz,2 is a biconditional. 

Figure 7.7 gives a formal grammar of propositional logic; see page 984 if you are not familiar 
with the B W  notation. 

Sentence -+ AtomicSentence 1 Complexsentence 

AtomicSentence -+ True 1 False 1 Symbol 

Symbol -+ P 1 Q 1 R ) . . . 

ComplexSentence -+ 7 Sentence 

( ( Sentence A Sentence ) 

1 ( Sentence V Sente~nce ) 

/ ( Sentence + Sentence ) 

1 ( Sentence H Sentence )l 

-- 
Figure 7.7 A BNF (Backus-Naur Form) grammar of sentences in propositional logic. 

Notice that the grammar is very strict about parentheses: every sentence constructed 
with binary connectives must be enclosed in parentheses. This ensures that the syntax is 
completely unambiguous. It also means that we have to write ((A A B) + C) instead of 
A A B + C, for example. To improve readability, we will often omit parentheses, relying 
instead on an order of precedence for the connectives. This is similar to the precedence 
used in arithmetic-for example, ab + c is read as ( (ab)  + c) rather than a(b  + c)  because 
multiplication has higher precedence than addition. The order of precedence in propositional 
logic is (from highest to lowest): 1, A, V, +, and #. I-Ience, the sentence 

1 P V Q A R  + S 
is equivalent to the sentence 

((+I v (Q R))  =+ S. 
Precedence does not resolve ambiguity in sentences such as A A .B A C, which could be read 
as ((A A B) A C )  or as (A A (B A C)) .  Because these two readings mean the same thing 
according to the semantics given in the next section, sentences such as A A B A C are allowed. 
We also allow A V B V C and A @ B H C. Sentences such as A + B + C are not 
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allowed because the two readings have different meanings; we insist on parentheses in this 
case. Finally, we will sometimes use square brackets instead of parentheses when it makes 
the sentence clearer. 

Semantics 

Having specified the syntax of propositional logic, we now specify its semantics. The se- 
mantics defines the rules for determining the truth of a sentence with respect to a particular 
model. In propositional logic, a model simply fixes the truth value-true or false-for every 
proposition symbol. For example, if the sentences in the knowledge base make use of the 
proposition symbols P2,2, and P3,1, then one possible model is 

m l  = =false, P2,2  =false, P3,1 = true) . 
With three proposition symbols, there are 23 = 8 possible models-exactly those depicted 
in Figure 7.5. Notice, however, that because we have pinned down the syntax, the models 
become purely mathematical objects with no necessary connection to wurnpus worlds. 
is just a symbol; it might mean "there is a pit in [I ,2]" or "I'm in Paris today and tomorrow." 

The semantics for propositional logic must specify how to compute the truth value of 
any sentence, given a model. This is done recursively. All sentences are constructed from 
atomic sentences and the five connectives; therefore, we need to specify how to compute the 
truth of atomic sentences and how to compute the truth of sentences formed with each of the 
five connectives. Atomic sentences are easy: 

True is true in every model and False is false in every model. 

The truth value of every other proposition symbol must be specified directly in the 
model. For example, in the model m l  given earlier, Pl ,2  is false. 

For complex sentences, we have rules such as 

For any sentence s and any model m,  the sentence i s  is true in m if and only if s is 
false in m. 

Such rules reduce the truth of a complex sentence to the truth of simpler sentences. The 
TRUTH TABLE rules for each connective can be summarized in a truth table that specifies the truth value 

of a complex sentence for each possible assignment of truth values to its components. Truth 
tables for the five logical connectives are given in Figure 7.8. Using these tables, the truth 
value of any sentence s can be computed with respect to any model m by a simple process of 
recursive evaluation. For example, the sentence  PI,^ A (Pz,2 V evaluated in m l ,  gives 
true A (false V true) = true A true = true. Exercise 7.3 asks you to write the algorithm 
PL-TRUE?(S, m), which computes the truth value of a propositional logic sentence s in a 
model rn. 

Previously we said that a knowledge base consists of a set of sentences. We can now 
see that a logical knowledge base is a conjunction of those sentences. That is, if we start with 
an empty K B  and do TELL(KB, Sl) . . . TELL(KB, S,) then we have K B  = S1 A . . . A S,. 
This means that we can treat knowledge bases and sentences interchangeably. 

The truth tables for "and," "or,'' and "not" are in close accord with our intuitions about 
the English words. The main point of possible confusion is that P V Q is true when P is true 
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Figure 7.8 Truth tables for the five logical connectives. To use the table to compute, for 
example, the value of P V Q when P is true and Q is false, first look on the left for the row 
where P is true and Q is false (the third row). Then look in that row under the P V Q column 
to see the result: true. Another way to look at this is to think of each row as a model, and the 
entries under each column for that row as saying whether the corresponding sentence is true 
in that model. ! 
P  

false 
false 
true 
true 

or Q  is true or both. There is a different connective called "e:tclusive or" ("xor" for short) that 
yields false when both disjuncts are true.9 There is no consensus on the symbol for exclusive 
or; two choices are i/ and @. 

The truth table for + may seem puzzling at first, because it might not quite fit one's 
intuitive understanding of " P  implies Q" or "if P then Q." For one thing, propositional logic 
does not require any relation of causation or relevance between P and Q. The sentence "5 is 
odd implies Tokyo is the capital of Japan" is a true sentence of propositional logic (under the 
normal interpretation), even though it is a decidedly odd sentence of English. Another point 
of confusion is that any implication is true whenever its antecedent is false. For example, "5 
is even implies Sam is smart" is true, regardless of whether Sam is smart. This seems bizarre, 
but it makes sense if you think of " P  + Q" as saying, "If P is true, then I am claiming that 
Q is true. Otherwise I am making no claim." The only way for this sentence to be false is if 
P is true but Q is false. 

The truth table for a biconditional, P  Q, shows that it is true whenever both 
P + Q and Q + P are true. In English, this is often written as "P if and only if Q" or " P  
iff Q." The rules of the wumpus world are best written using H .  For example, a square is 
breezy if a neighboring square has a pit, and a square is breezy only $a neighboring square 
has a pit. So we need biconditionals such as 

where B 1 , ~  means that there is a breeze in [1,1]. Notice that the one-way implication 

Q 
false 
true 
false 
true 

is true in the wumpus world, but incomplete. It does not rule out models in which B 1 , ~  is 
false and is true, which would violate the rules of the wumpus world. Another way of 
putting it is that the implication requires the presence of pits if there is a breeze, whereas the 
biconditional also requires the absence of pits if there is no breeze. 

Latin has a separate word, aut, for exclusive or. 

1 P  

true 
true 
false 
false 

P A Q  

false 
false 
false 
true 

P v Q  

false 
true 
true 
true 

P + Q  

true 
true 
false 
true 

P H Q  

true 
false 
false 
true 
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A simple knowledge base 

Now that we have defined the semantics for propositional logic, we can construct a knowledge 
base for the wumpus world. For simplicity, we will deal only with pits; the wumpus itself 
is left as an exercise. We will provide enough knowledge to carry out the inference that was 
done informally in Section 7.3. 

First, we need to choose our vocabulary of proposition symbols. For each i ,  j: 

Let Pilj be true if there is a pit in [i, j ] .  

Let Bi,j be true if there is a breeze in [i, j ]  . 
The knowledge base includes the following sentences, each one labeled for convenience: 

There is no pit in [I, 11: 

A square is breezy if and only if there is a pit in a neighboring square. This has to be 
stated for each square; for now, we include just the relevant squares: 

The preceding sentences are true in all wumpus worlds. Now we include the breeze 
percepts for the first two squares visited in the specific world the agent is in, leading up 
to the situation in Figure 7.3(b). 

The knowledge base, then, consists of sentences R1 through R5. It can also be considered as 
a single sentence-the conjunction R1 A Rz A R3 A R4 A R5-because it asserts that all the 
individual sentences are true. 

Inference 

Recall that the aim of logical inference is to decide whether KB a for some sentence a. 
For example, is P2,~ entailed? Our first algorithm for inference will be a direct implementa- 
tion of the definition of entailment: enumerate the models, and check that a is true in every 
model in which KB is true. For propositional logic, models are assignments of true or false 
to every proposition symbol. Returning to our wumpus-world example, the relevant proposi- 
tion symbols are B1,l, Bzll,  Pl,2, P2,1, P2,z, and P3,1. With seven symbols, there are 
27 = 128 possible models; in three of these, Ei'B is true (Figure 7.9). In those three models, 
7P1,~ is true, hence there is no pit in [1,2]. On the other hand, P2,~ is true in two of the three 
models and false in one, so we cannot yet tell whether there is a pit in [2,2]. 

Figure 7.9 reproduces in a more precise form the reasoning illustrated in Figure 7.5. A 
general algorithm for deciding entailment in propositional logic is shown in Figure 7.10. Like 
the BACKTRACKING-SEARCH algorithm on page 76, TT-ENTAILS? performs a recursive 
enumeration of a finite space of assignments to variables. The algorithm is sound, because it 
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Figure 7.9 A truth table constructed for the knowledge base given in the text. KB is true 
if R1 through R5 xre true, which occurs in just 3 of the 128 rows. In all 3 rows, is false, 
so there is no pit in [1,2]. On the other hand, there might (or might not) be a pit in [2,2]. 

function TT-ENTAILS?(KB, a )  returns true or false 
inputs: KB, the knowledge base, a sentence in propositional logic 

a, the query, a sentence in propositional logic ------I 
symbols t a list of the proposition symbols in KB and a 
return TT-CHECK-ALL(KB, a ,  symbols, [I) 

function TT-CHECK-ALL(KB, a ,  symbols, model) returns true or false 
if E ~ ~ ~ ~ ? ( s y m b o l s )  then 

if PL-TRUE?(KB, model) then return PL-TRUE?(&, model) 
else return true 

else do 
P t F~Rs~(symbols); rest +- R~sT(symbols) 
return TT-CHECK-ALL(KB, a ,  rest, EXTEND(P, true, model)) and 

TT-CHECK-ALL(KB, a ,  rest, EXTEND(P, false, :model)) 

Figure 7.10 A truth-table enumeration algorithm for deciding propositional entailment. 
TT stands for truth table. PL-TRUE? returns true if a sentensce holds within a model. The 
variable model represents a partial model-an assignment to only some of the variables. The 
function call EXTEND(P, true, model) returns a new partial m'odel in which P has the value 
true. 

implements directly the definition of entailment, and complete, because it works for any KB 
and a and always terminates-there are only finitely many models to examine. 

Of course, "finitely many" is not always the same a,s "few." If KB and a contain n sym- 
bols in all, then there are 2n models. Thus, the time calmplexity of the algorithm is O(2n) .  
(The space complexity is only O(n)  because the enumeration is depth-first.) Later in this 



210 Chapter 7. Logical Agents 

(a  A P )  r (P A a )  commutativity of A 

(a V p) r (p  V a)  commutativity of V 

( (a  A P )  A y) s (a A ((3 A y ) )  associativity of A 

( (a  V P )  V y) s (a V (p  V 7 ) )  associativity of V 
1 ( a )  a double-negation elimination 

(a + p) r (TP + l a )  contraposition 
(a  + p) r ( l a  V 0) implication elimination 
(a  & P)  - ( ( a  + P )  A (P + a))  biconditional elimination 
' ( a  A p) r ( l a  V +) DeMorgan 
~ ( a  v p) r ( l a  A 1 P )  De Morgan 

(a  A (P V ?)) = ( ( a  A p) V (a A 7 ) )  distributivity of A over V 

(a v (p  A r ( (a  V p) A (a  V 7) )  distributivity of V over A 

Figure 7.11 Standard logical equivalences. The symbols a, P, and y stand for arbitrary 
sentences of propositional logic. 

chapter, we will see algorithms that are much more efficient in practice. Unfortunately, every 
known inference algorithm for propositional logic has a worst-case complexity that is expo- 
nential in the size of the input. We do not expect to do better than this because propositional 
entailment is co-NP-complete. (See Appendix A.) 

Equivalence, validity, and satisfiability 

Before we plunge into the details of logical inference algorithms, we will need some addi- 
tional concepts related to entailment. Like entailment, these concepts apply to all forms of 
logic, but they are best illustrated for a particular logic, such as propositional logic. 

LOGICAL 
EQUIVALENCE 

The first concept is logical equivalence: two sentences a and /3 are logically equivalent 

if they are true in the same set of models. We write this as a r P. For example, we can easily 
show (using truth tables) that P A Q and Q A P are logically equivalent; other equivalences 
are shown in Figure 7.11. They play much the same role in logic as arithmetic identities do 
in ordinary mathematics. An alternative definition of equivalence is as follows: for any two 
sentences a and p, 

a r ,b' if and only if a + ,8 and P a . 

(Recall that means entailment.) 
VALIDITY The second concept we will need is validity. A sentence is valid if it is true in all 

models. For example, the sentence P V 1P is valid. Valid sentences are also known as 
TAUTOLOGY tautologies-they are necessarily true and hence vacuous. Because the sentence Due is true 

in all models, every valid sentence is logically equivalent to Due.  
What good are valid sentences? From our definition of entailment, we can derive the 

DEDUCTION 
THEOREM deduction theorem, which was known to the ancient Greeks: 

For any sentences a and P,  a )= /3 i f  and only ifthe sentence (a: + P )  is valid. 

(Exercise 7.4 asks for a proof.) We can think of the inference algorithm in Figure 7.10 as 
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checking the validity of (KB + a).  Conversely, every valid implication sentence describes 
a legitimate inference. 

SATISFIABILI~Y The final concept we will need is satisfiability. A sentence is satisfiable if it is true in 
some model. For example, the knowledge base given earlier, (R1 A Rz A Rg A R4 A R5), 
is satisfiable because there are three models in which it is true, as shown in Figure 7.9. If 

SATISFIES a sentence a is true in a model m, then we say that m satisfies a ,  or that m is a model of 
a. Satisfiability can be checked by enumerating the possible models until one is found that 
satisfies tlie sentence. Determining the satisfiability of sentences in propositional logic was 
the first problem proved to be NP-complete. 

Many problems in computer science are really satisfiability problems. For example, all 
the constraint satisfaction problems in Chapter 5 are essentially asking whether the constraints 
are satisfiable by some assignment. With appropriate transformations, search problems can 
also be solved by checking satisfiability. Validity and satisffiability are of course connected: 
a is valid iff -a is unsatisfiable; contrapositively, a is satisfiable iff l a  is not valid. We also 
have the following useful result: 

a + ,l3 ifand only ifthe sentence ( a  A 1,B) is wnsatisjable. 

Proving ,B from a by checking the unsatisfiability of (a A +I) corresponds exactly to the 
REDUCTIO AD 
ABSURDUM standard mathematical proof technique of reductio ad absurdurn (literally, "reduction to an 
REFUTATION absurd thing"). It is also called proof by refutation or proof by contradiction. One assumes a 

sentence ,B to be false and shows that this leads to a contradiction with known axioms a. This 
contradiction is exactly what is meant by saying that the sentence (a A 1/3) is unsatisfiable. 

This section covers standard patterns of inference that cani be applied to derive chains of 
conclusions that lead to the desired goal. These patterns of inference are called inference 

INFERENCE RULES rules. The best-known rule is called Modus Ponens and is written as follows: 
MODUS PONENS a * P ?  a 

P 
The notation means that, whenever any sentences of the form a + P and a are given, then 
the sentence /3 can be inferred. For example, if ( WumpusAhead A WumpusAlive) + Shoot 
and ( WumpusAhead A WumpusAlive) are given, then Shoot can be inferred. 

AND.ELIMINATION Another useful inference rule is And-Eliminatio~~, which says that, from a conjunction, 
any of the conjuncts can be inferred: 

a A P  
a 

For example, from ( WumpusAhead A WumpusAlive), WumpusAlive can be inferred. 
By considering the possible truth values of a and P, one can show easily that Modus 

Ponens and And-Elimination are sound once and for all. These rules can then be used in 
any particular instances where they apply, generating sound inferences without the need for 
enumerating models. 
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All of the logical equivalences in Figure 7.1 1 can be used as inference rules. For exam- 
ple, the equivalence for biconditional elimination yields the two inference rules 

a! ++ P and (a  =+ P )  /I (P =+ a )  
(a  * P )  A (P =+ a )  a  @ P 

Not all inference rules work in both directions like this. For example, we cannot run Modus 
Ponens in the opposite direction to obtain a  + P and a  from 0. 

Let us see how these inference rules and equivalences can be used in the wumpus world. 
We start with the knowledge base containing Rl through R5, and show how to prove T P ~ , ~ ,  
that is, there is no pit in [1,2]. First, we apply biconditional elimination to R 2  to obtain 

Then we apply And-Elimination to R6 to obtain 

Logical equivalence for contrapositives gives 

Now we can apply Modus Ponens with Rs and the percept R4 (i.e., lB1,1), to obtain 

Finally, we apply De Morgan's rule, giving the conclusion 

That is, neither [1,2] nor [2,1] contains a pit. 
The preceding derivation-a sequence of applications of inference rules-is called a 

PROOF proof. Finding proofs is exactly like finding solutions to search problems. In fact, if the 
successor function is defined to generate all possible applications of inference rules, then all 
of the search algorithms in Chapters 3 and 4 can be applied to find proofs. Thus, searching 
for proofs is an alternative to enumerating models. The search can go forward from the 
initial knowledge base, applying inference rules to derive the goal sentence, or it can go 
backward from the goal sentence, trying to find a chain of inference rules leading from the 
initial knowledge base. Later in this section, we will see two families of algorithms that use 
these techniques. 

The fact that inference in propositional logic is NP-complete suggests that, in the worst 
case, searching for proofs is going to be no more efficient than enumerating models. In many 
practical cases, however, finding a proof can be highly efficient simply because it can ignore 
irrelevant propositions, no matter how many of them there are. For example, the proof given 
earlier leading to A 1P2,1 does not mention the propositions B2,1, P2,2, or P3,1. 
They can be ignored because the goal proposition, appears only in sentence R4; the 
other propositions in R4 appear only in R4 and R2; so R1, R3, and R5 have no bearing on 
the proof. The same would hold even if we added a million more sentences to the knowledge 
base; the simple truth-table algorithm, on the other hand, would be overwhelmed by the 
exponential explosion of models. 

This property of logical systems actually follows from a much more fundamental prop- 
MONOTONICITY erty called monotonicity. Monotonicity says that the set of entailed sentences can only in- 
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crease as information is added to the knowledge base.'' For any sentences a and P, 
if K B k a  then K B ~ 4 ? k a .  

For example, suppose the knowledge base contains the additional assertion P stating that there 
are exactly eight pits in the world. This knowledge might help the agent draw additional con- 
clusions, but it cannot invalidate any conclusion a already inferred-such as the conclusion 
that there is no pit in [1,2]. Monotonicity means that inference rules can be applied whenever 
suitable premises are found in the knowledge base-the conclusion of the rule must follow 
regardless of what else is in the knowledge base. 

Resolution 

We have argued that the inference rules covered so far are sound, but we have not discussed 
the question of completeness for the inference algorithms that use them. Search algorithms 
such as iterative deepening search (page 78) are complete in the sense that they will find 
any reachable goal, but if the available inference rules are inadequate, then the goal is not 
reachable-no proof exists that uses only those infereince rules. For example, if we removed 
the biconditional elimination rule, the proof in the preceding section would not go through. 
The current section introduces a single inference rule, resolution, that yields a complete 
inference algorithm when coupled with any complete search algorithm. 

We begin by using a simple version of the resolution mule in the wumpus world. Let us 
consider the steps leading up to Figure 7.4(a): the agent retilrns from [2,1] to [1,1] and then 
goes to [1,2], where it perceives a stench, but no breeze. We add the following facts to the 
knowledge base: 

By the same process that led to Rlo earlier, we can now derive the absence of pits in [2,2] 
and [I ,3] (remember that [I, 11 is already known to be pitless): 

We can also apply biconditional elimination to R3, followed by modus ponens with R5, to 
obtain the fact that there is a pit in [1,1], [2,2], or [3,1]: 

Now comes the first application of the resolution rule: the literal 1P2,2 in R13 resolves with 
the literal P 2 , 2  in R15 to give 

In English; if there's a pit in one of [],I], [2,2], and [3,1], and it's not in [2,2], then it's in 
[l,1] or [3,2]. Similarly, the literal l P 1 , ~  in R1 resolves with the literal P1,1 in R16 to give 

lo Nonmonotonic logics, which violate the monotonicity property, capture a common property of human rea- 
soning: changing one's mind. They are discussed in Section 10.7. 
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In English: if there's a pit in [1,1] or [3,1], and it's not in [1,1], then it's in [3,1]. These last 
UNlT RESOLUTION 

COMPLEMENTARY 
LITERALS 

CLAUSE 

UNlT CLAUSE 

RESOLUTION 

FACTORING 

REFUTATION 
COMPLETENESS 

two inference steps are examples of the unit resolution inference rule, 

where each t is a literal and ti and m are complementary literals (i.e., one is the negation 
of the other). Thus, the unit resolution rule takes a clause-a disjunction of literals-and a 
literal and produces a new clause. Note that a single literal can be viewed as a disjunction of 
one literal, also known as a unit clause. 

The unit resolution rule can be generalized to the full resolution rule, 

where Qi and mi are complementary literals. If we were dealing only with clauses of length 
two we could write this as 

That is, resolution takes two clauses and produces a new clause containing all the literals of 
the two original clauses except the two complementary literals. For example, we have 

There is one more technical aspect of the resolution rule: the resulting clause should contain 
only one copy of each literal.'' The removal of multiple copies of literals is called factoring. 
For example, if we resolve (A V B) with (A V TB), we obtain (A V A), which is reduced to 
just A. 

The soundness of the resolution rule can be seen easily by considering the literal ti. If 
ti is true, then mj is false, and hence ml V . . . V mj-1 V mj+l V - .  . V m, must be true, 
because ml V - . . V m, is given. If ti is false, then el V . . . V ti-I V l i + I  V . . . V tk must 
be true because tl V . . . V Qk is given. Now ti is either true or false, so one or other of these 
conclusions holds-exactly as the resolution rule states. 

What is more surprising about the resolution rule is that it forms the basis for a family of 
complete inference procedures. Any complete search algorithm, applying only the resolution 
rule, can derive any conclusion entailed by any knowledge base in propositional logic. There 
is a caveat: resolution is complete in a specialized sense. Given that A is true, we cannot use 
resolution to automatically generate the consequence A V B. However, we can use resolution 
to answer the question of whether A V B is true. This is called refutation completeness, 
meaning that resolution can always be used to either confirm or refute a sentence, but it 
cannot be used to enumerate true sentences. The next two subsections explain how resolution 
accomplishes this. 

l1 If a clause is viewed as a set of literals, then this restriction is automatically respected. Using set notation for 
clauses makes the resolution rule much cleaner, at the cost of introducing additional notation. 
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Conjunctive normal form 

The resolution rule applies only to disjunctions of literals, so it would seem to be relevant only 
to knowledge bases and queries consisting of such disjunctions. How, then, can it lead to a 
complete inference procedure for all of propositional logic? The answer is that every sentence 
of propositional logic is logically equivalent to a conjunction of disjunctions of literals. A 
sentence expressed as a conjunction of disjunctions of literals is said to be in conjunctive 

CONJUNCTIVE NORMALFORM 
normal form or CNF. We will also find it useful later tot consider the restricted family of 

K-CNF k-CNF sentences. A sentence in k-CNF has exactly k literals per clause: 

(el,l  v . .  . V!l,h) A . .  . A v . .  . V t n , h )  . 

It turns out that every sentence can be transformed into a 3-CNF sentence that has an equiva- 
lent set of models. 

Rather than prove these assertions (see Exercise 7. lo), we describe a simple conversion 
procedure. We illustrate the procedure by converting R2, the sentence B 1 , ~  % V P 2 , ~ ) ,  
into CNF. The steps are as follows: 

1. Eliminate W, replacing a % ,8 with (a  =+ P )  A (P + a). 

(B1,l =+ (P1,2 V P2,l)) A ((Pl,2 V P2,l) =+ &,l)  . 
2. Eliminate +, replacing a =+ with l a  V P: 

( ~ B I , I  V P1,2 V P2,1) A (7(P1,2 V P2,1) V BI , 1 )  . 
3. CNF requires 1 to appear only in literals, so vve "move 1 inwards" by repeated appli- 

cation of the following equivalences from Figure 7.1 1 : 

~ ( 7 a )  = a (double-negation elimination) 
' ( a  A p)  - ( l a  V (De Morgan) 
1 (a  V /3) - ( l a  A 7,8) (De Morgan) 

In the example, we require just one application of the last rule: 

(lB1,1 V P1,2 V P2,1) A ((7P1,2 A 7P2;1:1 V & , I )  . 
4. Now we have a sentence containing nested A and V operators applied to literals. We 

apply the distributivity law from Figure 7.11, distributing V over A wherever possible. 

('B1,l V P1,2 V P2,1) (7P1,2 V B1,l) A (7P2,1 V B1,l) . 
The original sentence is now in CNF, as a conjunction of three clauses. It is much harder to 
read, but it can be used as input to a resolution procedure. 

A resolution algorithm 

Inference procedures based on resolution work by using the principle of proof by contra- 
diction discussed at the end of Section 7.4. That is, to show that KB + a, we show that 
(KB A l a )  is unsatisfiable. We do this by proving a contradiction. 

A resolution algorithm is shown in Figure 7.12. First, (KB A l a )  is converted into 
CNF. Then, the resolution rule is applied to the resulting clauses. Each pair that contains 
complementary literals is resolved to produce a new clause, which is added to the set if it is 
not already present. The process continues until one of two things happens: 
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function PL-RESOLUTION(KB, a) returns true or false 
inputs: KB, the knowledge base, a sentence in propositional logic 

a, the query, a sentence in propositional logic 

clauses +- the set of clauses in the CNF representation of KB A l a :  
new +- { ) 
loop do 

for each Ci, Cj in clauses do 
resolvents +- PL-RESOLVE(C~, Cj) 
if resolvents contains the empty clause then return true 
new +- new U resolvents 

if new C clauses then return false 
clauses +- clauses U new 

Figure 7.12 A simple resolution algorithm for propositional logic. The function 
PL-RESOLVE returns the set of all possible clauses obtained by resolving its two inputs. 

Figure 7.13 Partial application of PL-RESOLUTION to a simple inference in the wumpus 
world. 7P1,2 is shown to follow from the first four clauses in the top row. 

there are no new clauses that can be added, in which case KB does not entail a; or, 

two clauses resolve to yield the empty clause, in which case KB entails a. 

The empty clause-a disjunction of no disjuncts-is equivalent to False because a disjunction 
is true only if at least one of its disjuncts is true. Another way to see that an empty clause 
represents a contradiction is to observe that it arises only from resolving two complementary 
unit clauses such as P  and 1P.  

We can apply the resolution procedure to a very simple inference in the wumpus world. 
When the agent is in [l ,I], there is no breeze, so there can be no pits in neighboring squares. 
The relevant knowledge base is 

and we wish to prove a which is, say, Y P ~ , ~ .  When we convert ( K B  A l a )  into CNF, we 
obtain the clauses shown at the top of Figure 7.13. The second row of the figure shows all the 
clauses obtained by resolving pairs in the first row. Then, when is resolved with - - I P ~ , ~ ,  
we obtain the empty clause, shown as a small square. Inspection of Figure 7.13 reveals that 
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many resolution steps are pointless. For example, the clause Bill V 1Bl j1  V is equivalent 
to True V P1,2 which is equivalent to True. Deducing that True is true is not very helpful. 
Therefore, any clause in which two complementary literals appear can be discarded. 

Completeness of resolution 

To conclude our discussion of resolution, we now show why PL-RESOLUTION is complete. 
RESOLUTION 
CLOSURE To do this, it will be useful to introduce the resolution closure RC(S)  of a set of clauses S, 

which is the set of all clauses derivable by repeated application of the resolution rule to clauses 
in S or their derivatives. The resolution closure is what PL-RESOLUTION computes as the 
final value of the variable clauses. It is easy to see that RC(S) must be finite, because there 
are only finitely many distinct clauses that can be constructed aut of the symbols PI,  . . . , Pk 
that appear in S.  (Notice that this would not be true without the factoring step that removes 
multiple copies of literals.) Hence, PL-RESOLUTION always terminates. 

The completeness theorem for resolution in prlopositional logic is called the ground 
GROUND 
RESOLUTION 
THEOREM 

resolution theorem: 

If a set of clauses is unsatisfiable, then the resolution closure of those clauses 
contains the empty clause. 

We prove this theorem by demonstrating its contrapolsitive: if the closure RC(S)  does not 
contain the empty clause, then S is satisfiable. In fact, we can construct a model for S with 
suitable truth values for PI,  . . . , Pk. The construction procedure is as follows: 

For i from 1 to k, 

- If there is a clause in RC(S) containing the literal l P i  such that all its other literals 
are false under the assignment chosen for PI,  . . . , Pi-l, then assign false to Pi. 

- Otherwise, assign true to Pi. 

It remains to show that this assignment to PI,  . . . , Pk is a model of S ,  provided that RC(S)  
is closed under resolution and does not contain the ein~pty clause. The proof of this is left as 
an exercise. 

Forward and backward chaining 

The completeness of resolution makes it a very importaint inference method. In many practical 
situations, however, the full power of resolution is not needed. Real-world knowledge bases 

HORNCLAUSES often contain only clauses of a restricted kind called Horn clauses. A Horn clause is a 
disjunction of literals of which at most one is po~itiv~e. For example, the clause ( T L ~ , ~  V 
lBreezeVBl,l), where L1,l means that the agent's location is; [1,1], is a Horn clause, whereas 
( 7 B 1 , ~  V V P ~ , J )  is not. 

The restriction to just one positive literal may seem sonnewhat arbitrary and uninterest- 
ing, but it is actually very important for three reasons: 

1. Every Horn clause can be written as an implicatilon whose premise is a conjunction of 
positive literals and whose conclusion is a single positive literal. (See Exercise 7.12.) 
For example, the Horn clause ( l L 1 , ~  VlBreeze~B1,1) can be written as the implication 
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( L 1 , ~  A Breeze) + B 1 , ~ .  In the latter form, the sentence is much easier to read: it says 
that if the agent is in [1,1] and there is a breeze, then [1,1] is breezy. People find it easy 
to read and write sentences in this form for many domains of knowledge. 

DEFINITE CLAUSES Horn clauses like this one with exactly one positive literal are called definite clauses. 
HEAD The positive literal is called the head and the negative literals form the body of the 
BODY clause. A definite clause with no negative literals simply asserts a given proposition- 
FACT sometimes called a fact. Definite clauses form the basis for logic programming, 

which is discussed in Chapter 9. A Horn clause with no positive literals can be writ- 
ten as an implication whose conclusion is the literal False. For example, the clause 
( T W ~ , J  V ~ W ~ , ~ ) - t h e  wumpus cannot be in both [1,1] and [1,2]-is equivalent to 
Wljl  A Wl,z + False. Such sentences are called integrity constraints in the database 
world, where they are used to signal errors in the data. In the algorithms that follow, 
we assume for simplicity that the knowledge base contains only definite clauses and no 
integrity constraints. We say these knowledge bases are in Horn form. 

INTEGRIN 
CONSTRAINTS 

FORWARD CHAINING 2. Inference with Horn clauses can be done through the forward chaining and backward 
BACKWARD 
CHAINING chaining algorithms, which we explain next. Both of these algorithms are very natural, 

in that the inference steps are obvious and easy to follow for humans. 

3. Deciding entailment with Horn clauses can be done in time that is linear in the size of 
the knowledge base. 

This last fact is a pleasant surprise. It means that logical inference is very cheap for many 
propositional knowledge bases that are encountered in practice. 

The forward-chaining algorithm PL-FC-ENTAILS?(KB, q) determines whether a sin- 
gle proposition symbol q-the query-is entailed by a knowledge base of Horn clauses. It 
begins from known facts (positive literals) in the knowledge base. If all the premises of an 
implication are known, then its conclusion is added to the set of known facts. For example, if 
Ll,l and Breeze are known and (L1,1 A Breeze) + Bltl is in the knowledge base, then B J , ~  
can be added. This process continues until the query q is added or until no further inferences 
can be made. The detailed algorithm is shown in Figure 7.14; the main point to remember is 
that it runs in linear time. 

The best way to understand the algorithm is through an example and a picture. Fig- 
ure 7.15(a) shows a simple knowledge base of Horn clauses with A and B as known facts. 

ANWR GRAPH Figure 7.15(b) shows the same knowledge base drawn as an AND-OR graph. In AND-OR 
graphs, multiple links joined by an arc indicate a conjunction--every link must be proved- 
while multiple links without an arc indicate a disjunction-any link can be proved. It is easy 
to see how forward chaining works in the graph. The known leaves (here, A and B)  are set, 
and inference propagates up the graph as far as possible. Wherever a conjunction appears, 
the propagation waits until all the conjuncts are known before proceeding. The reader is 
encouraged to work through the example in detail. 

It is easy to see that forward chaining is sound: every inference is essentially an appli- 
cation of Modus Ponens. Forward chaining is also complete: every entailed atomic sentence 
will be derived. The easiest way to see this is to consider the final state of the inferred table 

FIXED POINT (after the algorithm reaches a fixed point where no new inferences are possible). The table 
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function P L - F C - E N T A I L S ? ( K B ,  q) returns t rue  or false 
inputs: K B ,  the knowledge base, a set of proposition(a1 Honl clauses 

q ,  the query, a proposition symbol 
local variables: coun t ,  a table, indexed by clause, initially the number of premises 

in ferred,  a table, indexed by symbol, each entry initially false 
agenda,  a list of symbols, initially the symbols known to be true in KB 

while agenda is not empty do 
p +- P ~ ~ ( a g e n d a )  
if p = q then return t rue  
unless in ferred[p]  do 

inferred [ p ]  + t rue  
for each Horn clause c in whose premise p appears do 

decrement count  [ c ]  
if coun t[c]  = 0 then 

P U S H ( H E A D [ ~ ] ,  agenda)  
return false 

-- 

Figure 7.14 The forward-chaining algorithm for piroposit ional logic. The agenda keeps 
track of symbols known to be true but not yet "processed." The count  table keeps track of 
how many premises of each implication are as yet unknown. Whenever a new symbol p from 
the agenda is processed, the count is reduced by one for eaclh implication in whose premise 
p appears. (These can be identified in constant time if K B  is indexed appropriately.) If a 
count reaches zero, all the premises of the implication are hewn so its conclusion can be 
added to the agenda. Finally, we need to keep track of which symbols have been processed; 
an inferred symbol need not be added to the agenda if it has been processed previously. This 
avoids redundant work; it also prevents infinite loops that could be caused by implications 
such as P + Q and Q + P. 

contains true for each symbol inferred during the process, and false for all other symbols. 
We can view the table as a logical model; moreover, every deiinite clause in the original KB is 
true in this model. To see this, assume the opposite, namely that some clause a1 A .  . .Ask + b 
is false in the model. Then a1 A . . . A a k  must be true in the model and b must be false in 
the model. But this contradicts our assumption that the algorithm has reached a fi xed point! 
We can conclude, therefore, that the set of atomic sentences inferred at the fi xed point defi nes 
a model of the original KB. Furthermore, any atomic sentence q that is entailed by the KB 
must be true in all its models and in this model in particular. Hence, every entailed sentence 
q must be inferred by the algorithm. 

DATA-DRIVEN Forward chaining is an example of the general concept of data-driven reasoning-that 
is, reasoning in which the focus of attention starts with the known data. It can be used within 
an agent to derive conclusions from incoming percepts, often without a specific query in 
mind. For example, the wumpus agent might TELL its percepts to the knowledge base using 
an incremental forward-chaining algorithm in which new facts can be added to the agenda to 

- - 

initiate new inferences. In humans, a certain amount of data-driven reasoning occurs as new 
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Figure 7.15 (a) A simple knowledge base of Horn clauses. (b) The corresponding AND- 
OR graph. 

information arrives. For example, if I am indoors and hear rain starting to fall, it might occur 
to me that the picnic will be canceled. Yet it will probably not occur to me that the seventeenth 
petal on the largest rose in my neighbor's garden will get wet; humans keep forward chaining 
under careful control, lest they be swamped with irrelevant consequences. 

The backward-chaining algorithm, as its name suggests, works backwards from the 
query. If the query q is known to be true, then no work is needed. Otherwise, the algorithm 
finds those implications in the knowledge base that conclude q. If all the premises of one of 
those implications can be proved true (by backward chaining), then q is true. When applied 
to the query Q in Figure 7.15, it works back down the graph until it reaches a set of known 
facts that forms the basis for a proof. The detailed algorithm is left as an exercise; as with 
forward chaining, an efficient implementation runs in linear time. 

GOAL-DIRECTED 
REASONING 

Backward chaining is a form of goal-directed reasoning. It is useful for answering 

specific questions such as "What shall I do now?" and "Where are my keys?" Often, the 
cost of backward chaining is much less than linear in the size of the knowledge base, because 
the process touches only relevant facts. In general, an agent should share the work between 
forward and backward reasoning, limiting forward reasoning to the generation of facts that 
are likely to be relevant to queries that will be solved by backward chaining. 

7.6 EFFECTIVE PROPOSITIONAL INFERENCE 

In this section, we describe two families of efficient algorithms for propositional inference 
based on model checking: one approach based on backtracking search, and one on hillclimb- 
ing search. These algorithms are part of the "technology" of propositional logic. This section 
can be skimmed on a first reading of the chapter. 
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DAVIS-PUTNAM 
ALGORITHM 

PURE SYMBOL 

The algorithms we describe are for checking sa~tisfiability. We have already noted the 
connection between finding a satisfying model for a logical sentence and finding a solution 
for a constraint satisfaction problem, so it is perhaps not surprising that the two families 
of algorithms closely resemble the backtracking algorithms of Scction 5.2 and the local- 
search algorithms of Section 5.3. They are, however, extremely important in their own right 
because so many combinatorial problems in computer science can be reduced to checking the 
satisfiability of a propositional sentence. Any improvement in satisfiability algorithms has 
huge consequences for our ability to handle comp1exil.y in general. 

A complete backtracking algorithm 

The first algorithm we will consider is often called the Davis-Putnam algorithm, after the 
seminal paper by Martin Davis and Hilary Putnam (1960). The algorithm is in fact the version 
described by Davis, Logemann, and Loveland (1962), so we will call it DPLL after the initials 
of all four authors. DPLL takes as input a sentence in conjunctive normal form-a set of 
clauses. Like BACKTRACKING-SEARCH and TT-ENTAILS?, it is essentially a recursive, 
depth-first enumeration of possible models. It embodies three improvements over the simple 
scheme of TT-ENTAILS?: 

a Early termination: The algorithm detects whether the sentence must be true or false, 
even with a partially completed model. A clause is true if any literal is true, even if 
the other literals do not yet have truth values; hence, the sentence as a whole could be 
judged true even before the model is complete. For example, the sentence ( A  V B) A 
( A  V C) is true if A  is true, regardless of the values of B  and C. Similarly, a sentence 
is false if any clause is false, which occurs when each of its literals is false. Again, this 
can occur long before the model is complete. Early termination avoids examination of 
entire subtrees in the search space. 

a Pure symbol heuristic: A pure symbol is a symbol that always appears with the same 
"sign" in all clauses. For example, in the three clauses (A V l B ) ,  (1B V l C ) ,  and 
(C V A), the symbol A is pure because only the positive literal appears, B is pure 
because only the negative literal appears, and C is impure. It is easy to see that if 
a sentence has a model, then it has a model with the pure symbols assigned so as to 
make their literals true, because doing so can never make a clause false. Note that, in 
determining the purity of a symbol, the algorithm can ignore clauses that are already 
known to be true in the model constructed so far. For example, if the model contains 
B =false, then the clause (1B V 1 C )  is already true, and C becomes pure because it 
appears only in (C V A). 
Unit clause heuristic: A unit clause was defined earlier as a clause with just one lit- 
eral. In the context of DPLL, it also means clauses in which all literals but one are 
already assigned false by the model. For example, if the model contains B  = false, 
then (B V 47) becomes a unit clause because it is equivalent to (False V l C ) ,  or just 
1 C .  Obviously, for this clause to be true, C must be set to false. The unit clause 
heuristic assigns all such symbols before branching on the remainder. One important 
consequence of the heuristic is that any attempt 1.0 prove (by refutation) a literal that is 
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function DPLL-SATISFIABLE?(S)  returns true or false 
inputs: s ,  a sentence in propositional logic 

clauses t the set of clauses in the CNF representation of s 
symbols c a list of the proposition symbols in s 
return DPLL(clauses, symbols, [I) 

I function DPLL(clauses, symbols, model) returns true or false 

if every clause in clauses is true in model then return true 
if some clause in clauses is false in model then return false 
P, value +- FIND-PURE-SYMBOL(S~~~~~S, clauses, model) 
if P is non-null then return DPLL(clauses, symbols - P , E x T E N D ( P ,  value, model) 
P ,  value c F I N D - U N I T - C L A ~ ~ E ( ~ ~ ~ U S ~ ~ ,  model) 
if P is non-null then return DPLL(clauses, symbols - P ,  E X T E N D ( P ,  value, model) 
P t F ~ ~ ~ ~ ( s y m b o l s ) ;  rest + REs~(symbo1s)  
return DPLL(clauses, rest, E X T E N D ~ P ,  true,  model)) or 

DPLL(clauses, rest, E X T E N D ( P ,  false, model)) 

Figure 7.16 The DPLL algorithm for checking satisfiability of a sentence in propositional 
logic. FIND-PURE-SYMBOL and FIND-UNIT-CLAUSE are described in the text; each returns 
a symbol (or null) and the truth value to assign to that symbol. Like TT-ENTAILS?,  it operates 
over partial models. 

already in the knowledge base will succeed immediately (Exercise 7.16). Notice also 
that assigning one unit clause can create another unit clause-for example, when C is 
set to false, (C V A) becomes a unit clause, causing true to be assigned to A. This 

UNIT PROPAGATION "cascade" of forced assignments is called unit propagation. It resembles the process 
of forward chaining with Horn clauses, and indeed, if the CNF expression contains only 
Horn clauses then DPLL essentially replicates forward chaining. (See Exercise 7.17.) 

The DPLL algorithm is shown in Figure 7.16. We have given the essential skeleton of the al- 
gorithm, which describes the search process itself. We have not described the data structures 
that must be maintained in order to make each search step efficient, nor the tricks that can 
be added to improve performance: clause learning, variable selection heuristics, and random- 
ized restarts. When these are included DPLL is one of the fastest satisfiability algorithms 
yet developed, despite its antiquity. The CHAFF implementation is used to solve hardware 
verification problems with a million variables. 

Local-search algorithms 

We have seen several local-search algorithms so far in this book, including HILL-CLIMBING 

(page 112) and SIMULATED-ANNEALING (page 116). These algorithms can be applied di- 
rectly to satisfiability problems, provided that we choose the right evaluation function. Be- 
cause the goal is to find an assignment that satisfies every clause, an evaluation function that 
counts the number of unsatisfied clauses will do the job. In fact, this is exactly the measure 
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function W A ~ ~ S A T ( c l a u s e s ,  p, max-flips) returns a satisfying model or failure 
inputs: clauses, a set of clauses in propositional logic 

p, the probability of choosing to do a "randorn walk" move, typically around 0.5 
max-flips, number of flips allowed before giving up 

model c a random assignment of truelfalse to the symbols in clauses 
for i = 1 to max-flips do 

if model satisfies clauses then return model 
clause +- a randomly selected clause from c1ause.s that is false in model 
with probability p flip the value in model of a randomly selected symbol from clause 
else flip whichever symbol in clause maximizes the number of satisfied clauses 

return failure 

Figure 7.17 The WALKSAT algorithm for checking satisfiability by randomly flipping 
the values of variables. Many versions of the algorithm exist. 

used by the MIN-CONFLICTS algorithm for CSPs (page 15 1). All these algorithms take steps 
in the space of complete assignments, flipping the truth value of one symbol at a time. The 
space usually contains many local minima, to escape from which various forms of random- 
ness are required. In recent years, there has been a great deal of experimentation to find a 
good balance between greediness and randomness. 

One of the simplest and most effective algorithms to ernerge from all this work is called 
WALKSAT (Figure 7.17). On every iteration, the algorithm picks an unsatisfied clause and 
picks a symbol in the clause to flip. It chooses randomly between two ways to pick which 
symbol to flip: (1) a "min-conflicts" step that minimizes the number of unsatisfied clauses in 
the new state, and (2) a "random walk" step that picks the symbol randomly. 

Does WALKSAT actually work? Clearly, if it returns ii model, then the input sentence 
is indeed satisfiable. What if it returns failure? Unfortunately, in that case we cannot tell 
whether the sentence is unsatisfiable or we need to give the algorithm more time. We could 
try setting max-fl ips to infinity. In that case, it is easy to show that WALKSAT will eventually 
return a model (if one exists), provided that the probability p > 0. This is because there is 
always a sequence of flips leading to a satisfying assignment, and eventually the random 
walk steps will generate that sequence. Alas, if rnax-j%ps is infinity and the sentence is 
unsatisfiable, then the algorithm never terminates! 

What this suggests is that local-search algorithms such as WALKSAT are most useful 
when we expect a solution to exist-for example, the problenls discussed in Chapters 3 and 5 
usually have solutions. On the other hand, local search cannot always detect unsatisJiability, 
which is required for deciding entailment. For example, an agent cannot reliably use local 
search to prove that a square is safe in the wumpus worl~d. Inst:ead, it can say, "I thought about 
it for an hour and couldn't come up with a possible world in which the square isn't safe." If 
the local-search algorithm is usually really fast at finding a model when one exists, the agent 
might be justified in assuming that failure to find a model indicates unsatisfiability. This isn't 
the same as a proof, of course, and the agent should think twice before staking its life on it. 
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Hard satisfiability problems 

We now look at how DPLL and WALKSAT perform in practice. We are particularly inter- 
ested in hard problems, because easy problems can be solved by any old algorithm. In Chap- 
ter 5, we saw some surprising discoveries about certain kinds of problems. For example, the 
n-queens problem-thought to be quite tricky for backtracking search algorithms-turned 
out to be trivially easy for local-search methods, such as rnin-conflicts. This is because solu- 
tions are very densely distributed in the space of assignments, and any initial assignment is 

UNDERCONSTRAINED guaranteed to have a solution nearby. Thus, n-queens is easy because it is underconstrained. 
When we look at satisfiability problems in conjunctive normal form, an undercon- 

strained problem is one with relatively few clauses constraining the variables. For example, 
here is a randomly generated12 3-CNF sentence with five symbols and five clauses: 

16 of the 32 possible assignments are models of this sentence, so, on average, it would take 
just two random guesses to find a model. 

So where are the hard problems? Presumably, if we increase the number of clauses, 
keeping the number of symbols fixed, we make the problem more constrained, and solutions 
become harder to find. Let m be the number of clauses and n be the number of symbols. 
Figure 7.18(a) shows the probability that a random 3-CNF sentence is satisfiable, as a func- 
tion of the clause/symbol ratio, m/n,  with n fixed at 50. As we expect, for small m l n  the 
probability is close to 1, and at large m / n  the probability is close to 0. The probability drops 

CRITICALPOINT fairly sharply around m / n  = 4.3. CNF sentences near this critical point could be described 
as "nearly satisfiable" or "nearly unsatisfiable." Is this where the hard problems are? 

Figure 7.18(b) shows the runtime for DPLL and WALKSAT around this point, where 
we have restricted attention to just the satisjable problems. Three things are clear: First, 
problems near the critical point are much more difficult than other random problems. Second, 
even on the hardest problems, DPLL is quite effective-an average of a few thousand steps 
compared with 250 z 1015 for truth-table enumeration. Third, WALKSAT is much faster 
than DPLL throughout the range. 

Of course, these results are only for randomly generated problems. Real problems do 
not necessarily have the same structure-in terms of proportions of positive and negative liter- 
als, densities of connections among clauses, and so on-as random problems. Yet, in practice, 
WALKSAT and related algorithms are very good at solving real problems too-often as good 
as the best special-purpose algorithms for those tasks. Problems with thousands of symbols 
and millions of clauses are routinely handled by solvers such as CHAFF. These observa- 
tions suggest that some combination of the min-conflicts heuristic and random-walk behavior 
provides a general-purpose capability for resolving most situations in which combinatorial 
reasoning is required. 

l2 Each clause contains three randomly selected distinct symbols, each of which is negated with 50% probability. 
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Figure 7.18 (a) Graph showing the probability that: a random 3-CNF sentence with n = 50 
symbols is satisfiable, as a function of the clauselsyrnlbol ratio mln. (b) Graph of the median 
runtime of DPLL and WALKSAT on 100 satisJiable randoin 3-CNF sentences with n = 50, 
for a narrow range of m/n around the critical point. 

-- 

In this section, we bring together what we have learined so far in order to construct agents 
that operate using propositional logic. We will look; at two kinds of agents: those which 
use inference algorithms and a knowledge base, like the generic knowledge-based agent in 
Figure 7.1, and those which evaluate logical expressions directly in the form of circuits. We 
will demonstrate both kinds of agents in the wumpus worlid, and will find that both suffer 
from serious drawbacks. 

Finding pits and wumpuses using logical inference 

Let us begin with an agent that reasons logically about the location of pits, wumpuses, and 
safe squares. It begins with a knowledge base that stat~es the "physics" of the wumpus world. 
It knows that [1,1] does not contain a pit or a wumpus; that is, lPl, l  and 1Wlj1. For every 
square [x, y], it knows a sentence stating how a breeze arises: 

Bz ,y  * (Pz,y+l v pz,y-1 v Pz+l,y v pz-1,y) . (7.1) 
For every square [x, y], it knows a sentence stating hovv a stench arises: 

Sqy * (Wz,y+l v wz,y-l v wz+l,y v Wz-l,?J) . (7.2) 
Finally, it knows that there is exactly one wumpus. This is expressed in two parts. First, we 
have to say that there is at least one wumpus: 

W1,l v W1,2 v . ' . v w4,3 v w4,4 . 
Then, we have to say that there is at most one wumpus. One way to do this is to say that 
for any two squares, one of them must be wumpus-free. With n squares, we get n(n - 1)/2 
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function p L - W ~ ~ ~ u s - A ~ E ~ T ( p e r c e p t )  returns an action 
inputs: percept, a list, [stench,  breeze,glitter] 
static: KB, a knowledge base, initially containing the "physics" of the wumpus world 

x ,  y ,  orientation, the agent's position (initially 1, I) and orientation (initially right) 
,visited, an array indicating which squares have been visited, initially false 
action, the agent's most recent action, initially null 
plan, an action sequence, initially empty 

update x, y ,orientation, visited based on action 
if stench then TELL(KB, S,,,) else TELL(KB, 1 S,,,) 
if breeze then TELL(KB, B,,,) else TELL(KB, 1 B,,,) 
if glitter then action +- grab 
else if plan is nonempty then action t P o ~ @ l a n )  
else if for some fringe square [ i , j ] ,  AsK(KB, (7 Pi,j A 1 W i , j ) )  is true or 

for some fringe square [ i , j ] ,  AsK(KB, (Pi , j  V Wi,j)) is false then do 
plan t A*-GRAPH-SEARCH(ROUTE-PROBLEM([X,~], orientation, [ i , j] ,vis i ted))  
action + P o ~ ( p 1 a n )  

else action + a randomly chosen move 
return action 

Figure 7.19 A wumpus-world agent that uses propositional logic to identify pits, wum- 
puses, and safe squares. The subroutine ROUTE-PROBLEM constructs a search problem 
whose solution is a sequence of actions leading from [ x ,  y] to [ i , j ]  and passing through only 
previously visited squares. 

sentences such as T W ~ , ~  V T W ~ , ~ .  For a 4 x 4 world, then, we begin with a total of 155 
sentences containing 64 distinct symbols. 

The agent program, shown in Figure 7.19, TELLS its knowledge base about each new 
breeze and stench percept. (It also updates some ordinary program variables to keep track of 
where it is and where it has been-more on this later.) Then, the program chooses where to 
look next among the fringe squares-that is, the squares adjacent to those already visited. A 
fringe square [ i , j ]  is provably safe if the sentence (1Pij A lWi j )  is entailed by the knowl- 
edge base. The next best thing is apossibly safe square, for which the agent cannot prove that 
there is a pit or a wumpus-that is, for which (Pilj V Wi j )  is not entailed. 

The entailment computation in ASK can be implemented using any of the methods 
described earlier in the chapter. TT-ENTAILS? (Figure 7.10) is obviously impractical, since 
it would have to enumerate 264 rows. DPLL (Figure 7.16) performs the required inferences 
in a few milliseconds, thanks mainly to the unit propagation heuristic. WALKSAT can also 
be used, with the usual caveats about incompleteness. In wumpus worlds, failures to find a 
model, given 10,000 flips, invariably correspond to unsatisfiability, so no errors are likely due 
to incompleteness. 

PL-WUMPUS-AGENT works quite well in a small wumpus world. There is, however, 
something deeply unsatisfying about the agent's knowledge base. KB contains "physics" 
sentences of the form given in Equations (7.1) and (7.2) for every single square. The larger 
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the environment, the larger the initial knowledge base needs to be. We would much prefer 
to have just two sentences that say how breezes and stenches arise in all squares. These are 
beyond the powers of propositional logic to express. In the next chapter, we will see a more 
expressive logical language in which such sentences are easy to express. 

Keeping track of location and orientation 

The agent program in Figure 7.19 "cheats" because it keeps track of location outside the 
knowledge base, instead of using logical reasoning.13 To do it "properly," we will need 
propositions for location. One's first inclination might be to use a symbol such as L1,1 to 
mean that the agent is in [I ,I]. Then the initial knowledge base might include sentences like 

LI,J A FacingRight A Forward + L 2 , ~  . 

Instantly, we see that this won't work. If the agent starts in [1,1] facing right and moves 
forward, the knowledge base will entail both L 1 , ~  (th~e original location) and L 2 , ~  (the new 
location). Yet these propositions cannot both be true! The problem is that the location propo- 
sitions should refer to two different times. We need to mean that the agent is in [1,1] at 
time 1, L& to mean that the agent is in [2,1] at time 2, and so on. The orientation and action 
propositions also need to depend on time. Therefore, the correct sentence is 

and so on. It turns out to be quite tricky to build a c:omplete and correct knowledge base 
for keeping track of everything in the wumpus world; we will defer the full discussion until 
Chapter 10. The point we want to make here is that the initial knowledge base will contain 
sentences like the preceding two examples for every time t ,  as well as for every location. That 
is, for every time t and location [x, y], the knowledge base contains a sentence of the form 

Even if we put an upper limit on the number of time steps allowed-100, perhaps-we end 
up with tens of thousands of sentences. The same problem arises if we add the sentences 
"as needed for each new time step. This proliferation of clauses makes the knowledge base 
unreadable for a human, but fast propositional solvers can still handle the 4 x 4 Wumpus 
world with ease (they reach their limit at around 100 x 100). The circuit-based agents in 
the next subsection offer a partial solution to this clause proliferation problem, but the full 
solution will have to wait until we have developed first-order logic in Chapter 8. 

Circuit-based agents 

A circuit-based agent is a particular kind of reflex ageint with state, as defined in Chapter 2. AGENT 
SEQUENTIAL 
CIRCUIT The percepts are inputs to a sequential circuit-a network of gates, each of which imple- 
GATES ments a logical connective, and registers, each of which stores the truth value of a single 
REGISTERS proposition. The outputs of the circuit are registers corresponding to actions-for example, 

l3 The observant reader will have noticed that this allowed us to finesse the connection between the raw percepts 
such as Breeze and the location-specific propositions such as BlI1. 
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Figure 7.20 Part of a circuit-based agent for the wumpus world, showing inputs, outputs, 
the circuit for grabbing the gold, and the circuit for determining whether the wumpus is alive. 
Registers are shown as rectangles and one-step delays are shown as small triangles. 

the Grab output is set to true if the agent wants to grab something. If the Glitter input is 
connected directly to the Grab output, the agent will grab the goal whenever it sees it. (See 
Figure 7.20.) 

DATAFLOW Circuits are evaluated in a dataflow fashion: at each time step, the inputs are set and 
the signals propagate through the circuit. Whenever a gate has all its inputs, it produces an 
output. This process is closely related to the process of forward chaining in an AND-OR 
graph such as Figure 7.15(b). 

We said in the preceding section that circuit-based agents handle time more satisfac- 
torily than propositional inference-based agents. This is because the value stored in each 
register gives the truth value of the corresponding proposition symbol at the current time t ,  
rather than having a different copy for each different time step. For example, we might have 
an Alive register that should contain true when the wumpus is alive and false when it is dead. 
This register corresponds to the proposition symbol Alivet, so on each time step it refers to 
a different proposition. The internal state of the agent-i.e., its memory-is maintained by 

DELAY LINE connecting the output of a register back into the circuit through a delay line. This delivers the 
value of the register at the previous time step. Figure 7.20 shows an example. The value for 
Alive is given by the conjunction of the negation of Scream and the delayed value of Alive 
itself. In terms of propositions, the circuit for Alive implements the biconditional 

which says that the wumpus is alive at time t if and only if there was no scream perceived 
at time t (from a scream at t - 1) and it was alive at t - I. We assume that the circuit is 
initialized with Alive set to true. Therefore, Alive will remain true until there is a scream, 
whereupon it will become false and stay false. This is exactly what we want. 
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Breeze 

Glitter 17 

Bump 
p q  

Scream - J 

Figure 7.21 The circuit for determining whether the agent is at [1,1]. Every location and 
orientation register has a similar circuit attached. 

The agent's location can be handled in much the same way as the wumpus's health. We 
need an L,,, register for each x and y; its value shoul~d be true if the agent is at [x, y]. The 
circuit that sets the value of L,,, is, however, much inore complicated than the circuit for 
Alive. For example, the agent is at [1,1] at time t if (a) it was there at t - 1 and either didn't 
move forward or tried but bumped into a wall; or (b) it was (at [1,2] facing down and moved 
forward; or (c) it was at [2,1] facing left and moved forward: 

The circuit for Llll is shown in Figure 7.21. Every location register has a similar circuit 
attached to it. Exercise 7.13(b) asks you to design a circuit for the orientation propositions. 

The circuits in Figures 7.20 and 7.21 maintain tlhe correct truth values for Alive and 
L,,, for all time. These propositions are unusual, however, in that their correct truth values 
can always be ascertained. Consider instead the proposition B4,4: square [4,4] is breezy. 
Although this proposition's truth value remains fixed, the agent cannot learn that truth value 
until it has visited [4,4] (or deduced that there is an adjacent pit). Propositional and first- 
order logic are designed to represent true, false, and unknown propositions automatically, 
but circuits are not: the register for B4,4 must contain some value, either true or false, even 
before the truth has been discovered. The value in the register might well be the wrong one, 
and this could lead the agent astray. In other words, we need to represent three possible states 
(B4,4 is known true, known false, or unknown) and we only have one bit to do it with. 

The solution to this problem is to use two bits instead of one. B4,4 is represented by two 
registers that we will call K(B4,4) and K(1B4,4), where K stands for "known.". (Remember 
that these are still just symbols with complicated names, even though they look like structured 
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expressions!) When both K(B4,4) and K(1B4,4) are false, it means the truth value of B4,4 
is unknown. (If both are true, there's a bug in the knowledge base!) Now whenever we would 
use B4,4 in some part of the circuit, we use K(B4,4) instead ; and whenever we would use 
1B4,4, we use K(lB4,4). In general, we represent each potentially indeterminate proposition 

KNOWLEDGE 
PROPOSITION with two knowledge propositions that state whether the underlying proposition is known to 

be true and known to be false. 
We will see an example of how to use knowledge propositions shortly. First, we need to 

work out how to determine the truth values of the knowledge propositions themselves. Notice 
that, whereas B4,4 has a fixed truth value, K(B4,4) and K(7B4,4) do change as the agent 
finds out more about the world. For example, K (B4,4) starts out false and then becomes true 
as soon as B4,4 can be determined to be true-that is, when the agent is in [4,4] and detects a 
breeze. It stays true thereafter. So we have 

A similar equation can be written for K ( T B ~ , ~ ) ~ .  
Now that the agent knows about breezy squares, it can deal with pits. The absence of a 

pit in a square can be ascertained if and only if one of the neighboring squares is known not 
to be breezy. For example, we have 

Determining that there is a pit in a square is more difficult-there must be a breeze in an 
adjacent square that cannot be accounted for by another pit: 

While the circuits for determining the presence or absence of pits are somewhat hairy, they 
have only a constant number of gates for each square. This property is essential if we are 
to build circuit-based agents that scale up in a reasonable way. It is really a property of 
the wumpus world itself; we say that an environment exhibits locality if the truth of each 
proposition of interest can be determined looking only at a constant number of other propo- 
sitions. Locality is very sensitive to the precise "physics" of the environment. For example, 
the minesweeper domain (Exercise 7.11) is nonlocal because determining that a mine is in 
a given square can involve looking at squares arbitrarily far away. For nonlocal domains, 
circuit-based agents are not always practical. 

ACYCLICITY There is one issue around which we have tiptoed carefully: the question of acyclicity. 
A circuit is acyclic if every path that connects the output of a register back to its input has 
an intervening delay element. We require that all circuits be acyclic because cyclic circuits, 
as physical devices, do not work! They can go into unstable oscillations resulting in un- 
defined values. As an example of a cyclic circuit, consider the following augmentation of 
Equation (7.6): 

~ ( ~ 4 . 4 ) ~  o K(B~,~) ' - '  V (L;,, h ~reeze') V ~ ( ~ 3 4 ) ~  V K(p4,3)' . (7.9) 

The extra disjuncts, K(P3,4)t and K ( P ~ , ~ ) ~ ,  allow the agent to determine breeziness from 
the known presence of adjacent pits, which seems entirely reasonable. Now, unfortunately, 
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breeziness depends on adjacent pits, and pits depend on adjacent breeziness through equations 
such as Equation (7.8). Therefore, the complete circuit would contain cycles. 

The difficulty is not that the augmented Equation (7.9') is incorrect. Rather, the prob- 
lem is that the interlocking dependencies represented by these equations cannot be resolved 
by the simple mechanism of propagating truth values in the corresponding Boolean circuit. 
The acyclic version using Equation (7.6), which determines breeziness only from direct ob- 
servation, is incomplete in the sense that at some points the circuit-based agent might know 
less than an inference-based agent using a complete inference procedure. For example, if 
there is a breeze in [ I ,  11, the inference-based agent can conclude that there is also a breeze in 
[2,2], whereas the acyclic circuit-based agent using Equation (7.6) cannot. A complete circuit 
can be built-after all, sequential circuits can emulate any digital computer-but it would be 
significantly more complex. 

A comparison 

The inference-based agent and the circuit-based agent represent the declarative and procedu- 
ral extremes in agent design. They can be compared along several dimensions: 

Conciseness: The circuit-based agent, unlike the inference-based agent, need not have 
separate copies of its "knowledge" for every time step. Instead, it refers only to the 
current and previous time steps. Both agents need copies of the "physics" (expressed 
as sentences or circuits) for every square and therefore do not scale well to larger en- 
vironments. In environments with many objects related in complex ways, the number 
of propositions will swamp any propositional agent. Such environments require the ex- 
pressive power of first-order logic. (See Chapter 13.) Propositional agents of both lunds 
are also poorly suited for expressing or solving the: problem of finding a path to a nearby 
safe square. (For this reason, PL-WUMPUS-AGENT falls back on a search algorithm.) 
Computational eficiency: In the worst case, inference can take time exponential in the 
number of symbols, whereas evaluating a circuit takes time linear in the size of the 
circuit (or linear in the depth of the circuit if realized as a physical device). In practice, 
however, we saw that DPLL completed the required inferences very quickly.14 

e Conzpleteness: We suggested earlier that the circuit-based agent might be incomplete 
because of the acyclicity restriction. The reasons for incompleteness are actually more 
fundamental. First, remember that a circuit executes in time linear in the circuit size. 
This means that, for some environments, a circuit that is complete (i.e., one that com- 
putes the truth value of every determinable proposition) must be exponentially larger 
than the inference-based agent's KB. Otherwise, we would have a way to solve the 
propositional entailment problem in less than exponential time, which is very unlikely. 
A second reason is the nature of the internal statle of the agent. The inference-based 
agent remembers every percept and knows, either implicitly or explicitly, every sen- 
tence that follows from the percepts and initial KB. For example, given Bltl, it knows 
the disjunction P1,2 V P z , ~ ,  from which B2,2 follows. The circuit-based agent, on the 

l4 In fact, all the inferences done by a circuit can be done in linear time by DPLL! This is because evaluating a 
circuit, like forward chaining, can be emulated by DPLL using the unit propagation rule. 
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other hand, forgets all previous percepts and remembers just the individual proposi- 
tions stored in registers. Thus, P1,2 and P 2 , ~  remain individually unknown after the first 
percept, so no conclusion will be drawn about B2,2. 

Ease of construction: This is a very important issue about which it is hard to be precise. 
Certainly, this author found it much easier to state the "physics" declaratively, whereas 
devising small, acyclic, not-too-incomplete circuits for direct detection of pits seemed 
quite difficult. 

In sum, it seems there are tradeoffs among computational efficiency, conciseness, complete- 
ness, and ease of construction. When the connection between percepts and actions is simple- 
as in the connection between Glitter and Grab-a circuit seems optimal. For more complex 
connections, the declarative approach may be better. In a domain such as chess, for example, 
the declarative rules are concise and easily encoded (at least in first-order logic), but a circuit 
for computing moves directly from board states would be unimaginably vast. 

We see different points on these tradeoffs in the animal kingdom. The lower animals 
with very simple nervous systems are probably circuit-based, whereas higher animals, in- 
cluding humans, seem to perform inference on explicit representations. This enables them 
to compute much more complex agent functions. Humans also have circuits to implement 

COMPI~ATION reflexes, and perhaps also compile declarative representations into circuits when certain in- 
ferences become routine. In this way, a hybrid agent design (see Chapter 2) can have the 
best of both worlds. 

We have introduced knowledge-based agents and have shown how to define a logic with 
which such agents can reason about the world. The main points are as follows: 

Intelligent agents need knowledge about the world in order to reach good decisions. 

Knowledge is contained in agents in the form of sentences in a knowledge represen- 
tation language that are stored in a knowledge base. 

A knowledge-based agent is composed of a knowledge base and an inference mecha- 
nism. It operates by storing sentences about the world in its knowledge base, using the 
inference mechanism to infer new sentences, and using these sentences to decide what 
action to take. 

e A representation language is defined by its syntax, which specifies the structure of 
sentences, and its semantics, which defines the truth of each sentence in each possible 
world or model. 

The relationship of entailment between sentences is crucial to our understanding of 
reasoning. A sentence a! entails another sentence p if ,4 is true in all worlds where a! 

is true. Equivalent definitions include the validity of the sentence a + ,L3 and the 
unsatisfiability of the sentence a! r\ +3. 
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a Inference is the process of deriving new sentences from old ones. Sound inference algo- 
rithms derive only sentences that are entailed; complete algorithms derive all sentences 
that are entailed. 

a Propositional logic is a very simple language consisting of proposition symbols and 
logical connectives. It can handle propositions that are known true, known false, or 
completely unknown. 

a The set of possible models, given a fixed propositional vocabulary, is finite, so en- 
tailment can be checked by enumerating models. Efficient model-checking inference 
algorithms for propositional logic include backtracking and local-search methods and 
can often solve large problems very quickly. 

a Inference rules are patterns of sound inference that can be used to find proofs. The 
resolution rule yields a complete inference algorithm for knowledge bases that are 
expressed in conjunctive normal form. Forward chaining and backward chaining 
are very natural reasoning algorithms for knowledge bases in Horn form. 
Two kinds of agents can be built on the basis of' propositional logic: inference-based 
agents use inference algorithms to keep track of the world and deduce hidden proper- 
ties, whereas circuit-based agents represent propositions as bits in registers and update 
them using signal propagation in logical circuits. 

a Propositional logic is reasonably effective for centain tasks within an agent, but does not 
scale to environments of unbounded size because it lacks the expressive power to deal 
concisely with time, space, and universal patterns of relationships among objects. 

- - 

BIBLIOGRAPHICAL AND HISTORICAL NOTES 

John McCarthy's paper "Programs with Common Sen~se" (McCarthy, 1958, 1968) promul- 
gated the notion of agents that use logical reasoning to mediate between percepts and actions. 
It also raised the flag of declarativism, pointing out that telling an agent what it needs to 
know is a very elegant way to build software. Allen Newell's (1982) article "The Knowledge 
Level" makcs the case that rational agents can be described and analyzed at an abstract level 
defined by the knowledge they possess rather than the programs they run. The declarative 
and procedural approaches to A1 are compared in Boden (19'77). The debate was revived by, 
among others, Brooks (1991) and Nilsson (1991). 

Logic itself had its origins in ancient Greek philosophy and mathematics. Various log- 
ical principles-principles connecting the syntactic structure of sentences with their truth 
and falsity, with their meaning, or with the validity of arguments in which they figure-are 
scattered in the works of Plato. The first known systematic study of logic was carried out 
by Aristotle, whose work was assembled by his students after his death in 322 B.C. as a 

SYLLOGISMS treatise called the Organon. Aristotle's syllogisms were what we would now call nnference 
rules. Although the syllogisms included elements of both propositional and first-order logic, 
the system as a whole was very weak by modern standards. It did not allow for patterns of 
inference that apply to sentences of arbitrary complexit~y: as in modem propositional logic. 
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The closely related Megarian and Stoic schools (originating in the fifth century B.C. 

and continuing for several centuries thereafter) introduced the systematic study of implication 
and other basic constructs still used in modern propositional logic. The use of truth tables for 
defining logical connectives is due to Philo of Megara. The Stoics took five basic inference 
rules as valid without proof, including the rule we now call Modus Ponens. They derived a 
number of other rules from these five, using among other principles the deduction theorem 
(page 210) and were much clearer about the notion of proof than Aristotle was. The Stoics 
claimed that their logic was complete in the sense of capturing all valid inferences, but what 
remains is too fragmentary to tell. A good account of the history of Megarian and Stoic logic, 
as far as it is known, is given by Benson Mates (1953). 

The idea of reducing logical inference to a purely mechanical process applied to a for- 
mal language is due to Wilhelm Leibniz (1646-1716). Leibniz's own mathematical logic, 
however, was severely defective, and he is better remembered simply for introducing these 
ideas as goals to be attained than for his attempts at realizing them. 

George Boole (1847) introduced the first comprehensive and workable system of for- 
mal logic in his book The Mathematical Analysis of logic. Boole's logic was closely mod- 
eled on the ordinary algebra of real numbers and used substitution of logically equivalent 
expressions as its primary inference method. Although Boole's system still fell short of full 
propositional logic, it was close enough that other mathematicians could quickly fill in the 
gaps. Schroder (1877) described conjunctive normal form, while Horn form was introduced 
much later by Alfred Horn (1951). The first comprehensive exposition of modern proposi- 
tional logic (and first-order logic) is found in Gottlob Frege's (1879) BegrifSschrift ("Concept 
Writing" or "Conceptual Notation"). 

The first mechanical device to carry out logical inferences was constructed by the third 
Earl of Stanhope (1753-1816). The Stanhope Demonstrator could handle syllogisms and 
certain inferences in the theory of probability. William Stanley Jevons, one of those who 
improved upon and extended Boole's work, constructed his "logical piano" in 1869 to per- 
form inferences in Boolean logic. An entertaining and instructive history of these and other 
early mechanical devices for reasoning is given by Martin Gardner (1968). The first pub- 
lished computer program for logical inference was the Logic Theorist of Newell, Shaw, 
and Simon (1957). This program was intended to model human thought processes. Mar- 
tin Davis (1957) had actually designed a program that came up with a proof in 1954, but the 
Logic Theorist's results were published slightly earlier. Both Davis's 1954 program and the 
Logic Theorist were based on somewhat ad hoc methods that did not strongly influence later 
automated deduction. 

Truth tables as a method of testing the validity or unsatisfiability of sentences in the lan- 
guage of propositional logic were introduced independently by Ludwig Wittgenstein (1922) 
and Emil Post (1921). In the 1930s, a great deal of progress was made on inference meth- 
ods for first-order logic. In particular, Godel (1930) showed that a complete procedure for 
inference in first-order logic could be obtained via a reduction to propositional logic, us- 
ing Herbrand's theorem (Herbrand, 1930). We will take up this history again in Chapter 9; 
the important point here is that the development of efficient propositional algorithms in the 
1960s was motivated largely by the interest of mathematicians in an effective theorem prover 
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for first-order logic. The Davis-Putnam algorithm (Davis ;md Putnam, 1960) was the first 
effective algorithm for propositional resolution but was in most cases much less efficient than 
the DPLL backtracking algorithm introduced two years lateir (1962). The full resolution rule 
and a proof of its completeness appeared in a seminal paper by J. A. Robinson (1965), which 
also showed how to do first-order reasoning without resort to propositional techniques. 

Stephen Cook (1971) showed that deciding satisfiability of a sentence in propositional 
logic is NP-complete. Since deciding entailment is equivalent to deciding unsatisfiability, it 
is co-NP-complete. Many subsets of propositional logic are known for which the satisfia- 
bility problem is polynomially solvable; Horn clauses are one such subset. The linear-time 
forward-chaining algorithm for Horn clauses is due to Dowling and Gallier (1984), who de- 
scribe their algorithm as a dataflow process similar to the propagation of signals in a circuit. 
Satisfiability has become one of the canonical examples for NP reductions; for example Kaye 
(2000) showed that the Minesweeper game (see Exercise 7.11) is NP-complete. 

Local search algorithms for satisfiability were tried by various authors throughout the 
1980s; all of the algorithms were based on the idea of minimizing the number of unsatisfied 
clauses (Hansen and Jaumard, 1990). A particularly effective algorithm was developed by 
Gu (1989) and independently by Selman et al. (1992), who called it GSAT and showed that 
it was capable of solving a wide range of very hard problems very quickly. The WALKSAT 
algorithm described in the chapter is due to Selman et al. (1996). 

The "phase transition" in satisfiability of random k-SAT problems was first observed 
by Simon and Dubois (1989). Empirical results due to, Crawford and Auton (1993) suggest 
that it lies at a clause/variable ratio of around 4.24 for large random 3-SAT problems; this 
paper also describes a very efficient implementation of DPLL. Bayardo and Schrag (1997) 
describe another efficient DPLL implementation using techniques from constraint satisfac- 
tion, and Moskewicz et al. (2001) describe CHAFF, which solves million-variable hardware 
verification problems and was the winner of the SAT 2!002 Competition. Li and Anbulagan 
(1997) discuss heuristics based on unit propagation that allolw for fast solvers. Cheeseman 
et al. (1991) provide data on a number of related problems and conjecture that all NP hard 
problems have a phase transition. Kirkpatrick and Sellman (1994) describe ways in which 
techniques from statistical physics might provide insighit into rhe precise "shape" of the phase 
transition. Theoretical analysis of its location is still rather weak: all that can be proved is 
that it lies in the range [3.003,4.598] for random 3-SAT. Cook and Mitchell (1997) give an 
excellent survey of results on this and several other satisfiability-related topics. 

Early theoretical investigations showed that DPL L has polynomial average-case com- 
plexity for certain natural distributions of problems. This potentially exciting fact became 
less exciting when Franco and Paul1 (1983) showed that the same problems could be solved 
in constant time simply by guessing random assignments. The random-generation method 
described in the chapter produces much harder problems. Motivated by the empirical success 
of local search on these problems, Koutsoupias and Papadimitriou (1992) showed that a sim- 
ple hill-climbing algorithm can solve almost all satisfiability problem instances very quickly, 
suggesting that hard problems are rare. Moreover, SchGning (1999) exhibited a randomized 
variant of GSAT whose worst-case expected runtime on 3-SAT problems is 1.333n-still ex- 
ponential, but substantially faster than previous worst-case bounds. Satisfiability algorithms 
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are still a very active area of research; the collection of articles in Du et al. (1999) provides a 
good starting point. 

Circuit-based agents can be traced back to the seminal paper of McCulloch and Pitts 
(1943), which initiated the field of neural networks. Contrary to popular supposition, the 
paper was concerned with the implementation of a Boolean circuit-based agent design in the 
brain. Circuit-based agents have received little attention in AI, however. The most notable 
exception is the work of Stan Rosenschein (Rosenschein, 1985; Kaelbling and Rosenschein, 
1990), who developed ways to compile circuit-based agents from declarative descriptions of 
the task environment. The circuits for updating propositions stored in registers are closely 
related to the successor-state axiom developed for first-order logic by Reiter (1991). The 
work of Rod Brooks (1986, 1989) demonstrates the effectiveness of circuit-based designs for 
controlling robots-a topic we take up in Chapter 25. Brooks (1991) argues that circuit-based 
designs are all that is needed for AI-that representation and reasoning are cumbersome, 
expensive, and unnecessary. In our view, neither approach is sufficient by itself. 

The wumpus world was invented by Gregory Yob (1975). Ironically, Yob developed 
it because he was bored with games played on a grid: the topology of his original wumpus 
world was a dodecahedron; we put it back in the boring old grid. Michael Genesereth was 
the first to suggest that the wumpus world be used as an agent testbed. 

7.1 Describe the wumpus world according to the properties of task environments listed in 
Chapter 2. 

7.2 Suppose the agent has progressed to the point shown in Figure 7.4(a), having perceived 
nothing in [1,1], a breeze in [2,1], and a stench in [1,2]. and is now concerned with the 
contents of [1,3], [2,2], and [3,1]. Each of these can contain a pit and at most one can contain 
a wumpus. Following the example of Figure 7.5, construct the set of possible worlds. (You 
should find 32 of them.) Mark the worlds in which the KB is true and those in which each of 
the following sentences is true: 

a2 = "There is no pit in [2,2]." 
as = "There is a wumpus in [1,3]." 

Hence show that KB I= a2 and KB /== as. 

7.3 Consider the problem of deciding whether a propositional logic sentence is true in a 
given model. 

a. Write a recursive algorithm PL-T~ue?(s, m) that returns true if and only if the sen- 
tence s is true in the model m (where m assigns a truth value for every symbol in s). 
The algorithm should run in time linear in the size of the sentence. (Alternatively, use a 
version of this function from the online code repository.) 
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b. Give three examples of sentences that can be determined to be true or false in a partial 
model that does not specify a truth value for some of the symbols. 

c. Show that the truth value (if any) of a sentence in a partial model cannot be determined 
efficiently in general. 

d. Modify your PL-TRUE? algorithm so that it can sornetimes judge truth from partial 
models, while retaining its recursive structure arid linear runtime. Give three examples 
of sentences whose truth in a partial model is not detected by your algorithm. 

e. Investigate whether the modified algorithm makes TT-ENTAILS? more efficient. 

7.4 Prove each of the following assertions: 

a. a is valid if and only if True a. 

b. For any a, False a. 

c. a + ,G' if and only if the sentence (a  + P )  is valid. 

d. a r p if and only if the sentence (a  w P )  is valid. 

e. a /= p if and only if the sentence (a A 1 P )  is unsatisfiable. 

7.5 Consider a vocabulary with only four propositions, A ,  ,B, C, and D. How many models 
are there for the following sentences? 

a. ( A A B ) v ( B A C )  

b. A V B  

c . A @ B @ C  

7.6 We have defined four different binary logical connectives. 

a. Are there any others that might be useful? 

b. How many binary connectives can there be? 

c. Why are some of them not very useful? 

7.7 Using a method of your choice, verify each of the: equi~ralences in Figure 7.11. 

7.8 Decide whether each of the following sentences is valid, unsatisfiable, or neither. Verify 
your decisions using truth tables or the equivalence rules of E4gure 7.1 1. 

a. Smoke =+ Smoke 
b. Smoke + Fire 

e. (Smoke * Fire) + (?Smoke + +ire) 
d. Smoke V Fire V 7Fire  
e. ( (Smoke  A Heat) + Fire) # ( (Smoke  + Fire) C' (Heat + Fire)) 

f. (Smoke + Fire) =+ ( (Smoke  A Heat) + Fire) 
g. Big V Dumb V (Big =+ Dumb) 
h. (Big  A Dumb) V ?Dumb 
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7.9 (Adapted from Barwise and Etchemendy (1993).) Given the following, can you prove 
that the unicorn is mythical? How about magical? Horned? 

If the unicorn is mythical, then it is immortal, but if it is not mythical, then it is a 
mortal mammal. If the unicorn is either immortal or a mammal, then it is horned. 
The unicorn is magical if it is horned. 

7.10 Any propositional logic sentence is logically equivalent to the assertion that each pos- 
sible world in which it would be false is not the case. From this observation, prove that any 
sentence can be written in CNF. 

7.11 Minesweeper, the well-known computer game, is closely related to the wumpus world. 
A minesweeper world is a rectangular grid of N squares with M invisible mines scattered 
among them. Any square may be probed by the agent; instant death follows if a mine is 
probed. Minesweeper indicates the presence of mines by revealing, in each probed square, 
the number of mines that are directly or diagonally adjacent. The goal is to have probed every 
unmined square. 

a. Let Xi,j be true iff square [i, j] contains a mine. Write down the assertion that there are 
exactly two mines adjacent to [l,l] as a sentence involving some logical combination 
of Xi propositions. 

b. Generalize your assertion from (a) by explaining how to construct a CNF sentence 
asserting that k of n neighbors contain mines. 

c. Explain precisely how an agent can use DPLL to prove that a given square does (or 
does not) contain a mine, ignoring the global constraint that there are exactly M mines 
in all. 

d. Suppose that the global constraint is constructed via your method from part (b). How 
does the number of clauses depend on M and N ?  Suggest a way to modify DPLL so 
that the global constraint does not need to be represented explicitly. 

e. Are any conclusions derived by the method in part (c) invalidated when the global 
constraint is taken into account? 

f. Give examples of configurations of probe values that induce long-range dependencies 
such that the contents of a given unprobed square would give information about the 
contents of a far-distant square. [Hint: consider an N x 1 board.] 

7.12 This exercise looks into the relationship between clauses and implication sentences. 

a. Show that the clause (7P1 V . . . V TP, V Q)  is logically equivalent to the implication 
sentence (PI A . A P,) + Q. 

b. Show that every clause (regardless of the number of positive literals) can be written in 
the form (PI A . . . A P,) + (Q1 V . - . V Q,), where the P s  and Qs are proposition 
symbols. A knowledge base consisting of such sentences is in implicative normal 

IMPLICATIVE 
NORMAL FORM form or Kowalski form. 

c. Write down the full resolution rule for sentences in implicative normal form. 
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7.13 In this exercise, you will design more of the circuit-based wumpus agent. 

a. Write an equation, similar to Equation (7.4), for the i4rrow proposition, which should 
be true when the agent still has an arrow. Draw the corresponding circuit. 

b. Repeat part (a) for FacingRzght, using Equation (7.5) as a model. 

c. Create versions of Equations 7.7 and 7.8 for finding the wumpus, and draw the circuit. 

7.14 Discuss what is meant by optimal behavior in the wumpus world. Show that our 
definition of the PL-WUMPUS-AGENT is not optimal, and suggest ways to improve it. 

IgiiJEip 7.15 Extend PL-WUMPUS-AGENT so that it keeps track of all relevant facts within the 
knowledge base. 

7.16 Hotv long does it take to prove KB )= a using DIPLL when a is a literal already 
contained in KB? Explain. 

7.17 Trace the behavior of DPLL on the knowledge base in Figure 7.15 when trying to 
prove Q, and compare this behavior with that of the forward chaining algorithm. 
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h 

In which we notice that the world is blessed with many objects, some of which are 
related to other objects, and in which we endeavor to reason about them. 

In Chapter 7, we showed how a knowledge-based agent could represent the world in which it 
operates and deduce what actions to take. We used propositional logic as our representation 
language because it sufficed to illustrate the basic concepts of logic and knowledge-based 
agents. Unfortunately, propositional logic is too puny a language to represent knowledge 

FIRST-ORDER LOGIC of complex environments in a concise way. In this chapter, we examine first-order logic,' 
which is sufficiently expressive to represent a good deal of our commonsense knowledge. 
It also either subsumes or forms the foundation of many other representation languages and 
has been studied intensively for many decades. We begin in Section 8.1 with a discussion of 
representation languages in general; Section 8.2 covers the syntax and semantics of first-order 
logic; Sections 8.3 and 8.4 illustrate the use of first-order logic for simple representations. 

In this section, we will discuss the nature of representation languages. Our discussion will 
motivate the development of first-order logic, a much more expressive language than the 
propositional logic introduced in Chapter 7. We will look at propositional logic and at other 
kinds of languages to understand what works and what fails. Our discussion will be cursory, 
compressing centuries of thought, trial, and error into a few paragraphs. 

Programming languages (such as C++ or Java or Lisp) are by far the largest class of 
formal languages in common use. Programs themselves represent, in a direct sense, only 
computational processes. Data structures within programs can represent facts; for example, 
a program could use a 4 x 4 array to represent the contents of the wumpus world. Thus, 
the programming language statement World[2,2] t Pit is a fairly natural way to assert that 
there is a pit in square [2,2]. (Such representations might be considered ad hoe; database 
systems were developed precisely to provide a more general, domain-independent way to 

Also called first-order predicate calculus, sometimes abbreviated as FOL or FOPC. 
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store and retrieve facts.) What programming languages lack is any general mechanism for 
deriving facts from other facts; each update to a data structure is done by a domain-specific 
procedure whose details are derived by the programmer from his or her own knowledge of 
the domain. This procedural approach can be contrasted with the declarative nature of 
propositional logic, in which knowledge and inference are separate, and inference is entirely 
domain-independent. 

A second drawback of data structures in programs (and of databases, for that matter) 
is the lack. of any easy way to say, for example, "There is a pit in [2,2] or [3,117' or "If the 
wumpus is in [1,1] then he is not in [2,2]." Programs can store a single value for each variable, 
and some systems allow the value to be "unknown," but they lack the expressiveness required 
to handle partial information. 

Propositional logic is a declarative language because its semantics is based on a truth 
relation between sentences and possible worlds. It also has sufficient expressive power to 
deal with partial information, using disjunction and negation. Propositional logic has a third 

COMPOSITIONALIW property that is desirable in representation languages, namely compositionality. In a com- 
positional language, the meaning of a sentence is a fuinction of the meaning of its parts. For 
example, 'Ls1,4 A S1,2" is related to the meanings of L'S1,4" and ''Sl12." It would be very 
strange if "S1,4" meant that there is a stench in square [1,4] and "Sl,z" meant that there is a 
stench in square [1,2], but "S1,4 A S1,2" meant that France and Poland drew 1-1 in last week's 
ice hockey qualifying match. Clearly, noncompositionality rrtakes life much more difficult for 
the reasoning system. 

As we saw in Chapter 7, propositional logic lacks the expressive power to describe an 
environment with many objects concisely. For example, we were forced to write a separate 
rule about breezes and pits for each square, such as 

In English, on the other hand, it seems easy enough to say, once and for all, "Squares adjacent 
to pits are breezy." The syntax and semantics of English somehow make it possible to describe 
the environment concisely. 

A moment's thought suggests that natural languages (such as English or Spanish) are 
very expressive indeed. We managed to write almost this whole book in natural language, 
with only occasional lapses into other languages (including logic, mathematics, and the lan- 
guage of diagrams). There is a long tradition in linguistics and the philosophy of language 
that views natural language as essentially a declarative knowledge representation language 
and attempts to pin down its formal semantics. Such a research program, if successful, would 
be of great value to artificial intelligence because it would allow a natural language (or some 
derivative) to be used within representation and reasoning systems. 

The modern view of natural language is that it serves a somewhat different purpose, 
namely as a medium for communication rather than pure representation. When a speaker 
points and says, "Look!" the listener comes to know that, say, Superman has finally appeared 
over the rooftops. Yet we would not want to say that the sentence "Look!" encoded that fact. 
Rather, the meaning of the sentence depends both on the sentence itself and on the context in 
which the sentence was spoken. Clearly, one could not store a sentence such as "Look!" in 
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a knowledge base and expect to recover its meaning without also storing a representation of 
the context-which raises the question of how the context itself can be represented. Natural 
languages are also noncompositional-the meaning of a sentence such as "Then she saw it" 
can depend on a context constructed by many preceding and succeeding sentences. Finally, 
natural languages suffer from ambiguity, which would cause difficulties for thinlung. As 
Pinker (1995) puts it: "When people think about spring, surely they are not confused as to 
whether they are thinking about a season or something that goes boing-and if one word can 
correspond to two thoughts, thoughts can't be words." 

Our approach will be to adopt the foundation of propositional logic-a declarative, 
compositional semantics that is context-independent and unambiguous-and build a more 
expressive logic on that foundation, borrowing representational ideas from natural language 
while avoiding its drawbacks. When we look at the syntax of natural language, the most 

OBJECTS obvious elements are nouns and noun phrases that refer to objects (squares, pits, wumpuses) 
RELATIONS and verbs and verb phrases that refer to relations among objects (is breezy, is adjacent to, 
FUNCTIONS shoots). Some of these relations are functions-relations in which there is only one "value" 

for a given "input." It is easy to start listing examples of objects, relations, and functions: 

PROPERTIES 

a Objects: people, houses, numbers, theories, Ronald McDonald, colors, baseball games, 
wars, centuries . . . 

a Relations: these can be unary relations or properties such as red, round, bogus, prime, 
multistoried . . ., or more general n-ary relations such as brother of, bigger than, inside, 
part of, has color, occurred after, owns, comes between, . . . 

a Functions: father of, best friend, third inning of, one more than, beginning o f .  . . 

Indeed, almost any assertion can be thought of as referring to objects and properties or rela- 
tions. Some examples follow: 

a "One plus two equals three" 
Objects: one, two, three, one plus two; Relation: equals; Function: plus. ("One plus 
two" is a name for the object that is obtained by applying the function "plus7' to the 
objects "one" and "two." Three is another name for this object.) 

a "Squares neighboring the wumpus are smelly." 
Objects: wumpus, squares; Property: smelly; Relation: neighboring. 

a "Evil King John ruled England in 1200." 
Objects: John, England, 1200; Relation: ruled; Properties: evil, king. 

The language of first-order logic, whose syntax and semantics we will define in the next 
section, is built around objects and relations. It has been so important to mathematics, philos- 
ophy, and artificial intelligence precisely because those fields-and indeed, much of everyday 
human existence--can be usefully thought of as dealing with objects and the relations among 
them. First-order logic can also express facts about some or all of the objects in the uni- 
verse. This enables one to represent general laws or rules, such as the statement "Squares 
neighboring the wumpus are smelly." 

The primary difference between propositional and first-order logic lies in the ontologi- 
cal commitment made by each language-that is, what it assumes about the nature of reality. 
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Philosophers and psychologists have long pondered how it is that humans and other 
animals represent knowledge. It is clear that the evolution of natural language 
has played an important role in developing this ability in humans. On the other 
hand, much psychological evidence suggests that humans do not employ language 
directly in their internal representations. For example, which of the following two 
phrases formed the opening of Section 8.1? 

"In this section, we will discuss the nature of representation languages . . ." 
"This section covers the topic of knowledge representation languages . . ." 

Wanner (1974) found that subjects made the right choice in such tests at chance 
level-about 50% of the time-but remembered the content of what they read with 
better than 90% accuracy. This suggests that p~eople process the words to form 
some kind of nonverbal representation, which we call memory. 

The exact mechanism by which language enables and shapes the representa- 
tion of ideas in humans remains a fascinating question. The famous Sapir-Whorf 
hypothesis claims that the language we speak profoundly influences the way in 
which we think and make decisions, in particular by setting up the category struc- 
ture by which we divide up the world into different sorits of objects. Whorf (1956) 
claimed that Eskimos have many words for snow and thus experience snow in a 
different way from speakers of other languages. Some linguists dispute the factual 
basis for this claim-Pullum (1991) argues that Inuit, Yupik, and other related lan- 
guages seem to have about the same number of words for snow-related concepts 
as English-while others support it (Fortescue, 1984). It seems unarguably true 
that populations having greater familiarity with some aspects of the world develop 
much more detailed vocabularies-for example, field entomologists divide what 
most of us call beetles into hundreds of thousands of species and are personally 
familiar with many of these. (The evolutionary biologist J. B. S. Haldane once 
complained of "An inordinate fondness for beetles" on the part of the Creator.) 
Moreover, expert skiers have many terms for snow-powder, chowder, mashed 
potatoes, crud, corn, cement, crust, sugar, asphalt, corduroy, fluff, glop, and so 
on-that represent distinctions unfamiliar to the lay person. What is unclear is the 
direction of causality-do skiers become aware of the distinctions only by learning 
the words, or do the distinctions emerge from individual experience and become 
matched with the labels current in the community? This question is especially im- 
portant in the study of child development. As yet, we have little understanding of 
the extent to which learning language and learning to think are intertwined. For 
example, does the knowledge of a name for a concept, such as bachelor, make it 
easier to construct and reason with more complex concepts that include that name, 
such as eligible bachelor? 
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For example, propositional logic assumes that there are facts that either hold or do not hold 
in the world. Each fact can be in one of two states: true or false.2 First-order logic assumes 
more; namely, that the world consists of objects with certain relations among them that do or 
do not hold. Special-purpose logics make still further ontological commitments; for example, 

TEMPORALLOGIC temporal logic assumes that facts hold at particular times and that those times (which may 
be points or intervals) are ordered. Thus, special-purpose logics give certain kinds of objects 
(and the axioms about them) "first-class" status within the logic, rather than simply defin- 

HIGHER-0RDER ing them within the knowledge base. Higher-order logic views the relations and functions LOGIC 

referred to by first-order logic as objects in themselves. This allows one to make assertions 
about all relations-for example, one could wish to define what it means for a relation to 
be transitive. Unlike most special-purpose logics, higher-order logic is strictly more expres- 
sive than first-order logic, in the sense that some sentences of higher-order logic cannot be 
expressed by any finite number of first-order logic sentences. 

EPISTEMOLOGICAL 
COMMITMENTS A logic can also be characterized by its epistemological commitments-the possible 

states of knowledge that it allows with respect to each fact. In both propositional and first- 
order logic, a sentence represents a fact and the agent either believes the sentence to be true, 
believes it to be false, or has no opinion. These logics therefore have three possible states 
of knowledge regarding any sentence. Systems using probability theory, on the other hand, 
can have any degree of belief, ranging from 0 (total disbelief) to 1 (total belief).3 For ex- 
ample, a probabilistic wumpus-world agent might believe that the wumpus is in [1,3] with 
probability 0.75. The ontological and epistemological commitments of five different logics 
are summarized in Figure 8.1. 

/ Figure 8.1 Formal languages and their ontological and epistemological commitments. I 

I 

Language 

Propositional logic 
First-order logic 
Temporal logic 
Probability theory 
Fuzzy logic 

In the next section, we will launch into the details of first-order logic. Just as a student of 
physics requires some familiarity with mathematics, a student of A1 must develop a talent for 
working with logical notation. On the other hand, it is also important not to get too concerned 
with the speciJics of logical notation-after all, there are dozens of different versions. The 
main things to keep hold of are how the language facilitates concise representations and how 
its semantics leads to sound reasoning procedures. 

In contrast, facts in fuzzy logic have a degree of truth between 0 and 1. For example, the sentence "Vienna is 
a large city" might be true in our world only to degree 0.6. 

It is important not to confuse the degree of belief in probability theory with the degree of truth in fuzzy logic. 
Indeed, some fuzzy systems allow uncertainty (degree of belief) about degrees of truth. 

Ontological Commitment 
(What exists in the world) 

facts 
facts, objects, relations 
facts, objects, relations, times 
facts 
facts with degree of tmth E [ O , 1 ]  

Epistemological Commitment 
(What an agent believes about facts) 

truelfalselunknown 
true/false/unknown 
truelfalselunknown 
degree of belief E [ O , l ]  
known interval value 
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8.2 SYNTAX AND SEMANTICS OF FIRST-ORDER LOGIC 

We begin this section by specifying more precisely Ithe way in which the possible worlds 
of first-order logic reflect the ontological commitment to objects and relations. Then we 
introduce the various elements of the language, explaiining their semantics as we go along. 

Models for first-order logic 

Recall from Chapter 7 that the models of a logical language are the formal structures that 
constitute tlhe possible worlds under consideration. Moldels for propositional logic are just sets 
of truth values for the proposition symbols. Models for first-order logic are more interesting. 

DOMAIN First, they have objects in them! The domain of a model is the set of objects it contains; 
DOMAINELEMENTS these objects are sometimes called domain elements. Figure 8.2 shows a model with five 

objects: Richard the Lionheart, King of England from 1189 1:o 1199; his younger brother, the 
evil King John, who ruled from 1199 to 1215; the left legs of Richard and John; and a crown. 

The objects in the model may be related in various ways. In the figure, Richard and 
TUPLES John are brothers. Formally speaking, a relation is just the set of tuples of objects that are 

related. (A tuple is a collection of objects arranged in ,a fixed order and is written with angle 
brackets surrounding the objects.) Thus, the brotherhood relation in this model is the set 

{ (Richard the Lionheart, King John), (King John, Richard the Lionheart) ) . (8.1) 

(Here we have named the objects in English, but you may, if you wish, mentally substitute the 
pictures for the names.) The crown is on King John's head, so the "on h e a d  relation contains 

Figure 8.2 A model containing five objects, two binary r~zlations, three unary relations 
(indicated by labels on the objects), and one unary function, left-leg. 
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INTERPRETATION 
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just one tuple, (the crown, King John). The "brother" and "on head" relations are binary 
relations-that is, they relate pairs of objects. The model also contains unary relations, or 
properties: the "person" property is true of both Richard and John; the "king" property is true 
only of John (presumably because Richard is dead at this point); and the "crown" property is 
true only of the crown. 

Certain kinds of relationships are best considered as functions, in that a given object 
must be related to exactly one object in this way. For example, each person has one left leg, 
so the model has a unary "left leg" function that includes the following mappings: 

(Richard the Lionheart) t Richard's left leg 
(King John) -+ John's left leg . 

Strictly speaking, models in first-order logic require total functions, that is, there must be a 
value for every input tuple. Thus, the crown must have a left leg and so must each of the left 
legs. There is a technical solution to this awkward problem involving an additional "invisible" 
object that is the left leg of everything that has no left leg, including itself. Fortunately, as 
long as one makes no assertions about the left legs of things that have no left legs, these 
technicalities are of no import. 

Symbols and interpretations 

We turn now to the syntax of the language. The impatient reader can obtain a complete 
description from the formal grammar of first-order logic in Figure 8.3. 

The basic syntactic elements of first-order logic are the symbols that stand for objects, 
relations, and functions. The symbols, therefore, come in three kinds: constant symbols, 
which stand for objects; predicate symbols, which stand for relations; and function sym- 
bols, which stand for functions. We adopt the convention that these symbols will begin with 
uppercase letters. For example, we might use the constant symbols Richard and John; the 
predicate symbols Brother, OnHead, Person, King, and Crown; and the function symbol 
LeftLeg. As with proposition symbols, the choice of names is entirely up to the user. Each 
predicate and function symbol comes with an arity that fixes the number of arguments. 

The semantics must relate sentences to models in order to determine truth. For this to 
happen, we need an interpretation that specifies exactly which objects, relations and func- 
tions are referred to by the constant, predicate, and function symbols. One possible interpre- 
tation for our example-which we will call the intended interpretation-is as follows: 

Richard refers to Richard the Lionheart and John refers to the evil IGng John. 

Brother refers to the brotherhood relation, that is, the set of tuples of objects given in 
Equation (8.1); OnHead refers to the "on h e a d  relation that holds between the crown 
and King John; Person, King, and Crown refer to the sets of objects that are persons, 
kings, and crowns. 

a LeftLeg refers to the "left leg" function, that is, the mapping given in Equation (8.2). 

There are many other possible interpretations relating these symbols to this particular model. 
For example, one interpretation maps Richard to the crown and John to King John's left 
leg. There are five objects in the model, so there are 25 possible interpretations just for the 
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Sentence + Atomicsentence 

1 ( Sentence Connective Sentence ) 

I Quantijier Variable,. . . Sentence 

I 1 Sentence 

AtomicSentence -t Predicate(Term, . . .) ( Term = Term 

Term + Function(Term, . . .) 
I Constant 

( Variable 

Connective + +/ A 1 V 1 * 
Quantifier i V 1 3 

Constant + A ( XI ( John 1 . . . 
Variable -+ a 1 x 1 s 1 . . . 

I Predicate --t Before 1 HasColor ( Raining 1 . . . 
Function --t Mother 1 LeftLeg 1 . . . I 

Figure 8.3 The syntax of first-order logic with equality, :specified in Backus-Naur form. 
(See page 984 if you are not familiar with this notation.) The syntax is strict about parenthe- 
ses; the comments about parentheses and operator precedence on page 205 apply equally to 
first-order logic. 

constant symbols Richard and John. Notice that not all the objects need have a name-for 
example, the intended interpretation does not name the crown or the legs. It is also possible 
for an object to have several names; there is an interpretation under which both Richard and 
John refer to the crown. If you find this possibility confusing, remember that, in propositional 
logic, it is perfectly possible to have a model in which Cloutly and Sunny are both true; it is 
the job of the knowledge base to rule out models that are inconsistent with our knowledge. 

The truth of any sentence is determined by a model and an interpretation for the sen- 
tence's symbols. Therefore, entailment, validity, and so on are defined in terms of all possible 
models and all possible interpretations. It is important ]to note that the number of domain ele- 
ments in each model may be unbounded-for example, the domain elements may be integers 
or real numbers. Hence, the number of possible models is anbounded, as is the number of 
interpretations. Checking entailment by the enumeration of all possible models, which works 
for propositional logic, is not an option for first-order 11ogic. Even if the number of objects is 
restricted, the number of combinations can be very large. With the symbols in our example, 
there are roughly combinations for a domain with five objects. (See Exercise 8.5.) 
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Terms 

TERM A term is a logical expression that refers to an object. Constant symbols are therefore terms, 
but it is not always convenient to have a distinct symbol to name every object. For example, 
in English we might use the expression "King John's left leg" rather than giving a name 
to his leg. This is what function symbols are for: instead of using a constant symbol, we 
use LeftLeg(John). In the general case, a complex term is formed by a function symbol 
followed by a parenthesized list of terms as arguments to the function symbol. It is important 
to remember that a complex term is just a complicated kind of name. It is not a "subroutine 
call" that "returns a value." There is no LeftLeg subroutine that takes a person as input and 
returns a leg. We can reason about left legs (e.g., stating the general rule that everyone has one 
and then deducing that John must have one) without ever providing a definition of LeftLeg. 
This is something that cannot be done with subroutines in programming languages4 

The formal semantics of terms is straightforward. Consider a term f ( t l ,  . . . , t,). The 
function symbol f refers to some function in the model (call it F); the argument terms refer 
to objects in the domain (call them d l ,  . . . , d,); and the term as a whole refers to the object 
that is the value of the function F applied to d l ,  . . . , d,. For example, suppose the LeftLeg 
function symbol refers to the function shown in Equation (8.2) and John refers to King John, 
then LeftLeg(John) refers to King John's left leg. In this way, the interpretation fixes the 
referent of every term. 

Atomic sentences 

Now that we have both terms for referring to objects and predicate symbols for referring to 
relations, we can put them together to make atomic sentences that state facts. An atomic 
sentence is formed from a predicate symbol followed by a parenthesized list of terms: 

Brother(Richard, John). 

This states, under the intended interpretation given earlier, that Richard the Lionheart is the 
brother of King ~ o h n . ~  Atomic sentences can have complex terms as arguments. Thus, 

Married (Father(Richard), Mother( John)) 

states that Richard the Lionheart's father is married to King John's mother (again, under a 
suitable interpretation). 

An atomic sentence is true in a given model, under a given interpretation, ifthe relation 
referred to by the predicate symbol holds among the objects referred to by the arguments. 

useful notation which new function symbols are constructed "on the fly." For 
example, the function that squares its argument can be written as (Ax x x x) and can be applied to arguments 
just like any other function symbol. A A-expression can also be defined and used as a predicate symbol. (See 
Chapter 22.) The lambda operator in Lisp plays exactly the same role. Notice that the use of X in this way does 
not increase the formal expressive power of first-order logic, because any sentence that includes a A-expression 
can be rewritten by "plugging in" its arguments to yield an equivalent sentence. 

We will usually follow the argument ordering convention that P(x ,  y) is interpreted as "x is a P of y." 
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Complex sentences 

We can use logical connectives to construct more complex sentences, just as in propositional 
calculus. The semantics of sentences formed with logical connectives is identical to that in 
the propositional case. Here are four sentences that ar'e true in the model of Figure 8.2 under 
our intended interpretation: 

~Rrother(LeftLeg(Richard) , John) 
Brother(Richard, John) A Brother( John, Richard) 
King (Richard) V King (John) 
7 King (Richard) + King (John) . 

Quantifiers 

Once we have a logic that allows objects, it is only natural to want to express properties of 
QUANTIFIERS entire collections of objects, instead of enumerating the objects by name. Quantifiers let us 

do this. First-order logic contains two standard quantifiers, called z~nivevsal and existential. 

Universal quantification ('d) 

Recall the difficulty we had in Chapter 7 with the expression of general rules in proposi- 
tional logic. Rules such as "Squares neighboring the wumpus are smelly" and "All kings are 
persons" are the bread and butter of first-order logic. We will deal with the first of these in 
Section 8.3. The second rule, "All kings are persons,'' is written in first-order logic as 

'dx King(x) J Person(x) 

'd is usually pronounced "For all . . .". (Remember that the upside-down A stands for "all.") 
Thus, the sentence says, "For all x, if x is a king, then z is a person." The symbol x is called 

VARIABLE a variable. By convention, variables are lowercase letters. A variable is a term all by itself, 
and as such can also serve as the argument of a function-for example, LeftLeg(x). A term 

GROUND TERM with no variables is called a ground term. 
Intuitively, the sentence 'd x P, where P is any logical expression, says that P is true for 

every object x. More precisely, V x P is true in a given. modt:l under a given interpretation if 
EXTENDED P is true in all possible extended interpretations constructed from the given interpretation, 

where each extended interpretation specifies a domain element to which x refers. 
This sounds complicated, but it is really just a careful way of stating the intuitive mean- 

ing of universal quantification. Consider the model slhown in Figure 8.2 and the intended 
interpretation that goes with it. We can extend the interpretation in five ways: 

x --t Richard the Lionheart, 
x -+ King John, 
x -t Richard's left leg, 
x -+ John's left leg, 
x -+ the crown. 

The universally quantified sentence V x  Kzng(x) + Person(x) is true under the original 
interpretation if the sentence Kzng(x) + Person(x) is true in each of the five extended inter- 
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pretations. That is, the universally quantified sentence is equivalent to asserting the following 
five sentences: 

Richard the Lionheart is a king + Richard the Lionheart is a person. 
King John is a king + King John is a person. 
Richard's left leg is a king + Richard's left leg is a person. 
John's left leg is a king + John's left leg is a person. 
The crown is a king + the crown is a person. 

Let us look carefully at this set of assertions. Since, in our model, King John is the only 
king, the second sentence asserts that he is a person, as we would hope. But what about the 
other four sentences, which appear to make claims about legs and crowns? Is that part of the 
meaning of "All kings are persons"? In fact, the other four assertions are true in the model, 
but make no claim whatsoever about the personhood qualifications of legs, crowns, or indeed 
Richard. This is because none of these objects is a king. Looking at the truth table for + 
(Figure 7.8), we see that the implication is true whenever its premise is false-regardless 
of the truth of the conclusion. Thus, by asserting the universally quantified sentence, which 
is equivalent to asserting a whole list of individual implications, we end up asserting the 
conclusion of the rule just for those objects for whom the premise is true and saying nothing 
at all about those individuals for whom the premise is false. Thus, the truth-table entries for 
+ turn out to be perfect for writing general rules with universal quantifiers. 

A common mistake, made frequently even by diligent readers who have read this para- 
graph several times, is to use conjunction instead of implication. The sentence 

b' x King ( x )  A Person ( x )  

would be equivalent to asserting 

Richard the Lionheart is a king A Richard the Lionheart is a person, 
King John is a king A King John is a person, 
Richard's left leg is a king A Richard's left leg is a person, 

and so on. Obviously, this does not capture what we want. 

Existential quantification (3)  

Universal quantification makes statements about every object. Similarly, we can make a state- 
ment about some object in the universe without naming it, by using an existential quantifier. 
To say, for example, that King John has a crown on his head, we write 

3 x Crown(x) A OnHead ( x ,  John) . 

32 is pronounced "There exists an x such that . . ." or "For some x . . .". 
Intuitively, the sentence 3 x P says that P is true for at least one object x. More 

precisely, 3 x P is true in a given model under a given interpretation if P is true in at least 
one extended interpretation that assigns x to a domain element. For our example, this means 
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that at least one of the following must be true: 

Richard the Lionheart is a crown A Richard the Lionh~eart is on John's head; 
King John is a crown A King John is on John's head; 
Richard's left leg is a crown A Richard's left leg is on John's head; 
John's left leg is a crown A John's left leg is on John's head; 
The crown is a crown A the crown is on John's head. 

The fifth assertion is true in the model, so the original existentially quantified sentence is 
true in the model. Notice that, by our definition, the sentence would also be true in a model 
in which King John was wearing two crowns. This ]is entirely consistent with the original 
sentence "King John has a crown on his head." 

Just as + appears to be the natural connective to use with 'd, A is the natural connective 
to use with 3. Using A as the main connective with 'd led to an overly strong statement in 
the example in the previous section; using + with 3 usually leads to a very weak statement, 
indeed. Consider the following sentence: 

3 x Crown(x) + OnHead(x, John) . 

On the surface, this might look like a reasonable rendition of our sentence. Applying the 
semantics, we see that the sentence says that at least one of the following assertions is true: 

Richard the Lionheart is a crown 3 Richard the Lionheart is on John's head; 
King John is a crown + King John is on John's head; 
Richard's left leg is a crown + Richard's left leg is on John's head; 

and so on. Now an implication is true if both premise and conclusion are true, or if its 
premise isfalse. So if Richard the Lionheart is not a crown, then the first assertion is true 
and the existential is satisfied. So, an existentially quantified implication sentence is true in 
any model containing an object for which the premise of the implication is false; hence such 
sentences really do not say much at all. 

Nested quantifiers 

We will often want to express more complex sentences using multiple quantifiers. The sim- 
plest case is where the quantifiers are of the same type. For example, "Brothers are siblings" 
can be written as 

b'x b' y  Brother(x, y )  + Szbling(x, y) . 

Consecutive quantifiers of the same type can be written as one quantifier with several vari- 
ables. For example, to say that siblinghood is a symmetric relationship, we can write 

b'x, y Sibling(x, y )  e~ Szblzng(y, z) . 

In other cases we will have mixtures. "Everybody loves somebody" means that for every 
person, there is someone that person loves: 

There is a variant of the existential quantifi er, usually written 3 or 3!, that means 'There exists exactly one." 
The same meaning can be expressed using equality statements. 
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On the other hand, to say "There is someone who is loved by everyone," we write 

3 y b'x Loves(x, y) . 

The order of quantification is therefore very important. It becomes clearer if we insert paren- 
theses. 'd x (3 y Loves ( x ,  y ) )  says that everyone has a particular property, namely, the prop- 
erty that they love someone. On the other hand, 3 y ('dx Loves(x, y ) )  says that someone in 
the world has a particular property, namely the property of being loved by everybody. 

Some confusion can arise when two quantifiers are used with the same variable name. 
Consider the sentence 

'd x [Crown ( x )  V (3 x Brother (Richard, x ) ) ]  . 

Here the x in Brother(Richard, x )  is existentially quantified. The rule is that the variable 
belongs to the innermost quantifier that mentions it; then it will not be subject to any other 
quantification.7 Another way to think of it is this: 3 2 Brother(Richard, x )  is a sentence 
about Richard (that he has a brother), not about x; so putting a b'x outside it has no effect. It 
could equally well have been written 3 z Brother (Richard, z) .  Because this can be a source 
of confusion, we will always use different variables. 

Connections between 'd and 3 

The two quantifiers are actually intimately connected with each other, through negation. As- 
serting that everyone dislikes parsnips is the same as asserting there does not exist someone 
who likes them, and vice versa: 

'dx lLilces(x, Parsnips) is equivalent to 13 x Likes(x, Parsnips) . 

We can go one step further: "Everyone likes ice cream" means that there is no one who does 
not like ice cream: 

'd x Likes ( x ,  IceCream) is equivalent to 13 x iLikes(x,  IceCream) . 
Because 'd is really a conjunction over the universe of objects and 3 is a disjunction, it should 
not be surprising that they obey De Morgan's rules. The De Morgan rules for quantified and 
unquantified sentences are as follows: 

Thus, we do not really need both 'd and 3, just as we do not really need both A and V. Still, 
readability is more important than parsimony, so we will keep both of the quantifiers. 

It is the potential for interference between quantifiers using the same variable name that motivates the slightly 
baroque mechanism of extended interpretations in the semantics of quantifi ed sentences. The more intuitively 
obvious approach of substituting objects for every occurrence of x fails in our example because the z in 
Brother(Richard, x) would be 'kaptured" by the substitution. Extended interpretations handle this correctly 
because the inner quantifi er's assignment for z overrides the outer quantifi er's. 
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Equality 

First-order logic includes one more way to make atomic sentences, other than using a pred- 
EQUALINSYMBOL icate and terms as described earlier. We can use the equality symbol to make statements to 

the effect that two terms refer to the same object. For example, 

Father( John) = Henry 

says that the object referred to by Father(John) and the object referred to by Henry are the 
same. Because an interpretation fixes the referent of any term, determining the truth of an 
equality sentence is simply a matter of seeing that the referents of the two terms are the same 
object. 

The equality symbol can be used to state facts about a given function, as we just did for 
the Father symbol. It can also be used with negation to insist that two terms are not the same 
object. To say that Richard has at least two brothers, we would write 

3 x ,  y Brother(x, Richard) A Brother(y, Richard) ,2 ~ ( x  = y) . 

The sentence 

3 x ,  y Brother(%, Richard) A Brother(y, Richard) , 
does not have the intended meaning. In particular, it is true in the model of Figure 8.2, where 
Richard has only one brother. To see this, consider the extended interpretation in which both 
x and y are assigned to King John. The addition of - l (x  = y) rules out such models. The 
notation x # y is sometimes used as an abbreviation far ~ ( x  = y). 

Now that we have defined an expressive logical language, it is time to learn how to use it. The 
best way to do this is through examples. We have seen some simple sentences illustrating the 
various aspects of logical syntax; in this section, we will provide more systematic represen- 

DOMAINS tations of some simple domains. In knowledge representation, a domain is just some part of 
the world about which we wish to express some knowledge. 

We will begin with a brief description of the TELIIASK interface for first-order knowl- 
edge bases. Then we will look at the domains of family relatiolnships, numbers, sets, and lists, 
and at the wumpus world. The next section contains a more substantial example (electronic 
circuits) and Chapter 10 covers everything in the universe. 

Assertions and queries in first-order logic 

Sentences are added to a knowledge base using TELL, exactly as in propositional logic. Such 
ASSERTIONS sentences are called assertions. For example, we can assert that John is a king and that kings 

are persons: 

TELL(KB, King (John)) . 
TELL(KB,  tI x King(x) + Person(x)) . 
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We can ask questions of the knowledge base using ASK. For example, 

QUERIES returns true. Questions asked using ASK are called queries or goals (not to be confused 
GOALS with goals as used to describe an agent's desired states). Generally speaking, any query that 

is logically entailed by the knowledge base should be answered affirmatively. For example, 
given the two assertions in the preceding paragraph, the query 

should also return true. We can also ask quantified queries, such as 

The answer to this query could be true, but this is neither helpful nor amusing. (It is rather 
like answering "Can you tell me the time?'with "Yes.") A query with existential variables 
is asking "Is there an x such that . . .," and we solve it by providing such an x. The standard 

SUBSTITUTION form for an answer of this sort is a substitution or binding list, which is a set of variable/term 
BINDING LIST pairs. In this particular case, given just the two assertions, the answer would be {xlJohn).  

If there is more than one possible answer, a list of substitutions can be returned. 

The kinship domain 

The first example we consider is the domain of family relationships, or kinship. This domain 
includes facts such as "Elizabeth is the mother of Charles" and "Charles is the father of 
William7' and rules such as "One's grandmother is the mother of one's parent." 

Clearly, the objects in our domain are people. We will have two unary predicates, 
Male and Female. Kinship relations-parenthood, brotherhood, marriage, and so on-will 
be represented by binary predicates: Parent, Sibling, Brother, Sister, Child, Daughter, 
Son, Spouse, WQe, Husband, Grandparent, Grandchild, Cousin, Aunt, and Uncle. We 
will use functions for Mother and Father, because every person has exactly one of each of 
these (at least according to nature's design). 

We can go through each function and predicate, writing down what we know in terms 
of the other symbols. For example, one's mother is one's female parent: 

'dm, c Mother(c) = m w Female(m) A Parent(m, c) . 

One's husband is one's male spouse: 

'dw, h Husband(h, w) # Male(h) A Spouse(h, w) . 

Male and female are disjoint categories: 

ti x Male (x) w iFemale(x) . 

Parent and child are inverse relations: 

tip, c Parent (p,  c) % Child (c, p )  . 

A grandparent is a parent of one's pai-ent: 

t ig,  c Grand~arent (~ ,  c) % 3 p  Parent (g,  P )  A Parent (p,  c) 
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A sibling is another child of one's parents: 

'dx,  y Szbling(x, y) e x # y A 3p Parent(p, x )  /\ Parent(p, y )  . 

We could go on for several more pages like this, and E:xercise 8.11 asks you to do just that. 
AXIOM Each of these sentences can be viewed as an axiom of the kinship domain.. Axioms 

are commonly associated with purely mathematical domains-we will see some axioms for 
numbers shortly-but they are needed in all domains. They provide the basic factual informa- 

DEFINITION tion from which useful conclusions can be derived. Our kinship axioms are also definitions; 
they have the form 'dz, y P ( x ,  y) + . . .. The axioms define the Mother function and the 
Husband, Male, Parent, Grandparent, and Sibling predicates in terms of other predicates. 
Our definitions "bottom out" at a basic set of predicates (Child, Spouse, and Female) in 
terms of which the others are ultimately defined. This is a very natural way in which to build 
up the representation of a domain, and it is analogous to the ,way in which software packages 
are built up by successive definitions of subroutines from primitive library functions. No- 
tice that there is not necessarily a unique set of primitive predicates; we could equally well 
have used Parent, Spouse, and Male. In some domains, as we will see, there is no clearly 
identifiable basic set. 

THEOREM Not all logical sentences about a domain are axioms. Some are theorems-that is, they 
are entailed by the axioms. For example, consider the assertion that siblinghood is symmetric: 

'dx,  y Sibling(x, y) + Szbling(y, x )  . 

Is this an axiom or a theorem? In fact, it is a theorem that follows logically from the axiom 
that defines siblinghood. If we ASK the knowledge base this sentence, it should return true. 

From a purely logical point of view, a knowledge base need contain only axioms and 
no theorems, because the theorems do not increase the set of conclusions that follow from 
the knowledge base. From a practical point of view, theorems are essential to reduce the 
computational cost of deriving new sentences. Without them., a reasoning system has to start 
from first principles every time, rather like a physicist having to rederive the rules of calculus 
for every new problem. 

Not all axioms are definitions. Some provide more general information about certain 
predicates without constituting a definition. Indeed, some predicates have no complete defi- 
nition because we do not know enough to characterize them fully. For example, there is no 
obvious way to complete the sentence: 

Fortunately, first-order logic allows us to make use of the Person predicate without com- 
pletely defining it. Instead, we can write partial specifications of properties that every person 
has and properties that make something a person: 

'd x Person(x) + . . . 
'dx . . . + Person(z) . 

Axioms can also be "just plain facts," such as Male(J:im) and Spouse(Jim, Laura). 
Such facts form the descriptions of specific problem instances, enabling specific questions 
to be answered. The answers to these questions will then be theorems that follow from the 
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axioms. Often, one finds that the expected answers are not forthcoming-for example, from 
Male(George) and Spouse(George, Laura), one expects to be able to infer Fenzale(Laura); 
but this does not follow from the axioms given earlier. This is a sign that an axiom is missing. 
Exercise 8.8 asks you to supply it. 

Numbers, sets, and lists 

Numbers are perhaps the most vivid example of how a large theory can be built up from a 
NATURAL NUMBERS tiny kernel of axioms. We will describe here the theory of natural numbers or nonnegative 

integers. We need a predicate NatNum that will be true of natural numbers; we need one 
PEANOAXIOMS constant symbol, 0; and we need one function symbol, S (successor). The Peano axioms 

define natural numbers and a d d i t i ~ n . ~  Natural numbers are defined recursively: 

That is, 0 is a natural number, and for every object n, if n is a natural number then S(n) is 
a natural number. So the natural numbers are 0, S(O), S(S(O)), and so on. We also need 
axioms to constrain the successor function: 

'dn 0 # S ( n ) .  
'dm,n m # n  * S(m) # S ( n ) .  

Now we can define addition in terms of the successor function: 

'dm NatNum(m) + + (0,m) = m .  
Vm,  n NatNum(m) A NatNum(n) + + (S(m) ,  n )  = S(+(m, n ) )  . 

The first of these axioms says that adding 0 to any natural number m gives m itself. Notice 
the use of the binary function symbol "+" in the term +(m, 0 ) ;  in ordinary mathematics, the 

INFIX term would be written m + 0 using infix notation. (The notation we have used for first-order 
PREFIX logic is called prefix.) To make our sentences about numbers easier to read, we will allow 

the use of infix notation. We can also write S(n) as n + 1, so that the second axiom becomes 

'dm, n NatNum(m) A NatNum(n) +- ( m  + 1)  + n = ( m  + n) + 1 . 

This axiom reduces addition to repeated application of the successor function. 
SYNTACTIC SUGAR The use of infix notation is an example of syntactic sugar, that is, an extension to 

or abbreviation of the standard syntax that does not change the semantics. Any sentence that 
uses sugar can be "de-sugared to produce an equivalent sentence in ordinary first-order logic. 

Once we have addition, it is straightforward to define multiplication as repeated addi- 
tion, exponentiation as repeated multiplication, integer division and remainders, prime num- 
bers, and so on. Thus, the whole of number theory (including cryptography) can be built up 
from one constant, one function, one predicate and four axioms. 

SETS The domain of sets is also fundamental to mathematics as well as to commonsense 
reasoning. (In fact, it is possible to build number theory on top of set theory.) We want to be 
able to represent individual sets, including the empty set. We need a way to build up sets by 

The Peano axioms also include the principle of induction, which is a sentence of second-order logic rather 
than of first-order logic. The importance of this distinction is explained in Chapter 9. 
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adding an element to a set or taking the union or intersection of two sets. We will want to 
know whether an element is a member of a set and to be able to distinguish sets from objects 
that are not sets. 

We will use the normal vocabulary of set theory as syntactic sugar. The empty set is a 
constant written as { ). There is one unary predicate, Set, which is true of sets. The binary 
predicates are x  E s  ( x  is a member of set s) and sl 5: s2 (set sl is a subset, not necessarily 
proper, of set s2). The binary functions are sl f l  sz (the intersection of two sets), sl U s2 
(the union of two sets), and { x ( s )  (the set resulting f~om adjoining element x  to set s). One 
possible set of axioms is as follows: 

1. The only sets are the empty set and those made by adjoining something to a set: 

2. The empty set has no elements adjoined into it:. In other words, there is no way to 
decompose { ) into a smaller set and an element: 

1 3 2 , s  {XIS )  = { )  . 

3. Adjoining an element already in the set has no effect: 

4. The only members of a set are the elements that were adjoined into it. We express 
this recursively, saying that x  is a member of s  if and only if s  is equal to some set s2 
adjoined with some element y, where either y is Ithe same as x  or x  is a member of s2: 

v x , s  x E s  [3y,s2 (s={ylss )A ( z = y ~ z € s ~ ) ) ] .  

5. A set is a subset of another set if and only if all of the ltirst set's members are members 
of the second set: 

'ds1,s2 sl S s2 # ('dx X E S l  * x E s 2 ) .  

6. Two sets are equal if and only if each is a subset of the other: 

'd ~ 1 ,  ~2 ( ~ 1 =  ~ 2 )  @ ( ~ 1  C ~2 A ~2 E S I )  . 
7. An object is in the intersection of two sets if and only if it is a member of both sets: 

8. An object is in the union of two sets if and only if it is a member of either set: 

' dx , s l , s2  X E ( S ~ U S ~ )  # ( X E S ~ V X E S ~ ) .  

LISTS Lists are similar to sets. The differences are that lists are ordered and the same element can 
appear more than once in a list. We can use the vocabulary of Lisp for lists: Nil is the constant 
list with no elements; Cons, Append, First, and Rest are functions; and Find is the pred- 
icate that does for lists what Member does for sets. List? is a predicate that is true only of 
lists. As with sets, it is common to use syntactic sugar in logical sentences involving lists. The 
empty list is [ 1. The term Cons ( x ,  y), where y  is a nonempty list, is written [x 1 y] . The term 
Cons(x, Nil) ,  (i.e., the list containing the element x),  is written as [ X I .  A list of several ele- 
ments, such as [A, B, C],  corresponds to the nested term Cons(A, Cons (B, Cons (C,  Ni l ) ) ) .  
Exercise 8.14 asks you to write out the axioms for lists. 



25 8 Chapter 8. First-Order Logic 

The wumpus world 

Some propositional logic axioms for the wumpus world were given in Chapter 7. The first- 
order axioms in this section are much more concise, capturing in a very natural way exactly 
what we want to say. 

Recall that the wumpus agent receives a percept vector with five elements. The corre- 
sponding first-order sentence stored in the knowledge base must include both the percept and 
the time at which it occurred; otherwise the agent will get confused about when it saw what. 
We will use integers for time steps. A typical percept sentence would be 

Percept([Stench, Breeze, Glitter, None, None], 5) 

Here, Percept is a binary predicate and Stench and so on are constants placed in a list. The 
actions in the wumpus world can be represented by logical terms: 

Turn(Right), Turn(Left), Forward, Shoot, Grab, Release, Climb . 

To determine which is best, the agent program constructs a query such as 

ASK should solve this query and return a binding list such as {alGrab). The agent program 
can then return Grab as the action to take, but first it must TELL its own knowledge base that 
it is performing a Grab. 

The raw percept data implies certain facts about the current state. For example: 

'd t ,  S ,  g ,  m, c Percept([s, Breeze, g ,  m, c] , t )  + Breeze(t) , 
'dt ,  s, b, m, c Percept([s, b,  Glitter, m, c] ,  t )  + Glitter(t) , 

and so on. These rules exhibit a trivial form of the reasoning process called perception, which 
we study in depth in Chapter 24. Notice the quantification over time t .  In propositional logic, 
we would need copies of each sentence for each time step. 

Simple "reflex" behavior can also be implemented by quantified implication sentences. 
For example, we have 

Given the percept and rules from the preceding paragraphs, this would yield the desired con- 
clusion BestAction(Grab, 5)-that is, Grab is the right thing to do. Notice the correspon- 
dence between this rule and the direct percept-action connection in the circuit-based agent in 
Figure 7.20; the circuit connection implicitly quantifies over time. 

SYNCHRONIC So far in this section, the sentences dealing with time have been synchronic ("same 
time") sentences, that is, they relate properties of a world state to other properties of the 

DIACHRONIC same world state. Sentences that allow reasoning "across time" are called diachronic; for 
example, the agent needs to know how to combine information about its previous location 
with information about the action just taken in order to determine its current location. We 
will defer discussion of diachronic sentences until Chapter 10; for now, just assume that the 
required inferences have been made for location and other time-dependent predicates. 

We have represented the percepts and actions; now it is time to represent the environ- 
ment itself. Let us begin with objects. Obvious candidates are squares, pits, and the wumpus. 
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We could name each square-Squarel,:! and so on--but then the fact that Squarel,:! and 
S q ~ a r e ~ , ~  are adjacent would have to be an "extra" facit, and we would need one such fact for 
each pair of squares. It is better to use a complex term1 in which the row and column appear 
as integers; for example, we can simply use the list terrn [I, 21. Adjacency of any two squares 
can be defined as 

b ' ~ ?  ,? a ,  b Adjacent([%, ,I, [a, bl) * 
~ a , ~ l ~ ~ I ~ : + ~ ~ ~ l ~ [ ~ - ~ , ~ l ~ ~ ~ , ~ + ~ l , ~ ~ , ~ - l l ) .  

We could also name each pit, but this would be inappropriate for a different reason: there 
is no reason to distinguish among the pits.9 It is much simpler to use a unary predicate Pit 
that is true of squares containing pits. Finally, since there is exactly one wumpus, a constant 
Wumpus is just as good as a unary predicate (and perhaps more dignified from the wumpus's 
viewpoint). The wumpus lives in exactly one square, so it is a good idea to use a function 
such as Home( Wumpus) to name that square. This completely avoids the cumbersome set 
of sentences required in propositional logic to say that exactly one square contains a wumpus. 
(It would be even worse for propositional logic with two wunnpuses.) 

The agent's location changes over time, so we will write At(Agent, s, t )  to mean that 
the agent is at square s at time t. Given its current location, the agent can infer properties of 
the square from properties of its current percept. For example, if the agent is at a square and 
perceives a breeze, then that square is breezy: 

b' s, t At (Agent, s, t )  A Breeze(t) + Breezy(s) . 

It is useful to know that a square is breezy because we know that the pits cannot move about. 
Notice that Breezy has no time argument. 

Having discovered which places are breezy (or smelly) and, very importantly, not breezy 
(or not smelly), the agent can deduce where the pits =e (and where the wumpus is). There 
are two l n d s  of synchronic rules that could allow such deductions: 

DIAGNOSTIC RULES Diagnostic rules: 
Diagnostic rules lead from observed effects to hidden causes. For finding pits, the ob- 
vious diagnostic rules say that if a square is breezy, some adjacent square must contain 
a pit, or 

'd s Breezy(s) =s- 3 r Adjacent (r ,  s )  A Pit(r) , 
and that if a square is not breezy, no adjacent square contains a pit: lo 

b' s 1 Breezy ( s )  + 13 r Adjacent (r ,  s)  l'\ Pit (,r) 

Combining these two, we obtain the biconditional sentence 

b' s Breezy ( s )  # 3 r Adjacent(r, s)  A Pit ( r )  . (8.3) 

"Similarly, most of us do not name each bird that flies overhead as it migrates to warmer regions in winter. An 
ornithologist wishing to study migration patterns, survival rates, and so on does name each bird, by means of a 
ring on its leg, because individual birds must be tracked. 

There is a natural human tendency to forget to write down negative information such as this. In conversation, 
this tendency is entirely normal-it would be strange to say "There are two cups on the table and there are not 
three or more," even though "There are two cups on the table" is, strictly speaking, still true when there are three. 
We will return to this topic in Chapter 10. 
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CAUSAL RULES Causal rules: 
Causal rules reflect the assumed direction of causality in the world: some hidden prop- 
erty of the world causes certain percepts to be generated. For example, a pit causes all 
adjacent squares to be breezy: 

and if all squares adjacent to a given square are pitless, the square will not be breezy: 

'd s ['d r Adjacent ( r ,  s )  + 1 Pit ( r ) ]  3 1 Breezy ( s )  . 

With some work, it is possible to show that these two sentences together are logically 
equivalent to the biconditional sentence in Equation (8.3). The biconditional itself can 
also be thought of as causal, because it states how the truth value of Breezy is generated 
from the world state. 

Systems that reason with causal rules are called model-based reasoning systems, because REASONING 

the causal rules form a model of how the environment operates. The distinction between 
model-based and diagnostic reasoning is important in many areas of AI. Medical diagnosis 
in particular has been an active area of research, in which approaches based on direct associ- 
ations between symptoms and diseases (a diagnostic approach) have gradually been replaced 
by approaches using an explicit model of the disease process and how it manifests itself in 
symptoms. The issues come up again in Chapter 13. 

Whichever kind of representation the agent uses, ifthe axioms correctly and completely 
describe the way the world works and the way that percepts are produced, then any complete 
logical inference procedure will infer the strongest possible description of the world state, 
given the available percepts. Thus, the agent designer can concentrate on getting the knowl- 
edge right, without worrying too much about the processes of deduction. Furthermore, we 
have seen that first-order logic can represent the wumpus world no less concisely than the 
original English-language description given in Chapter 7. 

The preceding section illustrated the use of first-order logic to represent knowledge in three 
simple domains. This section describes the general process of knowledge base construction- 
a process called knowledge engineering. A knowledge engineer is someone who investigates 
a particular domain, learns what concepts are important in that domain, and creates a formal 
representation of the objects and relations in the domain. We will illustrate the knowledge 
engineering process in an electronic circuit domain that should already be fairly familiar, 
so that we can concentrate on the representational issues involved. The approach we will 
take is suitable for developing special-purpose knowledge bases whose domain is carefully 
circumscribed and whose range of queries is known in advance. General-purpose knowledge 
bases, which are intended to support queries across the full range of human knowledge, are 
discussed in Chapter 10. 
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KNOWLEDGE 
ACQUISITION 

ONTOLOGY 

The knowledge engineering process 

Knowledge engineering projects vary widely in content, scope, and difficulty, but all such 
projects include the following steps: 

1. Identib the task. The knowledge engineer must delineate the range of questions that 
the knowledge base will support and the kinds of facts that will be available for each 
specific problem instance. For example, does the wunnpus knowledge base need to be 
able to choose actions or is it required to answer questions only about the contents 
of the environment? Will the sensor facts include the current location? The task will 
determine what knowledge must be represented in order to connect problem instances to 
answers. This step is analogous to the PEAS process for designing agents in Chapter 2. 

2. Assemble the relevant knowledge. The knowledge engineer might already be an expert 
in the domain, or might need to work with real experts to extract what they know-a 
process called knowledge acquisition. At this stage, the knowledge is not represented 
formally. The idea is to understand the scope of the knowledge base, as determined by 
the task, and to understand how the domain actually works. 

For the wumpus world, which is defined by an artificial set of rules, the relevant 
knowledge is easy to identify. (Notice, however, that the definition of adjacency was 
not supplied explicitly in the wumpus-world rules.) For real domains, the issue of 
relevance can be quite difficult-for example, a system for simulating VLSI designs 
might or might not need to take into account stray capacitances and skin effects. 

3. Decide on a vocabulary of predicates, functions, and (constants. That is, translate the 
important domain-level concepts into logic-level names. This involves many questions 
of knowledge engineering style. Like programming style, this can have a significant 
impact on the eventual success of the project. For example, should pits be represented 
by objects or by a unary predicate on squares? Should the agent's orientation be a 
function or a predicate? Should the wumpus's location depend on time? Once the 
choices have been made. the result is a vocabulary th,at is known as the ontology of 
the domain. The word ontology means a particular theory of the nature of being or 
existence. The ontology determines what kinds of things exist, but does not determine 
their specific properties and interrelationships. 

4. Encode general /cnowledge about the domain. The knowledge engineer writes down 
the axioms for all the vocabulary terms. This pins down (to the extent possible) the 
meaning of the terms, enabling the expert to check the content. Often, this step reveals 
misconceptions or gaps in the vocabulary that must be fixed by returning to step 3 and 
iterating through the process. 

5. Encode a description of the specijic problem insttznce. If the ontology is well thought 
out, this step will be easy. It will involve writing simple atomic sentences about in- 
stances of concepts that are already part of the on~tology. For a logical agent, problem 
instances are supplied by the sensors, whereas a "disembodied" knowledge base is sup- 
plied with additional sentences in the same way that traditional programs are supplied 
with input data. 
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6. Pose queries to the inference procedure and get answers. This is where the reward is: 
we can let the inference procedure operate on the axioms and problem-specific facts to 
derive the facts we are interested in knowing. 

7. Debug the knowledge base. Alas, the answers to queries will seldom be correct on 
the first try. More precisely, the answers will be correct for the knowledge base as 
written, assuming that the inference procedure is sound, but they will not be the ones 
that the user is expecting. For example, if an axiom is missing, some queries will not be 
answerable from the knowledge base. A considerable debugging process could ensue. 
Missing axioms or axioms that are too weak can be identified easily by noticing places 
where the chain of reasoning stops unexpectedly. For example, if the knowledge base 
includes one of the diagnostic axioms for pits, 

b' s Breezy ( s )  + 3 r Adjacent (r ,  s )  A Pit ( r )  , 
but not the other, then the agent will never be able to prove the absence of pits. Incor- 
rect axioms can be identified because they are false statements about the world. For 
example, the sentence 

'd x NumOfLegs ( x ,  4 )  + Mammal (x) 

is false for reptiles, amphibians, and, more important, tables. The falsehood of this 
sentence can be determined independently of the rest of the knowledge base. In contrast, 
a typical error in a program looks like this: 

offset = position + 1. 

It is impossible to tell whether this statement is correct without looking at the rest of the 
program to see whether, for example, off set is used to refer to the current position, 
or to one beyond the current position, or whether the value of posi tion is changed 
by another statement and so off set should also be changed again. 

To understand this seven-step process better, we now apply it to an extended example-the 
domain of electronic circuits. 

The electronic circuits domain 

We will develop an ontology and knowledge base that allow us to reason about digital circuits 
of the kind shown in Figure 8.4. We follow the seven-step process for knowledge engineering. 

Identify the task 

There are many reasoning tasks associated with digital circuits. At the highest level, one 
analyzes the circuit's functionality. For example, does the circuit in Figure 8.4 actually add 
properly? If all the inputs are high, what is the output of gate A2? Questions about the 
circuit's structure are also interesting. For example, what are all the gates connected to the 
first input terminal? Does the circuit contain feedback loops? These will be our tasks in this 
section. There are more detailed levels of analysis, including those related to timing delays, 
circuit area, power consumption, production cost, and so on. Each of these levels would 
require additional knowledge. 
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1 Figure 8.4 A digital circuit C1, purporting to be a one-bit. full adder. The first two inputs 1 
are the two bits to be added and the third input is a carry bit. The first output is the sum, and 
the second output is a carry bit for the next adder. The circuit contains two XOR gates, two 
AND gates and one OR gate. 

Assemble the relevant knowledge 

What do vie know about digital circuits? For our purposes, they are composed of wires and 
gates. Signals flow along wires to the input terminalls of gates, and each gate produces a 
signal on the output terminal that flows along another wire. To determine what these signals 
will be, we need to know how the gates transform their input signals. There are four types 
of gates: AND, OR, and XOR gates have two input terminals, and NOT gates have one. All 
gates have one output terminal. Circuits, like gates, have input and output terminals. 

To reason about functionality and connectivity, vlre do not need to talk about the wires 
themselves, the paths the wires take, or the junctions where two wires come together. All 
that matters is the connections between terminals-we can say that one output terminal is 
connected to another input terminal without having to mention the wire that actually connects 
them. There are many other factors of the domain that are irrelevant to our analysis, such as 
the size, shape, color, or cost of the various components. 

If our purpose were something other than verifying designs at the gate level, the ontol- 
ogy would be different. For example, if we were interested in debugging faulty circuits, then 
it would probably be a good idea to include the wires in the ontology, because a faulty wire 
can corrupt the signal flowing along it. For resolving tirning faults, we would need to include 
gate delays. If we were interested in designing a product that would be profitable, then the 
cost of the circuit and its speed relative to other products on the market would be important. 

Decide on a vocabulary 

We now know that we want to talk about circuits, terminals, signals, and gates. The next 
step is to choose functions, predicates, and constants to represent them. We will start from 
individual gates and move up to circuits. 

First, we need to be able to distinguish a gate from other gates. This is handled by 
naming gates with constants: X I ,  X2 ,  and so on. Althlough each gate is connected into the 
circuit in its own individual way, its behavior-the way it transforms input signals into output 
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signals-depends only on its type. We can use a function to refer to the type of the gate." For 
example, we can write Type(X1) = XOR. This introduces the constant XOR for a particular 
type of gate; the other constants will be called OR, AND, and NOT.  The Type function is 
not the only way to encode the ontological distinction. We could have used a binary predicate, 
Type(Xl7 XOR),  or several individual type predicates, such as XOR(X1) .  Either of these 
choices would work fine, but by choosing the function Type, we avoid the need for an axiom 
which says that each individual gate can have only one type. The semantics of functions 
already guarantees this. 

Next we consider terminals. A gate or circuit can have one or more input terminals and 
one or more output terminals. We could simply name each one with a constant, just as we 
named gates. Thus, gate X 1  could have terminals named X I  Inl7 X I  In2, and X I  Outl. The 
tendency to generate long compound names should be avoided, however. Calling something 
X 1  Inl does not make it the first input of X I ;  we would still need to say this using an explicit 
assertion. It is probably better to name the gate using a function, just as we named King 
John's left leg LeftLeg (John).  Thus, let In (1 ,  X I )  denote the first input terminal for gate 
X I .  A similar function Out is used for output terminals. 

The connectivity between gates can be represented by the predicate Connected, which 
takes two terminals as arguments, as in Connected (Out(1,  X I ) ,  In(1, X 2 ) ) .  

Finally, we need to know whether a signal is on or off. One possibility is to use a 
unary predicate, On, which is true when the signal at a terminal is on. This makes it a little 
difficult, however, to pose questions such as "What are all the possible values of the signals 
at the output terminals of circuit C1 ?" We will therefore introduce as objects two "signal 
values" 1 and 0, and a function Signal that takes a terminal as argument and denotes the 
signal value for that terminal. 

Encode general knowledge of the domain 

One sign that we have a good ontology is that there are very few general rules which need 
to be specified. A sign that we have a good vocabulary is that each rule can be stated clearly 
and concisely. With our example, we need only seven simple rules to describe everything we 
need to know about circuits: 

1. If two terminals are connected, then they have the same signal: 
Y t l 7  t z  Connected(t17 t2)  + Signal(t1) = Signal(t2) 

2. The signal at every terminal is either 1 or 0 (but not both): 
b' t Signal ( t)  = 1 V Signal ( t)  = 0 

I f 0  
3. Connected is a commutative predicate: 

V t 1 7  t 2  Connected (t17 t2) e Connected(t2, t l )  
4. An OR gate's output is 1 if and only if any of its inputs is 1: 

'dg Type(g) = O R  + 
Signal (Out ( 1 , g ) )  = 1 @ 3 n Signal(In(n, g ) )  = 1 

l1 Note that we have used names beginning with appropriate letters-Al, XI, and so on-purely to make the 
example easier to read. The knowledge base must still contain type information for the gates. 
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5. An A.ND gate's output is 0 if and only if any of its inputs is 0: 
b'g Type ( g )  = AND + 

Signal (Out(1, g ) )  = 0 + 3 n Signal ( In(n ,  g ) )  = 0 

6. An XOR gate's output is 1 if and only if its inputs are different: 
V g Type ( g )  = XOR + 

Signal(Out(1, g ) )  = 1 .=$ Signal(In(1, g ) )  # Signal(In(2, g ) )  

7. A NOT gate's output is different from its input: 
V g  (Type(g) = NOT)  * Signal(Out(1, g) )  # Signal(In(1, g ) )  

Encode the specific problem instance 

The circuit shown in Figure 8.4 is encoded as circuit C1 with the following description. First, 
we categorize the gates: 

Type(X1) = XOR Type(X2) = XOR 
Type(A1) = AND Type(A2) = AND 
Type(Ol) = OR 

Then, we show the connections between them: 

Connected(Out(1, X I ) ,  In(1, X2))  Connected(In(1, C1) ,  In(1; X I ) )  
Connected(Out(1, X I ) ,  In(2, A2)) Connected(In(1, C l ) ,  In(1, A I ) )  
Connected(Out(1, Az) ,  In(1,Ol))  Connected(In(2, C l ) ,  In(2, XI)) 
Connected(Out(1, A I ) ,  In(2,01))  Connected (In(2,  C1) ,  In(2, A 1 ) )  
Connected(Out (1, X2), Out(1, C I ) )  Connected(In(3, C l ) ,  In(2, X 2 ) )  
Connected(O.lat (I,@) , Out (2,  C I ) )  Connected(Irr(3, C1) ,  In(1, A 2 ) )  . 

Pose queries to the inference procedure 

What combinations of inputs would cause the first output of Cl (the sum bit) to be 0 and the 
second output of C1 (the carry bit) to be l? 

The answers are substitutions for the variables i l ,  i2 ,  and i3 such that the resulting sentence 
is entailed by the knowledge base. There are three such substitutions: 

What are the possible sets of values of all the terminals for the adder circuit? 

3 i l ,  i2 ,  is, 01,02 Signal(In(1, C1)) =il A S ign~l (~h(2 ,  C1)) =i2 
A Szgnal(In(3, C l ) )  =is A Signal(Out(1, C I ) )  = 01 A Signal(Out(2, C1)) := 02 . 

This final query will return a complete input-output table for the device, which can be used 
to check that it does in fact add its inputs correctly. This is a simple example of circuit 
verification. We can also use the definition of the circuit to lbuild larger digital systems, for 
which the same kind of verification procedure can be carried out. (See Exercise 8.17.) Many 
domains are amenable to the same kind of structured knowledge-base development, in which 
more complex concepts are defined on top of simpler concepts. 
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Debug the knowledge base 

We can perturb the knowledge base in various ways to see what kinds of erroneous behaviors 
emerge. For example, suppose we omit the assertion that 1 # 0. l2 Suddenly, the system will 
be unable to prove any outputs for the circuit, except for the input cases 000 and 110. We can 
pinpoint the problem by asking for the outputs of each gate. For example, we can ask 

3 i l l  iz, o Signal(In(1, C l ) )  = i l  A Signal(In(2, C1)) = i2 A Szgnal(Out(1, X I ) )  

which reveals that no outputs are known at X I  for the input cases 10 and 01. Then, we look 
at the axiom for XOR gates, as applied to XI : 

Signal(Out(1, X I ) )  = 1 * Signal ( In(1,  XI)) # Signal(In(2, X I ) )  . 

If the inputs are known to be, say, 1 and 0, then this reduces to 

Signal (Out (1,  X I ) )  = 1 + 1 # 0 . 

Now the problem is apparent: the system is unable to infer that Signal (Out (1,  X I ) )  = 1, so 
we need to tell it that 1 # 0. 

This chapter has introduced first-order logic, a representation language that is far more pow- 
erful than propositional logic. The important points are as follows: 

Knowledge representation languages should be declarative, compositional, expressive, 
context-independent, and unambiguous. 

Logics differ in their ontological commitments and epistemological commitments. 
While propositional logic commits only to the existence of facts, first-order logic com- 
mits to the existence of objects and relations and thereby gains expressive power. 

A possible world, or model, for first-order logic is defined by a set of objects, the 
relations among them, and the functions that can be applied to them. 

Constant symbols name objects, predicate symbols name relations, and function 
symbols name functions. An interpretation specifies a mapping from symbols to the 
model. Complex terms apply function symbols to terms to name an object. Given an 
interpretation and a model, the truth of a sentence is determined. 

An atomic sentence consists of a predicate applied to one or more terms; it is true 
just when the relation named by the predicate holds between the objects named by the 
terms. Complex sentences use connectives just like propositional logic, and quantified 
sentences allow the expression of general rules. 

Developing a knowledge base in first-order logic requires a careful process of analyzing 
the domain, choosing a vocabulary, and encoding the axioms required to support the 
desired inferences. 

l2 This kind of omission is quite common because humans typically assume that different names refer to different 
things. Logic programming systems, described in Chapter 9, also make this assumption. 
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BIBLIOGRAPHICAL AND HISTORICAL NOTES 

Although even Aristotle's logic deals with generalizatnons over objects, true first-order logic 
dates from the introduction of quantifiers in Gottlob Frege's (1879) Begriffschrift ("Concept 
Writing" or "Conceptual Notation"). Frege's ability to nest quantifiers was a big step forward, 
but he used an awkward notation. (An example appears on the front cover of this book.) The 
present notation for first-order logic is due substantiallly to Giuseppe Peano (1889), but the 
semantics is virtually identical to Frege's. Oddly enough, Peano's axioms were due in large 
measure to Grassmann (1861) and Dedekind (1888). 

A major barrier to the development of first-order logic had been the concentration on 
one-place predicates to the exclusion of many-place relational predicates. This fixation on 
one-place predicates had been nearly universal in logical systems from Aristotle up to and 
including Boole. The first systematic treatment of relations was given by Augustus De Mor- 
gan (18641, who cited the following example to show the sorts of inferences that Aristotle's 
logic could not handle: "All horses are animals; therefore, the head of a horse is the head of 
an animal." This inference is inaccessible to Aristotle because any valid rule that can support 
this inference must first analyze the sentence using the two-place predicate "x is the head 
of y." The logic of relations was studied in depth by Charles Sanders Peirce (1870), who also 
developed first-order logic independently of Frege, although slightly later (Peirce, 1883). 

Leopold Lowenheim (1915) gave a systematic treatment of model theory for first-order 
logic in 1915. This paper also treated the equality symbol as an integral part of logic. 
Lowenheim's results were further extended by Thoralf Skolem (1920). Alfred Tarski (1935, 
1956) gave an explicit definition of truth and model-theoretic satisfaction in first-order logic, 
using set theory. 

McCarthy (1958) was primarily responsible for the introduction of first-order logic as a 
tool for building A1 systems. The prospects for logic-based Al' were advanced significantly by 
Robinson's (1965) development of resolution, a complete procedure for first-order inference 
described in Chapter 9. The logicist approach took root at Stanford. Cordell Green (1969a, 
1969b) developed a first-order reasoning system, QA3, leading to the first attempts to build 
a logical robot at SRI (Fikes and Nilsson, 1971). First-order logic was applied by Zohar 
Manna and Richard Waldinger (1971) for reasoning about programs and later by Michael 
Genesereth (1984) for reasoning about circuits. In Europe, logic programming (a restricted 
form of first-order reasoning) was developed for linguistic analysis (Colmerauer et al., 1973) 
and for general declarative systems (Kowalski, 1974). Computational logic was also well 
entrenched at Edinburgh through the LCF (Logic for Computable Functions) project (Gordon 
et al., 1979). These developments are chronicled furtheir in Chapters 9 and 10. 

There are a number of good modern introductory texts or1 first-order logic. Quine (1982) 
is one of the most readable. Endei-ton (1972) gives a more mathematically oriented perspec- 
tive. A highly formal treatment of first-order logic, along with many more advanced topics 
in logic, is provided by Bell and Machover (1977). Manna and Waldinger (1985) give a 
readable introduction to logic from a computer science perspective. Gallier (1986) provides 
an extremely rigorous mathematical exposition of first-order logic, along with a great deal 
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of material on its use in automated reasoning. Logical Foundations of ArtiJicial Intelligence 
(Genesereth and Nilsson, 1987) provides both a solid introduction to logic and the first sys- 
tematic treatment of logical agents with percepts and actions. 

8.1 A logical knowledge base represents the world using a set of sentences with no explicit 
structure. An analogical representation, on the other hand, has physical structure that corre- 
sponds directly to the structure of the thing represented. Consider a road map of your country 
as an analogical representation of facts about the country. The two-dimensional structure of 
the map corresponds to the two-dimensional surface of the area. 

a. Give five examples of symbols in the map language. 

b. An explicit sentence is a sentence that the creator of the representation actually writes 
down. An implicit sentence is a sentence that results from explicit sentences because 
of properties of the analogical representation. Give three examples each of implicit and 
explicit sentences in the map language. 

c. Give three examples of facts about the physical structure of your country that cannot be 
represented in the map language. 

d. Give two examples of facts that are much easier to express in the map language than in 
first-order logic. 

e. Give two other examples of useful analogical representations. What are the advantages 
and disadvantages of each of these languages? 

8.2 Consider a knowledge base containing just two sentences: P(a) and P(b). Does this 
knowledge base entail 'v'x P(x)? Explain your answer in terms of models. 

8.3 Is the sentence 3 z, y x = y valid? Explain. 

8.4 Write down a logical sentence such that every world in which it is true contains exactly 
one object. 

8.5 Consider a symbol vocabulary that contains c constant symbols, pk predicate symbols of 
each arity k, and f k  function symbols of each arity k ,  where 1 < k 5 A. Let the domain size 
be fixed at D. For any given interpretation-model combination, each predicate or function 
symbol is mapped onto a relation or function, respectively, of the same arity. You may assume 
that the functions in the model allow some input tuples to have no value for the function (i.e., 
the value is the invisible object). Derive a formula for the number of possible interpretation- 
model combinations for a domain with D elements. Don't worry about eliminating redundant 
combinations. 

8.6 Represent the following sentences in first-order logic, using a consistent vocabulary 
(which you must define): 

a. Some students took French in spring 2001. 
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b. Every student who takes French passes it. 

c. Only one student took Greek in spring 2001. 

d. The best score in Greek is always higher than the best score in French. 

e. Every person who buys a policy is smart. 

f. No person buys an expensive policy. 

g. There is an agent who sells policies only to people who are not insured. 

h. There is a barber who shaves all men in town who do not shave themselves. 

i. A person born in the UK, each of whose parents is a IJK citizen or a UK resident, is a 
UK citizen by birth. 

j. A person born outside the UK, one of whose parents is a UK citizen by birth, is a UK 
citizen by descent. 

k. Politicians can fool some of the people all of the time, and they can fool all of the people 
some of the time, but they can't fool all of the people all of the time. 

8.7 Represent the sentence "All Germans speak the same languages" in predicate calculus. 
Use Speaks (x, 1) , meaning that person x speaks language 1. 

8.8 What axiom is needed to infer the fact Female(L,aura;i given the facts Male( Jim) and 
Spouse( Jim, Laura)? 

8.9 Write a general set of facts and axioms to represent ithe assertion "Wellington heard 
about Napoleon's death" and to correctly answer the ques.tion "Did Napoleon hear about 
Wellington's death?" 

8.10 Rewrite the propositional wumpus world facts from Section 7.5 into first-order logic. 
How much more compact is this version? 

8.11 Write axioms describing the predicates Grandchild, GreatGrandparent, Brother, 
Sister, Daughter, Son, Aunt, Uncle, BrotherInLaw, SisterInLaw, and Firstcousin. 
Find out the proper definition of nzth cousin n times removed, and write the definition in 
first-order logic. 

Now write down the basic facts depicted in the family tree in Figure 8.5. Using a suit- 
able logical reasoning system, TELL it all the sentences you have written down, and ASK 

it who are Elizabeth's grandchildren, Diana's brothers-in-law, and Zara's great-grandparents. 

8.12 Write down a sentence asserting that + is a commutative function. Does your sentence 
follow from the Peano axioms? If so, explain why; if not, give a model in which the axioms 
are true and your sentence is false. 

8.13 Explain what is wrong with the following proparsed definition of the set membership 
predicate E : 
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George W Mum 

A 

William Hany Peter Zara Beatrice Eugenie 
- - - - - - - - - - - - - - - - - - 

Figure 8.5 A typical family tree. The symbol "w" connects spouses and arrows point to 
children. 

8.14 Using the set axioms as examples, write axioms for the list domain, including all the 
constants, functions, and predicates mentioned in the chapter. 

8.15 Explain what is wrong with the following proposed definition of adjacent squares in 
the wumpus world: 

V x ,  y Adjacent([x ,  y ] ,  [ x  + 1, yl) A Adjacent([x ,  y ] ,  [x, y + 11) . 

8.16 Write out the axioms required for reasoning about the wumpus's location, using a 
constant symbol Wumpus and a binary predicate In (  Wumpus , Location). Remember that 
there is only one wumpus. 

fggiijqF 8.17 Extend the vocabulary from Section 8.4 to define addition for n-bit binary numbers. 
Then encode the description of the four-bit adder in Figure 8.6, and pose the queries needed 
to verify that it is in fact correct. 

8.18 The circuit representation in the chapter is more detailed than necessary if we care 
only about circuit functionality. A simpler formulation describes any m-input, n-output gate 
or circuit using a predicate with m + n arguments, such that the predicate is true exactly when 
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+ y3 y2 y1 yo 
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y2 - z4 z3 2 2  21 zo 

x3 
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Figure 8.6 A four-bit adder. 
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the inputs and outputs are consistent. For example, NOT-gates are described by the binary 
predicate NOT (i, o), for which NOT ( 0 , l )  and NOT ( 1 , O )  are known. Compositions of 
gates are defined by conjunctions of gate predicates in which shared variables indicate direct 
connections. For example, a NAND circuit can be cornposed from ANDs and NOTs: 

Using this representation, define the one-bit adder in Figure 8.4 and the four-bit adder in 
Figure 8.6, and explain what queries you would use to verify the designs. What lunds of 
queries are not supported by this representation that (are supported by the representation in 
Section 8.4.? 

8.19 Obtain a passport application for your country, identify the rules determining eligi- 
bility for a passport, and translate them into first-order logic, following the steps outlined in 
Section 8.4. 



INFERENCE IN 9 FIRST-ORDER LOGIC 

In which we dejine eflective procedures for answering questions posed in jirst- 
order logic. 

Chapter 7 defined the notion of inference and showed how sound and complete inference can 
be achieved for propositional logic. In this chapter, we extend those results to obtain algo- 
rithms that can answer any answerable question stated in first-order logic. This is significant, 
because more or less anything can be stated in first-order logic if you work hard enough at it. 

Section 9.1 introduces inference rules for quantifiers and shows how to reduce first- 
order inference to propositional inference, albeit at great expense. Section 9.2 describes the 
idea of unification, showing how it can be used to construct inference rules that work di- 
rectly with first-order sentences. We then discuss three major families of first-order inference 
algorithms: forward chaining and its applications to deductive databases and production 
systems are covered in Section 9.3; backward chaining and logic programming systems 
are developed in Section 9.4; and resolution-based theorem-proving systems are described 
in Section 9.5. In general, one tries to use the most efficient method that can accommodate the 
facts and axioms that need to be expressed. Reasoning with fully general first-order sentences 
using resolution is usually less efficient than reasoning with definite clauses using forward or 
backward chaining. 

This section and the next introduce the ideas underlying modern logical inference systems. 
We begin with some simple inference rules that can be applied to sentences with quantifiers 
to obtain sentences without quantifiers. These rules lead naturally to the idea that$rst-order 
inference can be done by converting the knowledge base to propositional logic and using 
propositional inference, which we already know how to do. The next section points out an 
obvious shortcut, leading to inference methods that manipulate first-order sentences directly. 
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Inference rules for quantifiers 

Let us begin with universal quantifiers. Suppose our knowledge base contains the standard 
folkloric axiom stating that all greedy kings are evil: 

tJ x King(x) A Greedy ( x )  + Euil(x) . 

Then it seems quite permissible to infer any of the following sentences: 

King(John) A Greedy(John) + Evil (John) . 
King(Richard) A Greedy(Richard) + Evil(Richard) . 
King(Father(John)) A Greedy (Father(John)~) + Euil(Father( John)) . 

UNIVERSAL 
INsTANTlATloN The rule of Universal Instantiation (UI for short) salys that we can infer any sentence ob- 

tained by substituting a ground term (a term without varialbles) for the variable. ' To write 
out the inference rule formally, we use the notion of substitutions introduced in Section 8.3. 
Let SUBST(@, a )  denote the result of applying the substitution 8 to the sentence a .  Then the 
rule is written 

Vv a 

SUBST({V/~),  4 
for any variable v and ground term g.  For example, the three sentences given earlier are 
obtained with the substitutions 1x1 John), {x/Richard), arid {x/Father(Jolzn)). 

EXISTENTIAL 
INSTANTIATION The corresponding Existential Instantiation rule: for the existential quantifier is slightly 

more complicated. For any sentence a, variable v, and constant symbol k that does not appear 
elsewhere in the knowledge base, 

For example, from the sentence 

3 2 Crown(x) A OnHead ( x ,  John) 

we can infer the sentence 

Crown(C1) A OnHead(Cl, John) 

as long as Cl does not appear elsewhere in the knowledge base. Basically, the existential 
sentence says there is some object satisfying a conditioln, and the instantiation process is just 
giving a name to that object. Naturally, that name musl. not already belong to another object. 
Mathematics provides a nice example: suppose we discover that there is a number that is a 
little bigger than 2.71828 and that satisfies the equation ~d(xy)/dy = xy for x. We can give this 
number a name, such as e, but it would be a mistake to give it the name of an existing object, 

SKOLEMCONSTANT such as T .  In logic, the new name is called a Skolem constant. Existential Instantiation is a 
special case of a more general process called skolemization, which we cover in Section 9.5. 

Do not confuse these substitutions with the extended interpretations used to define the semantics of quantifiers. 
The substitution replaces a variable with a term (a piece of syntax) to produce a new sentence, ,whereas an 
interpretation maps a variable to an object in the domain. 
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As well as being more complicated than Universal Instantiation, Existential Instanti- 
ation plays a slightly different role in inference. Whereas Universal Instantiation can be 
applied many times to produce many different consequences, Existential Instantiation can be 
applied once, and then the existentially quantified sentence can be discarded. For example, 
once we have added the sentence Kill(Murderer, Victim), we no longer need the sentence 
3 x Kill(x, Victim). Strictly speaking, the new knowledge base is not logically equivalent 

INFERENTIAL 
EQUIVALENCE to the old, but it can be shown to be inferentially equivalent in the sense that it is satisfiable 

exactly when the original knowledge base is satisfiable. 

Reduction to propositional inference 

Once we have rules for inferring nonquantified sentences from quantified sentences, it be- 
comes possible to reduce first-order inference to propositional inference. In this section we 
will give the main ideas; the details are given in Section 9.5. 

The first idea is that, just as an existentially quantified sentence can be replaced by 
one instantiation, a universally quantified sentence can be replaced by the set of all possible 
instantiations. For example, suppose our knowledge base contains just the sentences 

'd x Kzng ( x )  A Greedy(x) + Evil ( x )  
King (John) 
Greedy (John) 
Brother(Richard, John) . 

Then we apply UI to the first sentence using all possible ground term substitutions from the 
vocabulary of the knowledge base-in this case, { x l  John) and {x/Richard). We obtain 

King( John) A Greedy( John) + Evil (John) , 
King (Richard) A Greedy (Richard) + Evil (Richard) , 

and we discard the universally quantified sentence. Now, the knowledge base is essentially 
propositional if we view the ground atomic sentences-Kzng (John), Greedy (John), and 
so on-as proposition symbols. Therefore, we can apply any of the complete propositional 
algorithms in Chapter 7 to obtain conclusions such as Evil (John). 

PROPOSITIONALIZATION This technique of propositionalization can be made completely general, as we show 
in Section 9.5; that is, every first-order knowledge base and query can be propositionalized 
in such a way that entailment is preserved. Thus, we have a complete decision procedure 
for entailment . . . or perhaps not. There is a problem: When the knowledge base includes 
a function symbol, the set of possible ground term substitutions is infinite! For example, if 
the knowledge base mentions the Father symbol, then infinitely many nested terms such as 
Father(Father(Father(J0hn))) can be constructed. Our propositional algorithms will have 
difficulty with an infinitely large set of sentences. 

Fortunately, there is a famous theorem due to Jacques Herbrand (1930) to the effect 
that if a sentence is entailed by the original, first-order knowledge base, then there is a proof 
involving just a$nite subset of the propositionalized knowledge base. Since any such subset 
has a maximum depth of nesting among its ground terms, we can find the subset by first 
generating all the instantiations with constant symbols (Richard and John), then all terms of 
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depth 1 (Father(Richard) and Father(John)), then all tenns of depth 2, and so on, until we 
are able to construct a propositional proof of the entailed sentence. 

We have sketched an approach to first-order inference via propositionalization that is 
complete-that is, any entailed sentence can be proved. This is a major achievement, given 
that the space of possible models is infinite. On the other hand, we do not know until the 
proof is done that the sentence is entailed! What happens when the sentence is not entailed? 
Can we tell? Well, for first-order logic, it turns out that we cannot. Our proof procedure can 
go on and on, generating more and more deeply nested terms, but we will not know whether 
it is stuck in a hopeless loop or whether the proof is just about to pop out. This is very much 
like the halting problem for Turing machines. Alan fir ing (1936) and Alonzo Church (1936) 
both proved, in rather different ways, the inevitability of this state of affairs. The question of 
entailment for first-order logic is semidecidable-that is, algorithms exist that say yes to every 
entailed sentence, but no algorithm exists that also says no I*O every nonentailed sentence. 

9.2 UNIFICATION AND LIFTING -- 

The preceding section described the understanding of first-order inference that existed up 
to the early 1960s. The sharp-eyed reader (and certainly the computational logicians of the 
early 1960s) will have noticed that the propositionalization approach is rather inefficient. For 
example, given the query Evil(x) and the knowledge: base in Equation (9.1), it seems per- 
verse to generate sentences such as King(Richard) A Greecly(Richard) + Evil (Richard). 
Indeed, the inference of Evil (John) from the sentences 

'd x King ( x )  A Greedy ( x )  + Evil (x) 
King (John) 
Greedy( John) 

seems completely obvious to a human being. We now show how to make it completely 
obvious to a computer. 

A first-order inference rule 

The inference that John is evil works like this: find some :c such that x is a king and x is 
greedy, and then infer that this x is evil. More generally, if there is some substitution 8 
that makes the premise of the implication identical to sentences already in the knowledge 
base, then we can assert the conclusion of the implication, after applying 8. In this case, the 
substitution { x i  John) achieves that aim. 

We can actually make the inference step do even more work. Suppose that instead of 
knowing Greedy(John), we know that everyone is greedy: 

V y Greedy ( y )  . 

Then we would still like to be able to conclude that Evil(John), because we know that 
John is a king (given) and John is greedy (because everyone is greedy). What we need 
for this to work is find a substitution both for the variables in the implication sentence 
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and for the variables in the sentences to be matched. In this case, applying the substitution 
{ X I  John,  y / J o h n )  to the implication premises King ( x )  and Greedy ( x )  and the knowledge 
base sentences K i n g ( J o h n )  and Greedy(y)  will make them identical. Thus, we can infer the 
coilclusion of the implication. 

This inference process can be captured as a single inference rule that we call General- 
GENERALIZED PONENS ized Modus Ponens: For atomic sentences p,, p,', and q, where there is a substitution 8 such 

that S u e s r ( Q , p i l )  = S u e s r ( B , p , ) ,  for all i, 

There are n + 1 premises to this rule: the n atomic sentences pi' and the one implication. The 
conclusion is the result of applying the substitution 0 to the consequent q. For our example: 

pll is K i n g ( J o h n )  pl is K z n g ( x )  
p2' is Greedy ( y )  p2 is Greedy(x)  
8 is { x /  John,  y/ J o h n )  q is Evil ( x )  
SUBST($ ,  q )  is Evil ( J o h n )  . 

It is easy to show that Generalized Modus Ponens is a sound inference rule. First, we observe 
that, for any sentence p (whose variables are assumed to be universally quantified) and for 
any substitution 8 ,  

p I= S u s s ~ ( 8 , p )  . 
This holds for the same reasons that the Universal Instantiation rule holds. It holds in partic- 
ular for a 8 that satisfies the conditions of the Generalized Modus Ponens rule. Thus, from 
p l l , .  . . ,pnl we can infer 

SUB ST(^,^^') A . .  . A SUB ST(^,^,') 
and from the implication pl A . . . A p, j q we can infer 

SUI3sT(B,pl) A . .  . A S u s s ~ ( B , p , )  +- S U B S T ( $ ,  q )  . 
Now, 8 in Generalized Modus Ponens is defined so that SUBST($ ,  pi') = SUBST($ ,  pi ) ,  for all 
i;  therefore the first of these two sentences matches the premise of the second exactly. Hence, 
S u s s ~ ( 1 9 ,  q) follows by Modus Ponens. 

LIFTING Generalized Modus Ponens is a lifted version of Modus Ponens-it raises Modus Po- 
nens from propositional to first-order logic. We will see in the rest of the chapter that we can 
develop lifted versions of the forward chaining, backward chaining, and resolution algorithms 
introduced in Chapter 7. The key advantage of lifted inference rules over propositionalization 
is that they make only those substitutions which are required to allow particular inferences 
to proceed. One potentially confusing point is that in one sense Generalized Modus Ponens 
is less general than Modus Ponens (page 21 1): Modus Ponens allows any single a on the 
left-hand side of the implication, while Generalized Modus Ponens requires a special format 
for this sentence. It is generalized in the sense that it allows any number of Pi'. 

Unification 

Lifted inference rules require finding substitutions that make different logical expressions 
UNIFICATION look identical. This process is called unification and is a key component of all first-order 
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UNIFIER inference algorithms. The U N I F Y  algorithm takes tcvo sentences and returns a unifier for 
them if one exists: 

 UNIFY(^, q )  = 0 where S U B S T ( O , ~ )  = SUBST(@,  q)  . 

Let us look at some examples of how U N I F Y  should behave. Suppose we have a query 
Knows (John,  x )  : whom does John know? Some answers to this query can be found by find- 
ing all sentences in the knowledge base that unify with Knows (John,  x ) .  Here are the results 
of unification with four different sentences that might be in the lcnowledge base. 

U N ~ ~ ~ ( K n o w s ( J o h n ,  x ) ,  Knows(John,  Jane))  = { X I  Jane) 
U ~ l F Y ( K n o w s ( J o h n ,  x), Knows(y,  Bi l l ) )  = {x/Bi11, y/ John) 
U N I F Y ( K ~ O W S  (John,  x ) ,  Knows(y,   other(^))) = { y /  John, x /Mother(John)  } 
U N I F Y  (Knows( John, x ) ,  Knows ( x ,  Elizabeth)) = Jail . 

The last unification fails because x cannot take on the values John and Elizabeth at the 
same time. Now, remember that Knows(x ,  Elizabeth) meails "Everyone knows Elizabeth," 
so we should be able to infer that John knows Elizabeth. The problem arises only because 
the two sentences happen to use the same variable name, 1:. The problem can be avoided 
by standardizing apart one of the two sentences beiing unified, which means renaming its APART 

variables to avoid name clashes. For example, we can rename x in Knows(x ,  Elizabeth) to 
217 (a new variable name) without changing its meaning. Now the unification will work: 

U ~ I F ~ ( K n o w s ( J o h n ,  x ) ,  Knows(z17, Elizabeth)) = {z/Elizabeth, z17/ John) . 

Exercise 9.7 delves further into the need for standardizing apart. 
There is one more complication: we said that U N I F Y  should return a substitution 

that makes the two arguments look the same. But there coilld be more than one such uni- 
fier. For example, U ~ ~ ~ Y ( K n o w s ( J o h n ,  x), Knows(y,  z ) )  could return { y /  John, x / z )  or 
{ y /  John, z/ John, z /  John). The first unifier gives Knows(John,  z )  as the result of unifi- 
cation, whereas the second gives Knows (John,  John),  The second result could be obtained 
from the first by an additional substitution { z /  John); we say that the first unifier is more 
general than the second, because it places fewer restrictions on the values of the variables. It 

MOSTGENERAL UNIFIER turns out that, for every unifiable pair of expressions, there is a single most general unifier 
(or MGU) that is unique up to renaming of variables. In this case it is { y /  John, x / z ) .  

An algorithm for computing most general unifiers is shown in Figure 9.1. The process is 
very simple: recursively explore the two expressions simultaneously "side by side," building 
up a unifier along the way, but failing if two corresponding points in the structures do not 
match. There is one expensive step: when matching a variable against a complex term, 
one must check whether the variable itself occurs inside the term; if it does, the match fails 

OCCURCHECK because no consistent unifier can be constructed. This so-called occur check makes the 
complexity of the entire algorithm quadratic in the size of the expressions being unified. 
Some systems, including all logic programming systems, sirnply omit the occur check and 
sometimes make unsound inferences as a result; other system:s use more complex algorithms 
with linear-time complexity. 
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function U N I F Y ( Z ,  y, 0 )  returns a substitution to make x and y identical 
inputs: x ,  a variable, constant, list, or compound 

y, a variable, constant, list, or compound 
0,  the substitution built up so far (optional, defaults to empty) 

if 0 = failure then return failure 
else if x = y then return 0 
else if VARIABLE?(%) then return UNIFY-VAR(X,  y, 0 )  
else if  VARIABLE?(^) then return U N I F Y - V A R ( ~ ,  x, 0 )  
else if COMPOUND?(X)  and  COMPOUND?(^) then 

return U N I F Y ( A R G S [ X ] ,  ARGS[y], UNIFY(OP[x], OP[y],  6) )  
else if LIST?(X)  and  LIST?(^) then 

return UNIFY(REST[z],  REST[^], UNIFY(FIRST[X] ,   FIRST[^], 0))  
else return failure 

function U N I F Y - V ~ ~ ( v a r ,  x ,  0) returns a substitution 
inputs: var, a variable 

x ,  any expression 
0,  the substitution built up so far 

if {var/val}  E 6' then return U N I F Y ( V U ~ ,  a, 0)  
else if { x / v a l }  E 6' then return U N I F Y ( U ~ ~ ,  val, 8) 
else if O C C U R - C H E C K ? ( ~ ~ ~ ,  z) then return failure 
else return add {varlx)  to 6' 

Figure 9.1 The unification algorithm. The algorithm works by comparing the structures 
of the inputs, element by element. The substitution 0 that is the argument to U N I F Y  is built 
up along the way and is used to make sure that later comparisons are consistent with bindings 
that were established earlier. In a compound expression, such as F ( A ,  B), the function OP 
picks out the function symbol F and the filnction ARCS picks out the argument list (A, B). 

Storage and retrieval 

Underlying the TELL and ASK functions used to inform and interrogate a knowledge base 
are the more primitive STORE and FETCH functions. STORE(S) stores a sentence s into the 
knowledge base and  FETCH(^) returns all unifiers such that the query q unifies with some 
sentence in the knowledge base. The problem we used to illustrate unification-finding all 
facts that unify with Knows(John, x)-is an instance of  FETCH^^^. 

The simplest way to implement STORE and FETCH is to keep all the facts in the knowl- 
edge base in one long list; then, given a query q, call  UNIFY(^, s )  for every sentence s in the 
list. Such a process is inefficient, but it works, and it's all you need to understand the rest of 
the chapter. The remainder of this section outlines ways to make retrieval more efficient, and 
can be skipped on first reading. 

We can make FETCH more efficient by ensuring that unifications are attempted only 
with sentences that have some chance of unifying. For example, there is no point in trying 
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to unify Knows(John, x) with Brother(Richard, John). We can avoid such unifications by 
INDEXING indexing the facts in the knowledge base. A simple scheme called predicate indexing puts 
PREDICATE 
INDEXING all the Knows facts in one bucket and all the Brother facts in another. The buckets can be 

stored in a hash table2 for efficient access. 
Predicate indexing is useful when there are many predicate symbols but only a few 

clauses for each symbol. In some applications, however, there are many clauses for a given 
predicate symbol. For example, suppose that the tax authorities want to keep track of who 
employs whom, using a predicate Employs(z, y). This would be a very large bucket with 
perhaps millions of employers and tens of millions of employees. Answering a query such as 
Employs(x, Richard) with predicate indexing would require scanning the entire bucket. 

For this particular query, it would help if facts were indexed both by predicate and by 
second argument, perhaps using a combined hash table key. Then we could simply construct 
the key from the query and retrieve exactly those facts that unify with the query. For other 
queries, such as Employs (AIMA. org , y ) ,  we would need to have indexed the facts by com- 
bining the predicate with the first argument. Therefiore, facts can be stored under multiple 
index keys, rendering them instantly accessible to various queries that they might unify with. 

Given a sentence to be stored, it is possible to construct indices for all possible queries 
that unify with it. For the fact Employs(AIMA.org, Richand), the queries are 

Employs ( A  IMA. org, Richard) Does AIMA.org ernploy Richard? 
Employs ( x ,  Richard) Who employs Richard? 
Employs(AIMA.org, y )  Whom does AIMA..org employ? 

E r n ~ l o ~ s ( x ,  Y )  Who employs whom? 
sUBsUMPTloN LATTICE These queries form a subsumption lattice, as shown in Figure 9.2(a). The lattice has some 

interesting properties. For example, the child of any node in the lattice is obtained from its 
parent by a single substitution; and the "highest" common descendant of any two nodes is 
the result of applying their most general unifier. The portion of the lattice above any ground 
fact can be constructed systematically (Exercise 9.5). A sentence with repeated constants has 
a slightly different lattice, as shown in Figure 9.2(b). Function symbols and variables in the 
sentences to be stored introduce still more interesting lattice structures. 

The scheme we have described works very well whenever the lattice contains a small 
number of nodes. For a predicate with n arguments, the lattice contains 0 ( 2 n )  nodes. If 
function symbols are allowed, the number of nodes is also exponential in the size of the terms 
in the sentence to be stored. This can lead to a huge number of indices. At some point, the 
benefits of indexing are outweighed by the costs of storing and maintaining all the indices. We 
can respond by adopting a fixed policy, such as maintaining indices only on keys composed of 
a predicate plus each argument, or by using an adaptive ]policy that creates indices to meet the 
demands of the kinds of queries being asked. For most A1 systenas, the number of facts to be 
stored is small enough that efficient indexing is considered a solved problem. For industrial 
and commercial databases, the problem has received substantral technology development. 

A hash table is a data structure for storing and retrieving information indexed by fixed keys. For practical 
purposes, a hash table can be considered to have constant storage and retrieval times, even when the table contains 
a very large number of items. 
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Employs(John, John) I 
(a) (b) 

Figure 9.2 (a) The subsumption lattice whose lowest node is the sentence 
Employs(AIMA.org, Richard). (b) The subsumption lattice for the sentence 
Employs(John, John). 

A forward-chaining algorithm for propositional definite clauses was given in Section 7.5. 
The idea is simple: start with the atomic sentences in the knowledge base and apply Modus 
Ponens in the forward direction, adding new atomic sentences, until no further inferences can 
be made. Here, we explain how the algorithm is applied to first-order definite clauses and 
how it can be implemented efficiently. Definite clauses such as Situation + Response are 
especially useful for systems that make inferences in response to newly arrived information. 
Many systems can be defined this way, and reasoning with forward chaining can be much 
more efficient than resolution theorem proving. Therefore it is often worthwhile to try to build 
a knowledge base using only definite clauses so that the cost of resolution can be avoided. 

First-order definite clauses 

First-order definite clauses closely resemble propositional definite clauses (page 217): they 
are disjunctions of literals of which exactly one is positive. A definite clause either is atomic 
or is an implication whose antecedent is a conjunction of positive literals and whose conse- 
quent is a single positive literal. The following are first-order definite clauses: 

King (x) A Greedy (x) + Evil (x) . 
Kzng( John) . 
Greedy(y) . 

Unlike propositional literals, first-order literals can include variables, in which case those 
variables are assumed to be universally quantified. (Typically, we omit universal quantifiers 
when writing definite clauses.) Definite clauses are a suitable normal form for use with 
Generalized Modus Ponens. 

Not every knowledge base can be converted into a set of definite clauses, because of the 
single-positive-literal restriction, but many can. Consider the following problem: 

The law says that it is a crime for an American to sell weapons to hostile nations. The 
country Nono, an enemy of America, has some missiles, and all of its missiles were sold 
to it by Colonel West, who is American. 
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We will prove that West is a criminal. First, we will represent these facts as first-order definite 
clauses. The next section shows how the forward-chaining algorithm solves the prloblem. 

". . . it is a crime for an American to sell weapons to hostile nations": 

"Nono . . . has some missiles." The sentence 3 x Owns (Nono,  .rc) A Missile (x) is transformed 
into two definite clauses by Existential Elimination, introducing a new constant M I  : 

Owns (Nono,  M I )  

Mzssile(Ml) 

"All of its missiles were sold to it by Colonel West": 

fissile ( x )  A Owns (Nono,  x )  + Sells( West ,  z, Nono) . (9.6) 

We will also need to know that missiles are weapons: 

Missile ( x )  =+ Weapon ( x )  (9.7) 

and we must know that an enemy of America counts as "hostile": 

Enemy(x ,  America) + Hostile(x) . (9.8) 

"West, who is American . . .": 

American( Wes t )  . (9.9) 

"The country Nono, an enemy of America . . .": 

Enemy(Nono,  Anzerica) . (9.10) 

This knowledge base contains no function symbols and is therefore an instance of' the class 
DATALOG of Datalog knowledge blases-that is, sets of first-order definite clauses with no function 

symbols. We will see that the absence of function symbols makes inference much easier. 

A simple forward-chaining algorithm 

The first foiward chaining algorithm we will consider is a very simple one, as shown in 
Figure 9.3. Starting from the known facts, it triggers all the rules whose premises are satisfied, 
adding their conclusions lo the known facts. The process repeats until the query is answered 
(assuming that just one answer is required) or no new facts are added. Notice that a fact is 

RENAMING not "new" if it is just a renaming of a known fact. One sentence is a renaming of another if 
they are identical except for the names of the variables. For example, Likes(x. Icecream) 
and Likes(y, Icecream) are renamings of each other because they differ only in the choice 
of x or y; their meanings are identical: everyone likes ice cream. 

We will use our crime problem to illustrate how FOL-FC-ASK works. The implication 
sentences are (9.3), (9.6), (9.7), and (9.8). Two iterations are required: 

On the first iteration, rule (9.3) has unsatisfied premises. 
Rule (9.6) is satisfied with { x / M l ) ,  and Sells( West ,  MI, Nono) is added. 
Rule (9.7) is satisfied with { x / h f ~ ) ,  and Weapon(lVll) is added. 
Rule (9.8) is satisfied with {x /Nono} ,  and Hostile(Nono) is added. 
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function FOL-FC-AsK(KB, a) returns a substitution or false 
inputs: KB, the knowledge base, a set of first-order definite clauses 

a, the query, an atomic sentence 
local variables: new, the new sentences inferred on each iteration 

repeat until new is empty 
new + { )  
for each sentence r in KB do 

( p l  A . .  . A p, + q) t STANDARDIZE-APART(T) 
for each B such that SUBST(B,  pl A . . . A p,) = SUBST(B,  pi A . . . A p;) 

for some p i ,  . . . , pk in KB 
q' t S u s s ~ ( 0 ,  q) 
if q' is not a renaming of some sentence already in KB or new then do 

add q' to new 
$h t  UNIFY(^', a)  
if q5 is not fail then return 4 

add new to KB 
return false 

Figure 9.3 A conceptually straightforward, but very inefficient, forward-chaining algo- 
rithm. On each iteration, it adds to KB all the atomic sentences that can be inferred in one 
step from the implication sentences and the atomic sentences already in KB. 

Crinzinal( West) '--i 

Figure 9.4 The proof tree generated by forward chaining on the crime example. The initial 
facts appear at the bottom level, facts inferred on the first iteration in the middle level, and 
facts inferred on the second iteration at the top level. 

On the second iteration, rule (9.3) is satisfied with {x/ West, Y / M I ,  z /Nono) ,  and 
Criminal ( West) is added. 

Figure 9.4 shows the proof tree that is generated. Notice that no new inferences are possible 
at this point because every sentence that could be concluded by forward chaining is already 
contained explicitly in the KB. Such a knowledge base is called a fixed point of the inference 
process. Fixed points reached by forward chaining with first-order definite clauses are similar 
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to those for propositional forward chaining (page 219); the principal difference is that a first- 
order fixed point can include universally quantified atomic sentences. 

FOL-FC-ASK is easy to analyze. First, it is sound, because every inference is just an 
application of Generalized Modus Ponens, which is sound. Second, it is complete for definite 
clause knowledge bases; that is, it answers every query whose answers are entailed by any 
knowledge base of definite clauses. For Datalog knowledge bases, which contain no function 
symbols, the proof of completeness is fairly easy. We begin by couriting the number of 
possible facts that can be added, which determines the maximilm number of iterations. Let k 
be the maximum arity (number of arguments) of any predicate, p be the number of predicates, 
and n be the number of constant symbols. Clearly, there can be no more than pszk distinct 
ground facts, so after this many iterations the algorithm must have reached a fixed point. Then 
we can make an argument very similar to the proof of completeness for propositional forward 
chaining. (See page 219.) The details of how to make the transition from propositional to 
first-order completeness are given for the resolution algorithm in Section 9.5. 

For general definite clauses with function symbols, FOL-FC-ASK can generate in- 
finitely many new facts, so we need to be more careful. For the case in which an answer to 
the query sentence q is entailed, we must appeal to Herbrand's theorem to establish that the 
algorithm will find a proof. (See Section 9.5 for the resolution case.) If the query has no 
answer, the algorithm could fail to terminate in some cases. For example, if the knowledge 
base includes the Peano axioms 

NatNum(0) 
'v' n NatNum(n) + NatNum(S(n) )  

then forward chaining a'dds NatNum(S(O)), NatNum,(S(S(O))), Na tNum(S(S(S(O)) ) ) ,  
and so on. This problem is unavoidable in general. As with general first-order logic, entail- 
ment with definite clauses is semidecidable. 

Efficient forward chaining 

The forward chaining algorithm in Figure 9.3 is designed for ease of understanding rather 
than for efficiency of operation. There are three possible sources of complexity. First, the 
"inner loop" of the algorithm involves finding all possible unifiers such that the piremise of 
a rule unifies with a suitable set of facts in the knowledge base. This is often called pattern 

PAT~ERNMATCHING matching and can be very expensive. Second, the algorithm rechecks every rule on every 
iteration to see whether its premises are satisfied, even if very few additions are made to the 
knowledge base on each iteration. Finally, the algorithm might generate many facts that are 
irrelevant to the goal. We will address each of these sources in turn. 

Matching rules against Icnown facts 

The problem of matching the premise of a rule against the facts in the knowledge base might 
seem simple enough. For example, suppose we want to apply the rule 
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DzSf(wa, n t )  A Dz#(wa, sa) A 

Dzfl(nt, q )  A Di f l (n t ,  sa) A 

Dzfl(q, nsw) A DiSf(q, sa) A 

Difl(nsw, v )  A Dz#(nsw, sa) A 

Dzfl(v, sa) + Colorable() 

Dig  (Red,  Blue) Difl (Red,  Green) 

Dzff (Green, Red) Di#( Green, Blue) 

Dzjf (Blue, Red) Dzff(Blue, Green) 

(a) (b) 

Figure 9.5 (a) Constraint graph for coloring the map of Australia (from Figure5.1). (b) 
The map-coloring CSP expressed as a single definite clause. Note that the domains of the 
variables are defined implicitly by the constants given in the ground facts for Dzf f .  

Then we need to find all the facts that unify with Mzsszle(x); in a suitably indexed knowledge 
base, this can be done in constant time per fact. Now consider a rule such as 

Mzssile(x) A Owns(Nono, x )  + Sells( West ,  x ,  Nono) . 

Again, we can find all the objects owned by Nono in constant time per object; then, for each 
object, we could check whether it is a missile. If the knowledge base contains many objects 
owned by Nono and very few missiles, however, it would be better to find all the missiles first 

CONJUNCT 
ORDERING and then check whether they are owned by Nono. This is the conjunct ordering problem: 

find an ordering to solve the conjuncts of the rule premise so that the total cost is minimized. 
It turns out that finding the optimal ordering is NP-hard, but good heuristics are available. For 
example, the most constrained variable heuristic used for CSPs in Chapter 5 would suggest 
ordering the conjuncts to look for missiles first if there are fewer missiles than objects that 
are owned by Nono. 

The connection between pattern matching and constraint satisfaction is actually very 
close. We can view each conjunct as a constraint on the variables that it contains-for ex- 
ample, Mzsszle(x) is a unary constraint on x .  Extending this idea, we can express every 
finite-domain CSP as a single dejnite clause together with some associated ground facts. 
Consider the map-coloring problem from Figure 5.1, shown again in Figure 9.5(a). An equiv- 
alent formulation as a single definite clause is given in Figure 9.5(b). Clearly, the conclusion 
Colorable() can be inferred only if the CSP has a solution. Because CSPs in general include 
3SAT problems as special cases, we can conclude that matching a dejnite clause against a 
set of facts is NP-hard. 

It might seem rather depressing that forward chaining has an NP-hard matching problem 
in its inner loop. There are three ways to cheer ourselves up: 
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We can remind ourselves that most rules m real-world knowledge bases are small and 
simple (like the rules in our crime example) rather than large and complex (like the 
CSP formulation in Figure 9.5). It is common in the database world to assume that both 
the sizes of rules and the arities of predicates are bounded by a constant and to worry 

DATA COMPLEXITY only about data complexity-that is, the complexity of inference as a function of the 
number of ground facts in the database. Ilt is easy to show that the data complexity of 
forward chaining is polynomial. 

We can consider s~ubclasses of rules for which matching is efficient. Essentially every 
Datalog clause can be viewed as defining a CSP, so matching will be tractable just 
when the corresponding CSP is tractable. Chapter 5 describes several tractable families 
of CSPs. For exainple, if the constraint graph (the graph whose nodes are variables 
and whose links are constraints) forms a tree, then the CSP can be solved in linear 
time. Exactly the same result holds for rule matching. For instance, if we remove South 
Australia from the map in Figure 9.5, the resulting clause is 

Di;Tf(wa, nt) A Di#(nt ,  q) A Dzfl(q,  nsw) A Dzfl((nszo, v) + Colorable() 

which corresponds to the reduced CSP shown in Figure 5.11. Algorithms for solving 
tree-structured CSPs can be applied directly to the problem of rule matching. 

We can work hard to eliminate redundant rule matching attempts in the forward chain- 
ing algorithm, which is the subject of the next section. 

Incremental forward chaining 

When we showed how forward chaining works on the crime example, we cheated; in partic- 
ular, we omitted some of the rule matching done by the algorithm shown in Figure 9.3. For 
example, on the second iteration, the rule 

matches against Mzssile(Ml) (again), and of course the conclusion Weapon(n/Il) is already 
known so nothing happens. Such redundant rule matching can be avoided if we make the 
following observation: Every new fact inferred on iteration t must be derived from at least 
one new fact inferred on iteration t - 1. This is true because any inference that does not 
require a new fact from iteration t - 1 could have been done at iteration t - 1 already. 

This observation leads naturally to an incremental forward chaining algorithm where, 
at iteration t ,  we check a rule only if its premise includes a conjunct p, that unifies with a fact 
p: newly inferred at iterat~on t - 1. The rule matching step then fixes p, to match with p:, but 
allows the other conjuncts of the rule to match with facts from any previous iteration. This 
algorithm generates exactly the same facts at each iteration as the algorithm in Figure 9.3, but 
is much more efficient. 

With suitable indexing, it is easy to identify all the rules that can be triggered by any 
given fact, and indeed marly real systems operate in an "update" mode wherein forward chain- 
Ing occurs in response to each new fact that is  TELL^^ to the system. Inferences cascade 
through the set of rules until the fixed point is reached, and then the process begins again for 
the next new fact. 
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Typically, only a small fraction of the rules in the knowledge base are actually triggered 
by the addition of a given fact. This means that a great deal of redundant work is done in con- 
structing partial matches repeatedly that have some unsatisfied premises. Our crime example 
is rather too small to show this effectively, but notice that a partial match is constructed on 
the first iteration between the rule 

American(x) A Weapon(y) A Sells (x, y ,  z )  A Hostile(z) + Criminal(x) 

and the fact American( Wes t ) .  This partial match is then discarded and rebuilt on the second 
iteration (when the rule succeeds). It would be better to retain and gradually complete the 
partial matches as new facts arrive, rather than discarding them. 

RETE The rete algorithm3 was the first to address this problem seriously. The algorithm 
preprocesses the set of rules in the knowledge base to construct a sort of dataflow network in 
which each node is a literal from a rule premise. Variable bindings flow through the network 
and are filtered out when they fail to match a literal. If two literals in a rule share a variable- 
for example, Sells (x, y ,  z )  A Hostile(z) in the crime example-then the bindings from each 
literal are filtered through an equality node. A variable binding reaching a node for an n- 
ary literal such as Sel ls(x ,  y ,  z )  might have to wait for bindings for the other variables to be 
established before the process can continue. At any given point, the state of a rete network 
captures all the partial matches of the rules, avoiding a great deal of recomputation. 

Rete networks, and various improvements thereon, have been a key component of so- 
PRODUCTION 
SYSTEMS called production systems, which were among the earliest forward chaining systems in 

widespread use.4 The XCON system (originally called R1, McDermott, 1982) was built us- 
ing a production system architecture. XCON contained several thousand rules for designing 
configurations of computer components for customers of the Digital Equipment Corporation. 
It was one of the first clear commercial successes in the emerging field of expert systems. 
Many other similar systems have been built using the same underlying technology, which has 
been implemented in the general-purpose language OPS-5. 

COGNITIVE 
ARCHITECTURES 

Production systems are also popular in cognitive architectures-that is, models of hu- 

man reasoning-such as ACT (Anderson, 1983) and SOAR (Laird et al., 1987). In such sys- 
tems, the "working memory" of the system models human short-term memory, and the pro- 
ductions are part of long-term memory. On each cycle of operation, productions are matched 
against the working memory of facts. A production whose conditions are satisfied can add or 
delete facts in worlung memory. In contrast to the typical situation in databases, production 
systems often have many rules and relatively few facts. With suitably optimized matching 
technology, some modern systems can operate in real time with over a million rules. 

Irrelevant facts 

The final source of inefficiency in forward chaining appears to be intrinsic to the approach 
and also arises in the propositional context. (See Section 7.5.) Forward chaining makes 
all allowable inferences based on the known facts, even if they are irrelevant to the goal at 
hand. In our crime example, there were no rules capable of drawing irrelevant conclusions, 

Rete is Latin for net. The English pronunciation rhymes with treaty. 
The word production in production systems denotes a condition-action rule. 
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so the lack of directedness was not a problem. In other cases (e.g., if we have several rules 
describing the eating habits of Americans and the prices of missiles), FOL-FC-ASK will 
generate many irrelevant conclusions. 

One way to avoid drawing irrelevant conclusions is to use backward chaining, as de- 
scribed in Section 9.4. .Another solution is to restrict forward chaining to a selected subset 
of rules; this approach was discussed in the propositional context. A third approach has 
emerged in the deductivie database community, where forward chaining is the standard tool. 
The idea is to rewrite the rule set, using information from the goal, so that only relevant 

MAGIC SET variable bindings-those belonging to a so-called magic set-are considered during forward 
inference. For example, if the goal is Criminal ( West), the rule that concludes Criminal ( x )  
will be rewritten to include an extra conjunct that constrains the value of x: 

Magic(x) A Amerzean(z) A Weapon(y) A Sells(x, y ,  z)  A Hostile(z) + Crimz;l~al(x) . 

The fact Magic( West) is also added to the KB. In this way, even if the knowledge base 
contains facts about millions of Americans, only Colonel West will be considered during the 
forward inference process. The complete process for defining magic sets and rewriting the 
knowledge base is too complex to go into here, but the basic idea is to perform a sort of 
"generic" backward inference from the goal in order to work out which variable bindings 
need to be constrained. The magic sets approach can therefore be thought of as a kind of 
hybrid between forward inference and backward preprocessing. 

The second major family of logical inference algorithms uses the backward chaiining ap- 
proach introduced in Section 7.5. These algorithms work backward from the goal, chaining 
through rules to find known facts that support the proof. We describe the basic algonthm, and 
then we describe how it is used in logic programming, which is the most widely useld form of 
automated reasoning. We will also see that backward chaining has some disadvantages com- 
pared with forward chaining, and we look at ways to overcome them. Finally, we will look at 
the close connection between logic programming and constraint satisfaction problems. 

A backward chaining algorithm 

Figure 9.6 shows a simple backward-chaining algorithm, FOL-BC-ASK. It is called with a 
list of goals containing a single element, the original query, and returns the set of all substi- 
tutions satisfying the queiry. The list of goals can be thought of as a "stack" waiting to be 
.worked on; if all of them can be satisfied, then the current branch of the proof succeleds. The 
algorithm takes the first goal in the list and finds every clause in the knowledge base whose 
positive literal, or head, unifies with the goal. Each such clause creates a new recursive call 
in which the premise, or body, of the clause is added to the goal stack. Remember that facts 
are clauses with a head but no body, so when a goal unifies with a known fact, no rzew sub- 
goals are added to the stack and the goal is solved. Figure 9.7 is the proof tree for deriving 
t7rzminal( West) from sentences (9.3) through (9.10). 
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function FOL-BC-AsK(KB,  goals, 0 )  returns a set of substitutions 
inputs: K B ,  a knowledge base 

goals, a list of conjuncts forming a query (0  already applied) 
0 ,  the current substitution, initially the empty substitution { } 

local variables: answers, a set of substitutions, initially empty 

if goals is empty then return ( 0 )  
q' +- S u s s ~ ( 0 ,  F r ~ s ~ ( g o a 1 s ) )  
for each sentence r in K B  where STANDARDIZE- APART(^) = ( p l  A . . . A p, + q) 

and 0' +-  UNIFY(^, q') succeeds 
new-goals +- [ p l ,  . . . , p,IR~ST(goals)] 
answers + FOL-BC-AsK(KB,  new-goals, COMPOSE(O', 0 ) )  U answers 

return answers 

- 

Figure 9.6 A simple backward-chaining algorithm. 

American(West) Weaponb) Hostile(Nono) 

{ 1 

1 Missiieb) ( ( Missiie(MI) I / Owns(Nono, M I )  1 I Enemy (Nono,America) I 

Figure 9.7 Proof tree constructed by backward chaining to prove that West is a criminal. 
The tree should be read depth first, left to right. To prove Criminal( Wes t ) ,  we have to prove 
the four conjuncts below it. Some of these are in the knowledge base, and others require 
further backward chaining. Bindings for each successful unification are shown next to the 
corresponding subgoal. Note that once one subgoal in a conjunction succeeds, its substitution 
is applied to subsequent subgoals. Thus, by the time FOL-BC-ASK gets to the last conjunct, 
originally Hostile(z), z is already bound to Nono. 

COMPOSITION The algorithm uses composition of substitutions. COMPOSE(Q~, Q2) is the substitution 

whose effect is identical to the effect of applying each substitution in turn. That is, 

In the algorithm, the current variable bindings, which are stored in 8, are composed with the 
bindings resulting from unifying the goal with the clause head, giving a new set of current 
bindings for the recursive call. 
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Backward chaining, as we have written it, is clearly a depth-first search algorithm. This 
means that its space requirements are linear in the size of the proof (neglecting, for now, the 
space required to accumulate the solutions). It also means that backward chaining (unlike 
forward chaining) suffers from problems with repeated states and incompleteness. We will 
discuss these problems and some potential solutions, but first we will see how backward 
chaining is used in logic programming systems. 

Logic programming 

Logic programming is a technology that comes fairly close to embodying the declarative 
ideal described in Chapter 7: that systems should be constructed by expressing knowledge in 
a formal language and that problems should be solved by running inference processes on that 
knowledge. The ideal is summed up in Robert Kowalski's equation, 

Algorithm = Logic 4 Control . 
PROLOG Prolog is by far the most widely used logic programming language. Its users numiber in the 

hundreds of thousands. It is used primarily as a rapid-prototyping language and for symbol- 
manipulation tasks such as writing compilers (Van Roy, 1990) and parsing natural language 
(Pereira and Warren, 1980). Many expert systems have been written in Prolog for legal, 
medical, financial, and other domains. 

Prolog programs are sets of definite clauses written in a notation somewhai different 
from standard first-order. logic. Prolog uses uppercase letters for variables and lowercase 
for constants. Clauses are written with the head preceding the body; " : -" is used for left- 
implication, commas sep,arate literals in the body, and a period marks the end of a sentence: 

Prolog includes "syntactic sugar" for list notation and arithmetic. As an example, here is a 
Prolog program for append (X, Y, Z ) , which succeeds if list Z is the result of appending 
lists x and Y: 

In English, we can read these clauses as (1) appending an empty list with a list Y produces 
the same list Y and (2) [A I Z I is the result of appending [A 1 X I  onto Y, provided that z 
is the result of appending X onto Y. This definition of append appears fairly similar to the 
corresponding definition in Lisp, but is actually much more powerful. For example, we can 
ask the query append ( A ,  B , [ 1,2 I ) : what two lists can be appended to give [ 1 , 2  1 ? We 
get back the solutions 

The execution of Prolog programs is done via depth-first backward chaining, where 
clauses are tried in the order in which they are written in the knowledge base. Some: aspects 
of Prolog fall outside standard logical inference: 
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There is a set of built-in functions for arithmetic. Literals using these function symbols 
are "proved by executing code rather than doing further inference. For example, the 
goal "X is  4 + 3 "  succeeds with x bound to 7. On the other hand, the goal "5 i s  X+Y" 

fails, because the built-in functions do not do arbitrary equation solving.5 

There are built-in predicates that have side effects when executed. These include input- 
output predicates and the as ser tlre t rac t predicates for modifying the knowledge 
base. Such predicates have no counterpart in logic and can produce some confusing 
effects-for example, if facts are asserted in a branch of the proof tree that eventually 
fails. 
Prolog allows a form of negation called negation as failure. A negated goal n o t  P is 
considered proved if the system fails to prove p. Thus, the sentence 

alive ( X )  : - n o t  dead(X) . 
can be read as "Everyone is alive if not provably dead." 
Prolog has an equality operator, =, but it lacks the full power of logical equality. An 
equality goal succeeds if the two terms are unz$able and fails otherwise. So X + Y = 2 + 3  

succeeds with x bound to 2 and Y bound to 3, but m o r n i n g s t a r = e v e n i n g s t a r  
fails. (In classical logic, the latter equality might or might not be true.) No facts or rules 
about equality can be asserted. 
The occur check is omitted from Prolog's unification algorithm. This means that some 
unsound inferences can be made; these are seldom a problem except when using Prolog 
for mathematical theorem proving. 

The decisions made in the design of Prolog represent a compromise between declarativeness 
and execution efficiency-inasmuch as efficiency was understood at the time Prolog was 
designed. We will return to this subject after looking at how Prolog is implemented. 

Efficient implementation of logic programs 

The execution of a Prolog program can happen in two modes: interpreted and compiled. 
Interpretation essentially amounts to running the FOL-BC-ASK algorithm from Figure 9.6, 
with the program as the knowledge base. We say "essentially," because Prolog interpreters 
contain a variety of improvements designed to maximize speed. Here we consider only two. 

First, instead of constructing the list of all possible answers for each subgoal before 
continuing to the next, Prolog interpreters generate one answer and a "promise" to generate 
the rest when the current answer has been fully explored. This promise is called a choice 

CHOICE POINT point. When the depth-first search completes its exploration of the possible solutions arising 
from the current answer and backs up to the choice point, the choice point is expanded to 
yield a new answer for the subgoal and a new choice point. This approach saves both time 
and space. It also provides a very simple interface for debugging because at all times there is 
only a single solution path under consideration. 

Second, our simple implementation of FOL-BC-ASK spends a good deal of time gen- 
erating and composing substitutions. Prolog implements substitutions using logic variables 

Note that if the Peano axioms are provided, such goals can be solved by inference within a Prolog program 
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I procedure  APPEND(^, y, ar ,  continuation) I 
tra.il t GLOBAL-TRAIL-POINTER()  
if ax = [I and U N I F Y ( Y ,  a z )  then CA~L(con t inua t ion )  
R E S E T - T R A I L ( ~ T ~ ~ ~ )  
a t NEW-VARIABLE();  x  t NEW-VARIABLE();  z  t NEW-VA,RIABLE() 
if U N I F Y ( ~ X ,  [ a  I x]) and  UNIFY(^^, [a 1 z ] )  then A P P E N D ( X ,  y ,  z ,  continuation) 

Figure 9.8 Pseudocode representing the result of compiling the Append predicate. The 
function NEW-VARIABLE returns a new variable, distinct from all other variables so far used. 
The procedure CA~L(con t inua t i0n )  continues execution with the specified continuatlion. 

that can remember their current binding. At any point in time, every variable in the program 
either is unbound or is bound to some value. Together, these variables and values implicitly 
define the substitution for the current branch of the proof. Extending the path can only add 
new variable bindings, because an attempt to add a different binding for an alrea~dy bound 
variable results in a failure of unification. When a path in the search fails, Prolog will back 
up to a previous choice point, and then it might have to unbind some variables. This is done 

TRAIL by keeping track of all th~e variables that have been bound in a stack called the trail. As each 
new variable is bound by UNIFY-VAR, the variable is pushed onto the trail. When a goal fails 
and it is time to back up to a previous choice point, each of the variables is unbound as it is 
removed from the trail. 

Even the most efficient Prolog interpreters require several thousand machine instruc- 
tions per inference step because of the cost of index lookup, unification, and building the 
recursive call stack. In effect, the interpreter always behaves as if it has never seen1 the pro- 
gram before; for example, it has to find clauses that match the goal. A compiled Prolog 
program, on the other hand, is an inference procedure for a specific set of clauses, so it knows 
what clauses match the goal. Prolog basically generates a miniature theorem prover for each 
different predicate, thereby eliminating much of the overhead of interpretation. It is also pos- 

OPENCODE sible to open-code the unification routine for each different call, thereby avoiding explicit 
analysis of term structure. (For details of open-coded unification, see Warren et al. (1977).) 

The instruction sets of today's computers give a poor match with Prolog's semantics, 
so most Prolog compilers compile into an intermediate language rather than directly into ma- 
chine language. The most popular intermediate language is the Warren Abstract Machine, or 
'WAM, named after David H. D. Warren, one of the implemenrors of the first Prolog com- 
piler. The WAM is an abstract instruction set that is suitable for Prolog and can be either 
interpreted or translated into machine language. Other compilers translate Prolog into a high- 
level language such as Lisp or C and then use that language's compiler to translate to imachine 
language. For example, the definition of the Append predicate can be compiled into  the code 
shown in Figure 9.8. There are several points worth mentioning: 

Rather than having to search the knowledge base for Append clauses, the claiuses be- 
come a procedure and the inferences are carried out simply by calling the procedure. 
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As described earlier, the current variable bindings are kept on a trail. The first step of the 
procedure saves the current state of the trail, so that it can be restored by RESET-TRAIL 

if the first clause fails. This will undo any bindings generated by the first call to UNIFY. 

CONTINUATIONS The trickiest part is the use of continuations to implement choice points. You can think 
of a continuation as packaging up a procedure and a list of arguments that together 
define what should be done next whenever the current goal succeeds. It would not 
do just to return from a procedure like APPEND when the goal succeeds, because it 
could succeed in several ways, and each of them has to be explored. The continuation 
argument solves this problem because it can be called each time the goal succeeds. 
In the APPEND code, if the first argument is empty, then the APPEND predicate has 
succeeded. We then CALL the continuation, with the appropriate bindings on the trail, 
to do whatever should be done next. For example, if the call to APPEND were at the top 
level, the continuation would print the bindings of the variables. 

Before Warren's work on the compilation of inference in Prolog, logic programming was 
too slow for general use. Compilers by Warren and others allowed Prolog code to achieve 
speeds that are competitive with C on a variety of standard benchmarks (Van Roy, 1990). 
Of course, the fact that one can write a planner or natural language parser in a few dozen 
lines of Prolog makes it somewhat more desirable than C for prototyping most small-scale A1 
research projects. 

Parallelization can also provide substantial speedup. There are two principal sources of 
OR-PARALLELISM parallelism. The first, called OR-parallelism, comes from the possibility of a goal unifying 

with many different clauses in the knowledge base. Each gives rise to an independent branch 
in the search space that can lead to a potential solution, and all such branches can be solved 

AND.PARALLELISM in parallel. The second, called AND-parallelism, comes from the possibility of solving 
each conjunct in the body of an implication in parallel. AND-parallelism is more difficult to 
achieve, because solutions for the whole conjunction require consistent bindings for all the 
variables. Each conjunctive branch must communicate with the other branches to ensure a 
global solution. 

Redundant inference and infinite loops 

We now turn to the Achilles heel of Prolog: the mismatch between depth-first search and 
search trees that include repeated states and infinite paths. Consider the following logic pro- 
gram that decides if a path exists between two points on a directed graph: 

A simple three-node graph, described by the facts link (a, b) and link (b,  c )  , is shown 
in Figure 9.9(a). With this program, the query path ( a, c ) generates the proof tree shown 
in Figure 9.10(a). On the other hand, if we put the two clauses in the order 

path(X, Z) : - path(X,Y), link(Y, Z) . 
path (X, Z) : - link (X, Z) . 
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A1 

A B C  

(a) 

Figure 9.9 (a) Finding a path from A to C can lead Prolog into an infinite loop.. (b) A 
graph in which each node is connected to two random successors in the next layer. Filnding a 
path from Al to Jg requires 877 inferences. 

1 Figure 9.10 (a) Proof that a path exists from A to C. (b) Infinite proof tree generated I 
when the clauses are in the "wrong" order. 

then Prolog follows the infinite path shown in Figure 9.10(b). Prolog is therefore incomplete 
as a theorem prover for definite clauses-even for Datalog programs, as this example shows- 
because, for some knowledge bases, it fails to prove sentences that are entailed. Notice that 
forward chaining does not suffer from this problem: once path ( a ,  b) , path (b ,  c )  , and 
path ( a ,  c ) are inferred, forward chaining halts. 

Depth-first backward chaining also has problems with redundant computations. For 
example, when finding a path from A1 to J4 in Figure 9.9(b), Prolog performs 877 inferences, 
most of which involve finding all possible paths to nodes from which the goal is unr~eachable. 
This is similar to the repeated-state problem discussed in Chapter 3. The total amount of 
inference can be exponen~tial in the number of ground facts that are generated. If we apply 
forward chaining instead, at most n2 path (X, Y) facts can be generated linking n nodes. 
For the problem in Figure 9.9(b), only 62 inferences are needed. 

DYNAMIC 
PROGRAMMING Forward chaining on graph search problems is an example of dynamic programming, 

in which the solutions to subproblems are constructed incrementally from those of smaller 
subproblems and are cached to avoid recomputation. We can obtain a similar effect in a back- 
ward chaining system using memoization-that is, caching solutions to subgoals as they are 
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found and then reusing those solutions when the subgoal recurs, rather than repeating the 

Fi%{i,$~Iy"G previous computation. This is the approach taken by tabled logic programming systems, 
which use efficient storage and retrieval mechanisms to perform memoization. Tabled logic 
programming combines the goal-directedness of backward chaining with the dynamic pro- 
gramming efficiency of forward chaining. It is also complete for Datalog programs, which 
means that the programmer need wony less about infinite loops. 

Constraint logic programming 

In our discussion of forward chaining (Section 9.3), we showed how constraint satisfaction 
problems (CSPs) can be encoded as definite clauses. Standard Prolog solves such problems 
in exactly the same way as the backtracking algorithm given in Figure 5.3. 

Because backtracking enumerates the domains of the variables, it works only for fi- 
nite domain CSPs. In Prolog terms, there must be a finite number of solutions for any goal 
with unbound variables. (For example, the goal d i  f f ( q, sa ) , which says that Queensland 
and South Australia must be different colors, has six solutions if three colors are allowed.) 
Infinite-domain CSPs-for example with integer or real-valued variables-require quite dif- 
ferent algorithms, such as bounds propagation or linear programming. 

The following clause succeeds if three numbers satisfy the triangle inequality: 

If we ask Prolog the query triangle ( 3  , 4 ,  5), this works fine. On the other hand, if we 
ask triangle ( 3 ,4, Z ) , no solution will be found, because the subgoal z>= 0 cannot be 
handled by Prolog. The difficulty is that variables in Prolog must be in one of two states: 
unbound or bound to a particular term. 

Binding a variable to a particular term can be viewed as an extreme form of constraint, 
namely an equality constraint. Constraint logic programming (CLP) allows variables to be 
constrained rather than bound. A solution to a constraint logic program is the most specific 
set of constraints on the query variables that can be derived from the knowledge base. For 
example, the solution to the triangle ( 3 , 4 , Z ) query is the constraint 7 > = Z >= 1. 
Standard logic programs are just a special case of CLP in which the solution constraints must 
be equality constraints-that is, bindings. 

CLP systems incorporate various constraint-solving algorithms for the constraints al- 
lowed in the language. For example, a system that allows linear inequalities on real-valued 
variables might include a linear programming algorithm for solving those constraints. CLP 
systems also adopt a much more flexible approach to solving standard logic programming 
queries. For example, instead of depth-first, left-to-right backtracking, they might use any of 
the more efficient algorithms discussed in Chapter 5, including heuristic conjunct ordering, 
backjumping, cutset conditioning, and so on. CLP systems therefore combine elements of 
constraint satisfaction algorithms, logic programming, and deductive databases. 

CLP systems can also take advantage of the variety of CSP search optimizations de- 
scribed in Chapter 5, such as variable and value ordering, forward checking, and intelligent 
backtracking. Several systems have been defined that allow the programmer more control 
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over the search order for inference. For example, the MRS Language (Genesereth and Smith, 
METARULES 198 1 ; Russell, 1985) allows the programmer to write metarules to determine which conjuncts 

are tried first. The user could write a rule saying that the goal with the fewest variables should 
be tried first or could write domain-specific rules for particular predicates. 

The last of our three families of logical systems is based on resolution. We saw in Chapter 7 
that propositional resolution is a refutation complete inference procedure for propositional 
logic. In this section, we will see how to extend resolution to first-order logic. 

The question of the existence of complete proof procedures is of direct concern to math- 
ematicians. If a complete proof procedure can be found for mathematical statements, two 
things follow: first, all conjectures can be established mechanically; second, all of mathe- 
matics can be established as the logical consequence of a set of fundamental axioms. The 
question of completeness has therefore generated some of the most important mathematical 
work of the 20th century. In 1930, the German mathematician Kurt Godel proved the first 
completeness theorem for first-order logic, showing that any entailed sentence has a finite THEOREM 

proof. (No really practical proof procedure was found until J. A. Robinson published the 
resolution algorithm in I 965 .) In 193 1, Godel proved an even more famous incon~pleteness 

iNCoMpLETENEss theorem. The theorem states that a logical system that includes the principle of induction- THEOREM 

without which very little of discrete mathematics can be constructed-is necessarily incom- 
plete. Hence, there are sentences that are entailed, but have no finite proof within the system. 
The needle may be in the metaphorical haystack, but no procedure can guarantee that it will 
be found. 

Despite Godel's theorem, resolution-based theorem provers have been applied widely to 
derive mathematical theorems, including several for which no proof was known previously. 
Theorem provers have also been used to verify hardware designs and to generate logically 
correct programs, among other applications. 

Conjunctive normal form for first-order logic 

As in the propositional case, first-order resolution requires that sentences be in co~njunctive 
normal form (CNF)-th~at is, a conjunction of clauses, where each clause is a disjilnction of 
literah6 Literals can contain variables, which are assumed to be universally quantified. For 
example, the sentence 

V x Amer ican(x)  A Weapon(y)  A Se l l s ( z ,  y ,  z )  A Hostile(z) +- Criminal (x) 

becomes, in CNF, 

l A m e r i c a n ( x )  V -1 Weapon(y)  V l S e l l s ( x ,  y ,  z )  V 1 Hostile(z) V Criminal ( x )  . 

A clause can also be represented as an implication with a conjunction of atoms on the left and a disjunction of 
atoms on the right, as shown in Exercise 7.12. This form, sometimes called Kowalski form when written with a 
right-to-left implication symbol (Kowalski, 1979b), is often much easier to read. 
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Every sentence of first-order logic can be converted into an inferentially equivalent CNF 
sentence. In particular, the CNF sentence will be unsatisfiable just when the original sentence 
is unsatisfiable, so we have a basis for doing proofs by contradiction on the CNF sentences. 

The procedure for conversion to CNF is very similar to the propositional case, which 
we saw on page 215. The principal difference arises from the need to eliminate existential 
quantifiers. We will illustrate the procedure by translating the sentence "Everyone who loves 
all animals is loved by someone," or 

'dx ['d y  Animal(y) J Loves(x, y)] + [3 y  Loves(y, x )]  

The steps are as follows: 

0 Eliminate implications: 

ti x  [ i ' d  y 1 Animal ( y )  V Loves(x, y  j ]  v [3 y  Loves ( y  , x  j ]  

0 Move 7 inwards: In addition to the usual rules for negated connectives, we need rules 
for negated quantifiers. Thus, we have 

l ' d x  p becomes 3 x  1 p  
73 x  p becomes 'dx 1 p  . 

Our sentence goes through the following transformations: 

'd x  [3 y  l ( lAnima1 ( Y )  V Loves(x, y))] V [3 y  Loves(y, x )]  . 
'dx [3 y  i iAnirnal(y)  A lLoves(x,  y)] V [3 y  Loves(y, x)]  . 
t i x  [3 y  Animal(y) A lLoves(x,  y)] v [3 y  Loves(y, x)]  . 

Notice how a universal quantifier ('d y) in the premise of the implication has become 
an existential quantifier. The sentence now reads "Either there is some animal that x  
doesn't love, or (if this is not the case) someone loves x." Clearly, the meaning of the 
original sentence has been preserved. 

0 Standardize variables: For sentences like ( t ix  P ( x ) )  V (3  x  Q ( x ) )  which use 
the same variable name twice, change the name of one of the variables. This avoids 
confusion later when we drop the quantifiers. Thus, we have 

'd x  [3 y  Animal ( y )  A lLoves(x,  y)] V [3 z Loves(x, xj] . 

SKOLEMIZATION 0 Skolemize: Skolemization is the process of removing existential quantifiers by elimi- 

nation. In the simple case, it is just like the Existential Instantiation rule of Section 9.1: 
translate 3 x  P ( x )  into P ( A ) ,  where A is a new constant. If we apply this rule to our 
sample sentence, however, we obtain 

'dx [Animal ( A )  A iLoves(x,  A)]  V Loves ( B ,  x )  

which has the wrong meaning entirely: it says that everyone either fails to love a par- 
ticular animal A or is loved by some particular entity B.  In fact, our original sentence 
allows each person to fail to love a different animal or to be loved by a different person. 
Thus, we want the Skolem entities to depend on x: 

ti x  [Animal ( F ( x ) )  A lLoves(x,  F ( x ) ) ]  V Loves(G(x), x )  . 

SKOLEM FUNCTION Here F and G are Skolem functions. The general rule is that the arguments of the 
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Skolem function are all the universally quantified variables in whose scope the exis- 
tential quantifier appears. As with Existential Instantiation, the Skolernized sentence is 
satisfiable exactly when the original sentence is satisfiable. 

0 Drop universal quantifiers: At this point, all remaining variables must be universally 
quantified. Moreover, the sentence is equivalent to one in which all the universal quan- 
tifiers have been moved to the left. We can therefore drop the universal quantifiers: 

[Animal ( F ( x ) )  A lLoves(x, F ( x ) ) ]  V Loves(G(x), x )  . 

0 Distribute V over A: 

[Animal ( F  ( x ) )  V Loves(G(x), x>] A [lLoves(x, F ( x ) )  V Loves(G(x), x ) ]  . 

This step may also require flattening out nested conjunctions and disjunctions. 

The sentence is now in CNF and consists of two clauses. It is quite unreadable. (It may 
help to explain that the S8kolem function F ( x )  refers to the animal potentially unlo'ved by x,  
whereas G ( x )  refers to someone who might love x.) Fortunately, humans seldom need look 
at CNF sentences-the translation process is easily automated. 

The resolution inference rule 

The resolution rule for first-order clauses is simply a lifted version of the propositional reso- 
lution rule given on page 214. Two clauses, which are assumed to be standardized apart so 
that they share no variables, can be resolved if they contain complementary literals. Propo- 
sitional literals are complementary if one is the negation of the other; first-order literals are 
complementary if one unijies with the negation of the other. Thus we have 

where  UNIFY(^^, i m j )  == 8. For example, we can resolve the two clauses 

[Animal ( F ( x ) )  V Loves (G(x ) ,  x)] and [iLoves(u, v )  V lKzlls(u, v)] 

by eliminating the complementary literals Loves(G(x), x )  and lLoves(u, v ) ,  with unifier 
6' = { u / G ( x ) ,  v l x ) ,  to produce the resolvent clause 

[Animal ( P ( x ) )  V ~ K z l l s  ( G ( x ) ,  x)]  . 

BINARY RESOLUTION The rule we have just given is the binary resolution rule, because it resolves exactly two lit- 
erals. The binary resolution rule by itself does not yield a complete inference procedure. The 
full resolution rule resolves subsets of literals in each clause that are unifiable. An aliternative 
approach is to extend factoring-the removal of' redundant literals-to the first-order case. 
Propositional factoring reduces two literals to one if they are identical; first-order factoring 
reduces two literals to one if they are uniJiable. The unifier must be applied to t.he entire 
clause. The combination of binary resolution and factoring is complete. 

.Example proofs 

Resolution proves that KB /= a by proving KB A l a  unsatisfiable, i.e., by deriving the 
empty clause. The algorithmic approach is identical to the propositional case, described in 
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Figure 9.11 A resolution proof that West is a criminal. 

Figure 7.12, so we will not repeat it here. Instead, we will give two example proofs. The first 
is the crime example from Section 9.3. The sentences in CNF are 

lAmer ican(x )  V 7 Weapon(y) V i S e l l s ( x ,  y, z )  V iHost i le (z )  V Criminal(x) . 
lMzss i le (x)  V 1 Owns(Nono, x )  V Sells( West ,  x ,  Nono) . 
l E n e m y ( x ,  America) V Hostile(x) . 
1 Missile(x) V Weapon(x)  . 
Owns(Nono, M I )  . Missile(Ml) . 
American( Wes t )  . Enemy (Nono,  America) . 

We also include the negated goal 7 Criminal ( West) .  The resolution proof is shown in Fig- 
ure 9.1 1. Notice the structure: single "spine" beginning with the goal clause, resolving against 
clauses from the knowledge base until the empty clause is generated. This is characteristic 
of resolution on Horn clause knowledge bases. In fact, the clauses along the main spine 
correspond exactly to the consecutive values of the goals variable in the backward chaining 
algorithm of Figure 9.6. This is because we always chose to resolve with a clause whose pos- 
itive literal unified with the leftmost literal of the "current" clause on the spine; this is exactly 
what happens in backward chaining. Thus, backward chaining is really just a special case of 
resolution with a particular control strategy to decide which resolution to perform next. 

Our second example makes use of Skolemization and involves clauses that are not def- 
inite clauses. This results in a somewhat more complex proof structure. In English, the 
problem is as follows: 

Everyone who loves all animals is loved by someone. 
Anyone who kills an animal is loved by no one. 
Jack loves all animals. 
Either Jack or Curiosity killed the cat, who is named Tuna. 
Did Curiosity kill the cat? 
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First, we express the original sentences, some background knowledge, and the negated goal 
G in first-order logic: 

A. 'dx  ['d y Animal(y) J Loves(x, y)] + [3 y Loves(y, x ) ]  

B. 'd x [3 y Animal ( y )  A Kills(x, y)] + ['d z lLoves(z,  x ) ]  

C. ' dx  Animal ( x )  + Loves(Jack, x )  

D. Kills (Jack, Tuna) V Kills( Curiosity, Tuna) 

E. Cat(Tuna) 

F. 'd x Cat(x) + Animal ( x )  

1G. 1 Kills (Curiosity, Tuna) 

Now we apply the conversion procedure to convert each sentence to CNF: 

Al .  Animal ( F ( x ) )  V Loves(G(x), x) 

A2. lLoves(x,  F ( x ) )  V Loves(G(x), x )  

B. ~Animal(y)V~Kills(x,y)V~Loves(z,x) 

C. 1Animal ( x )  V Loves( Jack, x )  

D. Kills (Jack, Tuna) V Kills( Curiosity, Tuna) 

E. Cat(Tuna) 

F. 1 Cat ( x )  \/ Animal ( x )  

1G. iKills (Curiosity, Tuna) 

The resolution proof that Curiosity killed the cat is given in Figure 9.12. In English,, the proof 
could be paraphrased as follows: 

Suppose Curiosity did not kill Tuna. We know that either Jack or Curiosity did; thus 
Jack must have. Novu, Tuna is a cat and cats are animals, so Tuna is an animal. Because 
anyone who kills an animal is loved by no one, we know that no one loves Jack. On the 
other hand, Jack lovles all animals, so someone loves him; so we have a contradiction. 
Therefore, Curiosity killed the cat. 

The proof answers the question "Did Curiosity kill the cat?" but often we want to pose more 
general questions, such as "Who killed the cat?" Resolution can do this, but it takes a little 

U 

Figure 9.12 A resollution proof that Curiosity killed the cat. Notice the use of factoring in 
the derivation of the clause Loves (G( Jack) ,  Jack) .  
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more work to obtain the answer. The goal is 3 w Kills(w, Tuna), which, when negated, 
becomes 1 Kills (w , Tuna) in CNF. Repeating the proof in Figure 9.12 with the new negated 
goal, we obtain a similar proof tree, but with the substitution {w/Curiosity} in one of the 
steps. So, in this case, finding out who killed the cat is just a matter of keeping track of the 
bindings for the query variables in the proof. 

NONCONSTRUCTIVE 
PROOF Unfortunately, resolution can produce nonconstructive proofs for existential goals. 

For example, lKills(w, Tuna) resolves with Kills (Jack, Tuna) V Kills (Curiosity, Tuna) 
to give Kills (Jack, Tuna), which resolves again with 1 Kzlls(w , Tuna) to yield the empty 
clause. Notice that w has two different bindings in this proof; resolution is telling us that, 
yes, someone killed Tuna-either Jack or Curiosity. This is no great surprise! One so- 
lution is to restrict the allowed resolution steps so that the query variables can be bound 
only once in a given proof; then we need to be able to backtrack over the possible bind- 

ANSWERLITERAL ings. Another solution is to add a special answer literal to the negated goal, which be- 
comes lKzlls(w, Tuna) V Answer(w). Now, the resolution process generates an answer 
whenever a clause is generated containing just a single answer literal. For the proof in Fig- 
ure 9.12, this is Answer(Curiosity). The nonconstructive proof would generate the clause 
Answer ( Curiosity) V Answer( Jack), which does not constitute an answer. 

Completeness of resolution 

This section gives a completeness proof of resolution. It can be safely skipped by those who 
are willing to take it on faith. 

REFUTATION 
COMPLETENESS We will show that resolution is refutation-complete, which means that ifa set of sen- 

tences is unsatisfiable, then resolution will always be able to derive a contradiction. Resolu- 
tion cannot be used to generate all logical consequences of a set of sentences, but it can be 
used to establish that a given sentence is entailed by the set of sentences. Hence, it can be 
used to find all answers to a given question, using the negated-goal method that we described 
earlier in the Chapter. 

We will take it as given that any sentence in first-order logic (without equality) can 
be rewritten as a set of clauses in CNE This can be proved by induction on the form of 
the sentence, using atomic sentences as the base case (Davis and Putnam, 1960). Our goal 
therefore is to prove the following: ifS is an unsatisjable set of clauses, then the application 
of a jni te  number of resolution steps to S will yield a contradiction. 

Our proof sketch follows the original proof due to Robinson, with some simplifications 
from Genesereth and Nilsson (1987). The basic structure of the proof is shown in Figure 9.13; 
it proceeds as follows: 

1. First, we observe that if S is unsatisfiable, then there exists a particular set of ground 
instances of the clauses of S such that this set is also unsatisfiable (Herbrand's theorem). 

2. We then appeal to the ground resolution theorem given in Chapter 7, which states that 
propositional resolution is complete for ground sentences. 

3. We then use a lifting lemma to show that, for any propositional resolution proof using 
the set of ground sentences, there is a corresponding first-order resolution proof using 
the first-order sentences from which the ground sentences were obtained. 
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Any set of sentences S is re resentable in clausal form P 
t 

Assume S is unsatisfiable, and in clausal form 

I- Herbrand's theorem 

Some set S' of ground ihstances is unsatisfiable 
I 

Ground resolution 
theorem 

Resolution can find a contradiction in S' 

l4 Lifting lemma 

There is a resolution proof for the contradiction in S' 

/ Figure 9.13 Structure of a completeness proof for resolution. I 
To carry out the first step, we will need three new concepts: 

HERBRAND 
UNIVERSE 0 Herbrand universe: If S is a set of clauses, then HS, the Herbrand universe of S ,  is 

the set of all ground terms constructible from the following: 

a. The function symbols in S, if any. 
b. The constant symbols in S ,  if any; if none, then the constant symbol A. 

For example, if S contains just the clause l P ( x ,  F ( x ,  A)) V 1Q(x ,  A) V R(x,  B) ,  then 
Hs is the following infinite set of ground terms: 

{A, B , F ( A , A ) ,  F (A,  B ) ,  F ( B ,  A),  F ( B ,  B) ,  F ( A ,  F ( A ,  A)), . . .) . 
SATURATION 0 Saturation: If S i~s a set of clauses and P is a set of ground terms, then P(S),  the 

saturation of S with respect to P ,  is the set of all ground clauses obtained by applying 
all possible consistent substitutions of ground terms in P with variables in S .  

HERBRAND BASE 0 Herbrand base: The saturation of a set S of clauses with respect to its Herbrand uni- 
verse is called the Herbrand base of S ,  written as Hs(S). For example, if S contains 
solely the clause just given, then Hs(S) is the infinite set of clauses 

{+(A, F (A,  A)) V lQ(A1 A) v R(A, B ) ,  
+(B, F ( B ,  A)) V l Q ( B ,  A) v R ( B ,  B ) ,  
l P ( F ( A ,  A), F ( F ( A ,  A), A))  V l Q ( F ( A ,  AP, A) V R(F(A1 A), B ) ,  
l P ( F ( A ,  H), F ( F ( A ,  B ) ,  A))  v l Q ( F ( A ,  B) ,  A) V R(F(A,  B ) ,  B ) ,  . . . ) 

HERBRAND'S 
THEOREM These definitions allow us to state a form of Herbrand's theorem (Herbrand, 1930): 

If a set S of clauses is unsatisfiable, then there exists a finite subset of Hs (S) that 
is also unsatisfiable. 

Let S' be this finite subset of ground sentences. Now, we can appeal to the ground resolution 
theorem (page 217) to show that the resolution closure RC(S1) contains the empty clause. 
That is, running propositional resolution to completion on S' will derive a contradiction. 

Now that we have established that there is always a resolution proof involving some 
finite subset of the Herbrand base of S, the next step is to show that there is a resolution 
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By slightly extending the language of first-order logic to allow for the mathemat- 
ical induction schema in arithmetic, Godel was able to show, in his incomplete- 
ness theorem, that there are true arithmetic sentences that cannot be proved. 

The proof of the incompleteness theorem is somewhat beyond the scope of 
this book, occupying, as it does, at least 30 pages, but we can give a hint here. We 
begin with the logical theory of numbers. In this theory, there is a single constant, 
0, and a single function, S (the successor function). In the intended model, S(0) 
denotes 1, S(S(0))  denotes 2, and so on; the language therefore has names for all 
the natural numbers. The vocabulary also includes the function symbols +, x, and 
Expt (exponentiation) and the usual set of logical connectives and quantifiers. The 
first step is to notice that the set of sentences that we can write in this language can 
be enumerated. (Imagine defining an alphabetical order on the symbols and then 
arranging, in alphabetical order, each of the sets of sentences of length 1, 2, and 
so on.) We can then number each sentence a with a unique natural number #a 
(the Godel number). This is crucial: number theory contains a name for each of 
its own sentences. Similarly, we can number each possible proof P with a Godel 
number G ( P ) ,  because a proof is simply a finite sequence of sentences. 

Now suppose we have a recursively enumerable set A of sentences that are 
true statements about the natural numbers. Recalling that A can be named by a 
given set of integers, we can imagine writing in our language a sentence a(j, A) of 
the following sort: 

V i i is not the Godel number of a proof of the sentence whose Godel 
number is j ,  where the proof uses only premises in A. 

Then let a be the sentence a(#a, A), that is, a sentence that states its own unprov- 
ability from A. (That this sentence always exists is true but not entirely obvious.) 

Now we make the following ingenious argument: Suppose that a is provable 
from A; then CJ is false (because a says it cannot be proved). But then we have a 
false sentence that is provable from A, so A cannot consist of only true sentences- 
a violation of our premise. Therefore a is not provable from A. But this is exactly 
what o itself claims; hence CJ is a true sentence. 

So, we have shown (barring 29; pages) that for any set of true sentences of 
number theory, and in particular any set of basic axioms, there are other true sen- 
tences that cannot be proved from those axioms. This establishes, among other 
things, that we can never prove all the theorems of mathematics within any given 
system of axioms. Clearly, this was an important discovery for mathematics. Its 
significance for A1 has been widely debated, beginning with speculations by Godel 
himself. We take up the debate in Chapter 26. 
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proof using the clauses of S itself, which are not necessarily ground clauses. We start by 
considering a single application of the resolution rule. Robinson's basic lemma implies the 
following fact: 

Let C1 and C2 be two clauses with no shared variables, and let Ci and Ch be 
ground instances of C1 and C2. If C' is a resolvent of Ci and Ci,  then there exists 
a clause C such that (1) C is a resolvent of Cl and C2 and (2) C' is a ground 
instance of C .  

LIFTING LEMMA This is called a lifting le~mma, because it lifts a proof step from ground clauses up to general 
first-order clauses. In order to prove his basic lifting lemma, Robinson had to invent unifi- 
cation and derive all of the properties of most general unifiers. Rather than repeat the proof 
here, we simply illustrate the lemma: 

C1 = ~ P ( x ,  F ( x ,  A ) )  V l Q ( x ,  A )  V R ( x ,  B )  

c2 = l N ( G ( Y ) ,  2 )  V P ( H ( y ) ,  2 )  

c: = l P ( H ( B ) ,  F ( H ( B ) ,  A ) )  V 7 Q ( H ( B ) ,  A )  v R ( H ( B ) ,  B )  

c; = lN (G(B)Y  F ( H ( B ) ,  A ) )  V P ( H ( B ) ,  F ( H ( B ) ,  A ) )  
C' = i N ( G ( B ) ,  F ( H ( B ) ,  A ) )  V i Q ( M ( B ) ,  A) V R ( H ( B ) ,  B )  

c = l N ( G ( Y ) ,  F (H(Y) ,  A ) )  v l Q ( H ( Y ) ,  A )  V R ( H ( Y ) ,  B )  . 

We see that indeed C' is a ground instance of G. In general, for Ci and Ci to have any 
resolvents, they must be constructed by first applying to C1 and C2 the most general unifier 
of a pair of complementary literals in C1 and C2. From the lifting lemma, it is easy to derive 
a similar statement about any sequence of applications of the resolution rule: 

For any clause C' in the resolution closure of St there is a clause C in the resolu- 
tion closure of S, such that C' is a ground instance of C and the derivation of C 
is the same length as the derivation of C'. 

From this fact, it follows that if the empty clause appears in the resolution closure of St, it 
must also appear in the resolution closure of S. This is because the empty clause cannot be a 
ground instance of any other clause. To recap: we have shown that if S is unsatisfiable, then 
there is a finite derivation of the empty clause using the resolution rule. 

The lifting of theorem proving from ground clauses to first-order clauses provides a vast 
increase in power. This increase comes from the fact that the first-order proof need instantiate 
variables only as far as necessary for the proof, whereas the ground-clause methiods were 
required to examine a huge number of arbitrary instantiations. 

Dealing with equality 

None of the inference methods described so far in this chapter handle equality. There are 
three distinct approaches that can be taken. The first approach is to axiomatize equality-to 
write down sentences about the equality relation in the knowledge base. We need to say that 
 equality is reflexive, symmetric, and transitive, and we also have to say that we can substitute 
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equals for equals in any predicate or function. So we need three basic axioms, and then one 
for each predicate and function: 

v x  x = x  
' d x , y  x = y  + y = x  
V x , y , z  x = y A y = z  + x = z  
v x , y  x = y  =+ (P1(x )  ++ P1(y) )  
~ X , Y  X=Y + (P2(x )  * P ~ ( Y ) )  

Given these sentences, a standard inference procedure such as resolution can perform tasks 
requiring equality reasoning, such as solving mathematical equations. 

Another way to deal with equality is with an additional inference rule. The simplest 
rule, demodulation, takes a unit clause x = y and substitutes y for any term that unifies with 
x in some other clause. More formally, we have 

DEMODULATION 0 Demodulation: For any terms x ,  y,  and z ,  where U N I F Y ( X ,  Z )  = 19 and mn[z j  is a 
literal containing z :  

x = y ,  m l V . . . ~ m , [ z ]  
ml V . - .  V  SU SUB ST(^, y ) ]  

Demodulation is typically used for simplifying expressions using collections of assertions 
such as x + 0 = x ,  x1  = x ,  and so on. The rule can also be extended to handle non-unit 
clauses in which an equality literal appears: 

PARAMODULATION Q Paramodulation: For any terms x ,  y, and z ,  where U N I F Y ( X ,  z )  = 6 ,  
!, v . . . ~ ! ~ v x = y ,  m l ~ . . . ~ m , [ z ]  
SUBST(@,  1, V . . . V !, V ml V . . V m,[y])  ' 

Unlike demodulation, paramodulation yields a complete inference procedure for first-order 
logic with equality. 

A third approach handles equality reasoning entirely within an extended unification 
algorithm. That is, terms are unifiable if they are provably equal under some substitution, 
where "provably" allows for some amount of equality reasoning. For example, the terms 
1 + 2 and 2 + 1 normally are not unifiable, but a unification algorithm that knows that x + 
y = y + x could unify them with the empty substitution. Equational unification of this kind 
can be done with efficient algorithms designed for the particular axioms used (commutativity, 
associativity, and so on), rather than through explicit inference with those axioms. Theorem 
provers using this technique are closely related to the constraint logic programming systems 
described in Section 9.4. 

Resolu t ion  strategies 

We know that repeated applications of the resolution inference rule will eventually find a 
proof if one exists. In this subsection, we examine strategies that help find proofs eficiently. 
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Unit preference 

This strategy prefers to1 do resolutions where one of the sentences is a single literal (also 
known as a unit clause). The idea behind the strategy is that we are trying to produce an 
empty clause, so it might be a good idea to prefer inferences that produce shorler clauses. 
Resolving a unit sentence (such as P) with any other sentence (such as 1P V 1 Q  V R) 
always yields a clause (in this case, 1 Q  V R) that is shorter than the other clause. When 
the unit preference strategy was first tried for propositional inference in 1964, it led to a 
dramatic speedup, making it feasible to prove theorems that could not be handled without 
the preference. Unit preference by itself does not, however, reduce the branching factor in 
medium-sized problems enough to make them solvable by resolution. It is, nonetheless, a 
useful heuristic that can be combined with other strategies. 

UNIT RESOLUTION Unit resolution is a restricted form of resolution in which every resolution step must 
involve a unit clause. Unit resolution is incomplete in general, but complete for Horn knowl- 
edge bases. Unit resolution proofs on Horn knowledge bases resemble forward chaining. 

Set of support 

Preferences that try certain resolutions first are helpful, but in general it is morle effective 
to try to eliminate some potential resolutions altogether. The set-of-support strategy does 

SETOFSUPPORT just that. It starts by identifying a subset of the sentences called the set of support. Every 
resolution combines a s~entence from the set of support with another sentence anld adds the 
resolvent into the set of support. If the set of support is small relative to the whole lmowledge 
base, the search space will be reduced dramatically. 

We have to be careful with this approach, because a bad choice for the set of support 
will make the algorithm incomplete. However, if we choose the set of support S so that 
the remainder of the sentences are jointly satisfiable, then set-of-support resoluti~on will be 
complete. A common approach is to use the negated query as the set of support, on the 
assumption that the original knowledge base is consistent. (After all, if it is not consistent, 
then the fact that the query follows from it is vacuous.) The set-of-support strategy has the 
additional advantage of generating proof trees that are often easy for humans to understand, 
because they are goal-directed. 

Input resolution 

INPUTFIESOLUTION In the input resolution strategy, every resolution combines one of the input sentences (from 
the KB or the query) witlh some other sentence. The proof in Figure 9.1 1 uses only input res- 
olutions and has the characteristic shape of a single "spine" with single sentences combining 
onto the spine. Clearly, the space of proof trees of this shape is smaller than the space of all 
proof graphs. In Horn knowledge bases, Modus Ponens is a kind of input resolutioln strategy, 
because it combines an implication from the original KB with some other sentences. Thus, it 
is no surprise that input resolution is complete for knowledge bases that are in Horn form, but 

LINEAR RESOLUTION incomplete in the general case. The linear resolution strategy is a slight generalization that 
allows P and Q to be resolved together either if P is in the original KB or if P is an ancestor 
of Q in the proof tree. Linear resolution is complete. 
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Subsumption 

SUBSUMPTION The subsumption method eliminates all sentences that are subsumed by (i.e., more specific 
than) an existing sentence in the KB. For example, if P ( x )  is in the KB, then there is no sense 
in adding P(A)  and even less sense in adding P(A)  V Q(B). Subsumption helps keep the 
KB small, and thus helps keep the search space small. 

Theorem provers 

Theorem provers (also known as automated reasoners) differ from logic programming lan- 
guages in two ways. First, most logic programming languages handle only Horn clauses, 
whereas theorem provers accept full first-order logic. Second, Prolog programs intertwine 
logic and control. The programmer's choice A : - B, C instead of A : - C, % affects 
the execution of the program. In most theorem provers, the syntactic form chosen for sen- 
tences does not affect the results. Theorem provers still need control information to operate 
efficiently, but that information is usually kept distinct from the knowledge base, rather than 
being part of the knowledge representation itself. Most of the research in theorem provers 
involves finding control strategies that are generally useful, as well as increasing the speed. 

Design of a theorem prover 

In this section, we describe the theorem prover OTTER (Organized Techniques for Theorem- 
proving and Effective Research) (McCune, 1992), with particular attention to its control strat- 
egy. In preparing a problem for OTTER, the user must divide the knowledge into four parts: 

A set of clauses known as the set of support (or sos), which defines the important 
facts about the problem. Every resolution step resolves a member of the set of support 
against another axiom, so the search is focused on the set of support. 

a A set of usable axioms that are outside the set of support. These provide background 
knowledge about the problem area. The boundary between what is part of the problem 
(and thus in sos) and what is background (and thus in the usable axioms) is up to the 
user's judgment. 

A set of equations known as rewrites or demodulators. Although demodulators are 
equations, they are always applied in the left to right direction. Thus, they define a 
canonical form into which all terms will be simplified. For example, the demodulator 
x + 0 = x says that every term of the form x + 0 should be replaced by the term x. 

a A set of parameters and clauses that defines the control strategy. In particular, the user 
specifies a heuristic function to control the search and a filtering function to eliminate 
some subgoals as uninteresting. 

OTTER works by continually resolving an element of the set of support against one of the 
usable axioms. Unlike Prolog, it uses a form of best-first search. Its heuristic function rnea- 
sures the "weight" of each clause, where lighter clauses are preferred. The exact choice of 
heuristic is up to the user, but generally, the weight of a clause should be correlated with its 
size or difficulty. Unit clauses are treated as light; the search can thus be seen as a generaliza- 
tion of the unit preference strategy. At each step, OTTER moves the "lightest" clause in the 
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set of support to the usable list and adds to the set of support some immediate conlsequences 
of resolving the lightest clause with elements of the usable list. OTTER halts when it has 
found a refutation or when there are no more clauses in the set of support. The algorithm is 
shown in more detail in Figure 9.14. 

procedure OTTER(SOS, usable) 
inputs: sos, a set of support-clauses defining the problem (a global variable) 

usable, background knowledge potentially relevant to the problem 

repeat 
clause c the lightest member of sos 
move clause from sos to usable 
P R O C E S S ( I N F E R ( C ~ ~ ~ ~ ~ ,  usable), sos) 

until sos = [I or a refutation has been found 

function I ~ ~ ~ ~ ( c l a u s e ,  usable) returns clauses 

resolve clause with each member of usable 
return the resulting clauses after applying FILTER 

/ procedure PRocEss(ciauses, sos) 

for each clause in clauses do 
clause + SIMPLIFY(C~~US~)  
merge identical literals 
discard clause if it is a tautology 
sos +- [clause 1 sos] 
if clause has no literals then a refutation has been found 
if clause has one literal then look for unit refutation 

Figure 9.14 Sketch of the OTTER theorem prover. Heuristic control is applied in the 
selection of the "lightest" clause and in the FILTER function that eliminates uninteresting 
clauses from consideration. 

Extending Prolog 

An alternative way to build a theorem prover is to start with a Prolog compiler and extend it 
to get a sound and complete reasoner for full first-order logic. This was the approach taken 
in the Prolog Technology Theorem Prover, or PTTP (Stickel, 1988). PTTP includes five 
significant changes to Prolog to restore completeness and expressiveness: 

The occurs check is put back into the unification routine to make it sound. 

The depth-first search is replaced by an iterative deepening search. This makes the 
search strategy complete and takes only a constant factor more time. 

0 Negated literals (such as l P ( x ) )  are allowed. In the implementation, there are two 
separate routines, one trying to prove P and one trying to prove 1P. 
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a A clause with n atoms is stored as n different rules. For example, A -e B A C would 
also be stored as 1B + C A ?A and as 4' + B A ?A. This technique, known as 

LOCKING locking, means that the current goal need be unified with only the head of each clause, 
yet it still allows for proper handling of negation. 

a Inference is made complete (even for non-Horn clauses) by the addition of the linear 
input resolution rule: If the current goal unifies with the negation of one of the goals on 
the stack, then that goal can be considered solved. This is a way of reasoning by con- 
tradiction. Suppose the original goal is P and this is reduced by a series of inferences 
to the goal 1P .  This establishes that 1 P  + P, which is logically equivalent to P. 

Despite these changes, PTTP retains the features that make Prolog fast. Unifications are still 
done by modifying variables directly, with unbinding done by unwinding the trail during 
backtracking. The search strategy is still based on input resolution, meaning that every reso- 
lution is against one of the clauses given in the original statement of the problem (rather than 
a derived clause). This makes it feasible to compile all the clauses in the original statement 
of the problem. 

The main drawback of PTTP is that the user has to relinquish all control over the search 
for solutions. Each inference rule is used by the system both in its original form and in the 
contrapositive form. This can lead to unintuitive searches. For example, consider the rule 

As a Prolog rule, this is a reasonable way to prove that two f terms are equal. But PTTP 
would also generate the contrapositive: 

It seems that this is a wasteful way to prove that any two terms x and a are different. 

Theorem provers as assistants 

So far, we have thought of a reasoning system as an independent agent that has to make 
decisions and act on its own. Another use of theorem provers is as an assistant, providing 
advice to, say, a mathematician. In this mode the mathematician acts as a supervisor, mapping 
out the strategy for determining what to do next and asking the theorem prover to fill in 
the details. This alleviates the problem of semi-decidability to some extent, because the 
supervisor can cancel a query and try another approach if the query is taking too much time. 

PROOF-CHECKER A theorem prover can also act as a proof-checker, where the proof is given by a human as a 
series of fairly large steps; the individual inferences required to show that each step is sound 
are filled in by the system. 

SOCRATIC 
REASONER A Socratic reasoner is a theorem prover whose ASK function is incomplete, but which 

can always arrive at a solution if asked the right series of questions. Thus, Socratic reasoners 
make good assistants, provided that there is a supervisor to make the right series of calls to 
ASK. ONTIC (McAllester, 1989) is a Socratic reasoning system for mathematics. 



Section 9.5. Resolution 309 

Practical uses of theorem provers 

Theorem provers have come up with novel mathematical results. The SAM (Semi-Automated 
Mathematics) program was the first, proving a lemma in lattice theory (Guard et al., 1969). 
The AURA program has also answered open questions in several areas of mathematics (Wos 
and Winker, 1983). The Boyer-Moore theorem prover (Boyer and Moore, 1979) has been 
used and extended over many years and was used by Natarajan Shankar to give the first fully 
rigorous formal proof of Godel's Incompleteness Theorem (Shankar, 1986). The OTTER pro- 
gram is one of the strongest theorem provers; it has been used to solve several operll questions 

ROBBNSALGEBRA in combinatorial logic. The most famous of these concerns Robbins algebra. In 1933, Her- 
bert Robbins proposed a simple set of axioms that appeared to define Boolean algebra, but no 
proof of this could be found (despite serious work by several mathematicians including Al- 
fred Tarski himself). On October 10, 1996, after eight days of computation, EQP (a version 
of OTTER) found a proof (McCune, 1997). 

VERIFICATION Theorem provers can be applied to the problems involved in the verificatioll and syn- 
SYNTHIFSIS thesis of both hardware and software, because both domains can be given correct axiom- 

atizations. Thus, theorem proving research is carried out in the fields of hardware design, 
programming languages, and software engineering-not just in AI. In the case of software, 
the axioms state the properties of each syntactic element of the programming language. (Rea- 
soning about programs is quite similar to reasoning about actions in the situation calculus.) 
An algorithm is verified by showing that its outputs meet the specifications for all inputs. The 
RSA public key encryption algorithm and the Boyer-Moore string-matching algorithm have 
been verified this way (Boyer and Moore, 1984). In the case of hardware, the axioms describe 
the interactions between signals and circuit elements. (See Chapter 8 for an example.) The 
design of a 16-bit adder has been verified by AURA (Wojcik, 1983). Logical reasoners de- 
signed specially for verification have been able to verify entire CPUs, including th~eir timing 
properties (Srivas and Bickford, 1990). 

The formal synthesis of algorithms was one of the first uses of theorem provers, as 
outlined by Cordell Green (1969a), who built on earlier ideas by Simon (1963). The idea 
is to prove a theorem to the effect that "there exists a program p satisfying a cert,sin speci- 
fication." If the proof is constrained to be constructive, the program can be extracted. Al- 

DEDUCTIVE 
SYNTHESIS though f ~ ~ l l y  automated dleductive synthesis, as it is called, has not yet become feasible for 

general-purpose programming, hand-guided deductive synthesis has been successful in de- 
signing several novel and sophisticated algorithms. Synthesis of special-purpose programs is 
also an active area of research. In the area of hardware synthesis, the AURA theorem prover 
has been applied to design circuits that are more compact than any previous design (Woj- 
ciechowsh and Wojcik, 1983). For many circuit designs, propositional logic is sufficient 
because the set of interesting propositions is fixed by the set of circuit elements. 7'he appli- 
cation of propositional inference in hardware synthesis is now a standard technique having 
many large-scale deployments (see, e.g., Nowick et al. (1993)). 

These same techniques are now starting to be applied to software verification as well, 
by systems such as the SPIN model checker (Holzmann, 1997). For example, the Remote 
Agent spacecraft control program was verified before and after flight (Havelund et al., 2000). 
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We have presented an analysis of logical inference in first-order logic and a number of algo- 
rithms for doing it. 

A first approach uses inference rules for instantiating quantifiers in order to proposi- 
tionalize the inference problem. Typically, this approach is very slow. 

The use of unification to identify appropriate substitutions for variables eliminates the 
instantiation step in first-order proofs, making the process much more efficient. 

A lifted version of Modus Ponens uses unification to provide a natural and powerful 
inference rule, generalized Modus Ponens. The forward chaining and backward 
chaining algorithms apply this rule to sets of definite clauses. 

Generalized Modus Ponens is complete for definite clauses, although the entailment 
problem is semidecidable. For Datalog programs consisting of function-free definite 
clauses, entailment is decidable. 

Forward chaining is used in deductive databases, where it can be combined with re- 
lational database operations. It is also used in production systems, which perform 
efficient updates with very large rule sets. 

Forward chaining is complete for Datalog programs and runs in polynomial time. 

Backward chaining is used in logic programming systems such as Prolog, which em- 
ploy sophisticated compiler technology to provide very fast inference. 

Backward chaining suffers from redundant inferences and infinite loops; these can be 
alleviated by memoization. 

The generalized resolution inference rule provides a complete proof system for first- 
order logic, using knowledge bases in conjunctive normal form. 

Several strategies exist for reducing the search space of a resolution system without 
compromising completeness. Efficient resolution-based theorem provers have been 
used to prove interesting mathematical theorems and to verify and synthesize software 
and hardware. 

B IBL~OGRAPHICAL AND HISTORICAL NOTES 

Logical inference was studied extensively in Greek mathematics. The type of inference most 
SYLLOGISM carefully studied by Aristotle was the syllogism, which is a kind of inference rule. Aristotle's 

syllogisms did include elements of first-order logic, such as quantification, but were restricted 
to unary predicates. Syllogisms were categorized by "figures" and "moods," depending on the 
order of the terms (which we would call predicates) in the sentences, the degree of generality 
(which we would today interpret through quantifiers) applied to each term, and whether each 
term is negated. The most fundamental syllogism is that of the first mood of the first figure: 
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A11 S are M. 
All M are P. 
Therefore, all S are P 

Aristotle tried to prove the validity of other syllogisn~s by "reducing" them to those of the 
first figure. He was much less precise in describing what this "reduction" should iwvolve than 
he was in characterizing the syllogistic figures and moods themselves. 

Gottlob Frege, who developed full first-order logic in 1879, based his system of in- 
ference on a large collection of logically valid schemas plus a single inference rule, Modus 
Ponens. Frege took advantage of the fact that the effect of an inference rule of the form "From 
P, infer Q" can be simulated by applying Modus Ponens to P along with a logically valid 
schema P =+ Q. This '%xiomaticn style of exposition, using Modus Ponens plus a number 
of logically valid schemas, was employed by a number of logicians after Frege; most notably, 
it was used in Principia Mathematics (Whitehead and Russell, 1910). 

Inference rules, as distinct from axiom schemas, were the focus of the natural deduc- 
tion approach, introduced by Gerhard Gentzen (1934) and by Stanislaw JaSkowsld (1934). 
Natural deduction is called "natural" because it does not require conversion to (unread- 
able) normal form and because its inference rules are intended to appear natural to hu- 
mans. Prawitz (1965) offers a book-length treatment of natural deduction. Gallier (1986) 
uses Gentzen's approach to expound the theoretical underpilinings of automated de~duction. 

The invention of clausal form was a crucial step in the development of a deep mathe- 
matical analysis of first-order logic. Whitehead and Russell (1910) expounded the so-called 
rules of passage (the actual term is from Herbrand (1930)) that are used to move quantifiers 
to the front of formulas. tSkolem constants and Skolem functions were introduced, appropri- 
ately enough, by Thoralf Skolem (1920). The general procedure for skolemization is given 
by Skolem (1928), along with the important notion of the Herbrand universe. 

Herbrand's theorem, named after the French logician Jacques Herbrand (1930), has 
played a vital role in the development of automated reasoning methods, both before and after 
Robinson's introduction of resolution. This is reflected in our reference to the "IHerbrand 
universe" rather than the "Skolem universe," even though Skolem really invented the concept. 
Herbrand can also be regarded as the inventor of unification. Godel (1930) built on the ideas 
of Skolem and Herbrand to show that first-order logic has a con~plete proof procedure. Alan 
Turing (1936) and Alonzo Church (1936) simultaneously showed, using very different proofs, 
that validity in first-order logic was not decidable. The excellent text by Enderton (1972) 
explains all of these results in a rigorous yet moderately understandable fashion. 

Although McCarthy (1958) had suggested the use of first-order logic for representa- 
Ition and reasoning in AI, the first such systems were developed by logicians interested in 
]mathematical theorem proving. It was Abraham Robinson who proposed the use of propo- 
sitionalization and Herbrand's theorem, and Gilmore (1960) who wrote the first program 
based on this approach. Davis and Putnam (1960) used clausal form and produced a program 
that attempted to find refutations by substituting members of the Herbrand universe for vari- 
ables to produce ground clauses and then looking for propositional inconsistencies arnong the 
ground clauses. Prawitz (1960) developed the key idea of letting the quest for propositional 
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inconsistency drive the search process, and generating terms from the Herbrand universe only 
when it was necessary to do so in order to establish propositional inconsistency. After fur- 
ther development by other researchers, this idea led J. A. Robinson (no relation) to develop 
the resolution method (Robinson, 1965). The so-called inverse method developed at about 
the same time by the Soviet researcher S. Maslov (1964, 1967), based on somewhat differ- 
ent principles, offers similar computational advantages over propositionalization. Wolfgang 
Bibel's (1981) connection method can be viewed as an extension of this approach. 

After the development of resolution, work on first-order inference proceeded in several 
different directions. In AI, resolution was adopted for question-answering systems by Cordell 
Green and Bertram Raphael (1968). A somewhat less formal approach was taken by Carl He- 
witt (1969). His PLANNER language, although never fully implemented, was a precursor to 
logic programming and included directives for forward and backward chaining and for nega- 
tion as failure. A subset known as MICRO-PLANNER (Sussman and Winograd, 1970) was 
implemented and used in the SHRDLU natural language understanding system (Winograd, 
1972). Early A1 implementations put a good deal of effort into data structures that would al- 
low efficient retrieval of facts; this work is covered in A1 programming texts (Charniak et al., 
1987; Norvig, 1992; Forbus and de Kleer, 1993). 

By the early 1970s, forward chaining was well established in A1 as an easily under- 
standable alternative to resolution. It was used in a wide variety of systems, ranging from 
Nevins's geometry theorem prover (Nevins, 1975) to the R1 expert system for VAX config- 
uration (McDermott, 1982). A1 applications typically involved large numbers of rules, so 
it was important to develop efficient rule-matching technology, particularly for incremental 
updates. The technology for production systems was developed to support such applica- 
tions. The production system language OPS-5 (Forgy, 1981; Brownston et al., 1985) was 
used for R l  and for the SOAR cognitive architecture (Laird et al., 1987). OPS-5 incorpo- 
rated the rete match process (Forgy, 1982). SOAR, which generates new rules to cache the 
results of previous computations, can handle very large rule sets--over 8,000 rules in the case 
of the TACAIR-SOAR system for controlling simulated fighter aircraft (Jones et al., 1998). 
CLIPS (Wygant, 1989) was a C-based production system language developed at NASA that 
allowed better integration with other software, hardware, and sensor systems and was used 
for spacecraft automation and several military applications. 

The area of research known as deductive databases has also contributed a great deal 
to our understanding of forward inference. It began with a workshop in Toulouse in 1977, 
organized by Jack Minker, that brought together experts in logical inference and database 
systems (Gallaire and Minker, 1978). A recent historical survey (Ramakrishnan and Ullman, 
1995) says, "Deductive [database] systems are an attempt to adapt Prolog, which has a 'small 
data' view of the world, to a 'large data' world." Thus, it aims to meld relational database 
technology, which is designed for retrieving large sets of facts, with Prolog-based inference 
technology, which typically retrieves one fact at a time. Texts on deductive databases include 
Ullman (1989) and Ceri et al. (1990). 

Influential work by Chandra and Hare1 (1980) and Ullman (1985) led to the adoption of 
Datalog as a standard language for deductive databases. "Bottom-up" inference, or forward 
chaining, also became the standard-partly because it avoids the problems with nontermi- 



Section 9.6. Summary 313 

nation and redundant computation that occur with backward chaining and partly because it 
has a more natural implementation in terms of the basic relational database operations. The 
development of the magic sets technique for rule rewriting by Bancilhon et al. (1986) al- 
lowed forward chaining to borrow the advantage of goal-directedness from backward chain- 
ing. Equalizing the arms race, tabled logic programming methods (see page 313) borrow the 
advantage of dynamic programming from forward chaining. 

Much of our understanding of the complexity of logical inference has come from the 
deductive database community. Chandra and Merlin (1977)1 first showed that matching a 

COMJllNCTlVE 
QUERY single nonrecursive rule (a conjunctive query in database terminology) can be NP-hard. 
DATACOMPLEXITY Kuper and Vardi (1993) proposed data complexity-that is, complexity as a function of 

database size, viewing rule size as constant-as a suitable measure for query answering. 
Gottlob et al. (1999b) discuss the connection between conjunctive queries and constraint 
satisfaction, showing how hypertree decomposition can optimize the matching process. 

As mentioned earlier, backward chaining for logical inference appeared in Hewitt's 
PLANNER language (1969). Logic programming per se evolved independently of this ef- 

SL-RESOLUTION fort. A restricted form of linear resolution called SL-resolution was developed by Kowalsh 
and Kuehner (1971), building on Loveland's model elimination technique (1968); when ap- 

SLD-RESOLUTION plied to definite clauses, it becomes SLD-resolution, which lends itself to the interpretation 
of definite clauses as programs (Kowalski, 1974, 1979a, 1979b). Meanwhile, in 1972, the 
French researcher Alain Colmerauer had developed and implemented Prolog for the purpose 
of parsing natural language-Prolog7s clauses were intended initially as context-free gram- 
mar rules (Roussel, 1975; Colmerauer et al., 1973). Much of the theoretical background 
for logic programming was developed by Kowalski, worhng with Colmerauer. The semantic 
definition using least fixed points is due to Van Einden and Kowalski (1976). Kowalski (1988) 
and Cohen (1988) provide good historical overviews of the origins of Prolog. Foundations 
of Logic Programming (Lloyd, 1987) is a theoretical analysis of the underpinnings of Prolog 
and other logic programming languages. 

Efficient Prolog compilers are generally based on the Warren Abstract Machine (WAM) 
model of computation developed by David H. D. Warren (1983). Van Roy (1990) showed 
that the application of additional compiler techniques, such as type inference, made Prolog 
programs competitive with C programs in terms of speed. The Japanese Fifth Generation 
project, a 10-year research effort beginning in 1982, was based completely on Prolog as the 
means to develop intelligent systems. 

Methods for avoiding unnecessary looping in recursive logic programs were developed 
independently by Smith et al. (1986) and Tarnaki and Sato (1986). The latter paper also 
included memoization far logic programs, a method developed extensively as tabled logic 
programming by David S. Warren. Swift and Warren (1994) show how to extend rhe WAM 
to handle tabling, enabling Datalog programs to execute an order of magnitude faster than 
forward-chaining deductive database systems. 

Early theoretical mork on constraint logic programming was done by Jaffar and Lassez 
(1987). Jaffar et al. (1992a) developed the CLP(R) system for handling real-valued con- 
straints. Jaffar et al. (1992b) generalized the WAM to produce the CLAM (Constraint Logic 
Abstract Machine) for specifying implementations of CLP. Ait-Kaci and Podelslci (1993) 
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describe a sophisticated language called LIFE, which combines CLP with functional pro- 
gramming and with inheritance reasoning. Kohn (1991) describes an ambitious project to 
use constraint logic programming as the foundation for a real-time control architecture, with 
applications to fully automatic pilots. 

There are a number of textbooks on logic programming and Prolog. Logic for Problem 
Solving (Kowalski, 1979b) is an early text on logic programming in general. Prolog texts in- 
clude Clocksin and Mellish (1994), Shoham (1994), and Bratko (2001). Marriott and Stuckey 
(1998) provide excellent coverage of CLP. Until its demise in 2000, the Journal of Logic Pro- 
gramming was the journal of record; it has now been replaced by Theory and Practice of 
Logic Programming. Logic programming conferences include the International Conference 
on Logic Programming (ICLP) and the International Logic Programming Symposium (ILPS). 

Research into mathematical theorem proving began even before the first complete 
first-order systems were developed. Herbert Gelernter's Geometry Theorem Prover (Gelern- 
ter, 1959) used heuristic search methods combined with diagrams for pruning false subgoals 
and was able to prove some quite intricate results in Euclidean geometry. Since that time, 
however, there has not been very much interaction between theorem proving and AI. 

Early work concentrated on completeness. Following Robinson's seminal paper, the 
demodulation and paramodulation rules for equality reasoning were introduced by Wos et al. 
(1967) and Wos and Robinson (1968), respectively. These rules were also developed indepen- 
dently in the context of term rewriting systems (Knuth and Bendix, 1970). The incorporation 
of equality reasoning into the unification algorithm is due to Gordon Plotkin (1972); it was 
also a feature of QLISP (Sacerdoti et al., 1976). Jouannaud and Kirchner (1991) survey equa- 
tional unification from a term rewriting perspective. Efficient algorithms for standard unifi- 
cation were developed by Martelli and Montanari (1976) and Paterson and Wegman (1978). 

In addition to equality reasoning, theorem provers have incorporated a variety of special- 
purpose decision procedures. Nelson and Oppen (1979) proposed an influential scheme for 
integrating such procedures into a general reasoning system; other methods include Stickel's 
(1985) "theory resolution" and Manna and Waldinger's (1986) "special relations." 

A number of control strategies have been proposed for resolution, beginning with the 
unit preference strategy (Wos et al., 1964). The set of support strategy was proposed by Wos 
et al. (1965), to provide a degree of goal-directedness in resolution. Linear resolution first 
appeared in Loveland (1970). Genesereth and Nilsson (1987, Chapter 5) provide a short but 
thorough analysis of a wide variety of control strategies. 

Guard et al. (1969) describe the early SAM theorem prover, which helped to solve an 
open problem in lattice theory. Wos and Winker (1983) give an overview of the contributions 
of the AURA theorem prover toward solving open problems in various areas of mathematics 
and logic. McCune (1992) follows up on this, recounting the accomplishments of AURA'S 

successor, OTTER, in solving open problems. Weidenbach (2001) describes SPASS, one of 
the strongest current theorem provers. A Computational Logic (Boyer and Moore, 1979) is 
the basic reference on the Boyer-Moore theorem prover. Stickel (1988) covers the Prolog 
Technology Theorem Prover (PTTP), which combines the advantages of Prolog compilation 
with the completeness of model elimination (Loveland, 1968). SETHEO (Letz et al., 1992) 
is another widely used theorem prover based on this approach; it can perform several million 
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inferences per second on 2000-model workstations. LEANTAP (Beckert and Posegga, 1995) 
is an efficient theorem prover implemented in only 25 lines of Prolog. 

Early work in automated program synthesis was done by Simon (1963), Green (1969a), 
and Manna and Waldinger (1971). The transformational system of Burstall and Darling- 
ton (1977) used equational reasoning for recursive program synthesis. KIDS (Smith, 1990, 
1996) is one of the strortgest modem systems; it operates as an expert assistant. Manna and 
Waldinger (1992) give a tutorial introduction to the current state of the art, with emphasis on 
their own deductive approach. Automating Software Design (Lowry and McCartney, 1991) 
collects a number of papers in the area. The use of logic in hardware design is surveyed 
by Kern and Greenstreet (1999); Clarke et al. (1999) cover model checking for hardware 
verification. 

Computability and Logic (Boolos and Jeffrey, 1989) is a good reference on complete- 
ness and undecidability. Many early papers in mathematical logic are to be foun~cl in From 
Frege to Godel: A Source Book in Mathematical Logic (van Heijenoort, 1967). Tlhe journal 
of record for the field of pure mathematical logic (as opposed to automated deduction) is 
The Journal of Symbolic Logic. Textbooks geared toward automated deduction include the 
classic Symbolic Logic and Mechanical Theorem Proving (Chang and Lee, 1973), as well as 
more recent works by Wos et al. (1992), Bibel (1993), and Kailfmann et al. (2000). The an- 
thology Automation of Reasoning (Siekmann and Wrightson, 1983) includes many important 
early papers on automated deduction. Other historical surveys h~ave been written by Loveland 
(1984) and Bundy (1999). The principal journal for the field of theorem proving is the Jour- 
nal of Automated Reasoning; the main conference is the annual Conference on Automated 
Deduction (CADE). Research in theorem proving is also strongly related to the use of logic in 
analyzing programs and programming languages, for which the principal conference is Logic 
in Computer Science. 

9.1 Prove from first prjlnciples that Universal Instantiation is sound and that Existential 
Instantiation produces an inferentially equivalent knowledge base. 

9.2 From Likes (Jerry, Icecream) it seems reasonable to infer 3 x Likes ( x ,  Ice Cream.). 
EXISTENTIAL INTRODU,~TION Write down a general inference rule, Existential Introduction, that sanctions this inference. 

State carefully the conditions that must be satisfied by the variables and terms involvIcd. 

'9.3 Suppose a knowledge base contains just one sentence, 3 x AsHzghAs (x, Everest). 
'Which of the following are legitimate results of applying Existential Instantiation? 

a. AsHzghAs(Everest, Everest). 

b. AsHighAs (Kilimar~~aro, Everest). 

c. AsHighAs (Kzlimanjaro, Everest) A AsHighAs (BenNevis, Everest) 
(after two appli~atio~ns). 
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9.4 For each pair of atomic sentences, give the most general unifier if it exists: 

a. P(A, B, B), P(x, y, 2). 
b. Q(Y, G(A, B)) ,  &(G(X? 4 1  Y). 
c.  Older(Father(y), y), Older(Father(x), John). 
d. Knows(Father(y), y), Knows(x, x). 

9.5 Consider the subsumption lattices shown in Figure 9.2. 

a. Construct the lattice for the sentence Employs(Mother(John), Father(Richard)). 
b. Construct the lattice for the sentence Employs(IBM, y) ("Everyone works for IBM) .  

Remember to include every kind of query that unifies with the sentence. 

c.  Assume that STORE indexes each sentence under every node in its subsumption lattice. 
Explain how FETCH should work when some of these sentences contain variables; use 
as examples the sentences in (a) and (b) and the query Employs(x, Father(x)). 

9.6 Suppose we put into a logical database a segment of the U.S. census data listing the age, 
city of residence, date of birth, and mother of every person, using social security numbers as 
identifying constants for each person. Thus, George's age is given by Age (443-65- 1282,56). 
Which of the indexing schemes S 1-S5 following enable an efficient solution for which of the 
queries Q1-Q4 (assuming normal backward chaining)? 

0 S1: an index for each atom in each position. 

Q S2: an index for each first argument. 

0 S3: an index for each predicate atom. 

0 S4: an index for each combination of predicate and first argument. 

0 S5: an index for each combination of predicate and second argument and an index for 
each first argument (nonstandard). 

0 Ql: Age(443-44-4321, x) 
0 Q2: ResidesIn(x, Houston) 
0 Q3: Mother(x, y) 

0 Q4: Age(x, 34) A ResidesIn(x, Tiny Town USA) 

9.7 One might suppose that we can avoid the problem of variable conflict in unification 
during backward chaining by standardizing apart all of the sentences in the knowledge base 
once and for all. Show that, for some sentences, this approach cannot work. (Hint: Consider 
a sentence, one part of which unifies with another.) 

9.8 Explain how to write any given 3-SAT problem of arbitrary size using a single first-order 
definite clause and no more than 30 ground facts. 

9.9 Write down logical representations for the following sentences, suitable for use with 
Generalized Modus Ponens: 
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a. Horses, cows, and pigs are mammals. 

b. An offspring of a horse is a horse. 

c. Bluebeard is a horse. 

d. Bluebeard is Charlie's parent. 

e. Offspring and parent are inverse relations. 

f. Every mammal has a parent. 

9.10 In this question we will use the sentences you wrote in Exercise 9.9 to answer a ques- 
tion using a backward-chaining algorithm. 

a. Draw the proof tree generated by an exhaustive backward-chaining algorithm for the 
query 3 h Horse (1%) , where clauses are matched in the order given. 

b. What do you notice about this domain? 

c. How many solutions for h actually follow from your sentences? 

d. Can you think of a way to find all of them? (Hint: You might want to consult Smith 
et al. (1986).) 

9.11 A popular childre11's riddle is "Brothers and sisters have I none, but that man's father 
is my father's son." Use the rules of the family domain (Chapter 8) to show who that man is. 
You may apply any of the: inference methods described in this chapter. Why do you think that 
this riddle is difficult? 

9.12 Trace the execution of the backward chaining algorithm in Figure 9.6 when it is applied 
to solve the crime problem. Show the sequence of values taken on by the goals variable, and 
arrange them into a tree. 

9.13 The following Prollog code defines a predicate P: 

a. Showprooftreesandsolutionsforthequeries~(~, [1,2,3]) a n d p ( 2 ,  [ 1 , ~ , 3 ] ) .  

b. What standard list operation does P represent? 

/WF~ 9.14 In this exercise, we will look at sorting in Prolog. 

a. Write Prolog clauses that define the predicate sorted ( L  ) , which is true if and only if 
list L is sorted in ascending order. 

b. Write a Prolog definition for the predicate perm (L , M )  , which is true if and 113nly if L 

is a permutation of bT. 

c. Define sort ( L ,  M) ( M  is a sorted version of L) using perm and sorted. 

d. Run sort on longer and longer lists until you lose patience. What is the time complex- 
ity of your program? 

e. Write a faster sorting algorithm, such as insertion sort or quicksort, in Prolog. 
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1-p 9.15 In this exercise, we will look at the recursive application of rewrite rules, using logic 
programming. A rewrite rule (or demodulator in OTTER terminology) is an equation with a 
specified direction. For example, the rewrite rule x+O --+ x suggests replacing any expression 
that matches x + 0 with the expression x.  The application of rewrite rules is a central part 
of equational reasoning systems. We will use the predicate rewrite (X, Y) to represent 
rewrite rules. For example, the earlier rewrite rule is written as rewrite (X+O , X) . Some 
terms are primitive and cannot be further simplified; thus, we will write primitive ( 0 ) to 
say that 0 is a primitive term. 

a. Write a definition of a predicate simplify (x, Y) , that is true when Y is a simplified 
version of x-that is, when no further rewrite rules are applicable to any subexpression 
of Y. 

b. Write a collection of rules for the simplification of expressions involving arithmetic 
operators, and apply your simplification algorithm to some sample expressions. 

c. Write a collection of rewrite rules for symbolic differentiation, and use them along with 
your simplification rules to differentiate and simplify expressions involving arithmetic 
expressions, including exponentiation. 

9.16 In this exercise, we will consider the implementation of search algorithms in Prolog. 
Suppose that successor (x, Y )  is true when state Y is a successor of state x; and that 
goal (x)  is true when x is a goal state. Write a definition for solve (X , P) , which means 
that P is a path (list of states) beginning with X, ending in a goal state, and consisting of a 
sequence of legal steps as defined by successor. You will find that depth-first search is 
the easiest way to do this. How easy would it be to add heuristic search control? 

9.17 How can resolution be used to show that a sentence is valid? Unsatisfiable? 

9.18 From "Horses are animals," it follows that "The head of a horse is the head of an 
animal." Demonstrate that this inference is valid by carrying out the following steps: 

a. Translate the premise and the conclusion into the language of first-order logic. Use three 
predicates: HeadOf (h, x )  (meaning "h is the head of x"), Horse(x), and Animal (x) .  

b. Negate the conclusion, and convert the premise and the negated conclusion into con- 
junctive normal form. 

c. Use resolution to show that the conclusion follows from the premise. 

9.19 Here are two sentences in the language of first-order logic: 

(A):vx 3 9  (x 2 y) 

(B):jy v x  (x 1 Y) 
a. Assume that the variables range over all the natural numbers O,1,2, . . . , m and that the 

">" predicate means "is greater than or equal to." Under this interpretation, translate 
(A) and (B) into English. 

b. Is (A) true under this interpretation? 
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c. Is (B) true under this interpretation? 

d. Does (A) logically entail (B)? 
e. Does (B) logically entail (A)? 

f. Using resolution, try to prove that (A) follows from (B). Do this even if you think that 
(B) does not logically entail (A); continue until the proof breaks down and :you cannot 
proceed (if it does break down). Show the unifying substitution for each resolution step. 
If the proof fails, explain exactly where, how, and why it breaks down. 

g. Now try to prove that (B) follows from (A). 

9.20 Resolution can produce nonconstructive proofs for queries with variables, so we had 
to introduce special mechanisms to extract definite answers. Explain why this issue does not 
arise with knowledge bases containing only definite clauses. 

9.21 We said in this chapter that resolution cannot be used to generate all logical conse- 
quences of a set of sentences. Can any algorithm do this? 



KNOWLEDGE 1 0 REPIESENTATION 

In which we show how to useJirst-order logic to represent the most important 
aspects of the real world, such as action, space, time, mental events, and shopping. 

The last three chapters described the technology for knowledge-based agents: the syn- 
tax, semantics, and proof theory of propositional and first-order logic, and the implementation 
of agents that use these logics. In this chapter we address the question of what content to put 
into such an agent's knowledge base-how to represent facts about the world. 

Section 10.1 introduces the idea of a general ontology, which organizes everything in 
the world into a hierarchy of categories. Section 10.2 covers the basic categories of ob- 
jects, substances, and measures. Section 10.3 discusses representations for actions, which are 
central to the construction of knowledge-based agents, and also explains the more general 
notion of events, or space-time chunks. Section 10.4 discusses knowledge about beliefs, and 
Section 10.5 brings all the knowledge together in the context of an Internet shopping environ- 
ment. Sections 10.6 and 10.7 cover specialized reasoning systems for representing uncertain 
and changing knowledge. 

In "toy" domains, the choice of representation is not that important; it is easy to come up 
with a consistent vocabulary. On the other hand, complex domains such as shopping on 
the Internet or controlling a robot in a changing physical environment require more general 
and flexible representations. This chapter shows how to create these representations, con- 
centrating on general concepts-such as Actions, Time, Physical Objects, and Beliefs-that 
occur in many different domains. Representing these abstract concepts is sometimes called 
ontological engineering-it is related to the knowledge engineering process described in 
Section 8.4, but operates on a grander scale. 

The prospect of representing everything in the world is daunting. Of course, we won't 
actually write a complete description of everything-that would be far too much for even a 
1000-page textbook-but we will leave placeholders where new knowledge for any domain 
can fit in. For example, we will define what it means to be a physical object, and the details 
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Sets Numbers RepvesentationalObjects lntewul Places Physicalobjects Processes i I / I 
Categories Sentences Measurements Moments Things 

Times Weights Animals Agents Solid Liquid Gas I 

1 Humans 

Figure 10.1 The ulpper ontology of the world, showing the topics to be covered ]later in 
the chapter. Each arc indicates that the lower concept is a specialization of the upper one. 

of different types of objects-robots, televisions, books, or whatever-can be filled in later. 
UPPERONTOLOGY The general framework of concepts is called an upper ontology, because of the convention 

of drawing graphs with the general concepts at the top and the more specific concepts below 
them, as in Figure 10.1. 

Before considering the ontology further, we should state one important caveat. We have 
elected to use first-order logic to discuss the content and organization of knowledge. Certain 
aspects of the real world are hard to capture in FOL. The principal difficulty is that almost all 
generalizations have exceptions, or hold only to a degree. For example, although "tomatoes 
are red" is a useful rule, some tomatoes are green, yellow, or orange. Similar exceptions can 
be found to almost all the general statements in this chapter. The ability to handle e:rceptions 
and uncertainty is extremely important, but is orthogonal to the task of understanding the gen- 
eral ontology. For this reason, we will delay the discussion of exceptions until Section 10.6, 
and the more general topic of uncertain information until Chapter 13. 

Of what use is an upper ontology? Consider again the ontology for circuits in Sec- 
tion 8.4. It makes a large number of simplifying assumptions. For example, time is omitted 
completely. Signals are fixed, and do not propagate. The structure of the circuit remains 
 constant. If we wanted to make this more general, consider signals at particular times, and 
iinclude the wire lengths and propagation delays. This would allow us to simulate the timing 
properties of the circuit, and indeed such simulations are often carried out by circuit design- 
ers. We could also introduce more interesting classes of gates, for example by descrl~bing the 
technology (TTL, MOS, CMOS, and so on) as well as the input/output specification. If we 
wanted to discuss reliability or diagnosis, we would include the possibility that the structure 
of the circuit or the properties of the gates might change spontaneously. To account for stray 
capacitances, we would need to move from a purely topological representation of connectiv- 
ity to a more realistic description of geometric properties. 
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If we look at the wumpus world, similar considerations apply. Although we do include 
time, it has a very simple structure: Nothing happens except when the agent acts, and all 
changes are instantaneous. A more general ontology, better suited for the real world, would 
allow for simultaneous changes extended over time. We also used a Pit predicate to say 
which squares have pits. We could have allowed for different kinds of pits by having several 
individuals belonging to the class of pits, each having different properties. Similarly, we 
might want to allow for other animals besides wumpuses. It might not be possible to pin 
down the exact species from the available percepts, so we would need to build up a wumpus- 
world biological taxonomy to help the agent predict behavior from scanty clues. 

For any special-purpose ontology, it is possible to make changes like these to move 
toward greater generality. An obvious question then arises: do all these ontologies converge 
on a general-purpose ontology? After centuries of philosophical and computational investi- 
gation, the answer is "Possibly." In this section, we will present one version, representing 
a synthesis of ideas from those centuries. There are two major characteristics of general- 
purpose ontologies that distinguish them from collections of special-purpose ontologies: 

A general-purpose ontology should be applicable in more or less any special-purpose 
domain (with the addition of domain-specific axioms). This means that, as far as possi- 
ble, no representational issue can be finessed or brushed under the carpet. 
In any sufficiently demanding domain, different areas of knowledge must be unified, 
because reasoning and problem solving could involve several areas simultaneously. A 
robot circuit-repair system, for instance, needs to reason about circuits in terms of elec- 
trical connectivity and physical layout, and about time, both for circuit timing analysis 
and estimating labor costs. The sentences describing time therefore must be capable 
of being combined with those describing spatial layout and must work equally well for 
nanoseconds and minutes and for angstroms and meters. 

After we present the general ontology we use it to describe the Internet shopping domain. 
This domain is more than adequate to exercise our ontology, and leaves plenty of scope for 
the reader to do some creative knowledge representation of his or her own. Consider for 
example that the Internet shopping agent must know about myriad subjects and authors to 
buy books at Amazon.com, about all sorts of foods to buy groceries at Peapod.com, and 
about everything one might find at a garage sale to hunt for bargains at ~ b a ~ . c o m . '  

10.2 CATEGORIES AND OBJECTS 

CATEGORIES The organization of objects into categories is a vital part of knowledge representation. Al- 
though interaction with the world takes place at the level of individual objects, much rea- 
soning takes place at the level of categories. For example, a shopper might have the goal of 
buying a basketball, rather than a particular basketball such as BB9. Categories also serve 
to make predictions about objects once they are classified. One infers the presence of certain 

We apologize if, due to circumstances beyond our control, some of these online stores are no longer functioning 
by the time you read this. 
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objects from perceptual input, infers category membership from the perceived properties of 
the objects, and then uses category information to make predictions about the objects. For 
example, from its green, mottled skin, large size, and ovoid shape, one can infer that an object 
is a watermelon; from this, one infers that it would be useful for fruit salad. 

There are two chalices for representing categories in first-order logic: predicates and 
objects. That is, we can use the predicate BasketbalE(b), or we can reify the c,ategory as 
an object, Basketballs. We could then say Member(b, Basketballs) (which we will abbre- 
viate as b E Basketballs) to say that b is a member of the category of basketballs. We say 
Subset(Basketballs, Balls) (abbreviated as Basketballs c Balls) to say that Basketballs is 
a subcategory, or subset, of Balls. So you can think of a category as being the set of its mem- 
bers, or you can think of it as a more complex object that just happens to have the Member 
and Subset relations defined for it. 

INHERIIANCE Categories serve to organize and simplify the knowledge base through inheritance. If 
we say that all instances of the category Food are edible, and if we assert that Fruit is a 
subclass of Food and Apples is a subclass of Fruit, then we know that every apple is edible. 
We say that the individual apples inherit the property of edibility, in this case from their 
membership in the Food category. 

TAXONOMY Subclass relations organize categories into a taxonomy, or taxonomic hierarchy. Tax- 
onomies have been used explicitly for centuries in technical fields. For example, systematic 
biology aims to provide a taxonomy of all living and extinct species; library science has de- 
veloped a taxonomy of all fields of knowledge, encoded as the Dewey Decimal system; and 
tax authorities and other government departments have developed extensive taxoriornies of 
occupations and commercial products. Taxonomies are also an important aspect of general 
commonsense knowledge. 

First-order logic makes it easy to state facts about categories, either by relating objects 
to categories or by quantifying over their members: 

An object is a member of a category. For example: 
B B 9  E Basketballs 
A category is a subclass of another category. For example: 
Basketballs C Balls 
All members of a category have some properties. For example: 
x E Basketballs + Round (x) 
Members of a category can be recognized by some properties. For example: 
Orange (x) A Round ( z )  A Diameter(x)  = 9.5" A x E Balls + x E Basketballs 
A category as a whale has some properties. For example: 
Dogs E DomesticatedSpecies 

:Notice that because Dogs is a category and is a member of DomesticatedSpecies, lthe latter 
lnust be a category of categories. One can even have categories of categories of categories, 
but they are not much use. 

Although subclass a.nd member relations are the most important ones for categories, 
we also want to be able to state relations between categories that are not subclasses of each 
other. For example, if we just say that Males and Females are subclasses of Animlals. then 
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we have not said that a male cannot be a female. We say that two or more categories are 
DISJOINT disjoint if they have no members in common. And even if we know that males and females 

are disjoint, we will not know that an animal that is not a male must be a female, unless 
EXHAUSTIVE 
oECoMPoslTloN we say that males and females constitute an exhaustive decomposition of the animals. A 
PARTITION disjoint exhaustive decomposition is known as a partition. The following examples illustrate 

these three concepts: 

Disjoint ({Animals, Vegetables)) 
ExhaustiveDecomposition({Americans, Canadians, Mexicans), 

NorthAmericans) 
Partition ({Males, Females), Animals) . 

(Note that the ExhaustiveDecomposition of NorthAmericans is not a Partition, because 
some people have dual citizenship.) The three predicates are defined as follows: 

Disjoint ( s )  ++ ('d el, cz cl E s A cz E s A cl # cz + Intersection(cl , cz) = { )) 
ExhaustiveDecomposition(s, c) * ('di i E c % 3 cz ca E s A i E cz) 
Partition(s, c) @ Disjoint ( s )  A ExhaustiveDecomposition(s, C )  . 

Categories can also be defined by providing necessary and sufficient conditions for 
membership. For example, a bachelor is an unmarried adult male: 

x E Bachelors @ Unmarried(x) A x E Adults A x E Males . 
As we discuss in the sidebar on natural kinds, strict logical definitions for categories are 
neither always possible nor always necessary. 

Physical composition 

The idea that one object can be part of another is a familiar one. One's nose is part of one's 
head, Romania is part of Europe, and this chapter is part of this book. We use the general 
PartOf relation to say that one thing is part of another. Objects can be grouped into PartOf 
hierarchies, reminiscent of the Subset hierarchy: 

Part Of (Bucharest, Romania) 
PartOf (Romania, EasternEurope) 
PartOf (EasternEurope, Europe) 
PartOf (Europe, Earth) . 

The PartOf relation is transitive and reflexive; that is, 

PartOf(z, Y) A PartOf ( y ,  z )  + partof ( x ,  z )  . 
Part Of ( x ,  x )  . 

Therefore, we can conclude PartOf (Bucharest, Earth). 
COMPOSITE OBJECT Categories of composite objects are often characterized by structural relations among 

parts. For example, a biped has two legs attached to a body: 

Biped (a)  3 11,12, b Leg(ll) A Leg(1a) A Body(b) A 

PartOf ( I I ,  a )  A PartOf ( l z ,  a)  PartOf (b, a)  A 

Attached(l1, b)  A Attached(l2, b) A 

11 # 12 A ['d l3 Leg(i3) A PartOf (13, a )  * (13 = 11 v 13 = l z ) ]  . 
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The notation for "exactly two" is a little awkward; we are forced to say that there are two 
legs, that they are not the same, and that if anyone proposes a third leg, it must be the same as 
one of the other two. In Section 10.6, we will see how a formalism called description logic 
makes it easier to represent constraints like "exactly two." 

We can define a Partpartation relation analogous to the Partatzon relation for cate- 
gories. (See Exercise 10.6.) An object is composed of the parts in its PartPartition and can 
be viewed as deriving some properties from those parts. For example, the mass of a compos- 
ite object is the sum of the masses of the parts. Notice that this is not the case with categories, 
which have no mass, even though their elements might. 

It is also useful to define composite objects with definite parts but no particular struc- 
ture. For example, we might want to say, "The apples in this bag weigh two pounds." The 
temptation would be to ascribe this weight to the set of apples in the bag, but this would be 
a mistake because the set is an abstract mathematical concept that has elements buit does not 

BUNCH have weight. Instead, we need a new concept, which we will call a bunch. For example, if 
the apples are Applel, Apples, and Apples, then 

BunchOf({Applel, Apples, Apples)) 
denotes the composite object with the three apples as parts (not elements). We can then use the 
bunch as a normal, albeit unstructured, object. Notice that BzinchOf ( { x } )  = x. Fuflhermore, 
BunchOf(App1es) is the composite object consisting of all apples-not to be confilsed with 
Apples, the category or s~et of all apples. 

We can define BunchOf in terms of the PartOf relation. Obviously, each element of 
s is part of BunchOf ( s ) :  

'dx x E s + PartOf (x, BunchOf i s ) )  . 
Furthermore, BunchOf (s) is the smallest object satisfying this condition. In other words, 
BunchOf(s) must be part of any object that has all the elements of s as parts: 

'd y  ['dx z E s * PartOf ( x ,  y ) ]  + PartOf(Bunch0f ( s ) ,  y )  . 
LOGICAL 
MINIMIMION 'These axioms are an example of a general technique called logical minimizatiorn, which 

means defining an object as the smallest one satisfying certain conditions. 

Kn both scientific and commonsense theories of the world, objects have height, mass, cost, 
MEASURES and so on. The values that we assign for these properties are called measures. Ordi- 

nary quantitative measures are quite easy to represent. We imagine that the universe in- 
cludes abstract "measure objects," such as the length that is the length of this line seg- 
ment: I*. We can call this length 1.5 inches or 3.81 centimeters. Thus, 
the same length has different names in our language. Logically, this can be done by eombin- 

UNITSFUNCTION ing a units function with a number. (An alternative scheme is explored in Exercise 10.8.) If 
the line segment is called L1, we can write 

Length(L1) = Inches(l.5) = Centzmeters(3.81) . 
Conversion between units is done by equating multiples of one unit to another: 

Centimeters(2.54 x d )  = Inchesid) . 
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Some categories have strict definitions: an object is a triangle if and only if it is 
a polygon with three sides. On the other hand, most categories in the real world 
have no clear-cut definition; these are called natural kind categories. For example, 
tomatoes tend to be a dull scarlet; roughly spherical; with an indentation at the top 
where the stem was; about two to four inches in diameter; with a thin but tough 
skin; and with flesh, seeds, and juice inside. There is, however, variation: some 
tomatoes are orange, unripe tomatoes are green, some are smaller or larger than 
average, and cherry tomatoes are uniformly small. Rather than having a complete 
definition of tomatoes, we have a set of features that serves to identify objects 
that are clearly typical tomatoes, but might not be able to decide for other objects. 
(Could there be a tomato that is furry, like a peach?) 

This poses a problem for a logical agent. The agent cannot be sure that an 
object it has perceived is a tomato, and even if it were sure, it could not be cer- 
tain which of the properties of typical tomatoes this one has. This problem is an 
inevitable consequence of operating in partially observable environments. 

One useful approach is to separate what is true of all instances of a cate- 
gory from what is true only of typical instances. So in addition to the category 
Tomatoes, we will also have the category Typical( Tomatoes). Here, the Typical 
function maps a category to the subclass that contains only typical instances: 

Typical ( c )  C_ c . 
Most knowledge about natural kinds will actually be about their typical instances: 

x E Typical( Tomatoes) =+ Red(%) A Round(x)  . 

Thus, we can write down useful facts about categories without exact definitions. 
The difficulty of providing exact definitions for most natural categories was 

explained in depth by Wittgenstein (1953), in his book Philosophical Znvestiga- 
tions. He used the example of games to show that members of a category shared 
"family resemblances7' rather than necessary and sufficient characteristics. 

The utility of the notion of strict definition was also challenged by 
Quine (1953). He pointed out that even the definition of "bachelor" as an un- 
married adult male is suspect; one might, for example, question a statement such 
as "the Pope is a bachelor." While not strictly false, this usage is certainly infe- 
licitous because it induces unintended inferences on the part of the listener. The 
tension could perhaps be resolved by distinguishing between logical definitions 
suitable for internal knowledge representation and the more nuanced criteria for 
felicitous linguistic usage. The latter may be achieved by "filtering" the assertions 
derived from the former. It is also possible that failures of linguistic usage serve as 
feedback for modifying internal definitions, so that filtering becomes unnecessary. 
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Similar axioms can be written for pounds and kilograms, seconds and days, and dollars and 
cents. Measures can be used to describe objects as follows: 

D~arneter(Baslcetball1~) = Inches(9.5) . 
Li~ tPr i ce (Baske tba l1~)  = $(19) . 
d E Days + Duration(d) = Hours(24) . 

Note that $ ( I )  is not a dollar bill! One can have two dollar bills, but there is only one object 
named $(I). Note also that, while Inches(0) and Centimelers(0) refer to the same zero 
length, they are not identical to other zero measures, such as Seconds(0). 

Simple, quantitative measures are easy to represent. Other measures present more of a 
problem, because they have no agreed scale of values. Exercises have difficulty, desserts have 
deliciousness, and poems have beauty, yet numbers cannot be assigned to these qualities. One 
might, in a moment of pure accountancy, dismiss such properties as useless for the ]purpose of 
logical reasoning; or, still worse, attempt to impose a numerical scale on beauty. This would 
be a grave mistake, because it is unnecessary. The most important aspect of measures is not 
the particular numerical values, but the fact that measures can be ordered. 

Although measures are not numbers, we can still compare them using an ordering sym- 
bol such as >. For example, we might well believe that Norvig's exercises are tougher than 
Russell's, and that one scores less on tougher exercises: 

el E Exercises A ez E Exercises A Wrote(Norvig, e l )  A Wrote(Russel1, ea) =+ 
Dz&culty(ell) > Dificul ty(e2)  . 

el  E Exercises A e2 E Exercises A Dificul ty(el)  > D i ~ ~ c u l t y ( e ~ )  + 
ExpectedScore ( e l )  < ExpectedScore ( e 2 )  . 

This is enough to allow one to decide which exercises to do, even though no numerilcal values 
for difficulty were ever used. (One does, however, have to discover who wrote which exer- 
cises.) These sorts of monotonic relationships among measures form the basis for the field of 
qualitative physics, a subfield of A1 that investigates how to reason about physical systems 
without plunging into detailed equations and numerical simulations. Qualitative physics is 
discussed in the historical notes section. 

Substances and objects 

The real world can be seein as consisting of primitive objects (particles) and composilte objects 
built from them. By reasoning at the level of large objects such as apples and cars, we 
can overcome the complexity involved in dealing with vast numbers of primitive objects 
individually. There is, however, a significant portion of reality that seems to defy any obvious 

INDIVIDUI~TION individuation-division into distinct objects. We give this portion the generic name stuff. 
STUFF For example, suppose I have some butter and an aardvark in front of me. I can say there 

is one aardvark, but there is no obvious number of "butter-objects," because any part of a 
butter-object is also a butter-object, at least until we get to very small parts indeed. This is the 
major distinction between stuff and things. If we cut an aardvark in half, we do not get two 
aardvarks (unfortunately). 

The English language distinguishes clearly between stuff and things. We say "an aard- 
vark," but, except in pretentious California restaurants, one cannot say "a butter." linguists 
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COUNT NOUNS distinguish between count nouns, such as aardvarks, holes, and theorems, and mass nouns, 
MASS NOUNS such as butter, water, and energy. Several competing ontologies claim to handle this distinc- 

tion. We will describe just one; the others are covered in the historical notes section. 
To represent stuff properly, we begin with the obvious. We will need to have as objects 

in our ontology at least the gross "lumps" of stuff we interact with. For example, we might 
recognize a lump of butter as the same butter that was left on the table the night before; 
we might pick it up, weigh it, sell it, or whatever. In these senses, it is an object just like 
the aardvark. Let us call it Butters. We will also define the category Butter. Informally, 
its elements will be all those things of which one might say "It's butter," including Butters. 
With some caveats about very small parts that we will omit for now, any part of a butter-object 
is also a butter-object: 

x E Butter A PartOf ( y ,  x) + y E Butter . 
We can now say that butter melts at around 30 degrees centigrade: 

x E Butter + MeltingPoint(x, Centigrade(30)) . 
We could go on to say that butter is yellow, is less dense than water, is soft at room tempera- 
ture, has a high fat content, and so on. On the other hand, butter has no particular size, shape, 
or weight. We can define more specialized categories of butter such as UnsaltedButter, 
which is also a kind of stuff. On the other hand, the category PoundOfButter, which in- 
cludes as members all butter-objects weighing one pound, is not a substance! If we cut a 
pound of butter in half, we do not, alas, get two pounds of butter. 

INTRINSIC What is actually going on is this: there are some properties that are intrinsic: they 
belong to the very substance of the object, rather than to the object as a whole. When you 
cut a substance in half, the two pieces retain the same set of intrinsic properties-things 

EXTRINSIC like density, boiling point, flavor, color, ownership, and so on. On the other hand, extrinsic 
properties are the opposite: properties such as weight, length, shape, function, and so on are 
not retained under subdivision. 

A class of objects that includes in its definition only intrinsic properties is then a sub- 
stance, or mass noun; a class that includes any extrinsic properties in its definition is a count 
noun. The category Stu8 is the most general substance category, specifying no intrinsic 
properties. The category Thing is the most general discrete object category, specifying no 
extrinsic properties. All physical objects belong to both categories, so the categories are 
coextensive-they refer to the same entities. 

10.3 ACTIONS, SITUATIONS, AND EVENTS 

Reasoning about the results of actions is central to the operation of a knowledge-based 
agent. Chapter 7 gave examples of propositional sentences describing how actions affect 
the wurnpus world-for example, Equation (7.3) on page 227 states how the agent's location 
is changed by forward motion. One drawback of propositional logic is the need to have a dif- 
ferent copy of the action description for each time at which the action might be executed. This 
section describes a representation method that uses first-order logic to avoid that problem. 
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The ontology of situation calculus 

One obvious way to avoid multiple copies of axioms is simply to quantify over time-to 
say, " V t ,  such-and-such is the result at t + 1 of doing the action at t." Instead of dealing 
with explicit times like t 4 1, we will concentrate in this section on situations, which denote 

SITUATION 
CALCULUS the states resulting from executing actions. This approach is called situation callculus and 

involves the following ontology: 

SITUATIONS 

FLUENTS 

As in Chapter 8, actions are logical terms such as Forwa~d and Turn(Right). For now, 
we will assume that the environment contains only one agent. (If there is more than 
one, an additional argument can be inserted to say which agent is doing the action.) 

Situations are logical terms consisting of the initial situation (usually called So) and 
all situations that are generated by applying an action to a situation. The function 
Result(a, s)  (sometimes called Do) names the situation that results when action a is 
executed in situation s. Figure 10.2 illustrates this idea. 

Fluents are functions and predicates that vary from one situation to the next, such as 
the location of the agent or the aliveness of the wumpus. The dictionary says a fluent 
is something that fllows, like a liquid. In this use, it means flowing or changing across 
situations. By convention, the situation is always the last argument of a fluent. For 
example, lHoldzng(G1, So) says that the agent is not holding the gold GI in the initial 
situation So. Age( Wumpus, So) refers to the wumpus's age in So. 
Atemporal or eternal predicates and functions are also allowed. Examples include the 
predicate Gold (GI) and the function LeftLeg Of ( Wumpus). 

Result(Foiward, So) 

Fonvard 

Figure 10.2 In situation calculus, each situation (except So)  is the result of an action. 
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In addition to single actions, it is also helpful to reason about action sequences. We can 
define the results of sequences in terms of the results of individual actions. First, we say that 
executing an empty sequence leaves the situation unchanged: 

Result ( [ I ,  s )  = s . 

Executing a nonempty sequence is the same as executing the first action and then executing 
the rest in the resulting situation: 

Result([al seq] , s )  = Result (seq, Result (a ,  s ) )  . 

A situation calculus agent should be able to deduce the outcome of a given sequence of 
PROJECTION actions; this is the projection task. With a suitable constructive inference algorithm, it should 
PLANNING also be able toJind a sequence that achieves a desired effect; this is the planning task. 

We will use an example from a modified version of the wumpus world where we do 
not worry about the agent's orientation and where the agent can Go from one location to an 
adjacent one. Suppose the agent is at [ I ,  11 and the gold is at [ l ,  21. The aim is to have the gold 
in [ I ,  11. The fluent predicates are At (0, x ,  s )  and Holding (0,  s) .  Then the initial knowledge 
base might include the following description: 

At(Agent, [I, 11, So) /I At(G1, [ I ,  21, So) 

This is not quite enough, however, because it doesn't say what isn't true in So.  (See page 355 
for further discussion of this point.) The complete description is as follows: 

We also need to state that G 1  is gold and that [ I ,  11 and [ I ,  21 are adjacent: 

Gold ( G I )  /I Adjacent([l, 11, [ I ,  21) /I Adjacent ( [1 ,  21, [ I ,  11) . 

One would like to be able to prove that the agent achieves its aim by going to [ I ,  21, grabbing 
the gold, and returning to [I, 11. That is, 

More interesting is the possibility of constructing a plan to get the gold, which is achieved by 
answering the query "what sequence of actions results in the gold being at [1,1]?" 

3 seq At ( G I ,  [ I ,  11, Result (seq , So)) 

Let us see what has to go into the knowledge base for these queries to be answered. 

Describing actions in situation calculus 

In the simplest version of situation calculus, each action is described by two axioms: a possi- 
POSSIBILITYAXIOM bility axiom that says when it is possible to execute the action, and an effect axiom that says 
EFFECT AXIOM what happens when a possible action is executed. We will use Poss(a, s )  to mean that it is 

possible to execute action a in situation s. The axioms have the following form: 

POSSIBILITY AXIOM: Preconditions + Poss(a, s )  . 
EFFECT AXIOM: Poss(a, s )  + Changes that result from taking action. 
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We will present these axioms for the modified wumpus world. To shorten our sentences, we 
will omit universal quantifiers whose scope is the entire sentence. We assume that Ihe variable 
s ranges over situations, a ranges over actions, o over objects (including agents), gr over gold, 
and x and y over locations. 

The possibility axioms for this world state that an agent can go between adjacent loca- 
tions, grab a piece of gold in the current location, and release some gold that it is holding: 

At(Agent, x ,  s )  A Adjacent (x, y) + Poss(Go(x,y) ,s) .  
Gold(g) A At(Agent, x ,  s)  f\ At(g, x ,  s)  + Poss(Grab(g), s )  . 
Holding ( g ,  s)  + Poss (Release(g) , s) . 

The effect axioms state that, if an action is possible, then certain properties (fluents) will hold 
in the situation that results from executing the action. Going from z to y results in being at y, 
grabbing the gold results in holding the gold, and releasing the gold results in not holding it: 

Poss(Go(x, y ) ,  s)  + At(Agent, y ,  Result(Go(x, y) ,  s ) )  . 
Poss( Grab(g), s)  + Holding(g, Result(Grab(g), s ) )  . 
Poss(Release(g) , s )  + lHolding(g, Result(Release(g), s ) )  . 

Having stated these axioms, can we prove that our little plan achieves the goal? Unl'ortunately 
not! At first, everything works fine; Go([ l ,  I ] ,  [ I ,  21) is indeed possible in So and the effect 
axiom for Go allows us to conclude that the agent reaches [I,%]: 

At(Agent, [I, 21, Result(Go([l, 11,[1? 211, So)) . 
Now we consider the Grab(G1) action. We have to show that it is possible in the new 
situation-that is, 

At(G1, [ I ,  21, Result(Go(C1,11, [ I ,  211, So)) . 
Alas, nothing in the knowledge base justifies such a conclusion. Intuitively, we understand 
that the agent's Go action should have no effect on the gold's location, so it should still be at 
[ I ,  21, where it was in So. The problem is that the efect axioms say what changes, but don't 
say what stays the same. 

FRAME PROBLEM Representing all th~e things that stay the same is called the frame problem. We must 
find an efficient solution to the frame problem because, in the real world, almost everything 
stays the same almost all the time. Each action affects only a tiny fraction of all fluents. 

FRAME AXIOM One approach is to write explicit frame axioms that do say what stays the same. For 
example, the agent's movements leave other objects stationary unless they are held: 

At(o, x ,  s )  A (o # Agent) A lHolding(o, s)  =+ At(o, x ,  Result(Go(y, z ) ,  s ) )  . 
If there are F fluent predlicates and A actions, then we will need O ( A F )  frame axioms. On 
the other hand, if each action has at most E effects, where E is typically much less than F,  
then we should be able to represent what happens with a much smaller knowledge base of 

~ ~ ~ ~ ~ S F ~ J ~ ~ ~ $ A L  size O(AE) .  This is the representational frame problem. The closely related inferential 
INFERENTIALFRAME PROBLEM frame problem is to project the results of a t-step sequence of actions in time O(Ejt), rather 

than time O(Ft )  or O(AEt) .  We will address each problem in turn. Even then, another 
problem remains-that of ensuring that all necessary conditions for an action's success have 
been specified. For example, Go fails if the agent dies en route. This is the qualification 

QUALIFiCATloN PROBLEM problem, for which there is no complete solution. 
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Solving the representational frame problem 

The solution to the representational frame problem involves just a slight change in viewpoint 
on how to write the axioms. Instead of writing out the effects of each action, we consider 
how each fluent predicate evolves over time.3 The axioms we use are called successor-state 

succEssOR-sTATE axioms. They have the following form: AXIOM 

SUCCESSOR-STATE AXIOM: 
Action is possible + 
(Fluent is true in result state # Action S efSect made it true 

V It was true before and action left it alone) . 

After the qualification that we are not considering impossible actions, notice that this defini- 
tion uses #, not J. This means that the axiom says that the fluent will be true if and only if 
the right-hand side holds. Put another way, we are specifying the truth value of each fluent in 
the next state as a function of the action and the truth value in the current state. This means 
that the next state is completely specified from the current state and hence that there are no 
additional frame axioms needed. 

The successor-state axiom for the agent's location says that the agent is at y after exe- 
cuting an action either if the action is possible and consists of moving to y or if the agent was 
already at y and the action is not a move to somewhere else: 

Poss ( a ,  s) + 
(At(Agent, y, Result(a, s ) )  # a = Go(x, y) 

V (At(Agent1 Yl  s )  A a # Go(y, 4)) . 
The axiom for Holding says that the agent is holding g after executing an action if the action 
was a grab of g and the grab is possible or if the agent was already holding g, and the action 
is not releasing it: 

Successor-state axioms solve the representational frame problem because the total size of the 
axioms is O ( A E )  literals: each of the E effects of each of the A actions is mentioned exactly 
once. The literals are spread over F different axioms, so the axioms have average size AE/F. 

The astute reader will have noticed that these axioms handle the At fluent for the agent, 
but not for the gold; thus, we still cannot prove that the three-step plan achieves the goal of 

IMPLICIT EFFECT having the gold in [I, 11. We need to say that an implicit effect of an agent moving from x 
to y is that any gold it is carrying will move too (as will any ants on the gold, any bacteria 

RAM'F1cAT1oN PROBLEM on the ants, etc.). Dealing with implicit effects is called the ramification problem. We will 
discuss the problem in general later, but for this specific domain, it can be solved by writing 
a more general successor-state axiom for At. The new axiom, which subsumes the previous 
version, says that an object o is at y if the agent went to y and o is the agent or something the 

This is essentially the approach we took in building the Boolean circuit-based agent in Chapter 7. Indeed, 
axioms such as Equation (7.4) and Equation (7.5) can be viewed as successor-state axioms. 
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agent was holding; or if o was already at y and the agent didn't go elsewhere, with o being 
the agent or something the agent was holding. 

Poss(a, s )  J 

At (o ,  y ,  Result(a, s ) )  H ( a  = Go(rc, y )  A (0  = Agent V Holding(o, s ) ) )  
V ( A t ( 0 ,  y ,  s )  A 1 ( 3 z  y # z A a =  G o ( y ,  z )  A 

( o  = .Agent V Holding(o, s ) ) ) )  . 

There is one more technicality: an inference process that uses these axioms must be able to 
prove nonidentities. The simplest kind of nonidentity is between constants-for example, 
Agent # GI. The general semantics of first-order logic allows distinct constants to refer to 
the same object, so the knowledge base must include an axiom to prevent this. The unique 

UNIQL'ENAMES names axiom states a disequality for every pair of constants in the knowledge base. When AXIOVI 

this is assumed by the theorem prover, rather than written down in the knowledlge base, it 
is called a unique names assumption. We also need to state disequalities between action 
terms: G o ( [ l ,  I ] ,  [ I ,  21) is a different action from G o ( [ l ,  2 ] , j l ,  11) or Grab(G1). First, we 
say that each type of action is distinct-that no Go action is a Grab action. For each pair of 
action names A and B, we would have 

Next, we say that two action terms with the same action name refer to the same action only if 
they involve all the same objects: 

uNIQuEACTlON AXIOMS These are called, collectively, the unique action axioms. The combination of initial state 
description, successor-state axioms, unique name axiom, and unique action axionns suffices 
to prove that the proposed plan achieves the goal. 

Solving the inferential frame problem 

Successor-state axioms solve the representational frame problem, but not the inferential frame 
problem. Consider a t-step plan p such that St = Result(p, So). To decide which fluents are 
true in St, we need to consider each of the F frame axioms on each of the t tjme steps. 
Because the axioms have average size AE/F,  this gives us O ( A E t )  inferential wlork. Most 
of the work involves copying fluents unchanged from one situation to the next. 

To solve the inferential frame problem, we have two possibilities. First, we :auld dis- 
card situation calculus and invent a new formalism for writing axioms. This has been done 
with formalisms such as 1 he fluent calculus. Second, we could alter the inference mechanism 
to handle frame axioms rnose efficiently. A hint that this should be possible is that the simple 
approach is O ( A E t ) ;  why should it depend on the number of actions, A ,  when we know 
exactly which one action is executed at each time step? To see how to improve matters, we 
first look at the format of the frame axioms: 

Poss(a,  s )  J 

F,(Result(a, s ) )  ++ ( a  = A1 V a = A2 . . .) 
v Ft(s) A ( a  # A3) A ( a  f Ad). . . 
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That is, each axiom mentions several actions that can make the fluent true and several actions 
that can make it false. We can formalize this by introducing the predicate PosEflect(a, Fi), 
meaning that action a causes Fi to become true, and NegEflect ( a ,  Fi) meaning that a causes 
Fi to become false. Then we can rewrite the foregoing axiom schema as: 

Poss(a, s )  + 
Fi (Result  ( a ,  s)) # PosEJg'ect(a, Fi) V [Fi (s) A lNegE#ect(a, Fi)] 

PosEflect(A1, Fi) 
PosEJSect (Aa,  Fi) 
NegEJSect (A3, Fi) 
NegEflect(A4, Fi) . 

Whether this can be done automatically depends on the exact format of the frame axioms. To 
make an efficient inference procedure using axioms like this, we need to do three things: 

1. Index the PosEJg'ect and NegEflect predicates by their first argument so that when we 
are given an action that occurs at time t ,  we can find its effects in O ( 1 )  time. 

2. Index the axioms so that once you know that Fi is an effect of an action, you can find 
the axiom for Fi in O ( 1 )  time. Then you need not even consider the axioms for fluents 
that are not an effect of the action. 

3. Represent each situation as a previous situation plus a delta. Thus, if nothing changes 
from one step to the next, we need do no work at all. In the old approach, we would 
need to do O ( F )  work in generating an assertion for each fluent Fi(Result  ( a ,  s ) )  from 
the preceding Fi ( s )  assertions. 

Thus at each time step, we look at the current action, fetch its effects, and update the set of 
true fluents. Each time step will have an average of E of these updates, for a total complexity 
of O ( E t )  . This constitutes a solution to the inferential frame problem. 

Time and event calculus 

Situation calculus works well when there is a single agent performing instantaneous, dis- 
crete actions. When actions have duration and can overlap with each other, situation calculus 
becomes somewhat awkward. Therefore, we will cover those topics with an alternative for- 

EVENTCALCULUS malism known as event calculus, which is based on points in time rather than on situations. 
(The terms "event7' and "action" may be used interchangeably. Informally, "event" connotes 
a wider class of actions, including ones with no explicit agent. These are easier to handle in 
event calculus than in situation calculus.) 

In event calculus, fluents hold at points in time rather than at situations, and the calculus 
is designed to allow reasoning over intervals of time. The event calculus axiom says that a 
fluent is true at a point in time if the fluent was initiated by an event at some time in the past 
and was not terminated by an intervening event. The Initiates and Terminates relations 
play a role similar to the Result relation in situation calculus; Initiates(e, f ,  t )  means that 
the occurrence of event e at time t causes fluent f to become true, while Terminates (w , f ,  t )  
means that f ceases to be true. We use Happens(e, t )  to mean that event e happens at time t ,  
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and we use Clipped( f ,  t ,  t2 )  to mean that f is terminated by some event sometime between t 
and t2. Formally, the axiom is: 

This gives us functionality that is similar to situation calculus, but with the ability to talk 
about time points and intervals, so we can say Happens(TurnOfl(LightSwitchl), 1:OO) to 
say that a lightswitch was turned off at exactly 1:00. 

Many extensions to event calculus have been made to address problems of indirect 
effects, events with duration, concurrent events, continuously changing events, nondetermin- 
istic effects, causal constraints, and other complications. We will revisit some of these issues 
in the next subsection. It is fair to say that, at present, completely satisfactory solutions are 
not yet available for most of them, but no insuperable obstacles have been encountered. 

Generalized events 

So far, we have looked at two main concepts: actions and objects. Now it is time to see 
how they fit into an encoimpassing ontology in which both actions and objects can be thought 
of as aspects of a physical universe. We think of a particular universe as having both a 
spatial and a temporal dimension. The wumpus world has its spatial component laid out in a 
two-dimensional grid and has discrete time; our world has three spatial dimensions and one 

GENERALIZED 
EVENT temporal d i rnensi~n,~ all continuous. A generalized event is composed from aspects of some 

"space-time chunk''--a piece of this multidimensional space-time universe. This allxtraction 
generalizes most of the concepts we have seen so far, including actions, locations, times, 
fluents, and physical objects. Figure 10.3 gives the general idea. From now on, we will use 
the simple term "event" to refer to generalized events. 

For example, World War I1 is an event that took place at various points in space-time, 
SUBEVEI~TS as indicated by the irregularly shaped grey patch. We can break it down into sub event^:^ 

SubEvent(BattleOfBritain, World WarII) . 

Similarly, World War I1 is a subevent of the 20th century: 

SubEvent( World WarII, TwentiethCentury) 

The 20th century is an interval of time. Intervals are chunks of space-time that include all 
of space between two time points. The function Period(e) denotes the smallest interval 
enclosing the event e. Duration(i) is the length of time occupied by an interval, sl13 we can 
say Duration(Period ( World WarII)) > Years(5). 

Some physicists studying string theory argue for 10 dimensions or more, and some argue for a discrete world, 
but 4-D continuous space-time is an adequate representation for commonsense reasoning purposes. 
* Note that SubEvent is a special case of the ParlOf relation and is also transitive and reflexive. 
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I I I 
I I 
I I -- time '- Twentiethcentury I 

Figure 10.3 Generalized events. A universe has spatial and temporal dimensions; in this 
figure we show only a single spatial dimension. All events are PartOf the universe. An event, 
such as World WarII, occurs in a portion of space-time with somewhat arbitrary and time- 
varying borders. An Interval, such as the TwentiethCentury, has a fixed, limited temporal 
extent and maximal spatial extent, and a Place, such as Australia, has a roughly fixed spatial 
extent and maximal temporal extent. 

Australia is aplace; a chunk with some fixed spatial borders. The borders can vary over 
time, due to geological or political changes. We use the predicate In to denote the subevent 
relation that holds when one event's spatial projection is PartOf of another's: 

In(Sydney, Australia) . 

The function Location(e) denotes the smallest place that encloses the event e. 
Like any other sort of object, events can be grouped into categories. For example, 

World WarII belongs to the category Wars. To say that a civil war occurred in England in 
the 1640s, we would say 

3 w w E Civilwars A SubEuent(w, 1640s) A In(Location(w), England) . 

The notion of a category of events answers a question that we avoided when we described the 
effects of actions in Section 10.3: what exactly do logical terms such as Go([ l ,  11, [ l ,  21) refer 
to? Are they events? The answer, perhaps surprisingly, is no. We can see this by considering 
a plan with two "identical" actions, such as 

[Go( [ l ,  11, [ I ,  211, Go([ l ,  21,[1, Go( [ l ,  11, [ I ,  2111 . 
In this plan, G o ( [ l ,  1 ] , [1 ,2 ] )  cannot be the name of an event, because there are two dzferent 
events occurring at different times. Instead, Go ( [ l , l ] ,  [ I ,  21) is the name of a category of 
events-all those events where the agent goes from [ I ,  11 to [ I ,  21. The three-step plan says 
that instances of these three event categories will occur. 
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Notice that this is ithe first time we have seen categories named by complex terms rather 
than just constant symbols. This presents no new difficulties; in fact, we can use the argument 
structure to our advantage. Eliminating arguments creates a more general category: 

G o ( x , y )  C_ G o ~ ~ Y )  Go(%, y)  C GoFrom(x) . 
Similarly, we can add arguments to create more specific categories. For example, 11:o describe 
actions by other agents, we can add an agent argument. Thus, to say that Shankar flew from 
New York to New Delhi yesterday, we would write: 

3 e e E Fly(Shankar, New York, NewDelhi) A SubEvent(e, Yesterday) . 
The form of this formula is so common that we will create an abbreviation for it: E ( c ,  i )  will 
mean that an element of the category of events c is a subevent of the event or intermval i :  

E ( c ,  i )  @ 3 e e E c A SubEvent(e, i )  . 
Thus, we have: 

E (Fly (Shankar, New York, NewDelhi) , Yesterday) . 

Processes 

DISCRETE EVENTS The events we have seen so far are what we call discrete events-they have a definite struc- 
ture. Shankar's trip has a beginning, middle, and end. If interrupted halfway, the event would 
be different-it would not be a trip from New York to New Delhi, but instead a trip from 
New York to somewhere over Europe. On the other hand, the category of events denoted 
by Flying(Shankar) has a different quality. If we take a small interval of Shankar's flight, 
say, the third 20-minute segment (while he waits anxiously for a second bag of peanuts), that 
event is still a member of Flying(Shankar). In fact, this is true for any subinterval. 

PROCESS Categories of events with this property are called process categories or liquid event 
LIQUID EVENT categories. Any subinterval of a process is also a member of the same process category. We 

can employ the same notation used for discrete events to say that, for example, Shankar was 
flying at some time yesterday: 

E(Flying(Shankar), Yesterday) . 
We often want to say that some process was going on throughout some interval, rather than 
just in some subinterval of it. To do this, we use the predicate T: 

T ( Working(Stuart) , TodayLunchHour) . 
T ( c ,  i )  means that some e:vent of type c occurred over exactly the interval i-that is, the event 
begins and ends at the same time as the interval. 

The distinction between liquid and nonliquid events is exactly analogous to the differ- 
ence between substances, or stuff, and individual objects. In fact, some have called liquid 

TEMPORAL 
SUBSTANCES event types temporal substances, whereas things like butter are spatial substances. 
SPATIAL 
SUBSTANCES As well as describing processes of continuous change, liquid events can describe pro- 
STATES cesses of continuous non-change. These are often called states. For example, "Shankar being 

in New York" is a category of states that we denote by In(Shankar, NewYork). To say he 
was in New York all day, we would write 

T(In(Shankar ,  New York),  Today) . 
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We can form more complex states and events by combining primitive ones. This approach 
FLUENTCALCULUS is called fluent calculus. Fluent calculus reifies combinations of fluents, not just individual 

fluents. We have already seen a way of representing the event of two things happening at 
once, namely, the function Both ( e l ,  e z )  . In fluent calculus, this is usually abbreviated with 
the infix notation el o ez. For example, to say that someone walked and chewed gum at the 
same time, we can write 

3 p, i ( p  E People) A T ( WaR(p) o ChewGum(p) , i )  . 

The "o" function is commutative and associative, just like logical conjunction. We can also 
define analogs of disjunction and negation, but we have to be more careful-there are two 
reasonable ways of interpreting disjunction. When we say "the agent was either walking or 
chewing gum for the last two minutes" we might mean that the agent was doing one of the 
actions for the whole interval, or we might mean that the agent was alternating between the 
two actions. We will use OneOf and Either to indicate these two possibilities. Figure 10.4 
diagrams the complex events. 

- - 

9 - - 

(a) (b) (c)  

Figure 10.4 A depiction of complex events. (a) T(Both(p ,  q ) ,  i ) ,  also denoted as T(p  0 

q, i ) .  (b) T(O.neOf ( P ,  q ) ,  i ) .  (c) T(Either(p,  q ) ,  i ) .  

Intervals 

Time is important to any agent that takes action, and there has been much work on the rep- 
resentation of time intervals. We will consider two kinds: moments and extended intervals. 
The distinction is that only moments have zero duration: 

Partition({Moments, Extendedlntervals), Intervals) 
i E Moments ej Duration(i) = Seconds(0) . 

Next we invent a time scale and associate points on that scale with moments, giving us abso- 
lute times. The time scale is arbitrary; we will measure it in seconds and say that the moment 
at midnight (GMT) on January 1 ,  1900, has time 0. The functions Start and End pick out 
the earliest and latest moments in an interval, and the function Time delivers the point on the 
time scale for a moment. The function Duration gives the difference between the end time 
and the start time. 

Interval ( i )  =+ Duration(i) = ( Time(End ( i ) )  - Time(Start(i))) . 
Time(Start(AD1900)) = Seconds(0) . 
Time(Start(AD2001)) = Seconds(3187324800) . 
Tzme(End(AD2001)) = Seconds(3218860800) . 
Duration(AD2001) = Seconds(31536000) . 
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To make these numbers easier to read, we also introduce a function Date, which takes 
six arguments (hours, minutes, seconds, day, month, and year) and returns a time point: 

Time(Start(AD2001))  = Date(0, O , O , l ,  Jan, 2001) 
Date(O,20,21,24,1,1995) = Seconds(3000000000) . 

Two intervals Meet if the end time of the first equals the start time of the second. It 
is possible to define predicates such as Before, After, During, and Overlap solely in terms 
of Meet, but it is more intuitive to define them in terms of points on the time scale. (See 
Figure 10.5 for a graphical representation.) 

M e e t  j )  c> Tzme(End( i ) )  = Time(S tar t ( j ) )  . 
Before(i, j )  > Tzme(End( i ) )  < Time(S tar t ( j ) )  . 
After( j ,  i )  -++ Before(i, j )  . 
During(i, j )  e> Time (Start ( j ) )  < Time (Stard(i)) 

A Time(End( i ) )  < T i m e ( E n d ( j ) )  
Overlap(i, j )  * 3 3 During(3, i )  A Durzng(3, j )  . 

Figure 10.5 Predicates on time intervals. 

For example, to say that the reign of Elizabeth I1 followed that of George VI, and the reign of 
Elvis overlapped with the 1950s, we can write the following: 

After(Reign0f (ElizabethII), ReignOf (George la)) . 
Overlap(Fi,fties, ReignOf (Elvis))  . 
Start (Fifties) = Start (ADl95O) . 
End (Fifiies) = End(AD1959) . 

Fluents and objects 

We mentioned that physical objects can be viewed as generalized events, in the sense that a 
physical object is a chunk: of space-time. For example, USA can be thought of as an event 
that began in, say, 1776 as a union of 13 states and is still in progress today as a union of 50. 
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We can describe the changing properties of USA using state fluents. For example, we can say 
that at some point in 1999 its population was 271 million: 

E(Population( USA, 271000000), AD1999) . 

Another property of the USA that changes every four or eight years, barring mishaps, is its 
president. One might propose that President ( USA) is a logical term that denotes a different 
object at different times. Unfortunately, this is not possible, because a term denotes exactly 
one object in a given model structure. (The term President ( USA, t )  can denote different ob- 
jects, depending on the value o f t ,  but our ontology keeps time indices separate from fluents.) 
The only possibility is that President( USA) denotes a single object that consists of different 
people at different times. It is the object that is George Washington from 1789 to 1796, John 
Adams from 1796 to 1800, and so on, as in Figure 10.6. 

Figure 10.6 A schematic view of the object President( USA) for the first 15 years of its 
existence. 

To say that George Washington was president throughout 1790, we can write 

T(President( USA) = George Washington, AD1790) . 

We need to be careful, however. In this sentence, "=" must be a function symbol rather 
than the standard logical operator. The interpretation is not that George Washington and 
President ( USA) are logically identical in 1790; logical identity is not something that can 
change over time. The logical identity exists between the subevents of each object that are 
defined by the period 1790. 

Don't confuse the physical object George Washington with a collections of atoms. 
George Washington is not logically identical to any specific collection of atoms, because 
the set of atoms of which he is constituted varies considerably over time. He has his short 
lifetime, and each atom has its own very long lifetime. They intersect for some period, during 
which the temporal slice of the atom is PartOf George, and then they go their separate ways. 
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The agents we have corlstructed so far have beliefs and can deduce new beliefs. 'let none of 
them has any knowledge about beliefs or about deduction. For single-agent domams, knowl- 
edge about one's own knowledge and reasoning processes is useful for controlling inference. 
For example, if one knows that one does not know anything about Romanian geography, then 
one need not expend enormous computational effort trying to calculate the shortest path from 
Arad to Bucharest. One can also reason about one's own knowledge in order to construct 
plans that will change it-for example by buying a map of Romania. In multiagent domains, 
it becomes important for an agent to reason about the mental states of the other agents. For 
example, a Romanian police officer might well know the best way to get to Bucharest, so the 
agent might ask for help. 

In essence, what we need is a model of the mental objects that are in someone's head 
(or something's knowledge base) and of the mental processes that manipulate those mental 
objects. The model should be faithful, but it does not have to be detailed. We do not have to be 
able to predict how many milliseconds it will take for a particular agent to make a deduction, 
nor do we have to predict what neurons will fire when an animal is faced with a particular 
visual stimulus. We will be happy to conclude that the Romanian police officer will tell us 
how to get to Bucharest if he or she knows the way and believes we are lost. 

A formal theory of beliefs 

We begin with the relationships between agents and "mental objects"-relationships such as 
PRoPoslTloNAL Believes, Knows, and Wants .  Relations of this kind are called propositional attitudes, be- ATTITUDE 

cause they describe an attitude that an agent can take toward a proposition. Suppose that 
Lois believes something-that is, Believes(Lois, x). What kind of thing is x? Clearly, 
x cannot be a logical sentence. If Flies(Superman) is a logical sentence, we can't say 
Believes(Lois, Flies(Superman)),  because only terms (not sentences) can be arguments of 
predicates. But if Flies is a function, then Flies(Superman) is a candidate for being a mental 
object, and Believes can be a relation between an agent and a propositional fluent. Turning a 

REIFICATION proposition into an object is called reifi~ation.~ 
This appears to give us what we want: the ability for an agent to reason about the beliefs 

of agents. Unfortunately, there is a problem with that approach: If Clark and Superman are 
one and the same (i.e., Clark = Superman) then Clark's flying and Superman's flying are 
one and the same event category, i.e., Flies(C1ark) = Flies(Superman). Hence, we must 
conclude that if Lois believes that Superman can fly, she also believes that Clark can fly, even 
if she doesn't believe that Clark is Superman. That is, 

(Superman = Clark) + 
(Believes(Lois,  Flies(Superman)) # Believes(Lois, Flies(C1ark))l) . 

There is a sense in which this is right: Lois does believe of a certain person, who happens 

The tenn "reification" comes from the Latin word res, or thing. John McCarthy proposed the term "thingifica- 
tion," but it never caught on. 



342 Chapter 10. Knowledge Representation 

to be called Clark sometimes, that that person can fly. But there is another sense in which 
it is wrong: if you asked Lois "Can Clark fly?" she would certainly say no. Reified objects 
and events work fine for the first sense of Believes, but for the second sense we need to 
reify descriptions of those objects and events, so that Clark and Superman can be different 
descriptions (even though they refer to the same object). 

Technically, the property of being able to substitute a term freely for an equal term is 
REFERENTIAL called referential transparency. In first-order logic, every relation is referentially transpar- 

ent. We would like to define Believes (and the other propositional attitudes) as relations 
OPAQUE whose second argument is referentially opaquethat is, one cannot substitute an equal term 

for the second argument without changing the meaning. 
There are two ways to achieve this. The first is to use a different form of logic called 

MODAL LOGIC modal logic, in which propositional attitudes such as Believes and Knows become modal 
MODALOPERATOR operators that are referentially opaque. This approach is covered in the historical notes 

section. The second approach, which we will pursue, is to achieve effective opacity within 
SYNTACTIC THEORY a referentially transparent language using a syntactic theory of mental objects. This means 
STRINGS that mental objects are represented by strings. The result is a crude model of an agent's 

knowledge base as consisting of strings that represent sentences believed by the agent. A 
string is just a complex term denoting a list of symbols, so the event Flies(C1ark) can be 
represented by the list of characters [F, 1 ,  i ,  e ,  s, (, C, I ,  a ,  r ,  k ,  )], which we will abbreviate 

uNIQuEsTRING as a quoted string, "Fl ies (Clark)" .  The syntactic theory includes a unique string axiom AXIOM 

stating that strings are identical if and only if they consist of identical characters. In this way, 
even if Clark = Superman, we still have "Clark" # "Superman" .  

Now all we have to do is provide a syntax, semantics, and proof theory for the string 
representation language, just as we did in Chapter 7. The difference is that we have to define 
them all in first-order logic. We start by defining Den as the function that maps a string to 
the object that it denotes and Name as a function that maps an object to a string that is the 
name of a constant that denotes the object. For example, the denotation of both "Clark" and 
"Superman" is the object referred to by the constant symbol ManOfSteel, and the name of 
that object within the knowledge base could be either "Superman" ,  "Clark", or some other 
constant, such as "Xll": 

Den("C1ark") = ManOfSteel A Den("Superman") = Manofsteel  . 
Name(ManOfStee1) = "Xll" . 

The next step is to define inference rules for logical agents. For example, we might want to 
say that a logical agent can do Modus Ponens: if it believes p and believes p =3 q,  then it will 
also believe q. The first attempt at writing this axiom is 

LogicalAgent ( a )  A Believes(a, p) A Believes(a, "p + q") + Believes(a, q )  . 
But this is not right because the string 'p  + q" contains the letters 'p' and 'q' but has nothing 
to do with the strings that are the values of the variables p and q. The correct formulation is 

LogicalAgent(a) A Believes(a, p )  A Belzeves(a, Concat(p, "+", q ) )  
+ Believes(a, q )  . 

where Concat is a function on strings that concatenates their elements. We will abbreviate 
UNQUOTED Concat ( p ,  "+", q)  as " p  - + - q". That is, an occurrence of : within a string is unquoted, 
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meaning that we are to substitute in the value of the variable x. Lisp programmers will 
recognize this as the comma/backquote operator, and Per1 programmers will recognize it as 
$-variable interpolation. 

Once we add in the other inference rules besides Modus Ponens, we will be able to 
answer questions of the form "given that a logical agent knocvs these premises, can it draw 
that conclusion?" Besides the normal inference rules, we need some rules that are specific to 
belief. For example, the following rule says that if a logical agent believes something, then it 
believes that it believes it. 

LogicalAgent(a) A Beliewes(a, p) + Believes(a, "Believes(Name(a), p)")  - . 

Now, according to our axioms, an agent can deduce any consequence of its beliefs infalli- 
LOGICAL 
OMNISCIENCE bly. This is called logical omniscience. A variety of attempts have been made to define 

limited rational agents, which can make a limited number of deductions in a limited time. 
None is completely satisfactory, but these formulations do allow a highly restricted range of 
predictions about limited agents. 

Knowledge and belief 

The relation between believing and knowing has been studied extensively in philosophy. It is 
commonly said that knowledge is justified true belief. That is, if you believe something for an 
unassailably good reason, and if it is actually true, then you know it. The "unassai1:ably good 
reason" is necessary to prevent you from saying "I know this coin flip will come up heads" 
and being right half the time. 

Let Knows(a, p) mean that agent a knows that proposition p is true. It is also possible 
to define other kinds of knowing. For example, here is a definition of "knowing whether": 

Continuing our example, Lois knows whether Clark can fly if she either knows that llClark can 
fly or knows that he cannot. 

The concept of "knowing what" is more complicated. One is tempted to sa.y that an 
agent knows what Bob's phone number is if there is some x for which the agent knows 
PhoneNumber(Bob) = z. But that is not enough, because the agent might know that Alice 
and Bob have the same number (i.e., PhoneNumber(Bob) = PhoneNumber(Alice)), but if 
Alice's number is unknown, that isn't much help. A better definition of "knowing what" says 
that the agent has to be aware of some x that is a string of digits and that is Bob's number: 

Knows What (a ,  "PhoneNumber (b)") e 
3 x Knows(a, "g = PhoneNumber(b)") A x E DigitStrings . 

Of course, for other questions we have different criteria for what is an acceptable answer. 
For the question "what is the capital of New York," an acceptable answer is a proper name, 
'"Albany," not something like "the city where the state house is." To handle this, we will 
;make Knows What a three-place relation: it takes an agent, a string representing a t~erm, and 
;I category to which the answer must belong. For example, we might have the following: 

Knows What(Agent, "Capital (NewYork)" ,  ProperNames) . 
Knows What (Agent, "PhoneNumber (Bob)", DigitStrings) . 
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Knowledge, time, and action 

In most real situations, an agent will be dealing with beliefs-its own or those of other 
agents-that change over time. The agent will also have to make plans that involve changes 
to its own beliefs, such as buying a map to find out how to get to Bucharest. As with other 
predicates, we can reify Believes and talk about beliefs occurring over some period. For 
example, to say that Lois believes today that Superman can fly, we write 

T(Believes(Lois, "Flies(Superman)"),  Today) . 
If the object of belief is a proposition that can change over time, then it too can be described 
using the T operator within the string. For example, Lois might believe today that that Su- 
perman could fly yesterday: 

T(Believes(Lois, "T(Fl ies(Superman) ,  Yesterday)", Today) . 

Given a way to describe beliefs over time, we can use the machinery of event calculus 

KNOWLEDGE PRECoNolTloNs to make plans involving beliefs. Actions can have knowledge preconditions and knowledge 
KNOWLEDGE 
EFFECTS effects. For example, the action of dialing a person's number has the precondition of knowing 

the number, and the action of looking up the number has the effect of knowing the number. 
We can describe the latter action using the machinery of event calculus: 

Initiates(Lookup(a, "PhoneNurnber(b)"), 
Knows What(a, "PhoneNumber(b)", Digitstrings), t )  . 

Plans to gather and use information are often represented using a shorthand notation called 
RUNTIME VARIABLES runtime variables, which is closely related to the unquoted-variable convention described 

earlier. For example, the plan to look up Bob's number and then dial it can be written as 

[Lookup(Agent , "PhoneNumber(Bob)", n), Dial (n)] . 

Here, n is a runtime variable whose value will be bound by the Lookup action and can then be 
used by the Dial action. Plans of this kind occur frequently in partially observable domains. 
We will see examples in the next section and in Chapter 12. 

In this section we will encode some knowledge related to shopping on the Internet. We will 
create a shopping research agent that helps a buyer find product offers on the Internet. The 
shopping agent is given a product description by the buyer and has the task of producing a list 
of Web pages that offer such a product for sale. In some cases the buyer's product description 
will be precise, as in Coolpix 995 digital camera, and the task is then to find the store(s) 
with the best offer. In other cases the description will be only partially specified, as in digital 
camera for under $300, and the agent will have to compare different products. 

The shopping agent's environment is the entire World Wide Web-not a toy simulated 
environment, but the same complex, constantly evolving environment that is used by millions 
of people every day. The agent's percepts are Web pages, but whereas a human Web user 
would see pages displayed as an array of pixels on a screen, the shopping agent will perceive 
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Generic Online Store 
Select from our fine line of products: 

Computers 
Cameras 
Books 
Videos 
Music 

chl>Generic Online Storei/hl> 
<i>Select</i> from our fine line of products: 
<ul> 
<li> <a href="http://gen-store.com/compu">Computers~/a~ 
<li> <a href="http://gen-store.com/camer">Cameras~/a~ 
<li> <a href="http://gen-store.com/books"~~ooks</a~ 
<li> <a href="http://gen-store.com/video"~V'ideos</a~ 
<li> <a href="http://gen-store.com/music",Musicc/a~ 
.c/ul> 

Figure 10.7 A Welb page from a generic online store in the form perceived by the human 
user of a browser (top), and the corresponding HTML string as perceived by the bro~~wser or 
the shopping agent (bottom). In HTML, characters between < and > are markup directives 
that specify how the page is displayed. For example, the string < i> Select< / i> means 
to switch to italic font, display the word Select, and then end the use of italic font. ,4 page 
identifier such as http : / /gen-store . com/books is called a uniform resourc~e loca- 
tor (URL) or URL. The markup <a href = " url" >anchor< / a> means to create a hylpertext 
link to url with the anchor text anchor. 

a page as a character string consisting of ordinary words interspersed with formatting com- 
mands in the HTML markup language. Figure 10.7 shows a Web page and a corresponding 
HTML character string. The perception problem for the shopping agent involves extracting 
useful information from percepts of this h d .  

Clearly, perception on Web pages is easier than, say, perception while driving a taxi in 
Cairo. Nonetheless, there are complications to the Internet perception task. The web page 
in Figure 10.7 is very simple compared to real shopping sites, which include cookies, Java, 
Javascript, Flash, robot exclusion protocols, malformed HTML, sound files, movies, and text 
that appears only as part of a JPEG image. An agent that can deal with all of the I~nternet is 
almost as complex as a robot that can move in the real world. We will concentrate on a simple 
agent that ignores most of these complications. 

The agent's first task is to find relevant product offers (we'll see later how to choose the 
best of the relevant offers). Let query be the product description that the user types in (e.g., 
"laptops"); then a page is a relevant offer for query if the page is relevant and the page is 
indeed an offer. We will also keep track of the URL associated with the page: 

RelevantOfler(page, ur l ,  query)  * Relevant (page,  url, query)  A O#er(page) . 
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A page with a review of the latest high-end laptop would be relevant, but if it doesn't provide 
a way to buy, it isn't an offer. For now, we can say a page is an offer if it contains the 
word "buy" or "price" within an HTML link or form on the page. In other words, if the 
page contains a string of the form "<a . . .buy . . . </a" then it is an offer; it could also say 
"price" instead of "buy" or use "form" instead of "a". We can write axioms for this: 

Offer(page) s (InTag("a", str, page) V InTag(" f orm", str, page)) 
A (In("buy", str) V In("pricen, s t r ) )  . 

InTag(tag, s tr ,  page) s In("<" + tag + str + "< /" + tag, page) . 
In(sub, s tr)  s 3 i strli : i + Length(sub)] = sub . 

Now we need to find relevant pages. The strategy is to start at the home page of an online 
store and consider all pages that can be reached by following relevant links.7 The agent will 
have knowledge of a number of stores, for example: 

Amazon E OnlineStores A Homepage(Amazon, "amazon.com") . 
Ebay E OnlineStores A Homepage(Ebay, "ebay.com") . 
GenStore E OnlineStores A Homepage( GenStore, "gen-store.com") . 

These stores classify their goods into product categories, and provide links to the major cat- 
egories from their home page. Minor categories can be reached by following a chain of 
relevant links, and eventually we will reach offers. In other words, a page is relevant to the 
query if it can be reached by a chain of relevant category links from a store's home page, and 
then following one more link to the product offer: 

Relevant (page, url, query) @ 

3 store, home store E OnlineStores A Homepage(store, home) 
A 3 ur12 Relevant Chain (home, ur12, query) A Link (urla,  url) 

A page = GetPage(ur1) . 

Here the predicate Link(from, to )  means that there is a hyperlink from the from URL to the 
to URL. (See Exercise 10.13.) To define what counts as a RelevantChain, we need to follow 
not just any old hyperlinks, but only those links whose associated anchor text indicates that 
the link is relevant to the product query. For this, we will use LinkText(from, to, text) to 
mean that there is a link between from and to with text as the anchor text. A chain of links 
between two URLs, start and end, is relevant to a description d if the anchor text of each 
link is a relevant category name for d. The existence of the chain itself is determined by a 
recursive definition, with the empty chain (start = end) as the base case: 

RelevantChain(start, end, query) @ (start = end) 
V (3  u, text LinkText(start, u, text)  A RelevantCategoryName(query, text) 

A RelevantChain(u, end, query)) . 
Now we must define what it means for text to be a RelevantCategoryName for query. 

First, we need to relate strings to the categories they name. This is done using the predicate 
Name(s ,  c) ,  which says that string s is a name for category c-for example, we might assert 
that Name("laptops", LaptopComputers). Some more examples of the Name predicate 

An alternative to the link-following strategy is to use an Internet search engine; the technology behind Internet 
search, information retrieval, will be covered in Section 23.2. 
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Books c Products 
MusicRecordings c Products 

MusicCDs C MusicRecordings 
MusicTapes c Music.Recordings 

Electronics c Products 
DigitalCameras C Electronics 
StereoEquipment c Electronics 
Computers c Electronics 

LaptopComputers C Computers 
DesktopComputers c Computers 

Name ("books", Books) 
Name("music", AdusicRecordings) 

Name("CDs", MusicCDs) 
Name ("tapes", MusicTapes) 

Name ("electronics", Electronics) 
Name("digita1 cameras", DigitalCameras) 
Name ("stereos", Stereo Equipment) 
Narne("computers", Computers) 

Name("laptops", LaptopComputers) 
Name("desktops", DesktopCompute;~.~) 

. . .  . . . 
(4 (b) 

Figure 10.8 (a) Taxonomy of product categories. (b) Referring words for those 

appear in Figure 10.8(b). Next, we define relevance. Suppose that query is "laptops." Then 
RelevantCategoryName(query, t e x t )  is true when one of the following holds: 

The text and query name the same category-e.g., "laptop computers" and ''laptops." 
The text names a supercategory such as "computers." 

The text names a subcategory such as "ultralight notebooks." 

The logical definition of RelevantCategoryName is as follows: 

RelevantCategory.Name(queq , t e x t )  e 

Otherwise, the anchor text is irrelevant because it names a category outside this line:, such as 
"mainframe computers" or "lawn & garden." 

To follow relevant links, then, it is essential to have a rich hierarchy of product cate- 
,gories. The top part of thils hierarchy might look like Figure 10.8(a). It will not be feasible to 
. . 
hst all possible shopping categories, because a buyer could always come up with some new 
desire and manufacturers will always come out with new products to satisfy them (electric 
kneecap warmers?). Nonetheless, an ontology of about a thousand categories will serve as a 
very useful tool for most buyers. 

In addition to the product hierarchy itself, we also need to have a rich vocabulary of 
names for categories. Life would be much easier if there were a one-to-one correspon- 
dence between categories and the character strings that name them. We have already seen 
the problem of synonymy-two names for the same category, such as "laptop cormputers" 
and "laptops." There is also the problem of ambiguity-one name for two or more different 
categories. For example, if we add the sentence 

N a m e  ('"Ds", CertzficatesOfDeposit) 

to the knowledge base in Figure 10.8(b), then "CDs" will name two different categories. 
Synonymy and ambiguity can cause a significant increase in the number of paths that 

tlie agent has to follow, and can sometimes make it difficult to determine whether a given 
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page is indeed relevant. A much more serious problem is that there is a very broad range of 
descriptions that a user can type, or category names that a store can use. For example, the 
link might say "laptop" when the knowledge base has only "laptops;" or the user might ask 
for "a computer I can fit on the tray table of an economy-class seat in a Boeing 737." It is 
impossible to enumerate in advance all the ways a category can be named, so the agent will 
have to be able to do additional reasoning in some cases to determine if the Name relation 
holds. In the worst case, this requires full natural language understanding, a topic that we will 
defer to Chapter 22. In practice, a few simple rules-such as allowing "laptop" to match a 
category named "laptops7'-go a long way. Exercise 10.15 asks you to develop a set of such 
rules after doing some research into online stores. 

Given the logical definitions from the preceding paragraphs and suitable knowledge 
bases of product categories and naming conventions, are we ready to apply an inference 
algorithm to obtain a set of relevant offers for our query? Not quite! The missing element 
is the GetPage(ur1) function, which refers to the HTML page at a given URL. The agent 
doesn't have the page contents of every URL in its knowledge base; nor does it have explicit 
rules for deducing what those contents might be. Instead, we can arrange for the right HTTP 
procedure to be executed whenever a subgoal involves the GetPage function. In this way, it 
appears to the inference engine as if the entire Web is inside the knowledge base. This is an 

PROCEDURAL 
ATTACHMENT example of a general technique called procedural attachment, whereby particular predicates 

and functions can be handled by special-purpose methods. 

Comparing offers 

Let us assume that the reasoning processes of the preceding section have produced a set of 
offer pages for our "laptops" query. To compare those offers, the agent must extract the rele- 
vant information-price, speed, disk size, weight, and so on-from the offer pages. This can 
be a difficult task with real web pages, for all the reasons mentioned previously. A common 

WRAPPER way of dealing with this problem is to use programs called wrappers to extract information 
from a page. The technology of information extraction is discussed in Section 23.3. For 
now we assume that wrappers exist, and when given a page and a knowledge base, they add 
assertions to the knowledge base. Typically a hierarchy of wrappers would be applied to a 
page: a very general one to extract dates and prices, a more specific one to extract attributes 
for computer-related products, and if necessary a site-specific one that knows the format of a 
particular store. Given a page on the gen-store.com site with the text 

YVM ThinkBook 970. Our price: $1449.00 

followed by various technical specifications, we would like a wrapper to extract information 
such as the following: 

3 lc, oger lc E LaptopComputers A o#er E ProductOflers A 
ScreenSixe(lc, Inches( l4) )  A ScreenType(lc, ColorLCD) A 
MemorySize(lc, Megabytes(512)) A CPUSpeed(lc, GHz(2.4)) A 
OfferedProduct(offer, L C )  A Store(o#er, GenStore) A 
URL(offer ,  "genstore.com/comps/34356. html") A 
Price(ofler, $(449)) A Date(ofler,  Today) . 
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This example illustrates several issues that arise when we take seriously the task of knowledge 
engineering for commercial transactions. For example, notice that the price is an attribute of 
the offer, not the product itself. This is important because the offer at a given store may 
change from day to day even for the same individual laptop; for some categories-such as 
houses and paintings-tlhe same individual object may even be offered simultaneously by 
different intermediaries at different prices. There are still more complications that we have 
not handled, such as the possibility that the price depends on method of payment and on the 
buyer's qualifications for certain discounts. All in all, there is much interesting work to do. 

The final task is to compare the offers that have been extracted. For example, consider 
these three offers: 

A : 2.4 GHz CPU, 512MB RAM, 80 GB disk, DVD, CDRW, $1695 . 
B : 2.0 GHz CPU, IGB RAM, 120 GB disk, DVD, CDRW, $1800 . 
C : 2.2 GHz CPU, 512MB RAM, 80 GB disk, DVD, CDRW, $1800 . 

C is dominated by A; that is, A is cheaper and faster, and they are otherwise the same. In 
general, X dominates Y if X has a better value on at least one attribute, and is not worse on 
any attribute. But neither A nor B dominates the other. To decide which is better we need 
to know how the buyer weighs CPU speed and price against memory and disk space. The 
general topic of preferences among multiple attributes is addressed in Section 16.4; for now, 
our shopping agent will simply return a list of all undominatecl offers that meet the buyer's 
description. In this example, both A and B are undominated. Notice that this outcome relies 
on the assumption that everyone prefers cheaper prices, faster processors, and more storage. 
Some attributes, such as screen size on a notebook, depend on the user's particular preference 
(portability versus visibility); for these, the shopping agent will just have to ask the user. 

The shopping agent we have described here is a simple one; many refinements are pos- 
sible. Still, it has enough capability that with the right domaun-specific knowledge it can 
,actually be of use to a shopper. Because of its declarative construction, it extends easily 
to more complex applications. The main point of this section is to show that some knowl- 
edge representation-in particular, the product hierarchy-is necessary for an agent like this, 
and that once we have some knowledge in this form, it is not too hard to do the rest as a 
Itnowledge-based agent. 

10.6 REASONING SYSTEMS FOR CATEGORIES 

We have seen that categories are the primary building blocks of any large-scale knowledge 
representation scheme. This section describes systems specially designed for organizing and 
reasoning with categories. There are two closely related families of systems: semar~~tic net- 
vvorks provide graphical aids for visualizing a knowledge base and efficient algorithms for 
inferring properties of an object on the basis of its category membership; and description 
logics provide a formal language for constructing and combining category definitions and 
efficient algorithms for deciding subset and superset relationships between categories. 
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Semantic networks 

In 1909, Charles Peirce proposed a graphical notation of nodes and arcs called existential 
EXISTENTIAL 
GRAPHS graphs that he called "the logic of the future." Thus began a long-running debate between 

advocates of "logic" and advocates of "semantic networks." Unfortunately, the debate ob- 
scured the fact that semantics networks-at least those with well-defined semantics-are a 
form of logic. The notation that semantic networks provide for certain kinds of sentences 
is often more convenient, but if we strip away the "human interface" issues, the underlying 
concepts-objects, relations, quantification, and so on-are the same. 

There are many variants of semantic networks, but all are capable of representing in- 
dividual objects, categories of objects, and relations among objects. A typical graphical no- 
tation displays object or category names in ovals or boxes, and connects them with labeled 
arcs. For example, Figure 10.9 has a MemberOf link between Mary and FemalePersons, 
corresponding to the logical assertion Mary E FemalePersons; similarly, the SzsterOf link 
between Mary and John corresponds to the assertion SzsterOf (Mary,  John). We can con- 
nect categories using SubsetOf links, and so on. It is such fun drawing bubbles and arrows 
that one can get carried away. For example, we know that persons have female persons as 
mothers, so can we draw a Has,Vother link from Persons to FemalePersons? The answer 
is no, because HasMother is a relation between a person and his or her mother, and categories 
do not have  mother^.^ For this reason, we have used a special notation-the double-boxed 
link-in Figure 10.9. This link asserts that 

'dx x E Persons =+ ['dy HasMother(x, y )  + y E FemalePersons] . 

We might also want to assert that persons have two legs-that is, 

V x  x E Persons + Legs(x, 2 )  . 
As before, we need to be careful not to assert that a category has legs; the single-boxed link 
in Figure 10.9 is used to assert properties of every member of a category. 

The semantic network notation makes it very convenient to perform inheritance rea- 
soning of the kind introduced in Section 10.2. For example, by virtue of being a person, 
Mary inherits the property of having two legs. Thus, to find out how many legs Mary has, the 
inheritance algorithm follows the MemberOf link from Mary to the category she belongs 
to, and then follows SubsetOf links up the hierarchy until it finds a category for which there 
is a boxed Legs link-in this case, the Persons category. The simplicity and efficiency of 
this inference mechanism, compared with logical theorem proving, has been one of the main 
attractions of semantic networks. 

Inheritance becomes complicated when an object can belong to more than one category 
or when a category can be a subset of more than one other category; this is called multiple in- 

MULTIPLE heritance. In such cases, the inheritance algorithm might find two or more conflicting values 

Several early systems failed to distinguish between properties of members of a category and properties of the 
category as a whole. This can lead directly to inconsistencies, as pointed out by Drew McDermott (1976) in his 
article "Artificial Intelligence Meets Natural Stupidity." Another common problem was the use of IsA links for 
both subset and membership relations, in correspondence with English usage: "a cat is a mammal" and "Fifi is a 
cat." See Exercise 10.25 for more on these issues. 



Section 10.6. Reasoning. Svstems for Categories 35 1 

Mammals (3 
Subsetof 

Persons 2 

. Y u b S d  
Female 

< p e r r )  

MemberOf Memberof 

SisterOf 
1 

Figure 10.9 A semantic network with four objects (John, Mary, 1, and 2) and fo11v cate- 
gories. Relations are denoted by labeled links. 

answering the query. For this reason, multiple inheritance is banned in some object-oriented 
programming (OOP) languages, such as Java, that use inheritance in a class hierarchy. It is 
usually allowed in semantic networks, but we defer discussion of that until Section 10.7. 

INVERSE LINK Another common form of inference is the use of inverse links. For example, i"-lasSister 
is the inverse of SisterOf, which means that 

' d p ,  s HasSister(p, s )  H SisterOf ( s ,  p)  . 

This sentence can be asserted in a semantic network if links are reified-that is, made into 
objects in their own right. For example, we could have a SisterOf object, con~nected by 
an Inverse link to HasSister. Given a query asking who is a SisterOf John, the inference 
algorithm can discover that HasSister is the inverse of Sisterof and can therefore answer the 
query by following the H assister link from John to Mary. Without the inverse information, 
it might be necessary to check every female person to see whether that person has a SisterOf 
link to John. This is because semantic networks provide direct indexing only for objects, 
categories, and the links emanating from them; in the vocabulary of first-order logic, it is as 
if the knowledge base were indexed only on the first argument of each predicate. 

The reader might have noticed an obvious drawback of semantic network notation, 
compared to first-order logic: the fact that links between bubbles represent only binary re- 
lations. For example, the sentence Fly(Shankar, NewYork, NewDelhi, Yesterday) cannot 
be asserted directly in a semantic network. Nonetheless, we can obtain the effect of n-ary 
assertions by reifying the proposition itself as an event (see Section 10.3) belonging to an 
appropriate event category. Figure 10.10 shows the semantic network structure for this par- 
ticular event. Notice that the restriction to binary relations forces the creation of a rich ontol- 
ogy of reified concepts; indeed, much of the ontology developed in this chapter originated in 
semantic network systems. 

Reification of propositions makes it possible to represent every ground, function-free 
atomic sentence of first-order logic in the semantic network notation. Certain kinds o~f univer- 
,sally quantified sentences can be asserted using inverse links and the singly boxed and doubly 
boxed arrows applied to categories, but that still leaves us a long way short of full first-order 
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4 

Figure 10.10 A fragment of a semantic network showing the representation of the logical 
assertion FZy(Shankar, NewYork, NewDelhi, Yesterday). 

logic. Negation, disjunction, nested function symbols, and existential quantification are all 
missing. Now it is possible to extend the notation to make it equivalent to first-order logic-as 
in Peirce7s existential graphs or Hendrix's (1975) partitioned semantic networks-but doing 
so negates one of the main advantages of semantic networks, which is the simplicity and 
transparency of the inference processes. Designers can build a large network and still have 
a good idea about what queries will be efficient, because (a) it is easy to visualize the steps 
that the inference procedure will go through and (b) in some cases the query language is so 
simple that difficult queries cannot be posed. In cases where the expressive power proves to 
be too limiting, many semantic network systems provide for procedural attachment to fill 
in the gaps. Procedural attachment is a technique whereby a query about (or sometimes an 
assertion of) a certain relation results in a call to a special procedure designed for that relation 
rather than a general inference algorithm. 

One of the most important aspects of semantic networks is their ability to represent 
DEFAULTVALUES default values for categories. Examining Figure 10.9 carefully, one notices that John has one 

leg, despite the fact that he is a person and all persons have two legs. In a strictly logical KB, 
this would be a contradiction, but in a semantic network, the assertion that all persons have 
two legs has only default status; that is, a person is assumed to have two legs unless this is 
contradicted by more specific information. The default semantics is enforced naturally by the 
inheritance algorithm, because it follows links upwards from the object itself (John in this 

OVERRIDING case) and stops as soon as it finds a value. We say that the default is overridden by the more 
specific value. Notice that we could also override the default number of legs by creating a 
category of OneLeggedPersons, a subset of Persons of which John is a member. 

We can retain a strictly logical semantics for the network if we say that the Legs asser- 
tion for Persons includes an exception for John: 

'd x x E Persons /\ x # John + Legs(x ,  2 )  . 

For afixed network, this is semantically adequate, but will be much less concise than the 
network notation itself if there are lots of exceptions. For a network that will be updated with 
more assertions, however, such an approach fails-we really want to say that any persons as 
yet unknown with one leg are exceptions too. Section 10.7 goes into more depth on this issue 
and on default reasoning in general. 
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Description logics 

The syntax of first-order logic is designed to make it easy to say things about objects. De- 
DESCRIPTION 
LOGICS scription logics are notations that are designed to make it easier to describe definitions and 

properties of categories. Description logic systems evolved from semantic networks in re- 
sponse to pressure to formalize what the networks mean while retaining the emphasis on 
taxonomic structure as an organizing principle. 

SUBSUIMPTION The principal inference tasks for description logics are subsumption-checking if one 
CLASSIFICATION category is a subset of another by comparing their definitions-and classification--checking 

whether an object belongs to a category. Some systems also include consistency of a category 
definition-whether the membership criteria are logically satisfiable. 

The CLASSIC language (Borgida et al., 1989) is a typical description logic. The syntax 
of CLASSIC descriptions is shown in Figure 10.11? For example, to say that bachelors are 
unmarried adult males we would write 

Bachelor = And ( Unmarried, Adult, Male) . 
The equivalent in first-order logic would be 

Notice that the description logic effectively allows direct logical operations on predicates, 
rather than having to first create sentences to be joined by connectives. Any description in 
CLASSIC can be written in first-order logic, but some descriptions are more straightforward 
in CLASSIC. For example, to describe the set of men with at least three sons who are all 
unemployed and married to doctors and at most two daughters who are all professors in 
physics or math departments, we would use 

And (Man ,  AtLeast (3, Son) ,  AtMost (2 ,  Daughter), 
All (Son ,  And ( Unemployed, Married, A11 (Spouse, Doctor))) ,  
All (Daughter, And (Professor, Fills(Department, Physics, Math ) ) ) )  . 

We leave it as an exercise to translate this into first-order logic. 
Perhaps the most important aspect of description logics is their emphasis on tractability 

of inference. A problem instance is solved by describing it and then asking if it is subsumed 
by one of several possible solution categories. In standard first-order logic systems, predicting 
the solution time is often impossible. It is frequently left to the user to engineer the represen- 
tation to detour around sets of sentences that seem to be causing the system to take several 
weeks to solve a problem. The thrust in description logics, on the other hand, is to ensure that 
subsumption-testing can be solved in time polynomial in the size of the descriptions.10 

This sounds wonderful in principle, until one realizes that it can only have one of two 
consequences: either hard problems cannot be stated at all, or they require exponentially 
Large descriptions! However, the tractability results do shed light on what sorts of constructs 
(cause problems and thus help the user to understand how different representation, behave. 

'' Notice that the language does not allow one to simply state that one concept, or category, is a subset of 
another. This is a deliberate policy: subsumption between categories must be (derivable from some aspects of the 
descriptions of the categories. If not, then something is missing from the descriptions. 
O CLASSIC provides efficient subsumption testing in practice, but the worst-case runtime is exponent~al. 
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Concept -t Thing ( ConceptName 

I And(Concept, . . .) 
I All(RoleName, Concept) 

( AtLeast(Integer, RoleName) 

I AtMost(Integer, RoleName) 

1 Fills(RoleName, IndividualName, . . .) 
/ SameAs(Path, Path) 

/ OneOf(IndividualName, . . .) 
Path -t [RoleName, . . .] 

/ Figure 10.11 The syntax of descriptions in a subset of the C~Ass rc  language. I 
For example, description logics usually lack negation and disjunction. Each forces first- 
order logical systems to go through a potentially exponential case analysis in order to ensure 
completeness. For the same reason, they are excluded from Prolog. CLASSIC allows only a 
limited form of disjunction in the Fills and OneOf constructs, which permit disjunction over 
explicitly enumerated individuals but not over descriptions. With disjunctive descriptions, 
nested definitions can lead easily to an exponential number of alternative routes by which one 
category can subsume another. 

10.7 REASONING WITH DEFAULT INFORMATION 

In the preceding section, we saw a simple example of an assertion with default status: people 
have two legs. This default can be overridden by more specific information, such as that 
Long John Silver has one leg. We saw that the inheritance mechanism in semantic networks 
implements the overriding of defaults in a simple and natural way. In this section, we study 
defaults more generally, with a view toward understanding the semantics of defaults rather 
than just providing a procedural mechanism. 

Open and closed worlds 

Suppose you were looking at a bulletin board in a university computer science department 
and saw a notice saying, "The following courses will be offered: CS 101, CS 102, CS 106, 
EE 101." Now, how many courses will be offered? If you answered "Four," you would be in 
agreement with a typical database system. Given a relational database with the equivalent of 
the four assertions 

Course(CS, 101), Course(CS, 102), Course(CS, 106), Course(EE, 101), (10.2) 

the SQL query count * f r o m  Course returns 4. On the other hand, a first-order logical 
system would answer "Somewhere between one and infinity," not "four." The reason is that 
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the Course assertions do not deny the possibility that other unmentioned courses are also 
offered, nor do they say that the courses mentioned are different from each other. 

This example shows that database systems and human communication convehntions dif- 
fer from first-order logic in at least two ways. First, databases (and people) assume that the 
information provided is complete, so that ground atomic sentences not asserted to be true 

CLOSED-W0RLD ASSUMPTION are assumed to be false. This is called the closed-world assumption, or CWA. Second, we 
usually assume that distinct names refer to distinct objects. This is the unique names as- 
sumption, or UNA, which we introduced first in the context of action names in Section 10.3. 

First-order logic does not assume these conventions, and thus needs to be more explicit. 
To say that only the four distinct courses are offered, we would write: 

Course(d, n)  o [d ,  n] = [CS, 1011 V [ d ,  n ]  = [CS, 1021 

V [ d ,  n] = [CS,  1061 V [d ,  n] = [EE, 1011 . (10.3) 

COMPLETION Equation 10.3 is called {he completion11 of 10.2. In general, the completion will contain a 
definition-an if-and-only-if sentence-for each predicate, and each definition will contain a 
disjunct for each definite clause having that predrcate in its head.12 In general, the completion 
is constructed as follows: 

1. Gather up all the clauses with the same predicate name (P )  and the same arity (n). 
CLARK NORMAL 
FORM 2. Translate each clause to Clark Normal Form: replace 

P ( t l , . .  . , tn) t Body, 

where ti are terms, with 

P(v l , .  . . ,vn)  + 3 ~ 1 . .  .wm [v l , .  . . ,vn] = [ t l , .  . . , tn] A Body, 

where vi are newly invented variables and wi are the variables that appear in the original 
clause. Use the same set of vi for every clause. This gives us a set of clauses 

P(v l , . . . , vn )  +-B1 

P ( v l , .  . . ,vn) + B k .  

3. Combine these together into one big disjunctive clause: 

P(v l , .  . . ,v,) + B1 V . .  . V B k .  

4. Form the completion by replacing the +- with an equivalence: 

P ( v l , .  . . , u,) B1 V . . . V Bk . 

Figure 10.12 shows an example of the Clark completion for a knowledge base with both 
ground facts and rules. To add in the unique names assumption, we simply construct the 
Clark completion for the equality relation, where the only known facts are that CS = CS, 
I01 = 2 01, and so on. This is left as an exercise. 

The closed-world assumption allows us to find a minimal model of a relation. That is, 
we can find the model of the relation Course with the fewest elements. In Equation (10.2) 

L1 Sometimes called "Clark Completion" after the inventor, Keith Clark. 
L2 Notice that this is also the form of the successor-state axioms given in Section 10.3. 
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Horn Clauses 
Course(CS, 101) 
Course( CS, 102) 
Course(CS, 106) 
Course(EE, 101) 
Course (EE ,  i )  t Integer (i) 

A 101 < i A i < 130 
Course(CS, m + 100) -+ 

Course(CS, m )  A 100 5 m 
A m < 200 

Clark Completion 
Course(d, n) u [d ,  n] = [CS,  1011 

V [d ,  n] = [CS,  1021 
V [ d ,  n]  = [CS,  1061 
V [d ,  n] = [EE,  1011 
V 3 i [ d ,  n] = [EE,  i] A Integer(i) 

A 101 5 i A i 5 130 
V 3m [ d , n ]  = [ C S , m  + 1001 

A Course(CS,m) A 100 5 m 
A m < 200 

Figure 10.12 The Clark Completion of a set of Horn clauses. The original Horn program 
(left) lists four courses explicitly and also asserts that there is an EE class for every integer 
from 101 to 130, and that for every CS class in the 100 (undergraduate) series, there is a 
corresponding class in the 200 (graduate) series. The Clark completion (right) says that there 
are no other classes. With the completion and the unique names assumption (and the obvious 
definition of the Integer predicate), we get the desired conclusion that there are exactly 36 
courses: 30 EE courses and 6 CS courses. 

the minimal model of Course has four elements; any less and we'd have a contradiction. For 
Horn knowledge bases, there is always a unique minimal model. Notice that, with the unique 
names assumption, this applies to the equality relation too: each term is equal only to itself. 
Paradoxically, this means that minimal models are maximal in the sense of having as many 
objects as possible. 

It is possible to take a Horn program, generate the Clark completion, and hand that to a 
theorem prover to do inference. But it is usually more efficient to use a special-purpose infer- 
ence mechanism such as Prolog, which has the closed world and unique names assumptions 
built into the inference mechanism. 

Those who make the closed-world assumption must be careful about what kind of rea- 
soning they will be doing. For example, in a census database it would be reasonable to make 
the CWA when reasoning about the current population of cities, but it would be wrong to 
conclude that no baby will ever be born in the future just because the database contains no 
entries with future birthdates. The CWA makes the database complete, in the sense that ev- 
ery atomic query is answered either positively or negatively; when we are genuinely ignorant 
of facts (such as future births) we cannot use the CWA. A more sophisticated knowledge 
representation system might allow the user to specify rules for when to apply the CWA. 

Negation as failure and stable model semantics 

We saw in Chapters 7 and 9 than Horn-form knowledge bases have desirable computational 
properties. In many applications, however, the requirement that every literal in the body of 
a clause be positive is rather inconvenient. We would like to say "You can go outside if it's 
not raining," without having to concoct predicates such as NotRaining. In this section, we 
explore the addition of a form of explicit negation to Horn clauses based on the concept of 
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NEGATION AS 
FAILURII negation as failure. The idea is that a negative literal, not P, can be "proved" true just in 

case the proof of P fails. This is a form of default reasoning closely related to the closed 
world assumption: we assume something is false if it cannot be proved true. We usle "not" to 
distinguish negation as failure from the logical "1" operator. 

Prolog allows the not operator in the body of a clause. For example, consider the 
following Prolog program: 

IDEdrive t Drive A not SCSIdrive . 
SCSIdrive +- Drive A not IDEdrive . 
SCSIcontroller t- SCSIdrive . 

(10.4) 

Drive . 
The first rule says that if we have a hard drive on a computer and it is not SCST, then it must 
be IDE. The second says if it is not IDE it must be SCSI. The third says that having a SCSI 
drive implies having a SlCSI controller, and the fourth says that we do indeed have a drive. 
This program has two minimal models: 

hfi = {Drive, IDEdrive) , 
h& = {Drive, SCSIdrive, SCSIcontroller) . 

Minimal models do not capture the intended semantics of programs with negation as failure. 
Consider the program 

P t not Q.  (10.5) 

This has two minimal models, {P) and {Q}.  From an FOL point of view this makes sense, 
since P += 1 Q  is equivalent to P \/ Q. But from a Prolog point of view it is worrisome: Q 
never appears on the left hand side of an arrow, so how can it be a consequence? 

STABLE MODEL An alternative is the idea of a stable model, which is a minimal model whcre every 
JUSTIFICATION atom in the model has a justification: a rule where the head is the atom and wh~ere every 

literal in the body is satisfied. Technically, we say that A4 is a stable model of a prlogram H 
REDUCT if A l  is the unique minimal model of the reduct of H with respect to Ad. The reduct of a 

program H is defined by first deleting from H any rule that has a literal not A in ?the body, 
where A is in the model, and then deleting any negative literals in the remaining rules. Since 
the reduct of H is now a list of Horn clauses, it must have a unique minimal model. 

The reduct of P c not Q with respect to { P )  is P, which has minimal model { P ) .  
Therefore { P )  is a stable model. The reduct with respect to { Q )  is the empty program, which 
has minimal model {). Therefore {Q) is not a stable model because Q has no justification in 
Equation (10.5). As another example, the reduct of 10.4 with respect to MI is as follows: 

IDEdrzve t Drzve . 
SCSIcontroller t SCSIdrzve . 
Drive . 

ANSWER SET This has minimal model MI, so ,Wl is a stable model. Answer set programming is a kind 
of logic programming with negation as failure that works by translating the logic program 

ANSWERSETS into ground form and thein searching for stable models (also known as answer sets) using 
propositional model checlking techniques. Thus answer set programming is a descendant 
both of Prolog and of the fast propositional satisfiability provers such as WALKSAT. Indeed, 
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answer set programming has been successfully applied to problems in planning just as the 
propositional satisfiability provers have. The advantage of answer set planning over other 
planners is the degree of flexibility: the planning operators and constraints can be expressed as 
logic programs and are not bound to the restricted format of a particular planning formalism. 
The disadvantage of answer set planning is the same as for other propositional techniques: if 
there are very many objects in the universe, then there can be an exponential slow-down. 

Circumscription and default logic 

We have seen two examples where apparently natural reasoning processes violate the mono- 
tonicity property of logic that was proved in Chapter 7.13 In the first example, a property 
inherited by all members of a category in a semantic network could be overridden by more 
specific information for a subcategory. In the second example, negated literals derived from 
a closed-world assumption could be overridden by the addition of positive literals. 

Simple introspection suggests that these failures of monotonicity are widespread in 
commonsense reasoning. It seems that humans often "jump to conclusions." For example, 
when one sees a car parked on the street, one is normally willing to believe that it has four 
wheels even though only three are visible. (If you feel that the existence of the fourth wheel is 
dubious, consider also the question as to whether the three visible wheels are real or merely 
cardboard facsimiles.) Now, probability theory can certainly provide a conclusion that the 
fourth wheel exists with high probability, yet, for most people, the possibility of the car's not 
having four wheels does not arise unless some new evidence presents itself. Thus, it seems 
that the four-wheel conclusion is reached by default, in the absence of any reason to doubt it. 
If new evidence arrives-for example, if one sees the owner carrying a wheel and notices that 
the car is jacked up-then the conclusion can be retracted. This kind of reasoning is said to 

NONMONOTONGITY exhibit nonmonotonicity, because the set of beliefs does not grow monotonically over time 
NONMoNOToNIC LOGICS as new evidence arrives. Nonmonotonic logics have been devised with modified notions of 

truth and entailment in order to capture such behavior. We will look at two such logics that 
have been studied extensively: circumscription and default logic. 

CIRCUMSCRIPTION Circumscription can be seen as a more powerful and precise version of the closed- 
world assumption. The idea is to specify particular predicates that are assumed to be "as false 
as possiblem-that is, false for every object except those for which they are known to be true. 
For example, suppose we want to assert the default rule that birds fly. We would introduce a 
predicate, say Abnormall ( x ) ,  and write 

Bird ( x )  A 1 Abnormal (x) + Flies ( x )  . 

If we say that Abnormall is to be circumscribed, a circumscriptive reasoner is entitled to 
assume ~Abnorma l~ ( z )  unless Abnormall(x) is known to be true. This allows the con- 
clusion Flies( Tweety) to be drawn from the premise Bird ( Tweety), but the conclusion no 
longer holds if Abnormall ( Tweety) is asserted. 

MODEL 
PREFERENCE Circumscription can be viewed as an example of a model preference logic. In such 

logics, a sentence is entailed (with default status) if it is true in all preferred models of the KB, 

l3 Recall that monotonicity requires all entailed sentences to remain entailed after new sentences are added to the 
KB. That is, if KB a then KB A P a. 
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as opposed to the requirement of truth in all models in classical logic. For circumscription, 
one model is preferred to another if it has fewer abnormal objects.14 Let us see how this idea 
works in the context of multiple inheritance in semantic networks. The standard example for 
which multiple inheritance is problematic is called the "Nixon diamond." It arises from the 
observation that Richard Nixon was both a Quaker (and hence by default a pacifist) and a 
Republican (and hence by default not a pacifist). We can write this as follows: 

Republican(Nixon) A Quaker(Nzxon) . 
Republican(x) A -lAbnorma12 ( x )  + 1 Paczfist (x) . 
Quaker(x) A 7 Abnormal3 ( x )  + Pacifist ( x )  . 

If we circumscribe Abnormal2 and Abnormals, there are two preferred models: one in 
which Abnorma12(Nzxon) and Pacifist(Nzxon) hold and one in which Abnorma13(Nzxon) 
and lPac2fist (Nixon) hiold. Thus, the circumscriptive reasoner remains properly agnostic 
as to whether Nixon is a pacifist. If we wish, in addition, to assert that religious beliefs take 

PRIORITIZED CIRCUMsCRIPTloN precedence over political beliefs, we can use a formalism called prioritized circumscription 
to give preference to models where Abnormal3 is minimized. 

DEFAULI- LOGIC Default logic is a formalism in which default rules can be written to generate contin- 
DEFAULTRULES gent, nonmonotonic conclusions. A default rule looks like this: 

Bird ( x )  : Flzes (x)/Flies(x) . 
This rule means that if Bird (x) is true, and if Flies ( x )  is consistent with the knowledge base, 
then Flies(x) may be concluded by default. In general, a default rule has the form 

P : J l , .  . . , Jn/C 

where P is called the prerequisite, C is the conclusion, and Ji are the justifications-if any 
one of them can be proven false, then the concPusion cannot be drawn. Any variable that 
appears in Ji or C must also appear in P. The Nixon-diamond example can be represented 
in default logic with one fact and two default rules: 

Republican(Nzxon) A Quaker(Nilc;on) . 
Republican ( x )  : 1Pacifist ( x )  /l Pacifist ( x )  . 
Quaker ( x )  : Paczfist (x) / Pacifist ( x )  . 

EXTENSION To interpret what the default rules mean, we define the notion of an extension of a default 
theory to be a maximal set of consequences of the theory. That is, an extension S consists 
of the original known facts and a set of conclusions from the default rules, such that no 
additional conclusions can be drawn from S and the justifications of every default conclusion 
in S are consistent with S. As in the case of the preferred models in circumscription, we have 
two possible extensions for the Nixon diamond: one wherein he is a pacifist and one wherein 
he is not. Prioritized schemes exist in which some default rules can be given precedence over 
others, allowing some ambiguities to be resolved. 

Since 1980, when nonmonotonic logics were first proposed, a great deal of progress 
has been made in understanding their mathematical properties. Beginning in the late 1990s, 

l4 For the closed-world assumption, one model is preferred to another if it has fewer true atoms-that is, preferred 
rnodels are minimal models. There is a natural connection between the CWA and definite clause KBs, because 
the fixed point reached by forward chaining on such KBs is the unique minimal model. (See page 219.) 
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practical systems based on logic programming have shown promise as knowledge represen- 
tation tools. There are still unresolved questions, however. For example, if "Cars have four 
wheels" is false, what does it mean to have it in one's knowledge base? What is a good 
set of default rules to have? If we cannot decide, for each rule separately, whether it be- 
longs in our knowledge base, then we have a serious problem of nonmodularity. Finally, how 
can beliefs that have default status be used to make decisions? This is probably the hard- 
est issue for default reasoning. Decisions often involve tradeoffs, and one therefore needs 
to compare the strengths of belief in the outcomes of different actions. In cases where the 
same kinds of decisions are being made repeatedly, it is possible to interpret default rules 
as "threshold probability" statements. For example, the default rule "My brakes are always 
OK" really means "The probability that my brakes are OK, given no other information, is 
sufficiently high that the optimal decision is for me to drive without checking them." When 
the decision context changes-for example, when one is driving a heavily laden truck down 
a steep mountain road-the default rule suddenly becomes inappropriate, even though there 
is no new evidence to suggest that the brakes are faulty. These considerations have led some 
researchers to consider how to embed default reasoning in probability theory. 

The previous section argued that many of the inferences drawn by a knowledge representation 
system will have only default status, rather than being absolutely certain. Inevitably, some 
of these inferred facts will turn out to be wrong and will have to be retracted in the face of 

BEUEFREVISION new information. This process is called belief revision.15 Suppose that a knowledge base 
K B  contains a sentence P-perhaps a default conclusion recorded by a forward-chaining 
algorithm, or perhaps just an incorrect assertion-and we want to execute TELL(KB, 1 P ) .  
To avoid creating a contradiction, we must first execute RETRACT(KB, P). This sounds 
easy enough. Problems arise, however, if any additional sentences were inferred from P 
and asserted in the KB. For example, the implication P + Q might have been used to add 
Q. The obvious "solution"-retracting all sentences inferred from P-fails because such 
sentences may have other justifications besides P. For example, if R and R + Q are also 

TRUTH 
MAINTENANCE in the KB, then Q does not have to be removed after all. Truth maintenance systems, or 
SYSTEM 

TMSs, are designed to handle exactly these kinds of complications. 
One very simple approach to truth maintenance is to keep track of the order in which 

sentences are told to the knowledge base by numbering them from Pl to P,. When the call 
RETRACT(KB, Pi) is made, the system reverts to the state just before Pi was added, thereby 
removing both Pi and any inferences that were derived from Pi. The sentences Pi+l through 
P, can then be added again. This is simple, and it guarantees that the knowledge base will 
be consistent, but retracting Pi requires retracting and reasserting n - i sentences as well as 

l5 Belief revision is often contrasted with belief update, which occurs when a knowledge base is revised to reflect 
a change in the world rather than new information about a fixed world. Belief update combines belief revision 
with reasoning about time and change; it is also related to the process of filtering described in Chapter 15. 
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undoing and redoing all the inferences drawn from those sentences. For systems to which 
many facts are being added-such as large commercial databases-this is impraclliical. 

JTMS A more efficient approach is the justification-based truth maintenance system, or JTMS. 
JUSTIFICATION In a JTMS, each sentenice in the knowledge base is annotated with a justification consisting 

of the set of sentences from which it was inferred. For example, if the knowledge base 
already contains P + Q, then TELL(P) will cause Q to be added with the j~~~stification 
{P,  P + Q ) .  In general, a sentence can have any number of justifications. Justifications 
are used to make retraction efficient. Given the call RETRACT(P), the JTMS will delete 
exactly those sentences for which P is a member of every justification. So, if a sentence 
Q had the single justification {P, P + Q )  it would be removed, if it had the additional 
justification {P ,  P V R =+ Q) it would still be removed, but if it also had the jixstification 
{R, P V R =. Q), then it would be spared. In this way, the time required for retraction of P 
depends only on the nurnber of sentences derived from P rather than on the number of other 
sentences added since P entered the knowledge base. 

The JTMS assumes that sentences that are considesed once will probably be considered 
again, so rather than deleting a sentence from the knowledge base entirely when it loses 
all justifications, we merely mark the sentence as being out of the knowledge base. If a 
subsequent assertion restores one of the justifications, then we mark the sentence as being 
back in. In this way, th~e JTMS retains all of the inference chains that it uses and need not 
rederive sentences when a justification becomes valid again. 

In addition to hanldling the retraction of incorrect information, TMSs can be used to 
speed up the analysis of multiple hypothetical situations. Suppose, for example, that the 
Romanian Olympic Committee is choosing sites for the swimming, athletics, and eques- 
trian events at the 2048 Games to be held in Romania. For example, let the first hypothe- 
sis be Site(Swimming, Pitesti), Site(Athletics, Bucharest), and Szte(Equestricf,n, Arad). 
A great deal of reasoning must then be done to work out the logistical consequences and 
hence the desirability of this selection. If we want to consider Site(Athletics, ,Sibiu) in- 
stead, the TMS avoids the need to start again from scratch. Instead, we simply retract 
Szte(Athletics, Bucharest) and assert Site(Athletics, Sibiu) and the TMS takes care of the 
necessary revisions. Inference chains generated from the choice of Bucharest can be reused 
with Sibiu, provided that the conclusions are the same. 

ATMS An assumption-based truth maintenance system, or ATMS, is designed to make this 
type of context-switching between hypothetical ,worlds particularly efficient. In a JTMS, the 
maintenance of justifications allows you to move quickly from one state to another by making 
a few retractions and assertions, but at any time only one state is represented. An ATMS 
represents all the states that have ever been considered at the same time. Whereas a JTMS 
simply labels each sentence as being in or out, an ATMS keeps track, for each sentence, of 
which assumptions would cause the sentence to be true. In other words, each sentence has a 
label that consists of a set of assumption sets. The sentence holds just in those cases where 
all the assumptions in one of the assumption sets hold. 

EXPLANKTIONS Truth maintenance systems also provide a mechanism for generating explanations. 
Technically, an explanation of a sentence P is a set of sentences E such that E entails P .  
If the sentences in E are already known to be true, then E simply provides a sufficient ba- 
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A~SUMPTIONS sis for proving that P must be the case. But explanations can also include assumptions- 
sentences that are not known to be true, but would suffice to prove P if they were true. For 
example, one might not have enough information to prove that one's car won't start, but a 
reasonable explanation might include the assumption that the battery is dead. This, combined 
with knowledge of how cars operate, explains the observed nonbehavior. In most cases, we 
will prefer an explanation E that is minimal, meaning that there is no proper subset of E that 
is also an explanation. An ATMS can generate explanations for the "car won't start" problem 
by making assumptions (such as "gas in car" or "battery dead)  in any order we like, even if 
some assumptions are contradictory. Then we look at the label for the sentence "car won't 
start" to read off the sets of assumptions that would justify the sentence. 

The exact algorithms used to implement truth maintenance systems are a little compli- 
cated, and we do not cover them here. The computational complexity of the truth maintenance 
problem is at least as great as that of propositional inference-that is, NP-hard. Therefore, 
you should not expect truth maintenance to be a panacea. When used carefully, however, a 
TMS can provide a substantial increase in the ability of a logical system to handle complex 
environments and hypotheses. 

This has been the most detailed chapter of the book so far. By delving into the details of how 
one represents a variety of knowledge, we hope we have given the reader a sense of how real 
knowledge bases are constructed. The major points are as follows: 

a Large-scale knowledge representation requires a general-purpose ontology to organize 
and tie together the various specific domains of knowledge. 

a A general-purpose ontology needs to cover a wide variety of knowledge and should be 
capable, in principle, of handling any domain. 

a We presented an upper ontology based on categories and the event calculus. We cov- 
ered structured objects, time and space, change, processes, substances, and beliefs. 

a Actions, events, and time can be represented either in situation calculus or in more ex- 
pressive representations such as event calculus and fluent calculus. Such representations 
enable an agent to construct plans by logical inference. 

a The mental states of agents can be represented by strings that denote beliefs. 
We presented a detailed analysis of the Internet shopping domain, exercising the general 
ontology and showing how the domain knowledge can be used by a shopping agent. 

a Special-purpose representation systems, such as semantic networks and description 
logics, have been devised to help in organizing a hierarchy of categories. Inheritance 
is an important form of inference, allowing the properties of objects to be deduced from 
their membership in categories. 

a The closed-world assumption, as implemented in logic programs, provides a simple 
way to avoid having to specify lots of negative information. It is best interpreted as a 
default that can be overridden by additional information. 



Section 10.9. Summary 363 

Nonmonotonic logics, such as circumscription and default logic, are intended to cap- 
ture default reasoning in general. Answer set programming speeds up nonmonotonic 
inference, much as WALKSAT speeds up propositional inference. 
Truth maintenance systems handle knowledge updates and revisions efficiently. 

BIBLIOGRAPHICAL AND HISTORICAL NOTES 

There are plausible claims (Briggs, 1985) that formal knowledge representation research be- 
gan with classical Indian theorizing about the grammar of Shastric Sanskrit, which dates 
back to the first millennium B.C. In the West, the use of definitions of terms in ancient Greek 
mathematics can be regarded as the earliest instance. Indeed, the development olf technical 
terminology in any field can be regarded as a form of knowledge representation. 

Early discussions of representation in A1 tended to focus on "problem representation" 
rather than "knowledge representation." (See, for example, Amarel's (1968) discussion of the 
Missionaries and Cannibals problem.) In the 1970s, A1 emphasized the development of "ex- 
pert systems" (also called "knowledge-based systems") that could, if given the appropriate 
domain knowledge, match or exceed the performance of human experts on narrowly defined 
tasks. For example, the first expert system, DENDRAL (Feiglenbaum et al., 1971 ; Lindsay 
et al., 1980)' interpreted the output of a mass spectrometer (a type of instrument used to ana- 
lyze the structure of organic chemical compounds) as accurately as expert chemists. Although 
the success of DENDRAIL was instrumental in convincing the A1 research community of the 
importance of knowledge representation, the representational formalisms used in DENDRAL 
are highly specific to the domain of chemistry. Over time, researchers became interested in 
standardized knowledge representation formalisms and ontologies that could streamline the 
process of creating new expert systems. In so doing, they ventured into territory previously 
explored by  philosopher,^ of science and of language. The discipline imposed in A1 by the 
need for one's theories to "work" has led to more rapid and deeper progress than was the case 
when these problems were the exclusive domain of philosophy (although it has at limes also 
led to the repeated reinvention of the wheel). 

The creation of co~iprehensive taxonomies or classifications dates back to ancient times. 
Aristotle (384-322 B .c.) strongly emphasized classification and categorization schemes. His 
Organon, a collection of works on logic assembled by his students after his death, included a 
treatise called Categories in which he attempted to construct what we would now call an upper 
ontology. He also introduced the notions of genus and species for lower-level classification, 
although not with their modern, specifically biological meaning. Our present system of bio- 
logical classification, including the use of "binomial nomenclature" (classification via genus 
and species in the technical sense), was invented by the Swedish biologist Carolus ll,innaeus, 
or Carl von Linne (1707-1778). The problems associated with natural kinds and inexact cat- 
egory boundaries have been addressed by Wittgenstein (1953), Quine (1953), LakoFf (1987), 
and Schwartz (1977)' among others. 

Interest in larger-scale ontologies is increasing. The CYC project (Lenat, 1995; Lenat 
and Guha, 1990) has released a 6,000-concept upper ontology with 60,000 facts, and licenses 
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a much larger global ontology. The IEEE has established subcommittee P1600.1, the Stan- 
dard Upper Ontology Working Group, and the Open Mind Initiative has enlisted over 7,000 
Internet users to enter more than 400,000 facts about commonsense concepts. On the Web, 
standards such as RDF, XML, and the Semantic Web (Berners-Lee et al., 2001) are emerg- 
ing, but are not yet widely used. The conferences on Formal Ontology in Information Systems 
(FOIS) contain many interesting papers on both general and domain-specific ontologies. 

The taxonomy used in this chapter was developed by the authors and is based in part on 
their experience in the CYC project and in part on work by Hwang and Schubert (1993) and 
Davis (1990). An inspirational discussion of the general project of commonsense knowledge 
representation appears in Hayes's (1978, 1985b) "The Naive Physics Manifesto." 

The representation of time, change, actions, and events has been studied extensively in 
philosophy and theoretical computer science as well as in AI. The oldest approach is tempo- 
ral logic, which is a specialized logic in which each model describes a complete trajectory 
through time (usually either linear or branching), rather than just a static relational structure. 
The logic includes modal operators that are applied to formulas; U p  means "p will be true 
at all times in the future," and 0 p  means "p will be true at some time in the future." The 
study of temporal logic was initiated by Aristotle and the Megarian and Stoic schools in an- 
cient Greece. In modern times, Findlay (1941) was the first to suggest a formal calculus 
for reasoning about time, but the work of Arthur Prior (1967) is considered the most influ- 
ential. Textbooks on temporal logic include those by Rescher and Urquhart (1971) and van 
Benthem (1983). 

Theoretical computer scientists have long been interested in formalizing the properties 
of programs, viewed as sequences of computational actions. Burstall (1974) introduced the 
idea of using modal operators to reason about computer programs. Soon thereafter, Vaughan 
Pratt (1976) designed dynamic logic, in which modal operators indicate the effects of pro- 
grams or other actions (see also Harel, 1984). For instance, in dynamic logic, if a is the name 
of a program, then "[alp" means "p would be true in all world states resulting from executing 
program a in the current world state", and "(a)pV means " p  would be true in at least one 
world state resulting from executing program a in the current world state." Dynamic logic 
was applied to the actual analysis of programs by Fischer and Ladner (1977). Pnueli (1977) 
introduced the idea of using classical temporal logic to reason about programs. 

Whereas temporal logic puts time directly into the model theory of the language, repre- 
sentations of time in A1 have tended to incorporate axioms about times and events explicitly 
in the knowledge base, giving time no special status in the logic. This approach can allow 
for greater clarity and flexibility in some cases. Also, temporal knowledge expressed in first- 
order logic can be more easily integrated with other knowledge that has been accumulated in 
that notation. 

The earliest treatment of time and action in A1 was John McCarthy's (1963) situation 
calculus. The first A1 system to make substantial use of general-purpose reasoning about 
actions in first-order logic was QA3 (Green, 1969b). Kowalski (1979b) developed the idea 
of reifying propositions within situation calculus. 

The frame problem was first recognized by McCarthy and Hayes (1969). Many re- 
searchers considered the problem insoluble within first-order logic, and it spurred a great 
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deal of research into nonmonotonic logics. Philosophers from Dreyfus (1972) to Crockett 
(1994) have cited the frame problem as one symptom of the inevitable failure of the entire 
A1 enterprise. The partial solution of the representational frame problem using successor- 
state axioms is due to Ray Reiter (1991); a solution of the inferential frame problem can be 
traced to work by Holldobler and Schneeberger (1990) on what became known as fluent cal- 
culus (Thielscher, 1999). The discussion in this chapter is based partly on the analyses by 
Lin and Reiter (1997) and Thielscher (1999). Books by Shanahan (1997) and Reiter (2001b) 
give complete, modern treatments of reasoning about action in situation calculus. 

The partial resolution of the frame problem has rekindled interest in the declarative ap- 
proach to reasoning about actions, which had been eclipsed by special-purpose planning sys- 

COGNITIVE 
ROBOTICS tems since the early 1970s. (See Chapter 11.) Under the banner of cognitive robotics, much 

progress has been made on logical representations of action and time. The GOLOG language 
uses the full expressive power of logic programming to describe actions and plans (Levesque 
et al., 1997a) and has been extended to handle concurrent actions (Giacomo et al., 2000), 
stochastic environments (Boutilier et al., 2000), and sensing (Reiter, 2001a). 

The event calculus was introduced by Kowalski and Sergot (1986) to handle contin- 
uous time, and there have been several variations (Sadri and Kowalski, 1995). Shanahan 
(1999) presents a good short overview. James Allen introduced time intervals for the same 
reason (Allen, 1983, 1984), arguing that intervals were much more natural than situations 
for reasoning about extended and concurrent events. Peter Ladkin (1986a, 1986b) introduced 
"concave" time intervals (intervals with gaps; essentially, unions of ordinary "cornvex" time 
intervals) and applied the techniques of mathematical abstract algebra to time r~epresenta- 
tion. Allen (1991) systematically investigates the wide variety of techniques available for 
time representation. Shoham (1987) describes the reification of events and sets forth a novel 
scheme of his own for the purpose. There are significant commonalities between the event- 
based ontology given in Ithis chapter and an analysis of events due to the philosopher Donald 
Davidson (1980). The histories in Pat Hayes's (1985a) ontology of liquids also have much 
the same flavor. 

The question of the ontological status of substances has a long history. Plato proposed 
that substances were abstract entities entirely distinct from physical objects; he would say 
MadeOf (Butters, Butter) rather than Butters E Butter. This leads to a substance hierar- 
chy in which, for example, UnsaltedButter is a more specific substance than Butter. The po- 
sition adopted in this chapter, in which substances are categories of objects, was championed 
by Richard Montague (1973). It has also been adopted in the CYC project. Copelamd (1993) 
mounts a serious, but not invincible, attack. The alternative approach mentioned in the chap- 
ter, in which butter is one object consisting of all buttery objects in the universe, was proposed 

MEREOLOGY originally by the Polish logician LeSniewski (19 16). His mereology (the name is derived from 
the Greek word for "part") used the part-whole relation as a substitute for mathematical set 
theory, with the aim of eliminating abstract entities such as sets. A more readable exposi- 
tion of these ideas is given by Leonard and Goodman (1940), and Goodman's The Structure 
of Appearance (1977) applies the ideas to various problems in knowledge representation. 
While some aspects of the mereological approach are awkward-for example, the need for 
a separate inheritance mechanism based on part-whole relations-the approach gained the 
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support of Quine (1960). Harry Bunt (1985) has provided an extensive analysis of its use in 
knowledge representation. 

Mental objects and states have been the subject of intensive study in philosophy and 
MODAL LOGIC AI. Modal logic is the classical method for reasoning about knowledge in philosophy. Modal 

logic augments first-order logic with modal operators, such as B (believes) and K (knows), 
that take sentences rather than terms as arguments. The proof theory for modal logic restricts 
substitution within modal contexts, thereby achieving referential opacity. The modal logic of 
knowledge was invented by Jaakko Hintikka (1962). Saul Kripke (1963) defined the seman- 
tics of the modal logic of knowledge in terms of possible worlds. Roughly speaking, a world 
is possible for an agent if it is consistent with everything the agent knows. From this, one 
can derive rules of inference involving the K operator. Robert C. Moore relates the modal 
logic of knowledge to a style of reasoning about knowledge that refers directly to possible 
worlds in first-order logic (Moore, 1980, 1985). Modal logic can be an intimidatingly arcane 
field, but it has found significant applications in reasoning about information in distributed 
computer systems. The book Reasoning about Knowledge by Fagin et al. (1995) provides a 
thorough introduction to the modal approach. The biennial conference on Theoretical Aspects 
of Reasoning About Knowledge (TARK) covers applications of the theory of knowledge in 
AI, economics, and distributed systems. 

The syntactic theory of mental objects was first studied in depth by Kaplan and Mon- 
tague (1960), who showed that it led to paradoxes if not handled carefully. Because it has 
a natural model in terms of beliefs as physical configurations of a computer or a brain, it 
has been popular in A1 in recent years. Konolige (1982) and Haas (1986) used it to describe 
inference engines of limited power, and Morgenstern (1987) showed how it could be used 
to describe knowledge preconditions in planning. The methods for planning observation ac- 
tions in Chapter 12 are based on the syntactic theory. Ernie Davis (1990) gives an excellent 
comparison of the syntactic and modal theories of knowledge. 

The Greek philosopher Porphyry (c. 234-305 A.D.), commenting on Aristotle's Cat- 
egories, drew what might qualify as the first semantic network. Charles S. Peirce (1909) 
developed existential graphs as the first semantic network formalism using modern logic. 
Ross Quillian (1961), driven by an interest in human memory and language processing, ini- 
tiated work on semantic networks within AI. An influential paper by Marvin Minsky (1975) 
presented a version of semantic networks called frames; a frame was a representation of 
an object or category, with attributes and relations to other objects or categories. Although 
the paper served to initiate interest in the field of knowledge representation per se, it was 
criticized as a recycling of earlier ideas developed in object-oriented programming, such as 
inheritance and the use of default values (Dahl et al., 1970; Birtwistle et al., 1973). It is not 
clear to what extent the latter papers on object-oriented programming were influenced in turn 
by early A1 work on semantic networks. 

The question of semantics arose quite acutely with respect to Quillian's semantic net- 
works (and those of others who followed his approach), with their ubiquitous and very 
vague "IS-A links," as well as other early knowledge representation formalisms such as that 
of MERLIN (Moore and Newell, 1973) with its mysterious "flat" and "cover" operations. 
Woods' (1975) famous article "What's In a Link?" drew the attention of A1 researchers to the 
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need for precise semantics in knowledge representation formalisms. Brachman (1979) elab- 
orated on this point and proposed solutions. Patrick Hayes's (1979) "The Logic of Frames" 
cut even deeper, claiming that "Most of 'frames' is just a new syntax for parts of first-order 
logic." Drew McDermott7s (1978b) "Tarskian Semantics, or, No Notation without Denota- 
tion!" argued that the rn~odel-theoretic approach to semantics used in first-order logic should 
be applied to all knowledge representation formalisms. This remains a controversial idea; 
notably, McDermott hirnself has reversed his position in "A Critique of Pure Realson" (Mc- 
Dermott, 1987). NETL (Fahlman, 1979) was a sophisticated semantic network system whose 
IS-A links (called "virtual copy," or VC, links) were based more on the notion of "inher- 
itance" characteristic of frame systems or of object-oriented programming languages than 
on the subset relation and were much more precisely defined than Quillian's links from the 
pre-Woods era. NETL is particularly intriguing because it was intended to be implemented 
in parallel hardware to overcome the difficulty of retrieving information from large semantic 
networks. David Touretzky (1986) subjects inheritance to rigorous mathematical analysis. 
Selman and Levesque (1993) discuss the complexity of inheritance with exceptions, showing 
that in most formulations it is NP-complete. 

The development of description logics is the most recent stage in a long line of re- 
search aimed at finding useful subsets of first-order logic for which inference is computa- 
tionally tractable. Hector Levesque and Ron Brachman (1987) showed that certain logical 
constructs-notably, certain uses of disjunction and negation-were primarily r~~sponsible 
for the intractability of llogical inference. Building on the KL-ONE system (Schimolze and 
Lipkis, 1983), a number of systems have been developed whose designs incorporate the re- 
sults of theoretical complexity analysis, most notably KRYPTON (Brachman et al., 1983) and 
Classic (Borgida et al., 1989). The result has been a marked increase in the speed of inference 
and a much better understanding of the interaction between complexity and expressiveness 
in reasoning systems. Calvanese et al. (1999) summarize the state of the art. Asainst this 
trend, Doyle and Patil (1991) have argued that restricting the expressiveness of a language 
either makes it impossiblle to solve certain problems or encourages the user to circumvent the 
language restrictions through nonlogical means. 

The three main formalisms for dealing with nonmonotonic inference-circumscription 
(McCarthy, 1980), default logic (Reiter, 1980), and modal nonmonotonic logic (McDermott 
and Doyle, 1980)-were all introduced in one special issue of the A1 Journal. Answer set 
programming can be seen as an extension of negation as failure or as a refinement of circum- 
scription; the underlying theory of stable model semantics was introduced by Gelfond and 
Lifschitz (1988) and the leading answer set programming systems are DLV (Eiter et al., 1998) 
and SMODELS (Niemela et al., 2000). The disk drive example comes from the SMOIIIELS user 
manual (Syrjanen, 2000). Lifschitz (2001) discusses the use of answer set programming for 
planning. Brewka et al. (1997) give a good overview of the various approaches to rionmono- 
tonic logic. Clark (1978) covers the negation-as-failure approach to logic programming and 
Clark completion. Van Emden and Kowalski (1976) show that every Prolog program without 
negation has a unique minimal model. Recent years have seen renewed interest in applica- 
tions of nonmonotonic logics to large-scale knowledge representation systems. The BENINQ 
systems for handling insurance benefits inquiries was perhaps the first commerciall~r success- 
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QUALITATIVE 
PHYSICS 

ful application of a nonmonotonic inheritance system (Morgenstern, 1998). Lifschitz (2001) 
discusses the application of answer set programming to planning. A variety of nonmonotonic 
reasoning systems based on logic programming are documented in the proceedings of the 
conferences on Logic Programming and Nonmonotonic Reasoning (LPNMR). 

The study of truth maintenance systems began with the TMS (Doyle, 1979) and RUP 
(McAllester, 1980) systems, both of which were essentially JTMSs. The ATMS approach 
was described in a series of papers by Johan de Kleer (1986a, 1986b, 1986~).  Building 
Problem Solvers (Forbus and de Kleer, 1993) explains in depth how TMSs can be used in A1 
applications. Nayak and Williams (1997) show how an efficient TMS makes it feasible to 
plan the operations of a NASA spacecraft in real time. 

For obvious reasons, this chapter does not cover every area of knowledge representation 
in depth. The three principal topics omitted are the following: 

Qualitative physics: Qualitative physics is a subfield of knowledge representation con- 
cerned specifically with constructing a logical, nonnumeric theory of physical objects 
and processes. The term was coined by Johan de Kleer (1975), although the enterprise 
could be said to have started in Fahlman's (1974) BUILD, a sophisticated planner for 
constructing complex towers of blocks. Fahlman discovered in the process of design- 
ing it that most of the effort (80%, by his estimate) went into modeling the physics of 
the blocks world to calculate the stability of various subassemblies of blocks, rather 
than into planning per se. He sketches a hypothetical naive-physics-like process to 
explain why young children can solve BUILD-like problems without access to the high- 
speed floating-point arithmetic used in BUILD'S physical modeling. Hayes (1985a) 
uses "histories"-four-dimensional slices of space-time similar to Davidson's events- 
to construct a fairly complex naive physics of liquids. Hayes was the first to prove that 
a bath with the plug in will eventually overflow if the tap keeps running and that a per- 
son who falls into a lake will get wet all over. De Kleer and Brown (1985) and Ken 
Forbus (1985) attempted to construct something like a general-purpose theory of the 
physical world, based on qualitative abstractions of physical equations. In recent years, 
qualitative physics has developed to the point where it is possible to analyze an im- 
pressive variety of complex physical systems (Sacks and Joskowicz, 1993; Yip, 1991). 
Qualitative techniques have been used to construct novel designs for clocks, windscreen 
wipers, and six-legged walkers (Subramanian, 1993; Subramanian and Wang, 1994). 
The collection Readings in Qualitative Reasoning about Physical Systems (Weld and 
de Kleer, 1990) provides a good introduction to the field. 

SPATIALREASONING Spatial reasoning: The reasoning necessary to navigate in the wumpus world and shop- 
ping world is trivial in comparison to the rich spatial structure of the real world. The 
earliest serious attempt to capture commonsense reasoning about space appears in the 
work of Ernest Davis (1986, 1990). The region connection calculus of Cohn et al. 
(1997) supports a form of qualitative spatial reasoning and has led to new kinds of geo- 
graphical information system. As with qualitative physics, an agent can go a long way, 
so to speak, without resorting to a full metric representation. When such a representa- 
tion is necessary, techniques developed in robotics (Chapter 25) can be used. 
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PSYCHOLOGICAL 
REASOlUlNG 0 Psychological reasoning: Psychological reasoning involves the development of a work- 

ing psychology for artificial agents to use in reasoning about themselves and other 
agents. This is often based on so-called folk psychology, the theory that humans in 
general are believed to use in reasoning about themselves and other humans. When 
A1 researchers pruvide their artificial agents with psychological theories for reasoning 
about other agents, the theories are frequently based on the researchers' description of 
the logical agents' own design. Psychological reasoning is currently most useful within 
the context of natural language understanding, where divining the speaker's intentions 
is of paramount importance. 

The proceedings of the international conferences on Principles of Knowledge Repre- 
sentation and Reasoning provide the most up-to-date sources for work in this area. Readings 
in Knowledge Representation (Brachman and Levesque, 1985) and Formal Theol-ies of the 
Commonsense World (Hobbs and Moore, 1985) are excellent anthologies on knowledge rep- 
resentation; the former focuses more on historically important papers in represenlation lan- 
guages and formalisms, the latter on the accumulation of the knowledge itself. Davis (1990), 
Stefik (1995), and Sowa (1999) provide textbook introductions to knowledge repre;sentation. 

10.1 Write sentences to define the effects of the Shoot action in the wumpus world. De- 
scribe its effects on the wumpus and remember that shooting uses the agent's arrow. 

10.2 Within situation calculus, write an axiom to associate tirne 0 with the situation So and 
another axiom to associate the time t with any situation that is derived from So by a sequence 
of t actions. 

10.3 In this exercise, we will consider the problem of planning a route for a robot to take 
from one city to another. The basic action taken by the robot is Go(x, y), which takes it from 
city x to city y if there is a direct route between those cities. DzrectRoute(x, y) is true if and 
only if there is a direct route from x to y; you can assume that all such facts are already in the 
KB. (See the map on page 63.) The robot begins in Arad and must reach Bucharest. 

a. Write a suitable logical description of the initial situation of the robot. 
b. Write a suitable logical query whose solutions will provide possible paths to the goal. 
c. Write a sentence describing the Go action. 
d. Now suppose that following the direct route between two cities consumes an amount of 

fuel equal to the distance between the cities. The robot starts with fuel at full capacity. 
Augment your representation to include these considerations. Your action description 
should be such that the query you specified earlier will still result in feasible plans. 

e. Describe the initial situation, and write a new rule or rules describing the Go action. 
f. Now suppose some of the vertices are also gas stations, at which the robot can fill its 

tank. Extend your representation and write all the rules needed to describe gas stations, 
including the Fillup action. 
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10.4 Investigate ways to extend the event calculus to handle simultaneous events. Is it 
possible to avoid a combinatorial explosion of axioms? 

10.5 Represent the following seven sentences using and extending the representations de- 
veloped in the chapter: 

a. Water is a liquid between 0 and 100 degrees. 
b. Water boils at 100 degrees. 
c .  The water in John's water bottle is frozen. 
d. Perrier is a kind of water. 
e. John has Perrier in his water bottle. 

f. All liquids have a freezing point. 
g. A liter of water weighs more than a liter of alcohol. 

Now repeat the exercise using a representation based on the mereological approach, in which, 
for example, Water is an object containing as parts all the water in the world. 

10.6 Write definitions for the following: 

a. ExhaustivePartDecomposition 
b. PartPartition 
c.  PartwiseDisjoint 

These should be analogous to the definitions for ExhaustiveDecomposition, Partition, and 
Disjoint. Is it the case that PartPartition(s, BunchOf ( s ) )?  If so, prove it; if not, give a 
counterexample and define sufficient conditions under which it does hold. 

10.7 Write a set of sentences that allows one to calculate the price of an individual tomato 
(or other object), given the price per pound. Extend the theory to allow the price of a bag of 
tomatoes to be calculated. 

10.8 An alternative scheme for representing measures involves applying the units function 
to an abstract length object. In such a scheme, one would write Inches(Length(L1)) = 

1.5. How does this scheme compare with the one in the chapter? Issues include conversion 
axioms, names for abstract quantities (such as "50 dollars"), and comparisons of abstract 
measures in different units (50 inches is more than 50 centimeters). 

10.9 Construct a representation for exchange rates between currencies that allows fluctua- 
tions on a daily basis. 

10.10 This exercise concerns the relationships between event categories and the time inter- 
vals in which they occur. 

a. Define the predicate T(c,  i) in terms of During and E . 
b. Explain precisely why we do not need two different notations to describe conjunctive 

event categories. 
c.  Give a formal definition for T(OneOf ( p ,  q), i) and T(Either(p, q), i ) .  
d. Explain why it makes sense to have two forms of negation of events, analogous to the 

two forms of disjunction. Call them Not and Never and give them formal definitions. 



Section 10.9. Summary 37 1 

10.11 Define the predicate Fixed, where Fixed(Location(x)) means that the location of 
object x is fixed over time. 

10.12 Define the predicates Before, After, During, and Overlap, using the predicate Meet 
and the functions Start and End, but not the function Time or the predicate <. 
10.13 Section 10.5 used the predicates Link and LinkText to describe connections between 
web pages. Using the ZnTag and GetPage predicates, among others, write definitions for Link 
and LinkText. 

10.14 One part of the shopping process that was not covered in this chapter is checking for 
compatibility between items. For example, if a customer orders a computer, is it matched 
with the right peripherals? If a digital camera is ordered, does it have the right meimory card 
and batteries? Write a kinowledge base that will decide whether a set of items is compatible 
and that can be used to suggest replacements or additional items if they are not compatible. 
Make sure that the knovvledge base works with at least one line of products, and is easily 
extensible to other lines. 

10.15 Add rules to extend the definition of the predicate Name(s7 c) so that a string such as 
"laptop computer" matches against the appropriate category names from a variety of stores. 
Try to make your definition general. Test it by looking at ten online stores, and at the category 
names they give for three different categories. For example, for the category of laptops, we 
found the names "Notebooks," "Laptops," "Notebook Computers," "Notebook," "Laptops 
and Notebooks," and "Notebook PCs." Some of these can be covered by explicit Name facts, 
while others could be covered by rules for handling plurals, coi~junctions, etc. 

10.16 A complete solution to the problem of inexact matches to the buyer's description 
in shopping is very difficult and requires a full array of natural language processing and 
information retrieval techniques. (See Chapters 22 and 23.) One small step is to allow the 
user to specify minimum and maximum values for various attributes. We will insist that the 
buyer use the following grammar for product descriptions: 

Description -+ Category [Connector Modifier] * 
Connector -+ 64W,jth?9 1 U a n C  1 <' n 

7 

Modzfier + Attribute 1 Attribute Op Value 
OP + 

LC=?, 1 LC>)? 1 U<?> 

Here, Category names a product category, Attribute is some feature such as "CPU or 
"price," and Value is the target value for the attribute. So the query "computer with at least a 
2.5-GHz CPU for under $1000" must be re-expressed as "computer with CPU > 2.5 GHz and 
price < $1000." Implement a shopping agent that accepts descriptions in this language. 

10.17 Our description of Internet shopping omitted the all-important step of actually buying 
the product. Provide a formal logical description of buying, using event calculus. That is, 
define the sequence of events that occurs when a buyer submits a credit card purchase and 
then eventually gets billed and receives the product. 

10.18 Describe the event of trading something for something else. Describe buying as a 
kind of trading in which one of the objects traded is a sum of money. 
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10.19 The two preceding exercises assume a fairly primitive notion of ownership. For ex- 
ample, the buyer starts by owning the dollar bills. This picture begins to break down when, 
for example, one's money is in the bank, because there is no longer any specific collection 
of dollar bills that one owns. The picture is complicated still further by borrowing, leasing, 
renting, and bailment. Investigate the various commonsense and legal concepts of ownership, 
and propose a scheme by which they can be represented formally. 

10.20 You are to create a system for advising computer science undergraduates on what 
courses to take over an extended period in order to satisfy the program requirements. (Use 
whatever requirements are appropriate for your institution.) First, decide on a vocabulary for 
representing all the information, and then represent it; then use an appropriate query to the 
system, that will return a legal program of study as a solution. You should allow for some 
tailoring to individual students, in that your system should ask what courses or equivalents 
the student has already taken, and not generate programs that repeat those courses. 

Suggest ways in which your system could be improved-for example to take into ac- 
count knowledge about student preferences, the workload, good and bad instructors, and so 
on. For each kind of knowledge, explain how it could be expressed logically. Could your sys- 
tem easily incorporate this information to find the best program of study for a student? 

10.21 Figure 10.1 shows the top levels of a hierarchy for everything. Extend it to include 
as many real categories as possible. A good way to do this is to cover all the things in your 
everyday life. This includes objects and events. Start with waking up, and proceed in an 
orderly fashion noting everything that you see, touch, do, and think about. For example, 
a random sampling produces music, news, milk, walking, driving, gas, Soda Hall, carpet, 
talking, Professor Fateman, chicken curry, tongue, $7, sun, the daily newspaper, and so on. 

You should produce both a single hierarchy chart (on a large sheet of paper) and a 
listing of objects and categories with the relations satisfied by members of each category. 
Every object should be in a category, and every category should be in the hierarchy. 

10.22 (Adapted from an example by Doug Lenat.) Your mission is to capture, in logical 
form, enough knowledge to answer a series of questions about the following simple sentence: 

Yesterday John went to the North Berkeley Safeway supermarket and bought two 
pounds of tomatoes and a pound of ground beef. 

Start by trying to represent the content of the sentence as a series of assertions. You should 
write sentences that have straightforward logical structure (e.g., statements that objects have 
certain properties, that objects are related in certain ways, that all objects satisfying one prop- 
erty satisfy another). The following might help you get started: 

Which classes, objects, and relations would you need? What are their parents, siblings 
and so on? (You will need events and temporal ordering, among other things.) 
Where would they fit in a more general hierarchy? 
What are the constraints and interrelationships among them? 
How detailed must you be about each of the various concepts? 

The knowledge base you construct must be capable of answering a list of questions that we 
will give shortly. Some of the questions deal with the material stated explicitly in the story, 
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but most of them require one to have other background knowledge-to read between the 
lines. You'll have to deal with what kind of things are at a supermarket, what is involved with 
purchasing the things one selects, what will purchases be used for, and so on. Tly to make 
your representation as general as possible. To give a trivial example: don't say "People buy 
food from Safeway," because that won't help you with those who shop at another supermarket. 
Don't say "Joe made spaghetti with the tomatoes and ground beef," because that won't help 
you with anything else at all. Also, don't turn the questions into answers; for example, 
question (c) asks "Did John buy any meat?'-not "Did John buy a pound of ground beef?" 

Sketch the chains of reasoning that would answer the questions. In the process of doing 
so, you will no doubt  need to create additional concepts, make additional assertions, and 
so on. If possible, use a logical reasoning system to demonstrate the sufficiency of your 
knowledge base. Many of the things you write might be only approximately correcrl. in reality, 
but don't worry too much; the idea is to extract the common sense that lets you answer these 
questions at all. A truly complete answer to this question is extremely difficult, probably 
beyond the state of the art of current knowledge representation. But you should be able to put 
together a consistent set of axioms for the limited questions posed here. 

a. Is John a child or an adult? [Adult] 

b. Does John now h a ~ ~ e  at least two tomatoes? [Yes] 

c. Did John buy any meat? [Yes] 

d. If Mary was buying tomatoes at the same time as John, did he see her? [Yes] 

e. Are the tomatoes made in the supermarket? [No] 

f. What is John going to do with the tomatoes? [Eat them] 

g. Does Safeway sell deodorant? [Yes] 

h. Did John bring any money to the supermarket? [Yes] 

i. Does John have less money after going to the supermarket? [Yes] 

10.23 Make the necess,ary additions or changes to your knowledge base from the: previous 
exercise so that the questions that follow can be answered. Show that they can indeed be 
answered by the KB, and include in your report a discussion of the fixes, explaining why they 
were needed, whether they were minor or major, and so on. 

a. Are there other people in Safeway while John is there? [Yes-staff!] 

b. Is John a vegetarian? [No] 

c. Who owns the deodlorant in Safeway? [Safeway Corporation] 

d. Did John have an ounce of ground beef? [Yes] 

e. Does the Shell station next door have any gas? [Yes] 

f. Do the tomatoes fit in John's car trunk? [Yes] 

10.24 Recall that inheritance information in semantic networks can be captured logically 
by suitable implication sentences. In this exercise, we will consider the efficiency of using 
such sentences for inheritance. 
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a. Consider the information content in a used-car catalog such as Kelly's Blue Book- 
for example, that 1973 Dodge Vans are worth $575. Suppose all this information (for 
11,000 models) is encoded as logical rules, as suggested in the chapter. Write down 
three such rules, including that for 1973 Dodge Vans. How would you use the rules 
to find the value of a particular car (e.g., JB, which is a 1973 Dodge Van), given a 
backward-chaining theorem prover such as Prolog? 

b. Compare the time efficiency of the backward-chaining method for solving this problem 
with the inheritance method used in semantic nets. 

c. Explain how forward chaining allows a logic-based system to solve the same problem 
efficiently, assuming that the KB contains only the 11,000 rules about prices. 

d. Describe a situation in which neither forward nor backward chaining on the rules will 
allow the price query for an individual car to be handled efficiently. 

e. Can you suggest a solution enabling this type of query to be solved efficiently in all 
cases in logic systems? [Hint: Remember that two cars of the same category have the 
same price.] 

10.25 One might suppose that the syntactic distinction between unboxed links and singly 
boxed links in semantic networks is unnecessary, because singly boxed links are always at- 
tached to categories; an inheritance algorithm could simply assume that an unboxed link 
attached to a category is intended to apply to all members of that category. Show that this 
argument is fallacious, giving examples of errors that would arise. 



In which we see how an agent can take advantage of the structure of a problem to 
construct complex plans of action. 

CLASSICAL 
PLANNING 

The task of coming up with a sequence of actions that will achieve a goal is called planning. 
We have seen two examples of planning agents so far: the search-based probleim-solving 
agent of Chapter 3 and the logical planning agent of Chapter 10. This chapter is concerned 
primarily with scaling up to complex planning problems that defeat the approaches we have 
seen so far. 

Section 11.1 develops an expressive yet carefully constrained language for representing 
planning problems, including actions and states. The language is closely related to the propo- 
sitional and first-order representations of actions in Chapters 7 and 10. Section 11.2 shows 
how forward and backward search algorithms can take advantage of this representation, pri- 
marily through accurate heuristics that can be derived automatically from the structure of the 
representation. (This is analogous to the way in which effective heuristics were constructed 
for constraint satisfaction problems in Chapter 5.) Sections 11.3 through 11.5 describe plan- 
ning algorithms that go beyond forward and backward search, taking advantage of the rep- 
resentation of the probleim. In particular, we explore approaches that are not constrained to 
consider only totally ordered sequences of actions. 

For this chapter, we consider only environments that are fully observable, deterministic, 
finite, static (change happens only when the agent acts), and discrete (in time, action, objects, 
and effects). These are called classical planning environments. In contrast, no~nclassical 
planning is for partially olbservable or stochastic environments and involves a different set of 
algorithms and agent designs, outlined in Chapters 12 and 17. 

Let us consider what car) happen when an ordinary problem-solving agent using standard 
search algorithms-depth[-first, A*, and so on-comes up against large, real-world problems. 
That will help us design better planning agents. 
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The most obvious difficulty is that the problem-solving agent can be overwhelmed by 
irrelevant actions. Consider the task of buying a copy of AI: A Modern Approach from an 
online bookseller. Suppose there is one buying action for each 10-digit ISBN number, for a 
total of 10 billion actions. The search algorithm would have to examine the outcome states 
of all 10 billion actions to find one that satisfies the goal, which is to own a copy of ISBN 
0137903952. A sensible planning agent, on the other hand, should be able to work back 
from an explicit goal description such as Have(ISBN0137903952) and generate the action 
Buy(ISBN0137903952) directly. To do this, the agent simply needs the general knowledge 
that Buy (x) results in Have (x) . Given this knowledge and the goal, the planner can decide 
in a single unification step that Buy(ISBN0137903952) is the right action. 

The next difficulty is finding a good heuristic function. Suppose the agent's goal is to 
buy four different books online. Then there will be lo4' plans of just four steps, so searching 
without an accurate heuristic is out of the question. It is obvious to a human that a good 
heuristic estimate for the cost of a state is the number of books that remain to be bought; 
unfortunately, this insight is not obvious to a problem-solving agent, because it sees the goal 
test only as a black box that returns true or false for each state. Therefore, the problem- 
solving agent lacks autonomy; it requires a human to supply a heuristic function for each new 
problem. On the other hand, if a planning agent has access to an explicit representation of the 
goal as a conjunction of subgoals, then it can use a single domain-independent heuristic: the 
number of unsatisfied conjuncts. For the book-buying problem, the goal would be Have(A) A 
Have (B) A Have(C) A Have(D), and a state containing Have (A) A Have(C) would have 
cost 2. Thus, the agent automatically gets the right heuristic for this problem, and for many 
others. We shall see later in the chapter how to construct more sophisticated heuristics that 
examine the available actions as well as the structure of the goal. 

Finally, the problem solver might be inefficient because it cannot take advantage of 

PROBLEM oECoMPoslTloN problem decomposition. Consider the problem of delivering a set of overnight packages to 
their respective destinations, which are scattered across Australia. It makes sense to find out 
the nearest airport for each destination and divide the overall problem into several subprob- 
lems, one for each airport. Within the set of packages routed through a given airport, whether 
further decomposition is possible depends on the destination city. We saw in Chapter 5 that 
the ability to do this kind of decomposition contributes to the efficiency of constraint satisfac- 
tion problem solvers. The same holds true for planners: in the worst case, it can take O(n!) 
time to find the best plan to deliver n packages, but only O((n/k)! x k) time if the problem 
can be decomposed into k equal parts. 

As we noted in Chapter 5, perfectly decomposable problems are delicious but rare.' 
The design of many planning systems-particularly the partial-order planners described in 
Section 11.3-is based on the assumption that most real-world problems are nearly decom- 

NEARLY posable. That is, the planner can work on subgoals independently, but might need to do 
some additional work to combine the resulting subplans. For some problems, this assump- 

Notice that even the delivery of a package is not perfectly decomposable. There may be cases in which it 
is better to assign packages to a more distant airport if that renders a flight to the nearest airport unnecessary. 
Nevertheless, most delivery companies prefer the computational and organizational simplicity of sticking with 
decomposed solutions. 
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tion breaks down because working on one subgoal is likely to undo another subgoal. These 
interactions among subgoals are what makes puzzles (like the &-puzzle) puzzling. 

The language of planning problems 

The preceding discussior~ suggests that the representation of planning problems-states, ac- 
tions, and goals-should make it possible for planning algorithms to take advantage of the 
logical structure of the problem. The key is to find a language that is expressive enough to 
describe a wide variety of problems, but restrictive enough to allow efficient algolrithms to 
operate over it. In this selction, we first outline the basic representation language of classical 
planners, known as the STRIPS language.2 Later, we point out some of the many possible 
variations in STRIPS-like languages. 

Representation of states. Planners decompose the world into logical conditions and 
represent a state as a conjunction of positive literals. We will consider propositional literals; 
for example, Poor A Unknown might represent the state of a hapless agent. We will also 
use first-order literals; for example, At(Plane1, Melbourne) A At(Plane2, Sydney) might 
represent a state in the package delivery problem. Literals in first-order state descriptions 
must be ground and function-free. Literals such as At(x, y) or At(Father(Fred), Sydney) 
are not allowed. The closed-world assumption is used, meaning that any conditions that are 
not mentioned in a state are assumed false. 

Representation of goals. A goal is a partially specified state, represented as a conjunc- 
tion of positive ground literals, such as Rich A Famous or At(P2, Tahiti). A propositional 

GOALSA~ISFACTION state s satisfies a goal g if s contains all the atoms in g (and possibly others). For  example, 
the state Rich A Famous A Miserable satisfies the goal Rich A Famous. 

Representation of actions. An action is specified in terms of the preconditions that 
must hold before it can be executed and the effects that ensue when it is executed. For 
example, an action for flying a plane from one location to another is: 

Action(Fly(p, from, to), 
P R E C O N D : A ~ ( ~ ,  from) A Plane(p) A Airport(from) A Airport(to) 
E F F E C T : ~ A ~ ( ~ ,  from) A At(p, to)) 

ACTION SCHEMA 'This is more properly callled an action schema, meaning that it: represents a number of dif- 
ferent actions that can be derived by instantiating the variables p, from, and to to different 
constants. In general, an action schema consists of three parts: 

The action name andl parameter list-for example, Fly(p, from, to)-serves to identify 
the action. 

PRECONDITION 

EFFECT 

The precondition is a conjunction of function-free positive literals stating wlliat must 
be true in a state before the action can be executed. Any variables in the precondition 
must also appear in the action's parameter list. 

The effect is a conjunction of function-free literals describing how the state changes 
when the action is executed. A positive literal P in the effect is asserted to be true in 

STRIPS stands for STanford Research Institute Problem Solver. 
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the state resulting from the action, whereas a negative literal 1 P  is asserted to be false. 
Variables in the effect must also appear in the action's parameter list. 

ADD LIST To improve readability, some planning systems divide the effect into the add list for positive 
DELETE LIST literals and the delete list for negative literals. 

Having defined the syntax for representations of planning problems, we can now define 
the semantics. The most straightforward way to do this is to describe how actions affect 
states. (An alternative method is to specify a direct translation into successor-state axioms, 
whose semantics comes from first-order logic; see Exercise 11.3.) First, we say that an action 

APPLICABLE is applicable in any state that satisfies the precondition; otherwise, the action has no effect. 
For a first-order action schema, establishing applicability will involve a substitution 0 for the 
variables in the precondition. For example, suppose the current state is described by 

At(Pl,  JFK) A At(P2, SFO) A Plane(P1) A Plane(P2) 
A Airport (JFK)  A Airport (SFO) . 

This state satisfies the precondition 

At(p, from) A Plane(p) A Airport(from) A Airport(to) 

with substitution {p/Pl ,  from/JFK, to/SFO) (among others-see Exercise 1 1.2). Thus, 
the concrete action Fly(Pl, JFK, SFO) is applicable. 

RESULT Starting in state s, the result of executing an applicable action a is a state sf that is the 
same as s except that any positive literal P in the effect of a is added to sf and any negative 
literal T P  is removed from st. Thus, after Fly(Pl, JFK, SFO), the current state becomes 

At(Pl,  SFO) A At(P2, SFO) A Plane(Pl) A Plane(P2) 
A Airport ( JFK)  A Airport (SFO) . 

Note that if a positive effect is already in s it is not added twice, and if a negative effect is 
not in s,  then that part of the effect is ignored. This definition embodies the so-called STRIPS 

STRIPS ASSUMPTION assumption: that every literal not mentioned in the effect remains unchanged. In this way, 
STRIPS avoids the representational frame problem described in Chapter 10. 

SOLUTION Finally, we can define the solution for a planning problem. In its simplest form, this is 
just an action sequence that, when executed in the initial state, results in a state that satisfies 
the goal. Later in the chapter, we will allow solutions to be partially ordered sets of actions, 
provided that every action sequence that respects the partial order is a solution. 

Expressiveness and extensions 

The various restrictions imposed by the STRIPS representation were chosen in the hope of 
making planning algorithms simpler and more efficient, without making it too difficult to 
describe real problems. One of the most important restrictions is that literals be function- 
free. With this restriction, we can be sure that any action schema for a given problem can 
be propositionalized-that is, turned into a finite collection of purely propositional action 
representations with no variables. (See Chapter 9 for more on this topic.) For example, in 
the air cargo domain for a problem with 10 planes and five airports, we could translate the 
Fly(p, from, to) schema into 10 x 5 x 5 = 250 purely propositional actions. The planners 
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ADL 

STRIPS Language 1 ADL Language 1 
Only positive literals in states: 
Poor A Unknown 

Closed World Assumption: 
Unmentioned literals are false. 

Effect P A 1Q means add P and delete Q. 

Only ground literals in goals: 
Rich A Famous 

in Sections 1 1.4 and 11.5 work directly with propositionalized descriptions. If we allow 
function symbols, then infinitely many states and actions can be constructed. 

In recent years, it has become clear that STRIPS is insufficiently expressive for some 
real domains. As a result, many language variants have been developed. Figure 11 I briefly 
describes one important one, the Action Description Language or ADL, by comparing it with 
the basic STRIPS language. In ADL, the Fly action could be written as 

Positive and negative literals in states: 
1 Rich A 1 Famous 

Open World Assumption: 
Unmentioned literals are unknown. 

Effect P A 1 Q  means add P and 1 Q  
and delete 1P and Q. 

Quantified variables in goals: 
3xAt ( P I ,  x) A At(P2, x) is the goal of 
having PI and P2 in the same place. 

Goals are conjunctions: 
Rich A Famous 

Effects are conjunctions. 

No support for equality. 

No support for types. 

Action(Fly(p : Plane, from : Airport, to : Airport), 
P R E C O N D : A ~ ( ~ ,  from) A (from # t o )  
E F F E C T : ~ A ~ ( ~ ,  from) A At(p, to))  . 

Goals allow conjunction and disjunction: 
1Poor A (Famous V Smart) 

Conditional effects allowed: 
when P: E means E is an effect 
only if P is satisfied. 

Equality predicate (x = y) is built 

Variables can have types, as in (p : 

'The notation p : Plane in the parameter list is an abbreviation for Plane(p) in the precondi- 
tion; this adds no expressive power, but can be easier to read. (It also cuts down on the number 
of possible propositional actions that can be constructed.) The precondition (from # to) ex- 
presses the fact that a flight cannot be made from an airport to itself. This could not be 
expressed succinctly in STRIPS. 

The various planning formalisms used in A1 have been systematized within a standard 
syntax called the Planning Domain Definition Language, or PDDL. This language allows 
researchers to exchange benchmark problems and compare results. PDDL includes sublan- 
guages for STRIPS, ADL, and the hierarchical task networks we will see in Chapter 12. 

Figure 11.1 Cornpaison of STRIPS and ADL languages for representing planning prob- 
lems. In both cases, goals behave as the preconditions of an action with no parameters. 
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- - - -  - -  

Inzt(At(Cl, SFO) A At(C2, JFK)  A At(P1, SFO) A At(P2, JFK) 
A Cargo(Cl) A Cargo(C2) A Plane(P1) A Plane(P2) 
A Azrport(J8'K) A Azrport(SF0)) 

Goal (At  (CI , JFK) A At (C2, SFO)) 
Actzon(Load(c, p, a ) ,  

PRECOND: At(c, a)  A At(p, a)  A Cargo(c) A Plane(p) A Azrport(a) 
EFFECT: 1 At(c, a )  A In(c, p)) 

Actzon( Unload(c, p, a) ,  
PRECOND: In(c, p) A At(p, a)  A Cargo(c) A Plane@) A Airport(a) 
EFFECT: At(c, a)  A 1 In(c, p))  

Actzon(Fly(p, from, to) ,  
PRECOND: At@, from) A Plane(p) A Azrport(from) A Azrport(to) 
EFFECT: 1 At@, from) A At(p,  to))  

/ Figure 11.2 A STRIPS problem involving transportation of air cargo between airports. 1 

The STRIPS and ADL notations are adequate for many real domains. The subsections 
that follow show some simple examples. There are still some significant restrictions, how- 
ever. The most obvious is that they cannot represent in a natural way the ramifications of 
actions. For example, if there are people, packages, or dust motes in the airplane, then they 
too change location when the plane flies. We can represent these changes as the direct ef- 
fects of flying, whereas it seems more natural to represent the location of the plane's contents 
as a logical consequence of the location of the plane. We will see more examples of such 

STATE CONSTRAINTS state constraints in Section 11.5. Classical planning systems do not even attempt to address 
the qualification problem: the problem of unrepresented circumstances that could cause an 
action to fail. We will see how to address qualifications in Chapter 12. 

Example: Air cargo transport 

Figure 1 1.2 shows an air cargo transport problem involving loading and unloading cargo onto 
and off of planes and flying it from place to place. The problem can be defined with three 
actions: Load, Unload, and Fly. The actions affect two predicates: In(c,  p) means that cargo 
c is inside plane p, and A t ( x ,  a )  means that object x (either plane or cargo) is at airport a. 
Note that cargo is not At anywhere when it is I n  a plane, so At really means "available 
for use at a given location." It takes some experience with action definitions to handle such 
details consistently. The following plan is a solution to the problem: 

[Load (C1 ,  P I ,  S F O )  , Fly (P I ,  SFO,  J F K )  , Unload (Cl , P I ,  J F K )  , 
Load(Cz, P2,  J F K ) ,  Fly(P2,  J F K ,  SFO) ,  Unload (Cz ,  P2, SFO)]  . 

Our representation is pure STRIPS. In particular, it allows a plane to fly to and from the same 
airport. Inequality literals in ADL could prevent this. 
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Example: The spare Itire problem 

Consider the problem of changing a flat tire. More precisely, the goal is to have a good spare 
tire properly mounted onto the car's axle, where the initial state has a flat tire on the axle and 
a good spare tire in the trunk. To keep it simple, our version of the problem is a very abstract 
one, with no sticky lug nuts or other complications. There are just four actions: removing 
the spare from the trunk, removing the flat tire from the axle, putting the spare on the axle, 
and leaving the car unattended overnight. We assume that the car is in a particularly bad 
neighborhood, so that the: effect of leaving it overnight is that the tires disappear. 

The ADL descriptilon of the problem is shown in Figure 11.3. Notice that it is purely 
propositional. It goes beyond STRIPS in that it uses a negated precondition, lAt(Flrzt ,  Axle), 
for the PutOn(Spare, Axle) action. This could be avoided by using Clear(Ax1e) instead, as 
we will see in the next example. 

Inzt(At (Flat, Axle) A At(Spare, Trunk)) 
Goal (At  (Spare, Axle)) 
Action(Remove(Spare, n u n k ) ,  

PRECOND: At(Spare, Trunk) 
EFFECT: 1 At (Spare, Trunk) A At (Spare, Ground)) 

Action(Remove(Flat, .Axle), 
PRECOND: At(Flat, Axle) 
EFFECT: 1 At(Flat, Axle) A At(Flat, Ground)) 

Action(PutOn(Spare, Axle), 
PRECOND: At(Spare, Ground) A 1 At (Flat, Axle) 
EFFECT: 1 At(Spare, Ground) A At(Spare, Axle)) 

Action(LeaveOvernight, 
PRECOND: 
EFFECT: 1 At(Spare, Ground) A 1 At(Spam, Axle) A 1 At(Spare, Trunk) 

A 1 At(Flat, Ground) A 1 At(Flat, Axle)) 
I 

Figure 11.3 The simple spare tire problem. _Ij 
Example: The blocks world 

BLOCKSHIORLD One of the most famous planning domains is known as the blocks world. This domain 
consists of a set of cube-shaped blocks sitting on a table.3 The blocks can be stacked, but 
only one block can fit directly on top of another. A robot arm can pick up a block and move 
it to another position, either on the table or on top of another block. The arm can pick up 
only one block at a time, so it cannot pick up a block that has another one on it. The goal will 
always be to build one or more stacks of blocks, specified in terms of what blocks are on top 
of what other blocks. For example, a goal might be to get block A on B and block C on D. 

The blocks world used in planning research is much simpler than SHRDLU's version, shown on paglz 20. 
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We will use On(b, x )  to indicate that block b is on x ,  where x is either another block or 
the table. The action for moving block b from the top of x to the top of y will be Move(b, x ,  y). 
Now, one of the preconditions on moving b is that no other block be on it. In first-order 
logic, this would be 13 x On  ( x ,  b) or, alternatively, 'd x 1 O n ( x ,  b). These could be stated as 
preconditions in ADL. We can stay within the STRIPS language, however, by introducing a 
new predicate, Clear(x), that is true when nothing is on x. 

The action Move moves a block b from x to y if both b and y are clear. After the move 
is made, x is clear but y is not. A formal description of Move in STRIPS is 

Action (Move (b, z, y)  , 
PRECOND: On(b, x )  A Clear(b) A Clear(y), 
EFFECT: On(b, y )  A Clear(x) A l O n ( b ,  x )  A lC lear (y ) )  . 

Unfortunately, this action does not maintain Clear properly when x or y is the table. When 
x = Table, this action has the effect Clear(Table), but the table should not become clear, and 
when y = Table, it has the precondition Clear(Table), but the table does not have to be clear 
to move a block onto it. To fix this, we do two things. First, we introduce another action to 
move a block b from x to the table: 

Action(MoveTo Table(b, x) , 
PRECOND: On(b, x )  A Clear(b), 
EFFECT: On(b, Table) A Clear(x) A l O n ( b ,  x ) )  . 

Second, we take the interpretation of Clear(b) to be "there is a clear space on b to hold a 
block." Under this interpretation, Clear( Table) will always be true. The only problem is that 
nothing prevents the planner from using Move (b, x ,  Table) instead of Move To Table (b, x )  . 
We could live with this problem-it will lead to a larger-than-necessary search space, but will 
not lead to incorrect answers-or we could introduce the predicate Block and add Bloctk(b) A 
Block(y) to the precondition of Move. 

Finally, there is the problem of spurious actions such as Move(B, C, C), which should 
be a no-op, but which has contradictory effects. It is common to ignore such problems, 
because they seldom cause incorrect plans to be produced. The correct approach is add in- 
equality preconditions as shown in Figure 1 1.4. 

11.2 PLANNING WITH STATE-SPACE SEARCH 

Now we turn our attention to planning algorithms. The most straightforward approach is to 
use state-space search. Because the descriptions of actions in a planning problem specify 
both preconditions and effects, it is possible to search in either direction: either forward from 
the initial state or backward from the goal, as shown in Figure 11.5. We can also use the 
explicit action and goal representations to derive effective heuristics automatically. 

Forward state-space search 

Planning with forward state-space search is similar to the problem-solving approach of Chap- 
PROGRESSION ter 3. It is sometimes called progression planning, because it moves in the forward direction. 
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I n i t ( O n ( A ,  Table) A O n ( B ,  Table) A On(C,  Table) 
A Block(A) A Block(B) A Block(C) 

Clear(A) A Clear(B) A Clear(C)) 
Goal(On(A,  B )  A O n ( B ,  C ) )  
Action(Move(b, x, y ) ,  

PRECOND: On(b ,x )  A Clear(b) A Clear(y) A Block(b) A 

(b # 2 )  (b  # Y )  ( x  # ! I ) ,  
EFFECT: On(b, y) /\ Clear(x) A 1 On(b, x )  A 7 Clear(y))  

Action(MoveToTable(b, x ) ,  
PRECOND: O n ( b , x )  A Clear(b) A Block(b) A (b # x), 
EFFECT: On(b, Table) A Clear(x) A 7 On(b, x ) )  

Figure 11.4 A planning problem in the blocks world: building a three-block tower. One 
solution is the sequenc~e [Move(B ,  Table, C ) ,  Move(A, Table, B)]. 

I 

AY P27 A) 

( 4  

AYP2I 9) 
L 

(b) 

Figure 11.5 Two approaches to searching for a plan. (a) Forward (progression) state-space 
search, starting in the initial state and using the problem's actions to search forward for the 
goal state. (b) Backward (regression) state-space search: a belief-state search (see page 84) 
starting at the goal state(s) and using the inverse of the actions to search backward fc~r the 
initial state. 

We start in the problem's initial state, considering sequences of actions until we find a se- 
quence that reaches a goal state. The formulation of planning problems as state-space search 
problems is as follows: 

The initial state of the search is the initial state from the planning problem. In general, 
each state will be a set of positive ground literals; literals not appearing are false. 
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RELEVANCE 

The actions that are applicable to a state are all those whose preconditions are satisfied. 
The successor state resulting from an action is generated by adding the positive effect 
literals and deleting the negative effect literals. (In the first-order case, we must apply 
the unifier from the preconditions to the effect literals.) Note that a single successor 
function works for all planning problems-a consequence of using an explicit action 
representation. 
The goal test checks whether the state satisfies the goal of the planning problem. 
The step cost of each action is typically 1. Although it would be easy to allow different 
costs for different actions, this is seldom done by STRIPS planners. 

Recall that, in the absence of function symbols, the state space of a planning problem is finite. 
Therefore, any graph search algorithm that is complete-for example, A*-will be a complete 
planning algorithm. 

From the earliest days of planning research (around 1961) until recently (around 1998) 
it was assumed that forward state-space search was too inefficient to be practical. It is not 
hard to come up with reasons why-just refer back to the start of Section 1 1.1. First, forward 
search does not address the irrelevant action problem-all applicable actions are considered 
from each state. Second, the approach quickly bogs down without a good heuristic. Consider 
an air cargo problem with 10 airports, where each airport has 5 planes and 20 pieces of cargo. 
The goal is to move all the cargo at airport A to airport B. There is a simple solution to the 
problem: load the 20 pieces of cargo into one of the planes at A, fly the plane to B ,  and unload 
the cargo. But finding the solution can be difficult because the average branching factor is 
huge: each of the 50 planes can fly to 9 other airports, and each of the 200 packages can be 
either unloaded (if it is loaded), or loaded into any plane at its airport (if it is unloaded). On 
average, let's say there are about 1000 possible actions, so the search tree up to the depth of 
the obvious solution has about 1 0 0 0 ~ ~  nodes. It is clear that a very accurate heuristic will be 
needed to make this kind of search efficient. We will discuss some possible heuristics after 
looking at backward search. 

Backward state-space search 

Backward state-space search was described briefly as part of bidirectional search in Chapter 3. 
We noted there that backward search can be difficult to implement when the goal states are 
described by a set of constraints rather than being listed explicitly. In particular, it is not 
always obvious how to generate a description of the possible predecessors of the set of goal 
states. We will see that the STRIPS representation makes this quite easy because sets of states 
can be described by the literals that must be true in those states. 

The main advantage of backward search is that it allows us to consider only relevant 
actions. An action is relevant to a conjunctive goal if it achieves one of the conjuncts of the 
goal. For example, the goal in our 10-airport air cargo problem is to have 20 pieces of cargo 
at airport B ,  or more precisely, 

At(C1, B )  A At(C2, B) A . .  . A At(Czo, B)  . 
Now consider the conjunct At (C1, B). Working backwards, we can seek actions that have 
this as an effect. There is only one: Unload (C1, p, B), where plane p is unspecified. 
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Notice that there are many irrelevant actions that can also lead to a goal state. For 
example, we can fly an empty plane from JFK to SFO; this action reaches a goal state from 
a predecessor state in wliich the plane is at JFK and all the goal conjuncts are satisfied. A 
backward search that allows irrelevant actions will still be complete, but it will be much less 
efficient. If a solution exists, it will be found by a backward search that allows only relevant 
actions. The restriction to relevant actions means that backward search often has a much 
lower branching factor than forward search. For example, our air cargo problem has about 
1000 actions leading forward from the initial state, but only 20 actions working backward 
from the goal. 

REGRE:;SION Searching backwards is sometimes called regression planning. The principal question 
in regression planning is this: what are the states from which applying a given action leads to 
the goal? Computing the description of these states is called regressing the goal through the 
action. To see how to do it, consider the air cargo example. We have the goal 

and the relevant action Unload(C1,p, B) ,  which achieves the first conjunct. The action will 
work only if its preconditions are satisfied. Therefore, any predecessor state mulst include 
these preconditions: In((71, p)  A At (p, B). Moreover, the subgoal At (C1, B)  shoilld not be 
true in the predecessor state.4 Thus, the predecessor description is 

In(Cl, p )  A At ( p ,  B)  A At (C2, B)  A . . . A At (Czo, B)  . 

In addition to insisting that actions achieve some desired literal, we must insist that the actions 
CONSISTENCY not undo any desired literals. An action that satisfies this restriction is called consistent. For 

example, the action Load(C2, p )  would not be consistent with the current goal, because it 
would negate the literal At (C2, B )  . 

Given definitions of relevance and consistency, we can describe the general process of 
constructing predecessors for backward search. Given a goal description G, let A be an action 
that is relevant and consistent. The corresponding predecessor is as follows: 

a Any positive effects of A that appear in G are deleted. 

a Each precondition literal of A is added, unless it already appears. 

Any of the standard search algorithms can be used to carry out the search. Termination occurs 
when a predecessor description is generated that is satisfied by the initial state of the planning 
problem. In the first-order case, satisfaction might require a substitution for variables in the 
predecessor description. Iior example, the predecessor description in the preceding paragraph 
is satisfied by the initial state 

with substitution {p/P12}. The substitution must be applied to the actions leading from the 
state to the goal, producing the solution [ Unload (Cl , P12, B)] . 

" If the subgoal were true in the predecessor state, the action would still lead to a goal state. On the other hand, 
such actions are irrelevant because they do not make the goal true. 
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SUBGOAL 
INDEPENDENCE 

Heuristics for state-space search 

It turns out that neither forward nor backward search is efficient without a good heuristic 
function. Recall from Chapter 4 that a heuristic function estimates the distance from a state 
to the goal; in STRIPS planning, the cost of each action is 1, so the distance is the number of 
actions. The basic idea is to look at the effects of the actions and at the goals that must be 
achieved and to guess how many actions are needed to achieve all the goals. Finding the exact 
number is NP hard, but it is possible to find reasonable estimates most of the time without too 
much computation. We might also be able to derive an admissible heuristic-one that does 
not overestimate. This could be used with A* search to find optimal solutions. 

There are two approaches that can be tried. The first is to derive a relaxed problem 
from the given problem specification, as described in Chapter 4. The optimal solution cost 
for the relaxed problem-which we hope is very easy to solve-gives an admissible heuristic 
for the original problem. The second approach is to pretend that a pure divide-and-conquer 
algorithm will work. This is called the subgoal independence assumption: the cost of solving 
a conjunction of subgoals is approximated by the sum of the costs of solving each subgoal 
independently. The subgoal independence assumption can be optimistic or pessimistic. It 
is optimistic when there are negative interactions between the subplans for each subgoal- 
for example, when an action in one subplan deletes a goal achieved by another subplan. 
It is pessimistic, and therefore inadmissible, when subplans contain redundant actions-for 
instance, two actions that could be replaced by a single action in the merged plan. 

Let us consider how to derive relaxed planning problems. Since explicit representations 
of preconditions and effects are available, the process will work by modifying those repre- 
sentations. (Compare this approach with search problems, where the successor function is 
a black box.) The simplest idea is to relax the problem by removing all preconditions from 
the actions. Then every action will always be applicable, and any literal can be achieved in 
one step (if there is an applicable action-if not, the goal is impossible). This almost implies 
that the number of steps required to solve a conjunction of goals is the number of unsatisfied 
goals-almost but not quite, because (1) there may be two actions, each of which deletes 
the goal literal achieved by the other, and (2) some action may achieve multiple goals. If we 
combine our relaxed problem with the subgoal independence assumption, both of these issues 
are assumed away and the resulting heuristic is exactly the number of unsatisfied goals. 

In many cases, a more accurate heuristic is obtained by considering at least the positive 
interactions arising from actions that achieve multiple goals. First, we relax the problem fur- 
ther by removing negative effects (see Exercise 1 l .6). Then, we count the minimum number 
of actions required such that the union of those actions' positive effects satisfies the goal. For 
example, consider 

Goal (A A B A C) 
Action(X, EFFECT:A A P) 
Action(Y, EFFECT:B A C A Q) 
Action(Z, EFFECT:B A P A Q )  . 

The minimal set cover of the goal {A, B, C )  is given by the actions {X, Y), so the set cover 
heuristic returns a cost of 2. This improves on the subgoal independence assumption, which 
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gives a heuristic value of 3. There is one minor irritation: the set cover problem is NP- 
hard. A simple greedy set-covering algorithm is guaranteed to return a value that is within a 
factor of log n of the true minimum value, where n is the number of literals in the goal, and 
usually works much better than this in practice. Unfortunately, the greedy algorithm loses the 
guarantee of admissibility for the heuristic. 

It is also possible to generate relaxed problems by removing negative effeciis without 
removing preconditions. That is, if an action has the effect A A 1 B  in the original problem, 
it will have the effect A in the relaxed problem. This means that we need not worry about 
negative interactions between subplans, because no action can delete the literals achieved 
by another action. The solution cost of the resulting relaxed problem gives what is called the 

EMPTY-DELETE-LIST empty-delete-list heuristic. The heuristic is quite accurate, but computing it involves actually 
running a (simple) planning algorithm. In practice, the search in the relaxed problem is often 
fast enough that the cost is worthwhile. 

The heuristics described here can be used in either the progression or the regression 
direction. At the time of writing, progression planners using the empty-delete-list heuristic 
hold the lead. That is likely to change as new heuristics and new search techniques are ex- 
plored. Since planning is exponentially hard? no algorithm will be efficient for all problems, 
but many practical problems can be solved with the heuristic methods in this chapter-far 
more than could be solved just a few years ago. 

Forward and backward state-space search are particular forms of totally ordered plan search. 
They explore only strictly linear sequences of actions directly connected to the start or goal. 
This means that they cannot take advantage of problem decomposition. Rather than work on 
each subproblem separately, they must always make decisions about how to sequence actions 
from all the subproblems. We would prefer an approach that works on several subgoals 
independently, solves them with several subplans, and then combines the subplans. 

Such an approach also has the advantage of flexibility in the order in which it c<~vnstructs 
the plan. That is, the planner can work on "obvious" or "important7' decisions first, rather than 
being forced to work on steps in chronological order. For example, a planning agent that is in 
Berkeley and wishes to be in Monte Carlo might first try to find a flight from San Francisco 
to Paris; given information about the departure and arrival times, it can then work on ways to 
get to and from the airports. 

LEAST COMMITMENT The general strategy of delaying a choice during search is called a least comrmitment 
strategy. There is no formal definition of least commitment, and clearly some degree of 
commitment is necessary, lest the search would make no progress. Despite the infc~rmality, 
lleast commitment is a useful concept for analyzing when decisions should be madle in any 
search problem. 

Vechnically, S T R I P S - S ~ ~ ~ ~  planning is PSPACE-complete unless actions have only positive preconditions and 
only one effect literal (Bylander, 1994). 
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Our first concrete example will be much simpler than planning a vacation. Consider 
the simple problem of putting on a pair of shoes. We can describe this as a formal planning 
problem as follows: 

Goal (RightShoeOn A LeftShoeOn) 
Init () 
Action(RightShoe, PRECOND: RightSocFOn, EFFECT: RightShoeOn) 
Action(RightSocF, E~~Ec~:Righ tSockOn)  
Action(LeftShoe; P R E C O N D : L ~ ~ ~ S O ~ ~ O ~ ,  E ~ ~ ~ ~ T : L e f t S h o e o n )  
Action (LeftSock, E ~ ~ ~ ~ T : L e f t s o c k o n )  . 

A planner should be able to come up with the two-action sequence Rightsock followed by 
Rightshoe to achieve the first conjunct of the goal and the sequence Leftsock followed by 
LeftShoe for the second conjunct. Then the two sequences can be combined to yield the final 
plan. In doing this, the planner will be manipulating the two subsequences independently, 
without committing to whether an action in one sequence is before or after an action in the 
other. Any planning algorithm that can place two actions into a plan without specifying which 
comes first is called a partial-order planner. Figure 11.6 shows the partial-order plan that is PLANNER 

the solution to the shoes and socks problem. Note that the solution is represented as a graph 
of actions, not a sequence. Note also the "dummy" actions called Start and Finish, which 
mark the beginning and end of the plan. Calling them actions symplifies things, because 
now every step of a plan is an action. The partial-order solution corresponds to six possible 

LINEARIZATION total-order plans; each of these is called a linearization of the partial-order plan. 
Partial-order planning can be implemented as a search in the space of partial-order 

plans. (From now on, we will just call them "plans.") That is, we start with an empty plan. 
Then we consider ways of refining the plan until we come up with a complete plan that 
solves the problem. The actions in this search are not actions in the world, but actions on 
plans: adding a step to the plan, imposing an ordering that puts one action before another, 
and so on. 

We will define the POP algorithm for partial-order planning. It is traditional to write 
out the POP algorithm as a stand-alone program, but we will instead formulate partial-order 
planning as an instance of a search problem. This allows us to focus on the plan refinement 
steps that can be applied, rather than worrying about how the algorithm explores the space. In 
fact, a wide variety of uninformed or heuristic search methods can be applied once the search 
problem is formulated. 

Remember that the states of our search problem will be (mostly unfinished) plans. To 
avoid confusion with the states of the world, we will talk about plans rather than states. Each 
plan has the following four components, where the first two define the steps of the plan and 
the last two serve a bookkeeping function to determine how plans can be extended: 

A set of actions that make up the steps of the plan. These are taken from the set of 
actions in the planning problem. The "empty" plan contains just the Start and Finish 
actions. Start has no preconditions and has as its effect all the literals in the initial state 
of the planning problem. Finish has no effects and has as its preconditions the goal 
literals of the planning problem. 
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CAUSAL LINKS 

ACHIEVES 

CONFLICTS 

OPEN 
PRECONDITIONS 

Partial-Order Plan: Total-Order Plans: 

Right P 
Finish 0 

Start Start 

Left Left Right Right Left 
Sock 

LeftSockOn RightSockOn 

Shoe Shoe 

Left 

LeftShoeOn, RightShoeOn I 

A set of ordering constraints. Each ordering constraint is of the form A -i B, which is 
read as "A before B" and means that action A xlust be executed sometime before ac- 
tion B, but not necessarily immediately before. The ordering constraints must describe 
a proper partial order. Any cycle-such as A -i B and B 4 A-represents a contradic- 
tion, so an ordering constraint cannot be added to the plan if it creates a cycle. 

A set of causal links. A causal link between two actions A and B in the plan is written 
as A 5 B and is read as "A achieves p for B." For example, the causal link 

RightSock Rzgh%kon RightShoe 

Finish 

asserts that RightSockOn is an effect of the RightSock action and a precondition of 
RightShoe. It also asserts that RightSockOn must remain true from the time of ac- 
tion RightSock to the time of action RightShoe. In other words, the plan may not be 
extended by adding a new action C that conflicts with the causal link. An action C 
conflicts with A 5 B if C has the effect l p  and if C could (according to the ordering 
constraints) come after A and before B. Some authors call causal links protection in- 
tervals, because the link A 5 B protects p from being negated over the interval from 
A to B. 

a A set of open preconditions. A precondition is open if it is not achieved by some action 
in the plan. Planners will work to reduce the set of open preconditions to the empty set, 
without introducing a contradiction. 

Figure 11.6 A partial-order plan for putting on shoes and socks, and the six corresponding 
linearizations into total-order plans. 

Finish [Finish] 
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For example, the final plan in Figure 11.6 has the following components (not shown are the 
ordering constraints that put every other action after Start and before Finish): 

Actions: { Rightsock, RightShoe, Leftsock, LeftShoe, Start,  Finish) 
Orderings:{RightSock 4 RightShoe, Leftsock 4 LeftShoe} 
Links:{Righ,tSock RightShoe, Leftsock Left%k0n LeftShoe, 

RightShoe R i g h ~ O n  Finish, Leftshoe Left%0n Finish) 
Open Preconditions:{ ) . 

CONSISTENT PLAN We define a consistent plan as a plan in which there are no cycles in the ordering con- 
straints and no conflicts with the causal links. A consistent plan with no open preconditions 
is a solution. A moment's thought should convince the reader of the following fact: every 
linearization of a partial-order solution is a total-order solution whose execution from the 
initial state will reach a goal state. This means that we can extend the notion of "executing 
a plan" from total-order to partial-order plans. A partial-order plan is executed by repeatedly 
choosing any of the possible next actions. We will see in Chapter 12 that the flexibility avail- 
able to the agent as it executes the plan can be very useful when the world fails to cooperate. 
The flexible ordering also makes it easier to combine smaller plans into larger ones, because 
each of the small plans can reorder its actions to avoid conflict with the other plans. 

Now we are ready to formulate the search problem that POP solves. We will begin with 
a formulation suitable for propositional planning problems, leaving the first-order complica- 
tions for later. As usual, the definition includes the initial state, actions, and goal test. 

The initial plan contains Start and Finish, the ordering constraint Start 4 Finish, and 
no causal links and has all the preconditions in Finish as open preconditions. 

a The successor function arbitrarily picks one open precondition p on an action B and 
generates a successor plan for every possible consistent way of choosing an action A 
that achieves p. Consistency is enforced as follows: 

1. The causal link A B and the ordering constraint A 4 B are added to the plan. 
Action A may be an existing action in the plan or a new one. If it is new, add it to 
the plan and also add Start 4 A and A 4 Finish. 

2. We resolve conflicts between the new causal link and all existing actions and be- 
tween the action A (if it is new) and all existing causal links. A conflict between 
A 5 B and C is resolved by making C occur at some time outside the protection 
interval, either by adding B 4 C or C 4 A. We add successor states for either or 
both if they result in consistent plans. 

The goal test checks whether a plan is a solution to the original planning problem. 
Because only consistent plans are generated, the goal test just needs to check that there 
are no open preconditions. 

Remember that the actions considered by the search algorithms under this formulation are 
plan refinement steps rather than the real actions from the domain itself. The path cost is 
therefore irrelevant, strictly speaking, because the only thing that matters is the total cost of 
the real actions in the plan to which the path leads. Nonetheless, it is possible to specify a 
path cost function that reflects the real plan costs: we charge 1 for each real action added to 
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the plan and 0 for all other refinement steps. In this way, g ( n ) ,  where n is a plan, will be 
equal to the number of real actions in the plan. A heuristic estimate h(n) can also be used. 

At first glance, one might think that the successor function should include successors 
for every open p, not just for one of them. This would be realundant and inefficient, however, 
for the same reason that constraint satisfaction algorithms don't include successors for every 
possible variable: the order in which we consider open precc~nditions (like the order in which 
we consider CSP variables) is commutative. (See page 141.) 'Thus, we can choose an arbitrary 
ordering and still have a complete algorithm. Choosing the right ordering can lead to a faster 
search, but all orderings end up with the same set of candidate solutions. 

A partial-order planning example 

Now let's look at how POP solves the spare tire problem from Section 1 1.1. The problem 
description is repeated in Figure 1 1.7. 

Init (At  (Fla.t, Axle) A At (Spare, Trunk)) 
Goal (At (Spare, Axle)) 
Action(Remove(Spare, Tmnk), 

PRECOND: At (Spare, Punk) 
EFFECT: 1 At(Spare, Trunk) At(Spare, Grour~d)) 

Action(Remove(F1at , Axle), 
PRECOND: At(Flat, Axle) 
EFFECT: 1 At(Flat, Axle) A At(Flat, Ground)) 

Action(PutOn(Spare, Axle), 
PRECOND: At(Spare, Ground) A 7 At(Flat, Axle) 
EFFECT: 1 At(Spare, Ground) A At(Spare, Axle)) 

Action(LeaveOvernight, 
PRECOND: 
EFFECT: 1 At(Spare, Ground) A 7 At(Spare, Axle) 1 At(Spare, Trunk) 

A 7 At(Flat, Ground) A 1 At(Flat, Axle)) 

1 Figure 11.7 The simple flat tire problem description. 

The search for a solution begins with the initial plan, containing a Start action with the 
effect At(Spare, Trunk) A At(Flat, Axle) and a Finish action with the sole precondition 
At(Spare, Axle). Then we generate successors by picking an open precondition to work 
on (irrevocably) and choosing among the possible actions to achieve it. For now, we will 
not worry about a heuristic function to help with these decisions; we will make seemingly 
arbitrary choices. The sequence of events is as follows: 

1. Pick the only open precondition, At(Spare, Axle) of Finish. Choose the only applica- 
ble action, Put On (Spare, Axle). 

2. Pick the At (Spare, Ground) precondition of PutOn(S$are, Axle). Choose the only 
applicable action, Remove(Spare, Trunk) to achieve it. The resulting plan is shown in 
Figure 1 1.8. 
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At(Spare, Trunk) Ai(Spare,Ground) 

At(Flat,Axle) 
I ~ t ( ~ p a r e ~ ~ x l e ) F ]  

-I At(Flat,Axle) 

I Figure 11.8 The incomplete partial-order plan for the tire problem, after choosing actions ( 
1 for the first two open preconditions. Boxes represent actions, with preconditions on the left I 

and effects on the right. (Effects are omitted, except for that of the Start action.) Dark arrows 
represent causal links protecting the proposition at the head of the arrow. 

3. Pick the lA t (Fla t ,  Axle) precondition of PutOn(Spare, Axle). Just to be contrary, 
choose the LeaveOvernight action rather than the Remove(Flat, Axle) action. Notice 
that LeaveOvernight also has the effect lAt(Spare, Ground), which means it conflicts 
with the causal link 

Renove(Spare, Trunk) At(span.GrOund) -----t P utOn(Spare, Axle) . 

To resolve the conflict we add an ordering constraint putting LeaveOvernight before 
Remove(Spare, Trunk). The resulting plan is shown in Figure 1 1.9. (Why does this 
resolve the conflict, and why is there no other way to resolve it?) 

AYSpare, Trunk) Remove(Spare,Trunk) - 
AKSpare, Trunk) I I 

Ai(Flat,hle) t I 

lAf(Spare, Ground) 
lAt(Spare, Trunk) 

Figure 11.9 The plan after choosing LeaveOvernight as the action for achieving 
~At(Fla t ,  Axle). To avoid a conflict with the causal link from Remove(Spare, Trunk) 

( that protects At(Spare, Ground), LeaveOvernight is constrained to occur before 1 
Remove(Spare, Trunk), as shown by the dashed arrow. 

4. The only remaining open precondition at this point is the At (Spare, Punk )  precondi- 
tion of the action Remove(Spare, Trunk). The only action that can achieve it is the ex- 
isting Start action, but the causal link from Start to Remove(Spare, Trunk) is in con- 
flict with the ~At (Spare ,  Trunk) effect of LeaveOvernight. This time there is no way 
to resolve the conflict with LeaveOvernight: we cannot order it before Start (because 
nothing can come before Start), and we cannot order it after Remove(Spare, Trunk) 
(because there is already a constraint ordering it before Remove(Spare, Trunk)). So 
we are forced to back up, remove the LeaveOvernzght action and the last two causal 
links, and return to the state in Figure 11.8. In essence, the planner has proved that 
LeaveOvernight doesn't work as a way to change a tire. 
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5. Consider again the lAt(Flat ,  Axle) precondition of lDutOn(Spare, Axle). This time, 
we choose Remove(Flat, Axle). 

6. Once again, pick the At(Spare, Trunk) precondition of Remove(Spare, Trunk) and 
choose Start to achieve it. This time there are no conflicts. 

7. Pick the At(Flat, Axle) precondition of Remove(Fi!at, Axle), and choose Start to 
achieve it. This gives us a complete, consistenl. plan--in other words a solution-as 
shown in Figure 1 1.10. 

~ t ( ~ p a i e ,  Trunk)  pare, drouna) 

At(Nat,Axle) 1Af(Flat,Axle) 
pPutOn(Spare,l\xle)+~t(~~are.~xje) v] 

Figure 11.10 The final solution to the tire problem. Note that Remove(Spare, Trunk) 
and Remove(Flat, Azle) can be done in either order, as long as they are completed before 
the Put On (Spare, Axle) action. 

Although this example is very simple, it illustrates some of the strengths of partial-order 
planning. First, the causal links lead to early pruning of pclrtions of the search space that, 
because of irresolvable conflicts, contain no solutions. Secoi~d, the solution in Figure 1 1.10 
is a partial-order plan. In this case the advantage is small, because there are only two possible 
linearizations; nonetheless, an agent might welcome the flexibility-for example, if the tire 
has to be changed in the middle of heavy traffic. 

The example also points to some possible improvement!; that could be made. For exam- 
ple, there is duplication of effort: Start is linked to Rlemove(Spare, Trunk) before the con- 
flict causes a backtrack and is then unlinked by backtracking even though it is not involved 
in the conflict. It is then relinked as the search continues. This is typical of chronological 
backtracking and might be mitigated by dependency-directed backtracking. 

Partial-order planning with unbound variables 

In this section, we consider the complications that ca.n~ arise when POP is used with first- 
order action representations that include variables. Suppose we have a blocks world problem 
(Figure 11.4) with the open precondition On(A, B) and the action 

Action(Move(b, x, y) ,  
PRECOND: On(b, x) A Clear(b) A Clear(y), 
EFFECT: On(b, y )  A Clear(x) A 1 On(b, x )  A 1 Clear(y)) . 
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This action achieves On (A,  B )  because the effect On (b, y) unifies with On (A,  B )  with the 
substitution {b/A, y/B).  We then apply this substitution to the action, yielding 

Action(Move(A, x, B ) ,  
PRECOND:O~(A,  x) A Clear(A) A Clear(B), 
EFFECT: 0n(A,  B )  A Clear(x) A 1 On(A, x) A 1 Clear(B)) . 

This leaves the variable x unbound. That is, the action says to move block A from somewhere, 
without yet saying whence. This is another example of the least commitment principle: we 
can delay making the choice until some other step in the plan makes it for us. For example, 
suppose we have On(A, D) in the initial state. Then the Start action can be used to achieve 
On(A, x ) ,  binding x to D. This strategy of waiting for more information before choosing x 
is often more efficient than trying every possible value of x and backtracking for each one 
that fails. 

The presence of variables in preconditions and actions complicates the process of de- 
tecting and resolving conflicts. For example, when Move(A, x, B )  is added to the plan, we 
will need a causal link 

Move(A, x, B)  o n ! B )  Finish . 

If there is another action M2 with effect lOn(A,  z) ,  then M2 conflicts only if z is B. To ac- 
commodate this possibility, we extend the representation of plans to include a set of inequal- 
ity constraints of the form z # X where z is a variable and X is either another variable or a 
constant symbol. In this case, we would resolve the conflict by adding z # B, which means 
that future extensions to the plan can instantiate z to any value except B. Anytime we apply 
a substitution to a plan, we must check that the inequalities do not contradict the substitution. 
For example, a substitution that includes x/y conflicts with the inequality constraint x # y. 
Such conflicts cannot be resolved, so the planner must backtrack. 

A more extensive example of POP planning with variables in the blocks world is given 
in Section 12.6. 

Heuristics for partial-order planning 

Compared with total-order planning, partial-order planning has a clear advantage in being 
able to decompose problems into subproblems. It also has a disadvantage in that it does 
not represent states directly, so it is harder to estimate how far a partial-order plan is from 
achieving a goal. At present, there is less understanding of how to compute accurate heuristics 
for partial-order planning than for total-order planning. 

The most obvious heuristic is to count the number of distinct open preconditions. This 
can be improved by subtracting the number of open preconditions that match literals in the 
Start state. As in the total-order case, this overestimates the cost when there are actions 
that achieve multiple goals and underestimates the cost when there are negative interactions 
between plan steps. The next section presents an approach that allows us to get much more 
accurate heuristics from a relaxed problem. 

The heuristic function is used to choose which plan to refine. Given this choice, the 
algorithm generates successors based on the selection of a single open precondition to work 
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on. As in the case of variable selection on constraint satisfaction algorithms, this selection 
has a large impact on efficiency. The most-constrained-variable heuristic from CSPs can 
be adapted for planning algorithms and seems to work well. The idea is to select the open 
condition that can be satisfied in the fewest number of ways. There are two special cases 
of this heuristic. First, if an open condition cannot be achieved by any action, the heuristic 
will select it; this is a good idea because early detection of impossibility can save a great 
deal of work. Second, if an open condition can be achieved in only one way, then it should 
be selected because the decision is unavoidable and could provide additional constraints on 
other choices still to be made. Although full computation of the number of ways to satisfy 
each open condition is expensive and not always worthwhile, experiments show that handling 
the two special cases provides very substantial speedlq~s. 

All of the heuristics we have suggested for total-order and partial-order planning can suffer 
PLANNING GRAPH from inaccuracies. This section shows how a special data structure called a planning graph 

can be used to give better heuristic estimates. These heuristics can be applied to any of the 
search techniques we have seen so far. Alternatively, we can extract a solution directly from 
the planning graph, uslng a specialized algorithm such as the one called GRAPHPLAN. 

LEVELS A planning graph consists of a sequence of levels that correspond to time steps in the 
plan, where level 0 is the initial state. Each level contains a set of literals and a set of actions. 
Roughly speaking, the literals are all those that could be true at that time step, depending on 
the actions executed at preceding time steps. Also roughly spealung, the actions are all those 
actions that could have their preconditions satisfied at that time step, depending on which of 
the literals actually hold. We say "roughly speaking" because the planning graph records only 
a restricted subset of the possible negative interactions among actions; therefore, it might be 
optimistic about the minimum number of time steps required for a literal to become true. 
Nonetheless, this number of steps in the planning graph provides a good estimate of how 
difficult it is to achieve a given literal from the initial state. More importantly, the planning 
graph is defined in such a way that it can be constructed very efficiently. 

Planning graphs work only for propositional planning problems-ones with no vari- 
ables. As we mentioned in Section 11.1, both STRIPS and ADL representations can be 
propositionalized. For problems with large numbers ad objects, this could result in a very 
substantial blowup in the number of action schemata. Despite this, planning graphs have 
proved to be effective tools for solving hard planning problems. 

We will illustrate planning graphs with a simple example. (More complex examples 
lead to graphs that won't fit on the page.) Figure 1 1.1 1 shows a problem, and Figure 11.12 
shows its planning graph. We start with state level So, which represents the problem's initial 
state. We follow that with action level Ao, in which we place all the actions whose precon- 
jditions are satisfied in the previous level. Each action is connected to its preconditions in So 
and its effects in S1, in this case introducing new literals into ,S1 that were not in So. 
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Ini t  (Have ( C a k e ) )  
Goal (Have (Cake )  A Eaten  ( Cake))  
Ac t ion(Eat  (Cake )  

PRECOND: Have (Cake )  
EFFECT: 1 Have( Cake) A Eaten(Cake) )  

Action(Bake( Cake) 
PRECOND: 1 Have(Cake) 
EFFECT: Have (Cake )  

1 Figure 11.11 The "have cake and eat cake too'' problem. I 

Figure 11.12 The planning graph for the "have cake and eat cake too" problem up to level 
S2. Rectangles indicate actions (small squares indicate persistence actions) and straight lines 

I indicate preconditions and effects. Mutex links are shown as curved gray lines. I 

The planning graph needs a way to represent inaction as well as action. That is, it needs 
the equivalent of the frame axioms in situation calculus that allow a literal to remain true 
from one situation to the next if no action alters it. In a planning graph this is done with a 
set of persistence actions. For every positive and negative literal C ,  we add to the problem ACTIONS 

a persistence action with precondition C and effect C.  Figure 11.12 shows one "real" action, 
Eat(Cake)  in Ao, along with two persistence actions drawn as small square boxes. 

Level A. contains all the actions that could occur in state So, but just as importantly it 
records conflicts between actions that would prevent them from occurring together. The gray 

MUTUALEXCLUSION lines in Figure 11.12 indicate mutual exclusion (or mutex) links. For example, Eat(Cake)  
MUTEX is mutually exclusive with the persistence of either Have ( Cake) or 1 Eaten ( Cake). We shall 

see shortly how mutex links are computed. 
Level S1 contains all the literals that could result from picking any subset of the ac- 

tions in Ao. It also contains mutex links (gray lines) indicating literals that could not appear 
together, regardless of the choice of actions. For example, Have ( Cake) and Eaten ( Cake) 
are mutex: depending on the choice of actions in Ao, one or the other, but not both, could be 
the result. In other words, Sl represents multiple states, just as regression state-space search 
does, and the mutex links are constraints that define the set of possible states. 

We continue in this way, alternating between state level St and action level A, until we 
reach a level where two consecutive levels are identical. At this point, we say that the graph 
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LEVELED OFF has leveled off. Every subsequent level will be identical, so further expansion is unnecessary. 
What we end up with is a structure where every A, level contains all the actions that are 

applicable in S,, along with constraints saying which pairs of actions cannot both be executed. 
Every S, level contains all the literals that could result from any possible choice of actions 
in A,-1, along with constraints saying which pairs of literals are not possible. It is important 
to note that the process of constructing the planning graph does not require choosing among 
actions, which would entail combinatorial search. Instead, it just records the impossibility 
of certain choices using mutex links. The complexity of constructing the planning graph 
is a low-order polynomial in the number of actions and literals, whereas the state space is 
exponential in the number of literals. 

We now define mutex links for both actions and literals A mutex relation holds between 
two actions at a given level if any of the following three conditions holds: 

Inconsistent efects: one action negates an effect of the other. For example Eat(Cake)  
and the persistence of Have(Cake)  have inconsrstent effects because they disagree on 
the effect Have ( Cake) .  
Interference: one of the effects of one action is the negation of a precondition of the 
other. For example Eat(Cake)  interferes with the persistence of Have(Cake) by negat- 
ing its precondition. 
Competing needs: one of the preconditions of one action is mutually exclusive with a 
precondition of the other. For example, Bake( Cake) and Eat (Cake)  are mutex because 
they compete on the value of the Have( Cake) precondition. 

A mutex relation holds between two literals at the same level rf one is the negation of the other 
or if each possible pair of actions that could achieve the two literals is mutually exclusive. 
This condition is called inconsistent support. For example, Have(Cake) and Eaten(Cake)  
are mutex in S1 because the only way of achieving Have( Cake) ,  the persistence action, is 
mutex with the only way of achieving Eaten( Cake) ,  namely Eat (Cake) .  In S2 the two 
literals are not mutex because there are new ways of achieving them, such as Bake(Cake)  
and the persistence of Eaten(Cake) ,  that are not muter;. 

Planning graphs for heuristic estimation 

A planning graph, once constructed, is a rich source of information about the problem. For 
example, a literal that does not appear in thejinal level of the graph cannot be achieved by 
any plan. This observation can be used in backward search as follows: any state containing 
an unachievable literal has a cost h(n) = oo. Similarl!i, in partial-order planning, any plan 
with an unachievable open condition has h(n) = oo. 

This idea can be made more general. We can estimate the cost of achieving any goal 
literal as the level at which it first appears in the plannnng gr,aph. We will call this the level 

LEVEL COST cost of the goal. In Figure 1 1.12, Have (Cake)  has level cost 0 and Eaten( Cake) has level 
cost 1. It is easy to show (Exercise 1 1.9) that these estimates are admissible for the individual 
goals. The estimate might not be very good, however, because planning graphs allow several 
actions at each level whereas the heuristic counts just the level and not the number of actions. 

SERIALPLANNING For this reason, it is common to use a serial planning graph for computing heuristics. A GRAPH 
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serial graph insists that only one action can actually occur at any given time step; this is done 
by adding mutex links between every pair of actions except persistence actions. Level costs 
extracted from serial graphs are often quite reasonable estimates of actual costs. 

To estimate the cost of a conjunction of goals, there are three simple approaches. The 
MAX-LEVEL max-level heuristic simply takes the maximum level cost of any of the goals; this is ad- 
LEVEL SUM missible, but not necessarily very accurate. The level sum heuristic, following the subgoal 

independence assumption, returns the sum of the level costs of the goals; this is inadmissible 
but works very well in practice for problems that are largely decomposable. It is much more 
accurate than the number-of-unsatisfied-goals heuristic from Section 11.2. For our problem, 
the heuristic estimate for the conjunctive goal Have ( Cake) A Eaten ( Cake) will be 0 + 1 = 1, 
whereas the correct answer is 2. Moreover, if we eliminated the Bake(Cake)  action, the es- 

SE~LEVEL timate would still be 1, but the conjunctive goal would be impossible. Finally, the set-level 
heuristic finds the level at which all the literals in the conjunctive goal appear in the planning 
graph without any pair of them being mutually exclusive. This heuristic gives the correct 
values of 2 for our original problem and infinity for the problem without Bake(Cake) .  It 
dominates the max-level heuristic and works extremely well on tasks in which there is a good 
deal of interaction among subplans. 

As a tool for generating accurate heuristics, we can view the planning graph as a relaxed 
problem that is efficiently soluble. To understand the nature of the relaxed problem, we need 
to understand exactly what it means for a literal g to appear at level S, in the planning graph. 
Ideally, we would like it to be a guarantee that there exists a plan with i action levels that 
achieves g, and also that if g does not appear that there is no such plan. Unfortunately, 
making that guarantee is as difficult as solving the original planning problem. So the planning 
graph makes the second half of the guarantee (if g does not appear, there is no plan), but 
if g does appear, then all the planning graph promises is that there is a plan that possibly 
achieves g and has no "obvious" flaws. An obvious flaw is defined as a flaw that can be 
detected by considering two actions or two literals at a time-in other words, by looking at 
the mutex relations. There could be more subtle flaws involving three, four, or more actions, 
but experience has shown that it is not worth the computational effort to keep track of these 
possible flaws. This is similar to the lesson learned from constraint satisfaction problems that 
it is often worthwhile to compute 2-consistency before searching for a solution, but less often 
worthwhile to compute 3-consistency or higher. (See Section 5.2.) 

The GRAPHPLAN algorithm 

This subsection shows how to extract a plan directly from the planning graph, rather than 
just using the graph to provide a heuristic. The GRAPHPLAN algorithm (Figure 11.13) has 
two main steps, which alternate within a loop. First, it checks whether all the goal literals 
are present in the current level with no mutex links between any pair of them. If this is the 
case, then a solution might exist within the current graph, so the algorithm tries to extract that 
solution. Otherwise, it expands the graph by adding the actions for the current level and the 
state literals for the next level. The process continues until either a solution is found or it is 
learned that no solution exists. 
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1 function G R A P H P L A N ( ~ ~ O ~ ~ ~ ~ )  returns solution or failure 1 
graph + INITIAL-PLANNING-GRAPH(~~~~~~~) 
goals +- GOALS [problem] 
loop do 

if goals all non-mutex in last level of graph then clo 
solution + E X T R A C T - S O L U T ~ O N ( ~ ~ ~ ~ ~ ,  goals, L E P J G T H ( ~ ~ U P ~ ) )  
if solution # failure then return solution 
else if N O - S O L U T I O N - P O S S I B L E ( ~ ~ ~ ~ ~ )  then return failure 

graph c E X P A N D - G R A P H ( ~ ~ ~ ~ ~ ,  problem) 

Figure 11.13 The GRAPHPLAN algorithm. GRAPHPLAN alternates between a solution 
extraction step and a graph expansion step. EXTRACT-SOLUTION looks for whether a plan 
can be found, starting at the end and searching backwards. EXPAND-GRAPH adds the actions 
for the current level and the state literals for the next level. - 
Let us now trace the operation of GRAPHPLAN on the spare tire problem from Sec- 

tion 11.1. The entire graph is shown in Figure 11.14. The first line of GRAPHPLAN ini- 
tializes the planning graph to a one-level (So) graph consisting of the five literals from the 
initial state. The goal literal At(Spare, Axle) is not present in So, so we need not call 
EXTRACT-SOLUTION-we are certain that there is no solution yet. Instead, EXPAND-GRAPH 

adds the three actions whose preconditions exist at level So (i.e., all the actions except 
PutOn(Spare, Axle)), along with persistence actions for all the literals in So. The effects 
of the actions are added at level S1. EXPAND-GRAPH then looks for mutex relations and 
adds them to the graph. 

At(Spare, Trunk) - 
f 

-iAt(Flat, Ground) - I 

At(Spare, Trunk) 

1 At(Spare, Trunk) 

1 At(Flat,Ground) 

At(Flat, Ground) 

At(Spare, Trunk) 

iAt(Spare,  Trunk) 

yAt(Spare,Axle) 

At(Spare,Axle) 

iA t (F /a t ,  Ground) 

At(F/at, Ground) 

Figure 11.14 The planning graph for the spare tire problem after expansion to level S2. 
Mutex links are shown as gray lines. Only some represientative mutexes are shown, because 
the graph would be too cluttered if we showed them alll. The solution is indicated by bold 
lines and outlines. 
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At(Spare, Axle) is still not present in S1, so again we do not call EXTRACT-SOLUTION. 
The call to EXPAND-GRAPH gives us the planning graph shown in Figure 11.14. Now that 
we have the full complement of actions, it is worthwhile to look at some of the examples of 
mutex relations and their causes: 

8 Inconsistent effects: Remove (Spare, Trunk) is mutex with LeaveOvernight because 
one has the effect At (Spare, Ground) and the other has its negation. 

Inteference: Remove(Flat, Axle) is mutex with LeaveOvernight because one has the 
precondition At(Flat, Ade)  and the other has its negation as an effect. 

Competing needs: Put On (Spare, Axle) is mutex with Remove (Flat, Axle) because 
one has At (Flat, Axle) as a precondition and the other has its negation. 
Inconsistent support: At(Spare, Axle) is mutex with At(Flat, Axle) in S2 because the 
only way of achieving At(Spare, Axle) is by PutOn(Spare, Axle), and that is mutex 
with the persistence action that is the only way of achieving At(Flat, Axle). Thus, the 
mutex relations detect the immediate conflict that arises from trying to put two objects 
in the same place at the same time. 

This time, when we go back to the start of the loop, all the literals from the goal are present 
in S2, and none of them is mutex with any other. That means that a solution might ex- 
ist, and EXTRACT-SOLUTION will try to find it. In essence, EXTRACT-SOLUTION solves a 
Boolean CSP whose variables are the actions at each level, and the values for each variable 
are in or out of the plan. We can use standard CSP algorithms for this, or we can define 
EXTRACT-SOLUTION as a search problem, where each state in the search contains a pointer 
to a level in the planning graph and a set of unsatisfied goals. We define this search problem 
as follows: 

The initial state is the last level of the planning graph, S,, along with the set of goals 
from the planning problem. 

The actions available in a state at level Si are to select any conflict-free subset of the 
actions in Ai-1 whose effects cover the goals in the state. The resulting state has level 
Si-1 and has as its set of goals the preconditions for the selected set of actions. By 
"conflict-free," we mean a set of actions such that no two of them are mutex, and no 
two of their preconditions are mutex. 

The goal is to reach a state at level So such that all the goals are satisfied. 
The cost of each action is 1. 

For this particular problem, we start at S2 with the goal At(Spare, Axle). The only choice we 
have for achieving the goal set is PutOn(Spare, Axle). That brings us to a search state at S1 
with goals At(Spare, Ground) and 1At  (Flat, Axle). The former can be achieved only by 
Remove (Spare, Trunk), and the latter by either Remove (Flat, Axle) or LeaveOvernight. 
But Leaveovernight is mutex with Remove(Spare, Trunk), so the only solution is to choose 
Remove(Spare, Trunk) and Remove(Flat, Axle). That brings us to a search state at So with 
the goals At(Spare, Trunk) and At(Flat, Axle). Both of these are present in the state, so 
we have a solution: the actions Remove(Spare, Trunk) and Remove(Flat, Axle) in level 
Ao, followed by PutOn(Spare, Axle) in A1. 
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We know that planning is PSPACE-complete and that constructing the planning graph 
takes polynomial time, so it must be the case that solutjon extraction is intractable in the worst 
case. Therefore, we will need some heuristic guidance for ch~oosing among actions during the 
backward search. One approach that works well in piractice is a greedy algorithm based on 
the level cost of the literals. For any set of goals, we proceed in the following order: 

1. Pick first the literal with the highest level cost. 
2. To achieve that literal, choose the action with tlhe easiest preconditions first. That is, 

choose an action such that the sum (or maximum) of the level costs of its preconditions 
is smallest. 

Termination of GRAPHPLAN 

So far, we have skated over the question of termination. If a problem has no solution, can 
we be sure that GRAPHPLAN will not loop forever,  extending the planning graph at each 
iteration? The answer is yes, but the full proof is beyond the scope of this book. Here, we 
outline just the main ideas, particularly the ones that shed liglnt on planning graphs in general. 

The first step is to notice that certain properties of planning graphs are monotonically 
increasing or decreasing. "X increases monotonically" means that the set of Xs at level i f 1 
is a superset (not necessarily proper) of the set at level i .  The properties are as follows: 

Literals increase monotonically: Once a literal appears at a given level, it will appear 
at all subsequent levels. This is because of the persistence actions; once a literal shows 
up, persistence actions cause it to stay forever. 
Actions increase monotonically: Once an action appears at a given level, it will appear at 
all subsequent levels. This is a consequence of literals' increasing; if the preconditions 
of an action appear at one level, they will appear at subsequent levels, and thus so will 
the action. 
Mutexes decrease monotonically: If two actions are mutex at a given level Ai, then they 
will also be mutex for all previous levels at which they both appear. The same holds for 
mutexes between literals. It might not always appear that way in the figures, because 
the figures have a simplification: they display neither literals that cannot hold at level 
Si nor actions that cannot be executed at level Ai. We can see that "mutexes decrease 
monotonically" is true if you consider that these invisible literals and actions are mutex 
with everything. 

The proof is a little complex, but can be handled by cases: if actions A and B are 
mutex at level Ai, it must be because of one of th'e three types of mutex. The first two, 
inconsistent effects and interference, are properties of the actions themselves, so if the 
actions are mutex at Ai, they will be mutex at every level. The third case, competing 
needs, depends on conditions at level Si: that level must contain a precondition of A 
that is mutex with a precondition of B. Now, these two preconditions can be mutex if 
they are negations of each other (in which case they would be mutex in every level) or if 
all actions for achieving one are mutex with all actions :for achieving the other. But we 
already know that the available actions are increasing nnonotonically, so by induction, 
the mutexes must be decreasing. 
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Because the actions and literals increase and the mutexes decrease, and because there are 
only a finite number of actions and literals, every planning graph will eventually level off- 
all subsequent levels will be identical. Once a graph has leveled off, if it is missing one of the 
goals of the problem, or if two of the goals are mutex, then the problem can never be solved, 
and we can stop the GRAPHPLAN algorithm and return failure. If the graph levels off with 
all goals present and nonmutex, but EXTRACT-SOLUTION fails to find a solution, then we 
might have to extend the graph again a finite number of times, but eventually we can stop. 
This aspect of termination is more complex and is not covered here. 

1 1.5 PLANNING WITH PROPOSITIONAL LOGIC 

We saw in Chapter 10 that planning can be done by proving a theorem in situation calculus. 
That theorem says that, given the initial state and the successor-state axioms that describe 
the effects of actions, the goal will be true in a situation that results from a certain action 
sequence. As early as 1969, this approach was thought to be too inefficient for finding inter- 
esting plans. Recent developments in efficient reasoning algorithms for propositional logic 
(see Chapter 7) have generated renewed interest in planning as logical reasoning. 

The approach we take in this section is based on testing the satisfiability of a logi- 
cal sentence rather than on proving a theorem. We will be finding models of propositional 
sentences that look like this: 

initial state /\ all possible action descriptions A goal 

The sentence will contain proposition symbols corresponding to every possible action occur- 
rence; a model that satisfies the sentence will assign true to the actions that are part of a 
correct plan and false to the others. An assignment that corresponds to an incorrect plan will 
not be a model, because it will be inconsistent with the assertion that the goal is true. If the 
planning problem is unsolvable, then the sentence will be unsatisfiable. 

Describing planning problems in propositional logic 

The process we will follow to translate STRIPS problems into propositional logic is a textbook 
example (so to speak) of the knowledge representation cycle: We will begin with what seems 
to be a reasonable set of axioms, we will find that these axioms allow for spurious unintended 
models, and we will write more axioms. 

Let us begin with a very simple air transport problem. In the initial state (time 0), plane 
PI is at SF0  and plane P2 is at JFK. The goal is to have PI at JFK and P2 at SFO; that is, 
the planes are to change places. First, we will need distinct proposition symbols for assertions 
about each time step. We will use superscripts to denote the time step, as in Chapter 7. Thus, 
the initial state will be written as 

At(Pl, SFO)' r\ At(P2, JFK)' . 

(Remember that At(Pl, SFO)O is an atomic symbol.) Because propositional logic has no 
closed-world assumption, we must also specify the propositions that are not true in the initial 
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state. If some propositions are unknown in the initial state, then they can be left unspecified 
(the open world assumption). In this example we specify: 

The goal itself must be associated with a particular time step. Since we do not know a priori 
how many steps it takes to achieve the goal, we can try asserting that the goal is true in the 
initial state, time T = 0. That is, we assert At(Pl, JFK)' A At(P2, SFO)'. If that fails, we 
try again with T = 1, and so on until we reach the minimum feasible plan length. For each 
value of T, the knowledge base will include only sentences covering the time steps from 0 
up to T. To ensure termination, an arbitrary upper limit, T,,,, is imposed. This algorithm 
is shown in Figure 11.15. An alternative approach that avoids multiple solution attempts is 
discussed in Exercise 1 1.17. 

function S A T ~ ~ ~ ~ ( p r o b l e m ,  T ,,,) returns solution or failure 
inputs: problem, a planning problem 

T ,,,, an upper limit for plan length 

for T = 0 to T,, do 
cnf, mapping +- T R A N S L A T E - T O - S A T ( ~ ~ ~ ~ ~ ~ ~ ,  T )  
assignment + S A T - S O L V E R ( ~ ~ ~ )  
if assignm.ent is not null then 

return E X T R A C T - S O L U T I O N ( ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ,  mapping) 
return failure 

I 
- - - - - - - - - 

Figure 11.15 The SATPLAN algorithm. The planning problem is translated into a CNF 
sentence in which the goal is asserted to hold at a fixecl time rstep T and axioms are included 
for each time step up to T. (Details of the translation are given in the text.) If the satisfiability 
algorithm finds a model, then a plan is extracted by loslking at those proposition symbols that 
refer to actions and are assigned true in the model. BF no model exists, then the process is 
repeated with the goal moved one step later. 

The next issue is how to encode action descriptions in propositional logic. The most 
straightforward approach is to have one proposition symbol for each action occurrence; for 
example, Fly(Pl,  SFO, JFK)' is true if plane PI flies from, S F 0  to JFK at time 0. As in 
Chapter 7, we write propositional versions of the successor--state axioms developed for the 
situation calculus in Chapter 10. For example, we have 

A ~ ( P , ,  JFK)' o ( A t ( ~ 1 ,  JFK)' A l ( ~ l y ( P 1 ,  JFK ,  SliO)' A At(P1, JFK)')) 
(ll.l) v (FZy(Pl, SFO, JFK)' A At(P1, S I~O) ' )  . 

That is, plane PI will be at JFK at time 1 if it was at JFK at time 0 and didn't fly away, or 
it was at S F 0  at time 0 and flew to JFK. We need one such axiom for each plane, airport, 
and time step. Moreover, each additional airport adds another way to travel to or from a given 
airport and hence adds more disjuncts to the right-hand side of each axiom. 

With these axioms in place, we can run the satisfiability algorithm to find a plan. There 
ought to be a plan that achieves the goal at time T = 1: namely, the plan in which the two 
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planes swap places. Now, suppose the KB is 

initial state A successor-state axionzs A , (1 1.2) 

which asserts that the goal is true at time T = 1. You can check that the assignment in which 

Fly ( P I ,  SFO, JFK)' and Fly (P2,  JFK;  SFO)' 

are true and all other action symbols are false is a model of the KB. So far, so good. Are 
there other possible models that the satisfiability algorithm might return? Indeed, yes. Are 
all these other models satisfactory plans? Alas, no. Consider the rather silly plan specified by 
the action symbols 

Fly(Pl ,  SFO, JFK)' and Fly(P1, J F K ,  SFO)' and Fly(P2, J F K ,  SFO)' 

This plan is silly because plane PI starts at SFO, so the action Fly(Pl, J F K ,  SFO)' is 
infeasible. Nonetheless, the plan is a model of the sentence in Equation (1 1.2)! That is, it 
is consistent with everything we have said so far about the problem. To understand why, 
we need to look more carefully at what the successor-state axioms (such as Equation (1 1.1)) 
say about actions whose preconditions are not satisfied. The axioms do predict correctly that 
nothing will happen when such an action is executed (see Exercise 1 1.15), but they do not say 
that the action cannot be executed! To avoid generating plans with illegal actions, we must 

PRECoNDITloN add precondition axioms stating that an action occurrence requires the preconditions to be AXIOMS 

sati~fied.~ For example, we need 

F ~ Y ( P ~ ,  JFK ,  SFO)' + A ~ ( P ~ ,  JFK)' . 

ACTION EXCLUSION 
AXIOMS 

Because A t ( P l ,  JFK)' is stated to be false in the initial state, this axiom ensures that every 
model also has Fly(Pl ,  JFK,  SFO)' set to false. With the addition of precondition axioms, 
there is exactly one model that satisfies all of the axioms when the goal is to be achieved at 
time 1, namely the model in which plane PI flies to JFK and plane P2 flies to SFO. Notice 
that this solution has two parallel actions, just as with GRAPHPLAN or POP. 

More surprises emerge when we add a third airport, L A X .  Now, each plane has two 
actions that are legal in each state. When we run the satisfiability algorithm, we find that 
a model with Fly ( P I ,  SFO, JFK)' and Fly(P2, JFK,  SFO)' and Fly(P2, JFK,  LAX)' 
satisfies all the axioms. That is, the successor-state and precondition axioms allow a plane to 
fly to two destinations at once! The preconditions for the two flights by P2 are satisfied in the 
initial state; the successor-state axioms say that P2 will be at S F 0  and LAX at time 1; so the 
goal is satisfied. Clearly, we must add more axioms to eliminate these spurious solutions. One 
approach is to add action exclusion axioms that prevent simultaneous actions. For example, 
we can insist on complete exclusion by adding all possible axioms of the form 

i ( F l y ( P 2 ,  JFK,  SFO)' A Fly(P2, JFK,  LAX) ' )  . 
These axioms ensure that no two actions can occur at the same time. They eliminate all 
spurious plans, but also force every plan to be totally ordered. This loses the flexibility of 
partially ordered plans; also, by increasing the number of time steps in the plan, computation 
time may be lengthened. 

Notice that the addition of precondition axioms means that we need not include preconditions for actions in 
the successor-state axioms. 
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Instead of complete exclusion, we can require only partial exclusion-that is, rule out 
simultaneous actions only if they interfere with each other. The conditions are the same as 
those for mutex actions: two actions cannot occur simultat~eously if one negates a precon- 
dition or effect of the other. For example, Fly(P2, J F K ,  S15'0)' and Fly (P2 ,  JFK,  LAX)' 
cannot both occur, because each negates the precondition of the other; on the other hand, 
Fly (PI ,  SFO, JFEI)' and Fly(P2, J F K ,  SFO)' can occur together because the two planes 
do not interfere. Partial exclusion eliminates spurious plans without forcing a total ordering. 

Exclusion axioms sometimes seem a rather blunt instrument. Instead of saying that a 
plane cannot fly to two airports at the same time, we might simply insist that no object can be 
in two places at once: 

YP, 2, y, t x # Y =+ l ( A t ( ~ ,  xIt A A ~ ( P ,  YIt)  . C 

This fact, combined with the successor-state axioms, implies that a plane cannot fly to two 
STATECONSTRAINTS airports at the same time. Facts such as this are called state constraints. In propositional 

logic, of course, we have to write out all the ground instances of each state constraint. For the 
airport problem, the state constraint suffices to rule out all spurious plans. State constraints 
are often much more compact than action exclusion axioms., but they are not always easy to 
derive from the original STRIPS description of a problem. 

To suinmarize, planning as satisfiability involves finding models for a sentence contain- 
ing the initial state, the goal, the successor-state axioms, the precondition axioms, and either 
the action exclusion axioms or the state constraints. It can be shown that this collection of ax- 
ioms is sufficient, in the sense that there are no longer any spurious "solutions." Any model 
satisfying the propositional sentence will be a valid plan for the original problem-that is, 
every linearization of the plan is a legal sequence of actions that reaches the goal. 

Complexity of propositional encodings 

The principal drawback of the propositional approach is the sheer size of the propositional 
knowledge base that is generated from the original planining problem. For example, the action 
schema Fly (p, a1 , a2)  becomes T x (Planes ( x I Airpo~ts l 2  different proposition symbols. In 
general, the total number of action symbols is bounded by T x I Act 1 x IOIP, where \Act  1 is 
the number of action schemata, (01 is the number of objects in the domain, and P is the 
maximum arity (number of arguments) of any action schema. The number of clauses is 
larger still. For example, with 10 time steps, 12 planes, and 30 airports, the complete action 
exclusion axiom has 583 million clauses. 

Because the number of action symbols is exponential in the arity of the action schema, 
one answer might be to try to reduce the arity. We can do this by borrowing an idea from 
semantic networks (Chapter 10). Semantic networks use only binary predicates; predicates 
with more arguments are reduced to a set of binary predicates that describe each argument 
separately. Applying this idea to an action symbol such as Fly(P1, SFO, JFK)', we obtain 
three new symbols: 

FlY1 (P~) '  : plane Pl flew at time 0 
~ l y ~ ( ~ F 0 ) '  : the origin of the flight was SF0  
Flys ( JFEI)' : the destination of the flight was ,TFK . 
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SYMBOLSPLITTING This process, called symbol splitting, eliminates the need for an exponential number of sym- 
bols. Now we only need T x (Act ( x P x 101. 

Symbol splitting by itself can reduce the number of symbols, but does not automatically 
reduce the number of axioms in the KB. That is, if each action symbol in each clause were 
simply replaced by a conjunction of three symbols, then the total size of the KB would remain 
roughly the same. Symbol splitting actually does reduce the size of the KB because some 
of the split symbols will be irrelevant to certain axioms and can be omitted. For example, 
consider the successor-state axiom in Equation (1 1. I), modified to include LAX and to omit 
action preconditions (which will be covered by separate precondition axioms): 

At(Pl ,  JFK)' H (At(P1, JFK)' A -Fly(Pl, JFK, SFO)' A iF ly (P1;  JFK,  LAX) ' )  
v FZY(P,, SFO, JFK)O v F~Y(P , ,  L A X ,  JFK)O . 

The first condition says that PI will be at J F K  if it was there at time 0 and didn't fly from 
JFK to any other city, no matter which one; the second says it will be there if it flew to J F K  
from another city, no matter which one. Using the split symbols, we can simply omit the 
argument whose value does not matter: 

Notice that S F 0  and LAX are no longer mentioned in the axiom. More generally, the split 
action symbols now allow the size of each successor-state axiom to be independent of the 
number of airports. Similar reductions occur with the precondition axioms and action exclu- 
sion axioms (see Exercise 11.16). For the case described earlier with 10 time steps, 12 planes, 
and 30 airports, the complete action exclusion axiom is reduced from 583 million clauses to 
9,360 clauses. 

There is one drawback: the split-symbol representation does not allow for parallel ac- 
tions. Consider the two parallel actions Fly(P1,  SFO,  JFK)' and Fly(P2, J F K ,  SFO)'. 
Converting to the split representation, we have 

It is no longer possible to determine what happened! We know that PI and P2 flew, but we 
cannot identify the origin and destination of each flight. This means that a complete action 
exclusion axiom must be used, with the drawbacks noted previously. 

Planners based on satisfiability can handle large planning problems-for example, find- 
ing optimal 30-step solutions to blocks-world planning problems with dozens of blocks. The 
size of the propositional encoding and the cost of solution are highly problem-dependent, but 
in most cases the memory required to store the propositional axioms is the bottleneck. One 
interesting finding from this work has been that backtracking algorithms such as DPLL are 
often better at solving planning problems than local search algorithms such as WALKSAT. 
This is because the majority of the propositional axioms are Horn clauses, which are handled 
efficiently by the unit propagation technique. This observation has led to the development of 
hybrid algorithms combining some random search with backtracking and unit propagation. 
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SERIALIZABLE 
SUBGOALS 

Planning is an area of great current interest within A[. One reason for this is that it combines 
the two major areas of A1 we have covered so far: search and logic. That is, a planner can 
be seen either as a program that searches for a solution or arb one that (constructively) proves 
the existence of a solution. The cross-fertilization of ideas from the two areas has led to both 
improvements in performance amounting to several orders of magnitude in the last decade 
and an increased use of planners in industrial applications. Unfortunately, we do not yet have 
a clear understanding of which techniques work best on which kinds of problems. Quite 
possibly, new techniques will emerge that dominate existing methods. 

Planning is foremost an exercise in controlling combil~atsrial explosion. If there are p 
primitive propositions in a domain, then there are 2 P  states. For complex domains, p can grow 
quite large. Consider that objects in the domain have properties (Locatton, Color, etc.) and 
relations (At, On, Between, etc.). With d objects in a domain wit11 ternary relations, we get 
2d3 states. We might conclude that, in the worst case, planning is hopeless. 

Against such pessimism, the divide-and-conquer approach can be a powerful weapon. 
In the best case-full decomposability of the problem-divide-and-conquer offers an expo- 
nential speedup. Decomposability is destroyed, however, by negative interactions between 
actions. Partial-order planners deal with this with causal links, a powerful representational 
approach, but unfortunately each conflict must be resolved with a choice (put the conflicting 
action before or after the link), and the choices can multiply exponentially. GRAPHPLAN 

avoids these choices during the graph construction phase, using mutex links to record con- 
flicts without actually malung a choice as to how to resolve them. SATPLAN represents a 
similar range of mutex relations, but does so by using the general CNF form rather than a 
specific da.ta structure. How well this works depends on the SAT solver used. 

Sometimes it is possible to solve a problem efficiently by recognizing that negative 
interactions can be ruled out. We say that a problem has serializable subgoals if there exists 
an order of subgoals such that the planner can achieve them in that order, without having to 
undo any of the previously achieved subgoals. For example, in the blocks world, if the goal is 
to build a tower (e.g., A on B, which in turn is on C, which in turn is on the Table), then the 
subgoals are serializable bottom to top: if we first achieve C on Table, we will never have to 
undo it while we are achieving the other subgoals. A planner that uses the bottom-to-top trick 
can solve any problem in the blocks world domain without backtracking (although it might 
not always find the shortest plan). 

As a more complex example, for the Remote Agent planner which commanded NASA's 
Deep Space One spacecraft, it was determined that the propositions involved in command- 
ing a spacecraft are serializable. This is perhaps not too surprising, because a spacecraft is 
designed by its engineers to be as easy as possible to controll (subject to other constraints). 
Taking advantage of the serialized ordering of goals, the Rernote Agent planner was able to 
eliminate most of the search. This meant that it was fast enough to control the spacecraft in 
real time, something previously considered impossible. 
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There is more than one way to control combinatorial explosions. We saw in Chapter 5 
that there are many techniques for controlling backtracking in constraint satisfaction problems 
(CSPs), such as dependency-directed backtracking. All of these techniques can be applied to 
planning. For example, extracting a solution from a planning graph can be formulated as a 
Boolean CSP whose variables state whether a given action should occur at a given time. The 
CSP can be solved using any of the algorithms in Chapter 5, such as min-conflicts. A closely 
related method, used in the BLACKBOX system, is to convert the planning graph into a CNF 
expression and then extract a plan by using a SAT solver. This approach seems to work better 
than SATPLAN, presumably because the planning graph has already eliminated many of the 
impossible states and actions from the problem. 1 also works better than GRAPHPLAN, 
presumably because a satisfiability search such as WALKSAT has much greater flexibility 
than the strict backtracking search that GRAPHPLAN uses. 

There is no doubt that planners such as GRAPHPLAN, SATPLAN, and BLACKBOX have 
moved the field of planning forward, both by raising the level of performance of planning sys- 
tems and by clarifying the representational and combinatorial issues involved. These methods 
are, however, inherently propositional and thus are limited in the domains they can express. 
(For example, logistics problems with a few dozen objects and locations can require gigabytes 
of storage for the corresponding CNF expressions.) It seems likely that first-order representa- 
tions and algorithms will be required if further progress is to occur, although structures such 
as planning graphs will continue to be useful as a source of heuristics. 

In this chapter, we defined the problem of planning in deterministic, fully observable envi- 
ronments. We described the principal representations used for planning problems and several 
algorithmic approaches for solving them. The points to remember are: 

Planning systems are problem-solving algorithms that operate on explicit propositional 
(or first-order) representations of states and actions. These representations make possi- 
ble the derivation of effective heuristics and the development of powerful and flexible 
algorithms for solving problems. 

The STRIPS language describes actions in terms of their preconditions and effects and 
describes the initial and goal states as conjunctions of positive literals. The ADL lan- 
guage relaxes some of these constraints, allowing disjunction, negation, and quantifiers. 

State-space search can operate in the forward direction (progression) or the backward 
direction (regression). Effective heuristics can be derived by making a subgoal inde- 
pendence assumption and by various relaxations of the planning problem. 

Partial-order planning (POP) algorithms explore the space of plans without commit- 
ting to a totally ordered sequence of actions. They work back from the goal, adding 
actions to the plan to achieve each subgoal. They are particularly effective on problems 
amenable to a divide-and-conquer approach. 
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a A planning graph can be constructed incrementially, starting from the initial state. Each 
layer contains a superset of all the literals or actions that could occur at that time step and 
encodes mutual exclusion, or mutex, relations among literals or actions that cannot co- 
occur. Planning graphs yield useful heuristics for state-space and partial-order planners 
and can be used directly in the GRAPHPLAN algorithm. 

a The GRAPHPLAN algorithm processes the planning graph, using a backward search to 
extract a plan. It allows for some partial ordering among actions. 

The SATPLAN algorithm translates a planning problem into propositional axioms and 
applies a satisfiability algorithm to find a model that co~~esponds to a valid plan. Several 
different propositional representations have been developed, with varying degrees of 
compactness and efficiency. 

a Each of the major approaches to planning has its adhe.rents, and there is as yet no con- 
sensus on which is best. Competition and cross-fertilization among the approaches have 
resulted in significant gains in efficiency for planning systems. 

BIBLIOGRAPHICAL AND HISTORICAL NOTES 

A1 planning arose from investigations into state-space search, theorem proving, and control 
theory and from the practical needs of robotics, scheduling, and other domains. STRIPS (Fikes 
and Nilsson, 1971), the first major planning system, illustrates the interaction of these influ- 
ences. STRIPS was designed as the planning component of the software for the Shakey robot 
project at SRI. Its overall control structure was modeled on that of GPS, the General Problem 
Solver (Newel1 and Simon, 1961), a state-space search system that used means-ends analysis. 
STRIPS used a version of the QA3 theorem proviilg system (Green, 1969b) as a subroutine for 
establishing the truth of preconditions for actions. Lifschitz (1986) offers precise definitions 
and an analysis of the STRIPS language. Bylander (1992) shows simple STRIPS planning to 
be PSPACE-complete. Fikes and Nilsson (1993) give a historical retrospective on the STRIPS 

project and a survey of its relationship to more recent planning efforts. 
The action representation used by STRIPS has been far nlorc influential than its algorith- 

mic approach. Almost all planning systems since then have used one variant or another of the 
STRIPS language. Unfortunately, the proliferation of varian1.s has made comparisons need- 
lessly difficult. With time came a better understanding of the limitations and tradeoffs among 
formalisms. The Action Description Language, or ADL, (Pedl~ault, 1986) relaxed some of the 
restrictions in the STRIPS language and made it possible to encode more realistic problems. 
Nebel (2000) explores schemes for compiling ADL into STRIPS. The Problem Domain De- 
scription Language or PDDL (Ghallab et al., 1998) was introduced as a computer-parsable, 
standardized syntax for representing STRIPS, ADL, and other languages. PDDL has been 
used as the standard language for the planning competitions at the AIPS conference, begin- 
ning in 1998. 

Planners in the early 1970s generally worked with totally ordered action sequences. 
Problem decomposition was achieved by computing a subplan for each subgoal and then 
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LINEARPLANNING stringing the subplans together in some order. This approach, called linear planning by 
Sacerdoti (19754 was soon discovered to be incomplete. It cannot solve some very simple 
problems, such as the Sussman anomaly (see Exercise 11.1 I), found by Allen Brown during 
experimentation with the HACKER system (Sussman, 1975). A complete planner must allow 

INTERLEAVING for interleaving of actions from different subplans within a single sequence. The notion 
of serializable subgoals (Korf, 1987) corresponds exactly to the set of problems for which 
noninterleaved planners are complete. 

One solution to the interleaving problem was goal regression planning, a technique in 
which steps in a totally ordered plan are reordered so as to avoid conflict between subgoals. 
This was introduced by Waldinger (1975) and also used by Warren's (1974) WARPLAN. 
WARPLAN is also notable in that it was the first planner to be written in a logic program- 
ming language (Prolog) and is one of the best examples of the remarkable economy that can 
sometimes be gained by using logic programming: WARPLAN is only 100 lines of code, 
a small fraction of the size of comparable planners of the time. INTERPLAN (Tate, 1975a, 
1975b) also allowed arbitrary interleaving of plan steps to overcome the Sussman anomaly 
and related problems. 

The ideas underlying partial-order planning include the detection of conflicts (Tate, 
1975a) and the protection of achieved conditions from interference (Sussman, 1975). The 
construction of partially ordered plans (then called task networks) was pioneered by the 
NOAH planner (Sacerdoti, 1975, 1977) and by Tate's (1975b, 1977) NONLIN 

Partial-order planning dominated the next 20 years of research, yet for much of that 
time, the field was not widely understood. TWEAK (Chapman, 1987) was a logical recon- 
struction and simplification of planning work of this time; his formulation was clear enough 
to allow proofs of completeness and intractability (NP-hardness and undecidability) of var- 
ious formulations of the planning problem. Chapman's work led to what was arguably 
the first simple and readable description of a complete partial-order planner (McAllester 
and Rosenblitt, 1991). An implementation of McAllester and Rosenblitt's algorithm called 
SNLP (Soderland and Weld, 1991) was widely distributed and allowed many researchers to 
understand and experiment with partial-order planning for the first time. The POP algorithm 
described in this chapter is based on SNLP. 

Weld's group also developed UCPOP (Penberthy and Weld, 1992), the first planner for 
problems expressed in ADL. UCPOP incorporated the number-of-unsatisfied-goals heuristic. 
It ran somewhat faster than SNLP, but was seldom able to find plans with more than a dozen 
or so steps. Although improved heuristics were developed for UCPOP (Joslin and Pollack, 
1994; Gerevini and Schubert, 1996), partial-order planning fell into disrepute in the 1990s 
as faster methods emerged. Nguyen and Kambhampati (2001) suggest that a rehabilitation is 
merited: with accurate heuristics derived from a planning graph, their REPOP planner scales 
up much better than GRAPHPLAN and is competitive with the fastest state-space planners. 

Avrim Blum and Merrick Furst (1995, 1997) revitalized the field of planning with their 
GRAPHPLAN system, which was orders of magnitude faster than the partial-order planners of 

Some confusion exists over terminology. Many authors use the term nonlinear to mean partially ordered. This 
is slightly different from Sacerdoti's original usage referring to interleaved plans. 
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BINARY DECISION 
DIAGRAMS 

the time. Other graph planning systems, such as IPP (Koeh~ler et al., 1997), STAN (Fox and 
Long, 1998) and SGP (Weld et al., 1998), soon followed. A data structure closely resembling 
the planning graph had been developed slightly earlier by Ghallab and Laruelle ( 1  994), whose 
IxTET partial-order planner used it to derive accurate heumstics to guide searches. Nguyen 
et al. (2001) give a very thorough analysis of heuristics derived from planning graphs. Our 
discussion of planning graphs is based partly on this work and on lecture notes by Subbarao 
Kambhampati. As mentioned in the chapter, a plannin~g graph can be used in many different 
ways to guide the search for a solution. The winner ofthe 2002 AIPS planning competition, 
LPG (Gerevini and Serina, 2002), searched planning graphs using a local search technique 
inspired by WALKSAT. 

Planning as satisfiability and the SATPLAN algorithm were proposed by Kautz and 
Selman (1992), who were inspired by the surprising success of greedy local search for sat- 
isfiability problems. (See Chapter 7.) Kautz et al. (1996) also investigated various forms of 
propositional representations for STRIPS axioms, fincling that the most compact forms did 
not necessarily lead to the fastest solution times. A systematic analysis was carried out by 
Ernst et al. (1997), who also developed an automatic "compiler" for generating propositional 
representations from PDDL problems. The BLACKBOX planner, which combines ideas from 
GRAPHPLAN and SATPLAN, was developed by Kautz and Selman (1998). 

The resurgence of interest in state-space planning was pioneered by Drew McDermott's 
UNPOP program (1996), which was the first to suggest a distance heuristic based on a relaxed 
problem with delete lists ignored. The name UNPOP was a reaction to the overwhelming con- 
centration on partial-order planning at the time; McDerinott suspected that other approaches 
were not getting the attention they deserved. Bonet and Geffner's Heuristic Search Planner 
(HSP) and its later derivatives (Bonet and Geffner, 1999) were the first to make state-space 
search practical for large planning problems. The most succe:,sful state-space searcher to date 
is Hoffmann's (2000) FASTFORWARD or FF, winner of the AIPS 2000 planning competition. 
FF  uses a simplified planning graph heuristic with a very fast search algorithm that combines 
forward and local search in a novel way. 

Most recently, there has been interest in the representation of plans as binary decision 
diagrams, a compact description of finite automata widely studied in the hardware verifi- 
cation community (Clarke and Grumberg, 1987; McMillan, L993). There are techniques for 
proving properties of binary decision diagrams, including the property of being a solution to a 
planning problem. Cirnatti et al. (1998) present a planner based on this approach. Other rep- 
resentations have also been used; for example, Vossen et al. (2001) survey the use of integer 
programming for planning. 

The jury is still out, but there are now some interesting comparisons of the various 
approaches to planning. Helmert (2001) analyzes several classes of planning problems, and 
shows that constraint-based approaches, such as GRAPHPLAN and SATPLAN are best for NP- 
hard domains, while search-based approaches do better in domains where feasible solutions 
can be found without backtracking. GRAPHPLAN and SATPLAN have trouble in domains 
with many objects, because that means they must create many actions. In some cases the 
problem can be delayed or avoided by generating the propositionalized actions dynamically, 
only as needed, rather than instantiating them all before the search begins. 
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Weld (1994, 1999) provides two excellent surveys of modem planning algorithms. It is 
interesting to see the change in the five years between the two surveys: the first concentrates 
on partial-order planning, and the second introduces GRAPHPLAN and SATPLAN. Readings 
in Planning (Allen et al., 1990) is a comprehensive anthology of many of the best earlier 
articles in the field, including several good surveys. Yang (1997) provides a book-length 
overview of partial-order planning techniques. 

Planning research has been central to A1 since its inception, and papers on planning 
are a staple of mainstream A1 journals and conferences. There are also specialized confer- 
ences such as the International Conference on A1 Planning Systems (AIPS), the International 
Workshop on Planning and Scheduling for Space, and the European Conference on Planning. 

11.1 Describe the differences and similarities between problem solving and planning. 

11.2 Given the axioms from Figure 11.2, what are all the applicable concrete instances of 
Fly(p, from, to )  in the state described by 

A t ( P l ,  J F K )  A At (&,  SFO)  A Plane(Pl)  A Plane(P2) 
A Airpor t (JFK)  A Ail-port(SF0) ? 

11.3 Let us consider how we might translate a set of STRIPS schemata into the successor- 
state axioms of situation calculus. (See Chapter 10.) 

a Consider the schema for Fly@, from, to ) .  Write a logical definition for the predicate 
FlyPrecond(p, from, to ,  s ) ,  which is true if the preconditions for Fly(p, from, t o )  are 
satisfied in situation s. 

Next, assuming that Fly@, from, to )  is the only action schema available to the agent, 
write down a successor-state axiom for At@, x, s )  that captures the same information 
as the action schema. 

a Now suppose there is an additional method of travel: Teleport(p, from, to) .  It has 
the additional precondition 7 Warped(p) and the additional effect Warped (p) .  Explain 
how the situation calculus knowledge base must be modified. 

Finally, develop a general and precisely specified procedure for carrying out the trans- 
lation from a set of STRIPS schemata to a set of successor-state axioms. 

11.4 The monkey-and-bananas problem is faced by a monkey in a laboratory with some 
bananas hanging out of reach from the ceiling. A box is available that will enable the monkey 
to reach the bananas if he climbs on it. Initially, the monkey is at A, the bananas at B, and the 
box at C. The monkey and box have height Low, but if the monkey climbs onto the box he 
will have height Hzgh, the same as the bananas. The actions available to the monkey include 
Go from one place to another, Push an object from one place to another, Climb Up onto or 
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ClimbDown from an object, and Grasp or Ungrasp an object. Grasping results in holding 
the object if the monkey and object are in the same place at the same height. 

a. Write down the initial state description. 

b. Write down STRIPS-style definitions of the six actions. 

c. Suppose the monkey wants to fool the scientists, who are off to tea, by grabbing the 
bananas, but leaving the box in its original place. Write this as a general goal (i.e., not 
assuming that the box is necessarily at C) in the language sf situation calculus. Can this 
goal be solved by a STRIPS-style system? 

d. Your axiom for pushing is probably incorrect, because if the object is too heavy, its 
position will remain the same when the Push operator is applied. Is this an example of 
the ramification problem or the qualification problem? Fix your problem description to 
account for heavy objects. 

11.5 Explain why the process for generating predecessors in backward search does not need 
to add the literals that are negative effects of the action. 

11.6 Explain why dropping negative effects from every action schema in a STRIPS problem 
results in a relaxed problem. 

11.7 Examine the definition of bidirectional search in Chapter 3. 

a. Would bidirectional state-space search be a good idea fior planning? 

b. What about bidirectional search in the space of partial-order plans? 

e.  Devise a version of partial-order planning in which an action can be added to a plan if its 
preconditions can be achieved by the effects of actions already in the plan. Explain how 
to deal with conflicts and ordering constraints. Is the algorithm essentially identical to 
forward state-space search? 

d. Consider a partial-order planner that combines the method in part (c) with the standard 
method of adding actions to achieve open conditions. Would the resulting algorithm be 
the same as part (b)? 

11.8 Construct levels 0, 1, and 2 of the planning graph for the problem in Figure 11.2. 

11.9 Prove the following assertions about planning graphs: 

m A literal that does not appear in the final level of the graph cannot be achieved. 

e The level cost of a literal in a serial graph is no greater than the actual cost of an optimal 
plan for achieving it. 

11.10 We contrasted forward and backward state-space search planners with partial-order 
planners, saying that the latter is a plan-space searcher. Explain how forward and backward 
state-space search can also be considered plan-space searchers;, and say what the plan refine- 
ment operators are. 
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SUSSMANANOMALY 11.11 Figure 11.16 shows a blocks-world problem known as the Sussman anomaly. The 
problem was considered anomalous because the noninterleaved planners of the early 1970s 
could not solve it. Write a definition of the problem in STRIPS notation and solve it, either 
by hand or with a planning program. A noninterleaved planner is a planner that, when given 
two subgoals GI and G2, produces either a plan for GI concatenated with a plan for G2, or 
vice-versa. Explain why a noninterleaved planner cannot solve this problem. 

1 Start State Goal State 1 
- 

/ Figure 11.16 The "Sussman anomaly" blocks-world planning problem. 7 

11.12 Consider the problem of putting on one's shoes and socks, as defined in Section 11.3. 
Apply GRAPHPLAN to this problem and show the solution obtained. Now add actions for 
putting on a coat and a hat. Show the partial order plan that is a solution, and show that there 
are 180 different linearizations of the partial-order plan. What is the minimum number of 
different planning graph solutions needed to represent all 180 linearizations? 

11.13 The original STRIPS program was designed to control Shakey the robot. Figure 11.17 
shows a version of Shakey's world consisting of four rooms lined up along a corridor, where 
each room has a door and a light switch. 

The actions in Shakey's world include moving from place to place, pushing movable 
objects (such as boxes), climbing onto and down from rigid objects (such as boxes), and 
turning light switches on and off. The robot itself was never dexterous enough to climb on a 
box or toggle a switch, but the STRIPS planner was capable of finding and printing out plans 
that were beyond the robot's abilities. Shakey's six actions are the following: 

Go(x,  y ) ,  which requires that Shakey be at x and that x and y are locations in the same 
room. By convention a door between two rooms is in both of them. 

Push a box b from location x to location y within the same room: Push(b, x ,  y). We 
will need the predicate Box and constants for the boxes. 

Climb onto a box: ClimbUp(b); climb down from a box: ClimbDown(b). We will 
need the predicate On and the constant Floor. 

Turn a light switch on: TurnOn(s); turn it off: TurnO#(s). To turn a light on or off, 
Shakey must be on top of a box at the light switch's location. 
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Switch 1 1 4  
Door ? 

Room 1 

Figure 11.17 Shakey's world. Shakey can move between landmarks within a room, can 
pass through the door between rooms, can climb climbable obj1:cts and push pushable objects, 

I and can flip light switches. 

Describe Shakey's six actions and the initial state from Fig,ure 11.17 in STRIPS notation. 
Construct a plan for Shakey to get Boxz into Rooma. 

11.14 We saw that planning graphs can handle only propositional actions. What if we want 
to use planning graphs for a problem with variables in the goal., such as A t  (P I ,  x) A At (P2, x), 
where x ranges over a finite domain of locations? How could you encode such a problem to 
work with planning graphs? (Hint: remember the Finish action from POP planning. What 
preconditions should it have?) 

11.15 Up to now we have assumed that actions are only executed in the appropriate situa- 
tions. Let us see what propositional successor-state axioms sixh as Equation (1 1.1) have to 
say about actions whose preconditions are not satisfied. 

a. Show that the axioms predict that nothing will happen when an action is executed in a 
state where its preconditions are not satisifed. 
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b. Consider a plan p that contains the actions required to achieve a goal but also includes 
illegal actions. Is it the case that 

initial state A successov-state axioms A p /= goal ? 

c. With first-order successor-state axioms in situation calculus (as in Chapter lo), is it 
possible to prove that a plan containing illegal actions will achieve the goal? 

11.16 Giving examples from the airport domain, explain how symbol-splitting reduces the 
size of the precondition axioms and the action exclusion axioms. Derive a general formula 
for the size of each axiom set in terms of the number of time steps, the number of action 
schemata, their arities, and the number of objects. 

11.17 In the SATPLAN algorithm in Figure 11.15, each call to the satisfiability algorithm 
asserts a goal gT,  where T ranges from 0 to T,,,. Suppose instead that the satisfiability 
algorithm is called only once, with the goal go V g1 V . . . V gTmax. 

a. Will this always return a plan if one exists with length less than or equal to Tmax? 
b. Does this approach introduce any new spurious "solutions"? 

c. Discuss how one might modify a satisfiability algorithm such as WALKSAT so that it 
finds short solutions (if they exist) when given a disjunctive goal of this form. 
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In which we see how more expressive representations and more interactive agent 
architectures lead to planners that are useful in the real world. 

The previous chapter introduced the most basic conc~epts, representations, and algo- 
rithms for planning. Planners that are are used in the real world for tasks such as scheduling 
Hubble Space Telescope observations, operating factories, and handling the logistics for mil- 
itary campaigns are more complex; they extend the ba.sics in terms both of the representation 
language and of the way the planner interacts with the e:nviroiiment. This chapter shows how. 
Section 12.1 describes planning and scheduling with time and resource constraints, and Sec- 
tion 12.2 describes planning with predefined subplans. Sections 12.3 to 12.6 present a series 
of agent architectures designed to deal with uncertain environments. Section 12.7 shows how 
to plan when the environment contains other agents. 

12.1 TIME, SCHEDULES, AND RESOURCES -- 

The STRIPS representation talks about what actions do, but, because the representation is 
based on situation calculus, it cannot talk about how long an action takes or even about when 
an action occurs, except to say that it is before or after another action. For some domains, 
we would like to talk about when actions begin and end. For example, in the cargo delivery 
domain, we might like to know when the plane carrying some cargo will arrive, not just that 
it will arrive when it is done flying. 

JOB SHOP 
SCHEDULING Time is of the essence in the general family of appllications called job shop scheduling. 

Such tasks require completing a set of jobs, each of whi.ch consists of a sequence of actions, 
where each action has a given duration and might require some resources. The problem is to 
determine a schedule that minimizes the total time required to complete all the jobs, while 
respecting the resource constraints. 

An example of a job shop scheduling problem is given in Figure 12.1. This is a highly 
simplified automobile assembly problem. There are two jobs: assembling cars C1 and C2. 
Each job consists of three actions: adding the engine, adding the wheels, and inspecting the 
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1 Init ( Chassis ( C 1 )  A Chassis ( C z )  
A Engine ( E l ,  Cl ,30) A Engine (E2, C2,60) 

I A Wheels(Wl, C l ,  30) A Wheels(W2, C 2 ,  1 5 ) )  
Goal (Done (C1) A Done ( C 2 ) )  

Action(AddEngine (e ,  c ) ,  
PRECOND: Engine(e, c, d)  A Chassis ( c )  A 1 EngineIn(c) , 
EFFECT: EngineIn(c) A Duration(d)) 

Action(Add Wheels (w , c) , 
PRECOND: Wheels (w , c, d )  A Chassis (c)  A EngineIn (c )  , 
EFFECT: WheelsOn(c) A Duration(d)) 

Action(Inspect ( c ) ,  PRECOND: EngineIn(c) A WheelsOn(c) A Chassis (c) : 
EFFECT: Done (c)  A Duration ( l o ) )  

Figure 12.1 A job shop scheduling problem for assembling two cars. The notation 
Duration(d) means that an action takes d minutes to execute. Engine(E1, C I ,  60) means 
that El is an engine that fits into chassis C1 and takes 60 minutes to install. 

results. The engine must be put in first (because having the front wheels on would inhibit 
access to the engine compartment) and of course the inspection must be done last. 

The problem in Figure 12.1 can be solved by any of the planners we have already seen. 
Figure 12.2 (if you ignore the numbers) shows the solution that the partial-order planner POP 
would come up with. To make this a scheduling problem rather than a planning problem, we 
must now determine when each action should begin and end, based on the durations of actions 
as well as their ordering. The notation Duration(d) in the effect of an action (where d must 
be bound to a number) means that the action takes d minutes to complete. 

Given a partial ordering of actions with durations, as in Figure 12.2, we can apply the 
CR'TrCALPATH METHOD critical path method (CPM) to determine the possible start and end times of each action. 

A path through a partial-order plan is a linearly ordered sequence of actions beginning with 
Start and ending with Finish. (For example, there are two paths in the partial-order plan in 
Figure 12.2.) 

CRITICAL PATH The critical path is that path whose total duration is longest; the path is "critical" 
because it determines the duration of the entire plan-shortening other paths doesn't shorten 
the plan as a whole, but delaying the start of any action on the critical path slows down the 
whole plan. In the figure, the critical path is shown with bold lines. To complete the whole 
plan in the minimal total time, the actions on the critical path must be executed with no delay 
between them. Actions that are off the critical path have some leeway-a window of time 
in which they can be executed. The window is specified in terms of an earliest possible start 

SLACK time, ES,  and a latest possible start time, LS. The quantity LS - ES is known as the slack of 
an action. We can see in Figure 12.2 that the whole plan will take 85 minutes, that each action 
on the critical path has 0 slack (this will always be the case) and that each of the actions in 
the assembly of C1 have a 15-minute window in which they can be started. Together the ES 

SCHEDULE and LS times for all the actions constitute a schedule for the problem. 
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30 30 
[O,Ol 

Start Finish 

Addwheels2 Inspect2 

- - - -  

Figure 12.2 A solution to the job shop scheduling problem from Figure 12.1. At the top, 
the solution is given as a partial-order plan. The duration of each action is given at the bottom 
of each rectangle, with the earliest and latest start time listed as [ES,  LS] in the upper left. 
The difference between these two numbers is the slack of an action; actions with zero slack 
are on the critical path, shown with bold arrows. At the bottom of the figure, the same solution 
is shown as a timeline. Grey rectangles represent time ilntervals during which an action may 
be executed, provided that the ordering constraints are respected. The unoccupied portion of 
a gray rectangle indicates the slack. 

The following formulas serve as a definition for ES and LS and also as the outline of a 
dynamic programming algorithm to compute them: 

The idea is that we start by assigning ES(Start) to be 0. Then as soon as we get an action 
B such that all the actions that come immediately before B have ES values assigned, we 
set E S ( B )  to be the maximum of the earliest finish times of those immediately preceding 
actions, where the earliest finish time of an action is defined as the earliest start time plus the 
duration. This process repeats until every action has been assigned an ES value. The LS 
values are computed in a similar manner, working backwards from the Finish action. The 
details are left as an exercise. 

The complexity of the critical path algorithm is just O(Nb), where N is the number 
of actions and b is the maximum branching factor into or out of an action. (To see this, 
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note that the LS  and ES computations are done once for each action, and each computation 
iterates over at most b other actions.) Therefore, the problem of finding a minimum-duration 
schedule, given a partial ordering on the actions, is quite easy to solve. 

Scheduling with resource constraints 

RESOURCES Real scheduling problems are complicated by the presence of constraints on resources. For 
example, adding an engine to a car requires an engine hoist. If there is only one hoist, then we 
cannot simultaneously add engine El to car C1 and engine E2 to car Cz; hence, the schedule 
shown in Figure 12.2 would be infeasible. The engine hoist is an example of a reusable 

REUSABLE 
RESOURCE resource-a resource that is "occupied" during the action but that becomes available again 

when the action is finished. Notice that reusable resources cannot be handled in our standard 
description of actions in terms of preconditions and effects, because the amount of resource 
available is unchanged after the action is completed.' For this reason, we augment our repre- 
sentation to include a field of the form RESOURCE: R(k), which means that k units of resource 
R are required by the action. The resource requirement is both a prerequisite-the action can- 
not be performed if the resource is unavailable-and a temporary effect, in the sense that the 
availability of resource r is reduced by k for the duration of the action. Figure 12.3 shows 
how to extend the engine assembly problem to include three resources: an engine hoist for 
installing engines, a wheel station for putting on the wheels, and two inspectors. Figure 12.4 
shows the solution with the fastest completion time, 115 minutes. This is longer than the 85 
minutes required for a schedule without resource constraints. Notice that there is no time at 
which both inspectors are required, so we can immediately move one of our two inspectors 
to a more productive position. 

The representation of resources as numerical quantities, such as Inspectors (2), rather 
than as named entities, such as Inspector(Il) and Inspector(12), is an example of a very 

AGGREGATION general technique called aggregation. The central idea of aggregation is to group individual 
objects into quantities when the objects are all indistinguishable with respect to the purpose 
at hand. In our assembly problem, it does not matter which inspector inspects the car, so there 
is no need to make the distinction. (The same idea works in the missionaries-and-cannibals 
problem in Exercise 3.9.) Aggregation is essential for reducing complexity. Consider what 
happens when a schedule is proposed that has 10 concurrent Inspect actions but only 9 in- 
spectors are available. With inspectors represented as quantities, a failure is detected imme- 
diately and the algorithm backtracks to try another schedule. With inspectors represented as 
individuals, the algorithm backtracks to try all lo! ways of assigning inspectors to Inspect 
actions, to no avail. 

Despite their advantages, resource constraints make scheduling problems more compli- 
cated by introducing additional interactions among actions. Whereas unconstrained schedul- 
ing using the critical-path method is easy, finding a resource-constrained schedule with the 
earliest possible completion time is NP-hard. This complexity is often seen in practice as 
well as in theory. A challenge problem posed in 1963-to find the optimal schedule for a 

In contrast, consumable resources, such as screws for assembling the engine, can be handled within the 
standard framework; see Exercise 12.2. 
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Init (Chassis (C1) A Chassis(C2) 
A Engine(E, C1, 30) A Engine(E2, C2,60! 
A Wheels(W1, Cl ,  30) A Wheels(W2, Cz, 15) 
A EngineHoists(1) A WheelStations(1) A Jnspectors(2)) 

Goal(Done(C1) A Done(C2)) 

Action(AddEngine(e, c) ,  
PR~~0~D:Eng ine (e ,  c, d )  A Chassis(c) A 1 EngineIn(c), 
E F F E C T : E ? L ~ ~ ~ ~ I ~ ( C )  A Duration(d) , 
R ~ S 0 ~ ~ ~ ~ : E n g i n e H o i s C s  (1)) 

Aetion(Add Wheels(w, c) ,  
PR ECO ND:  Wheels(w, c, d )  A Chassis(c) A Engin,eIn(c), 
EFFECT: WheelsOn(c) A Duration(d), 
RESOURCE: WheelStations(1)) 

Action(Inspect (c) ,  
PR~C0~~:EngzneIn(c) A WheelsOn(c), 
E~l?EcT:Done(c) A Duration(l0) , 
R~S0~1~C~:Inspectors (1 ) )  

Figure 12.3 Job shop scheduling problem for assembling two cars, with resources. The 
available resources are one engine assembly station, one wheel assembly station, and two 
inspectors. The notation RESOURCE:?- means that the resource r is used during execution of 
an action, but becomes free again when the action is complete. 

Figure 12.4 A solution to the job shop scheduling problem with resources from Fig- 
ure 12.3. The left-hand margin lists the three resources, and actions are shown aligned 
horizontally with the resources they consume. There are two possible schedules, depend- 
ing on which assembly uses the engine station first; we've shown the optimal solution, which 
takes 1 15 minutes. 

problem involving just 10 machines and 10 jobs of 100 actiolns each-went unsolved for 23 
years (Lawler et al., 1993). Many approaches have been tried, including branch-and-bound, 
simulated annealing, tabu search, constraint satisfaction, and other techniques from Part 11. 

MINIMUM SLACK One simple but popular heuristic is the minimum slack algolrithm. It schedules actions in a 
greedy fashion. On each iteration, it considers the unscheduled actions that have had all their 
predecessors scheduled and schedules the one with the least slack for the earliest possible 
start. It then updates the ES and LS times for each affected action and repeats. The heuristic 
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is based on the same principle as the most-constrained-variable heuristic in constraint satis- 
faction. It often works well in practice, but for our assembly problem it yields a 130-minute 
solution, not the 115-minute solution of Figure 12.4. 

The approach we have taken in this section is "plan first, schedule later": that is, we 
divided the overall problem into a planning phase in which actions are selected and partially 
ordered to meet the goals of the problem, and a later scheduling phase, in which temporal in- 
formation is added to the plan to ensure that it meets resource and deadline constraints. This 
approach is common in real-world manufacturing and logistical settings, where the planning 
phase is often performed by human experts. When there are severe resource constraints, how- 
ever, it could be that some legal plans will lead to much better schedules than others. In that 
case, it makes sense to integrate planning and scheduling by taking into account durations and 
overlaps during the construction of a partial-order plan. Several of the planning algorithms in 
Chapter 11 can be augmented to handle this information. For example, partial-order planners 
can detect resource constraint violations in much the same way that they detect conflicts with 
causal links. Heuristics can be modified to estimate the total completion time of a plan, rather 
than just the total cost of the actions. This is currently an active area of research. 

f N  One of the most pervasive ideas for dealing with complexity is hierarchical decomposition. 
Complex software is created from a hierarchy of subroutines or object classes, armies operate 
as a hierarchy of units, governments and corporations have hierarchies of departments, sub- 
sidiaries, and branch offices. The key benefit of hierarchical structure is that, at each level of 
the hierarchy, a computational task, military mission, or administrative function is reduced to 
a small number of activities at the next lower level, so that the computational cost of finding 
the correct way to arrange those activities for the current problem is small. Nonhierarchical 
methods, on the other hand, reduce a task to a large number of individual actions; for large- 
scale problems, this is completely impractical. In the best case-when high-level solutions 
always turn out to have satisfactory low-level implementations-hierarchical methods can 
result in linear-time instead of exponential-time planning algorithms. 

HIERARCHICAL TASK 
NETWORK This section describes a planning method based on hierarchical task networks or 

HTNs. The approach we take combines ideas from both partial-order planning (Section 1 1.3) 
and the area known as "HTN planning." In HTN planning, the initial plan, which describes 
the problem, is viewed as a very high-level description of what is to be done-for exam- 

ACTION DECOMPOSITION ple, building a house. Plans are refined by applying action decompositions. Each action 
decomposition reduces a high-level action to a partially ordered set of lower-level actions. 
Action decompositions, therefore, embody knowledge about how to implement actions. For 
example, building a house might be reduced to obtaining a permit, hiring a contractor, doing 
the construction, and paying the contractor. (Figure 12.5 shows such a decomposition.) The 

PRIMITIVE ACTION process continues until only primitive actions remain in the plan. Typically, the primitive 
actions will be actions that the agent can execute automatically. For a general contractor, 
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"install landscaping7' might be primitive because it simply involves calling the landscaping 
contractor. For the landscaping contractor, actions such as '"plant rhododendrons here" might 
be considered primitive. 

In "pure" HTN planning, plans are generated only by successive action decomposi- 
tions. The HTN therefore views planning as a process of making ari activity description more 
concrete, rather than (as in the case of state-space and partial-order planning) a process of 
constructing an activity description, starting from the empty activity. It turns out that every 
STRIPS action description can be turned into an action decomposition (see Exercise 12.6), 
and that partial-order planning can be viewed as a special case of pure HTN planning. For 
certain tasks, however--especially "novel" conjunctive goals-the pure HTN viewpoint is 
rather unnatural, and we prefer to take a hybrid approach in which action decompositions are 
used as plan refinements in partial-order planning, in addition to the standard operations of 
establishing an open condition and resolving conflicts by adding ordering constraints. (View- 
ing HTN planning as an extension of partial-order plainning has the additional advantage that 
we can use the same notational conventions instead of introducing a whole new set.) We be- 
gin by describing action decomposition in more detail. Then we explain how the partial-order 
planning algorithm must be modified to handle decornpositions, and finally we discuss issues 
of completeness, complexity, and practicality. 

Representing action decompositions 

PLAN LIBRARY General descriptions of action decomposition methods are stored in a plan library, from 
which they are extracted and instantiated to fit the nee~ds of the plan being constructed. Each 
method is an expression of the form Decompose(a, d). This says that an action a can be 
decomposed into the plan d, which is represented as a partial-order plan, as described in 
Section 1 1.3. 

Building a house is a nice, concrete example, so we will use it to illustrate the concept 
of action decomposition. Figure 12.5 depicts one possible decomposition of the BwildHouse 
action into four lower-level actions. Figure 12.6 shows some of the action descriptions for the 
domain, as well as the decomposition for BuildHouse as it would appear in the plan library. 
There might be other possible decompositions in the lilbrary. 

The Start action of the decomposition supplies all those preconditions of actions in the 
EXTERNAL 
PRECoNolTloNs plan that are not supplied by other actions. We call these i.he external preconditions. In 

our example, the external preconditions of the deconnposition are Land and Mon,ey. Sim- 
EXTERNALEFFECT ilarly, the external effects, which are the preconditions of Finish, are all those effects of 

actions in the plan that are not negated by other actions. In our example, the external effects 
of BuildHouse are House and  money. Some HTN planners also distinguish between pri- 

PRIMARY EFFECT mary effects, such as House, and secondary effects, such as  money. Only primary effects 
SECONDARY EFFECT may be used to achieve goals, whereas both kinds of effects might cause conflicts with other 

actions; this can greatly reduce the search space.2 

It could also prevent the discovery of unexpected plans. For example, a person facing bankruptcy proceedings 
can eliminate all liquid assets (i.e., achieve  money) by buying or building a house. This plan is useful because 
current law precludes the seizure of a primary residence by creditors. 
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land (1 House House 

1 decomposes to 

Get 
Permit 

Finish 

Hire 
Builder 

Figure 12.5 One possible decomposition for the BuildHouse action. 

Action(BuyLand, P R E C O N D : M O ~ ~ ~ ,  E w ~ c ~ : L a n d  A 1 Money) 
Action(GetLoan, PRECOND: GoodCredit, E F F E C T : M ~ ~ ~ ~  A Mortgage) 
Action(BuildHouse, P R E C O N D : L U ~ ~ ,  EFFECT:HOUS~) 

Action( GetPermit, PRECOND: Land, EFFECT: Permit) 
Action(HireBuilder, EFFECT: Contract) 
Action(Construction, P R E c o N D : P ~ ~ ~ z ~  A Contract, 

E~~EC~:HouseBuzlt A 7 Permit) 
Action(PayBuilder, P~Ec0~D:Money A HouseBuilt, 

EFFECT: 7 Money A House A 7 Contract) 

Decompose(BuildHouse, 
 STEPS: {S1 : GetPermit, S2 : HireBuilder, 

S3 : Construction, S4 : PayBuilder} 
ORDERINGS: {Start 3 SI 3 S3 + S4 3 Finish, Start 3 S2 -: 5'31, 
L INKS:  {Start La"d S1, Start S4, s Permit s3, s2 GO-t s3, s3 H o u ~ E u i l t  s 

1 ----t 4 ,  
7 Money Sq H ~ F i n i s h ,  Sq - Finish})) 

Figure 12.6 Action descriptions for the house-building problem and a detailed decompo- 
sition for the BuildHouse action. The descriptions adopt a simplified view of money and an 
optimistic view of builders. 

A decomposition should be a correct implementation of the action. A plan d imple- 
ments an action a correctly if d is a complete and consistent partial-order plan for the problem 
of achieving the effects of a given the preconditions of a. Obviously, a decomposition will 
be correct if it is the result of running a sound partial-order planner. 

A plan library could contain several decompositions for any given high-level action; 
for example, there might be another decomposition for BuildHouse that describes a process 
whereby the agent builds a house from rocks and turf with its own bare hands. Each de- 
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composition should be a correct plan, but it could have addlitional preconditions and effects 
beyond those stated in the high-level action description. For example, the decomposition for 
BuzldHouse in Figure 12.5 requires Money in addition to Land and has the effect  money. 
The self-build option, on the other hand, doesn't require money, but does require a ready 
supply of Rocks and Turf ,  and could result in a BadBack. 

Given that a high-level action, such as BuildHouse, may have several possible decom- 
positions, it is inevitable that its STRIPS action description will hide some of the preconditions 
and effects of those decompositions. The preconditions of the high-level action should be the 
intersection of the external preconditions of its decom~positions, and the effects should be the 
intersection of the external effects of the decompositions. Put another way, the high-level 
preconditions and effects are guaranteed to be a subset of the true preconditions and effects 
of every primitive implementation. 

Two other forms of information hiding should be noted. First, the high-level description 
INTERNALEFFECT completely ignores all internal effects of the decompositions. For example, our BuzldHouse 

decomposition has temporary internal effects Permit and Ctmty-a~t .~  Second, the high-level 
description does not specify the intervals "inside" the activity during which the high-level 
preconditions and effects must hold. For example, thle Land precondition needs to be true 
(in our very approximate model) only until Getpermit is performed, and House is true only 
after PayBuilder is performed. 

Information hiding of this kind is essential if hierarchical planning is to reduce com- 
plexity; we need to be able to reason about high-level actions without worrying about myriad 
details of the implementations. There is, however, a price to pay. For example, conflicts might 
exist between internal conditions of one high-level action and internal actions of another, but 
these is no way to detect this from the high-level descriptions. This issue has significant 
implications for HTN planning algorithms. In a nutsh~ell, whereas primitive actions can be 
treated as point events by the planning algorithm, high-level actions have temporal extent 
within which all sorts of things can be going on. 

Modifying the planner for decompositions 

We now show how to modify POP to incorporate HTN planning. We do that by modifying 
the POP successor function (page 390) to allow decomposition methods to be applied to the 
current partial plan P. The new successor plans are formed by first selecting some nonprimi- 
tive action a' in P and then, for any Decompose(a, d )  method from the plan library such that 
a and a' unify with substitution 8, replacing a' with d' = SUB ST(^, d ) .  

Figure 12.7 shows an example. At the top, there is a plan P for getting a house. The 
high-level action, a' = BuildHouse, is selected for decomposition. The decomposition d is 
selected from Figure 12.5, and BuildHouse is replaced by this decomposition. An additional 
step, GetLoan, is then introduced to resolve the new open condition, Money, that is created 
by the decomposition step. Replacing an action with its deconnposition is a bit like transplant 
surgery: we have to take the new subplan out of its packaging (the Start and Fin,islz steps), 

Constr~~ction negates the Permit, otherwise the same permit could be used to build many houses. Unfortu- 
nately, Construction does not terminate the Contract because we have to PayBuilder first. 
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I (1 Ions? Buy land I Land Build House * House 

Start 1 
Figure 12.7 Decomposition of a high-level action within an existing plan. The 
BuildHouse action is replaced by the decomposition from Figure 12.5. The external precon- 
dition Land is supplied by the existing causal link from BuyLand. The external precondition 
Money remains open after the decomposition step, so we add a new action, GetLoan. 

insert it, and hook everything up properly. There might be several ways to do this. To be 
more precise, we have for each possible decomposition d': 

1. First, the action a' is removed from P. Then, for each step s in the decomposition d', 
we need to choose an action to fill the role of s and add it to the plan. It can be either 
a new instantiation of s or an existing step sf from P that unifies with s. For example, 
the decomposition of a Make Wine action might suggest that we BuyLand; possibly, 
we can use the same BuyLand action that we already have in the plan. We call this 

SUBTASK SHARING subtask sharing. 
In Figure 12.7, there are no sharing opportunities, so new instances of the actions 

are created. Once the actions have been chosen, all the internal constraints from d' are 
copied over-for example, that Getpermit is ordered before Construction and that 
there is a causal link between these two steps supplying the Permit precondition of 
Construction. This completes the task of replacing a' with the instantiation of dB. 

2. The next step is to hook up the ordering constraints for a' in the original plan to the 
steps in d'. First, consider an ordering constraint in P of the form B -i a'. How should 
B be ordered with respect to the steps in d'? The most obvious solution is that B should 
come before every step in d', and that can be achieved by replacing every constraint of 
the form Start + s in d' with a constraint B + s. On the other hand, this approach might 
be too strict! For example, BuyLand has to come before BuildHouse, but there is no 
need for BuyLand to come before HireBuilder in the expanded plan. Imposing an 
overly strict ordering might prevent some solutions from being found. Therefore, the 
best solution is for each ordering constraint to record the reason for the constraint; then, 
when a high-level action is expanded, the new ordering constraints can be as relaxed 
as possible, consistent with the reason for the original constraint. Exactly the same 
considerations apply when we are replacing constraints of the form a' 4 C. 
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3. The final step is to hook up causal links. If B -5 a' was a causal link in the original 
plan, replace it by a set of causal links from B to all the steps in dl with preconditions 
p that were supplied by the Start step in the decomposition d (i.e., to all the steps in d' 
for which p is an external precondition). In the example, the causal link BuyLand L ~ d  

BuildHouse is replaced by the link BuyLand Permit. (The hloney precondition 
for PayBuilder in the decomposition becomes an open condition, because no action 
in the original plan supplies Money to BuildHouse.) Similarly, for each causal link 
a' 5 C in the plan, replace it with a set of causal links to C from whichever step in 
dl supplies p to the Finish step in the decomposition d (i.e., from the step in dl that has 
p as an external effect). In the example, we replaice the: link BuildHouse H3e Finish 
with the link PayBuilder H3 Finish. 

This completes the additions required for generating deconnpositions in the context of the 
POP planner.4 

Additional modifications to the POP algorithm are required because of the fact that 
high-level actions hide information about their final primitive implementations. In l~articular, 
the original POP algorithm backtracks with failure if the current plan contains an irresolvable 
conflict-that is, if an action conflicts with a causal lintk but cannot be ordered either before 
or after the link. (Figure 1 1.9 shows an example.) With high-level actions, on the other hand, 
apparently irresolvable conflicts can sometimes be resolved by decomposing the conflicting 
actions and interleaving their steps. An example is given in Figure 12.8. Thus, it may be 
the case that a complete and consistent primitive plan can be obtained by decornposition 
even when no complete and consistent high-level plan exists. This possibility means that a 
complete HTN planner must forgo many pruning oppor~iunities that are available to a standard 
POP planner. Alternatively, we can prune anyway and hope that no solution is missed. 

Discussion 

Let's begin with the bad news: pure HTN planning (where the only allowable plan refinement 
is decomposition) is undecidable, even though the underlying state space isfinite! This might 
seem very depressing, since the point of HTN planning is to gain efficiency. The difficulty 
arises because action decompositions can be recursive-for example, going for a walk can 
be implemented by taking a step and then going for a walk-so HTN plans can be arbitrarily 
long. In particular, the shortest HTN solution could be arbitrarily long, so that there is no way 
to terminate the search after any fixed time. There are, however, at least three ways to look 
on the bright side: 

1. We can rule out recursion, which very few domains require. In that case, all HTN plans 
are of finite length and can be enumerated. 

2. We can bound the length of solutions we care about. B'ecause the state space is finite, 
a plan that has more steps than there are states in the state space must include a loop 
that visits the same state twice. We would lose littl'e by ruling out HTN solutions of this 
kind, and we would control the search. 

a There are some additional minor modifications required for handling conflict resolution with high-level ac- 
tions; the interested reader can consult the papers cited at the end of the chapter. 
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Wafch HappHHe) 

Hair HappHSh 

- - 

Watch 
Hair 

Finish 

(a) Initial Problem (b) Abstract Inconsistent Plan 

Watch ~i~~ comb Comb Wafch ~ ~ l i ~ ~ ~  7 Watch 
Owe( Watch) 

(On Credit) Happy(She) Watch 1 Owe(Watch) 

Give Chain Deliver ~~i~ 

Watch (On Credit) Happy(He) ~ a :  Hair , o ~ ~ ( H ~ M  

- - - ---- - - - - - - 

Figure 12.8 The Gift of the Magi problem, taken from the 0. Henry story, shows an 
inconsistent abstract plan that nevertheless can be deconlposed into a consistent solution. 
Part (a) shows the problem: A poor couple has only two prized possessions-he a gold watch 
and she her beautiful long hair. Each plans to buy a present to make the other happy. He 
decides to trade his watch to buy a silver comb for her hair, and she decides to sell her hair to 
get a gold chain for his watch. In (b) the partial plan is inconsistent, because there is no way 
to order the "Give Comb" and "Give Chain" abstract steps without a conflict. (We assume 
that the "Give Comb" action has the precondition Hair, because if the wife doesn't have her 
long hair, the action won't have the intended effect of making her happy, and similarly for 
the "Give Chain" action.) In (c) we decompose the "Give Comb" step with an "installment 
plan" method. In the first step of the decomposition, the husband takes possession of the 
comb and gives it to his wife, while agreeing to deliver the watch in payment at a later date. 
In the second step, the watch is handed over and the obligation is fulfilled. A similar method 
decomposes the "Give Chain" step. As long as both giving steps are ordered before the 
delivery steps, this decomposition solves the problem. (Note that it relies on the problem 
being defined so that the happiness of using the chain with the watch or the comb with the 
hair persists even after the possessions are surrendered.) 

1 

3. We can adopt the hybrid approach that combines POP and HTN planning. Partial-order 
planning by itself suffices to decide whether a plan exists, so the hybrid problem is 
clearly decidable. 

(c) Decomposition of (b) into a Consistent Solution I 

We need to be a little bit careful with the third answer. POP can string together primitive 
actions in arbitrary ways, so we might find ourselves with solutions that are very hard to un- 
derstand and do not have the nice, hierarchical organization of HTN plans. An appropriate 
compromise is to control the hybrid search so that action decompositions are preferred over 
adding new actions, although not to such an extent that arbitrarily long HTN plans are gener- 
ated before any primitive actions can be added. One way to do this is to use a cost function 
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that gives a discount for actions introduced by decomposition; the larger the discount, the 
more the search will resemble pure HTN planning and the more hierarchical the solution will 
be. Hierarchical plans are usually much easier to execute in realistic settings, and are easier 
to fix when things go wrong. 

Another important characteristic of HTN plans is the possibility of subtask sharing. Re- 
call that subtask sharing means using the same action to1 implement two different steps in plan 
decompositions. If we disallow subtask sharing, then each instantiation of a deco~nposition 
d' can be done in only one way, rather than many, thereby greatly pruning the search space. 
Usually, this pruning saves some time and at worst leads to a solution that is slightly longer 
than optimal. In some cases, however, it can be more problematic. For example, consider the 
goal "enjoy a honeymoon and raise a family." The plan library might come up with "get mar- 
ried and go to Hawaii" for the first subgoal and "get married and have two children" for the 
second. Without subtask sharing, the plan will include two distinct marriage actions, often 
considered highly undesirable. 

An interesting example of the costs and benefits of subtask sharing occurs in optimiz- 
ing compilers. Consider the problem of compiling the expression tan(x) - sin(z). Most 
compilers accomplish this by merging two separate sllbroutine calls in a trivial way: all the 
steps of tan come before any of the steps of sin. But consider the following Taylor series 
approximations for sin and tan: 

23 2~~ 1 7 ~ ~  7 t a n ~ = z + ~ + ~ + ~ ;  s i n r = x - ~ + ~ - ~  6 120 5040 ' 

An HTN planner with subtask sharing could generate a more efficient solution, because it 
could choose to implement many steps of the sin computation with existing steps from tan. 
Most compilers do not do this kind of interprocedural sharing because it would take too much 
time to consider all the possible shared plans. Instead, most compilers generate each subplan 
independently, and then perhaps modify the result with a peephole optimizer. 

Given all the additional complications caused by the introduction of action decomposi- 
tions, why do we believe that HTN planning can be efficient? 'The actual sources of complex- 
ity are hard to analyze in practice, so we consider an idealized case. Suppose, for example, 
that we want to construct a plan with n actions. For a nonhierarchical, forward state-space 
planner with b allowable actions at each state, the cost is O(bn). For an HTN planner, let 
us suppose a very regular decomposition structure: each nonlprimitive action has d possible 
decompositions, each into k actions at the next lower level. We want to know how many 
different decomposition trees there are with this structure. Now, af there are n actions at the 
primitive level, then the number of levels below the root is logl, n, so the number of internal 
decomposition nodes is 1 + k + k2 + . . . f klogk = (n - l ) / ( k  - 1). Each internal node 
has d possible decompositions, so there are d(n-l)l(k-l) possible regular decomposition trees 
that could be constructed. Examining this formula, we see that keeping d small and k large 
can result in huge savings: essentially we are taking the kth root of the nonhierarchical cost, 
if b and d are comparable. On the other hand, constructing ii plan library that has a small 
number of long decompositions, but nonetheless allows us to solve any problem, is not al- 
ways possible. Another way of saying this is that long macro:; that are usable across a wide 
range of problems are extremely precious. 
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Another, and perhaps better, reason for believing that HTN planning is efficient is that 
it works in practice. Almost all planners for large-scale applications are HTN planners, be- 
cause HTN planning allows the human expert to provide the crucial knowledge about how to 
perform complex tasks so that large plans can be constructed with little computational effort. 
For example, 0-PLAN (Bell and Tate, 1985), which combines HTN planning with schedul- 
ing, has been used to develop production plans for Hitachi. A typical problem involves a 
product line of 350 different products, 35 assembly machines, and over 2000 different op- 
erations. The planner generates a 30-day schedule with three 8-hour shifts a day, involving 
millions of steps. 

The key to HTN planning, then, is the construction of a plan library containing known 
methods for implementing complex, high-level actions. One method of constructing the li- 
brary is to learn the methods from problem-solving experience. After the excruciating ex- 
perience of constructing a plan from scratch, the agent can save the plan in the library as a 
method for implementing the high-level action defined by the task. In this way, the agent can 
become more and more competent over time as new methods are built on top of old methods. 
One important aspect of this learning process is the ability to generalize the methods that 
are constructed, eliminating detail that is specific to the problem instance (e.g., the name of 
the builder or the address of the plot of land) and keeping just the key elements of the plan. 
Methods for achieving this kind of generalization are described in Chapter 19. It seems to us 
inconceivable that humans could be as competent as they are without some such mechanism. 

12.3 PLANNING AND ACTING I N  NONDETERMINISTIC DOMAINS 

So far we have considered only classical planning domains that are fully observable, static, 
and deterministic. Furthermore, we have assumed that the action descriptions are correct and 
complete. In these circumstances, an agent can plan first and then execute the plan "with its 
eyes closed." In an uncertain environment, on the other hand, an agent must use its percepts 
to discover what is happening while the plan is being executed and possibly modify or replace 
the plan if something unexpected happens. 

Agents have to deal with both incomplete and incorrect information. Incompleteness 
arises because the world is partially observable, nondeterministic, or both. For example, the 
door to the office supply cabinet might or might not be locked; one of my keys might or 
might not open the door if it is locked; and I might or might not be aware of these kinds of 
incompleteness in my knowledge. Thus, my model of the world is weak, but correct. On the 
other hand, incorrectness arises because the world does not necessarily match my model of 
the world; for example, I might believe that my key opens the supply cabinet, but I could be 
wrong if the locks have been changed. Without the ability to handle incorrect information, an 
agent can end up being as unintelligent as the dung beetle (page 37), which attempts to plug 
up its nest with a ball of dung even after the ball has been removed from its grasp. 

The possibility of having complete or correct knowledge depends on how much indeter- 
BOUNDED minacy there is in the world. With bounded indeterminacy, actions can have unpredictable 
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effects, but the possible effects can be listed in the action description axioms. For exam- 
ple, when we flip a coin, it is reasonable to say that the oiltcome will be Heads or Tails. 
An agent can cope with bounded indeterminacy by making plans that work in all possible 

UNBOUNDED circumstances. With unbounded indeterminacy, on the other hand, the set of possible pre- 
conditions or effects either is unknown or is too large to be enumerated completely. This 
would be the case in very complex or dynamic domains such as driving, economic planning, 
and military strategy. An agent can cope with unbounded incleternlinacy only if it is prepared 
to revise its plans andfor its knowledge base. Unbounded indeterminacy is closely related 
to the qualification problem discussed in Chapter 10-tht: impossibility of listing all the 
preconditions required for a real-world action to have its intended effect. 

There are four planning methods for handling indeterminacy. The first two are suitable 
for bounded indeterminacy, and the second two for unbounded indeterminacy: 

SENSORLESS 
PLANNING 0 Sensorless planning: Also called conformant pdanning, this method constructs stan- 

dard, sequential plans that are to be executed without perception. The sensorless plan- 
ning algorithm must ensure that the plan achieves the goal in all possible circumstances, 
regardless of the true initial state and the actual action outcomes. Sensorless planning 
relies on coercion-the idea that the world can be forced into a given state even when 
the agent has only partial information about the current state. Coercion is not always 
possible, so sensorless planning is often inapplicable. Sensorless problem solving, in- 
volving search in belief state space, was described in Chapter 3. 

CONDITIONAL 
PLANNING 0 Conditional planning: Also known as contingency planning, this approach deals with 

bounded indeterminacy by constructing a conditional plan with different branches for 
the different contingencies that could arise. Just as in c1;issical planning, the agent plans 
first and then executes the plan that was produced. The agent finds out which part of 

SENSING ACTIONS the plan to execute by including sensing actions in the plan to test for the appropriate 
conditions. In the air transport domain, for example, we could have plans that say 
"check whether S F 0  airport is operational. If so, fly there; otherwise, fly to Oakland." 
Conditional planning is covered in Section 12.4. 

EXECUTION 
MONITORING AND 
REPLANNING 

0 Execution monitoring and replanning: In this approach, the agent can use any of the 
preceding planning techniques (classical, sensorless, or conditional) to construct a plan, 
but it also uses execution monitoring to judge whether the plan has a provision for 
the actual current situation or need to be revised. Replanning occurs when something 
goes wrong. In this way, the agent can handle unbounded indeterminacy. For example, 
even if a replanning agent did not envision the possibility of SFO's being closed, it can 
recognize that situation when it occurs and call the planner again to find a new path to 
the goal. Replanning agents are covered in Section 12.5. 

0 Continuous planning: All the planners we have seen so far are designed to achieve 
a goal and then stop. A continuous planner is designed to persist over a lifetime. It 
can handle unexpected circumstances in the environment, even if these occur while the 
agent is in the middle of constructing a plan. It can also handle the abandonment of 
goals and the creation of additional goals by goal formulation. Continuous planning is 
described in Section 12.6. 

CONTINUOUS 
PLANNING 
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Let's consider an example to clarify the differences among the various kinds of agents. The 
problem is this: given an initial state with a chair, a table, and some cans of paint, with 
everything of unknown color, achieve the state where the chair and table have the same color. 

A classical planning agent could not handle this problem, because the initial state is 
not fully specified-we don't know what color the furniture is. 

A sensorless planning agent must find a plan that works without requiring any sensors 
during plan execution. The solution is to open any can of paint and apply it to both chair and 
table, thus coercing them to be the same color (even though the agent doesn't know what 
the color is). Coercion is most appropriate when propositions are expensive or impossible to 
perceive. For example, doctors often prescribe a broad-spectrum antibiotic rather than using 
the conditional plan of doing a blood test, then waiting for the results to come back, and then 
prescribing a more specific antibiotic. They do this because the delays and costs involved in 
performing the blood tests are usually too great. 

A conditional planning agent can generate a better plan: first sense the color of the 
table and chair; if they are already the same then the plan is done. If not, sense the labels on 
the paint cans; if there is a can that is the same color as one piece of furniture, then apply the 
paint to the other piece. Otherwise paint both pieces with any color. 

A replanning agent could generate the same plan as the conditional planner, or it 
could generate fewer branches at first and fill in the others at execution time as needed. It 
could also deal with incorrectness of its action descriptions. For example, suppose that the 
Paint ( o bj , color) action is believed to have the deterministic effect Color (obj  , color). A 
conditional planner would just assume that the effect has occurred once the action has been 
executed, but a replanning agent would check for the effect, and if it were not true (perhaps 
because the agent was careless and missed a spot), it could then replan to repaint the spot. 
We will return to this example on page 441. 

A continuous planning agent, in addition to handling unexpected events, can revise its 
plans appropriately if, say, we add the goal of having dinner on the table, so that the painting 
plan must be postponed. 

In the real world, agents use a combination of approaches. Car manufacturers sell spare 
tires and air bags, which are physical embodiments of conditional plan branches designed 
to handle punctures or crashes; on the other hand, most car drivers never consider these 
possibilities, so they respond to punctures and crashes as replanning agents. In general, agents 
create conditional plans only for those contingencies that have important consequences and 
a nonnegligible chance of going wrong. Thus, a car driver contemplating a trip across the 
Sahara desert might do well to consider explicitly the possibility of breakdowns, whereas a 
trip to the supermarket requires less advance planning. 

The agents we describe in this chapter are designed to handle indeterminacy, but are not 
capable of making tradeoffs between the probability of success and the cost of plan construc- 
tion. Chapter 16 provides additional tools for dealing with these issues. 
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GAMES AGAINST 
NATURE 

<test> is a Boolean function of the state variables. For example, a conditional step for the 
vacuum world might be, "if AtL A CleanL then Right else Suck." The execution of such a 
step proceeds in the obvious way. By nesting conditional steps, plans become trees. 

We want conditional plans that work regardless of which actiorz outcomes actually oc- 
cur. We have seen this problem before, in a different guise. In two-player games (Chapter 6), 
we want moves that will win regardless of which moves the opponent makes. For this reason, 
nondeterministic planning problems are often called games against nature. 

Let us consider a specific example in the vacuum world. The initial state has the robot 
in the right square of a clean world; because the environment is fully observable, the agent 
knows the full state description, AtR A CleanL A CleanR. The goal state has the robot in the 
left square of a clean world. This would be quite trivial, were it not for the "double Murphy" 
vacuum cleaner that sometimes deposits dirt when it moves to a clean destination square and 
sometimes deposits dirt if Suck is applied to a clean square. 

A "game tree" for this environment is shown in Figure 12.9. Actions are taken by 
the robot in the "state" nodes of the tree, and nature decides what the outcome will be at the 
"chance" nodes, shown as circles. A solution is a subtree that (1) has a goal node at every leaf, 
(2) specifies one action at each of its "state" nodes, and (3) includes every outcome branch at 
each of its "chance" nodes. The solution is shown in bold lines in the figure; it corresponds 
to the plan [Left, if AtL A CleanL A CleanR then [I else Suck]. (For now, because we are 
using a state-space planner, the tests in conditional steps will be complete state descriptions.) 

For exact solutions of games, we use the minimax algorithm (Figure 6.3). For condi- 
tional planning, there are typically two modifications. First, MAX and MIN nodes can become 

GOAL n.-r, / \  c..r. LOOP r ax+ / \ V.,-I, 

\ GOAL / \  \ / \  LOOP 

Figure 12.9 The first two levels of the search tree for the "double Murphy" vacuum world. 
State nodes are OR nodes where some action must be chosen. Chance nodes, shown as circles, 
are AND nodes where every outcome must be handled, as indicated by the arc linking the 
outgoing branches. The solution is shown in bold lines. 
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function AND-OR-GRAPH-SEARCH(~~O~~~~) returns a contlitional plan,  o r  failure 
OR-SEARCH(INITIAL-STATE[~~~~~~~], problem, [I) 

- 

function OR-sEARCH(state ,  problem, path)  returns a conditional plan,  o r  failure 
if GOAL-TEs~[prob~em](state)  then return the empty plan 
if state is on path then return failure 
for each act ion,  state-set in S ~ C C ~ ~ S ~ R S [ p r o b ~ e m ] ( s t a t e )  do 

plan c A N ~ - s E ~ R c ~ ( s t a t e - s e t ,  problem, [s tate  I path] )  
if plan # failure then return [ac t ion  / plan] 

return failure 

function A ~ ~ - s ~ ~ ~ ~ ~ ( s t a t e _ s e t ,  problem, path)  returns a conditional plan, o r  failure 
for each si in state-set do 

plani c O R - S E A R C H ( ~ ~ ,  problem, path)  
if plan =fa i lure  then return failure 

return [if sl then plan,  else if sz then plan, else . . . iif s,-1 then plan,-, else plan,] 

Figure 12.10 An algorithm for searching AND-OR graphs generated by nondeterministic 
environments. We assume that SUCCESSORS returns a list of actions, each associated with a 
set of possible outcomes. The aim is to find a conditional plain that reaches a goal state in all 
circumstances. 

OR and AND nodes. Intuitively, the plan needs to take some action at every state it reaches, 
but must handle every outcome for the action it takes. Second, the algorithm needs to return 
a conditional plan rather than just a single move. At an OR node, the plan is just the action 
selected, followed by whatever comes next. At an AND node, the plan is a nested series of if- 
then-else steps specifying subplans for each outcome; tlhe tests in these steps are the complete 
state d e ~ c r i ~ t i o n s . ~  

Formally speaking, the search space we have defined is an AND-OR graph. In Chap- 
ter 7, AND-OR graphs showed up in propositional Horn clause inference. Here, the branches 
are actions rather than logical inference steps, but the algorjthm is the same. Figure 12.10 
gives a recursive, depth-first algorithm for AND-OR graph search. 

One key aspect of the algorithm is the way in which it deals with cycles, which often 
arise in nondeterministic planning problems (e.g., if an action sometimes has no effect, or if 
an unintended effect can be corrected). If the current state is identical to a state on the path 
from the root, then it returns with failure. This doesn't mean that there is no solution from the 
current state; it simply means that if there is a noncyclic solution, it must be reachable from 
the earlier incarnation of the current state, so the new incarnation can be discarded. With 
this check, we ensure that the algorithm terminates in every finite state space, because every 
path must reach a goal, a dead end, or a repeated state. Notice that the algorithm does not 
check whether the current state is a repetition of a state on some other path from the root. 
Exercise 12.15 investigates this issue. 

Such plans could also be written using a case construct. 
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Figure 12.11 The first level of the search graph for the "triple Murphy" vacuum world, 
where we have shown cycles explicitly. All solutions for this problem are cyclic plans. 

The plans returned by AND-OR-GRAPH-SEARCH contain conditional steps that test 
the entire state description to decide on a branch. In many cases, we can get away with less 
exhaustive tests. For example, the solution plan in Figure 12.9 could be written simply as 
[Left, if CleanL then [I else Suck]. This is because the single test, CleanL, suffices to divide 
the states at the AND-node into two singleton sets, so that after the test the agent knows exactly 
what state it is in. In fact, a series of if-then-else tests of single variables always suffices to 
divide a set of states into singletons, provided that the state is fully observable. We could, 
therefore, restrict the tests to be of single variables without loss of generality. 

There is one final complication that often arises in nondeterministic domains: things 
don't always work the first time, and one has to try again. For example, consider the "triple 
Murphy" vacuum cleaner, which (in addition to its previously stated habits) sometimes fails to 
move when commanded-for example, Left can have the disjunctive effect AtL V AtR, as in 
Equation (12.1). Now the plan [Left, if CleanL then [I else Suck] is no longer guaranteed to 
work. Figure 12.11 shows part of the the search graph; clearly, there are no longer any acyclic 
solutions, and AND-OR-GRAPH-SEARCH would return with failure. There is, however, a 

CYCLICSOLUTION cyclic solution, which is to keep trying Left until it works. We can express this solution 
LABEL by adding a label to denote some portion of the plan and using that label later instead of 

repeating the plan itself. Thus, our cyclic solution is 

[L1 : Left, if AtR then L1 else if CleanL then [ I  else Suck] . 

(A better syntax for the looping part of this plan would be "while AtR do Left.") The modi- 
fications needed to AND-OR-GRAPH-SEARCH are covered in Exercise 12.16. The key real- 
ization is that a loop in the state space back to a state L translates to a loop in the plan back 
to the point where the subplan for state L is executed. 

Now we have the ability to synthesize complex plans that look more like programs, 
with conditionals and loops. Unfortunately, these loops are, potentially, inJinite loops. For 
example, nothing in the action representation for the triple Murphy world says that Left will 
eventually succeed. Cyclic plans are therefore less desirable than acyclic plans, but they may 
be considered solutions, provided that every leaf is a goal state and a leaf is reachable from 
every point in the plan. 
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Conditional planning in partially observable enviroinments 

The preceding section dealt with fully observable environments, which have the advantage 
that condit.ional tests can ask any question at all and be sure of getting an answer. In the real 
world, partial observability is much more common. In the initial state of a partially observable 
planning problem, the agent knows only a certain amount about the actual state. The simplest 
way to model this situation is to say that the initial state belongs to a state set; the state set is 
a way of describing the agent's initial belief state.8 

Suppose that a vacuum-world agent knows that it is iin the right-hand square and that 
the square is clean, but it cannot sense the presence or absence of dirt in other squares. Then 
as far as it knows it could be in one of two states: the left-hand square might be either clean 
or dirty. This belief state is marked A in Figure 12.112. The figure shows part of the AND- 

OR graph for the "alternate double Murphy" vacuum world, in which dirt can sometimes 
be left behind when the agent leaves a clean ~ q u a r e . ~  If the world were fully observable, 
the agent could construct a cyclic solution of the forrn "Keep moving left and right, sucking 
up dirt whenever it appears, until both squares are cl~ean arid I'm in the left square." (See 
Exercise 12.16.) Unfortunately, with local dirt sensing, this plan is unexecutable, because the 
truth value sf the test "both squares are clean" cannot be determined. 

Let us look at how the AND-OR graph is constructed. Ekom belief state A, we show the 
outcome of moving Left. (The other actions make no sense.) Because the agent can leave dirt 
behind, the two possible initial worlds become four possible worlds, as shown in B and C. 
The worlds form two distinct belief states, classified by the available sensor information. lo In 
B, the agent knows CleanL; in C it knows 1 CleanL. From C,  cleaning up the dirt moves the 
agent to B. From B, moving Right might or might not leave dirt behind, so there are again 
four possible worlds, divided according to the agent's knowledge of CleanR (back to A) or 
1 CleanR (belief state D). 

In sum, nondeterministic, partially observable emvironnnents give us an AND-OR graph 
of belief states. Conditional plans can be found, therefore, usiing exactly the same algorithm as 
in the fully observable case, namely AND-OR-GRAPH-SEARCH. Another way to understand 
what's going on is to see that the agent's belief state is alwtzys fully observable--it always 
knows what it knows. "Standard fully observable problem solving is just a special case in 
which every belief state is a singleton set containing exactly one physical state. 

Are we done? Not quite! We still need to decide how belief states should be represented, 
how sensing works, and how action descriptions shoullcl be written in this new setting. 

There are three basic choices for belief states: 

1. Sets of full state descriptions. For example, the initial belief state in Figure 12..12 is 

{ (AtR A CleanR A CleanL), (AtR A CleianR A 1 CleanL) } . 

This representation is simple to work with, but very expensive: if there are n Boolean 

These concepts are introduced in Section 3.6, which the reader might wish to consult before proceeding. 
Parents with young children will be familiar with this phenomenon. Apologies to others, as usual. 

lo Notice that they are not classified by whether there is dirt left behind when the agent moves. Branching in 
belief-state space is caused by alternative knowledge outcomes, not alternative physical outcomes. 
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Figure 12.12 Part of the AND-OR graph for the "alternate double Murphy" vacuum world, 
in which dirt can sometimes be left behind when the agent leaves a clean square. The agent 
cannot sense dirt in other squares. 

propositions defining the state, then a belief state can contain 0 ( 2 n )  physical state de- 
scriptions, each of size O(n) .  Exponentially large belief states will occur whenever the 
agent knows only a fraction of the propositions-the less it knows, the more possible 
states it might be in. 

2. Logical sentences that capture exactly the set of possible worlds in the belief state. For 
example, the initial state can be written as 

AtR /\ CleanR . 

Clearly, every belief state can be captured exactly by a single logical sentence; if we 
have to, we can use the disjunction of all the conjunctive state descriptions, but our 
example shows that more compact sentences could exist. 

One drawback with general logical sentences is that, because there are many dif- 
ferent, logically equivalent sentences that describe the same belief state, repeated state 
checking in the graph search algorithm can require general theorem proving. For this 
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reason, we would like a canonical representation for sentences in which every belief 
state corresponds to exactly one sentence.ll One such representation uses a conjunc- 
tion of literals ordered by proposition name-AtR A CleanR is an example. This is just 
the standard state representation under the open-.worltl assumption from Chapter 11. 
Not all logical sentences can be written in such form--for example, there is no way to 
represent AtL V CleanR-but many domains can be handled. 

3. Knowledge propositions describing the agent's kaowledge. (See also Section 7.7.) For 
the initial state, we have 

Here, K stands for "knows that" and K ( P )  means that the agent knows that P is true.12 
With knowledge propositions, we use the closed-world assumption-if a knowledge 
proposition does not appear in the list, it is assumed false. For example, lK(C1eanL) 
and lK(1CleanL)  are implicit in the sentence above, so it captures the fact that the 
agent is ignorant of the truth value of CleanL. 

It turns out that the second and third options are roughly equivalent, but we will use the third 
option, knowledge propositions, because it gives a more vivid description of sensing and be- 
cause we already know how to write STRIPS descriptions with the closed-world assumption. 

In both options, each proposition symbol can appear in one sf  three ways: positive, 
negative, or unknown. Therefore, there are exactly 3n possible belief states that can be de- 
scribed this way. Now, the set of belief states is the powerset (set of all subsets) of the set 
of physical states. There are 2n physical states, so there are ~ 2 ~ "  belief states-far more than 
3", so options 2 and 3 are quite restricted as representations of belief states. This currently is 
believed to be inevitable, because any scheme capable of representing every possible belief 
state will require O ( l 0 ~ ~ ( 2 ~ " ) )  = 0(2n)  bits to represent each one in the worst case. Our 
simple schemes require only O(n)  bits to represent each beljef state, trading expressiveness 
for compactness. In particular, if an action occurs, one of whose preconditions is ~mknown, 
then the resulting belief state will not be exactly representable and the action outcome be- 
comes unknown. 

Now we need to decide how sensing works. There are two choices here. We can 
AUTOMATIC SENSING have automatic sensing, which means that at every time step the agent gets all the available 

percepts. The example in Figure 12.12 assumes automatic sensing of location and local dirt. 
ACTIVESENSING Alternatively, we can insist on active sensing, which means that percepts are obtained only 
SENSORY ACTIONS by executing specific sensory actions such as CheckDirt and ChleckLocatzon. We will treat 

each lund of sensing in turn. 
Let us now write an action description using kn~owleclge propositions. Suppose the 

agent moves Left in the alternate-double-Murphy world with automatic local dirt sensing; 
according to the rules for that world, the agent might or might not leave dirt behind if the 
square was clean. As aphysical effect, this would be disjunctive; but as a knowledge effect, it 

l1 The best-known canonical representation for a general propositiolnal sentence is the binary decision diagram, 
or BDD (Bryant, 1992). 
l2 This is the same notation used for circuit-based agents in Chapter 7. Some authors use it to mean "knows 
whether P is true." Translating between the two representations is sltraightforwai-d. 
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simply deletes the agent's knowledge of CleanR. The agent will also know whether CleanL 
is true, one way or the other, because of local dirt sensing, and it will know that it is AtL: 

Action(Left, PRECOND: AtR, 
EFFECT:K(A~L) A l K ( A t R )  A when CleanR: iK(C1eanR) A 

when CleanL: K ( CleanL) A 
(12.2) 

when 1 CleanL: K ( 1  CleanL)) . 
Notice that the preconditions and when conditions are plain propositions, not knowledge 
propositions. This is as it should be, because the outcomes of actions do depend on the actual 
world, but how do we check the truth of those conditions when all we have is the belief 
state? If the agent knows a proposition, say K(AtR),  in the current belief state, then the 
proposition must be true in the current physical state, and indeed the action is applicable. If 
the agent doesn't know a proposition-for example, the when condition CleanL--then the 
belief state must include worlds in which CleanL is true and worlds in which CleanL is false. 
It is this that gives rise to multiple belief states resulting from the action. Thus, if the initial 
state is (K ( AtR) A K ( CleanR)), then after the move Lef%, the two outcome belief states are 
(K(AtL) A K(C1eanL)) and (K(AtL) A K ( 1  CleanL)). In both cases, the truth value of 
CleanL is known, so the CleanL test can be used in the plan. 

With active sensing (as opposed to automatic sensing), the agent gets new percepts only 
by asking for them. Thus, after moving Left, the agent will not know whether the left-hand 
square is dirty, so the last two conditional effects no longer appear in the action description 
in Equation (12.2). To find out whether the square is dirty, the agent can CheckDirt: 

Action(CheckDirt,  EFFECT:^^^^ AtL A CleanL: K(C1eanL) A 
when AtL A ~CleanL: K ( 1  CleanL) A 

(12.3) 
when AtR A CleanR: K(C1eanR) A 
when AtR A 1 CleanR: K ( 1  CleanR)) . 

It is easy to show that Lefl followed by CheckDirt in the active sensing setting results in 
the same two belief states as Left did in the automatic sensing setting. With active sensing, 
it is always the case that physical actions map a belief state into a single successor belief 
state. Multiple belief states can be introduced only by sensory actions, which provide specific 
knowledge and hence allow conditional tests to be used in plans. 

We have described a general approach to conditional planning based on state-space 
AND- OR search. The approach has proved to be quite effective on some test problems, but 
other problems are intractable. Theoretically, it can be shown that conditional planning be- 
longs to a harder complexity class than classical planning. Recall that the definition of the 
class NP is that a candidate solution can be checked to see whether it really is a solution in 
polynomial time. This is true for classical plans (at least, for those of polynomial size) so 
the problem of classical planning is in NP. But in conditional planning a candidate must be 
checked to see whether, for all possible states, there exists some path through the plan that 
satisfies the goal. Checking the "all/some" combination cannot be done in polynomial time, 
so conditional planning is harder than NP. The only way out is to ignore some of the possible 
contingencies during the planning phase and to handle them only when they actually occur. 
This is the approach we pursue in the next section. 
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12.5 EXECUTION MONITORING AND REPLANNING 

An execution monitoring agent checks its percepts to see whether everything is going ac- 
cording to plan. Murphy's law tells us that even the best-laid plans of mice, men, and con- 
ditional planning agents frequently fail. The problem is unbounded indeterminacy-some 
unanticipated circumstance will always arise for which the agent's actions descriptions are 
incorrect. Therefore, execution monitoring is a necessity in realistic environments. We will 
consider two kinds of execution monitoring: a simple, but w~eak form called action monitor- 
ing, whereby the agent checks the environment to verify that the next action will work, and 
a more complex but more effective form called plan monitoring, in which the agent verifies 
the entire remaining plan. 

A replanning agent knows what to do when something unexpected happens: call a 
planner again to come up with a new plan to reach the goal. To avoid spending too much time 
planning, this is usually done by trying to repair the old plan-to find a way from the current 
unexpected state back onto the plan. 

As an example, let us return to the double Murphy vacuum world in Figure 12.9. In 
this world, moving into a clean square sometimes deposits dirt in that square; but what if the 
agent doesn't know that or doesn't worry about it? Then it will come up with a very simple 
solution: [Lef t] .  If no dirt is dumped on arrival when the plan is actually executed, then the 
agent will detect the achievement of the goal. Otherwsse, because the CleanL precondition of 
the implicit Finish step is not satisfied, the agent will generate a new plan: [Suck] .  Execution 
of this plan always succeeds. 

Together, execution monitoring and replanning fiorm a general strategy that can be ap- 
plied to both fully and partially observable environments, and to a variety of planning repre- 
sentations including state-space, partial-order, and conditional plans. One simple approach 
to state-space planning is shown in Figure 12.13. The planning agent starts with a goal and 
creates an initial plan to achieve it. The agent then starts executing actions one by one. 
The replanning agent, unlike our other planning agents, keeps track of both the remaining 
unexecuted plan segment plan and the complete original plan whole-plan. It uses action 

ACTIONMONITORING monitoring: before carrying out the next action of plan, the agent examines its percepts to 
see whether any preconditions of the plan have unexpectedly become unsatisfied. If they 
have, the agent will try to get back on track by replanning a sequence of actions that should 
take it back to some point in the whole-plan. 

Figure 12.14 provides a schematic illustration of the process. The replanner notices 
that the preconditions of the first action in plan are not satisfied by the current state. It then 
calls the planner to come up with a new subplan called repazr that will get from the current 
situation to some state s on whole-plan. In this example, the state s happens to be one step 
back from the current remaining plan. (That is why we keep track of the whole plan, rather 
than just the remaining plan.) In general, we choose s to be as close as possible to the current 
state. The concatenation of repair and the portion of whole-plan from s onward, which we 
call continuation, makes up the new plan, and the agent is ready to resume execution. 
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function ~ E P L A N N I N C - A G E N T ( ~ ~ ~ ~ ~ ~ ~ )  returns an action 
static: K B ,  a knowledge base (includes action descriptions) 

plan, a plan, initially [I 
whole-plan, a plan, initially [ I  
goal, a goal 

T E L L ( K B ,  MAKE-PERCEPT-SENTENCE(~~~~~~~, t ) )  
current +- STATE-DESCRIPTION(KB,  t )  
if plan = [ I  then 

whole-plan +- plan + PL~NNER(current, goal, K B )  
if PREC~NDITI~NS(FIRST(~~~~)) not currently true in K B  then 

candidates c SoRT(whole-plan, ordered by distance to current) 
find state s in candidates such that 

failure # repair +- PLAN~ER(current, S, K B )  
continuation +- the tail of whole-plan starting at s 
whole-plan +- plan +- A ~ ~ E N ~ ( r e p a i r ,  continuation) 

return Pop(p1an) 

Figure 12.13 An agent that does action monitoring and replanning. It uses a complete 
state-space planning algorithm called PLANNER as a subroutine. If the preconditions of the 
next action are not met, the agent loops through the possible points p in whole-plan, trying to 
find one that PLANNER can plan a path to. This path is called repair. If PLANNER succeeds 
in finding a repair, the agent appends repair and the tail of the plan after p, to create the new 
plan. The agent then returns the first step in the plan. 

l i continuation 

I repair 1; 
Figure 12.14 Before execution, the planner comes up with a plan, here called whole-plan, 
to get from S to G. The agent executes the plan until the point marked E. Before executing 
the remaining plan, it checks preconditions as usual and finds that it is actually in state 0 
rather than state E. It then calls its planning algorithm to come up with repair, which is a 
plan to get from 0 to some point P on the original whole-plan. The new plan now becomes 
the concatenation of repair and continuation (the resumption of the original whole-plan). 
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Now let's return to the example problem of achieving a chair and table of matching 
color, this time via replanning. We'll assume a fully observable environment. In the initial 
state the chair is blue, the table is green, and there is a can of blue paint and a can of red paint. 
That gives us the following problem definition: 

Init(Color(Cha,ir, Blue) A Color( Table, Green) 
A ContainsColor(BC, Blue) A PaintCan(BC)) 
A ContainsColor(RC, Red) A PaintCan(RC) 

Goal (Color(Chair, x )  A Color(Table, x ) )  
Action (Paint (object, color), 

P ~ E ~ 0 ~ ~ : H a u e P a i n t  (color) 
EFFECT:  Color(object, color)) 

Action (Open (can), 
P R ~ ~ ~ ~ ~ : P a i n t C a n ( c a n )  A Conta~nsC~olor (can, color) 
E~~E~~:HauePain t (co lor )  

The agent's PLA N NER  should come up with the following plan: 

[Start; Open(BC); Paint ( Table, Blue); Finish] 
Now the agent is ready to execute the plan. Assume that a11 goes well as the agent opens 
the blue paint and applies it to the table. The agents from previous sections would declare 
victory at this point, having completed the steps in the plan. But the execution monitoring 
agent must first check the precondition of the Finish step, which says that the two pieces 
must have the same color. Suppose the agent perceives that they do not have the same color, 
because it missed a spot of green on the table. The agent then needs to figure out a position 
in whole-plan to aim for and a repair action sequence to get there. The agent notices that the 
current state is identical to the precondition before the Paint action, so the agent chooses the 
empty sequence for repair and makes its plan be the same [Paint, Finish] sequence that it 
just attempted. With this new plan in place, execution monitoring resumes, and the Paznt 
action is retried. This behavior will loop until the table is perceived to be completely painted. 
But notice that the loop is created by a process of plan-execute-replan, rather than by an 
explicit loop in a plan. 

Action monitoring is a very simple method of execution monitoring but it can some- 
times lead to less than intelligent behavior. For examplle, suppose that the agent constructs a 
plan to solve the painting problem by painting the chair and table red. Then it opens the can 
of red paint and finds that there is only enough paint for the (chair. Action monitoring would 
not detect failure until after the chair has been painted, at which point HavePaint(Red) be- 
comes false. What we really need to do is detect failure whenever the state is such that the 

PLAN MONITORING remaining plan no longer works. Plan monitoring acl~ieves this by checking the precondi- 
tions for success of the entire remaining plan-that is, the preconditions of each step in the 
plan, except those preconditions that are achieved by another step in the remaining plan. Plan 
monitoring cuts off execution of a doomed plan as soon as possible, rather than continuing 
until the failure actually occurs.13 In some cases, it can rescue the agent from disaster when 
the doomed plan would have led to a dead end from which the goal would be unachievable. 

l3 Plan monitoring makes our agent smarter than a dung beetle. (See page 37.) Our agent would notice that the 
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It is relatively straightforward to modify a planning algorithm so that it annotates the 
plan at each point with the preconditions for success of the remaining plan. If we extend 
plan monitoring to check whether the current state satisfies the plan preconditions at any 
future point, rather than just the current point, then plan monitoring will also be able to take 
advantage of serendipity-that is, accidental success. If someone comes along and paints 
the table red at the same time that the agent is painting the chair red, then the final plan 
preconditions are satisfied (the goal has been achieved), and the agent can go home early. 

So far, we have described monitoring and replanning in fully observable environments. 
Things can become much more complicated when the environment is partially observable. 
First, things can go wrong without the agent's being able to detect it. Second, "checking 
preconditions" could require the execution of sensing actions, which have to be planned for- 
either at planning time, which takes us back to conditional planning, or at execution time. In 
the worst case, the execution of a sensing action could require a complex plan that itself 
requires monitoring and hence further sensing actions, and so on. If the agent insists on 
checking every precondition, it might never get around to actually doing anything. The agent 
should prefer to check those variables that are important, have a good chance of going wrong, 
and are not too expensive to perceive. This allows the agent to respond appropriately to 
important threats, but not waste time checking to see whether the sky is falling. 

Now that we have described a method for monitoring and replanning, we need to ask, 
"Does it work?" This is a surprisingly tricky question. If we mean, "Can we guarantee 
that the agent will always achieve the goal, even with unbounded indeterminacy?" then the 
answer is no, because the agent could inadvertently arrive at a dead end, as described for 
online search in Section 4.5. For example, the vacuum agent might not know that its batteries 
can run out. Let's rule out dead ends; that is, let's assume that the agent can construct a plan 
to reach the goal from any state in the environment. If we assume that the environment is 
really nondeterministic, in the sense that such a plan always has some chance of success on 
any given execution attempt, then the agent will eventually reach the goal. The replanning 
agent therefore has capabilities analogous to those of the conditional planning agent. In fact, 
we can modify a conditional planner so that it constructs only a partial solution plan that 
includes steps of the form "if <test> then plan-A else replan." Under the assumptions we 
have made, such a plan can be a correct solution to the original problem; it might also be 
much cheaper to construct than a full conditional plan. 

Trouble occurs when the agent's repeated attempts to reach the goal are futile-when 
they are blocked by some precondition or effect that it doesn't know about. For example, if 
the agent has the wrong card key to its hotel room, no amount of inserting and removing it is 
going to open the door.14 One solution is to choose randomly from among the set of possible 
repair plans, rather than trying the same one each time. In this case, the repair plan of going 
to the front desk and getting a card key to the room would be a useful alternative. Given that 
the agent might not be able to distinguish between the truly nondeterministic case and the 
futile case, some variation in repairs is a good idea in general. 

dung ball was missing from its grasp and would replan to get another ball and plug its hole. 
l4 Futile repetition of a plan repair is exactly the behavior exhibited by the sphex wasp. (See page 37.) 
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Another solution to the problem of incorrect actilon descriptions is learning. After a few 
tries, a learning agent should be able to modify the action description that says that the key 
opens the door. At that point, the replanner will automatically come up with an alternative 
plan, such as getting a new key. This kind of learning is described in Chapter 21. 

Even with all these potential improvements, the replanning agent still has a few short- 
comings. It cannot perform in real-time environments, and there is no bound on the amount 
of time it will spend replanning and thus no bound on the tirne it takes to decide on an action. 
Also, it cannot formulate new goals of its own or accept new goals in addition to its current 
goals, so it cannot be a long-lived agent in a complex environment. These shortcomings will 
be addressed in the next section. 

CONTINUOUS 
PLANNING AGENT 

In this section, we design an agent that persists indefinitely in an environment. Thus it is 
not a "problem solver" that is given a single goal and then plans and acts until the goal 
is achieved; rather, it lives through a series of ever-changing goal formulation, planning, 
and acting phases. Rather than thinking of the planner and execution monitor as separate 
processes, one of which passes its results to the orher, we can think of them as a single 
process in a continuous planning agent. 

The agent is thought of as always being part of lhe way through executing a plan-the 
grand plan of living its life. Its activities include executing some steps of the plan that are 
ready to be executed, refining the plan to satisfy open preconditions or resolve conflicts, and 
modifying the plan in the light of additional information obtained during execution. Obvi- 
ously, when it first formulates a new goal, the agent wi~ll have no actions ready to execute, so 
it will spend a while generating a partial plan. It is quite possible, however, for the agent to 
begin execution before the plan is complete, especial1:y when it has independent subgoals to 
achieve. The continuous planning agent monitors the 7~0rld continuously, updating its world 
model from new percepts even if its deliberations are still continuing. 

We will first go through an example and then describe the agent program, which we will 
call CONTINUOUS-POP-AGENT because it uses partial-order plans to represent its intended 
activities. To simplify the presentation, we will assume a fully observable environment. The 
same technnques can be extended to the partially observable case. 

The example we will use is a problem from the blocks world domain (Section 11.1 j. 
The start state is shown in Figure 12.15(aj. The action we will need is Move(x, y), which 
moves block x onto block y, provided that both are clear. Its action schema is 

Action(Move(x, y ) ,  
PRECOND: Clear(z) A Clear(y) A On(x ,  x), 
EFFECT: On(z ,  y) A Ciear(z) A 1 On(x ,  z )  A 7 Clear(y)) . 

The agent first needs to formulate a goal for itself. We won't discuss goal formulation 
here, but instead we will assume that somehow the agent was told (or decided on its own) 
to achieve the goal On(C,  D )  A On(D,  B) .  The agent start:s planning for this goal. Unlike 
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Figure 12.15 The sequence of states as the continuous planning agent tries to reach the 
goal state On(C, D) A On(D, B), as shown in (d). The start state is (a). At (b), another 
agent has interfered, putting D on B. At (c), the agent has executed Move(C, D) but has 
failed, dropping C on A instead. It retries Move(C, D), reaching the goal state (d). 

all our other agents, which would shut off their percepts until the planner returns a complete 
solution to this problem, the continuous planning agent builds the plan incrementally, with 
each increment taking a bounded amount of time. After each increment, the agent returns 
NoOp as its action and checks its percepts again. We assume that the percepts don't change 
and the agent quickly constructs the plan shown in Figure 12.16. Notice that although the 
preconditions of both actions are satisfied by Start, there is an ordering constraint putting 
Move(D, B )  before Move(C, D ) .  This is needed to ensure that Clear(D) remains true until 
Move(D, B) is completed. Throughout the continuous planning process, Start is always 
used as the label for the current state. The agent updates the state after each action. 

Figure 12.16 The initial plan constructed by the continuous planning agent. The plan is 
indistinguishable, so far, from that produced by a normal partial-order planner. 

The plan is now ready to be executed, but before the agent can take action, nature in- 
tervenes. An external agent (perhaps the agent's teacher getting impatient) moves D onto B 
and the world is now in the state shown in Figure 12.15(b). The agent perceives this, rec- 
ognizes that Clear(B) and On(D,  G)  are no longer true in the current state, and updates its 
model of the current state accordingly. The causal links that were supplying the preconditions 
Clear(B) and On(D,  G )  for the Move(D, B) action become invalid and must be removed 
from the plan. The new plan is shown in Figure 12.17. At all times, Start represents the 
current state, so this Start is different from the one in the previous figure. Notice that the 
plan is now incomplete: two of the preconditions for Move(D, B) are open, and its precon- 
dition On(D,  y) is now uninstantiated, because there is no longer any reason to assume the 
that move will be from G. 
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I Finish I 

Figure 12.17 After someone else moves D onto B, the unsupported links supplying 
Clear(B) and O n ( D ,  G)  are dropped, producing this plan. 

Now the agent can take advantage of the "helpful" interference by noticing that the 
causal link Move(D, B) on!??!+B) Finish can be replaced by a direct link from Start to 

EXTENSION Finish. This process is called extending a causal link and is done whenever a condition can 
be supplied by an earlier step instead of a later one without causing a new conflict. 

Once the old causal link from Moue(D, B) to Finish is removed, Move(D, B) no 
REDUNDANTSTEP longer supplies any causal links at all. It is now a redundant step. All redundant steps, and 

any links supplying them, are dropped from the plan. 'This gives the plan in Figure 12.18. 

Figure 12.18 The link supplied by Move(D, B) h~as been replaced by one from Start, 
and the now-redundant step Move(D, B) has been drolpped. 

Now the step Move(C, D) is ready to be executed, because all of its preconditions are 
satisfied by the Start step, no other steps are necessarily before it, and it does not conflict with 
any other link in the plan. The step is removed from the plan iind executed. Unfortunately, the 
agent is clumsy and drops C onto A instead of D, giving the: state shown in Figure 12.15(c). 
The new plan state is shown in Figure 12.19. Notice that although there are now no actions 
in the plan, there is still an open condition for the Finish step. 

Figure 12.19 After Move(C, D) is executed and removed from the plan, the effects of 
the Start step reflect the fact that C ended up on A instead of the intended D. The goal 
precondition On(C,  D )  is still open. 
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Figure 12.20 The open condition is resolved by adding Move(C, D) back in. Notice the 
new bindings for the preconditions. 

The agent decides to plan for the open condition. Once again, Move(C, D )  will satisfy 
the goal condition. Its preconditions are satisfied by new causal links from the Start step. 
The new plan appears in Figure 12.20. 

Once again, Move((?, D) is ready for execution. This time it works, resulting in the goal 
state shown in Figure 12.15(d). Once the step is dropped from the plan, the goal condition 
On(C, D )  becomes open again. Because the Start step is updated to reflect the new world 
state, however, the goal condition can be satisfied immediately by a link from the Start step. 
This is the normal course of events when an action is successful. The final plan state is shown 
in Figure 12.21. Because all the goal conditions are satisfied by the Start step and there are 
no remaining actions, the agent is now free to remove the goals from Finish and formulate a 
new goal. 

Figure 12.21 After Move(C, D )  is executed and dropped from the plan, the remaining 
open conditio~l On(C, D) is resolved by adding a causal link from the new Start step. The 
plan is now completed. 

From this example, we can see that continuous planning is quite similar to partial-order 
planning. On each iteration, the algorithm finds something about the plan that needs fixing- 

PLAN FLAW a so-called plan flaw-and fixes it. The POP algorithm can be seen as a flaw-removal al- 
gorithm where the two flaws are open preconditions and causal conflicts. The continuous 
planning agent, on the other hand, addresses a much broader range of flaws: 

Missing goal: The agent can decide to add a new goal or goals to the Finish state. 
(Under continuous planning, it might make more sense to change the name of Finish 
to Infinity, and of Start to Current, but we will stick with tradition.) 
Open precondition: Add a causal link to an open precondition, choosing either a new 
or an existing action (as in POP). 
Causal Conjict: Given a causal link A -% B and an action C with effect i p ,  choose 
an ordering constraint or variable constraint to resolve the conflict (as in POP). 



Section 12.7. MultiAgent Planning 449 

Unszpported link: If there is a causal link Start 5 A where p is no longer true in 
Start, then remove the link. (This prevents us from executing an action whose precon- 
ditions are false.) 
Redundant action: If an action A supplies no causal links, remove it and its links. (This 
allows us to take advantage of serendipitous events.) 
Unexecuted action: If an action A (other than Finish) has its preconditions satisfied 
in Start, has no other actions (besides Start) ordered before it, and conflicts with no 
causal links, then remove A and its causal links artd retusn it as the action to be executed. 
Unnecessary historical goal: If there are no open preconditions and no actions in the 
plan (so that all causal links go directly from Start to Finish), then we have achieved 
the current goal set. Remove the goals and the links to them to allow for new goals. 

The CONTINUOUS-POP-AGENT is shown in Figure 12.22. It has a cycle of "perceive, re- 
move flaw, act." It keeps a persistent plan in its knowledge base, and on each turn it removes 
one flaw from the plan. It then takes an action (although often the action will be NoOp) and 
repeats the loop. This agent can handle many of the problems listed in the discussion of the 
replanning agent on page 445. In particular, it can act in real time, it handles serendipity, it 
can formula.te its own goals, and it can handle unexpected events that affect future plans. 

function ~ ~ N T I N U O U S - P O P - A G E N T ( ~ ~ ~ ~ ~ ~ ~ )  returns an ackion 
static: plan, a plan, initially with just Start, Finish 

action t NoOp (the default) 
E F F E C T S [ ~ ~ ~ ~ ~ ]  = UPDATE(EFFECTS[S~~~~), percept) 
R E M O V E - F L A W ( ~ ~ ~ ~ )  //possibly updating action 
return action 

Figure 12.22 CONTINUOUS-POP-AGENT, a continuous partial-order planning agent. 
After receiving a percept, the agent removes a flaw from its constantly updated plan and 
then returns an action. Often it will take many steps of flaw-removal planning, during which 
it returns NoOp, before it is ready to take a real action. 

12.7 MULTIAGENT PLANNING 

So far we have dealt with single-agent environments, in which our agent is alone. When 
there are other agents in the environment, our agent could simply include them in its model of 
the environment, without changing its basic algorithms. In many cases, however, that would 
lead to poor performance because dealing with other agents Is not the same as dealing with 
nature. In particular, nature is (one assumes) indifferent to the agent's intentions,15 whereas 
other agents are not. This section introduces multiagent planning to handle these issues. 

l5 Residents of the United Kingdom, where the mere act of planning a picric guarantees rain, might disagree. 
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Agents(A, B)  
Init(At(A, [Left, Baseline]) A At(B,  [Right, Net]) A 

Appmaching(Ball, [Right, Baseline])) A Partner(A, B)  A Partner(B,A) 
Goal(Returned(Bal1) A At(agent, [x,  Net])) 
Action(Hit (agent, Ball), 

P ~ ~ ~ ~ ~ ~ : A p p r o a c h z n g ( B a l l ,  [x,  y])  A At(agent, [x,  y ] )  A 
Partner(agent , partner) A 1 At (partner, [x, y ] )  

EFFECT: Returned (Ball)) 
Action(Go(agent, [x,  y ] ) ,  

P ~ E ~ o ~ ~ : A t ( a g e n t ,  [a, b ] ) ,  
E ~ ~ E c ~ : A t ( a g e n t ,  [x ,  y]) A 1 At(agent, [a,  b ] ) )  

Figure 12.23 The doubles tennis problem. Two agents are playing together and can be 
in one of four locations: [Left, Baseline], [Right, Baseline], [Left, Net], and [Right, Net]. 
The ball can be returned if exactly one player is in the right place. 

We saw in Chapter 2 that multiagent environments can be cooperative or competitive. 
We will begin with a simple cooperative example: team planning in doubles tennis. Plans can 
be constructed that specify actions for both players on the team; we will describe techniques 
for constructing such plans efficiently. Efficient plan construction is useful, but does not 
guarantee success; the agents have to agree to use the same plan! This requires some form of 
coordination, possibly achieved by communication. 

Cooperation: Joint goals and plans 

Two agents playing on a doubles tennis team have the joint goal of winning the match, which 
gives rise to various subgoals. Let's suppose that at one point in the game, they have the joint 
goal of returning the ball that has been hit to them and ensuring that at least one of them is 

MULTIAGENT 
PLANNING covering the net. We can represent this notion as a multiagent planning problem, as shown 

in Figure 12.23. 
This notation introduces two new features. First, Agents(A, B )  declares that there are 

two agents, A and B, who are participating in the plan. (For this problem the opposing 
players are not considered agents.) Second, each action explicitly mentions the agent as a 
parameter, because we need to keep track of which agent does what. 

JOINT PLAN A solution to a multiagent planning problem is a joint plan consisting of actions for 
each agent. A joint plan is a solution if the goal will be achieved when each agent performs 
its assigned actions. The following plan is a solution to the tennis problem: 

PLAN 1 : 
A : [Go(A,  [Right, Baseline]), Hit(A, Ball)] 
B : [NoOp(B) ,  NoOp(B)] . 

If both agents have the same knowledge base, and if this is the only solution, then everything 
would be fine; the agents could each determine the solution and then jointly execute it. Un- 
fortunately for the agents (and we will soon see why it's unfortunate), there is another plan 
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that satisfies the goal just as well as the first: 

PLAN 2: 
A : [Go(A,  [Left, Net]) ,  NoOp(A)] 
B : [ G o ( B ,  [Right, baseline]), Hit(23, Bar!l)] 

If A chooses plan 2 and B chooses plan 1, then nobody will return the ball. Conversely, if A 
chooses 1 and B chooses 2, then they will probably collide with each other; no one returns 
the ball and the net may remain uncovered. Hence, the existence of correct joint plans does 

COORDINATION not mean that the goal will be achieved. The agents need a mechanism for coordination to 
reach the same joint plan; moreover, it must be common knowledge (see Chapter 10) among 
the agents that some particular joint plan will be executed. 

Multibody planning 

This section concentrates on the construction of correct joint plans, deferring the coordination 
MULTIBODY 
PLANNING issue for the time being. We call this multibody planning; it is essentially the planning 

problem faced by a single centralized agent that can dictate actions to each of several physical 
entities. In the truly multiagent case, it enables each agent to figure out what the possible joint 
plans are that would succeed if executed jointly. 

Our approach to multibody planning will be based on partial-order planning, as de- 
scribed in Section 11.3. We will assume full observability, to keep things simple. There is 
one additional issue that doesn't arise in the single-agent case: the environment is no longer 
truly static, because other agents could act while any particular agent is deliberating. There- 

SYNCHRONIZATION fore, we need to be concerned about synchronization. For simplicity, we will assume that 
each action takes the same amount of time and that actions at each point in the joint plan are 
simultaneous. 

At any point in time, each agent is executing exactly one action (perhaps including 
JOINT ACTION NoOp). This set of concurrent actions is called a joint action. Flor example, a joint action in 

the tennis domain (page 450) with two agents A and B is (NoOp(A) ,  Hi t (B,  Ball)) .  A joint 
plan consists of a partially ordered graph of joint actions. For example, Plan 2 for the tennis 
problem can be represented as this sequence of joint actlons: 

( G o ( A ,  [Left,  Ne t ] ) ,  G o ( B ,  [Right, baseline])) 
(NoOp(A) ,  Hi t (B ,  Ball)) 

We could do planning using the regular POP algorithm, applied to the set of all possible joint 
actions. The only problem is the size of this set: with 10 actions and 5 agents we get lo5  joint 
actions. It would be tedious to specify the preconditions and effects of each action correctly, 
and inefficient to do planning with such a large set. 

An alternative is to define joint actions implicitly, by describing how each individual 
action interacts with other possible actions. This will be simpler, because most actions are 
independent of most others; we need list only the few actionls that actually interact. We can 
do that by augmenting the usual STRIPS or ADL action descriptions with one new feature: a 
concurrent action list. This is similar to the precondition of an action description except that ACTION LIST 

rather than describing state variables, it describes actioins that must or must not be executed 
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concurrently. For example, the Hit action could be described as follows: 

Action(Hzt(A, Ball), 
C O N C U R R E N T : ~ H ~ ~ ( B ,  Ball) 
PR~co~~:Approaching(Ball, [x, Y]) A At(A,  [x, y ] )  
EFFECT:  Returned (Ball)) . 

Here, we have the prohibited-concurrency constraint that, during the execution of the Hit 
action, there can be no other Hit action by another agent. We can also require concurrent 
action, for example when two agents are needed to carry a cooler full of beverages to the 
tennis court. The description for this action says that agent A cannot execute a Carry action 
unless there is another agent B who is simultaneously executing a Carry of the same cooler: 

Action(Carry(A, cooler, here, there), 
CONCURRENT: Carry ( B ,  cooler, here, there) 
PRECOND:  At (A ,  here) A At (cooler, here) A Cooler(coo1er) 
EFFECT:A~(A ,  there) A At(cooler, there) A l A t ( A ,  here) A -iAt(cooler, here)). 

With this representation, it is possible to create a planner that is very close to the POP partial- 
order planner. There are three differences: 

1. In addition to the temporal ordering relation A -i B ,  we allow A = B and A 5 B, 
meaning "concurrent" and "before or concurrent," respectively. 

2. When a new action has required concurrent actions, we must instantiate those actions, 
using new or existing actions in the plan. 

3. Prohibited concurrent actions are an additional source of constraints. Each constraint 
must be resolved by constraining conflicting actions to be before or after. 

This representation gives us the equivalent of POP for multibody domains. We could extend 
this approach with the refinements of the last two chapters-HTNs, partial observability, con- 
ditionals, execution monitoring, and replanning-but that is beyond the scope of this book. 

Coordination mechanisms 

The simplest method by which a group of agents can ensure agreement on a joint plan is 
CONVENTION to adopt a convention prior to engaging in joint activity. A convention is any constraint on 

the selection of joint plans, beyond the basic constraint that the joint plan must work if all 
agents adopt it. For example, the convention "stick to your side of the court" would cause 
the doubles partners to select plan 2, whereas the convention "one player always stays at the 
net" would lead them to plan 1. Some conventions, such as driving on the proper side of the 

SOCIAL LAWS road, are so widely adopted that they are considered social laws. Human languages can also 

be viewed as conventions. 
The conventions in the preceding paragraph are domain-specific and can be imple- 

mented by constraining the action descriptions to rule out violations of the convention. A 
more general approach is to use domain-independent conventions. For example, if each agent 
runs the same multibody planning algorithm with the same inputs, it can follow the conven- 
tion of executing the first feasible joint plan found, confident that the other agents will come 



Section 12.7. MultiAgent Planning 453 

to the same choice. A more robust but more expensive strategy would be to generate all joint 
plans and then pick the one, say, whose printed representation is alphabetically first. 

Conventions can also arise through evolutionary processes. For example, colonies of 
social insects execute very elaborate joint plans, which are facilitated by the common genetic 
makeup of the individuals in the colony. Conformity can also be enforced by the fact that 
deviation from conventions reduces evolutionary fitness, so that any feasible joint plan can 
become a stable equilibrium. Similar considerations apply to the development of human lan- 
guage, where the important thing is not which language each indavidual should speak, but the 
fact that all individuals speak the same language. One final example appears in the flocking 
behavior of birds. We can obtain a reasonable simulation if each bird agent (sometimes called 
a birdoid or boid) executes the following three rules with sorne method of combination: 

1. Separation: Steer away from neighbors when you start to get too close. 
2. Cohesion: Steer towards the average position of the neighbors. 
3. Alignment: Steer towards the average orientation (heading) of the neighbors. 

EMERGENT 
BEHAVIOR If all the birds execute the same policy, the floclc exhibits the emergent behavior of 

flying as a pseudo-rigid body with roughly constant density that does not disperse over time. 
As with insects, there is no need for each agent to possess the joint plan that models the 
actions of other agents. 

Typically, conventions are adopted to cover a universe of individual multiagent planning 
problems, rather than being developed anew for each problem. This can lead to inflexibility 
and breakdown, as can be seen sometimes in doubles tennis when the ball is roughly equidis- 
tant between the two partners. In the absence of an applicable convention, agents can use 
communication to achieve common knowledge of a feasible joint plan. For example, a dou- 
bles tennis player could shout "Mine!" or "Yours!" to indicate a preferred joint plan. We 
cover mechanisms for communication in more depth in Chapter 22, where we observe that 
communication does not necessarily involve a verbal exchange. For example, one player can 
communicate a preferred joint plan to the other simply by executing the first part of it. In our 
tennis problem, if agent A heads for the net, then agent B is obliged to go back to the base- 
line to hit the ball, because plan 2 is the only joint plan that begins with A's heading for the 

PLAN RECOGNITION net. This approach to coordination, sometimes called plan recognition, works when a single 
action (or short sequence of actions) is enough to determine a joint plan unambiguously. 

The burden for ensuring that the agents arrive at a successful joint plan can be placed 
either on the agent designers or on the agents themselves. In the former case, before the 
agents begin to plan, the agent designer should prove th~at the agents' policies and strategies 
will be successful. The agents themselves can be reactive if that works for the environment 
they exist in, and they need not have explicit models about the other agents. In the latter case, 
the agents are deliberative; they must prove or otherwise demionstrate that their plan will be 
effective, taking the other agents' reasoning into account. For example, in an environment 
with two logical agents A and B, they could both have the following definition: 

b'p, s Feasible(p, s )  * CommonKnowledge( [A,  B ) ,  Achzeves(p, s ,  Goal))  

This says that in any situation s, the plan p is a feasible joint plan in that situation if it is 
common knowledge among the agents that p will achieve the goal. We need further axioms 
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JOINT INTENTION to establish common knowledge of a joint intention to execute a particular joint plan; only 
then can agents begin to act. 

Competition 

Not all multiagent environments involve cooperative agents. Agents with conflicting utility 
COMPETITION functions are in competition with each other. One example of this is two-player zero-sum 

games, such as chess. We saw in Chapter 6 that a chess-playing agent needs to consider the 
opponent's possible moves for several steps into the future. That is, an agent in a competitive 
environment must (a) recognize that there are other agents, (b) compute some of the other 
agent's possible plans, (c) compute how the other agent's plans interact with its own plans, 
and (d) decide on the best action in view of these interactions. So competition, like coopera- 
tion, requires a model of the other agent's plans. On the other hand, there is no commitment 
to a joint plan in a competitive environment. 

Section 12.4 drew the analogy between games and conditional planning problems. The 
conditional planning algorithm in Figure 12.10 constructs plans that work under worst-case 
assumptions about the environment, so it can be applied in competitive situations where the 
agent is concerned only with success and failure. When the agent and its opponents are 
concerned about the cost of a plan, then minimax is appropriate. As yet, there has been little 
work on combining minimax with methods, such as POP and HTN planning, that go beyond 
the state-space search model used in Chapter 6. We will return to the question of competition 
in Section 17.6, which covers game theory. 

This chapter has addressed some of the complications of planning and acting in the real world. 
The main points are: 

Many actions consume resources, such as money, gas, or raw materials. It is convenient 
to treat these resources as numeric measures in a pool rather than try to reason about, 
say, each individual coin and bill in the world. Actions can generate and consume 
resources, and it is usually cheap and effective to check partial plans for satisfaction of 
resource constraints before attempting further refinements. 

Time is one of the most important resources. It can be handled by specialized schedul- 
ing algorithms, or scheduling can be integrated with planning. 

Hierarchical task network (HTN) planning allows the agent to take advice from the 
domain designer in the form of decoinposition rules. This makes it feasible to create 
the very large plans required by many real-world applications. 

Standard planning algorithms assume complete and correct information and determin- 
istic, fully observable environments. Many domains violate this assumption. 

Incomplete information can be dealt with by planning to use sensing actions to obtain 
the information needed. Conditional plans allow the agent to sense the world during 
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execution to decide what branch of the plan to follow. :[n some cases, sensorless or 
conformant planning can be used to construct a plan that works without the need for 
perception. Both sensorless and conditional plans car1 be constructed by search in the 
space of belief states. 
Incorrect information results in unsatisfied preconditions for actions and plans. Exe- 
cution monitoring detects violations of the preconditions for successful completion of 
the plan. 

a A replanning agent uses execution monitoring and splices in repairs as needed. 

A continuous planning agent creates new goals as it goes and reacts in real time. 

Multiagent planning is necessary when there a.r~e other agents in the environment with 
which to cooperate, compete, or coordinate. Multibody planning constructs joint plans, 
using an efficient decomposition of joint action descriptions, but must be augmented 
with some form of coordination if two cooperative agents are to agree on which joint 
plan to execute. 

BIBLIOGRAPHICAL AND HISTORICAL NOTES 

Planning ~ ~ i t h  continuous time was first dealt with bly DEVISER (Vere, 1983). The issue 
of systematic representation of time in plans was addressed by Dean et al. (1990) in the 
FORBIN system. NONLIN+ (Tate and Whiter, 1984) and SIPE (Wilkins, 1988, 1990) could 
reason about the allocation of limited resources to various plan steps. 0 -PLAN (Bell and 
Tate, 1985), an HTN planner, had a uniform, general representation for constraints on time 
and resources. In addition to the Hitachi application mentioned in the text. 0-PLAN has 
been applied to software procurement planning at Pricle Waterhouse and back-axle assembly 
planning at Jaguar Cars. A number of hybrid planning-and-scheduling systems have been 
deployed: ISIS (Fox et al., 1982; Fox, 1990) has been used for job shop scheduling at West- 
inghouse, GARI (Descotte and Latombe, 1985) planned the machining and construction of 
mechanical parts, FORBIN was used for factory control, and NONLIN+ was used for naval 
logistics planning. 

After an initial flurry of theoretical work in the late 1980s, temporal planning made a 
comeback recently, when new algorithms and increased processing power made it feasible to 
attack practical applications. The two planners SAPA (Do artd K.ambhampati, 2001) and T4  
(Haslum and Geffner, 2001) both used forward state-space search with sophisticated heuris- 
tics to handle actions with durations and resources. An alternative is to use very expressive 
action languages, but guide them by human-written domain-specific heuristics, as is done 
by ASPEN (Fukunaga et al., 1997), HSTS (Jonsson et al., 2000), and 1xTeT (Ghallab and 
Laruelle, 1994). 

There is a long history of scheduling in aerospace. T-SCHED (Drabble, 1990) was used 
to schedule mission-command sequences for the U o s ~ r - I 1  saltellite. OPTIMUM-AIV (Aarup 
et al., 1994.1 and PLAN-ERSI (Fuchs et al., 1990), both based on @PLAN, were used for 
spacecraft assembly and observation planning, respectively, ;it the European Space Agency. 
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SPIKE (Johnston and Adorf, 1992) was used for observation planning at NASA for the Hub- 
ble Space Telescope, while the Space Shuttle Ground Processing Scheduling System (Deale 
et al., 1994) does job-shop scheduling of up to 16,000 worker-shifts. Remote Agent (Muscet- 
tola et al., 1998) became the first autonomous planner-scheduler to control a spacecraft when 
it flew onboard the Deep Space One probe in 1999. The literature on job-shop scheduling in 
operations research is surveyed by Vaessens et al. (1996); theoretical results are presented by 
Martin and Shmoys (1996). 

MACROPS The facility in the STRIPS program for learning macrops-"macro-operators" consist- 
ing of a sequence of primitive steps-could be considered the first mechanism for hierarchi- 
cal planning (Fikes et al., 1972). Hierarchy was also used in the LAWALY system (Siklossy 
and Dreussi, 1973). The ABSTRIPS system (Sacerdoti, 1974) introduced the idea of an ab- 

ABSTRACTION 
HIERARCHY straction hierarchy, whereby planning at higher levels was permitted to ignore lower-level 

preconditions of actions in order to derive the general structure of a working plan. Austin 
Tate's Ph.D. thesis (197%) and work by Earl Sacerdoti (1977) developed the basic ideas of 
HTN planning in its modern form. Many practical planners, including 0-PLAN and SIPE, are 
HTN planners. Yang (1990) discusses properties of actions that make HTN planning efficient. 
Erol, Hendler, and Nau (1994, 1996) present a complete hierarchical decomposition planner 
as well as a range of complexity results for pure HTN planners. Other authors (Ambros- 
Ingerson and Steel, 1988; Young et al., 1994; Barrett and Weld, 1994; Kambhampati et al., 
1998) have proposed the hybrid approach taken in this chapter, in which decompositions are 
just another form of refinement that can be used in partial-order planning. 

Beginning with the work on macro-operators in STRIPS, one of the goals of hierarchical 
planning has been the reuse of previous planning experience in the form of generalized plans. 
The technique of explanation-based learning, described in depth in Chapter 19, has been 
applied in several systems as a means of generalizing previously computed plans, including 
SOAR (Laird et al., 1986) and PRODIGY (Carbonell et al., 1989). An alternative approach is 
to store previously computed plans in their original form and then reuse them to solve new, 
similar problems by analogy to the original problem. This is the approach taken by the field 

CASE-BASED 
PLANNING called case-based planning (Carbonell, 1983; Alterman, 1988; Hammond, 1989). Kamb- 

hampati (1994) argues that case-based planning should be analyzed as a form of refinement 
planning and provides a formal foundation for case-based partial-order planning. 

The unpredictability and partial observability of real environments was recognized early 
on in robotics projects that used planning techniques, including Shakey (Fikes et al., 1972) 
and FREDDY (Michie, 1974). The problem received more attention after the publication of 
McDermott's (1978a) influential article, Planning and Acting. 

Early planners, which lacked conditionals and loops, did not explicitly recognize the 
concept of conditional planning; but nevertheless they sometimes resorted to a coercive style 
in response to environmental uncertainty. Sacerdoti's NOAH used coercion in its solution to 
the "keys and boxes" problem, a planning challenge problem in which the planner knows little 
about the initial state. Mason (1993) argued that sensing often can and should be dispensed 
with in robotic planning, and described a sensorless plan that can move a tool into a specific 
position on a table by a sequence of tilting actions, regardless of the initial position. We 
describe this idea in the context of robotics. (See Figure 25.17.) 
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Goldman and Boddy (1996) introduced the term confbrmant planning for sensorless 
planners that handle uncertainty by coercing the world into known states, noting that sen- 
sorless plans are often effective even if the agent has sensol-s. The first moderately efficient 
conformant planner was Smith and Weld's (1998) Colnformant Graphplan or CGP. Ferraris 
and Giunchiglia (2000) and Rintanen (1999) indepen~dently developed SATplan-based con- 
formant planners. Bonet and Geffner (2000) describe a confclrmant planner based on heuristic 
search in the space of belief states, drawing on ideas first developed in the 1960s for partially 
observable Markov decision processes, or POMDPs (see Chapter 17). Currently, the fastest 
belief-state conformant planners, such as HSCP (Bertoli et al., 2001a), use binary decision 
diagrams (BDDs) (Bryant, 1992) to represent belief states arid are up to five orders of magni- 
tude faster than CGP. 

WARPLAN-C (Warren, 1976), a variant of WARPLAN, was one of the earliest planners 
to use conditional actions. Olawski and Gini (1990) lay out the major issues irivolved in 
conditional planning. 

The conditional planning approach described in the chapter is based on the efficient 
search algorithms for cyclic AND-OR graphs developed by Jirrtenez and Torras (2000) and 
Hansen and Zilberstein (2001). Bertoli et al. (2001b) describe a BDD-based approach that 
constructs conditional plans with loops. C-BURIDAN (Draper et al., 1994) handles condi- 
tional planning for actions with probabilistic outcomes, a problem also addressed under the 
heading of POMDPs (Chapter 17). 

There is a close relation between conditional planning and automated program synthe- 
sis; a number of references appear in Chapter 9. The two fields have been pursued sepa- 
rately, because of the enormous difference in cost between er;ecution of machine instructions 
and execution of actions by robot vehicles or manipulators. Linden (1991) attempts explicit 
cross-fertilization between the two fields. 

In retrospect, it is now possible to see how the major classical planning algorithms led to 
extended versions for domains involving uncertainty. Search[-based techniques led to search 
in belief space (Bonet and Geffner, 2000); SATPLAN led to stochastic SATPLAN (Majercik 
and Littman, 1999) and to planning using quantified Boolean logic (Rintanen, 1999); par- 
tial order planning led to UWL (Etzioni et al., 1992), CNL,P (Peot and Smith, 1992), and 
CASSANDRA (Pryor and Collins, 1996). GRAPHPLAN led to Sensory Graphplan or SGP 
(Weld et al.. 1998), but a full probabilistic GRAPHPLAN has yet to be developed. 

The earliest major treatment of execution monitoring was PLANEX (Fikes et al., 19721, 
which worked with the STRIPS planner to control the robot Shakey. PLANEX used triangle 
tables-essentially an efficient storage mechanism for the plan preconditions at each point 
in the plan-to allow recovery from partial execution failure without complete replanning. 
Shakey's model of execution is discussed further in Chapter 25.  The NASL planner (McDer- 
mott, 1978a) treated a planning problem simply as a specification for carrying out a complex 
action, so that execution and planning were completeljr unified. It used theorem proving to 
reason about these cornplex actions. 

SIPE (System for Interactive Planning and Executilon monitoring) (Wilkins, 19138, 1990) 
was the first planner to deal systematically with the problem of replanning. It has been used in 
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demonstration projects in several domains, including planning operations on the flight deck 
of an aircraft carrier and job-shop scheduling for an Australian beer factory. Another study 
used SIPE to plan the construction of multistory buildings, one of the most complex domains 
ever tackled by a planner. 

IPEM (Integrated Planning, Execution, and Monitoring) (Ambros-Ingerson and Steel, 
1988) was the first system to integrate partial-order planning and execution to yield a con- 
tinuous planning agent. Our CONTINUOUS-POP-AGENT combines ideas from IPEM, the 
PUCCINI planner (Golden, 1998), and the CYPRESS system (Wilkins et al., 1995). 

In the mid-1980s, it was believed by some that partial-order planning and related tech- 
niques could never run fast enough to generate effective behavior for an agent in the real world 

REACTIVEPLANNING (Agre and Chapman, 1987). Instead, reactive planning systems were proposed; in their ba- 
sic form, these are reflex agents, possibly with internal state, that can be implemented with 
any of a variety of representations for condition-action rules. Brooks's (1986) subsumption 
architecture (see Chapters 7 and 25) used layered finite-state machines in legged and wheeled 
robots to control their locomotion and avoid obstacles. Pengi (Agre and Chapman, 1987) was 
able to play a (fully observable) video game using Boolean circuits combined with a "visual" 
representation of current goals and the agent's internal state. 

"Universal plans" (Schoppers, 1987) were developed as a lookup-table method for re- 
POLICIES active planning, but turned out to be a rediscovery of the idea of policies that had long been 

used in Markov decision processes. A universal plan (or a policy) contains a mapping from 
any state to the action that should be taken in that state. Ginsberg (1989) made a spirited at- 
tack on universal plans, including intractability results for some formulations of the reactive 
planning problem. Schoppers (1989) made an equally spirited reply. 

As is often the case, a hybrid approach resolves the controversy. Using well-designed 
hierarchies, HTN planners, such as PRS (Georgeff and Lansky, 1987) and RAP (Firby, 
1996), as well as continuous planning agents, can achieve reactive response times and com- 
plex long-range planning behavior in many problem domains. 

Multiagent planning has leaped in popularity in recent years, although it does have a 
long history. Konolige (1982) provided a formalization of multiagent planning in first-order 
logic, while Pednault (1986) gave a STRIPS-style description. The notion of joint intention, 
which is essential if agents are to execute a joint plan, comes from work on communicative 
acts (Cohen and Levesque, 1990; Cohen et al., 1990). Our presentation of multibody partial- 
order planning is based on the work of Boutilier and Brafman (2001). 

We have barely skimmed the surface of work on negotiation in multiagent planning. 
Durfee and Lesser (1989) discuss how tasks can be shared out among agents by negotiation. 
Kraus et al. (1991) describe a system for playing Diplomacy, a board game requiring nego- 
tiation, coalition formation and dissolution, and dishonesty. Stone (2000) shows how agents 
can cooperate as teammates in the competitive, dynamic, partially observable environment of 
robotic soccer. (Weiss, 1999) is a book-length overview of multiagent systems. 

The boid model on page 453 is due to Reynolds (1987), who won an Academy Award 
for its application to flocks of bats and swarms of penguins in Batman Returns. 
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12.1 Examine carefully the representation of time aind resources in Section 12.1. 

a. Why is it a good idea to have Duration(d) be a11 effect of an action, rather than having 
a separate field in the action of the form DURA.TION: d? (Hint: Consider conditional 
effects and disjunctive effects.) 

b. Why is  RESOURCE:^ a separate field in the action, rather than being an effect? 

CONSUMABLE 
RESOURCE 12.2 A consumable resource is a resource that is (partially) used up by an action. For 

example, attaching engines to cars requires screws. The screws, once used, are not available 
for other attachments. 

a. Explain how to modify the representation in Fi,gure 12.3 so that there are KO0 screws 
initially, engine El requires 40 screws, and engine E:2 requires 50 screws. 'The + and 
- function symbols may be used in effect literals for resources. 

b. Explain how the definition of conflict between causal links and actions in partial-order 
planning must be modified to handle consumabl~: resources. 

c. Some actions-for example, resupplying the factory with screws or refueling a car- 
can irzcrease the availability of resources. A reslource is monotonically non-increasing 
if no action increases it. Explain how to use this property to prune the search space. 

12.3 Give decompositions for the HireBuilder and GetPernzit steps in Figure 12.7, and show 
how the decomposed subplans connect into the overalll plan. 

12.4 Give an example in the house-building domain of two1 abstract subplans that cannot be 
merged into a consistent plan without sharing steps. (.Hint: Places where two physical parts 
of the house come together are also places where two subplalns tend to interact.) 

12.5 Some people say an advantage of HTN planning is that it can solve problems like "tike 
a round trip from Los Angeles to New York and bac8c" that are hard to express in non-HTN 
notations because the start and goal states would be the same (At(LA)) .  Can you think of a 
way to represent and solve this problem without HTNs? 

12.6 Show how a standard STRIPS action description can be rewritten as an HTN decompo- 
sition, using the notation Achieve(p) to denote the actilvity of' achieving the condition p. 

12.7 Some of the operations in standard programming languages can be modeled as actions 
that change the state of the world. For example, the assignment operation copies the contents 
of a memory location, while the print operation changes the state of the output stream. A 
program consisting of these operations can also be considered as a plan, whose goal is given 
by the specification of the program. Therefore, planning algorithms can be used to construct 
programs that achieve a given specification. 

a. Write an operator schema for the assignment operator (assigning the value of one vari- 
able to another). Remember that the original value will be overwritten! 
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b. Show how object creation can be used by a planner to produce a plan for exchanging 
the values of two variables using a temporary variable. 

12.8 Consider the following argument: In a framework that allows uncertain initial states, 
disjunctive effects are just a notational convenience, not a source of additional representa- 
tional power. For any action schema a with disjunctive effect P V Q, we could always replace 
it with the conditional effects when R: P A when 1R: Q, which in turn can be reduced to 
two regular actions. The proposition R stands for a random proposition that is unknown in 
the initial state and for which there are no sensing actions. Is this argument correct? Consider 
separately two cases, one in which only one instance of action schema a is in the plan, the 
other in which more than one instance is. 

12.9 Why can't conditional planning deal with unbounded indeterminacy? 

12.10 In the blocks world we were forced to introduce two STRIPS actions, Move and 
MoveToTable, in order to maintain the Clear predicate properly. Show how conditional 
effects can be used to represent both of these cases with a single action. 

12.11 Conditional effects were illustrated for the Suck action in the vacuum world-which 
square becomes clean depends on which square the robot is in. Can you think of a new set of 
propositional variables to define states of the vacuum world, such that Suck has an uncondi- 
tional description? Write out the descriptions of Suck, Left, and Right, using your proposi- 
tions, and demonstrate that they suffice to describe all possible states of the world. 

12.12 Write out the full description of Suck for the double Murphy vacuum cleaner that 
sometimes deposits dirt when it moves to a clean destination square and sometimes deposits 
dirt if Suck is applied to a clean square. 

12.13 Find a suitably dirty carpet, free of obstacles, and vacuum it. Draw the path taken 
by the vacuum cleaner as accurately as you can. Explain it, with reference to the forms of 
planning discussed in this chapter. 

12.14 The following quotes are from the backs of shampoo bottles. Identify each as an 
unconditional, conditional, or execution monitoring plan. (a) "Lather. Rinse. Repeat." (b) 
"Apply shampoo to scalp and let it remain for several minutes. Rinse and repeat if necessary." 
(c) "See a doctor if problems persist." 

12.15 The AND-OR-GRAPH-SEARCH algorithm in Figure 12.10 checks for repeated states 
only on the path from the root to the current state. Suppose that, in addition, the algorithm 
were to store every visited state and check against that list. (See GRAPH-SEARCH in Fig- 
ure 3.19 for an example.) Determine the information that should be stored and how the 
algorithm should use that information when a repeated state is found. (Hint: You will need to 
distinguish at least between states for which a successful subplan was constructed previously 
and states for which no subplan could be found.) Explain how to use labels to avoid having 
multiple copies of subplans. 

12.16 Explain precisely how to modify the AND-OR-GRAPH-SEARCH algorithm to gener- 
ate a cyclic plan if no acyclic plan exists. You will need to deal with three issues: labeling 
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the plan steps so that a cyclic plan can point back tc~ an earlier part of the plan, modifying 
OR-SEARCH so that it continues to look for acyclic plans after finding a cyclic plan, and 
augmenting the plan representation to indicate whether a plan is cyclic. Show how your al- 
gorithm works on (a) the triple Murphy vacuum world, and (b) the alternate double Murphy 
vacuum world. You might wish to use a computer implementation to check your results. Can 
the plan for case (b) be written using standard loop syntax? 

12.17 Specify in full the belief state update procedur~e for partially observable environments. 
That is, the method for computing the new belief state representation (as a list of knowledge 
propositions) from the current belief-state representation and an action description with con- 
ditional effects. 

12.18 Write action descriptions, analogous to Equation (12.2), for the Right and Suck ac- 
tions. Also write a description for CheckLocation, analogous to Equation (12.3). Repeat 
using the alternative set of propositions from Exercise 12.11. 

12.19 Look at the list on page 445 of things that the replanning agent can't do. Sketch an 
algorithm that can handle one or more of them. 

12.20 Consider the following problem: A patient arrives at the doctor's office with symp- 
toms that could have been caused either by dehydration or by disease D (but not both). There 
are two possible actions: Drink, which unconditionally cures dehydration, and Medicate, 
which cures disease D, but has an undesirable side-effect if taken when the patient is dehy- 
drated. Write the problem description in PDDL, and dl~agranl a sensorless plan that solves the 
problem, enumerating all relevant possible worlds. 

12.21 To the medication problem in the previous exercise, add a Test action that has the 
conditional effect CultureGrowth when Disease is true and in any case has the perceptual 
effect Known ( Culture Growth). Diagram a conditional plan that solves the problem and 
minimizes the use of the Medicate action. 



In which we see what an agent should do when not all is crystal clear 

13.1 ACTING UNDER UNCERTAINTY 

The logical agents described in Parts I11 and IV make the epistemological commitment that 
propositions are true, false, or unknown. When an agent knows enough facts about its en- 
vironment, the logical approach enables it to derive plans that are guaranteed to work. This 
is a good thing. Unfortunately, agents almost never have access to the whole truth about 
their erzvironment. Agents must, therefore, act under uncertainty. For example, an agent in 

UNCERTAINTY the wumpus world of Chapter 7 has sensors that report only local information; most of the 
world is not immediately observable. A wumpus agent often will find itself unable to discover 
which of two squares contains a pit. If those squares are en route to the gold, then the agent 
might have to take a chance and enter one of the two squares. 

The real world is far more complex than the wumpus world. For a logical agent, it might 
be impossible to construct a complete and correct description of how its actions will work. 
Suppose, for example, that the agent wants to drive someone to the airport to catch a flight 
and is considering a plan, Ago, that involves leaving home 90 minutes before the flight departs 
and driving at a reasonable speed. Even though the airport is only about 15 miles away, the 
agent will not be able to conclude with certainty that "Plan Ago will get us to the airport in 
time." Instead, it reaches the weaker conclusion "Plan Ago will get us to the airport in time, 
as long as my car doesn't break down or run out of gas, and I don't get into an accident, and 
there are no accidents on the bridge, and the plane doesn't leave early, and . . . ." None of 
these conditions can be deduced, so the plan's success cannot be inferred. This is an example 
of the qualification problem mentioned in Chapter 10. 

If a logical agent cannot conclude that any particular course of action achieves its goal, 
then it will be unable to act. Conditional planning can overcome uncertainty to some extent, 
but only if the agent's sensing actions can obtain the required information and only if there 
are not too many different contingencies. Another possible solution would be to endow the 
agent with a simple but incorrect theory of the world that does enable it to derive a plan; 
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presumably, such plans will work most of the time, but problems arise when events contradict 
the agent's theory. Moreover, handling the tradeoff between the accuracy and usefulness of 
the agent's theory seems itself to require reasoning about uncertainty. In sum, no purely 
logical agent will be able to conclude that plan Ago is Ithe right thing to do. 

Nonetheless, let us suppose that Ago is in fact the right thang to do. What do we mean 
by saying this? As we discussed in Chapter 2, we mean that out of all the plans that could be 
executed, Ago is expected to maximize the agent's performance measure, given the informa- 
tion it has about the environment. The performance measure includes getting to the airport in 
time for the flight, avoiding a long, unproductive wait at the airport, and avoiding speeding 
tickets along the way. The information the agent has cannot guarantee any of these outcomes 
for Ago, but it can provide some degree of belief that they will be achieved. Other plans, 
such as Alzo, might increase the agent's belief that it will get to the airport on time, but also 
increase the likelihood of a long wait. The right thing to do-the rational decision--therefore 
depends on both the relative importance of various goals and the likelihood that, and degree 
to which, they will be achieved. The remainder of this section hones these ideas, in prepara- 
tion for the development of the general theories of uncertain reasoning and rational decisions 
that we present in this and subsequent chapters. 

Handling uncertain knowledge 

In this section, we look more closely at the nature of uncertaiin knowledge. We will use a sim- 
ple diagnosis example to illustrate the concepts involved. Diagnosis-whether for medicine, 
automobile repair, or whatever-is a task that almost always involves uncertainty. Let us try 
to write rules for dental diagnosis using first-order logic, so that we can see how the logical 
approach breaks down. Consider the following rule: 

V p  S y m p t o m ( p ,  Toothache) * Disease(p, Cavi ty)  . 

The problem is that this rule is wrong. Not all patients with toothaches have cavities; some 
of them have gum disease, an abscess, or one of several other problems: 

V p  S y m p t o m ( p ,  Toothache) + 
Disease(p, Cavi ty)  V Disease(p, GumDisease) C' Disease(p, Abscess) . . . 

Unfortunately, in order to make the rule true, we have to add an almost unlimited list of 
possible causes. We c o ~ ~ l d  try turning the rule into a causal rule: 

V y Disease(p, Cavi ty)  + S y m p t o m ( p ,   toothache:^ . 

But this rule is not right either; not all cavities cause pain The only way to fix the rule 
is to make it logically exhaustive: to augment the left-hand side with all the qualifications 
required for a cavity to cause a toothache. Even then, for the purposes of diagnosis, one must 
also take into account the possibility that the patient might have a toothache and a cavity that 
are unconnected. 

Trying to use first-order logic to cope with a domain like medical diagnosis thus fails 
for three main reasons: 

LAZINESS 0 Laziness: It is too much work to list the complete set of antecedents or consequents 
needed to ensure an exceptionless rule and too haird to use such rules. 
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THEORETICAL 
IGNORANCE 0 Theoretical ignorance: Medical science has no complete theory for the domain. 

PRACTICAL 
IGNORANCE 0 Practical ignorance: Even if we know all the rules, we might be uncertain about a 

particular patient because not all the necessary tests have been or can be run. 

The connection between toothaches and cavities is just not a logical consequence in either 
direction. This is typical of the medical domain, as well as most other judgmental domains: 
law, business, design, automobile repair, gardening, dating, and so on. The agent's knowledge 

DEGREE OF BELIEF can at best provide only a degree of belief in the relevant sentences. Our main tool for dealing 
PROBABILITY 
THEORY with degrees of belief will be probability theory, which assigns to each sentence a numerical 

degree of belief between 0 and 1. (Some alternative methods for uncertain reasoning are 
covered in Section 14.7.) 

Probability provides a way of summarizing the uncertainty that comes from our lazi- 
ness and ignorance. We might not know for sure what afflicts a particular patient, but we 
believe that there is, say, an 80% chance-that is, a probability of 0.8-that the patient has 
a cavity if he or she has a toothache. That is, we expect that out of all the situations that are 
indistinguishable from the current situation as far as the agent's knowledge goes, the patient 
will have a cavity in 80% of them. This belief could be derived from statistical data-80% 
of the toothache patients seen so far have had cavities-or from some general rules, or from 
a combination of evidence sources. The 80% summarizes those cases in which all the factors 
needed for a cavity to cause a toothache are present and other cases in which the patient has 
both toothache and cavity but the two are unconnected. The missing 20% summarizes all the 
other possible causes of toothache that we are too lazy or ignorant to confirm or deny. 

Assigning a probability of 0 to a given sentence corresponds to an unequivocal belief 
that the sentence is false, while assigning a probability of 1 corresponds to an unequivocal 
belief that the sentence is true. Probabilities between 0 and 1 correspond to intermediate 
degrees of belief in the truth of the sentence. The sentence itself is in fact either true or false. 
It is important to note that a degree of belief is different from a degree of truth. A probability 
of 0.8 does not mean "80% true" but rather an 80% degree of belief-that is, a fairly strong 
expectation. Thus, probability theory makes the same ontological commitment as logic- 
namely, that facts either do or do not hold in the world. Degree of truth, as opposed to degree 
of belief, is the subject of fuzzy logic, which is covered in Section 14.7. 

In logic, a sentence such as "The patient has a cavity" is true or false depending on the 
interpretation and the world; it is true just when the fact it refers to is the case. In probabil- 
ity theory, a sentence such as "The probability that the patient has a cavity is 0.8" is about 
the agent's beliefs, not directly about the world. These beliefs depend on the percepts that 

EVIDENCE the agent has received to date. These percepts constitute the evidence on which probability 
assertions are based. For example, suppose that the agent has drawn a card from a shuffled 
pack. Before looking at the card, the agent might assign a probability of 1/52 to its being the 
ace of spades. After looking at the card, an appropriate probability for the same proposition 
would be 0 or 1. Thus, an assignment of probability to a proposition is analogous to saying 
whether a given logical sentence (or its negation) is entailed by the knowledge base, rather 
than whether or not it is true. Just as entailment status can change when more sentences are 
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added to the knowledge base, probabilities can change when more evidence is acquired.' 
All probability statements must therefore indicate the evidence with respect to which the 

probability is being assessed. As the agent receives new percepts, its probability assessments 
are updated to reflect the new evidence. Before the evidence is obtained, we talk about 
prior or unconditional probability; after the evidence is obtained, we talk about posterior 
or conditional probability. In most cases, an agent will have some evidence from its percepts 
and will be interested in computing the posterior probabilities of the outcomes it cares about. 

Uncertainty and rational decisions 

The presence of uncertainty radically changes the wzry an agent makes decisions. A logical 
agent typically has a goal and executes any plan that is guaranteed to achieve it. An action 
can be selected or rejected on the basis of whether it achieves the goal, regardless of what 
other actions might achieve. When uncertainty enters the picture, this is no longer the case. 
Consider again the Ago plan for getting to the airport. Suppose it has a 95% chance of 
succeeding. Does this mean it is a rational choice? Not necessarily: There might be other 
plans, such as Alzo, with higher probabilities of success. If it is vital not to miss the flight, 
then it is worth risking the longer wait at the airport. What about A1440, a plan that involves 
leaving home 24 hours in advance? In most circumstances, this is not a good choice, because, 
although it almost guarantees getting there on time, it l~nvolves an intolerable wait. 

PREFERENCES To make such choices, an agent must first have preferences betu7een the different pos- 
OUTCOMES sible outcomes of the various plans. A particular outcome is a completely specified state, 

including such factors as whether the agent arrives on time and the length of the wait at the 
UTILITY THEORY airport. We will be using utility theory to represent and reason with preferences. (The term 

utility is used here in the sense of "the quality of being useful," not in the sense of the electric 
company or water works.) Utility theory says that every state has a degree of usefulness, or 
utility, to an agent and that the agent will prefer states .with higher utility. 

The utility of a state is relative to the agent whose preferences the utility function is 
supposed to represent. For example, the payoff functions far games in Chapter 6 are utility 
functions. The utility of a state in which White has won a game of chess is obviously high 
for the agent playing White, but low for the agent p1,aying Black. Or again, some players 
(including the authors) might be happy with a draw against the world champion, whereas 
other players (including the former world champion) might not. There is no accounting for 
taste or preferences: you might think that an agent who prefers jalapeiio bubble-gum ice 
cream to chocolate chocolate chip is odd or even misguided, but you could not say the agent 
is irrational. A utility function can even account for altruistic behavior, simply by including 
the welfare of others as one of the factors contributing to the agent's own utility. 

Preferences, as expressed by utilities, are combllned with probabilities in the general 
DECISION THEORY theory of ra.tiona1 decisions called decision theory: 

Decision theory = probability theory + utility theory . 

This is quite different from a sentence's becoming true or false as the world changes. Handling a changing 
world via probabilities requires the same kinds of mechanisms-situations, intervals, and events-that we used 
in Chapter 10 for logical representations. These mechanisms are discussecl in Chapter 15. 
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The fundamental idea of decision theory is that an agent is rational ifand only if it chooses 
the action that yields the highest expected utility, averaged over all the possible outcomes of 
the action. This is called the principle of Maximum Expected Utility (MEU). We saw this 
principle in action in Chapter 6 when we touched briefly on optimal decisions in backgam- 
mon. We will see that it is in fact a completely general principle. 

Design for a decision-theoretic agent 

Figure 13.1 sketches the structure of an agent that uses decision theory to select actions. The 
agent is identical, at an abstract level, to the logical agent described in Chapter 7. The primary 
difference is that the decision-theoretic agent's knowledge of the current state is uncertain; 

BELIEF STATE the agent's belief state is a representation of the probabilities of all possible actual states of 
the world. As time passes, the agent accumulates more evidence and its belief state changes. 
Given the belief state, the agent can make probabilistic predictions of action outcomes and 
hence select the action with highest expected utility. This chapter and the next concentrate on 
the task of representing and computing with probabilistic information in general. Chapter 15 
deals with methods for the specific tasks of representing and updating the belief state and 
predicting the environment. Chapter 16 covers utility theory in more depth, and Chapter 17 
develops algorithms for making complex decisions. 

function D T - A G ~ ~ ~ ( p e r c e p t )  returns an act ion 
static: belief-state, probabilistic beliefs about the current state of the world 

action, the agent's action 

update belief-state based on act ion and percept 
calculate outcome probabilities for actions, 

given action descriptions and current belief-state 
select action with highest expected utility 

given probabilities of outcomes and utility information 
return act ion 

Figure 13.1 A decision-theoretic agent that selects rational actions. The steps will be 
fleshed out in the next five chapters. 

Now that we have set up the general framework for a rational agent, we will need a formal 
language for representing and reasoning with uncertain knowledge. Any notation for describ- 
ing degrees of belief must be able to deal with two main issues: the nature of the sentences to 
which degrees of belief are assigned and the dependence of the degree of belief on the agent's 
experience. The version of probability theory we present uses an extension of propositional 
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logic for its sentences. The dependence on experience is reflected in the syntactic distinc- 
tion between prior probability statements, which apply before any evidence is obtained, and 
conditional probability statements, which include the evidence explicitly. 

Propositions 

Degrees of belief are always applied to propositions--assertions that such-and-such is the 
case. So far we have seen two formal languages-propositic)nal logic and first-order logic- 
for stating propositions. Probability theory typically uses a language that is slightly more 
expressive than propositional logic. This section describes that language. (Section 14.6 dis- 
cusses ways to ascribe degrees of belief to assertions in first-order logic.) 

RANDOM VARIABLE The basic element of the language is the random1 variable, which can be thought of as 
referring to a "part" of the world whose "status" is initially unknown. For example, Cavzty 
might refer to whether my lower left wisdom tooth has a cavity. Random variables play a role 
similar to that of CSP variables in constraint satisfaction problems and that of proposition 
symbols in propositional logic. We will always capitalize i.he names of random variables. 
(However, we still use lowercase, single-letter names to represent an unknown random vari- 
able, for example: P ( a )  = 1 - P ( l a ) . )  

DOMAIN Each random variable has a domain of values that it can take on. For example, the 
domain of Cavzty might be ( t rue ,  f a l ~ e ) . ~  (We will use lowercase for the names af values.) 
The simplest kind of proposition asserts that a random variable has a particular value drawn 
from its domain. For example, Cavzty = true might represent the proposition that I do in fact 
have a cavity in my lower left wisdom tooth. 

As with CSP variables, random variables are typically divided into three lunds, depend- 
ing on the type of the domain: 

BOOLEAN RANDOM 
VARIABLES 0 Boolean random variables, such as Cavity, hxve the domain ( t rue ,  false). We will 

often abbreviate a proposition such as Cavity = true simply by the lowercase name 
cavity. Similarly, Cavity = false would be abbreviated by 1 cavity. 

DISCRETE RANDOM 
VARIABLES Q Discrete random variables, which include Boolean randorn variables as a special case, 

take on values from a countable domain. For example, the domain of Weather might be 
( sunny ,  rainy, cloudy, snow).  The values in the domain must be mutually exclusive 
and exhaustive. Where no confusion arises, we: will use, for example, snow as an 
abbreviation for Weather = snow. 

CONTINUOUS 0 Continuous random variables take on values from the: real numbers. The domain can 
be either the entire real line or some subset such as the interval [0,1]. For example, 
the proposition X = 4.02 asserts that the random variable .X has the exact value 4.02. 
Propositions concerning continuous random variables can also be inequalities, such as 
X 5 4.02 

With some exceptions, we will be concentrating on the d' I lscrete case. 
Elementary propositions, such as Cavity = true and Toothache =false, can be com- 

bined to form complex propositions using all the standard logical connectives. For example, 

One might expect the domain to be written as a set: {true, false). We write it as a tuple because it will be 
convenient late~r to impose an ordering on the values. 
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Cavi ty  = t rue  A Toothache =false  is a proposition to which one may ascribe a degree of 
(dis)belief. As explained in the previous paragraph, this proposition may also be written as 
cavity A l t o o t h a c h e .  

Atomic events 

ATOMIC EVENT The notion of an atomic event is useful in understanding the foundations of probability the- 
ory. An atomic event is a complete specification of the state of the world about which the 
agent is uncertain. It can be thought of as an assignment of particular values to all the vari- 
ables of which the world is composed. For example, if my world consists of only the Boolean 
variables Cavi ty  and Toothache, then there are just four distinct atomic events; the proposi- 
tion Cavi ty  =false  A Toothache = t rue  js one such event.3 

Atomic events have some important properties: 

a They are nzutually exclusive-at most one can actually be the case. For example, 
cavity A toothache and cavity A -toothache cannot both be the case. 

The set of all possible atomic events is exhaustive-at least one must be the case. That 
is, the disjunction of all atomic events is logically equivalent to t rue .  

Any particular atomic event entails the truth or falsehood of every proposition, whether 
simple or complex. This can be seen by using the standard semantics for logical con- 
nectives (Chapter 7). For example, the atomic event cavity A l t o o t h a c h e  entails the 
truth of cavity and the falsehood of cavity + toothache. 

a Any proposition is logically equivalent to the disjunction of all atomic events that en- 
tail the truth of the proposition. For example, the proposition cavity is equivalent to 
disjunction of the atomic events cavity A toothache and cavity A l too thache .  

Exercise 13.4 asks you to prove some of these properties. 

Prior probability 

UNCONDITIONAL The unconditional or prior probability associated with a proposition a is the degree of belief 
PRIOR PROBABILITY accorded to it in the absence of any other information; it is written as P ( a ) .  For example, if 

the prior probability that I have a cavity is 0.1, then we would write 

P ( C a v i t y  = t r u e )  = 0.1 or P ( c a v i t y )  = 0.1 . 

It is important to remember that P ( a )  can be used only when there is no other information. 
As soon as some new information is known, we must reason with the conditional probability 
of a given that new information. Conditional probabilities are covered in the next section. 

Sometimes, we will want to talk about the probabilities of all the possible values of a 
random variable. In that case, we will use an expression such as P( Weather ) ,  which denotes 
a vector of values for the probabilities of each individual state of the weather. Thus, instead 

Many standard formulations of probability theory take atomic events, also known as sample points, as prim- 
itive and define a random variable as a function taking an atomic event as input and returning a value from the 
appropriate domain. Such an approach is perhaps more general, but also less intuitive. 
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of writing the four equations 

P (  Weather = sunny)  = 0.7 
P (  TNeather = rain) = 0.2 
P (  Weather = cloudy) = 0.08 
P( Weather = snow) = 0.02 . 

we may simply write 

P( Weather)  = (0.7,0.2,0.08,0.02) . 
PROBABILITY 
DISTRIBUTION This statement defines a prior probability distribution for the random variable Weather. 

We will also use expressions such as P( Weather,  Cavity) to denote the probabilities of 
all combinations of the values of a set of random  variable^.^ In that case, P( Weather,  Cavi ty)  
can be represented by a 4 x 2 table of probabilities. This is called the joint probability dis- 
tribution of Weather and Cavity. DISTRIBUTION 

Sometimes it will be useful to think about the complete set of random variables used to 
describe the world. A joint probability distribution that covers this complete set is called the 

FULL JOINT 
PROBABILITY 
DISTRIBUTION 

full joint probability distribution. For example, if the world consists of just the variables 
Cavity,  Toothache, and Weather, then the full joint distribution is given by 

P(Cavi ty  , Toothache, Weather) .  

This joint distribution can be represented as a 2 x 2 x 4 table with 16 entries. A. full joint 
distribution specifies the probability of every atomic event and is therefore a complete speci- 
fication of one's uncertainty about the world in question. We will see in Section 13.4 that any 
probabilistic query can be answered from the full joint distribution. 

For continuous variables, it is not possible to write out the entire distribution as a table, 
because there are infinitely many values. Instead, one usually defines the probability that a 
random variable takes on some value x as a parameterized function of x .  For example, let the 
random variable X denote tomorrow's maximum temperature in Berkeley. Then the sentence 

P ( X  = x )  = U[18 ,26]  ( x )  

expresses the belief that X is distributed uniformly between 118 and 26 degrees Celsius. (Sev- 
eral useful continuous distributions are defined in Appendix A.) Probability distributions for 

PROBABILITY continuous variables are called probability density functions. Density functions differ in 
meaning from discrete distributions. For example, using the temperature distribution given 
earlier, we find that P ( X  = 20.5) = U[18,26]  (20.5) == 0.125/C.  This does not mean that 
there's a 12.5% chance that the maximum temperature will be exactly 20.5 degrees tomor- 
row; the probability that this will happen is of course zero. The technical meaning is that the 
probability that the temperature is in a small region around 20.5 degrees is equal, in the limit, 
to 0.125 divided by the width of the region in degrees Celsius: 

lim P(20.5 < X 5 20.5 + d x ) / d x  = 0.125/C' . 
dx--to 

The general notational rule is that the distribution covers all values of the variables that are capitalized. Thus, 
the expression P( Weather, cavity) is a four-element vector of probabilities for the conjunction of each weather 
type with Cavity = true. 
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Some authors use different symbols for discrete distributions and density functions; we use 
P in both cases, since confusion seldom arises and the equations are usually identical. Note 
that probabilities are unitless numbers, whereas density functions are measured with a unit, 
in this case reciprocal degrees. 

Conditional probability 

Once the agent has obtained some evidence concerning the previously unknown random vari- 
ables making up the domain, prior probabilities are no longer applicable. Instead, we use 

CONDITIONAL 
PROBABILITY conditional or posterior probabilities. The notation used is P(alb), where a and b are any 
POSTERIOR 
PROBABILITY 

 proposition^.^ This is read as "the probability of a, given that all we know is b." For example, 

P(cavity1 toothache) = 0.8 

indicates that if a patient is observed to have a toothache and no other information is yet avail- 
able, then the probability of the patient's having a cavity will be 0.8. A prior probability, such 
as P(cavity), can be thought of as a special case of the conditional probability P(cavity( ), 
where the probability is conditioned on no evidence. 

Conditional probabilities can be defined in terms of unconditional probabilities. The 
defining equation is 

which holds whenever P(b)  > 0. This equation can also be written as 

P(a  A b) = P(a(  b)  P(b) 

PRODUCT RULE which is called the product rule. The product rule is perhaps easier to remember: it comes 
from the fact that, for a and b to be true, we need b to be true, and we also need a to be true 
given b. We can also have it the other way around: 

P(a  A b) = P(b(a)P(a)  . 

In some cases, it is easier to reason in terms of prior probabilities of conjunctions, but for the 
most part, we will use conditional probabilities as our vehicle for probabilistic inference. 

We can also use the P notation for conditional distributions. P(X1Y) gives the values 
of P ( X  = xi lY = y j )  for each possible i ,  j .  As an example of how this makes our notation 
more concise, consider applying the product rule to each case where the propositions a and b 
assert particular values of X and Y respectively. We obtain the following equations: 

P ( X = x l  A Y = Y ~ )  = P ( X = X ~ ~ Y = ~ ~ ) P ( Y = ~ ~ ) .  
P ( X  = x1 A Y = y2) = P ( X  = x1 (Y = ?J.L)P(Y = 92) . 

We can combine all these into the single equation 

P ( X ,  Y )  = P ( X I Y ) P ( Y )  . 
Remember that this denotes a set of equations relating the corresponding individual entries in 
the tables, not a matrix multiplication of the tables. 

The " 1 "  operator has the lowest possible precedence, so P(a A blc V d )  means P ( ( a  A b) /  ( c  V d)) .  
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It is tempting, but wrong, to view conditional probabilities as if they were logical im- 
plications with uncertainty added. For example, the sentence P(al b) = 0.8 cannot be inter- 
preted to mean "whenever b holds, conclude that P(a)  is 0.8." Such an interpretation would 
be wrong on two counts: first, P ( a )  always denotes the prior probability of a,  not the pos- 
terior probability given some evidence; second, the st,atement P(al  b) = 0.8 is immediately 
relevant just when b is the only available evidence. When additional information c  is avail- 
able, the degree of belief in a is P(al b A c) ,  which might have little relation to P(a1b). For 
example, c might tell us directly whether a is true or false. If we examine a patient who 
complains of toothache, and discover a cavity, then we have additional evidence cavity, and 
we conclude (trivially) that P(cavityltoothache A cavity) = 1.0. 

So far, we have defined a syntax for propositions and for prior and conditional probability 
statements about those propositions. Now we must provide some sort of semantics for prob- 
ability statements. We begin with the basic axioms that serve to define the probability scale 
and its endpoints: 

1. All probabilities are between 0 and 1. For any propositjion a, 

2. Necessarily true (i.e., valid) propositions have probability I ,  and necessarily false (i.e., 
unsatisfiable) propositions have probability 0. 

Next, we need an axiom that connects the probabilities of logically related propositions. The 
simplest way to do this is to define the probability of a disjunction as follows: 

3. The probability of a disjunction is given by 

This rule is easily remembered by noting that the cases where a holds, together with the cases 
where b holds, certainly cover all the cases where a V b holds; but summing the two sets of 
cases counts their intersection twice, so we need to subtract Y ( a  A 6). 

KOLMOGOROV'S 
AXIOMS These three axioms are often called Kolmogorov's axioms in honor of the Russian 

mathematician Andrei Kolmogorov, who showed how to build up the rest of probability the- 
ory from this simple foundation. Notice that the axiorns deal only with prior probabilities 
rather than conditional probabilities; this is because we have already defined the latter in 
terms of the former via Equation (13.1). 
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There has been endless debate over the source and status of probability numbers. 
The frequentist position is that the numbers can come only from experiments: if 
we test 100 people and find that 10 of them have a cavity, then we can say that 
the probability of a cavity is approximately 0.1. In this view, the assertion "the 
probability of a cavity is 0.1" means that 0.1 is the fraction that would be observed 
in the limit of infinitely many samples. From any finite sample, we can estimate 
the true fraction and also calculate how accurate our estimate is likely to be. 

The objectivist view is that probabilities are real aspects of the universe- 
propensities of objects to behave in certain ways-rather than being just descrip- 
tions of an observer's degree of belief. For example, that a fair coin comes up 
heads with probability 0.5 is a propensity of the coin itself. In this view, fre- 
quentist measurements are attempts to observe these propensities. Most physicists 
agree that quantum phenomena are objectively probabilistic, but uncertainty at the 
macroscopic scale--e.g., in coin tossing-usually arises from ignorance of initial 
conditions and does not seem consistent with the propensity view. 

The subjectivist view describes probabilities as a way of characterizing an 
agent's beliefs, rather than as having any external physical significance. This allows 
the doctor or analyst to make the numbers u p t o  say, "In my opinion, I expect the 
probability of a cavity to be about 0.1 ." Several more reliable techniques, such as 
the betting systems described on page 474, have also been developed for eliciting 
probability assessments from humans. 

In the end, even a strict frequentist position involves subjective analysis, so the 
difference probably has little practical importance. The reference class problem 
illustrates the intrusion of subjectivity. Suppose that a frequentist doctor wants to 
know the chances that a patient has a particular disease. The doctor wants to con- 
sider other patients who are similar in important ways-age, symptoms, perhaps 
sex-and see what proportion of them had the disease. But if the doctor consid- 
ered everything that is known about the patient-weight to the nearest gram, hair 
color, mother's maiden name, etc.-the result would be that there are no other pa- 
tients who are exactly the same and thus no reference class from which to collect 
experimental data. This has been a vexing problem in the philosophy of science. 

Laplace's principle of indifference (1816) states that propositions that are 
syntactically "symmetric" with respect to the evidence should be accorded equal 
probability. Various refinements have been proposed, culminating in the attempt 
by Carnap and others to develop a rigorous inductive logic, capable of computing 
the correct probability for any proposition from any collection of observations. 
Currently, it is believed that no unique inductive logic exists; rather, any such logic 
rests on a subjective prior probability distribution whose effect is diminished as 
more observations are collected. 
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Using the axioms of probability 

We can derive a variety of useful facts from the basic ,axioms. For example, the familiar rule 
for negation follows by substituting l a  for b in axiom 3, giving us: 

P ( a  V l a )  = P ( a )  + P ( 1 a )  - P ( a  A l a )  ('by axiom 3 with b = l a )  
P ( t r u e )  = P ( a )  + P ( 1 a )  - P(fa1se) (Iby logical equivalence) 

1 = P ( a )  + P ( 1 a )  (Iby axiom 2) 
P ( 1 a )  = 1 - P ( a )  (lby algebra). 

The third line of this derivation is itself a useful fact and can be extended from the Boolean 
case to the general discrete case. Let the discrete variable D have the domain (dl ,  . . . , d,). 
Then it is easy to show (Exercise 13.2) that 

n 

That is, any probability distribution on a single variable must sum to It is also true that any 
joint probability distribution on any set of variables must sum to 1: this can be seen simply 
by creating a single megavariable whose domain is the cross product of the domains of the 
the original variables. 

Recall that any proposition a  is equivalent to the disjunction of all the atomic events in 
which a  holds; call this set of events e (a ) .  Recall also that atomic events are mutually exclu- 
sive, so the probability of any conjunction of atomic events is zero, by axiom 2. Hence, from 
axiom 3, we can derive the following simple relationship: The probability of a proposition is 
equal to the sum ofthe probabilities of the atomic events in which it holds; that is, 

This equation provides a simple method for computing the probability of any proposition, 
given a full joint distribution that specifies the probabilities of all atomic events. (See Sec- 
tion 13.4.) In subsequent sections we will derive additional rules for manipulating probabili- 
ties. First, however, we will examine the foundation for the axioms themselves. 

Why the axioms of probability are reasonable 

The axioms of probability can be seen as restricting tihe set of probabilistic beliefs that an 
agent can hold. This is somewhat analogous to the logical case, where a logical agent cannot 
simultaneously believe A, B ,  and l ( A  A B ) ,  for example. There is, however, an additional 
complication. In the logical case, the semantic definition of conjunction means that at least 
one of the three beliefs just mentioned must be false in the world, so it is unreasonable for an 
agent to believe all three. With probabilities, on the other hand, statements refer not to the 
world directly, but to the agent's own state of knowledge. Why, then, can an agent not hold 
the following set of beliefs, which clearly violates axiom 3? 

For continuous variables, the summation is replaced by an integral: S_q)o3 P ( X  = x) dx = 1. 
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This lund of question has been the subject of decades of intense debate between those who ad- 
vocate the use of probabilities as the only legitimate form for degrees of belief and those who 
advocate alternative approaches. Here, we give one argument for the axioms of probability, 
first stated in 193 1 by Bruno de Finetti. 

The key to de Finetti's argument is the connection between degree of belief and actions. 
The idea is that if an agent has some degree of belief in a proposition a ,  then the agent should 
be able to state odds at which it is indifferent to a bet for or against a. Think of it as a game 
between two agents: Agent 1 states "my degree of belief in event a  is 0.4." Agent 2 is then 
free to choose whether to bet for or against a ,  at stakes that are consistent with the stated 
degree of belief. That is, Agent 2 could choose to bet that a  will occur, betting $4 against 
Agent 1's $6. Or Agent 2 could bet $6 against $4 that A will not occur.7 If an agent's degrees 
of belief do not accurately reflect the world, then you would expect that it would tend to lose 
money over the long run to an opposing agent whose beliefs more accurately reflect the state 
of the world. 

But de Finetti proved something much stronger: ZfAgent I expresses a set of degrees 
of belief that violate the axioms of probability theory then there is a combination of bets by 
Agent 2 that guarantees that Agent I will lose money every time. So if you accept the idea 
that an agent should be willing to "put its money where its probabilities are," then you should 
accept that it is irrational to have beliefs that violate the axioms of probability. 

One might think that this betting game is rather contrived. For example, what if one 
refuses to bet? Does that end the argument? The answer is that the betting game is an abstract 
model for the decision-making situation in which every agent is unavoidably involved at every 
moment. Every action (including inaction) is a kind of bet, and every outcome can be seen as 
a payoff of the bet. Refusing to bet is like refusing to allow time to pass. 

We will not provide the proof of de Finetti's theorem, but we will show an example. 
Suppose that Agent 1 has the set of degrees of belief from Equation (13.3). Figure 13.2 
shows that if Agent 2 chooses to bet $4 on a, $3 on b, and $2 on ~ ( a  V  b), then Agent 1 
always loses money, regardless of the outcomes for a  and b. 

Agent 1 
Proposition Belief 

One might argue that the agent's preferences for different bank balances are such that the possibility of losing 
$1 is not counterbalanced by an equal possibility of winning $1.  One possible response is to make the bet amounts 
small enough to avoid this problem. Savage's analysis (1954) circumvents the issue altogether. 

a 0.4 
b  0.3 

a V b  0.8 

Agent 2 
Bet Stakes 

Outcome for Agent 1 
a A b  a A l b  la A b  1 a A  l b  

Figure 13.2 Because Agent 1 has inconsistent beliefs, Agent 2 is able to devise a set of 
bets that guarantees a loss for Agent 1, no matter what the outcome of a and b. 

a  4 to 6 
b 3 to 7 

i ( a V b )  2 t o 8  

-6 -6 4 4 
-7 3 -7 3 
2 2 2 -8 

-1 1 - 1 - 1 - 1 
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Other strong philosophical arguments have been put forward for the use of probabilities, 
most notably those of Cox (1946) and Carnap (1950). The world being the way it is, how- 
ever, practical demonstrations sometimes speak louder than proofs. The success of reasoning 
systems based on probability theory has been much more effective in making converts. We 
now look at how the axioms can be deployed to make inferences. 

In this section we will describe a simple method for probabilistic inference-that is, the 
computation from observed evidence of posterior probabilities for query propositions. We 
will use the full joint distribution as the "knowledge base" fi-om which answers to all ques- 
tions may be derived. Along the way we will also inlroduce several useful techniques for 
manipulating equations involving probabilities. 

We begin with a very simple example: a domain consisting of just the three Boolean 
variables Toothache, Cavity, and Catch (the dentist's nasty steel probe catches in my tooth). 
The full joint distribution is a 2 x 2 x 2 table as shown Iln Figure 13.3. 

I 1 I toothache I I 1 t ~ o t h a c h ~ ~ l  

Figure 13.3 A full joint distribution for the Toothache, Cavity, Catch world. _i 

cavity 
1 cavity 

Notice that the probabilities in the joint distribution sum to 1, as required by the ax- 
ioms of probability. Notice also that Equation (13.2) gives us a direct way to calculate the 
probability of any proposition, simple or complex: We slimply identify those atomic events in 
which the proposition is true and add up their probabilities. For example, there are six atomic 
events in which cavity V toothache holds: 

P(cavity V toothache) = 0.108 + 0.012 + 0.072 + 0.008 + 0.016 + 0.064 == 0.28 

One particularly common task is to extract the distribution over some subset of variables or 
a single variable. For example, adding the entries in the first row gives the uncondiltional or 

MARGINAL 
PROBABILITY marginal probability8 of cavity: 

P(cavity)  = 0.108 + 0.012 + 0.072 + 0.008 = 0.2 . 

catch 

0.108 
0.016 

MARGINALIZATION This process is called marginalization, or summing out-because the variables other than 
Cavity are summed out. We can write the following general marginalization rule for any sets 
of variables Y and Z: 

P(Y) = c P(Y, z )  . (13.4) 
z 

SO called because of a common practice among actuaries of writing the sums of observed frequencies in the 
margins of insurance tables. 

l ca t ch  

0.012 
0.064 

catch 
pp 

0.072 
0.144 

1catc l~  

0.0108 
0.576 
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That is, a distribution over Y can be obtained by summing out all the other variables from 
any joint distribution containing Y. A variant of this rule involves conditional probabilities 
instead of joint probabilities, using the product rule: 

CONDITIONING This rule is called conditioning. Marginalization and conditioning will turn out to be useful 
rules for all kinds of derivations involving probability expressions. 

In most cases, we will be interested in computing conditional probabilities of some 
variables, given evidence about others. Conditional probabilities can be found by first us- 
ing Equation (13.1) to obtain an expression in terms of unconditional probabilities and then 
evaluating the expression from the full joint distribution. For example, we can compute the 
probability of a cavity, given evidence of a toothache, as follows: 

P(cavity A toothache) 
P(cavity1 toothache) = 

P(toothache) 

Just to check, we can also compute the probability that there is no cavity, given a toothache: 
P(1cavi ty  A toothache) 

P ( ~ c a v i t y l  toothache) = 
P(toothache) 

Notice that in these two calculations the term l /P( toothache)  remains constant, no matter 
NORMALIZATION which value of Cavity we calculate. In fact, it can be viewed as a normalization constant for 

the distribution P( Cavity / toothache), ensuring that it adds up to 1. Throughout the chapters 
dealing with probability, we will use a to denote such constants. With this notation, we can 
write the two preceding equations in one: 

P( Cavity (toothache) = a P(Cavity,  toothache) 

= a [P(Cavity ,  toothache, catch) + P(Cavity,  toothache, i c a t c h ) ]  

= a[(0.108,0.016) + (0.012,0.064)] = a(0.12,0.08)  = (0 .6 ,0 .4) .  

Normalization will turn out to be a useful shortcut in many probability calculations. 
From the example, we can extract a general inference procedure. We will stick to the 

case in which the query involves a single variable. We will need some notation: let X be the 
query variable (Cavity in the example), let E be the set of evidence variables (just Toothache 
in the example), let e be the observed values for them, and let Y be the remaining unobserved 
variables (just Catch in the example). The query is P(X1e) and can be evaluated as 

where the summation is over all possible ys (i.e., all possible combinations of values of the 
unobserved variables Y). Notice that together the variables X, E, and Y constitute the com- 
plete set of variables for the domain, so P ( X ,  e ,  y) is simply a subset of probabilities from 
the full joint distribution. The algorithm is shown in Figure 13.4. It loops over the values 
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function ENUMERATE-JOINT-AsK(X,  e, P) returns a distribution over X 
inputs: X ,  the query variable 

e, observed values for variables E 
P, a joint distribution on variables {X) U E LI Y // * Y = hidden variables * / 

Q ( X )  c a distribution over X, initially empty 
for each value xi of X do 

Q(x i )  c ENUMERATE-JOINT(X~,  e, Y ,  [I, P) 
return WORMALIZE(Q(X) )  

function ENUMERATE- JOINT(X,  e, vars, values, P) returns a real number 
if E M P T Y ? ( V U ~ ~ )  then return P(x, e, tlalues) 
Y c FIRsT(vars) 
return x, ENUMERATE-JOINT(X, e, R E S T ( V ~ T S ) ,  [YI values], P) 

! Figure 13.4 An algorithm for probabilistic inference by enumeration of the entries in a 
full joint: distribution. 

of X and the values of Y to enumerate all possible atomic ekents with e fixed, adds up their 
probabilities from the joint table, and normalizes the results. 

Given the full joint distribution to work with, ENUMERATE-JOINT-ASK is a complete 
algorithm for answering probabilistic queries for discrete variables. It does not scale well, 
however: For a domain described by n Boolean variables, it requires an input table of size 
0 ( 2 n )  and takes 0 ( 2 n )  time to process the table. In a realistic problem, there might be 
hundreds or thousands of random variables to consider, not just three. It quickly becomes 
completely impractical to define the vast numbers of probabilities required-the experience 
needed in order to estimate each of the table entries separately simply cannot exist. 

For these reasons, the full joint distribution in tabular form is not a practical tool for 
building reasoning systems (although the historical notes at the end of the chapter includes 
one real-world application of this method). Instead, it should be viewed as the theoretical 
foundation om which more effective approaches may be built. The remainder of this chapter 
jmtroduces some of the basic ideas required in preparation for the development of realistic 
systems in Chapter 14. 

Let us expand the full joint distribution in Figure 13.3 by adding a fourth variable, Weather. 
The full joint distribution then becomes P(Toothache, Catch, Cavity,  Weather) ,  which has 
32 entries (because Weather has four values). It contains four "editions" of the table shown 
in Figure 13.3, one for each kind of weather. It seems niatural to ask what relationship these 
editions have to each other and to the original three-variable table. For example, how are 
P(toothache, catch, cavity, Weather = cloudy) and P(toothache, catch, cavity) related? 
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One way to answer this question is to use the product rule: 

P(toothache,  catch, cavity,  Weather  = cloudy) 

= P( Weather  = cloudy1 toothache, catch, cavity) P( toothache,  catch, cavity) . 

Now, unless one is in the deity business, one should not imagine that one's dental problems 
influence the weather. Therefore, the following assertion seems reasonable: 

P( Weather  = cloudy Itoothache, catch, cavity) = P (  Weather  = cloudy) . (13.7) 

From this, we can deduce 

P(toothache,  catch, cavity,  wea ther  = cloudy) 

= P( Weather  = cloudy)P(toothache,  catch, cavity) . 
A similar equation exists for every entry in P(Toothache,  Catch,  Cavi ty ,  Weather ) .  In fact, 
we can write the general equation 

P(Toothache, Catch, Cavity, Weather) = P(Toothache, Catch, Cavity)P( Weather) . 

Thus, the 32-element table for four variables can be constructed from one 8-element table and 
one four-element table. This decomposition is illustrated schematically in Figure 13.5(a). 

INDEPENDENCE The property we used in writing Equation (13.7) is called independence (also marginal 
independence and absolute independence). In particular, the weather is independent of 
one's dental problems. Independence between propositions a and b can be written as 

P ( a ] b )  = P ( a )  or P ( b j a )  = P ( b )  or P ( a  A b) = P ( a ) P ( b )  . (13.8) 

All these forms are equivalent (Exercise 13.7). Independence between variables X and Y can 
be written as follows (again, these are all equivalent): 

P ( X J Y )  = P ( X )  or P ( Y  I X )  = P(Y) or P ( X ,  Y )  = P ( X ) P ( Y )  . 

Cavity Coin, ...**. Coin, 

Toothache Catch 
Weather 

decomposes decomposes 
into into 

Coin, 0 
( 4  (b) 

Figure 13.5 Two examples of factoring a large joint distribution into smaller distributions, 
using absolute independence. (a) Weather and dental problems are independent. (b) Coin 
flips are independent. 
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Independence assertions are usually based on knowledge of the domain. As we have 
seen, they can dramatically reduce the amount of infbrmation necessary to specify the full 
joint distribution. If the complete set of variables can be divided into independent subsets, 
then the full joint can be factored into separate joint distributions on those subsets. For 
example, the joint distribution on the outcome of n iindependent coin flips, P(C1, . . . , C,), 
can be represented as the product of n single-variable distributions P(Ci). In a more practical 
vein, the independence of dentistry and meteorology ]is a good thing, because otherwise the 
practice of dentistry might require intimate knowledge: of m~zteorology and vice versa. 

When they are available, then, independence assertions can help in reducing the size of 
the domain representation and the complexity of the inference problem. Unfortunately, clean 
separation of entire sets of variables by independence is quite rare. Whenever a connection, 
however indirect, exists between two variables, independence will fail to hold. Moreover, 
even independent subsets can be quite large-for example, dentistry might involve dozens of 
diseases and hundreds of symptoms, all of which are interrelated. To handle such problems, 
we will need more subtle methods than the straightforward concept of independence. 

13.6 BA.YES' RULE AND ITS USE 

On page 470, we defined the product rule and pointed out th~at it can be written in two forms 
because of the commutativity of conjunction: 

Equating the two right-hand sides and dividing by P(a) ,  we get 

BAYES RULE This equation is known as Bayes' rule (also Bayes' law or Bayes' t h e ~ r e m ) . ~  This simple 
equation underlies all modern A1 systems for probabilistic inference. The more general case 
of multivalued variables can be written in the P notatioin as 

where again this is to be taken as representing a set of equations, each dealing with specific 
values of the variables. We will also have occasion to use a rnore general version condition- 
alized on some background evidence e: 

According to rule 1 on page 1 of Strunk and White's The Elements of Style, it should be Bayes's rather than 
Bayes'. The latter is, however, more commonly used. 
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Applying Bayes' rule: The simple case 

On the surface, Bayes' rule does not seem very useful. It requires three terms-a conditional 
probability and two unconditional probabilities-just to compute one conditional probability. 

Bayes' rule is useful in practice because there are many cases where we do have good 
probability estimates for these three numbers and need to compute the fourth. In a task such 
as medical diagnosis, we often have conditional probabilities on causal relationships and want 
to derive a diagnosis. A doctor knows that the disease meningitis causes the patient to have 
a stiff neck, say, 50% of the time. The doctor also knows some unconditional facts: the prior 
probability that a patient has meningitis is 1150,000, and the prior probability that any patient 
has a stiff neck is 1120. Letting s  be the proposition that the patient has a stiff neck and rn be 
the proposition that the patient has meningitis, we have 

That is, we expect only 1 in 5000 patients with a stiff neck to have meningitis. Notice that, 
even though a stiff neck is quite strongly indicated by meningitis (with probability 0.5), the 
probability of meningitis in the patient remains small. This is because the prior probability 
on stiff necks is much higher than that on meningitis. 

Section 13.4 illustrated a process by which one can avoid assessing the probability of 
the evidence (here, P(s))  by instead computing a posterior probability for each value of the 
query variable (here, m and l m )  and then normalizing the results. The same process can be 
applied when using Bayes' rule. We have 

P(Mls) = a  (P(s lm)P(m),  P ( s l i m ) P ( i m ) )  . 

Thus, in order to use this approach we need to estimate P(s J i m )  instead of P(s).  There is 
no free lunch-sometimes this is easier, sometimes it is harder. The general form of Bayes' 
rule with normalization is 

P(Y1X) = aP(XIY)P(Y)  , (13.1 1) 

where a is the normalization constant needed to make the entries in P(Y IX) sum to 1. 
One obvious question to ask about Bayes' rule is why one might have available the 

conditional probability in one direction, but not the other. In the meningitis domain, perhaps 
the doctor knows that a stiff neck implies meningitis in 1 out of 5000 cases; that is, the doctor 
has quantitative information in the diagnostic direction from symptoms to causes. Such a 
doctor has no need to use Bayes' rule. Unfortunately, diagnostic knowledge is often more 
fragile than causal knowledge. If there is a sudden epidemic of meningitis, the unconditional 
probability of meningitis, P(rn), will go up. The doctor who derived the diagnostic proba- 
bility P(m1s) directly from statistical observation of patients before the epidemic will have 
no idea how to update the value, but the doctor who computes P(mls) from the other three 
values will see that P(m1s) should go up proportionately with P(772). Most importantly, the 
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causal information P(slm) is unaflected by the epidemic, because it simply reflects the way 
meningitis works. The use of this kind of direct causal or model-based knowledge provides 
the crucial robustness needed to make probabilistic systems feasible in the real world. 

Using Bayes' rule: Combining evidence 

We have seen that Bayes' rule can be useful for answering probabilistic queries conditioned 
on one piece of evidence-for example, the stiff neck. In particular, we have argued that 
probabilistic information is often available in the form P(eflect1 cause). What happens when 
we have two or more pieces of evidence? For example, what can a dentist conclude if her 
nasty steel probe catches in the aching tooth of a patient? If we know the full joint distribution 
(Figure 13.3), one can read off the answer: 

P(Cavity (toothache A catch) = a! (0.108,0.016) FZ (0.8'71,0.129) . 

We know, however, that such an approach will not scale up to larger numbers of variables. 
We can try using Bayes' rule to reformulate the problem: 

P(Cavity(toothache A catch) = a!P(toothache I\ catch1 Cavity)P(Cavity) . (13.12) 

For this reformulation to work, we need to know the conditional probabilities of the conjunc- 
tion toothache A catch for each value of Cavity. That might be feasible for just two evidence 
variables, but again it will not scale up. If there are n possible evidence variables (X rays, 
diet, oral hygiene, etc.), then there are 2n possible combinatio~ns of observed values for which 
we would need to know conditional probabilities. We might as well go back to using the 
full joint distribution. This is what first led researchers away from probability theory toward 
approximate methods for evidence combination that, while giving incorrect answers, require 
fewer numbers to give any answer at all. 

Rather than taking this route, we need to find some additional assertions about the 
domain that will enable us to simplify the expressions. The notion of independence in Sec- 
tion 13.5 provides a clue, but needs refining. It would be nice if Toothache and Catch 
were independent, but 'they are not: if the probe catches in the tooth, it probably has a cavity 
and that probably causes a toothache. These variables are independent, however, given the 
presence or the absence of a cavity. Each is directly caused by the cavity, but neither has a 
direct effect on the other: toothache depends on the state of the nerves in the tooth, whereas 
the probe's accuracy depends on the dentist's skill, to which the toothache is irrelevant.1° 
Mathematically, this property is written as 

P(tooChache A catch ( Cavity) = P(toothache1 Cavity)P(catch( Cavity) . (13.13) 
CONDITIONAL This equation expresses the conditional independence of toothache and catch given Cavity. 

We can plug it into Equation (13.12) to obtain the probability of a cavity: 

P( Cavity) toothache A catch) = a! P(toothache / Cavity)P(catch( Cavity)P( Cavity). 

Now the information requirements are the same as for inference using each piece of evi- 
dence separately: the prior probability P(Cavity) for the query variable and the conditional 
probability of each effect, given its cause. 

We assume that the patient and dentist are distinct individuals. 
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The general definition of conditional independence of two variables X and Y ,  given a 
third variable Z is 

P(X ,  Y (2) = P(XIZ)P(Y IZ) . 
In the dentist domain, for example, it seems reasonable to assert conditional independence of 
the variables Toothache and Catch, given Cavity: 

P( Toothache, Catch1 Cavity) = P(Toothache1 Cavity)P(CatchI Cavity) . (13.14) 

Notice that this assertion is somewhat stronger than Equation (13.13), which asserts indepen- 
dence only for specific values of Toothache and Catch. As with absolute independence in 
Equation (13.8), the equivalent forms 

P(XIY, 2) = P(X1.Z) and P ( Y ( X ,  Z )  = P ( Y ( Z )  

can also be used. 
Section 13.5 showed that absolute independence assertions allow a decomposition of 

the full joint distribution into much smaller pieces. It turns out that the same is true for 
conditional independence assertions. For example, given the assertion in Equation (13.14), 
we can derive a decomposition as follows: 

P(Toothache, Catch, Cavity) 

= P( Toothache, Catch1 Cavity)P(Cavity) (product rule) 

= P( Toothache] Cavity)P( Catch1 Cavity)P( Cavity) [using (13.14)]. 

In this way, the original large table is decomposed into three smaller tables. The original 
table has seven independent numbers (23 - 1, because the numbers must sum to 1). The 
smaller tables contain five independent numbers (2 x (2' - 1) for each conditional proba- 
bility distribution and 2l - 1 for the prior on Cavity). This might not seem to be a major 
triumph, but the point is that, for n symptoms that are all conditionally independent given 
Cavity, the size of the representation grows as O ( n )  instead of O(2"). Thus, conditional in- 
dependence assertions can allow probabilistic systems to scale up; moreoveu; they are much 
more commonly available than absolute independence assertions. Conceptually, Cavity sep- 

SEPARATION arates Toothache and Catch because it is a direct cause of both of them. The decomposition 
of large probabilistic domains into weakly connected subsets via conditional independence is 
one of the most important developments in the recent history of AI. 

The dentistry example illustrates a commonly occurring pattern in which a single cause 
directly influences a number of effects, all of which are conditionally independent, given the 
cause. The full joint distribution can be written as 

P(Cause, Effect,, . . . ,Effect,) = P(Cause) nP(EfSpct,l Cause) . 
2 

NAIVE BAYES Such a probability distribution is called a naive Bayes model-"naive" because it is often 

used (as a simplifying assumption) in cases where the "effect" variables are not condition- 
ally independent given the cause variable. (The naive Bayes model is sometimes called a 
Bayesian classifier, a somewhat careless usage that has prompted true Bayesians to call it 

IDIOT BAYES the idiot Bayes model.) In practice, naive Bayes systems can work surprisingly well, even 
when the independence assumption is not true. Chapter 20 describes methods for learning 
naive Bayes distributions from observations. 
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We can combine many of the ideas in this chapter to solve probabilistic reasoning problems 
in the wumpus world. (See Chapter 7 for a complete description of the wumpus world.) 
Uncertainty arises in the wumpus world because the agent's sensors give only partial, local 
information about the world. For example, Figure 13.6 shows a situation in which each of the 
three reachable squares-[1,3], [2,2], and [3,1]-might contain a pit. Pure logical inference 
can conclude nothing about which square is most likely to be safe, so a logical agent might 
be forced to choose randomly. We will see that a probabilistic agent can do much better than 
the logical agent. 

Our aim will be to calculate the probability that each of the three squares contains a pit. 
(For the purposes of this example, we will ignore the wumpus and the gold.) The relevant 
properties of the wumpus world are that (1) a pit causes breezes in all neighboring squares, 
and (2) each square other than [1,1] contains a pit with probability 0.2. The first step is to 
identify the set of random variables we need: 

As in the propositional logic case, we want one Boolean variable Pij for each square, 
which is true iff square [i, j ]  actually contains a pit. 
We also have Boolean variables Bij that are true iff square, [ i ,  j ]  is breezy; we include 
these variables only for the observed squares-in this case, [1,1], [1,2], and [2,1]. 

The next step is to specify the full joint distribution, P ( P l , ~ ,  . . . , P4,4, BIi1, B1,2, B2 ,~ ) .  Ap- 
plying the product rule, we have 

P(Pl,l,. . . , P4,4, Bl,1, B1,2, B2,l) = 

P(B1,1, Bl,2, B2,l 1 Pl,l, . . . , P4,4)P(P1,1,. . . ,P4 ,4)  . 

(a) (b) 

Figure 13.6 (a) After finding a breeze in both [1,2] and [2,1], the agent is stuck-there is 
no safe place to explore. (b) Division of the squares intlo Known, Fringe, and Other, for a 
query about [1,3]. 
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This decomposition makes it very easy to see what the joint probability values should be. 
The first term is the conditional probability of a breeze configuration, given a pit configu- 
ration; this is 1 if the breezes are adjacent to the pits and 0 otherwise. The second term is 
the prior probability of a pit configuration. Each square contains a pit with probability 0.2, 
independently of the other squares; hence, 

4,4 

p ( p l , ~ ,  . . . , p4,4) = r-J p ( p i , ~ )  . (13.15) 
z , j  = 1,l 

For a configuration with n pits, this is just 0.2n x 0 . 8 ' ~ ~ ~ .  
In the situation in Figure 13.6(a), the evidence consists of the observed breeze (or its 

absence) in each square that is visited, combined with the fact that each such square contains 
no pit. We'll abbreviate these facts as b = ~ b ~ , ~ / \ b ~ , ~ / \ b ~ , ~  and known, = l p l , ~  Alp1,2/\1p2,1. 
We are interested in answering queries such as P(P1,3(known,  b): how likely is it that [1,3] 
contains a pit, given the observations so far? 

To answer this query, we can follow the standard approach suggested by Equation (13.6) 
and implemented in the ENUMERATE-JOINT-ASK, namely, summing over entries from the 
full joint distribution. Let Unknown be a composite variable consisting of the P,,, vari- 
ables for squares other than the Known squares and the query square [1,3]. Then, by Equa- 
tion (13.6), we have 

P(Pl,sJ  known, b) = a P(P l j3 ,  unknown, known, b) . 
unknown 

The full joint probabilities have already been specified, so we are done-that is, unless we 
care about computation. There are 12 unknown squares; hence the summation contains 
212 = 4096 terms. In general, the summation grows exponentially with the number of squares. 

Intuition suggests that we are missing something here. Surely, one might ask, aren't 
the other squares irrelevant? The contents of [4,4] don't affect whether [1,3] has a pit! In- 
deed, this intuition is correct. Let Fringe be the variables (other than the query variable) 
that are adjacent to visited squares, in this case just [2,2] and [3,1]. Also, let Other be the 
variables for the other unknown squares; in this case, there are 10 other squares, as shown in 
Figure 13.6(b). The key insight is that the observed breezes are conditionally independent of 
the other variables, given the known, fringe, and query variables. The rest is, as they say, a 
small matter of algebra. 

To use the insight, we manipulate the query formula into a form in which the breezes are 
conditioned on all the other variables, and then we simplify using conditional independence: 

P(p1,3 I known, b) 

= (L P(b1Pll3, known, u n k n ~ w n ) P ( P ~ , ~ ,  known, unknown) 
unknown 

(by the product rule) 

= a P(bJlcnoznn, fringe, ~ t h e r ) P ( P ~ , ~ ,  known, fringe, other) 
frznge other 

= a x x P(b(known,  fringe)P(Pl,3, known, fringe, other) , 
frznge other 
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Figure 13.7 Consistent models for the fringe variablles P2,z and P 3 , ~ ,  showing P(frznge) 
for each model: (a) three models with = true sh~owing two or three pits, and (b) two 

with  PI,^ =false showing one or two pits. 

where the final step uses conditional independence. Now, the first term in this expression 
does not depend on the other variables, so we can muve the summation inwards: 

P(P1,3l known, b) 

= a P(blknown, Pl ,3; f i inge)  P(P1,3. bnou~n,  fringe, other) 
fringe other 

By independence, as in Equation (13.15), the prior term can be factored, and then the terms 
can be reordered: 

P(P1,31known, b )  

= a P(bl known,  PI,^, fringe) P(Pl,3)P(knou~n)P(frhge)P(other) 
fringe o t h e ~  

= a P ( k n o w n ) P ( P ~ , ~ )  P(b(known,  P1,3, fringe) P(Jringe) P (o lher )  
fringe other 

= a' P(P1,,) P(bl known, Pl,3, f r inge)P( fnnge)  , 
fringe 

where the last step folds P(known)  into the normalizing constant and uses the fact that 
Cother P(o ther )  equals 1. 

Now, there are just four terms in the summation over the fringe variables P2,2 and 
The use of independence and conditional independence has completely eliminated the other 
squares from consideration. Notice that the expression P(bjl;nown, fringe) is 1 when 
the fringe is consistent with the breeze observations and 0 otherwise. Thus, for each value 
of we sum over the logical models for the fringe variables that are consistent with the 
known facts. (Compare with the enumeration over models in Figure 7.5.) The models and 
their associated prior probabilities-P(fringe)-are shown in Figure 13.7. We have 

P(Pl,31known, b) = a' (0.2(0.04 + 0.16 + 0.16),  O.a(O.04 + 0.16))  = (0.31,0.69) . 
'That is, [1,3] (and [3,1] by symmetry) contains a pit with roughly 3 1 % probability. A similar 
calculation, which the reader might wish to perform, shows that [2,2] contains a pit with 
roughly 86% probability. The wumpus agent should definitely avoid [2,2] ! 

What this section has shown is that even seemingly conlplicated problems can be for- 
mulated precisely in probability theory and solved using simple algorithms. To get efticient 



486 Chapter 13. Uncertainty 

solutions, independence and conditional independence relationships can be used to simplify 
the summations required. These relationships often correspond to our natural understanding 
of how the problem should be decomposed. In the next chapter, we will develop formal rep- 
resentations for such relationships as well as algorithms that operate on those representations 
to perform probabilistic inference efficiently. 

This chapter has argued that probability is the right way to reason about uncertainty. 

Uncertainty arises because of both laziness and ignorance. It is inescapable in complex, 
dynamic, or inaccessible worlds. 

Uncertainty means that many of the simplifications that are possible with deductive 
inference are no longer valid. 

Probabilities express the agent's inability to reach a definite decision regarding the truth 
of a sentence. Probabilities summarize the agent's beliefs. 

Basic probability statements include prior probabilities and conditional probabilities 
over simple and complex propositions. 

The full joint probability distribution specifies the probability of each complete as- 
signment of values to random variables. It is usually too large to create or use in its 
explicit form. 

The axioms of probability constrain the possible assignments of probabilities to propo- 
sitions. An agent that violates the axioms will behave irrationally in some circum- 
stances. 

When the full joint distribution is available, it can be used to answer queries simply by 
adding up entries for the atomic events corresponding to the query propositions. 

Absolute independence between subsets of random variables might allow the full joint 
distribution to be factored into smaller joint distributions. This could greatly reduce 
complexity, but seldom occurs in practice. 

Bayes' rule allows unknown probabilities to be computed from known conditional 
probabilities, usually in the causal direction. Applying Bayes' rule with many pieces 
of evidence will in general run into the same scaling problems as does the full joint 
distribution. 

Conditional independence brought about by direct causal relationships in the domain 
might allow the full joint distribution to be factored into smaller, conditional distri- 
butions. The naive Bayes model assumes the conditional independence of all effect 
variables, given a single cause variable, and grows linearly with the number of effects. 

A wumpus-world agent can calculate probabilities for unobserved aspects of the world 
and use them to make better decisions than a purely logical agent makes. 
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- - - 

BIBLIOGRAPHICAL AND HISTORICAL NOTES 

Although games of chance date back at least to around 300 B.C., the mathematical analysis 
of odds and probability appears to be much more recent. Some work done by Mahaviracarya 
in India is dated to roughly the ninth century A.D. In Europe, the first attempts date only to 
the Italian Renaissance, beginning around 1500 A.D. The first significant systematic analy- 
ses were produced by Girolamo Cardano around 1565, but they remained unpublished until 
1663. By that time, the discovery by Blaise Pascal (in correspondence with Pierre Fermat 
in 1654) of a systematic way of calculating probabilities had for the first time established 
probability as a mathematical discipline. The first published textbook on probability was De 
Ratiociniis in Ludo Aleae (Huygens, 1657). Pascal also introduced conditional probability, 
which is covered in Huygens's textbook. The Rev. Thomas Bayes (1702-1761) introduced 
the rule for reasoning about conditional probabilities that was named after him. It was pub- 
lished posthumously (Bayes, 1763). Kolmogorov (1950, first published in Germail in 1933) 
presented probability theory in a rigorously axiomatic framework for the first time. Rknyi 
(1970) later gave an axiomatic presentation that took conditi~onal probability, rather than ab- 
solute probability, as primitive. 

Pascal used probability in ways that required both the objective interpretation, as a prop- 
erty of the world based on symmetry or relative frequency, alnd the subjective interpretation, 
based on degree of belief-the former in his analyses of probabilities in games of clhance, the 
latter in the famous "Pascal's wager" argument about the possible existence of God. How- 
ever, Pascal did not clearly realize the distinction between these two interpretations. The 
distinction was first drawn clearly by James Bernoulli (1654--1705). 

Leibnnz introduced the "classical" notion of probability as a proportion of enumerated, 
equally probable cases, which was also used by Bernoulli, although it was brought to promi- 
nence by Laplace (1749-1827). This notion is ambiguous between the frequency interpreta- 
tion and the subjective interpretation. The cases can be thought to be equally probable either 
because of a natural, physical symmetry between thenn, or simply because we do not have 
any knowledge that would lead us to consider one more probable than another. The use of 
this latter, subjective consideration to justify assigning equal probabilities IS kno~vn as the 
principle of indiflerence (Keynes, 192 1) .  

The debate between objectivists and subjectivists became sharper in the 20th century. 
Kolmogorov (1963), R. A. Fisher (1922), and Richard von Mises (1928) were advocates of 
the relative frequency interpretation. Karl Popper's (1959, first published in German in 1934) 
"propensity" interpretation traces relative frequencies to an underlying physical symmetry. 
Frank Ramsey (1931), Bruno de Finetti (1937), R. T. Cox (1946), Leonard Savage (1954), and 
Richard Jeffrey (1983) interpreted probabilities as the degrees of belief of specific individuals. 
Their analyses of degree of belief were closely tied to utilities and to behavior-specifically, 
to the willingness to place bets. Rudolf Carnap, foll~owing Leibniz and Laplace, offered 
a different kind of subjective interpretation of probability--not as any actual individual's 
degree of belief, but as the degree of belief that an idealized individual should have in a 
particular proposition a, given a particular body of evidence e. Carnap attempted to go further 
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CONFIRMATION than Leibniz or Laplace by making this notion of degree of confirmation mathematically 
precise, as a logical relation between a and e. The study of this relation was intended to 

INDUCTIVE LOGIC co~lstitute a mathematical discipline called inductive logic, analogous to ordinary deductive 
logic (Carnap, 1948, 1950). Carnap was not able to extend his inductive logic much beyond 
the propositional case, and Putnam (1963) showed that some fundamental difficulties would 
prevent a strict extension to languages capable of expressing arithmetic. 

The question of reference classes is closely tied to the attempt to find an inductive 
logic. The approach of choosing the "most specific" reference class of sufficient size was 
formally proposed by Reichenbach (1949). Various attempts have been made, notably by 
Henry Kyburg (1977, 1983), to formulate more sophisticated policies in order to avoid some 
obvious fallacies that arise with Reichenbach's rule, but such approaches remain somewhat 
ad hoe. More recent work by Bacchus, Grove, Halpern, and Koller (1992) extends Carnap's 
methods to first-order theories, thereby avoiding many of the difficulties associated with the 
straightfoward reference-class method. 

Bayesian probabilistic reasoning has been used in A1 since the 1960s, especially in 
medical diagnosis. It was used not only to make a diagnosis from available evidence, but 
also to select further questions and tests using the theory of information value (Section 16.6) 
when available evidence was inconclusive (Gorry, 1968; Gorry et al., 1973). One system 
outperformed human experts in the diagnosis of acute abdominal illnesses (de Dombal et al., 
1974). These early Bayesian systems suffered from a number of problems, however. Be- 
cause they lacked any theoretical model of the conditions they were diagnosing, they were 
vulnerable to unrepresentative data occurring in situations for which only a small sample was 
available (de Dombal et al., 1981). Even more fundamentally, because they lacked a con- 
cise formalism (such as the one to be described in Chapter 14) for representing and using 
conditional independence information, they depended on the acquisition, storage, and pro- 
cessing of enormous tables of probabilistic data. Because of these difficulties, probabilistic 
methods for coping with uncertainty fell out of favor in A1 from the 1970s to the mid-1980s. 
Developments since the late 1980s are described in the next chapter. 

The naive Bayes representation for joint distributions has been studied extensively in 
the pattern recognition literature since the 1950s (Duda and Hart, 1973). It has also been 
used, often unwittingly, in text retrieval, beginning with the work of Maron (1961). The 
probabilistic foundations of this technique, described further in Exercise 13.18, were elu- 
cidated by Robertson and Sparck Jones (1976). Dorningos and Pazzani (1997) provide an 
explanation for the surprising success of naive Bayesian reasoning even in domains where 
the independence assumptions are clearly violated. 

There are many good introductory textbooks on probability theory, including those by 
Chung (1979) and Ross (1988). Morris DeGroot (1989) offers a combined introduction to 
probability and statistics from a Bayesian standpoint, as well as a more advanced text (1970). 
Richard Hamming's (1991) textbook gives a mathematically sophisticated introduction to 
probability theory from the standpoint of a propensity interpretation based on physical sym- 
metry. Hacking (1975) and Hald (1990) cover the early history of the concept of probability. 
Bernstein (1996) gives an entertaining popular account of the story of risk. 
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13.1 Show from first principles that P ( a l b  A a )  = 1. 

13.2 Using the axioms of probability, prove that any probability distribution on a discrete 
random variable must sum to 1. 

13.3 Would it be rational for an agent to hold the three beliefs P(A)  = 0.4, P(B)  = 0.3, and 
P(A  V B) = 0.5? If so, what range of probabilities would be rational for the agent to hold for 
A A B? Make up a table like the one in Figure 13.2, and show how it supports your argument 
about rationality. Then draw another version of the ttable where P ( A  V B) = 0.7. Explain 
why it is rational to have this probability, even though the table shows one case that is a loss 
and three that just break even. (Hint: what is Agent 1 comnlitted to about the probability of 
each of the four cases, especially the case that is a loss?) 

13.4 This question deals with the properties of atomic events, as discussed on page 468. 

a. Prove that the disjunction of all possible atomic events is logically equivalent to true.  
[Hint: Use a proof by induction on the number sf random variables.] 

b. Prove that any proposition is logically equivalent to the disjunction of the atomic events 
that entail its truth. 

13.5 Consider the domain of dealing 5-card poker hands from a standard deck of 52 cards, 
under the assumption that the dealer is fair. 

a. How many atomic events are there in the joint probability distribution (i.e., how many 
5-card hands are there)? 

b. What is the probability of each atomic event? 

c. What is the probability of being dealt a royal straight flush? Four of a kind? 

13.6 Give11 the full joint distribution shown in Figure 13.3, calculate the following: 

a. P(toothache)  

b. P ( C a v i t y )  

c. P( Toothache (cav i t y )  

d. P(Cavi ty( toothache V catch).  

13.7 Show that the three forms of independence in Eqluation (13.8) are equivalent. 

13.8 After your yearly checkup, the doctor has bad news and good news. The bad news 
is that you tested positive for a serious disease and that the test is 99% accurate (i.e., the 
probability of testing positive when you do have the disease is 0.99, as is the probability of 
testing negative when you don't have the disease). The good news is that this is a rare disease, 
striking only 1 in 10,000 people of your age. Why is it good news that the disease is rare? 
What are the chances that you actually have the disease? 
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13.9 It is quite often useful to consider the effect of some specific propositions in the con- 
text of some general background evidence that remains fixed, rather than in the complete 
absence of information. The following questions ask you to prove more general versions of 
the product rule and Bayes' rule, with respect to some background evidence e: 

a. Prove the conditionalized version of the general product rule: 

P(X, Y le) = P(XIY, e)P(Y (e) . 
b. Prove the conditionalized version of Bayes' rule in Equation (13.10). 

13.10 Show that the statement 

is equivalent to either of the statements 

P(AIB,C) =P(A(C) and P(BIA,C)=P(B(C). 

13.11 Suppose you are given a bag containing n unbiased coins. You are told that n - 1 of 
these coins are normal, with heads on one side and tails on the other, whereas one coin is a 
fake, with heads on both sides. 

a. Suppose you reach into the bag, pick out a coin uniformly at random, flip it, and get a 
head. What is the (conditional) probability that the coin you chose is the fake coin? 

b. Suppose you continue flipping the coin for a total of k times after picking it and see k 
heads. Now what is the conditional probability that you picked the fake coin? 

c. Suppose you wanted to decide whether the chosen coin was fake by flipping it k times. 
The decision procedure returns FAKE if all k flips come up heads, otherwise it returns 
NORMAL. What is the (unconditional) probability that this procedure makes an error? 

13.12 In this exercise, you will complete the normalization calculation for the meningitis 
example. First, make up a suitable value for P(S(lM), and use it to calculate unnormalized 
values for P(MIS) and P(1M IS) (i.e., ignoring the P(S) term in the Bayes' rule expres- 
sion). Now normalize these values so that they add to 1. 

13.13 This exercise investigates the way in which conditional independence relationships 
affect the amount of information needed for probabilistic calculations. 

a. Suppose we wish to calculate P(hlel, ez) and we have no conditional independence 
information. Which of the following sets of numbers are sufficient for the calculation? 

<i> P(E1, E2), P(H), P(E1 IH), P(E2JH) 
(ii) P(E1, E2), P(H), P(E1, E2 IH) 

(iii> P(H), P(E1 (H), P(E2 (H) 
b. Suppose we know that P(E1 (H, E2) = P(E1(H) for all values of H, El, E2. Now 

which of the three sets are sufficient? 

13.14 Let X, Y, Z be Boolean random variables. Label the eight entries in the joint dis- 
tribution P(X, Y, Z) as a through h. Express the statement that X and Y are conditionally 
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independent given Z as a set of equations relating a through h. How many nonredundant 
equations are there? 

13.15 (Adapted from Pearl (1988).) Suppose you are a witness to a nighttime hit-and-run 
accident involving a taxi in Athens. All taxis in Athens are blue or green. You swear, under 
oath, that the taxi was blue. Extensive testing shows that, under the dim lighting conditions, 
discrimination between blue and green is 75% reliable. Is it possible to calculate the most 
likely color for the taxi? (Hint: distinguish carefully between the proposition that the taxi is 
blue and the proposition that it appears blue.) 

What about now, given that 9 out of 10 Athenian taxis are green? 

13.16 (Adapted from Pearl (1988).) Three prisoners, A, B, and C, are locked in their cells. It 
is common knowledge that one of them will be execute~d the next day and the others pardoned. 
Only the governor knows which one will be executed. Prisoner A asks the guard a favor: 
"Please ask the governor who will be executed, and then take a message to one of my friends 
B or C to lelt him know that he will be pardoned in the morning." 'The guard agrees, and comes 
back later and tells A that he gave the pardon message to B. 

What are A's chances of being executed, given tlhis information? (Answer this mathe- 
matically, not by energetic waving of hands.) 

13.17 Write out a general algorithm for answering queries of the form P(Causele),  using 
a naive Bayes distribution. You should assume that the evidence e may assign values to any 
subset of the effect variables. 

13.18 Text categorization is the task of assigning a given document to one of a fixed set of 
categories, on the basis of the text it contains. Naive Bayes models are often used for this 
task. In these models, the query variable is the document category, and the "effect" variables 
are the presence or absence of each word in the language; the: assumption is that words occur 
independently in documents, with frequencies determined by the document category. 

a. Explain precisely how such a model can be constructed, given as "training data" a set 
of documents that have been assigned to categories. 

b. Explain precisely how to categorize a new document. 

c. Is the independence assuinption reasonable? Discuss. 

13.19 In our analysis of the wumpus world, we used the fact that each square contains a pit 
with probability 0.2, independently of the contents of the other squares. Suppose instead that 
exactly N/5 pits are scattered uniformly at random among the N squares other than [I,  11. Are 
the variables Pi and Pk,l still independent? What is the joint distribution P(Pl,l, . . . , P4,4) 
now? Redo the calculation for the probabilities of pits in [1,3] and [2,2]. 
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In which we explain how to build network models to reason under uncertainty 
according to the laws of probability theory. 

Chapter 13 gave the syntax and semantics of probability theory. We remarked on the im- 
portance of independence and conditional independence relationships in simplifying proba- 
bilistic representations of the world. This chapter introduces a systematic way to represent 
such relationships explicitly in the form of Bayesian networks. We define the syntax and 
semantics of these networks and show how they can be used to capture uncertain knowledge 
in a natural and efficient way. We then show how probabilistic inference, although computa- 
tionally intractable in the worst case, can be done efficiently in many practical situations. We 
also describe a variety of approximate inference algorithms that are often applicable when 
exact inference is infeasible. We explore ways in which probability theory can be applied to 
worlds with objects and relations-that is, tofirst-order, as opposed to propositional, repre- 
sentations. Finally, we survey alternative approaches to uncertain reasoning. 

In Chapter 13, we saw that the full joint probability distribution can answer any question about 
the domain, but can become intractably large as the number of variables grows. Furthermore, 
specifying probabilities for atomic events is rather unnatural and can be very difficult unless 
a large amount of data is available from which to gather statistical estimates. 

We also saw that independence and conditional independence relationships among vari- 
ables can greatly reduce the number of probabilities that need to be specified in order to define 

BAYESIAN NETWORK the full joint distribution. This section introduces a data structure called a Bayesian network1 

to represent the dependencies among variables and to give a concise specification of any full 
joint probability distribution. 

This is the most common name, but there are many others, including belief network, probabilistic network, 
causal network, and knowledge map. In statistics, the term graphical model refers to a somewhat broader class 
that includes Bayesian networks. An extension of Bayesian networks called a decision network or influence 
diagram will be covered in Chapter 16. 
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A Bayesian network is a directed graph in which each node is annotated with quantita- 
tive probability information. The full specification is as follows: 

1. A set of random variables makes up the nodes of the network. Variables may be discrete 
or continuous. 

2. A set of directed links or arrows connects pairs of nodes. If there is an arrow from node 
X to node Y ,  X is said to be aparent of Y. 

3. Each node X,  has a conditional probability distrilsution P ( X ,  (Parents(X,)) that quan- 
tifies the effect of the parents on the node. 

4. The graph has no directed cycles (and hence is a directed, acyclic graph, or DAG). 

The topology of the network-the set of nodes and links-specifies the conditional indepen- 
dence relationships that hold in the domain, in a way that will be made precise shortly. The 
intuitive meaning of an arrow in a properly constructed network is usually that X has a direct 
injuence on Y. It is usually easy for a domain expert to decide what direct influences exist 
in the domain-much easier, in fact, than actually specifying the probabilities themselves. 
Once the topology of the Bayesian network is laid out, we need only specify a conditional 
probability distribution for each variable, given its parents. We will see that the combination 
of the topology and the conditional distributions suffices to specify (implicitly) the full joint 
distribution for all the variables. 

Recall the simple world described in Chapter 13, iconsisting of the variables Toothache, 
Cavzty, Catch, and Weather. We argued that Weather is independent of the other variables; 
furthermore, we argued that Toothache and Catch are conditionally independent, given 
Cavity. These relationships are represented by the Bayesian network structure shown in 
Figure 14.1. Formally, the conditional independence of Toothache and Catch given Cavsty 
is indicated by the absence of a link between Toothache and Catch. Intuitively, the network 
represents the fact that Cavity is a direct cause of Toothache and Catch, whereas no direct 
causal relationship exists between Toothache and Catch. 

Now consider the following example, which is just a little more con~plex. You have 
a new burglar alarm installed at home. It is fairly reliable at detecting a burglary, but also 
responds on occasion to minor earthquakes. (This example is due to Judea Pearl, a resident 
of Los Angeles-hence the acute interest in earthquakes.) You also have two neighbors, John 
and Mary, who have promised to call you at work when they hear the alarm. John always calls 

Figure 14.1 A simple Bayesian network in which Weather is independent of the other 
three variables and Toothache and Catch are conditionally independent, given Cavity. 
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Figure 14.2 A typical Bayesian network, showing both the topology and the conditional 
probability tables (CPTs). In the CPTs, the letters B, E, A, J, and M stand for Burglary, 
Earthquake, Alarm, JohnCalls, and Man~Calls, respectively. 

when he hears the alarm, but sometimes confuses the telephone ringing with the alarm and 
calls then, too. Mary, on the other hand, likes rather loud music and sometimes misses the 
alarm altogether. Given the evidence of who has or has not called, we would like to estimate 
the probability of a burglary. The Bayesian network for this domain appears in Figure 14.2. 

For the moment, let us ignore the conditional distributions in the figure and concentrate 
on the topology of the network. In the case of the burglary network, the topology shows that 
burglary and earthquakes directly affect the probability of the alann's going off, but whether 
John and Mary call depends only on the alarm. The network thus represents our assumptions 
that they do not perceive any burglaries directly, they do not notice the minor earthquakes, 
and they do not confer before calling. 

Notice that the network does not have nodes corresponding to Mary's currently listening 
to loud music or to the telephone ringing and confusing John. These factors are summarized 
in the uncertainty associated with the links from Alarm to JohnCalls and MaryCalls. This 
shows both laziness and ignorance in operation: it would be a lot of work to find out why those 
factors would be more or less likely in any particular case, and we have no reasonable way to 
obtain the relevant information anyway. The probabilities actually summarize a potentially 
injnite set of circumstances in which the alarm might fail to go off (high humidity, power 
failure, dead battery, cut wires, a dead mouse stuck inside the bell, etc.) or John or Mary 
might fail to call and report it (out to lunch, on vacation, temporarily deaf, passing helicopter, 
etc.). In this way, a small agent can cope with a very large world, at least approximately. The 
degree of approximation can be improved if we introduce additional relevant information. 

Now let us turn to the conditional distributions shown in Figure 14.2. In the figure, 
CONDITIONAL PRosAslL,TyTABLE each distribution is shown as a conditional probability table, or CPT. (This form of table 

can be used for discrete variables; other representations, including those suitable for contin- 
uous variables, are described in Section 14.2.) Each row in a CPT contains the conditional 

CONDITIONING CASE probability of each node value for a conditioning case. A conditioning case is just a possible 
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combination of values for the parent nodes-a miniature atomic event, if you like. Each row 
must sum to 1, because the entries represent an exhaustive set of cases for the variable. For 
Boolean variables, once you know that the probability of a true value is p, the probability 
of false must be 1 - p, so we often omit the second number, as in Figure 14.2. In general, 
a table for a Boolean variable with k Boolean parents contains 2k independently specifiable 
probabilities. A node with no parents has only one rolw, representing the prior probabilities 
of each possible value of the variable. 

The previous section described what a network is, biut not what it means. There are two 
ways in which one can understand the semantics of Elayesian networks. The first is to see 
the network as a representation of the joint probability distribution. The second is to view 
it as an encoding of a collection of conditional independence statements. The two views are 
equivalent, but the first turns out to be helpful in understanding how to construct networks, 
whereas the second is helpful in designing inference procedures. 

Representing the full joint distribution 

A Bayesian network provides a complete description of the domain. Every entry ]in the full 
joint probability distribution (hereafter abbreviated as "joint") can be calculated from the 
information in the network. A generic entry in the joint distribution is the probability of a 
conjunction of particular assignments to each variable, such as P ( X 1  = X I  A . . . A X ,  = x,). 
We use the notation P(xl, . . . , x,) as an abbreviation for this. The value of this entry is 
given by the formula 

where parents(Xi)  denotes the specific values of the variables in Parents(Xi) .  Thus, each 
entry in the joint distribution is represented by the product of the appropriate elements of the 
conditional probability tables (CPTs) in the Bayesian network. The CPTs therefore provide 
a decomposed representation of the joint distribution. 

To illustrate this, we can calculate the probability that thr: alarm has sounded, but neither 
a burglary nor an earthquake has occurred, and both John and Mary call. We use single-letter 
names for the variables: 

P ( j / \ r n A a ~ l b A l e )  
= P ( j j a ) P ( m l a ) P ( a l l b  A i e ) P ( l b ) P ( l e )  
= 0.90 x 0.70 x 0.001 x 0.999 x 0.998 = 0.0006'2. 

Section 13.4 explained that the full joint distribution can be used to answer any query 
about the domain. If a Bayesian network is a representation (of the joint distribution, then it 
too can be used to answer any query, by summing all the relevant joint entries. Section 14.4 
explains how to do this, but also describes methods that are much more efficient. 
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A method for constructing Bayesian networks 

Equation (14.1) defines what a given Bayesian network means. It does not, however, explain 
how to construct a Bayesian network in such a way that the resulting joint distribution is a 
good representation of a given domain. We will now show that Equation (14.1) implies certain 
conditional independence relationships that can be used to guide the knowledge engineer in 
constructing the topology of the network. First, we rewrite the joint distribution in terms of a 
conditional probability, using the product rule (see Chapter 13): 

Then we repeat the process, reducing each conjunctive probability to a conditional probability 
and a smaller conjunction. We end up with one big product: 

CHAIN RULE This identity holds true for any set of random variables and is called the chain rule. Compar- 
ing it with Equation (14.1), we see that the specification of the joint distribution is equivalent 
to the general assertion that, for every variable Xi in the network, 

provided that Parents(Xi) { X i - l ,  . . . , XI). This last condition is satisfied by labeling 
the nodes in any order that is consistent with the partial order implicit in the graph structure. 

What Equation (14.2) says is that the Bayesian network is a correct representation of 
the domain only if each node is conditionally independent of its predecessors in the node 
ordering, given its parents. Hence, in order to construct a Bayesian network with the correct 
structure for the domain, we need to choose parents for each node such that this property 
holds. Intuitively, the parents of node X, should contain all those nodes in XI, . . . , X,-l 
that directly influence X,. For example, suppose we have completed the network in Fig- 
ure 14.2 except for the choice of parents for MaryCalls. MaryCalls is certainly influenced 
by whether there is a Burglary or an Earthquake, but not directly influenced. Intuitively, 
our knowledge of the domain tells us that these events influence Mary's calling behavior only 
through their effect on the alarm. Also, given the state of the alarm, whether John calls has 
no influence on Mary's calling. Formally speaking, we believe that the following conditional 
independence statement holds: 

P(MaryCa1lsI JohnCalls, Alarm, Earthquake, Burglary) = P(MaryCal1slAlarm) . 

Compactness and node ordering 

As well as being a complete and nonredundant representation of the domain, a Bayesian net- 
work can often be far more compact than the full joint distribution. This property is what 
makes it feasible to handle domains with many variables. The compactness of Bayesian net- 

LOCALLY 
STRUCTURED works is an example of a very general property of locally structured (also called sparse) 
SPARSE systems. In a locally structured system, each subcomponent interacts directly with only a 

bounded number of other components, regardless of the total number of components. Local 
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structure is usually associated with linear rather than exponential growth in complexity. In the 
case of Bayesian networks, it is reasonable to suppose that in most domains each random vari- 
able is directly influenced by at most k others, for sornle constant k. If we assume :n Boolean 
variables for simplicity, then the amount of information needed to specify each conditional 
probability table will be at most 2humbers,  and the complete network can be specified by 
n2k numbers. In contrast, the joint distribution contains 2n numbers. To make this concrete, 
suppose we have n = 30 nodes, each with five parents (k = 5). Then the Bayesian network 
requires 960 numbers, but the full joint distribution requires over a billion. 

There are domains in which each variable can be influenced directly by all the others, 
so that the network is fully connected. Then specifying the conditional probability tables re- 
quires the same amount of information as specifying the joint distribution. In some domains, 
there will be slight dependencies that should strictly be included by adding a new link. But 
if these dependencies are very tenuous, then it may not be worth the additional complexity 
in the network for the small gain in accuracy. For example, one might object to our burglary 
network on the grounds that if there is an earthquake, then John and Mary would not call 
even if they heard the alarm, because they assume that the earthquake is the cause. Whether 
to add the link from Earthquake to JohnCalls and MtaryCnlls (and thus enlarge the tables) 
depends on comparing the importance of getting more accurate probabilities with the cost of 
specifying the extra information. 

Even in a locally structured domain, constructing a locally structured Bayesian network 
is not a trivial problem. We require not only that each variable be directly influenced by only 
a few others, but also that the network topology actually refllect those direct influences with 
the appropriate set of parents. Because of the way that the construction procedure works, the 
"direct influencers" will have to be added to the network first if they are to become parents 
of the node they influence. Therefore, the correct order in which to add nodes is to add the 
"root causes" jirst, then the variables they influence, and so on, until we reach the "leaves," 
which have no direct causal influence on the other variables. 

What happens if we happen to choose the wrong order? Let us consider the burglary 
example again. Suppose we decide to add the nodes in the order MaryCalls, JohnCalls, 
Alarm, Burglary, Earthquake. Then we get the somewl~at more complicated network 
shown in Figure 14.3(a). The process goes as follows: 

e Adding Mary Calls: No parents. 

e Adding JohnCalls: If Mary calls, that probably means the alarm has gone off, which 
of course would make it more likely that John calls. Therefore, JohnCalls needs 
Mary Calls as a parent 

e Adding Alarm: Clearly, if both call, it is more likely that the alarm has gone off than if 
just one or neither call, so we need both MaryCalls and JohnCalls as parents. 

e Adding Burglary: If we know the alarm state, then the call from John or Mary might 
give us information about our phone ringing or M,ary's music, but not about burglary: 

P(Burglary(Alarm, JohnCalls, MaryCalls) = ED(BurglarylAlarm) 

Hence we need just Alarm as parent. 
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JohnCalls 

Alarm 

Figure 14.3 Network structure depends on order of introduction. In each network, we 
have introduced nodes in top-to-bottom order. 

Adding Earthquake: if the alarm is on, it is more likely that there has been an earth- 
quake. (The alarm is an earthquake detector of sorts.) But if we know that there has 
been a burglary, then that explains the alarm, and the probability of an earthquake would 
be only slightly above normal. Hence, we need both Alarm and Burglary as parents. 

The resulting network has two more links than the original network in Figure 14.2 and re- 
quires three more probabilities to be specified. What's worse, some of the links represent 
tenuous relationships that require difficult and unnatural probability judgments, such as as- 
sessing the probability of Earthquake, given Burglary and Alarm. This phenomenon is 
quite general and is related to the distinction between causal and diagnostic models intro- 
duced in Chapter 8. If we try to build a diagnostic model with links from symptoms to causes 
(as from Mary Calls to Alarm or Alarm to Burglary), we end up having to specify additional 
dependencies between otherwise independent causes (and often between separately occurring 
symptoms as well). Ifwe stick to a causal nzodel, we end up having to specify fewer numbers, 
and the numbers will often be easier to come up with. In the domain of medicine, for exam- 
ple, it has been shown by Tversky and Kahneman (1982) that expert physicians prefer to give 
probability judgments for causal rules rather than for diagnostic ones. 

Figure 14.3(b) shows a very bad node ordering: Mary Calls, JohnCalls, Earthquake, 
Burglary, Alarm. This network requires 31 distinct probabilities to be specified-exactly 
the same as the full joint distribution. It is important to realize, however, that any of the three 
networks can represent exactly the same joint distribution. The last two versions simply fail 
to represent all the conditional independence relationships and hence end up specifying a lot 
of unnecessary numbers instead. 
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Conditiorlal independence relations in Bayesian networks 

We have provided a "numerical" semantics for Bayesian networks in terms of the represen- 
tation of the full joint distribution, as in Equation (114.1). Using this semantics to derive 
a method for constructing Bayesian networks, we were led to the consequence that a node 
is conditionally independent of its predecessors, given its parents. It turns out that we can 
also go in the other direction. We can start from a "to~pological" semantics that specifies the 
conditional independence relationships encoded by the graph structure, and from these we 
can derive the "numerical" semantics. The topological semantics is given by either of the 
following specifications, which are equivalent:' 

DESCENDANTS 1. A node is conditionally independent of its non-descendants, given its parents. For 
example, in Figure 14.2, JohnCalls is independent of .Burglary and Earthquake, given 
the value of Alarm. 

2. A node is conditionally independent of all otheir nodes in the network, given its par- 
MARKOV BUNKET ents, children, and children's parents-that is, given its Markov blanket. For example, 

Burglary is independent of JohnCalls and MaryCalls, given Alarm and Eartl~quake. 

These specifications are illustrated in Figure 14.4. From these conditional independence 
assertions and the CPTs, the full joint distribution can be reconstructed; thus, the "numerical" 
semantics and the "topological" semantics are equivalent. 

( 4  

Figure 14.4 (a) A node X i s  conditionally 
Zijs) given its parents (the Uis shown in the 
independent of all other nodes in the network 

There is also a general topological criterion called d-separation for deciding whether a set of nodes X is 
independent of another set Y, given a third set Z. The criterion is rather complicated and is not needed for 
deriving the algorithms in this chapter, so we omit it. Details may be found in Russell and Nowig (1995) or 
Pearl (1988). Shachter (1998) gives a more intuitive method of ascertaining d-separation. 
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Even if the maximum number of parents k is smallish, filling in the CPT for a node requires 
up to 0(2') numbers and perhaps a great deal of experience with all the possible conditioning 
cases. In fact, this is a worst-case scenario in which the relationship between the parents and 
the child is completely arbitrary. Usually, such relationships are describable by a canonical 

CANONICAL 
DISTRIBUTION distribution that fits some standard pattern. In such cases, the complete table can be specified 

by naming the pattern and perhaps supplying a few parameters-much easier than supplying 
an exponential number of parameters. 

DETERMINISTIC 
NODES The simplest example is provided by deterministic nodes. A deterministic node has 

its value specified exactly by the values of its parents, with no uncertainty. The relationship 
can be a logical one: for example, the relationship between the parent nodes Canadian, US, 
Mexican and the child node NorthAmel-ican is simply that the child is the disjunction of 
the parents. The relationship can also be numerical: for example, if the parent nodes are the 
prices of a particular model of car at several dealers, and the child node is the price that a 
bargain hunter ends up paying, then the child node is the minimum of the parent values; or 
if the parent nodes are the inflows (rivers, runoff, precipitation) into a lake and the outflows 
(livers, evaporation, seepage) from the lake and the child is the change in the water level 
of the lake, then the value of the child is the difference between the inflow parents and the 
outflow parents. 

Uncertain relationships can often be characterized by so-called "noisy" logical rela- 
NOISY-OR tionships. The standard example is the noisy-OR relation, which is a generalization of the 

logical OR. In propositional logic, we might say that Fever is true if and only if Cold, Flu, 
or Malaria is true. The noisy-OR model allows for uncertainty about the ability of each 
parent to cause the child to be true-the causal relationship between parent and child may 
be inhibited, and so a patient could have a cold, but not exhibit a fever. The model makes 
two assumptions. First, it assumes that all the possible causes are listed. (This is not as strict 

LEAK NODE as it seems, because we can always add a so-called leak node that covers "miscellaneous 
causes.") Second, it assumes that inhibition of each parent is independent of inhibition of any 
other parents: for example, whatever inhlbits Malaria from causing a fever is independent 
of whatever inhibits Flu from causing a fever. Given these assumptions, Fever is false if and 
only if all its true parents are inhibited, and the probability of this is the product of the inhibi- 
tion probabilities for each parent. Let us suppose these individual inhibition probabilities are 
as follows: 

P(7feverJ cold, l f lu ,  lmalaria)  = 0.6 , 
P ( ~ f e v e r l ~ c o l d ,  flu, lmalaria)  = 0.2 , 
P(lfeverlicold, ~ % u ,  malaria) = 0.1 . 

Then, from this information and the noisy-OR assumptions, the entire CPT can be built. The 
following table shows how: 
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c o l d  Flu ~ a l a n a l  P(Fever)  1 P(l17ever) 1 

In general, noisy logical relationships in which a variable depends on k parents can be de- 
scribed using O(k) parameters instead of 0(2k)  for the full conditional probability table. 
This makes assessment and learning much easier. For example, the CPCS network (Prad- 
han et al., 1994) uses noisy-OR and noisy-MAX distributions to model relationships among 
diseases and symptoms in internal medicine. With 448 nodes and 906 links. it requires only 
8,254 values instead of 133,931,430 for a network with1 full CPTs. 

Bayesian nets with continuous variables 

Many real-world problems involve continuous quantities, such as height, mass, temperature, 
and money; in fact, much of statistics deals with random variables whose domains are contin- 
uous. By definition, continuous variables have an infinite number of possible values, so it is 
impossible to specify conditional probabilities explicitly for each value. One possible way to 

DISCRETIZATION handle continuous variables is to avoid them by using discretnzation-that is, dividing up the 
possible values into a fixed set of intervals. For example, telrlperatures could be divided into 
(<O°C), (0°C-100°C), and (>lOO°C). Discretization is sometimes an adequate solution, 
but often results in a considerable loss of accuracy and very large CPTs. The other solution 
is to define standard families of probability density functions (see Appendix A) that are spec- 

PARAMETERS ified by a finite number of parameters. For example, a Gaussian (or normal) distribution 
N ( p ,  a 2)  (z) has the mean p and the variance a2 as parameters. 

A network with both discrete and continuous vasiables is called a hybrid Bayesian 
HYBRIDBAYESIAN NETWORK network. To specify a hybrid network, we have to specify two new kinds of distributions: 

the conditional distribution for a continuous variable given discrete or continuous parents; 
and the conditional distribution for a discrete variable given continuous parents. Consider the 
simple example in Figure 14.5, in which a customer buys some fruit depending on its cost, 
which depends in turn on the size of the harvest and whether the goveri~ment's subsidy scheme 
is operating. The variable Cost is continuous and has continuous and discrete parents; the 
variable Bugs is discrete and has a continuous parent. 

For the Cost variable, we need to specify P( Cost 1 Harvest, Subsidy). The discrete par- 
ent is handled by explicit enumeration-that is, specifying both P(Cost1 Harvest, .subsidy) 
and P( Cod 1 Harvest, lsubsidy) . To handle Harvest, ,we specify how the distribution over 
Ithe cost c depends on the continuous value h of Harvest. In other words, we specify the 
parameters of the cost distribution as a function of h. The most common choice is the linear 
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Figure 14.5 A simple network with discrete variables (Subsidy and Buys) and continuous 
variables (Harvest and Cost). 

(a> (b) (c) 

Figure 14.6 The graphs in (a) and (b) show the probability distribution over Cost as a 
function of Harvest size, with Subsidy true and false respectively. Graph (c) shows the 
distribution P(Cost1 Harvest), obtained by summing over the two subsidy cases. 

LINEARGAU~SIAN Gaussian distribution, in which the child has a Gaussian distribution whose mean p varies 
linearly with the value of the parent and whose standard deviation a is fixed. We need two 
distributions, one for subsidy and one for ~subsidy, with different parameters: 

1 -; (c-"::'") 

P(clh, subsidy) = N(ath + bt,o;)(c) = --- 
q ~ z ; ;  

1 
c - ( a f h + b f )  1 -;( 

P(cl h, lsubsidy) = N ( a f  h + b f  , o j )  (c) = --- af 
O f &  

1 
For this example, then, the conditional distribution for Cost is specified by naming the linear 
Gaussian distribution and providing the parameters at, bt , at, a f ,  b f ,  and o f .  Figures 14.6(a) 
and (b) show these two relationships. Notice that in each case the slope is negative, because 
price decreases as supply increases. (Of course, the assumption of linearity implies that the 
price becomes negative at some point; the linear model is reasonable only if the harvest size 
is limited to a narrow range.) Figure 14.6(c) shows the distribution P(cj h), averaging over 
the two possible values of Subsidy and assuming that each has prior probability 0.5. This 
shows that even with very simple models, quite interesting distributions can be represented. 

The linear Gaussian conditional distribution has some special properties. A network 
containing only continuous variables with linear Gaussian distributions has a joint distribu- 
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0 2 4 6 8 1 0 1 2  

Cost c Cost c 

(a> 

Figure 14.7 (a) A probit distribution for the 
and a = 1 .O. (b) A logit distribution with the same para~meters. 

tion that is a multivariate Gaussian distribution over all1 the variables (Exercise 1 4 . 3 . ~  (A 
multivariate Gaussian distribution is a surface in more than olne dimension that has a peak at 
the mean (in n dimensions) and drops off on all sides.) When discrete variables iire added 
(provided that no discrete variable is a child of a continuous variable), the network defines 

CONDITIONAL 
GAUSSIAN a conditional Gaussian, or CG, distribution: given any assignment to the discrete variables, 

the distribution over the continuous variables is a multiTvariate Gaussian. 
Now we turn to the distributions for discrete variables with continuous parents. Con- 

sider, for example, the Buys node in Figure 14.5. It seems reasonable to assume that the 
customer will buy if the cost is low and will not buy if it is high and that the probability of 
buying varies smoothly in some intermediate region. In other words, the conditional distribu- 
tion is like a "soft" threshold function. One way to make soft thresholds is to use the integral 
of the standard normal distribution: 

Then the probability of Buys given Cost might be 

P(buys I Cost = c)  = @((-c + p ) / a )  

which means that the cost threshold occurs around p, the width of the threshold region is 
proportional to a, and the probability of buying decreas~es as cost increases. 

PROBIT 
DISTRIBUTION This probit distribution is illustrated in Figure 14.7(a). The form can be justified 

by proposing that the underlying decision process has a hard threshold, but that the precise 
location of the threshold is subject to random Gaussian noise. An alternative to the probit 

LOGIT DISTRIBUTION model is the logit distribution, which uses the sigmoid function to produce a soft threshold: 
SlGMOlD FUNCTION 1 

P(buys / Cost =c) = 
1 + e ~ ~ ( - a + )  ' 

It follows that inference in linear Gaussian networks takes only 0(n3) time in the worst case, regardless of the 
network topology. In Section 14.4, we will see that inference for networks of discrete variables is NP-hard. 
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This is illustrated in Figure 14.7(b). The two distributions look similar, but the logit actu- 
ally has much longer "tails." The probit is often a better fit to real situations, but the logit is 
sometimes easier to deal with mathematically. It is used widely in neural networks (Chap- 
ter 20). Both probit and logit can be generalized to handle multiple continuous parents by 
taking a linear combination of the parent values. Extensions for a multivalued discrete child 
are explored in Exercise 14.6. 

The basic task for any probabilistic inference system is to compute the posterior probability 
EVENT distribution for a set of query variables, given some observed event-that is, some assign- 

ment of values to a set of evidence variables. We will use the notation introduced in Chap- 
ter 13: X denotes the query variable; E denotes the set of evidence variables E l ,  . . . , Em, and 
e is a particular observed event; Y will denote the nonevidence variables Yl, . . . , (some- 

HIDDEN VARIABLES times called the hidden variables). Thus, the complete set of variables X = {X} U E U Y. A 
typical query asks for the posterior probability distribution P ( x ( ~ )  .4 

In the burglary network, we might observe the event in which JohnCalls = true and 
MaryCalls = true. We could then ask for, say, the probability that a burglary has occurred: 

P(Burglary1 JohnCalls = true, Mary Calls = true) = (0.284,0.716) . 
In this section we will discuss exact algorithms for computing posterior probabilities and 
will consider the complexity of this task. It turns out that the general case is intractable, so 
Section 14.5 covers methods for approximate inference. 

Inference by enumeration 

Chapter 13 explained that any conditional probability can be computed by summing terms 
from the full joint distribution. More specifically, a query P(X1e) can be answered using 
Equation (13.6), which we repeat here for convenience: 

P(Xje) = a P(X, e) = a P(X, e, y) . 
Y 

Now, a Bayesian network gives a complete representation of the full joint distribution. More 
specifically, Equation (14.1) shows that the terms P ( x ,  e, y) in the joint distribution can be 
written as products of conditional probabilities from the network. Therefore, a query can be 
answered using a Bayesian network by computing sums of products of conditional probabibi- 
ties from the network. 

In Figure 13.4, an algorithm, ENUMERATE-JOINT-ASK, was given for inference by 
enumeration from the full joint distribution. The algorithm takes as input a full joint distribu- 
tion P and looks up values therein. It is a simple matter to modify the algorithm so that it takes 

* We will assume that the query variable is not among thc evidence variables; if it is, then the posterior distribu- 
tion for X simply gives probability 1 to the observed value. For simplicity, we have also assumed that the query 
is just a single variable. Our algorithms can be extended easily to handle a joint query over several variables. 
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as input a Bayesian network bn and "looks up" joint entries bly multiplying the corresponding 
CPT entries from bn. 

Consider the query P(Burglary1 JohnCalls = true, &Jury Calls = true). The hidden 
variables for this query are Earthquake and Alarm. From Equation (13.6), using initial 
letters for the variables in order to shorten the expressions, we have5 

The semantics of Bayesian networks (Equation (14.1)) then gives us an expression in terms 
of CPT entries. For simplicity, we will do this just for Burglizry = true: 

To compute this expression, we have to add four terms, eaclh computed by multiplying five 
numbers. In the worst case, where we have to sum out almost all the variables, the complexity 
of the algorithm for a network with n Boolean variables is O(n2n). 

An improvement can be obtained from the following simple observations: the P(b) 
term is a constant and can be moved outside the summaltions over a and e, and the 13(e) term 
can be moved outside the summation over a. Hence, we have 

This expression can be evaluated by looping through the variables in order, multiplying CPT 
entries as we go. For each summation, we also need to loop over the variable's possible 
values. The structure of this computation is shown in Figure 14.8. Using the numbers from 
Figure 14.2, we obtain P(b1 j, m) = a x 0.00059224. 'The co~responding computation for ~b 
yields a x 0.0014919; hence 

That is, the chance of a burglary, given calls from both neighbors, is about 28%. 
The evaluation process for the expression in Equation (14.3) is shown as an expression 

tree in Figure 14.8. The ENUMERATION-ASK algorithm in Figure 14.9 evaluates such trees 
using depth-first recursion. Thus, the space complexity of ENUMERATION-ASK is only lin- 
ear in the number of variables-effectively, the algorithm sums over the full joint distribution 
without ever constructing it explicitly. Unfortunately, its time complexity for a network with 
n Boolean variables is always 0(2*)-better than the 1O(n2") for the simple approach de- 
scribed earlier, but still rather grim. One thing to note about the tree in Figure 14.8 is that it 
makes explicit the repeated subexpressions that are evaluated lby the algorithm. The products 
P ( j l a )  P(mla)  and P ( j l 1 a )  P(ml1a)  are computed twice, once for each value of e. The 
next section describes a general method that avoids such wasted computations. 

"n expression such as xe P(a, e) means to sum P ( A  = a, E = e) for all possible values of e. There is an 
ambiguity in that P(e)  is used to mean both P ( E  = true) and P(E  = e) ,  but it should be clear from context 
which is intended; in particular, in the context of a sum the latter is i~~tended. 
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Figure 14.8 The structure of the expression shown in Equation (14.3). The evaluation pro- 
ceeds top-down, multiplying values along each path and summing at the "+" nodes. Notice 
the repetition of the paths for j and m. 

function ENUMERATION-AsK(X, e, bn) returns a distribution over X 
inputs: X, the query variable 

e, observed values for variables E 
bn, a Bayes net with variables {X} U E U Y / * Y = hidden variables * / 

Q(X) t a distribution over X, initially empty 
for each value xi of X do 

extend e with value xi for X 
Q ( x ~ )  + ENUMERATE-ALL(~ARS[~~],  e) 

return NORMALIZE(Q(X)) 

function ENUMERATE-ALL(VUTS, e) returns a real number 
if EMPTY?(UUTS) then return 1.0 
Y +- F~RsT(vars) 
if Y has value y in e 

then return P(y I Parents(Y)) x ENUMERATE-ALL(REST(VU~~), e) 
else return x, P(y 1 Parent@)) x ENUMERATE-ALL(REST(VU~S), e,) 

where e, is e extended with Y = y 

Figure 14.9 The enumeration algorithm for answering queries on Bayesian networks. 
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The variable elimination algorithm 

The enumeration algorithm can be improved substantially by eliminating repeated calcula- 
tions of the kind illustrated in Figure 14.8. The idea is simple: do the calculation once and 
save the results for later use. This is a form of dynamic programming. There are several ver- 

VARIABLE 
ELIMINATION 

sions of this approach; we present the variable elimination algorithm, which is the simplest. 
Variable elimination works by evaluating expressions such as Equation (14.3) in right-to-left 
order (that is, bottom-up in Figure 14.8). Intermediate results ;are stored, and summations over 
each variable are done only for those portions of the expression that depend on the variable. 

Let us illustrate this process for the burglary network. We evaluate the expression 

Notice that we have annotated each part of the expression with the name of the associated 
FACTORS variable; these parts are called factors. The steps are as follo~ws: 

a The factor for 111-, P(mla), does not require sum~ming over M (because M's value is 
already fixed). We store the probability, given each value of a, in a two-element vector, 

(The fM means that M was used to produce f.) 
a Similarly, we store the factor for J as the two-element vector f j(A).  
a The factor for A is P(alB, e), which will be a 2 x 2 x 2 matrix fA(A, B, E). 

Now we must sum out A from the product of these three factors. This will give us a 
2 x 2 matrix whose indices range over just B and E. Tiye put a bar over A in the name 
of the matrix to indicate that A has been summed out: 

f j i jM(~ ,  E )  = C ~ A ( u ,  B,  E )  x f ~ ( a )  x ~ M ( u )  
a 

= f ~ ( a ,  B, E )  x f ~ ( a )  x f ~ ( I a )  

+ fA (la, B, E) x fj(1a) x l f & ' ( l t ~ )  . 
POINTWISE 
PRODUCT The multiplication process used here is called a pointwise product and will be de- 

scribed shortly. 
We process E in the same way: sum out E from the product of fE(E) and fAJM (B, E): 

~ E A J M  (B) = f~ (el x f i ~  J M  (B, e) 

+ f ~ ( 1 e )  x f*jnn(B, ye) . 
Now we can compute the answer simply by multiplying the factor for B (i.e., k ( B )  = 
P(B)), by the accumulated matrix fEiTJM (B): 

P(Blj, m) = a f~ (B) x f ~ ~ j n n ( B )  . 
Exercise 14.7(a) asks you to check that this process yields the correct answer. 

Examining this sequence of steps, we see that there are two basic computational oper- 
ations required: pointwise product of a pair of factors, and sumrning out a variable from a 
product of factors. 
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The pointwise product is not matrix multiplication, nor is it element-by-element multi- 
plication. The pointwise product of two factors fl and f2 yields a new factor f whose variables 
are the union of the variables in fl and f2. Suppose the two factors have variables Yl, . . . , Yk 
in common. Then we have 

f ( x l  . . .  x j , Y l . .  .Yk,Z1. .  .Z') = f l (X1 . .  . X j , Y l . .  .Yk) f2(Y1 . . .  Yk,Z, .  . . Z 2 ) .  

If all the variables are binary, then fi and f2 have 2j+k and 2"' entries respectively, and 
the pointwise product has 2jf "' entries. For example, given two factors fl (A, B )  and 
f2(B, C )  with probability distributions shown below, the pointwise product fi x f2 is given 
as f3(A, B, C):  

Summing out a variable from a product of factors is also a straightforward computation. 
The only trick is to notice that any factor that does not depend on the variable to be summed 
out can be moved outside the summation process. For example, 

Now the pointwise product inside the summation is computed, and the variable is summed 
out of the resulting matrix: 

e 

Notice that matrices are not multiplied until we need to sum out a variable from the accumu- 
lated product. At that point, we multiply just those matrices that include the variable to be 
summed out. Given routines for pointwise product and summing out, the variable elimination 
algorithm itself can be written quite simply, as shown in Figure 14.10. 

Let us consider one more query: P(JohnCallslBurg1ary = true). As usual, the first 
step is to write out the nested summation: 

e a m 

If we evaluate this expression from right to left, we notice something interesting: Cm P(mJa)  
is equal to 1 by definition! Hence, there was no need to include it in the first place; the vari- 
able M is irrelevant to this query. Another way of saying this is that the result of the query 
P(JohnCalls/ Burglary = true) is unchanged if we remove Mary Calls from the network al- 
together. In general, we can remove any leaf node that is not a query variable or an evidence 
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function ELIMINATION-AsK(X ,  e, bn) returns a distribution over .X 
inputs: X, the query variable 

e, evidence specified as an event 
bn, a Bayesian network specifying joint distribution P(X1 , . . . , X,) 

factors + [I; vars +- R E V E R S E ( V A R S [ ~ ~ ] )  
for each var in vars do 

factors +- [ M A K E - F A C T O R ( ~ ~ ~ ,  e) (factors] 
if var is a hidden variable then factors +- S U M - ~ U T ( V ~ ~ ,  factors) 

return ~ ~ R M A L I ~ E ( P ~ I N T w I ~ E - P R o D u c T C ~ ~ ~ ~ ~ ~ ~ ) )  

Figure 14.10 The variable elimination algorithm for answering queries on Bayesian net- 
works. 

variable. After its removal, there may be some more le'af nodes, and these too may be irrele- 
vant. Continuing this process, we eventually find that every variable that is not an ancestor 
of a query variable or evidence variable is irrelevant to the query. A variable elimination 
algorithm cam therefore remove all these variables befoire evaluating the query. 

The complexity of exact inference 

We have argued that variable elimination is more efficieint than enumeration because it avoids 
repeated computations (as well as dropping irrelevant variables). The time and space re- 
quirements of variable elimination are dominated by the size of the largest factor constructed 
during the operation of the algorithm. This in turn is determined by the order of elimination 
of variables and by the structure of the network. 

The burglary network of Figure 14.2 belongs to the family of networks in which there 
is at most one undirected path between any two nodes in the network. These are called singly 

SINGLY CONNECTED connected networks or polytrees, and they have a particularly nice property: The time and 
POLYTREES space complexity of exact inference in polytrees is linear in the size of the network. I-Iere, the 

size is defined as the number of CPT entries; if the number of parents of each node is bounded 
by a constant, then the complexity will also be linear in the number of nodes. These results 
hold for any ordering consistent with the topological ordering of the network (Exercise 14.7). 

MULTIPLY 
CONNECTED For multiply connected networks, such as that of Figure 14.1 1(a), variable elimination 

can have exponential time and space complexity in the worst case, even when the number 
of parents per node is bounded. This is not surprising when one considers that, because it 
includes inference in propositional logic as a special case, inference in Bayesian networks is 
1W-hard. In fact, it can be shown (Exercise 14.8) that th~e problem is as hard as that of com- 
puting the number of satisfying assignments for a propositional logic formula. This means 
that it is #P-hard ("number-P hard")-that is, strictly harder than NP-complete problems. 

There is a close connection between the complexity of Bayesian network inference and 
the complexity of constraint satisfaction problems (CSPs). As we discussed in Chapter 5, 
the difficulty of solving a discrete CSP is related to how "tree-lilce" its constraint graph is. 
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Measures such as hypertree width, which bound the complexity of solving a CSP, can also 
be applied directly to Bayesian networks. Moreover, the variable elimination algorithm can 
be generalized to solve CSPs as well as Bayesian networks. 

Clustering algorithms 

The variable elimination algorithm is simple and efficient for answering individual queries. If 
we want to compute posterior probabilities for all the variables in a network, however, it can 
be less efficient. For example, in a polytree network, one would need to issue O(n) queries 

CLUSTERING costing O(n) each, for a total of 0 ( n 2)  time. Using clustering algorithms (also known as 
JOIN TREE join tree algorithms), the time can be reduced to O(n).  For this reason, these algorithms are 

widely used in commercial Bayesian network tools. 
The basic idea of clustering is to join individual nodes of the network to form clus- 

ter nodes in such a way that the resulting network is a polytree. For example, the multiply 
connected network shown in Figure 14.1 1(a) can be converted into a polytree by combining 
the Sprinkler and Rain node into a cluster node called Sprinkler+Rain, as shown in Fig- 
ure 14.1 1(b). The two Boolean nodes are replaced by a meganode that takes on four possible 
values: T T ,  T F ,  F T ,  and FF.  The meganode has only one parent, the Boolean variable 
Cloudy, so there are two conditioning cases. 

Once the network is in polytree form, a special-purpose inference algorithm is applied. 
Essentially, the algorithm is a form of constraint propagation (see Chapter 5) where the con- 
straints ensure that neighboring clusters agree on the posterior probability of any variables 
that they have in common. With careful bookkeeping, this algorithm is able to compute pos- 
terior probabilities for all the nonevidence nodes in the network in time O(n), where n is 
now the size of the modified network. However, the NP-hardness of the problem has not 
disappeared: if a network requires exponential time and space with variable elimination, then 
the CPTs in the clustered network will require exponential time and space to construct. 

Cloudy /a 

@ Grass 

(a> (b) 

Figure 14.11 (a) A multiply connected network with conditional probability tables. (b) A 
clustered equivalent of the multiply connected network. 
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Given the intractability of exact inference in large, mudtiply connected networks, it is essen- 
tial to consider approximate inference methods. This section describes randomized sampling 

MONTECARLO algorithms, also called Monte Carlo algorithms, that provide approximate answers whose 
accuracy depends on the number of samples generateid. In recent years, Monte Carlo algo- 
rithms have become widely used in computer science to estimate quantities that are difficult 
to calculate exactly. For example, the simulated annealing algorithm described in Chapter 4 
is a Monte Carlo method for optimization problems. In this section, we are interested in 
sampling applied to the computation of posterior probabilities. We describe two families of 
algorithms: direct sampling and Markov chain sampling. Two other approaches-~rariational 
methods and loopy propagation-are mentioned in the notes at the end of the chapter. 

Direct sampling methods 

The primitive element in any sampling algorithm is the generation of samples from a known 
probability distribution. For example, an unbiased coin can be thought of as a random variable 
Coin with values (heads, tails) and a prior distribution P(Coin) = (0.5,0.5). Sampling 
from this distribution is exactly like flipping the coin: with probability 0.5 it will return 
heads, and with probability 0.5 it will return tails. Given a source of random numbers in 
the range [Q,  11, it is a simple matter to sample any distribution on a single variable. (See 
Exercise 14..9.) 

The simplest kind of random sampling process for Bayesian networks generates events 
from a network that has no evidence associated with it. The idea is to sample each variable 
in turn, in topological order. The probability distribution from which the value is sampled is 
conditioned on the values already assigned to the variable's parents. This algorithm is shown 
in Figure 14.12. We can illustrate its operation on the network in Figure 14.1 l(a), assuming 
an ordering [Cloudy, Sprinkler, Rain, WetGrass] : 

1. Sample from P(C1oudy) = (0.5,0.5); suppose this returns true. 

2. Sample from P(Sprinkler 1 Cloudy = true) = (0. :L, 0.9); suppose this returns false. 

3. Sample from P(Rain1 Cloudy = true) = (0.8,0.2); suppose this returns true. 

4. Sample from P( WetGrass(Sprink1er = false, Rain = true) = (0.9,O.l); suppose this 
returns true. 

In this case, PRIOR-SAMPLE returns the event [true, false, true, true]. 
It is easy to see that PRIOR-SAMPLE generates samples from the prior joint distribution 

specified by the network. First, let SpS(x l ,  . . . , x,) be the probability that a specific event is 
generated by the PRIOR-SAMPLE algorithm. Just looking at t,he sampling process, we have 

n 

S p S ( x l . .  .2,) = P(xijparents(Xi)) 
i=l 

because each sampling step depends only on the parent values. This expression should look 
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function PRIOR- SAMPLE(^^) returns an event sampled from the prior specified by bn 
inputs: bn, a Bayesian network specifying joint distribution P(X1, . . . , X,) 

x t an event with n elements 
for i = 1 to n do 

xi +- a random sample from P(Xi ( parents(Xi)) 
return x 

Figure 14.12 A sampling algorithm that generates events from a Bayesian network. 

familiar, because it is also the probability of the event according to the Bayesian net's repre- 
sentation of the joint distribution, as stated in Equation (14.1). That is, we have 

Sps (x l . .  . x,) = P(x1.  . .xn) . 

This simple fact makes it very easy to answer questions by using samples. 
In any sampling algorithm, the answers are computed by counting the actual samples 

generated. Suppose there are N total samples, and let N ( x l ,  . . . , x,) be the frequency of the 
specific event X I ,  . . . , x,. We expect this frequency to converge, in the limit, to its expected 
value according to the sampling probability: 

lim Nrs(x1,.  . . , xn)  
N 

= Sps(x l ,  . . .  
N+cc 

For example, consider the event produced earlier: [tme, false, true, true]. The sampling 
probability for this event is 

SpS (true, false, true, true) = 0.5 x 0.9 x 0.8 x 0.9 = 0.324 . 

Hence, in the limit of large N, we expect 32.4% of the samples to be of this event. 
Whenever we use an approximate equality ("z") in what follows, we mean it in exactly 

this sense-that the estimated probability becomes exact in the large-sample limit. Such an 
CONSISTENT estimate is called consistent. For example, one can produce a consistent estimate of the 

probability of any partially specified event XI, . . . , xm, where m 5 n, as follows: 

That is, the probability of the event can be estimated as the fraction of all complete events 
generated by the sampling process that match the partially specified event. For example, if 
we generate 1000 samples from the sprinkler network, and 5 11 of them have Rain = true, 
then the estimated probability of rain, written as p ( ~ a i n  = true), is 0.51 1. 

Rejection sampling in Bayesian networks 

REJECTION 
SAMPLING Rejection sampling is a general method for producing samples from a hard-to-sample distri- 

bution given an easy-to-sample distribution. In its simplest form, it can be used to compute 
conditional probabilities-that is, to determine P(X1e). The REJECTION-SAMPLING algo- 
rithm is shown in Figure 14.13. First, it generates samples from the prior distribution specified 
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function REJECTION-SAMPLING(X,  e, bn, N )  returns an estimate of P(X1e) 
inputs: X ,  the query variable 

e, evidence specified as an event 
bn, a Bayesian network 
N ,  the total number of samples to be generated 

local variables: N, a vector of counts over X ,  initially zero 

for j =: 1 to N do 
x t PRIOR- SAMPLE(^^) 
if x is consistent with e then 

N[x] t N[x]+l where x is the value of X in x 
return NORMALIZE(N[X])  

Figure 14.13 The rejection sampling algorithm for answering queries given evidence in a 
Bayesian network. 

by the network. Then, it rejects all those that do not ma.tch the evidence. Finally, the estimate 
P ( X  = xle) is obtained by counting how often X = x (occurs in the remaining samples. 

Let ~ ( ~ l e )  be the estimated distribution that the algorithm returns. From the definition 
of the algorithm, we have 

From Equation (14.5), this becomes 

That is, rejection sampling produces a consistent estimate of the true probability. 
Continuing with our example from Figure 14.1 l(:a), let us assume that we wish to es- 

timate P(RainJSprink1er = true), using 100 samples. Of the 100 that we generate, suppose 
that 73 have Sprinkler =false and are rejected, while 27 have Sprinkler = true; of the 27, 
8 have Rain = true and 19 have Rain =false. Hence, 

P(Razn(Sprink1er = true) =  NORMALIZE((^, 19)) = (0.296,0.704) . 

The true ans'wer is (0.3,0.7). As more samples are co:llected, the estimate will converge to 
the true answer. The standard deviation of the error in each probability will be proportional 
to I/&, where n is the number of samples used in the estimate. 

The biggest problem with rejection sampling is that it rejects so many samples! The 
fraction of samples consistent with the evidence e drops exponentially as the number of evi- 
dence variables grows, so the procedure is simply unusable for complex problems. 

Notice that rejection sampling is very similar to the estimation of conditional probabili- 
ties directly from the real world. For example, to estimate P(Rain1 RedSkyAtNight = true), 
one can simply count how often it rains after a red sky is observed the previous evening- 

' ignoring those evenings when the sky is not red. (Here, the world itself plays the role of the 
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LIKELIHOOD 
WEIGHTING 

sample generation algorithm.) Obviously, this could take a long time if the sky is very seldom 
red, and that is the weakness of rejection sampling. 

Likelihood weighting 

Likelihood weighting avoids the inefficiency of rejection sampling by generating only events 
that are consistent with the evidence e. We begin by describing how the algorithm works; then 
we show that it works correctly-that is, generates consistent probability estimates. 

LIKELIHOOD-WEIGHTING (see Figure 14.14) fixes the values for the evidence vari- 
ables E and samples only the remaining variables X and Y. This guarantees that each event 
generated is consistent with the evidence. Not all events are equal, however. Before tallying 
the counts in the distribution for the query variable, each event is weighted by the likelihood 
that the event accords to the evidence, as measured by the product of the conditional prob- 
abilities for each evidence variable, given its parents. Intuitively, events in which the actual 
evidence appears unlikely should be given less weight. 

Let us apply the algorithm to the network shown in Figure 14.11(a), with the query 
P(Rain/Sprinkler = true, WetGrass = true). The process goes as follows: First, the weight 
w is set to 1.0. Then an event is generated: 

1. Sample from P(C1oudy) = (0.5,0.5); suppose this returns true. 
2. Sprinkler is an evidence variable with value true. Therefore, we set 

w t w x P(Sprinkler = true1 Cloudy = true) = 0.1 . 
3. Sample from P(Rain/ Cloudy = true) = (0.8,0.2); suppose this returns true. 
4. WetGrass is an evidence variable with value true. Therefore, we set 

w + w x P(  WetGrass = true(Sprink1er = true, Rain = true) = 0.099 . 
Here WEIGHTED-SAMPLE returns the event [true, true, true, true] with weight 0.099, and 
this is tallied under Rain = true. The weight is low because the event describes a cloudy day, 
which makes the sprinkler unlikely to be on. 

To understand why likelihood weighting works, we start by examining the sampling 
distribution Sws for WEIGHTED-SAMPLE. Remember that the evidence variables E are 
fixed with values e. We will call the other variables Z, that is, Z = {X) U Y. The algorithm 
samples each variable in Z given its parent values: 

1 

Sws(z ,e)  = n P(ylparents(Zi)) . (14.6) 
i = l  

Notice that Parerzts(Zi) can include both hidden variables and evidence variables. Unlike 
the prior distribution P(z ) ,  the distribution Sws pays some attention to the evidence: the 
sampled values for each Zi will be influenced by evidence among Zi's ancestors. On the 
other hand, Sws pays less attention to the evidence than does the true posterior distribution 
P(zle), because the sampled values for each Zi ignore evidence among 2,'s non- ancestor^.^ 

Ideally, we would like to use a sampling distribution equal to the true posterior P(zJe), to take all the evidence 
into account. This cannot be done efficiently, however. If it could, then we could approximate the desired 
probability to arbitrary accuracy with a polynomial number of samples. It can be shown that no such polynomial- 
time approximation scheme can exist. 
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function LIKELIHOOD-WEIGHTING(X,  e, bn, N )  returns an estimate of P ( X ( e )  
inputs: X ,  the query variable 

e, evidence specified as an event 
bn, a Bayesian network 
N, the total number of samples to be generated 

local variables: W, a vector of weighted counts over J:, initially zero 

f o r j = l t o N d o  
x,  zu + WEIGHTED- SAMPLE(^^, e) 
W [XI +- W[x] + w where x is the value of X in x 

return  NORMALIZE(^[^]) 

function W E I G H T E D - S A M P L E( ~ ~ ,  e) returns an event and a weight 

x + an event with n elements; w t 1 
for i = 1 to n do 

if Xi has a value xi in e 
then w + w x P ( X i  = xi ( parents(Xi)) 
else xi + a random sample from P(Xi ( parents(Xi))  

return x, w 

Figure 14.14 The likelihood weighting algorithm for inference in Bayesian 
-- 

The likelihood weight w makes up for the difference between the actual and desired 
sampling distributions. The weight for a given sample x, composed from z and e,  is the 
product of the likelihoods for each evidence variable given its parents (some or all {of which 
may be among the Zis): 

m 

w(z,  e) = n P(eilparents(Ei)) . (14.7) 
i = l  

Multiplying Equations (14.6) and (14.7), we see that the weighted probability of a sample has 
the particularly convenient form 

because the two products cover all the variables in the network, allowing us to use Equa- 
tion (14.1) for the joint probability. 

Now it is easy to show that likelihood weighting estimates are consistent. For any 
particular value x of X, the estimated posterior probability can be calculated as follows: 

~ ( z e )  = ar Nws(x, y ,  e)m(x, y, e )  from LIKELIHOOD-WEIGHTING 

Y 

m a r ' ~ ~ ~ ~ ( x , ~ , e ) w ( x , ~ , e )  forllargeN 
Y 
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Hence, likelihood weighting returns consistent estimates. 
Because likelihood weighting uses all the samples generated, it can be much more ef- 

ficient than rejection sampling. It will, however, suffer a degradation in performance as the 
number of evidence variables increases. This is because most samples will have very low 
weights and hence the weighted estimate will be dominated by the tiny fraction of samples 
that accord more than an infinitesimal likelihood to the evidence. The problem is exacerbated 
if the evidence variables occur late in the variable ordering, because then the samples will be 
simulations that bear little resemblance to the reality suggested by the evidence. 

Inference by Markov chain simulation 

In this section, we describe the Markov chain Monte Carlo (MCMC) algorithm for infer- 
ence in Bayesian networks. We will first describe what the algorithm does, then we will 
explain why it works and why it has such a complicated name. 

The MCMC algorithm 

Unlike the other two sampling algorithms, which generate each event from scratch, MCMC 
generates each event by making a random change to the preceding event. It is therefore 
helpful to think of the network as being in a particular current state specifying a value for 
every variable. The next state is generated by randomly sampling a value for one of the 
nonevidence variables Xi, conditioned on the current values of the variables in the Markov 
blanket of Xi .  (Recall from page 499 that the Markov blanket of a variable consists of its 
parents, children, and children's parents.) MCMC therefore wanders randomly around the 
state space-the space of possible complete assignments-flipping one variable at a time, but 
keeping the evidence variables fixed. 

Consider the query P(Rain1 Sprinkler = true, Wet Grass = true) applied to the net- 
work in Figure 14.1 l(a). The evidence variables Sprinkler and WetGrass are fixed to their 
observed values and the hidden variables Cloudy and Rain are initialized randomly-let us 
say to true and false respectively. Thus, the initial state is [true, true, false, true]. Now the 
following steps are executed repeatedly: 

1.  Cloudy is sampled, given the current values of its Markov blanket variables: in this 
case, we sample from P(Cloudy1 Sprinkler = true, Rain =false). (Shortly, we will 
show how to calculate this distribution.) Suppose the result is Cloudy =false. Then 
the new current state is [false, true, false, true]. 

2. Rain is sampled, given the current values of its Markov blanket variables: in this case, 
we sample from P(Rain1 Cloudy =false, Sprinkler = true, WetGrass = true). Sup- 
pose this yields Rain = true. The new current state is [false, true, true, true]. 

Each state visited during this process is a sample that contributes to the estimate for the query 
variable Rain. If the process visits 20 states where Rain is true and 60 states where Rain is 
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function MCMC-AsK(X, e, bn, N) returns an estimate of P(.Y Je) 
local variables: N[X], a vector of counts over X, initially zero 

Z, the nonevidence variables in bn 
x, the current state of the network, initially copied from e 

initialize x with random values for the variables in Z 
f o r j = l t o N d o  

for each Zi in Z do 
sample the value of Zi in x from P(Zilmb(Zi)) given the values of MB(Zi) in x 
N[x] c N[x] + 1 where x is the value of X in x 

return ~VORMALIZE(N[X]) 

Figure 14.15 The MCMC algorithm for approximate inference in Bayesian networks. 

false, then the answer to the query is  NORMALIZE((^^, 60)) = (0.25,0.75). The complete 
algorithm is shown in Figure 14.15. 

Why MCMC works 

We will now show that MCMC returns consistent estimates for posterior probabilities. The 
material in this section is quite technical, but the basic claim is straightforward: the ,sampling 
process settles into a "dynamic equilibrium" in which the long-run fraction of time spent 
in each state is exactly proportional to its posterior probability. This remarkable property 

TRANSITION 
PROBABILITY follows from the specific transition probability with which the process moves from one 

state to another, as defined by the conditional distribution given the Markov blanket of the 
variable being sampled. 

Let q(x -+ x') be the probability that the process makes a transition from state x to 
MARKOV CHAIN state x'. This transition probability defines what is called a Markov chain on the state space. 

(Markov chains will also figure prominently in Chapters 15 and 17.) Now suppose that we 
run the Mark.ov chain for t steps, and let nt(x) be the probability that the system is in state x 
at time t. Similarly, let nt+l (x') be the probability of being in state x' at time t + L. Given 
T~(x), we cam calculate nt+l(x') by summing, for all stdtes the system could be in at time t, 
the probability of being in that state times the probabilit:~ of making the transition to x': 

Tt+l (XI) = C rt (x) (I(X x') . 
X 

STATIONARY 
DISTRIBLTION 'We will say that the chain has reached its stationary diistribution if nt = T~+I. Let us call 

this stationary distribution T; its defining equation is therefore 

n(xt) = T(X)~(X i x') for all x' . 
X 

IJnder certain standard assumptions about the transition probabilrty distribution q,7 there is 
exactly one distribution n satisfying this equation for any given q. 

- 
The Markov chain defined by q must be ergodic-that is, essentially, every state must be reachable from every 

o~ther, and there can be no strictly periodic cycles. 
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Equation (14.9) can be read as saying that the expected "outflow" from each state (i.e., 
its current "population") is equal to the expected "inflow" from all the states. One obvious 
way to satisfy this relationship is if the expected flow between any pair of states is the same 

DETAILEDBALANCE in both directions. This is the property of detailed balance: 

7r (x )  q  (x -+ x') = 7r (x') q  (x' -+ X )  for all x; x' . (14.10) 

We can show that detailed balance implies stationarity simply by summing over x in Equa- 
tion (14.10). We have 

where the last step follows because a transition from x' is guaranteed to occur. 
Now we will show that the transition probability q(x -. x') defined by the sampling step 

in MCMC-ASK satisfies the detailed balance equation with a stationary distribution equal 
to P(xJe ) ,  (the true posterior distribution on the hidden variables). We will do this in two 
steps. First, we will define a Markov chain in which each variable is sampled conditionally 
on the current values of all the other variables, and we will show that this satisfies detailed 
balance. Then, we will simply observe that, for Bayesian networks, doing that is equivalent 
to sampling conditionally on the variable's Markov blanket (see page 499). 

Let Xi be the variable to be sampled, and let be all the hidden variables other than 
Xi .  Their values in the current state are xi and xi. If we sample a new value xi for Xi 
conditionally on all the other variables, including the evidence, we have 

q(x i x') = q ( ( z i , E )  ' (xi ,%))  = P(IL';(xi,e) . 

GIBBS SAMPLER This transition probability is called the Gibbs sampler and is a particularly convenient form 
of MCMC. Now we show that the Gibbs sampler is in detailed balance with the true posterior: 

n(x)q(x x') = P(xJe)P(x jJx i ,  e)  = P(xi ,Rle )P(x: (x i , e )  

= P(xi  ( X i ,  e )  ~ ( g l e )  P ( z i  (xi, e )  (using the chain rule on the first term) 

= P(xi lF,  e)  P(x i ,  K J e )  (using the chain rule backwards) 

= 7r(x1)q(x' 4 x) . 

As stated on page 499, a variable is independent of all other variables given its Markov 
blanket; hence, 

where mb(Xi)  denotes the values of the variables in Xi's Markov blanket, M B ( X i ) .  As 
shown in Exercise 14.10, the probability of a variable given its Markov blanket is proportional 
to the probability of the variable given its parents times the probability of each child given its 
respective parents: 

P(:rl:lrrbb(Xi)) = a P(x:lparents(Xi))  x n P(yjlparents(kj))  . (14.11) 
Y3 ~ C h i l d r e n ( X , )  

Hence, to flip each variable X,,  the number of multiplications required is equal to the number 
of Xi's children. 
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We have discussed here only one simple variant of MCMC, namely the Gibbs sam- 
pler. In its most general form, MCMC is a powerful method for computing with probability 
models and many variants have been developed, including the simulated annealing algo- 
rithm presented in Chapter 4, the stochastic satisfiability algorithms in Chapter 7 ,  and the 
Metropolis-Hastings sampler in Chapter 15. 

In Chapter 8, we explained the representational advantages possessed by first-order logic in 
comparison to propositional logic. First-order logic commits to the existence of objects and 
relations among them and can express facts about some or all of the objects in a domain. This 
often results in representations that are vastly more concise than the equivalent propositional 
descriptions. Now, Bayesian networks are essentially propositional: the set of variables is 
fixed and finite, and each has a fixed domain of possible values. This fact limits the appli- 
cability of Bayesian networks. I f  we can find a way to combine probability theory with the 
expressive power offirst-order representations, we expect to be able to increase dramatically 
the range ofproblems that can be handled. 

The basic insight required to achieve this goal is the following: Pn the propositilonal con- 
text, a Bayesian network specifies probabilities over atomic events, each of which specifies a 
value for each variable in the network. Thus, an atomic event. is a model or possible world, 
in the terminology of propositional logic. In the first-order context, a model (with its inter- 
pretation) specifies a domain of objects, the relations that hold among those objects, and a 
mapping from the constants and predicates of the knowledge base to the objects and relations 

& in the model. Therefore, ofirst-order probabilistic knowledge base should specrfjr probabili- 
tiesfor all possiblefirst-order models. Let p ( M )  be the probability assigned to model &I by 
the knowledge base. For any first-order sentence 4, the probability P(4)  is given in i.he usual 
way by summing over the possible worlds where 4 is true: 

P ( 4 )  = c P ( M ) .  
M:q5 is true in M 

So far, so good. There is, however, a problem: the set of first-order models is infimite. This 
ineans that (I)  the summation could be infeasible, and (2) specifying a complete, consistent 
distribution over an infinite set of worlds could be very difficult. 

Let us scale back our ambition, at least temporarily. In particular, let us devise a re- 
stricted language for which there are only finitely many imodels of interest. There are several 

RELATIONAL PRosAslLlsyMODEL ways to do this. Here, we present relational probabililty models, or RPMs, which borrow 
ideas from semantic networks (Chapter 10) and from object-relational databases. Other ap- 
proaches are discussed in the bibliographical and historical notes. 

RPMs allow constant symbols that name objects. For example, let ProfSmith be the 
name of a professor, and let Jones be the name of a student. Each object is an instance of a 
class; for example, ProfSmith is a Professor and ,Tones is a Student. We assume that the 
class of every constant symbol is known. 
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SIMPLE FUNCTION Our function symbols will be divided into two kinds. The first kind, simple functions, 
maps an object not to another structured object, but to a value from a fixed domain of values, 
just like a random variable. For example, Intelligence(J0nes) and Funding(ProfSmitlz) 
might be hi or lo; Success(Jones) and Fame(ProfSmith) may be true or false. Function 
symbols must not be applied to values such as true and false, so it is not possible to have 
nesting of simple functions. In this way, we avoid one source of infinities. The value of a 
simple function applied to a given object may be observed or unknown; these will be the basic 
random variables of our representatioa8 

COMPLEX FUNCTION We also allow complex functions, which map objects to other objects. For example, 
Advisor(Jones) may be Profsmith. Each complex function has a specified domain and 
range, which are classes. For example, the domain of Advisor is Student and the range is 
Professor. Functions apply only to objects of the right class; for instance, the Advisor of 
ProfSmith is undefined. Complex functions may be nested: DeptHead(Advisor(Jones)) 
could be ProfMoore. We will assume (for now) that the values of all complex functions are 
known for all constant symbols. Because the KB is finite, this implies that every chain of 
complex function applications leads to one of a finite number of  object^.^ 

The last element we need is the probabilistic information. For each simple function, 
we specify a set of parents, just as in Bayesian networks. The parents can be other simple 
functions of the same object; for example, the Funding of a Professor might depend on his 
or her Fame. The parents can also be simple functions of related objects-for example, the 
Success of a student could depend on the Intelligence of the student and the Fame of the 
student's advisor. These are really universally quantified assertions about the parents of all 
the objects in a class. Thus, we could write 

V x  x E Student + 
Parents(Success(x)) = {Intelligence(x), Fame(Advisor(x))) . 

(Less formally, we can draw diagrams like Figure 14.16(a).) Now we specify the conditional 
probability distribution for the child, given its parents. For example, we might say that 

V x x E Student + 
P(Success(x) = true1 Intelligence(x) = hi, Fame(Advisor(x)) = true) = 0.95 

Just as in semantic networks, we can attach the conditional distribution to the class itself, so 
that the instances inherit the dependencies and conditional probabilities from the class. 

The semantics for the RPM language assumes that every constant symbol refers to a 
distinct object-the unique names assumption described in Chapter 10. Given this assump- 
tion and the restrictions listed previously, it can be shown that every RPM generates a fixed, 
finite set of random variables, each of which is a simple function applied to a constant symbol. 
Then, provided that the parent-child dependencies are acyclic, we can construct an equivalent 
Bayesian network. That is, the RPM and the Bayesian network specify identical probabili- 

They play a role very similar to that of the ground atomic sentences generated in the propositionalization 
process described in Section 9.1. 

This restriction means that we cannot use complex functions such as Father and Mother, which lead to 
potentially infinite chains that would have to end with an unknown object. We revisit this restriction later. 
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1 Figure 14.16 (a) An RPM describing two classes: Professor and Student. There are two I 

Professor -- Profloore - P~ojXmith 
A A 

1 professors and two students, and ProfSmith is the advisor of both students. (b) The Bayesian 1 

- Jones 

network equivalent to the RPM in (a). I 

Advisor 

ties for each possible world. Figure 14.16(b) shows th~e Bayesian network corresponding to 
the RPM in Figure 14.16(a). Notice that the Advisor links in the RPM are absent in the 
Bayesian network. This is because they are fixed and Iknown. They appear implicitly in the 
network topology, however; for example, Success(Jones) has Fame(ProfSmith) as a parent 
because Advisor(Jones) is Profsmith. In general, the relations that hold among the objects 
determine the pattern of dependencies among the properties of those objects. 

There are several ways to increase the expressive power of RPMs. We can allow re- 
RECURSIVE cursive dependencies among variables to capture certain kinds of recurring relationships. 

For example, suppose that addiction to fast food is caused by the McGene. Then, for any 
x ,  McGene(x)  depends on McGene(Father(x))  and McGene(Mother(x) ) ,  which depend 
in turn on McGene(Father(Father(x))), McGene(Mother (Fa ther (x ) ) ) ,  and so on. Even 
though such knowledge bases correspond to Bayesian networlks with infinitely many random 
variables, solutions can sometimes be obtained from fixed-point equations. For example, the 
equilibrium distribution of the McGene can be calculated, given the conditional probability 
of inheritance. Another very important family of recursive knowledge bases consists of the 
temporal probability models described in Chapter 15. In these models, properties of the 
state at time t depend on properties of the state at time t - 1, and so on. 

RELATIONAL 
UNCERTAINTY RPMs can also be extended to allow for relational uncertainty-that is, uncertainty 

about the values of complex functions. For example, we may not know who Advisor(Jones) 
IS. Adu~sor(Jones)  then becomes a random variable, with possible values ProfSnaith and 
ProfMoore. 'The corresponding network is shown in Figure 14.17. 

IDENTITY 
UNCERTAINTY There can also be identity uncertainty; for example, we might not know whether Mary 

and ProfSmzth are the same person. With identity uncertainty, the number of objects and 
propositions can vary across possible worlds. A world where Mary and ProfSmith are the 
same person has one fewer object than a world in which they are different people. This 
makes the inference process more complicated, but the basic principle established in Equa- 
tion (14.12) still holds: the probability of any sentence is well defined and can be calculated. 

- Bloggs 
Success 
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I Figure 14.17 Part of the Bayesian network corresponding to an RPM in which / 
~ d v i s o r ( ~ o n e s )  is unknown, but is either ProfSmith or ProfMoore. The choice of advisor 
depends on how much funding each professor has. Notice that Success(Jones) will now 
depend on the Fame of both professors, although the value of Advisor(Jones) determines 
which one actually has an influence. 

Identity uncertainty is particularly important for robots and for embedded sensor systems that 
must keep track of multiple objects. We return to this problem in Chapter 15. 

Let us now examine the question of inference. Clearly, inference can be done in the 
equivalent Bayesian network, provided that we restrict the RPM language so that the equiv- 
alent network is finite and has a fixed structure. This is analogous to the way in which 
first-order logical inference can be done via propositional inference on the equivalent propo- 
sitional knowledge base. (See Section 9.1.) As in the logical case, the equivalent network 
could be too large to construct, let alone evaluate. Dense interconnections are also a prob- 
lem. (See Exercise 14.12.) Approximation algorithms. such as MCMC (Section 14.5), are 
therefore very useful for RPM inference. 

When MCMC is applied to the equivalent Bayesian network for a simple RPM knowl- 
edge base with no relational or identity uncertainty, the algorithm samples from the space of 
possible worlds defined by the values of simple functions of the objects. It is easy to see that 
this approach can be extended to handle relational and identity uncertainty as well. In that 
case, a transition between possible worlds might change the value of a simple function or it 
might change a complex function, and so lead to a change in the dependency structure. Tran- 
sitions might also change the identity relations among the constant symbols. Thus, MCMC 
seems to be an elegant way to handle inference for quite expressive first-order probabilistic 
knowledge bases. 

Research in this area is still at an early stage, but already it is becoming clear that first- 
order probabilistic reasoning yields a tremendous increase in the effectiveness of A1 systems 
at handling uncertain information. Potential applications include computer vision, natural 
language understanding, information retrieval, and situation assessment. In all of these areas, 
the set of objects-and hence the set of random variables-is not known in advance, so 
purely "propositional" methods, such as Bayesian networks, are incapable of representing 
the situation completely. They have been augmented by search over the space of model, but 
RPMs allow reasoning about this uncertainty in a single model. 
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Other sciernces (e.g., physics, genetics, and economics) have long favored probability as a 
model for uncertainty. In 1819, Pierre Laplace said "Probability theory is nothing but com- 
mon sense reduced to calculation." In 1850, James Mar~well said "the true logic for this world 
is the calculus of Probabilities, which takes account of the magnitude of the probability which 
is, or ought to be, in a reasonable man's mind." 

Given this long tradition, it is perhaps surprising that A1 has considered many alterna- 
tives to probability. The earliest expert systems of the 1970s ignored uncertainty and used 
strict logical reasoning, but it soon became clear that this was impractical for most real-world 
domains. The next generation of expert systems (especially in medical domains) used prob- 
abilistic techniques. Initial results were promising, bult they did not scale up because of the 
exponential number of probabilities required in the full joint distribution. (Efficient Bayesian 
network algorithms were unknown then.) As a result, probabilistic approaches fell out of 
favor from roughly 1975 to 1988, and a variety of alternatives to probability were tried for a 
variety of reasons: 

One common view is that probability theory is essentially numerical, whereas human 
judgmental reasoning is more "qualitative." Certainly. we are not consciously aware 
of doing numerical calculations of degrees of belief. (Neither are we aware of doing 
unification, yet we seem to be capable of some kind of logical reasoning.) It might be 
that we have some kind of numerical degrees of belief encoded directly in strengths of 
connections and activations in our neurons. In that case, the difficulty of conscious ac- 
cess to those strengths is not surprising. One should also note that qualitative reasoning 
mechanisms can be built directly on top of probability theory, so that the "no numbers" 
argument against probability has little force. Nolnetheless, some qualitative schemes 
have a good deal of appeal in their own right. One of the best studied is default rea- 
soning, which treats conclusions not as "believed to a certain degree," but as "believed 
until a better reason is found to believe something else." Default reasoning is covered 
in Chapter 10. 

0 Rule-based approaches to uncertainty also have been tried. Such approaches hope to 
build on the success of logical rule-based systems, but add a sort of "fudge factor" to 
each rule to accommodate uncertainty. These methods were developed in the mid-1970s 
and formed the basis for a large number of expert systems in medicine and other areas. 

One area that we have not addressed so far is the question of ignorance, as opposed 
to uncertainty. Consider the flipping of a coin. If we know that the coin is fair, then a 
probability of 0.5 for heads is reasonable. If we know that the coin is biased, but we 
do not know which way, then 0.5 is the only reasonable probability. Obviously, the 
two cases are different, yet probability seems not to distjnguish them. The Deinpster- 
Shafer theory uses interval-valued degrees of belief to represent an agent's knowledge 
of the probability of a proposition. Other methods using second-order probabilities are 
also discussed. 
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Probability makes the same ontological commitment as logic: that events are true or 
false in the world, even if the agent is uncertain as to which is the case. Researchers 
in fuzzy logic have proposed an ontology that allows vagueness: that an event can be 
"sort of" true. Vagueness and uncertainty are in fact orthogonal issues, as we will see. 

The next three subsections treat some of these approaches in slightly more depth. We will not 
provide detailed technical material, but we cite references for further study. 

Rule-based methods for uncertain reasoning 

Rule-based systems emerged from early work on practical and intuitive systems for logical 
inference. Logical systems in general, and logical rule-based systems in particular, have three 
desirable properties: 

LOCALITY 0 Locality: In logical systems, whenever we have a rule of the form A + B, we can 
conclude B, given evidence A, without worrying about arzy other rules. In probabilistic 
systems, we need to consider all the evidence in the Markov blanket. 

DETACHMENT 0 Detachment: Once a logical proof is found for a proposition B, the proposition can be 
used regardless of how it was derived. That is, it can be detached from its justification. 
In dealing with probabilities, on the other hand, the source of the evidence for a belief 
is important for subsequent reasoning. 

TRUTH. 
FUNCTIONALITY Truth-functionality: In logic, the truth of complex sentences can be computed from 

the truth of the components. Probability combination does not work this way, except 
under strong global independence assumptions. , 

There have been several attempts to devise uncertain reasoning schemes that retain these 
advantages. The idea is to attach degrees of belief to propositions and rules and to devise 
purely local schemes for combining and propagating those degrees of belief. The schemes 
are also truth-functional; for example, the degree of belief in A V B is a function of the belief 
in A and the belief in B. 

The bad news for rule-based systems is that the properties of locality, detachment, and 
truth-functionality are simply not appropriate for uncertain reasoning. Let us look at truth- 
functionality first. Let HI be the event that a fair coin flip comes up heads, let TI be the event 
that the coin comes up tails on that same flip, and let H2 be the event that the coin comes 
up heads on a second flip. Clearly, all three events have the same probability, 0.5, and so a 
truth-functional system must assign the same belief to the disjunction of any two of them. 
But we can see that the probability of the disjunction depends on the events themselves and 
not just on their probabilities: 

It gets worse when we chain evidence together. Truth-functional systems have rules of the 
form A N B that allow us to compute the belief in B as a function of the belief in the rule 
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and the belief in A. Both forward- and backward-chaining systems can be devised. The belief 
in the rule is assumed to be constant and is usually specified by the knowledge engineer-for 
example, as A ~ 0 . 9  B. 

Consnder the wet-grass situation from Figure 14.1 l(a). If we wanted to be able to do 
both causal and diagnostic reasoning, we would need the two rules 

Rain H WetGra,ss and Wet Grass H Rain . 

These two rules form a feedback loop: evidence for Rain increases the belief in kVetGrass, 
which in turn increases the belief in Rain even more. Clearly, uncertain reasoning systems 
need to keep track of the paths along which evidence is propagated. 

Intercausal reasoning (or explaining away) is also tricky. Consider what happens when 
we have the two rules 

Sprinkler w WetGrass and WetGrass H Rain . 

Suppose we see that the sprinkler is on. Chaining forward through our rules, this increases the 
belief that the grass will be wet, which in turn increases the belief that it is raining. But this 
is ridiculous: the fact that the sprinkler is on explains away the wet grass and should reduce 
the belief in rain. A truth-functional system acts as if it also believes Sprinkler ++ Rain. 

Given these difficulties, how is it possible that truth-functional systems were ever con- 
sidered useful? The answer lies in restricting the task and in carefully engineering the rule 
base so that undesirable interactions do not occur. The most famous example of a truth- 

CERTAINTY FACTORS functional system for uncertain reasoning is the certainty factors model, which was devel- 
oped for the MYCIN medical diagnosis program and was widely used in expert systems of the 
late 1970s and 1980s. Almost all uses of certainty factors involved rule sets that were either 
purely diag~~ostic (as in MYCIN) or purely causal. Furthtermore, evidence was entered only at 
the "roots" of the rule set, and most rule sets were singly connected. Heckerman (1 986) has 
shown that. under these circumstances, a minor variat~on on ce

r

tainty-factor inference was 
exactly equivalent to Bayesian inference on polytrees. 111 other circumstances, certainty fac- 
tors could yield disastrously incorrect degrees of belief through overcounting of evidence. As 
rule sets became larger, undesirable interactions between rules became more common, and 
practitioners found that the certainty factors of many other rules had to be "tweaked" when 
new rules were added. Needless to say, the approach is no longer recommended. 

Representing ignorance: Dempster-Shafer theo.ry 

OEMPSTER-SHAFER The Dempster-Shafer theory is designed to deal with the distinction between uncertainty 
and ignorance. Rather than computing the probability of a proposition, it computes the 
probability that the evidence supports the proposition. This measure of belief is called a 

BELIEF FUNCTION belief function, written Be1 (X) . 
We return to coin flipping for an example of belief l?unctions. Suppose a shady character 

comes up to you and offers to bet you $10 that his coin will come up heads on the next flip. 
Given that the coin might or might not be fair, what belief should you ascribe to tlhe event 
that it comes up heads? Dempster-Shafer theory says that because you have no evidence 
either way, you have to say that the belief Be1 (Heads) == 0 and also that Bel(1Heads) = 0. 
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This makes Dempster-Shafer reasoning systems skeptical in a way that has some intuitive 
appeal. Now suppose you have an expert at your disposal who testifies with 90% certainty 
that the coin is fair (i.e., he is 90% sure that P(Heads) = 0.5). Then Dempster-Shafer 
theory gives Bel(Heads) = 0.9 x 0.5 = 0.45 and likewise Bel(1Heads) = 0.45. There 
is still a 10 percentage point "gap" that is not accounted for by the evidence. "Dempster's 
rule" (Dempster, 1968) shows how to combine evidence to give new values for Bel, and 
Shafer's work extends this into a complete computational model. 

As with default reasoning, there is a problem in connecting beliefs to actions. With 
probabilities, decision theory says that if P(Heads) = P(1Heads) = 0.5, then (assuming 
that winning $10 and losing $10 are considered equal magnitude opposites) the reasoner 
will be indifferent between the action of accepting and declining the bet. A Dempster- 
Shafer reasoner has Bel(1Heads) = 0 and thus no reason to accept the bet, but then it 
also has Bel(Heads) = 0 and thus no reason to decline it. Thus, it seems that the Dempster- 
Shafer reasoner comes to the same conclusion about how to act in this case. Unfortunately, 
Dempster-Shafer theory allows no definite decision in many other cases where probabilistic 
inference does yield a specific choice. In fact, the notion of utility in the Dempster-Shafer 
model is not yet well understood. 

One interpretation of Dempster-Shafer theory is that it defines a probability interval: 
the interval for Heads is [0,1] before our expert testimony and [0.45,0.55] after. The width 
of the interval might be an aid in deciding when we need to acquire more evidence: it can 
tell you that the expert's testimony will help you if you do not know whether the coin is fair, 
but will not help you if you have already learned that the coin is fair. However, there are 
no clear guidelines for how to do this, because there is no clear meaning for what the width 
of an interval means. In the Bayesian approach, this kind of reasoning can be done easily 
by examining how much one's belief would change if one were to acquire more evidence. 
For example, knowing whether the coin is fair would have a significant impact on the belief 
that it will come up heads, and detecting an asymmetric weight would have an impact on the 
belief that the coin is fair. A complete Bayesian model would include probability estimates 
for factors such as these, allowing us to express our "ignorance" in terms of how our beliefs 
would change in the face of future information gathering. 

Representing vagueness: Fuzzy sets and fuzzy logic 

FUZZY SETTHEORY FUZZY set theory is a means of specifying how well an object satisfie3 a vague description. 
For example, consider the proposition "Nate is tall." Is this true, if Nate is 5' lo"? Most 
people would hesitate to answer "true" or "false," preferring to say, "sort of." Note that this 
is not a question of uncertainty about the external world-we are sure of Nate's height. The 
issue is that the linguistic term "tall" does not refer to a sharp demarcation of objects into two 
classes-there are degrees of tallness. For this reason, fuzzy set theory is not a method for 
uncertain reasoning at all. Rather, fuzzy set theory treats Tall as a fuzzy predicate and says 
that the tmth value of Tall(Nate) is a number between 0 and 1, rather than being just true 
or false. The name "fuzzy set" derives from the interpretation of the predicate as implicitly 
defining a set of its members-a set that does not have sharp boundaries. 
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FUZZY LOGIC Fuzzy logic is a method for reasoning with logical expressions describing membership 
in fuzzy sets. For example, the complex sentence Tall(Nate) A Heavy(Nate) has a fuzzy 
truth value that is a function of the truth values of it!; components. The standard rules for 
evaluating the fuzzy truth, T ,  of a complex sentence are 

T ( A  A B) = min(T(A), T ( B ) )  
T ( A  V B )  = max(T(A), T(B) )  
T(1A)  = 1 - T(A) . 

Fuzzy logic is therefore a truth-functional system-a fact that causes serious difficulties. 
For example, suppose that T(Tall(Nate)) =0.6 and T(Weavy(Nate)) = 0.4. Then we have 
T(Tall(Nate) A T(Heavy(Nate)) = 0.4, which seems reasonable, but we also get the result 
T (  Tall (Nate) A 1 Tall (Nate)) = 0.4, which does not. Clearly, the problem arises from the 
inability of a truth-functional approach to take into account the csrselations or anticorrelations 
among the component propositions. 

FUZZY CONTROL Fuzzy control is a methodology for constructing control systems in which the mapping 
between real-valued input and output parameters is represented by fuzzy rules. Fuzzy con- 
trol has been very successful in commercial products such as automatic transmissions, video 
cameras, and electric shavers. Critics (see, e.g., Elkan, 1993) argue that these applications 
are successful because they have small rule bases, no chaining of inferences, and tunable 
parameters Ithat can be adjusted to improve the system's performance. The fact that they are 
implemented with fuzzy operators might be incidental to their success; the key is simply to 
provide a concise and intuitive way to specify a smoothly interpolated, real-valued function. 

There have been attempts to provide an explanation of fuzzy logic in terms of probabil- 
ity theory. One idea is to view assertions such as "Nate is Tall" as discrete observations made 
concerning a continuous hidden variable, Nate's actual Height. The probability model speci- 
fies P(0bserver says Nate is tall 1 Height), perhaps using a probit distribution as described 
on page 503. A posterior distribution over Nate's height can then be calculated in the usual 
way, for example if the model is part of a hybrid Bayesian network. Such an approach is not 
truth-functional, of course. For example, the conditional distribution 

P(0bserver says Nate is tall and heavy I Height, Weight) 

allows for interactions between height and weight in the causing of the observation. Thus, 
someone who is eight feet tall and weighs 190 pounds is very unlikely to be called "tall and 
heavy," even though "eight feet" counts as "tall" and "190 pounds" counts as "heavy." 

Fuzzy predicates can also be given a probabilistic interpretation in terms of random 
RANDOM SETS sets-that is, random variables whose possible values are sets of objects. For example, Tall 

is a random set whose possible values are sets of people. 'The probability P (Ta l l=  S1), 
where S1 is some particular set of people, is the probaibility that exactly that set would be 
identified as "tall" by an observer. Then the probability that "Nate is tall" is the sum of the 
probabilities of all the sets of which Nate is a member. 

Both the hybrid Bayesian network approach and the random sets approach appear to 
capture aspects of fuzziness without introducing degrees of truth. Nonetheless, there remain 
inany open issues concerning the proper representation of linguistic observations and contin- 
uous quantities-issues that have been neglected by most outside the fuzzy community. 
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This chapter has described Bayesian networks, a well-developed representation for uncertain 
knowledge. Bayesian networks play a role roughly analogous to that of propositional logic 
for definite knowledge. 

A Bayesian network is a directed acyclic graph whose nodes correspond to random 
variables; each node has a conditional distribution for the node, given its parents. 

Bayesian networks provide a concise way to represent conditional independence rela- 
tionships in the domain. 

A Bayesian network specifies a full joint distribution; each joint entry is defined as the 
product of the corresponding entries in the local conditional distributions. A Bayesian 
network is often exponentially smaller than the full joint distribution. 

Many conditional distributions can be represented compactly by canonical families of 
distributions. Hybrid Bayesian networks, which include both discrete and continuous 
variables, use a variety of canonical distributions. 

Inference in Bayesian networks means computing the probability distribution of a set 
of query variables, given a set of evidence variables. Exact inference algorithms, such 
as variable elimination, evaluate sums of products of conditional probabilities as effi- 
ciently as possible. 

In polytrees (singly connected networks), exact inference takes time linear in the size 
of the network. In the general case, the problem is intractable. 

Stochastic approximation techniques such as likelihood weighting and Markov chain 
Monte Carlo can give reasonable estimates of the true posterior probabilities in a net- 
work and can cope with much larger networks than can exact algorithms. 

Probability theory can be combined with representational ideas from first-order logic to 
produce very powerful systems for reasoning under uncertainty. Relational probabil- 
ity models (RPMs) include representational restrictions that guarantee a well-defined 
probability distribution that can be expressed as an equivalent Bayesian network. 

Various alternative systems for reasoning under uncertainty have been suggested. Gen- 
erally speaking, truth-functional systems are not well suited for such reasoning. 

BIBLIOGRAPHICAL AND HISTORICAL NOTES 

The use of networks to represent probabilistic information began early in the 20th century, 
with the work of Sewall Wright on the probabilistic analysis of genetic inheritance and animal 
growth factors (Wright, 1921, 1934). One of his networks appears on the cover of this book. 
I. J. Good (1961), in collaboration with Alan Turing, developed probabilistic representations 
and Bayesian inference methods that could be regarded as a forerunner of modern Bayesian 
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NONSERIAL DYNAMIC 
PROGRAMMING 

networks-although the paper is not often cited in this context.1° The same paper is the 
original source for the noisy-OR model. 

The influence diagram representation for decision problems, which incorporated a 
DAG representation for random variables, was used in decision analysis in the late 1970s 
(see Chapter 16), but only enumeration was used for evaluation. Judea Pearl developed the 
message-passing method for carrying out inference in f,ree networks (Pearl, 1982a) and poly- 
tree networks (Kim and Pearl, 1983) and explained the importance of constructing causal 
rather than diagnostic probability models, in contrast to the certainty-factor systems then 
in vogue. The first expert system using Bayesian networks was CONVINCE (Kim, 1983; 
Kim and Pearl, 1987). More recent systems include the MUNIN system for diagnosing neu- 
romuscular disorders (Andersen et al., 1989) and the PATHFINDER system for ]pathology 
(Heckerman, 1991). By far the most widely used Bayesian network systems have been the 
diagnosis-and-repair modules (e.g., the Printer Wizarcl) in R4icrosoft Windows (Breese and 
Heckerman, 1996) and the Office Assistant in Microsoft Office (Horvitz et al., 1998). 

Pearl (1986) developed a clustering algorithm for exact inference in general Bayesian 
networks, utilizing a conversion to a directed polytree of clusters in which message passing 
was used to achieve consistency over variables shared between clusters. A similar approach, 
developed by the statisticians David Spiegelhalter and Steffen Lauritzen (Spiegelhalter, 1986; 
Lauritzen and Spiegelhalter, 1988), is based on conversion to an undirected (Markov) net- 
work. This approach is implemented in the HUGIN system, an efficient and widely used 
tool for uncertain reasoning (Andersen et al., 1989). Ross Shachter, working in the influ- 
ence diagram community, developed an exact method based on goal-directed reduction of the 
network, using posterior-preserving transformations (Shachter, 1986). 

The variable elimination method described in the chapter is closest in spirit to Shachter's 
method, from which emerged the symbolic probabilistic inference (SPI) algorithm (Shachter 
et al., 1990). SPI attempts to optimize the evaluation of expression trees such as that shown 
in Figure 14.8. The algorithm we describe is closest to that developed by Zhang and Poole 
(1994, 1996). Criteria for pruning irrelevant variables were developed by Geiger et al. (1990) 
and by Lauritzen et al. (1990); the criterion we give is a simple special case of these. Rina 
Dechter (1999) shows how the variable elimination ide,a is essentially identical to monserial 
dynamic programming (Bertele and Brioschi, 1972), an algorithmic approach that can be 
applied to solve a range of inference problems in Bayesian networks-for example, finding 
the most probable explanation for a set of observations. This connects Bayesian network 
algorithms to related methods for solving CSPs and gives a direct measure of the complexity 
of exact inference in terms of the hypertree width of the network. 

The inclusion of continuous random variables in Bayesian networks was considered 
by Pearl (1988) and Shachter and Kenley (1989); these papers discussed networks contain- 
ing only continuous variables with linear Gaussian dis1,ributions. The inclusion of discrete 
variables has been investigated by Lauritzen and Wermuth (1989) and implemented in the 

I. J. Good was chief statistician for Turing's code-breaking team in World War 11. In 2001: A Space Odyssey 
(Clarke, 1968a), Good and Minsky are credited with making the breakthrough that led to the development of the 
HAL 9000 computer. 
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CHUGIN system (Olesen, 1993). The probit distribution was studied first by Finney (1947), 
who called it the sigmoid distribution. It has been used widely for modeling discrete choice 
phenomena and can be extended to handle more than two choices (Daganzo, 1979). Bishop 
(1995) gives a justification for the use of the logit distribution. 

Cooper (1990) showed that the general problem of inference in unconstrained Bayesian 
networks is NP-hard, and Paul Dagum and Mike Luby (1993) showed the corresponding 
approximation problem to be NP-hard. Space complexity is also a serious problem in both 
clustering and variable elimination methods. The method of cutset conditioning, which was 
developed for CSPs in Chapter 5, avoids the construction of exponentially large tables. In a 
Bayesian network, a cutset is a set of nodes that, when instantiated, reduces the remaining 
nodes to a polytree that can be solved in linear time and space. The query is answered by 
summing over all the instantiations of the cutset, so the overall space requirement is still lin- 
ear (Pearl, 1988). Darwiche (2001) describes a recursive conditioning algorithm that allows 
a complete range of spaceltime tradeoffs. 

The development of fast approximation algorithms for Bayesian network inference is a 
very active area, with contributions from statistics, computer science, and physics. The rejec- 
tion sampling method is a general technique that is long known to statisticians; it was first ap- 
plied to Bayesian networks by Max Henrion (1988), who called it logic sampling. Likelihood 
weighting, which was developed by Fung and Chang (1989) and Shachter and Peot (1989), 
is an example of the well-known statistical method of importance sampling. A large-scale 
application of likelihood weighting to medical diagnosis appears in Shwe and Cooper (1 991). 
Cheng and Druzdzel(2000) describe an adaptive version of likelihood weighting that works 
well even when the evidence has very low prior likelihood. 

Markov chain Monte Carlo (MCMC) algorithms began with the Metropolis algorithm, 
due to Metropolis et al. (1953), which was also the source of the simulated annealing algo- 
rithm described in Chapter 4. The Gibbs sampler was devised by Geman and Geman (1984) 
for inference in undirected Markov networks. The application of MCMC to Bayesian net- 
works is due to Pearl (1987). The papers collected by Gilks et al. (1996) cover a wide variety 
of applications of MCMC, several of which were developed in the well-known BUGS pack- 
age (Gilks et al., 1994). 

There are two very important families of approximation methods that we did not cover 

VARIATIONAL APPRoXIMATloN in the chapter. The first is the family of variational approximation methods, which can be 
used to simplify complex calculations of all kinds. The basic idea is to propose a reduced 
version of the original problem that is simple to work with, but that resembles the original 
problem as closely as possible. The reduced problem is described by some variational pa- 

VARIATIONAL 
PARAMETERS 

rameters X that are adjusted to minimize a distance function D between the original and 

the reduced problem, often by solving the system of equations aD/aX = 0. In many cases, 
strict upper and lower bounds can be obtained. Variational methods have long been used in 

MEAN FIELD statistics (Rustagi, 1976). Tn statistical physics, the mean field method is a particular vari- 
ational approximation in which the individual variables making up the model are assumed 
to be completely independent. This idea was applied to solve large undirected Markov net- 
works (Peterson and Anderson, 1987; Parisi, 1988). Saul et al. (1996) developed the math- 
ematical foundations for applying variational methods to Bayesian networks and obtained 
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accurate lower-bound approximations for sigmoid networks with the use of mean-field meth- 
ods. Jaakkola and Jordan (1996) extended the methodology to obtain both lower and upper 
bounds. Variational approaches are surveyed by Jordan et al. (1999). 

A second important family of approximation algorithms is based on Pearl's polytree 
message-passing algorithm (l982a). This algorithm can be applied to general networks, as 
suggested by Pearl (1988). The results might be inconrect, or the algorithm might fail to ter- 
minate, but in many cases, the values obtained are close to the true values. Little attention was 

BELIEF 
PROPAGATION paid to this so-called belief propagation (or loopy propagation) approach until McEliece 

et al. (1998) observed that message passing in a multiply-connected Bayesian network was 
TURBO DECODING exactly the computation performed by the turbo decoding algorithm (Berrou et al., 1993), 

which provided a major breakthrough in the design of efficaent error-correcting codes. The 
implication is that loopy propagation is both fast anal accurate on the very large and very 
highly connected networks used for decoding and might therefore be useful more generally. 
Murphy et al. (1999) present an empirical study of where it does work. Yedidia et al. (2001) 
make further connections between loopy propagation and ideas from statistical physics. 

The connection between probability and first-order languages was first studied by Car- 
nap (1950). Gaifman (1964) and Scott and Krauss (1966) defined a language in which proba- 
bilities could be associated with first-order sentences and for which models were probability 
measures on possible worlds. Within AI, this idea was developed for propositional logic by 
Nilsson (1986) and for first-order logic by Halpern (199'0). The first extensive investigation of 
knowledge representation issues in such languages was carried out by Bacchus (1990), and 
the paper by Wellman et al. (1992) surveys early implementation approaches based on the 
construction of equivalent propositional Bayesian networks. More recently, researchers have 
come to understand the importance of complete knowledge bases-that is, knowledge bases 
that, like Bayesian networks, define a unique joint distribution over all possible worlds. Meth- 
ods for doing this have been based on probabilistic versions of logic programming (Poole, 
1993; Sato and Kameya, 1997) or semantic networks (Koller and Pfeffer, 1998). Relational 
probability models of the kind described in this chapter are investigated in depth by Pfeffer 
(2000). Pasula and Russell (2001) examine both issues of relational and identity uncertainty 
within RPMs and the use of MCMC inference. 

As explained in Chapter 13, early probabilistic systems fell out of favor in the early 
1970s, leaving a partial vacuum to be filled by alternative methods. Certainty factors were 
invented for use in the medical expert system MYCIN (Shortliffe, 1976), which was intended 
both as an engineering solution and as a mode1 of human judgment under uncertainty. The 
collection Rule-Based Expert Systems (Buchanan and Shortliffe, 1984) provides a complete 
overview of MYCIN and its descendants (see also Stefik, 1995). David Heckerman (1986) 
showed that a slightly modified version of certainty factor calculations gives correct proba- 
bilistic results in some cases, but results in serious oveircounting of evidence in other cases. 
The PROSPECTOR expert system (Duda et al., 1979) used a rule-based approach in which the 
rules were justified by a (seldom tenable) global independence assumption. 

Dempster-Shafer theory originates with a paper by Arthur Dempster (1968) propos- 
ing a generalization of probability to interval values and a combination rule for using them. 
Later work by Glenn Shafer (1976) led to the Dempster-Shafer theory's being viewed as a 
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competing approach to probability. Ruspini et al. (1992) analyze the relationship between 
the Dempster-Shafer theory and standard probability theory. Shenoy (1989) has proposed a 
method for decision making with Dempster-Shafer belief functions. 

Fuzzy sets were developed by Lotfi Zadeh (1965) in response to the perceived difficulty 
of providing exact inputs to intelligent systems. The text by Zimmermann (2001) provides 
a thorough introduction to fuzzy set theory; papers on fuzzy applications are collected in 
Zimmermann (1999). As we mentioned in the text, fuzzy logic has often been perceived 
incorrectly as a direct competitor to probability theory, whereas in fact it addresses a different 

POSSIBILITYTHEORY set of issues. Possibility theory (Zadeh, 1978) was introduced to handle uncertainty in fuzzy 
systems and has much in common with probability. Dubois and Prade (1994) provide a 
thorough survey of the connections between possibility theory and probability theory. 

The resurgence of probability depended mainly on the discovery of Bayesian networks 
as a method for representing and using conditional independence information. This resur- 
gence did not come without a fight; Peter Cheeseman's (1985) pugnacious "In Defense of 
Probability," and his later article "An Inquiry into Computer Understanding" (Cheeseman, 
1988, with commentaries) give something of the flavor of the debate. One of the principal 
objections of the logicists was that the numerical calculations that probability theory was 
thought to require were not apparent to introspection and presumed an unrealistic level of 
precision in our uncertain knowledge. The development of qualitative probabilistic net- 
works (Wellman, 1990a) provided a purely qualitative abstraction of Bayesian networks, 
using the notion of positive and negative influences between variables. Wellman shows that 
in many cases such information is sufficient for optimal decision making without the need for 
the precise specification of probability values. Work by Adnan Darwiche and Matt Gins- 
berg (1992) extracts the basic properties of conditioning and evidence combination from 
probability theory and shows that they can also be applied in logical and default reasoning. 

The heart disease treatment system described in the chapter is due to Lucas (1996). 
Other fielded applications of Bayesian networks include the work at Microsoft on inferring 
computer user goals from their actions (Horvitz et al., 1998) and on filtering junk email 
(Sahami et al., 1998), the Electric Power Research Institute's work on monitoring power 
generators (Morjaria et al., 1995), and NASA's work on displaying time-critical information 
at Mission Control in Houston (Horvitz and Barry, 1995). 

Some important early papers on uncertain reasoning methods in AI are collected in the 
anthologies Readings in Uncertain Reasoning (Shafer and Pearl, 1990) and Uncertainty in 
ArtiJicial Intelligence (Kana1 and Lemmer, 1986). The most important single publication in 
the growth of Bayesian networks was undoubtedly the text Probabilistic Reasoning in Zntelli- 
gent Systems (Pearl, 1988). Several excellent texts, including Lauritzen (1996), Jensen (2001) 
and Jordan (2003), contain more recent material. New research on probabilistic reasoning 
appears both in mainstream A1 journals such as ArtiJicial Intelligence and the Journal of AI 
Research, and in more specialized journals, such as the International Journal of Approximate 
Reasoning. Many papers on graphical models, which include Bayesian networks, appear in 
statistical journals. The proceedings of the conferences on Uncertainty in Artificial Intelli- 
gence (UAI), Neural Information Processing Systems (NIPS), and Artificial Intelligence and 
Statistics (AISTATS) are excellent sources for current research. 
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Figure 14.18 A Bayesian network describing some features of a car's electrical system 
and engine. Each variable is Boolean, and the true value indicates that the corresponding 
aspect of the vehicle is in working order. 

14.1 Consider the network for car diagnosis shown in Figure 14.18. 

a. Exten~d the network with the Boolean variables Icy Weather and StarterMotor. 
b. Give reasonable conditional probability tables for all the nodes. 

c.  How inany independent values are contained in the joint probability distribution for 
eight Boolean nodes, assuming that no conditional independence relations are known 
to hold among them? 

d. How many independent probability values do your network tables contain? 

e. The conditional distribution for Starts could be described as a noisy-AND distribution. 
Define this family in general and relate it to the noisy-C)R distribution. 

14.2 In your local nuclear power station, there is an alarm that senses when a temperature 
gauge exceeds a given threshold. The gauge measures the temperature of the core. Consider 
the Boolean variables A (alarm sounds), FA (alarm is faulty), and FG (gauge is faulty) and 
the nlultivalued nodes G (gauge reading) and T (actual core temperature). 

a. Draw a Bayesian network for this domain, given that the gauge is more likely to fail 
when the core temperature gets too high. 

b. Is your network a polytree? 

c.  Suppose there are just two possible actual and measured temperatures, normal and high; 
the probability that the gauge gives the correct temperature is x when it is working, but 
y when it is faulty. Give the conditional probability table associated with G. 
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d. Suppose the alarm works correctly unless it is faulty, in which case it never sounds. 
Give the conditional probability table associated with A. 

e. Suppose the alarm and gauge are working and the alarm sounds. Calculate an expres- 
sion for the probability that the temperature of the core is too high, in terms of the 
various conditional probabilities in the network. 

14.3 Two astronomers in different parts of the world make measurements MI and M2 of 
the number of stars N in some small region of the sky, using their telescopes. Normally, there 
is a small possibility e of error by up to one star in each direction. Each telescope can also 
(with a much smaller probability f )  be badly out of focus (events Fl and F2), in which case 
the scientist will undercount by three or more stars (or, if N is less than 3, fail to detect any 
stars at all). Consider the three networks shown in Figure 14.19. 

a. Which of these Bayesian networks are correct (but not necessarily efficient) represen- 
tations of the preceding information? 

b. Which is the best network? Explain. 

c. Write out a conditional distribution for P(Ml IN), for the case where N E {1,2,3) and 
MI E {0,1,2,3,4).  Each entry in the conditional distribution should be expressed as a 
function of the parameters e and/or f .  

d. Suppose MI = 1 and M2 = 3. What are the possible numbers of stars if we assume no 
prior constraint on the values of N? 

e. What is the most likely number of stars, given these observations? Explain how to 
compute this, or, if it is not possible to compute, explain what additional information is 
needed and how it would affect the result. 

14.4 Consider the network shown in Figure 14.19(ii), and assume that the two telescopes 
work identically. N E {1,2,3) and MI, M2 E { O i l ,  2 ,3,4),  with the symbolic CPTs as de- 
scribed in Exercise 14.3. Using the enumeration algorithm, calculate the probability distribu- 
tion P(NIMl = 2, M2 = 2). 

(9 (ii) (iii) 

Figure 14.19 Three possible networks for the telescope problem. 
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plain how to calculate the cumulative distribution in O ( k )  time and how to generate a 
single sample of X from it. Can the latter be done in less than O ( k )  time? 

b. Now suppose we want to generate N samples of X ,  where N >> k .  Explain how to do 
this with an expected runtime per sample that is constant (i.e., independent of k). 

c.  Now consider a continuous-valued variable with a parametrized distribution (e.g., Gaus- 
sian). How can samples be generated from such a distribution? 

d. Suppose you want to query a continuous-valued variable and you are using a sampling 
algorithm such as LIKELIHOODWEIGHTING to do the inference. How would you have 
to modify the query-answering process? 

14.10 The Markov blanket of a variable is defined on page 499. 

a. Prove that a variable is independent of all other variables in the network, given its 
Markov blanket. 

b. Derive Equation (14.11). 

14.11 Consider the query P(Rain(Sprink1er = true, WetGrass = true) in Figure 14.1 1(a) 
and how MCMC can answer it. 

a. How many states does the Markov chain have? 

b. Calculate the transition matrix Q containing q(y  + y') for all y, y'. 
c.  What does Q ~ ,  the square of the transition matrix, represent? 

d. What about Qn as n -t GO? 

e. Explain how to do probabilistic inference in Bayesian networks, assuming that Qn is 
available. Is this a practical way to do inference? 

i m p  14.12 Three soccer teams A, B, and C,  play each other once. Each match is between two 
teams, and can be won, drawn, or lost. Each team has a fixed, unknown degree of quality- 
an integer ranging from 0 to 3-and the outcome of a match depends probabilistically on the 
difference in quality between the two teams. 

a. Construct a relational probability model to describe this domain, and suggest numerical 
values for all the necessary probability distributions. 

b. Construct the equivalent Bayesian network. 

c. Suppose that in the first two matches A beats B and draws with C. Using an exact 
inference algorithm of your choice, compute the posterior distribution for the outcome 
of the third match. 

d. Suppose there are n teams in the league and we have the results for all but the last 
match. How does the complexity of predicting the last game vary with n? 

e. Investigate the application of MCMC to this problem. How quickly does it converge in 
practice and how well does it scale? 



In which we try to interpret the present, understand the past, and perhaps predict 
the future, even when very little is crystal clear: 

i 

Agents in uncertain environments must be able to keep track of the current state of the 
environment, just as logical agents must. The task is made more difficult by partial and noisy 
percepts and uncertainty about how the environment changes over time. At best, the agent 
will be able to obtain only a probabilistic assessment of the current situation. This chapter 
describes the representations and inference algorithms that make that assessment possible, 
building on the ideas introduced in Chapter 14. 

The basic approach is described in Section 15.1: a chianging world is modeled using 
a random variable for each aspect of the world state at each point in time. The relations 
among these variables describe how the state evolves. Sectiora 15.2 defines the basic inference 
tasks and describes the general structure of inference algorithms for temporal models. Then 
we describe three specific lunds of models: hidden Rilarkov models, Kalman filters. and 
dynamic Bayesian networks (which include hidden Ivlarkov models and Kalman filters as 
special cases). Finally, Section 15.6 explains how temporal probability models form the core 
of modern speech recognition systems. Learning plays ,a central role in the construction of all 
these models, but a detailed investigation of learning algorithms is left until Part VI. 

PROB AB ILlS TIC 5 REASONING OVER TIME 

15.1 TIME AND {JNCERTAINTY 

We have developed our techniques for probabilistic reasoning in the context of static worlds, 
in which each random variable has a single fixed value. For example, when repairing a car, 
we assume that whatever is broken remains broken during the process of diagnosis; our job 
is to infer the state of the car from observed evidence, which also remains fixed. 

Now consider a slightly different problem: treating a diabetic patient. As in the case 
of car repair, we have evidence such as recent insulin doses, food intake, blood sugar mea- 
surements, and other physical signs. The task is to assess the current state of the patient, 
including the actual blood sugar level and insulin level. Given this information, the doctor 
((or patient) makes a decision about the patient's food intake and insulin dose. Unlike the case 
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of car repair, here the dynamic aspects of the problem are essential. Blood sugar levels and 
measurements thereof can change rapidly over time, depending on one's recent food intake 
and insulin doses, one's metabolic activity, the time of day, and so on. To assess the current 
state from the history of evidence and to predict the outcomes of treatment actions, we must 
model these changes. 

The same considerations arise in many other contexts, ranging from tracking the eco- 
nomic activity of a nation, given approximate and partial statistics, to understanding a se- 
quence of spoken words, given noisy and ambiguous acoustic measurements. How can dy- 
namic situations like these be modeled? 

States and observations 

The basic approach we will adopt is similar to the idea underlying situation calculus, as 
described in Chapter 10: the process of change can be viewed as a series of snapshots, each 

TIME SLICE of which describes the state of the world at a particular time. Each snapshot, or time slice, 
contains a set of random variables, some of which are observable and some of which are not. 
For simplicity, we will assume that the same subset of variables is observable in each slice 
(although this is not strictly necessary in anything that follows). We will use Xt to denote the 
set of unobservable state variables at time t and Et to denote the set of observable evidence 
variables. The observation at time t is Et = et for some set of values et. 

Consider the following oversimplified example: Suppose you are the security guard at 
some secret underground installation. You want to know whether it's raining today, but your 
only access to the outside world occurs each morning when you see the director coming in 
with, or without, an umbrella. For each day t ,  the set Et thus contains a single evidence 
variable Ut (whether the umbrella appears), and the set Xt contains a single state variable Rt 
(whether it is raining). Other problems can involve larger sets of variables. In the diabetes 
example, we might have evidence variables such as MeasuredBloodSugart and PulseRatet, 
and state variables such as BloodSugart and Stoma~hContentst .~ 

The interval between time slices also depends on the problem. For diabetes monitoring, 
a suitable interval might be an hour rather than a day. In this chapter, we will generally assume 
a fixed, finite interval; this means that times can be labeled by integers. We will assume 
that the state sequence starts at t = 0; for various uninteresting reasons, we will assume that 
evidence starts arriving at t = 1 rather than t = 0. Hence, our umbrella world is represented by 
state variables Ro , R1, R2, . . . and evidence variables Ul , U2, . . . . We will use the notation 
a:b to denote the sequence of integers from a to b (inclusive), and the notation XaZb to denote 
the corresponding set of variables from X, to Xb. For example, U1:3 corresponds to the 
variables Ul, U2, U3. 

Stationary processes and the Markov assumption 

With the set of state and evidence variables for a given problem decided on, the next step is 
to specify the dependencies among the variables. We could follow the procedure laid down 

Notice that BloodSugart and MeasuredBloodS~gar~ are not the same variable; this is how we deal with 
noisy measurements of actual quantities. 
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in Chapter 14, placing the variables in some order and asking questions about conditional 
independence of predecessors, given some set of parents. One obvious choice is to order the 
variables in their natural temporal order, since cause usually precedes effect and we prefer to 
add the variables in causal order. 

We .would quickly run into an obstacle, howev~er: thle set of variables is unbounded, 
because it includes the state and evidence variables for every time slice. This actually creates 
two problems: first, we might have to specify an unbounded number of conditional probabil- 
ity tables, one for each variable in each slice; second, each one might involve an unbounded 
number of parents. 

The first problem is solved by assuming that changes in the world state are caused 
STATIONARY 
PROCESS by a stationary process-that is, a process of change that is governed by laws tlhat do not 

themselves change over time. (Don't confuse stationary with static: in a static process, the 
state itself does not change.) In the umbrella world, then, the conditional probability that 
the umbrella appears, P(UtlParents(Ut)), is the same for all t. Given the assumption of 
stationarity, therefore, we need specify conditional dislributions only for the variables within 
a "representative" time slice. 

The second problem, that of handling the potentially infinite number of parents, is 
MARKOV 
ASSUMPTION solved by making what is called a Markov assumption-that is, that the current state de- 

pends on only aJinite history of previous states. Processes satisfying this assumption were 
first studied in depth by the Russian statistician Andrei Markov and are called Markov pro- 

MARKOV 
PROCESSES cesses or Markov chains. They come in various flavors; the simplest is the first-order 
FIRST-ORDER 
MARKoVPRoCEss Markov process, in which the current state depends only on the previous state and not on 

any earlier states. In other words, a state is the information you need to make the future 
independen1 of the past given the state. Using our notation, the corresponding conditional 
independercce assertion states that, for all t ,  

Hence, in a first-order Markov process, the laws describing how the state evolves over time 
are contained entirely within the conditional distribution P(Xt (Xt-l), which we call the tran- 
sition model for first-order processes.2 The transition model for a second-order Markov 
process is the conditional distribution P(Xt lXt-2, Xt-l). Figure 15.1 shows the Bayesian 
network structures corresponding to first-order and second-order Markov processes. 

In addition to restricting the parents of the state variables Xt, we must restrict the parents 
of the evidence variables Et. Typically, we will assume that the evidence variables at time t 
depend only on the current state: 

P(Et lXo:t, Eo:t-I) = P(Et 1%) . (15.2) 

SENSORMODEL The conditional distribution P(Et lXt) is called the sensor model (or sometimes the obser- 
vation model), because it describes how the "sensors7'--that is, the evidence variables-are 
affected by the actual state of the world. Notice the direction of the dependence: the "arrow" 
goes from state to sensor values because the state of the world causes the sensors to take on 

The transition model is the probabilistic analog of the Boolean update circuits in Chapter 7 and the successor- 
state axioms in Chapter 10. 
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Figure 15.1 (a) Bayesian network structure corresponding to a first-order Markov process 
with state defined by the variables Xt. (b) A second-order Markov process. 

Figure 15.2 Bayesian network structure and conditional distributions describing the 
umbrella world. The transition model is P ( R ~ i n ~ l R a i n ~ - ~ )  and the sensor model is 
P(Umbrellat(Raint). 

particular values. In the umbrella world, for example, the rain causes the umbrella to ap- 
pear. (The inference process, of course, goes in the other direction; the distinction between 
the direction of modeled dependencies and the direction of inference is one of the principal 
advantages of Bayesian networks.) 

In addition to the transition model and sensor model, we need to specify a prior prob- 
ability P(Xo) over the states at time 0. These three distributions, combined with the condi- 
tional independence assertions in Equations (15.1) and (15.2), give us a specification of the 
complete joint distribution over all the variables. For any finite t, we have 

t 

P(Xo, XI , .  . . , Xt, E l ,  . . . , Et) = ~ ( X O )  n .(Xi. lXi-~)P(EilXi) . 
i = l  

The independence assumptions correspond to a very simple structure for the Bayesian net- 
work describing the whole system. Figure 15.2 shows the network structure for the umbrella 
example, including the conditional distributions for the transition and sensor models. 

The structure in the figure assumes a first-order Markov process, because the probability 
of rain is assumed to depend only on whether it rained the previous day. Whether such an 
assumption is reasonable depends on the domain itself. The first-order Markov assumption 
says that the state variables contain all the information needed to characterize the probability 
distribution for the next time slice. Sometimes the assumption is exactly true-for example, 

RANDOMWALK if a particle is executing a random walk along the x-axis, changing its position by f 1 at 
each time step, then using the x-coordinate as the state gives a first-order Markov process. 
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Sometimes the assumption is only approximate, as in the case of predicting rain only on the 
basis of wh~ether it rained the previous day. There are two possible fixes if the approximation 
proves too inaccurate: 

1. Increasing the order of the Markov process model. For example, we could make a 
second-order model by adding R a ~ n ~ - ~  as a parent of Raint, which might give slightly 
more accurate predictions (for example, in Palo ,41to it very rarely rains more than two 
days in a row). 

2. Increasing the set of state variables. For example, we could add Season{ to allow 
us to incorporate historical records of rainy seasons, or we could add Temperaturet, 
Humzdityt and Pressuret to allow us to use a physical model of rainy conditions. 

Exercise 15.1 asks you to show that the first solution--increasing the order-can always be 
reformulated as an increase in the set of state variables, keeping the order fixed. Notice that 
adding state variables might improve the system's pr~edictive power but also increases the 
prediction requirements: we now have to predict the new variables as well. Thus, we are 
looking for a "self-sufficient" set of variables, which really means that we have to understand 
the "physics" of the process being modeled. The requlirement for accurate modelilng of the 
process is obviously lessened if we can add new sensors (e.g., measurements of temperature 
and pressure) that provide information directly about the new state variables. 

Consider, for example, the problem of tracking a robot wandering randomly on the X-Y 
plane. One might propose that the position and velocity are a sufficient set of state variables: 
one can simply use Newton's laws to calculate the new ]position, and the velocity may change 
unpredictably. If the robot is battery-powered, however, then battery exhaustion would tend to 
have a syste~natic effect on the change in velocity. Because this in turn depends on how much 
power was used by all previous maneuvers, the Markov property is violated. We can restore 
the Markov property by including the charge level Batteryt as one of the state variables that 
make up Xt. This helps in predicting the motion of the robot, but in turn requires a model 
for predicting Batteryt from Batteryt-1 and the velocity. In some cases, that can be done 
reliably; accluracy would be improved by adding a new sensor for the battery level 

Having set up the structure of a generic temporal model, we can formulate the basic inference 
tasks that must be solved: 

FILTERING 

MONITORING 

BELIEF STATE 

0 Filtering or monitoring: This is the task of conlputing the belief state-the poste- 
rior distribution over the current state, given all evidence to date. That is, we wish to 
compute P(Xt (el:t), assuming that evidence arrives in a continuous stream beginning 
at t = 1. In the umbrella example, this would mean computing the probability of rain 
today, given all the observations of the umbrella carrier made so far. Filtering is what a 
rational agent needs to do in order to keep track of the current state so that rational de- 
cisions can be made. (See Chapter 17.) It turns out that iin almost identical calculation 
provides the likelihood of the evidence sequence, iP(elZt). 
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SMOOTHING 

HINDSIGHT 

PREDICTION 0 Prediction: This is the task of computing the posterior distribution over thefuture state, 
given all evidence to date. That is, we wish to compute P(Xt+k(el:t) for some k > 0. 
In the umbrella example, this might mean computing the probability of rain three days 
from now, given all the observations of the umbrella-carrier made so far. Prediction is 
useful for evaluating possible courses of action. 

0 Smoothing, or hindsight: This is the task of computing the posterior distribution over a 
past state, given all evidence up to the present. That is, we wish to compute P(XkJel:t) 
for some k such that 0 <_ k < t. In the umbrella example, it might mean computing 
the probability that it rained last Wednesday, given all the observations of the umbrella 
carrier made up to today. Hindsight provides a better estimate of the state than was 
available at the time, because it incorporates more evidence. 

0 Most likely explanation: Given a sequence of observations, we might wish to find the 
sequence of states that is most likely to have generated those observations. That is, we 
wish to compute argmax,, , P(xlZt (el,t). For example, if the umbrella appears on each 
of the first three days and is absent on the fourth, then the most likely explanation is that 
it rained on the first three days and did not rain on the fourth. Algorithms for this task 
are useful in many applications, including speech recognition-where the aim is to find 
the most likely sequence of words, given a series of sounds-and the reconstruction of 
bit strings transmitted over a noisy channel. 

In addition to these tasks, methods are needed for learning the transition and sensor models 
from observations. Just as with static Bayesian networks, dynamic Bayes net learning can be 
done as a by-product of inference. Inference provides an estimate of what transitions actually 
occurred and of what states generated the sensor readings, and these estimates can be used 
to update the models. The updated models provide new estimates, and the process iterates 
to convergence. The overall process is an instance of the expectation-maxjmization or EM 
algorithm. (See Section 20.3.) One point to note is that learning requires the full smoothing 
inference, rather than filtering, because it provides better estimates of the states of the process. 
Learning with filtering can fail to converge correctly; consider, for example, the problem of 
learning to solve murders: hindsight is always required to infer what happened at the murder 
scene from the observable variables. 

Algorithms for the four inference tasks listed in the preceding paragraph can be de- 
scribed first at a generic level, independently of the particular kind of model employed. Im- 
provements specific to each model will be described in the corresponding sections. 

Filtering and prediction 

Let us begin with filtering. We will show that this can be done in a simple online fashion: 
given the result of filtering up to time t ,  one can easily compute the result for t + 1 from the 
new evidence et+, . That is, 

P(Xt+llel:t+l) = f (%+I> P(Xt Ie1:t)) . 
RECURSIVE 
ESTIMATION for some function f .  This process is often called recursive estimation. We can view the 

calculation as actually being composed of two parts: first, the current state distribution is 
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projected forward from t to t + 1; then it is updated using the new evidence et+l. This 
two-part process emerges quite simply: 

P(Xt+1 lel,t+l) = P(Xt+l lelZt, et+l) (dividing up the evidence) 

= a P(et+l IXt+l, el,t)P(Xt+l (el:t) (using Bayes' rule) 

= a P(ett1 IXt+l)P(Xt+l lel:t) (by the Markov property of evidence). 

Here and throughout this chapter, a is a normalizing constant used to make probabilities sum 
up to 1. The second term, P(Xt+llel,t) represents a one-step prediction of the next state, 
and the first term updates this with the new evidence; notice that P(et+l lXt+1) is obtainable 
directly from the sensor model. Now we obtain the one-step prediction for the next state by 
conditioning on the current state Xt: 

P(Xt+l lel:t+l) = a P(et+l \&+I) C ~ ( ~ t + l  Ixt, el:t)P(xt 1el:t) 
X t  

= a P(et+l P(X~+L lxt) ~(x t le l : t )  (using the Markov property). (15.3) 
Xt 

Within the summation, the first factor is simply the transition model and the second is the 
current state, distribution. Hence, we have the desired recursive formulation. We can think 
of the filtered estimate P(Xt/el,t) as a "message" fl:t that is propagated forward along the 
sequence, modified by each transition and updated by each new observation. The process is 

fi:t+l = a  FORWARD(^^:^) %+I) 
where FORWARD implements the update described in Equation (15.3). 

When all the state variables are discrete, the time for each update is constant (i.e., inde- 
pendent oft) ,  and the space required is also constant. (The constants depend, of course, on 
the size of the state space and the specific type of the temporal model in question.) The time 
and space requirements for updating must be constant if an agent with limited memory is to 
keep track ofthe current state distribution over an unbounded sequence of observations. 

Let us illustrate the filtering process for two steps in the basic umbrella example. (See 
Figure 15.2.) We assume that our security guard has some prior belief about whether it 
rained on day 0, just before the observation sequence begins. Let's suppose this is P(Ro) = 

(0.5,0.5). Mow we process the two observations as follows: 

a On day 1, the umbrella appears, so Ul = true. The prediction from t = 0 to t == 1 is 

P(R1) = C ~ ( ~ l l r o ) ~ ( r o )  
TO 

= (0.7,0.3) x 0.5 + (0.3,0.7) x 0.5 = (0.5,0.5) , 
and updating it with the evidence for t = 1 gives 

P(RIIzLI) = a P(ul(Rl)P(Rl) = a (0.9,0.2) (0.5,0.5) 
= a (0.45,O.l) % (0.818,0.182) . 

On day 2, the umbrella appears, so Uz = true. The prediction from t = 1 to t = 2 is 

P(Ralu1) = C P ( R Z J ~ I ) P ( I . ~ I U ~ )  
T 1  

= (0.7,0.3) x 0.818 + (0.3,0.7) x 0.182 FZ (0.627,0.373) , 
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MIXING TIME 

and updating it with the evidence for t = 2 gives 

P(R21u1, u2) = a!P(u21R2)P(Rzlul) = a (0.9,0.2)(0.627,0.373) 

= a! (0.565,0.075) G (0.883,0.117) . 

Intuitively, the probability of rain increases from day 1 to day 2 because rain persists. Exer- 
cise 15.2(a) asks you to investigate this tendency further. 

The task of prediction can be seen simply as filtering without the addition of new 
evidence. In fact, the filtering process already incorporates a one-step prediction, and it is 
easy to derive the following recursive computation for predicting the state at t + k + 1 from 
a prediction for t + k: 

P(Xt+h+lle~:t) = x P(Xt+k+l Ixt+n)P(xt+xlel:i) . (15.4) 
X t t k  

Naturally, this computation involves only the transition model and not the sensor model. 
It is interesting to consider what happens as we try to predict further and further into 

the future. As Exercise 15.2(b) shows, the predicted distribution for rain converges to a 
fixed point (0.5,0.5), after which it remains constant for all time. This is the stationary 
distribution of the Markov process defined by the transition model. (See also page 517.) A 
great deal is known about the properties of such distributions and about the mixing time- 
roughly, the time taken to reach the fixed point. In practical terms, this dooms to failure any 
attempt to predict the actual state for a number of steps that is more than a small fraction of 
the mixing time. The more uncertainty there is in the transition model, the shorter will be the 
mixing time and the more the future is obscured. 

In addition to filtering and prediction, we can use a forward recursion to compute the 
likelihood of the evidence sequence, P(elrt). This is a useful quantity if we want to compare 
different temporal models that might have produced the same evidence sequence; for exam- 
ple, in Section 15.6, we compare different words that might have produced the same sound 
sequence. For this recursion, we use a likelihood message l l : t  = P(Xt, el,t). It is a simple 
exercise to show that 

&:,+I =  FORWARD(&,^, %+I) . 
Having computed lilt, we obtain the actual likelihood by summing out Xt: 

Smoothing 

As we said earlier, smoothing is the process of computing the distribution over past states 
given evidence up to the present; that is, P(Xk for 1 < k < t. (See Figure 15.3.) This is 
done most conveniently in two parts-the evidence up to k and the evidence from k + 1 to t ,  

P(Xklel:t) = P(Xk (el:k, ek+l:t) 

= a P(Xk lel:k)P(ek+l:t JXk, el:k) (using Bayes' rule) 

= a! P(Xk lel:k)P(ek+l:t lXk) (using conditional independence) 

= fl:lcbk+l:t , (15.6) 



Section 15.2. Inference in Temporal Models 545 

Figure 15.3 Smoothing computes P(Xk(el:t), the posterior distribution of the state at 
some past time k given a complete sequence of observations from 1 to t. 

where we have defined a "backward" message bk+pt = P(ek+l,tlXk), analogous to the for- 
ward message flYk. The forward message flzk can be: comlputed by filtering forward from 
1 to k, as given by Equation (15.3). It turns out that the backward message bk+pt can be 
computed by a recursive process that runs backwards from t:. 

= P(erz+1 :t ~ X ~ + ~ ) P ( X ~ + ~  1x4 (by conditional independence) 
X k + l  

= C P(er+l Ixx+l)p(ek+z:t Ix~+I)P(x~+I  Ixi) , (15.7) 
X k + l  

where the last step follows by the conditional independence of ek+l and ek+zZt, given Xktl. 
Of the three factors in this summation, the first and third are obtained directly from the model, 
and the second is the "recursive call." Using the message notation, we have 

where BACKWARD implements the update described in Equation (15.7). As with the forward 
recursion, the time and space needed for each update are constant and thus independent of t .  

We can now see that the two terms in Equation (15.6) can both be computed by recur- 
sions through time, one running forward from 1 to k and using the filtering equation (15.3) 
and the other running backward from t to k+ 1 and using Equation (15.7). Note that the back- 
ward phase is initialized with bt+pt = P(et+l,t IXt) = 1, where 1 is a vector of ones. (Because 
et+l,t is an empty sequence, the probability of observing it is 1.) 

Let us now apply this algorithm to the umbrella exaimple, computing the smoothed 
estimate for the probability of rain at t = 1, given the umbrella observations on days 1 and 2. 
From Equation (15.6), this is given by 

The first term we already know to be (318, .182), :from the forward filtering process de- 
scribed earlier. The second term can be computed by applying the backward recursion in 
Equation (15.7): 
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Plugging this into Equation (15.8), we find that the smoothed estimate for rain on day 1 is 

Thus, the smoothed estimate is higher than the filtered estimate (0.818) in this case. This is 
because the umbrella on day 2 makes it more likely to have rained on day 2; in turn, because 
rain tends to persist, that makes it more likely to have rained on day 1. 

Both the forward and backward recursions take a constant amount of time per step; 
hence, the time complexity of smoothing with respect to evidence elzt is O( t ) .  This is the 
complexity for smoothing at a particular time step k. If we want to smooth the whole se- 
quence, one obvious method is simply to run the whole smoothing process once for each 
time step to be smoothed. This results in a time complexity of 0 ( t 2 ) .  A better approach uses 
a very simple application of dynamic programming to reduce the complexity to O( t ) .  A clue 
appears in the preceding analysis of the umbrella example, where we were able to reuse the 
results of the forward filtering phase. The key to the linear-time algorithm is to record the 
results of forward filtering over the whole sequence. Then we run the backward recursion 
from t  down to 1, computing the smoothed estimate at each step k from the computed back- 
ward message bk+pt and the stored forward message flZk. The algorithm, aptly called the 

FORWARD- 
BACKWARD 
ALGORITHM 

forward-backward algorithm, is shown in Figure 15.4. 
The alert reader will have spotted that the Bayesian network structure shown in Fig- 

ure 15.3 is a polytree in the terminology of Chapter 14. This means that a straightfor- 
ward application of the clustering algorithm also yields a linear-time algorithm that computes 
smoothed estimates for the entire sequence. It is now understood that the forward-backward 
algorithm is in fact a special case of the polytree propagation algorithm used with clustering 
methods (although the two were developed independently). 

function FORWARD-BACKWARD(~V, prior) returns a vector of probability distributions 
inputs: ev, a vector of evidence values for steps 1, . . . , t 

prior, the prior distribution on the initial state, P(Xo) 
local variables: fv, a vector of forward messages for steps 0, . . . , t 

b, a representation of the backward message, initially all 1s 
sv, a vector of smoothed estimates for steps 1, . . . , t 

fv[O] +prior 
for i=  l t o t d o  

fv[i] t FORWARD(~V[Z - 11, ev[i]) 
for i = t dowuto 1 do 

sv[i] + NORMALIZE(~V[~]  X b) 
b c  BACKWARD(^, ev[i]) 

return sv 

Figure 15.4 The forward-backward algorithm for computing posterior probabilities of 
a sequence of states given a sequence of observations. The FORWARD and BACKWARD 

operators are defined by Equations (15.3) and (15.7), respectively. 
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The forward-backward algorithm forms the backbone of the computational methods 
employed in many applications that deal with sequences of noisy observations, ranging from 
speech recognition to radar tracking of aircraft. As described, it has two practical drawbacks. 
The first is that its space complexity can be too high for applications where the state space is 
large and the sequences are long. It uses O(l fit) space where /fl is the size of the represen- 
tation of the forward message. The space requirement can be reduced to O(lf1 log t )  with a 
concomitant increase in the time complexity by a factor of log t ,  as shown in Exercise 15.3. In 
some cases (see Section 15.3), a constant-space algorithm can be used with no time penalty. 

The second drawback of the basic algorithm is that i1 needs to be modified to work 
in an online setting where smoothed estimates must be computed for earlier time slices as 
new observations are continuously added to the end of the sequence. The most common 

FIXED-LAG 
SMOOTHING requirement is for fixed-lag smoothing, which requires colnputing the smoothed estimate 

P(Xt-d]el,t) for fixed d. That is, smoothing is done for the time slice d steps behind the 
current time t ;  as t increases, the smoothing has to keep up. Obviously, we can run the 
forward-backward algorithm over the d-step "window" as each new observation is added, 
but this seems inefficient. In Section 15.3, we will see  that fixed-lag smoothing can, in some 
cases, be done in constant time per update, independently of the lag d. 

Pinding the most likely sequence 

Suppose that [true, true, false, true, true] is the umbrlella sequence for the security guard's 
first five days on the job. What is the weather sequence most likely to explain this? Does 
the absence of the umbrella on day 3 mean that it wasn't raining, or did the director forget 
to bring it? If it didn't rain on day 3, perhaps (because weather tends to persist) it didn't 
rain on day 4 either, but the director brought the umbrella just in case. In all, there are 25 
possible weather sequences we could pick. Is there a way to find the most likely one, short of 
enumerating all of them? 

One approach we could try is the following linear-time procedure: use the smoothing 
algorithm to find the posterior distribution for the weather alt each time step; then construct 
the sequence, using at each step the weather most likely according to the posterior. Such an 
approach should set off alarm bells in the reader's head, because the posteriors computed by 
smoothing are distributions over single time steps, whereas to find the most likely sequence 
we must consider joinl probabilities over all the time steps. The results can in fact be quite 
different. (See Exercise 15.4.) 

There is a linear-time algorithm for finding the most likely sequence, but it requires a 
little more thought. It relies on the same Markov property that yielded efficient algorithms for 
filtering and smoothing. The easiest way to think about the problem is to view each sequence 
as a path through a graph whose nodes are the possible sttxtes at each time step. Such a 
graph is shown for the umbrella world in Figure 15.5(a). Now consider the task of finding 
the most likely path through this graph, where the likelihood of any path is the product of 
the transition probabilities along the path and the problabilities of the given observations at 
each state. Let's focus in particular on paths that reach the state Razn5 = true. Because of 
the Markov property, it follows that the most likely path[ to the state Rain5 = true consists of 
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Rain Rain2 Rain3 Rain4 Rain 
-I--- < true $1 true true bi true $; true ; 

(a) 
false false false false false 

Umbrella true true false true true 

3182 
(b) 

.I818 

Figure 15.5 (a) Possible state sequences for Raint can be viewed as paths through a graph 
of the possible states at each time step. (States are shown as rectangles to avoid confusion 
with nodes in a Bayes net.) (b) Operation of the Viterbi algorithm for the umbrella obser- 
vation sequence [true, true, false, true, true]. For each t ,  we have shown the values of the 
message rnlrt, which gives the probability of the best sequence reaching each state at time t .  
Also, for each state, the bold arrow leading into it indicates its best predecessor as measured 
by the product of the preceding sequence probability and the transition probability. Following 
the bold arrows back from the most likely state in rnl:~, gives the most likely sequence. 

the most likely path to some state at time 4 followed by a transition to Rain5 = true; and the 
state at time 4 that will become part of the path to Rain5 = true is whichever maximizes the 
likelihood of that path. In other words, there is a recursive relationship between most likely 
paths to each state xt+l and most likelypaths to each state xt. We can write this relationship 
as an equation connecting the probabilities of the paths: 

max P(x1, . . . , xt, Xt+l ]el:t+l) 
X1 ... Xt 

Equation (15.9) is identical to the filtering equation (15.3) except that 

1. The forward message f p t  = P(Xt is replaced by the message 

ml:t = max P(x1,. . . , xt-I ,  Xtle1:t) , 
X1 ... Xt-1 

that is, the probabilities of the most likely path to each state xt; and 

2. the summation over xt in Equation (15.3) is replaced by the maximization over xt in 
Equation (15.9). 

Thus, the algorithm for computing the most likely sequence is similar to filtering: it runs for- 
ward along the sequence, computing the m message at each time step, using Equation (15.9). 
The progress of this computation is shown in Figure 15.5(b). At the end, it will have the 
probability for the most likely sequence reaching each of the final states. One can thus easily 
select the most likely sequence overall (the state outlined in bold). In order to identify the 
actual sequence, as opposed to just computing its probability, the algorithm will also need 
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to keep pointers from each state back to the best state that leads to it (shown in bold); the 
sequence is identified by following the pointers back from the best final state. 

VITERBI ALGORITHM The algorithm we have just described is called the Viterbi algorithm, after its inventor. 
Like the filtering algorithm, its complexity is linear in t ,  the length of the sequence. Un- 
like filtering, however, its space requirement is also linear in t. This is because the Viterbi 
algorithm needs to keep the pointers that identify the best sequence leading to each state. 

The preceding section developed algorithms for temporal problabilistic reasoning using a gen- 
eral framework that was independent of the specific form of the transition and sensor models. 
In this and the next two sections, we discuss more concrete models and applications that 
illustrate the power of the basic algorithms and in some cases allow further improvements. 

HIDDEN MARKOV 
MODEL We begin with the hidden Markov model, or HMM. An HMM is a temporal prob- 

abilistic model in which the state of the process is described by a single discrete random 
variable. The possible values of the variable are the possible states of the world. The um- 
brella example described in the preceding section is therefore an HMM, since it has just one 
state variable: Raint. Additional state variables can be added to a temporal model while stay- 
ing within the HMM framework, but only by combining all the state variables into a single 
"megavariable" whose values are all possible tuples of values of the individual state variables. 
We will see that the restricted structure of HMMs allows for a very simple and elegant matrix 
implementation of all the basic algorithms.3 Section 15.6 shows how HMMs are used for 
speech recognition. 

Simplified matrix algorithms 

With a single, discrete state variable X t ,  we can give concrete form to the representations 
of the transition model, the sensor model, and the forw<wd and backward messages. Let the 
state variable Xt have values denoted by integers 1, . . . , S, where S is the number of possible 
states. The transition model P(Xt  IXtPl) becomes an S x S matrix T, where 

'That is, Tij is the probability of a transition from state i to stat(? j .  For example, the transition 
matrix for the umbrella world is 

We also put the sensor model in matrix form. In this case, because the value of the evidence 
variable Et is known to be, say, et, we need use only that part of the model specifying the 
probability that et appears. For each time step t ,  we construct a diagonal matrix Ot whose 

The reader unfamiliar with basic operations on vectors and matrices might wish to consult Appendix A before 
proceeding with this section. 
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diagonal entries are given by the values P(et lXt = i) and whose other entries are 0. For 
example, on day 1 in the umbrella world, Ul = true, so, from Figure 15.2, we have 

Now, if we use column vectors to represent the forward and backward messages, the compu- 
tations become simple matrix-vector operations. The forward equation (15.3) becomes 

f1:t+1 = 0t+1TTfi:t (15.10) 

and the backward equation (15.7) becomes 

bk+l:t = TOk+lbk+2:t . (15.11) 

From these equations, we can see that the time complexity of the forward-backward algo- 
rithm (Figure 15.4) applied to a sequence of length t is O(s2 t ) ,  because each step requires 
multiplying an S-element vector by an S x S matrix. The space requirement is O(St) ,  be- 
cause the forward pass stores t vectors of size S. 

Besides providing an elegant description of the filtering and smoothing algorithms for 
HMMs, the matrix formulation reveals opportunities for improved algorithms. The first is 
a simple variation on the forward-backward algorithm that allows smoothing to be carried 
out in constant space, independently of the length of the sequence. The idea is that smooth- 
ing for any particular time slice k requires the simultaneous presence of both the forward and 
backward messages, fpk and bk+pt, according to Equation (15.6). The forward-backward al- 
gorithm achieves this by storing the fs computed on the forward pass so that they are available 
during the backward pass. Another way to achieve this is with a single pass that propagates 
both f and b in the same direction. For example, the "forward" message f can be propagated 
backwards if we manipulate Equation (15.10) to work in the other direction: 

T -1 -1 
f1:t = a'(T ) Ott1f1:t+l . 

The modified smoothing algorithm works by first running the standard forward pass to com- 
pute ft:t (forgetting all the intermediate results) and then running the backward pass for both 
b and f together, using them to compute the smoothed estimate at each step. Since only one 
copy of each message is needed, the storage requirements are constant (i.e. independent o f t ,  
the length of the sequence). There is one significant restriction on this algorithm: it requires 
that the transition matrix be invertible and that the sensor model have no zeroes-that is, 
every observation is possible in every state. 

A second area in which the matrix formulation reveals an improvement is in online 
smoothing with a fixed lag. The fact that smoothing can be done in constant space suggests 
that there should exist an efficient recursive algorithm for online smoothing-that is, an al- 
gorithm whose time complexity is independent of the length of the lag. Let us suppose that 
the lag is d; that is, we are smoothing at time slice t - d, where the current time is t. By 
Equation (15.6), we need to compute 

af1:t-dbt-d+l:t 

for slice t - d. Then, when a new observation arrives, we need to compute 

a f1:t-d+lbt-d+2:t+1 
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for slice t - d + 1. How can this be done incrementally? First, we can compute fl:t-d+l from 
flzt-d, using the standard filtering process, Equation (15.3). 

Computing the backward message incrementally is more tricky, because there is no sim- 
ple relationship between the old backward message bt-d+pt and the new backward message 
bt-d+2:t+l Instead, vve will examine the relationship between the old backward message 
bt-d+pt and the backward message at the front of the sequence, bt+lZt. To do this, we apply 
Equation (15.1 1) d times to get 

where the matrix BtPd+pt is the product of the sequence of T and 0 matrices. B can be 
thought of as a "transformation operator" that transforms a later backward message into an 
earlier one. A similar equation holds for the new bachvard messages after the next observa- 
tion arrives: 

bt-d+2:t+1 = ( Toi )  bt+2:t+l = Bt-d+2:t+ll . (15.13) 
i = t-d+2 

Examining the product expressions in Equations (1 5.12,) and (1 5.13), we see that they have a 
simple relationship: to get the second product, "divide" the first product by the first element 
TOt-d+l, and multiply by the new last element TOt+,. . In rnatrix language, then, there is a 
simple relationship between the old and new B mat rice;^: 

This equation provides an incremental update for the B matrix, which in turn (through Equa- 
tion (15.13)) allows us to compute the new backward message bt-d+2:t+l The complete 
algorithm, which requires storing and updating f and B, is shown in Figure 15.6. 

Imagine watching a small bird flying through dense jungle foliage at dusk: you glimpse 
brief, intermittent flashes of motion; you try hard to guess wh~ere the bird is and where it will 
appear next so that you don't lose it. Or imagine that you are a World War I1 radar operator 
peering at a faint, wandering blip that appears once every 10 seconds on the screen. Or, going 
back further still, imagine you are Kepler trying to reconst]-uct the motions of the planets 
from a collection of highly inaccurate angular observati~ons taken at irregular and imprecisely 
measured intervals. In all these cases, you are trying to estimate the state (position and 
velocity, for example) of a physical system from noisy observations over time. The problem 
can be formulated as inference in a temporal probabiliity model, where the transition model 
describes the physics of motion and the sensor model describes the measurement process. 
This section examines the special representations and inference algorithms that have been 
developed to solve these sorts of problems; the method we will cover is called Kalman 

KALMAN FILTERING filtering, after its inventor, Rudolf E. Kalman. 
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function FIXED-LAG-SMOOTHING(~~, hmm, d) returns a distribution over Xt-d 
inputs: et, the current evidence for time step t 

hmm, a hidden Markov model with S x S transition matrix T 
d, the length of the lag for smoothing 

static: t ,  the current time, initially 1 
f, a probability distribution, the forward message P(Xt (el:t), initially P ~ 1 0 ~ [ h m m ]  
B, the d-step backward transformation matrix, initially the identity matrix 
et-d,t, double-ended list of evidence from t - d to t ,  initially empty 

local variables: Ot-d, Ot, diagonal matrices containing the sensor model information 

add et to the end of et-dit 
Ot +- diagonal matrix containing P(et lXt) 
if t > d then 

f +  FORWARD(^, et) 
remove et-d-1 from the beginning of et-d:t 
Ot-d +- diagonal matrix containing P(etPd lXt -d) 
B + o;-~~T-~BTo~ 

else B t BTOt 
t t t + l  
if t > d then return  NORMALIZE(^ x B1) else return null 

Figure 15.6 An algorithm for smoothing with a fixed time lag of d steps, implemented as 
an online algorithm that outputs the new smoothed estimate given the observation for a new 
time step. 

Clearly, we will need several continuous variables to specify the state of the system. For 
example, the bird's flight might be specified by position (X, Y, 2) and velocity (x, Y ,  2) at 
each point in time. We will also need suitable conditional densities to represent the transition 
and sensor models; as in Chapter 14, we will use linear Gaussian distributions. This means 
that the next state Xt+l must be a linear function of the current state Xt, plus some Gaussian 
noise, a condition that turns out to be quite reasonable in practice. Consider, for example, the 
X-coordinate of the bird, ignoring the other coordinates for now. Let the interval between 
observations be A, and let us assume constant velocity; then the position update is given by 

x t + , = x t + x n .  

If we add Gaussian noise then we have a linear Gaussian transition model: 

P(Xt+* = xt+n IXt = xt, ~t = i t )  = N(xt + xt A, a )  (xt+a) . 
The Bayesian network structure for a system with position Xt  and velocity is shown in 
Figure 15.7. Note that this is a very specific form of linear Gaussian model; the general form 
will be described later in this section and covers a vast array of applications beyond the simple 
motion examples of the first paragraph. The reader might wish to consult Appendix A for 
some of the mathematical properties of Gaussian distributions; for our immediate purposes, 

MULTIVARIATE 
GAUSSIAN the most important is that a multivariate Gaussian distribution for d variables is specified 

by a d-element mean p and a d x d covariance matrix E. 
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Figure 15.7 Bayesian network structure for a linear dyna~nical system with position Xt, 
velocity xt, and position measurement Z t .  

Updating Gaussian distributions 

In Chapter 14, we alluded to a key property of the line<ar Gaussian family of distributions: it 
remains closed under the standard Bayesian network operations. Here, we make this claim 
precise in the context of filtering in a temporal probability model. The required properties 
correspond to the two-step filtering calculation in Equation (115.3): 

1. If the current distribution P(Xt lelZt) is Gaussian and the transition model P(Xt+l lxt) is 
linear Gaussian, then the one-step predicted distribution given by 

is also a Gaussian distribution. 

2. If the predicted distribution P(Xt+l (elIt) is Gaussian and sensor model P(et+l lXt+l) is 
linear Gaussian, then, after conditioning on the new evidence, the updated distribution 

is also a Gaussian distribution. 

Thus, the FORWARD operator for Kalman filtering takes a Gaussian forward message fl t ,  

specified by a mean pt and covariance matrix Xt, and produces a new multivariate Gaussian 
forward message fl,t+l, specified by a mean p t + ~  and covariance matrix So, if we 
start with a Gaussian prior fl:o = P(Xo) = N(pa, XO)? lfilteririg with a linear Gaussian model 
produces a Gaussian state distribution for all time. 

This seems to be a nice, elegant result, but why is it so important? The reason is that, 
except for a few special cases such as this, $filtering with continuous or hybrid (discrete and 
continuous) networks generates state distributions whose representation grows without bound 
over time. This statement is not easy to prove in general, but Exercise 15.5 shows what 
happens for a simple example. 
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A simple one-dimensional example 

We have said that the FORWARD operator for the Kalman filter maps a Gaussian into a new 
Gaussian. This translates into computing a new mean and covariance matrix from the previ- 
ous mean and covariance matrix. Deriving the update rule in the general (multivariate) case 
requires rather a lot of linear algebra, so we will stick to a very simple univariate case for now; 
later we will give the results for the general case. Even for the univariate case, the calculations 
are somewhat tedious, but we feel that they are worth seeing because the usefulness of the 
Kalman filter is tied so intimately to the mathematical properties of Gaussian distributions. 

The temporal model we will consider describes a random walk of a single continuous 
state variable Xt with a noisy observation Zt. An example might be the "consumer confi- 
dence" index, which can be modeled as undergoing a random Gaussian-distributed change 
each month and is measured by a random consumer survey that also introduces Gaussian 
sampling noise. The prior distribution is assumed to be Gaussian with variance 002: 

(For simplicity, we will use the same symbol a! for all normalizing constants in this section.) 
The transition model simply adds a Gaussian perturbation of constant variance a: to the 
current state: 

The sensor model then assumes Gaussian noise with variance 02: 

Now, given the prior P(Xo), we can compute the one-step predicted distribution using Equa- 
tion (15.15): 

00 

J-00 

This integral looks rather complicated. The key to progress is to notice that the exponent is the 
sum of two expressions that are quadratic in xo and hence is itself a quadratic in xo. A simple 

CoMPLET'NGTHE SQUARE trick known as completing the square allows the rewriting of any quadratic ax; + bxo + c 
b2 

as the sum of a squared term a(xo - and a residual term c - 4a that is independent of 
24. 

xo. The residual term can be taken outside the integral, giving us 

Now the integral is just the integral of a Gaussian over its full range, which is simply 1. Thus, 
we are left with only the residual term from the quadratic. 
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x position 

Figure 15.8 Stages in the Kalman filter update cycle for a random walk with a prior given 
by po = 0.0 and g o  = 1.0, transition noise given by a, = 2.0, sensor noise given by a, = 1.0, 
and a first observation zl = 2.5 (marked on the x-axis). Notice how the prediction P ( x l )  
is flattened out, relative to P(xo), by the transition nollse. Notice also that the mean of the 
posterior P (x l  lzl) is slightly to the left of the observation zl hecause the mean is a weighted 
average of the prediction and the observation. 

The second key step is to notice that the residual1 term has to be a quadratic in XI; in 
fact, after simplificatioa, we obtain 

That is, the one-step predicted distribution is a Gaussian with the same mean po and a variance 
equal to the sum of the original variance a: and the tiransition variance 02. A momentary 
exercise of intuition reveals that this is intuitively reasonable. 

To complete the update step, we need to condition on Ithe observation at the first time 
step, namely, zl .  From Equation (15.16), this is given by 

P ( ~ l l ~ 1 )  = a! P ( z l l x l ) P ( x l )  

Once again, we combine the exponents and complete th~e square (Exercise 15.6), obtaining 

Thus, after one update cycle, we have a new Gaussian distribution for the state variable. 
From the Gaussian formula in Equation (l5.17), we see that the new mean and standard 

deviation can be calculated from the old mean and standard deviation as follows: 
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Figure 15.8 shows one update cycle for particular values of the transition and sensor models. 
The preceding pair of equations plays exactly the same role as the general filtering 

equation (15.3) or the HMM filtering equation (15.10). Because of the special nature of 
Gaussian distributions, however, the equations have some interesting additional properties. 
First, we can interpret the calculation for the new mean pt+l as simply a weighted mean of 
the new observation zt+l and the old mean pt. If the observation is unreliable, then a: is large 
and we pay more attention to the old mean; if the old mean is unreliable (a: is large) or the 
process is highly unpredictable (a; is large), then we pay more attention to the observation. 
Second, notice that the update for the variance a:+, is independent of the observation. We 
can therefore compute in advance what the sequence of variance values will be. Third, the 
sequence of variance values converges quickly to a fixed value that depends only on a: and 
02, thereby substantially simplifying the subsequent calculations. (See Exercise 15.7.) 

The general case 

The preceding derivation illustrates the key property of Gaussian distributions that allows 
Kalman filtering to work: the fact that the exponent is a quadratic form. This is true not just 
for the univariate case; the full multivariate Gaussian distribution has the form 

Multiplying out the terms in the exponent makes it clear that the exponent is also a quadratic 
function of the random variables xi in x. As in the univariate case, the filtering update pre- 
serves the Gaussian nature of the state distribution. 

Let us first define the general temporal model used with Kalman filtering. Both the tran- 
sition model and the sensor model allow for a linear transformation with additive Gaussian 
noise. Thus, we have 

where F and E, are matrices describing the linear transition model and transition noise co- 
variance and H and x, are the corresponding matrices for the sensor model. Now the update 
equations for the mean and covariance, in their full, hairy horribleness, are 

Pt+l = Fpt + Kt+l(~t+l - HFpt) 
&+l = (I - K ~ + ~ ) ( F ' c ~ F ~  + x,) 

where Kt+l = ( F & F ~  + E , ) H ~ ( H ( F & F ~  + x , ) H ~  + X,)-' is called the Kalman gain 
GAIN matrix. Believe it or not, these equations make some intuitive sense. For example, consider 

the update for the mean state estimate p .  The term Fp, is the predicted state at t + 1, so 
HFpt is the predicted observation. Therefore, the term zt+l - HFpt represents the error in 
the predicted observation. This is multiplied by Kt+l to correct the predicted state; hence 
&+I is a measure of how seriously to take the new observation relative to the prediction. As 
in Equation (15.18), we also have the property that the variance update is independent of the 
observations. The sequence of values for Et and Kt can therefore be computed offline, and 
the actual calculations required during online tracking are quite modest. 
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To illustrate these equations at work, we have applied 'them to the problem of tracking 
an object moving on the X-Y plane. The state variables are X = (X, Y, X ,  so F, X,, 
H, and X, are 4 x 4 matrices. Figure 15.9(a) shows the tirue trajectory, a series of noisy 
observations, and the trajectory estimated by Kalman filter,~ng, along with the covariances 
indicated by the one-standard-deviation contours. The, filtering process does a good job of 
tracking the actual motion, and, as expected, the variance quickly reaches a fixed point. 

We can also derive equations for smoothing as well as filtering with linear Gaussian 
models. The smoothing results are shown in Figure 15.9(b). Notice how the variance in the 
position estimate is sharply reduced, except at the ends of th~e trajectory (why?), and that the 
estimated trajectory is much smoother. 

2D filtering 
12- 

11- 

10- 

> 9 .  

8 - 

2D smoothing 
12r 

.-*- smoothed 

Figure 15.9 (a) Results of Kalman filtering for an object moving on the X-Y plane, 

Applicability of Kalman filtering 

The Kalman filter and its elaborations are used in a vast array of applications. The "classical" 
application is in radar tracking of aircraft and missiles. Relatled applications include acoustic 
tracking of submarines and ground vehicles and visual trachng of vehicles and people. In a 
slightly more esoteric vein, Kalman filters are used to recon~struct particle trajectories from 
bubble-chamber photographs and ocean currents from satellite surface measurements. The 
range of application is much larger than just the tracking of motion: any system characterized 
by continuous state variables and noisy measurements will do. Such systems include pulp 
mills, chemical plants, nuclear reactors, plant ecosystems, and national economies. 

The fact that Kalman filtering can be applied to a system does not mean that the re- 
sults will be valid or useful. The assumptions made-a linear Gaussian transition and sensor 

EXTENDEDKALMAN FILTER (EKF) models-are very strong. The extended Kalman filter (EKF) attempts to overcome nonlin- 
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(a) (b) 

Figure 15.10 A bird flying toward a tree (top views). (a) A Kalman filter will predict the 
location of the bird using a single Gaussian centered on the obstacle. (b) A more realistic 
model allows for the bird's evasive action, predicting that it will fly to one side or the other. 

earities in the system being modeled. A system is nonlinear if the transition model cannot 
be described as a matrix multiplication of the state vector, as in Equation (15.19). The EKF 
works by modeling the system as locally linear in xt in the region of xt = p t ,  the mean of the 
current state distribution. This works well for smooth, well-behaved systems and allows the 
tracker to maintain and update a Gaussian state distribution that is a reasonable approximation 
to the true posterior. 

What does it mean for a system to be "unsmooth" or "poorly behaved"? Technically, 
it means that there is significant nonlinearity in system response within the region that is 
"close" (according to the covariance E t )  to the current mean p t .  To understand this idea 
in nontechnical terms, consider the example of trying to track a bird as it flies through the 
jungle. The bird appears to be heading at high speed straight for a tree trunk. The Kalman 
filter, whether regular or extended, can make only a Gaussian prediction of the location of the 
bird, and the mean of this Gaussian will be centered on the trunk, as shown in Figure 15.10(a). 
A reasonable model of the bird, on the other hand, would predict evasive action to one side or 
the other, as shown in Figure 15.10(b). Such a model is highly nonlinear, because the bird's 
decision varies sharply depending on its precise location relative to the trunk. 

In order to handle examples like these, we clearly need a more expressive language 
for representing the behavior of the system being modeled. Within the control theory com- 
munity, for which problems such as evasive maneuvering by aircraft raise the same kinds of 

KALMAN difficulties, the standard solution is the switching Kalman filter. In this approach, multiple FILTER 

Kalman filters run in parallel, each using a different model of the system-for example, one 
for straight flight, one for sharp left turns, and one for sharp right turns. A weighted sum of 
predictions is used, where the weight depends on how well each filter fits the current data. We 
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will see in the next section that this is simply a special case of the general dynamic Bayesian 
network model, obtained by adding a discrete "maneuver" state variable to the network shown 
in Figure 15.7. Switching Kalman filters are discussed further in Exercise 15.5. 

DYNAMICB*YESiAN NETWORK A dynamic Bayesian network, or DBN, is a Bayesian network that represents a temporal 
probability model of the kind described in Section 15.1. We have already seen examples of 
DBNs: the umbrella network in Figure 15.2 and the Kalman filter network in Figure 15.7. 
In general, each slice of a DBN can have any number of state variables Xt and evidence 
variables Et. For simplicity, we will assume that the varial~les and their links are exactly 
replicated from slice to slice and that the DBN represlents a first-order Markov process, so 
that each variable can have parents only in its own slice or the immediately preceding slice. 

It should be clear that every hidden Markov model can be represented as a DBN with 
a single state variable and a single evidence variable. I[t is also the case that every discrete- 
variable DBN can be represented as an HMM; as explained in Section 15.3, we can combine 
all the state variables in the DEN into a single state variable whose values are all possible tu- 
ples of values of the individual state variables. Now, if every HMM is a DBN and every DBN 
can be translated into an HMM, what's the difference? The difference is that, by decomposing 
the state of a complex system into its constituent variabLes, the DBN is able to take advantage 
of sparseness in the temporal probability model. Suppose, for example, that a DBN has 
20 Boolean state variables, each of which has three parents in the preceding slice. Then the 
DBN transition model has 20 x 23 = 160 probabilities, whereas the corresponding HMM has 
220 states and therefore 240, or roughly a trillion, probabilities in the transition matrix. This 
is bad for at least three reasons: first, the HMM itself requires much more space; second, 
the huge transition matrix makes HMM inference much more expensive; and third, the prob- 
lem of learning such a huge number of parameters makes the pure HMM model unsuitable 
for large problems. The relationship between DBNs and HMMs is roughly analogous to the 
relationship between ordinary Bayesian networks and fiull tabulated joint distributions. 

We have already explained that every Kalman filter model can be represented in a 
DBN with continuous variables and linear Gaussian conditional distributions (Figure 15.7). 
It should be clear from the discussion at the end of the preceding section that not every DBN 
can be represented by a Kalman filter model. In a Kalman filter, the current state distribution 
is always a single multivariate Gaussian distribution-that is, a single "bump" in a particular 
location. DBNs, on the other hand, can model arbitrary distributions. For many rcal-world 
applications, this flexibility is essential. Consider, for example, the current location of my 
keys. They might be in my pocket, on the bedside table, on the kitchen counter, or dangling 
from the front door. A single Gaussian bump that included all these places would have to 
allocate significant probability to the keys being in mid-air in the front hall. Aspects of the 
real world such as purposive agents, obstacles, and pockets introduce "nonlinearities" that 
require combinations of discrete and contin~~ous variables in order to get reasonable models. 
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(a) (b) 

Figure 15.11 (a) Specification of the prior, transition model, and sensor model for the 
umbrella DBN. All subsequent slices are assumed to be copies of slice 1. (b) A simple DBN 
for robot motion in the X-Y plane. 

Constructing DBNs 

To construct a DBN, one must specify three kinds of information: the prior distribution over 
the state variables, P(Xo); the transition model P(Xt+l lXt); and the sensor model P(Et IXt). 
To specify the transition and sensor models, one must also specify the topology of the con- 
nections between successive slices and between the state and evidence variables. Because 
the transition and sensor models are assumed to be stationary-the same for all t-it is most 
convenient simply to specify them for the first slice. For example, the complete DBN speci- 
fication for the umbrella world is given by the three-node network shown in Figure 15.1 1(a). 
From this specification, the complete (semi-infinite) DBN can be constructed as needed by 
copying the first slice. 

Let us now consider a more interesting example: monitoring a battery-powered robot 
moving in the X-Y plane, as introduced in Section 15.1. First, we need state variables, 
which will include both Xt = (Kt, &) for position and xt = ( x ~ ,  lit) for velocity. We will 
assume some method of measuring position-perhaps a fixed camera or onboard GPS (Global 
Positioning System)-yielding measurements Zt. The position at the next time step depends 
on the current position and velocity, as in the standard Kalman filter model. The velocity at 
the next step depends on the current velocity and the state of the battery. We add Batteryt to 
represent the actual battery charge level, which has as parents the previous battery level and 
the velocity, and we add BMetert, which measures the battery charge level. This gives us the 
basic model shown in Figure 15.1 1 (b). 

It is worth looking in more depth at the nature of the sensor model for BMetert. Let 
us suppose, for simplicity, that both Batteryt and BMetert can take on discrete values 0 
through 5-rather like the battery meter on a typical laptop computer. If the meter is always 
accurate, then the CPT P(BMetertlBatteryt) should have probabilities of 1.0 "along the 
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diagonal" and probabilities of 0.0 elsewhere. In reality, noise always creeps into measure- 
ments. For continuous measurements, a Gaussian distribution with a small variance might be 
used i n ~ t e a d . ~  For our discrete variables, we can approximate a Gaussian using a distribution 
in which the probability of error drops off in the appropriate way, so that the probability of 

GAUSSIANERRoR MODEL a large error is very small. We will use the term Gaussian error model to cover both the 
continuous and discrete versions. 

Anyone with hands-on experience of robotics, computerized process control, or other 
forms of automatic sensing will readily testify to the fact that small amounts of measurement 
noise are often the least of one's problems. Real sensors fail. When a sensor fails, it does 
not necessarily send a signal saying, "Oh, by the way, the data I'm about to send you is a 
load of nonsense." Instead, it simply sends the nonsense. The simplest kind of failure is 

TRANSIENT FAILURE called a transient failure, where the sensor occasionally decides to send some nonsense. For 
example, the battery level sensor might have a habit of sending a zero when someone bumps 
the robot, even if the battery is fully charged. 

Let's see what happens when a transient failure occurs with a Gaussian error model that 
doesn't accommodate such failures. Suppose, for example, that the robot is sitting quietly 
and observes 20 consecutive battery readings of 5. Then the battery meter has a temporary 
seizure and the next reading is BMeterzl = 0. What will th~e simple Gaussian error model 
lead us to believe about Batteryzl? According to Bayes' rule, the answer depends on both 
the sensor model P(BMeterzl = 01 Batteryzl) and the prediction P(Batteryal I BMeterl.zo). 
If the probability of a large sensor error is significant1.y less likely than the probability of a 
transition to Batterysl = 0, even if the latter is very unlikely, then the posterior distribution 
will assign a high probability to the battery's being empty. A second reading of zero at t = 22 
will make this conclusion almost certain. If the transient failure then disappears and the 
reading returns to 5 from t = 23 onwards, the estimate for the battery level will quickly return 
to 5, as if by magic. This course of events is illustrated in the upper curve of Figure 15.12(a), 
which shows the expected value of Batteryt over time using a discrete Gaussian error model. 

Despite the recovery, there is a time (t = 22) when, the robot is convinced that its battery 
is empty; presumably, then, it should send out a mayday signal and shut down. Alas, its 
oversimplified sensor model has led it astray. How can this be fixed? Consider a familiar 
example from everyday human driving: on sharp curves or steep hills, one's "fuel tank empty" 
warning light sometimes turns on. Rather than looking for the emergency phone, one simply 
recalls that the fuel gauge sometimes gives a very large (error when the fuel is sloshing around 
in the tank. The moral of the story is the following: in order for the system to handle sensor 
failure properly, the sensor model must include the possibility of failure. 

The simplest kind of failure model for a sensor allows a certain probability that the 
sensor will return some completely incorrect value, regardless of the true state of the world. 
For example, if the battery meter fails by returning 0, we might say that 

P(BMetert = 01 Batteryt = 5) = 0.03 , 
which is presumably much larger than the probability a.ssigned by the simple Gaussian error 

Strictly speaking, a Gaussian distribution is problematic because it assigns nonzero probability to large nega- 
tive charge levels. The beta distribution is sometimes a better choice for a variable whose range is restricted. 
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Figure 15.12 (a) Upper curve: trajectory of the expected value of Battery, for an observa- 
tion sequence consisting of all 5s except for 0s at t = 21  and t = 22, using a simple Gaussian 
error model. Lower curve: trajectory when the observation remains at 0 from t = 21 onwards. 
(b) The same experiment run with the transient failure model. Notice that the transient failure 
is handled well, but the persistent failure results in excessive pessimism. 
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model. Let's call this the transient failure model. How does it help when we are faced MODEL 

with a reading of O? Provided that the predicted probability of an empty battery, according 
to the readings so far, is much less than 0.03, then the best explanation of the observation 
B M e t e r 2 1  = 0 is that the sensor has temporarily failed. Intuitively, we can think of the belief 
about the battery level as having a certain amount of "inertia" that helps to overcome tempo- 
rary blips in the meter reading. The upper curve in Figure 15.12(b) shows that the transient 
failure model can handle transient failures without a catastrophic change in beliefs. 

So much for temporary blips. What about a persistent sensor failure? Sadly, failures of 
this kind are all too common. If the sensor returns 20 readings of 5 followed by 20 readings 
of 0, then the transient sensor failure model described in the preceding paragraph will result 
in the robot gradually coming to believe that its battery is empty when in fact it may be that 
the meter has failed. The lower curve in Figure 15.12(b) shows the belief "trajectory" for 
this case. By t = 25-five readings of 0-the robot is convinced that its battery is empty. 
Obviously, we would prefer the robot to believe that its battery meter is broken-if indeed 
this is the more likely event. 

PERSISTENT 
FAILURE MODEL Unsurprisingly, to handle persistent failure, we will need a persistent failure model 

that describes how the sensor behaves under normal conditions and after failure. To do 
this, we need to augment the hidden state of the system with an additional variable, say 
BMBroken, that describes the status of the battery meter. The persistence of failure must be 

PERSISTENCEARC modeled by an arc linking BMBrokeno to BMBrokenl. This persistence arc has a CPT that 
gives a small probability of failure in any given time step, say 0.001, but specifies that the 
sensor stays broken once it breaks. When the sensor is OK, the sensor model for BMeter is 
identical to the transient failure model; when the sensor is broken, it says BMeter is always 
0, regardless of the actual battery charge. 
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P(BMBroken, 1...5555000000...) 
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Figure 15.13 (a) A DBN fragment showing the sensor status variable required for mod- 
eling persistent failure of the battery sensor. (b) Upper curves: trajectories of the expected 

I value of Batteryt for the "transient failure" and "permanent hilure" observations sequences. 
Lower curves: probability trajectories for BMBroken given the two observation sequences. 

The persistent failure model for the battery sensor is shown in Figure 15.13(a). Its 
performance on the two data sequences (temporary blip and persistent failure) is shown in 
Figure 15.13(b). There are several things to notice about these curves. First, in the case 
of the temporary blip, the probability that the sensor is broken rises significantly after the 
second G reading, but immediately drops back to zero once a 5 is observed. Second, in the 
case of persistent failure, the probability that the sensor is broken rises quickly to almost 1 
and stays there. Finally, once the sensor is known to be broken, the robot can only assume 
that its battery discharges at the "normal" rate, as shown by the gradually descending level of 
E(Batteryt/. . . ). 

So far, we have merely scratched the surface of the problem of representing complex 
processes. The variety of transition models is huge, encornpassing topics as disparate as 
modeling the human endocrine system and modeling multiple vehicles driving on a freeway. 
Sensor modeling is also a vast subfield in itself, but even subtle phenomena, such as sensor 
drift, sudden decalibration, and the effects of exogenous csonditions (such as weather) on 
sensor readings, can be handled by explicit representation within dynamic Bayesian networks. 

Exact inference in DBNs 

Having sketched some ideas for representing complex processes as DBNs, we now turn to the 
question of inference. In a sense, this question has already been answered: dynamic Bayesian 
networks are Bayesian networks, and we already have algorithms for inference in Bayesian 
networks. Given a sequence of observations, one can colnstruct the full Bayesian network rep- 
resentation of a DBN by replicating slices until the network is large enough to accommodate 

UNROLLING the observal.ions, as in Figure 15.14. This technique is called unrolling. (Technically, the 
DBN is equivalent to the semi-infinite network obtained by unrolling forever, Slices added 
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Figure 15.14 Unrolling a dynamic Bayesian network: slices are replicated to accornmo- 
date the observation sequence (shaded nodes). Further slices have no effect on inferences 
within the observation period. 

beyond the last observation have no effect on inferences within the observation period and 
can be omitted.) Once the DBN is unrolled, one can use any of the inference algorithms- 
variable elimination, join-tree methods, and so on-described in Chapter 14. 

Unfortunately, a naive application of unrolling would not be particularly efficient. If 
we want to perform filtering or smoothing with a long sequence of observations elzt, the 
unrolled network would require O(t )  space and would thus grow without bound as more 
observations were added. Moreover, if we simply run the inference algorithm anew each 
time an observation is added, the inference time per update will also increase as O(t ) .  

Looking back to Section 15.2, we see that constant time and space per filtering update 
can be achieved if the computation can be done in a recursive fashion. Essentially, the filter- 
ing update in Equation (15.3) works by summing out the state variables of the previous time 
step to get the distribution for the new time step. Summing out variables is exactly what the 
variable elimination (Figure 14.10) algorithm does, and it turns out that running variable 
elimination with the variables in temporal order exactly mimics the operation of the recursive 
filtering update in Equation (15.3). The modified algorithm keeps at most two slices in mem- 
ory at any one time: starting with slice 0, we add slice 1, then sum out slice 0, then add slice 
2, then sum out slice 1, and so on. In this way, we can achieve constant space and time per 
filtering update. (The same performance can be achieved by making suitable modifications to 
the join tree algorithm.) Exercise 15.10 asks you to verify this fact for the umbrella network. 

So much for the good news; now for the bad news: It turns out that the "constant" for 
the per-update time and space complexity is, in almost all cases, exponential in the number 
of state variables. What happens is that, as the variable elimination proceeds, the factors 
grow to include all the state variables (or, more precisely, all those state variables that have 
parents in the previous time slice). The maximum factor size is O(dn+') and the update cost 
is O(dn".+2). 

Of course, this is much less than the cost of HMM updating, which is O(dZn), but it 
is still infeasible for large numbers of variables. This grim fact is somewhat hard to accept. 
What it means is that even though we can use DBNs to represent very complex temporal 
processes with many sparsely connected variables, we cannot reason eficiently and exactly 
about those processes. The DBN model itself, which represents the prior joint distribution 
over all the variables, is factorable into its constituent CPTs, but the posterior joint distribu- 
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tion conditioned on arr observation sequence-that is, the forward message-is generally not 
factorable. So far, no one has found a way around this problem, despite the fact that many 
important areas of science and engineering would benefit enormously from its solution. Thus, 
we must fall back on approximate methods. 

Approximate inference in DBNs 

Chapter 14 described two approximation algorithms: likelihood weighting (Figure 14.14) 
and Markov chain Monte Carlo (MCMC, Figure 14.15). Of the two, the former is most easily 
adapted to the DBN context. We will see, however, tlhat several improvements are required 
over the standard likelihood weighting algorithm before a practical method emerges. 

Recall that likelihood weighting works by sampling the non-evidence nodes of the net- 
work in topological order, weighting each sample by the likelihood it accords to the observed 
evidence variables. As with the exact algorithms, we: could apply likelihood weighting di- 
rectly to an unrolled DBN, but this would suffer from ithe same problems in terms of increas- 
ing time and space requirements per update as the observation sequence grows. The problem 
is that the standard algorithm runs each sample in turn, all the way through the network. In- 
stead, we can simply run all N samples together through the DBN, one slice at a time. The 
modified algorithm fits the general pattern of filtering algorithms, with the set of N samples 
as the forward message. The first key innovation, then, is to use the samples themselves as 
an approximate representation of the current state distribution. This meets the requirement 
of a "constant" time per update, although the constant depends on the number of samples 
required to maintain a reasonable approximation to the true posterior distribution. There is 
also no need to unroll the DBN, because we need to have in memory only the current slice 
and the next slice. 

In our discussion of likelihood weighting in Chapter 14, we pointed out that the al- 
gorithm's accuracy suffers if the evidence variables are "downstream" from the variables 
being sampled, because in that case the samples are gener,ated without any influence from 
the evidence. Looking at the typical structure of a DBN--say, the umbrella DBN in Fig- 
ure 15.14-we see that indeed the early state variables will be sampled without the benefit of 
the later evidence. In fact, loolung more carefully, we see that none of the state variables has 
any evidence variables among its ancestors! Hence, although the weight of each sample will 
depend on the evidence, the actual set of samples generated will be completely independent 
of the evidence. For example, even if the boss brings in the umbrella every day, the sampling 
process could still hallucinate endless days of sunshine. Wlhat this means in practice is that 
the fraction of samples that remain reasonably close to the actual series of events drops expo- 
nentially with t ,  the length of the observation sequence; in other words, to maintain a given 
level of accuracy, we need to increase the number of samples exponentially with t. Given that 
a filtering algorithm that works in real time can only use a fixed number of samples, what 
happens in practice is that the error blows up after a very small number of update steps. 

Clearly, we need a better solution. The second1 key innovation is to focus the set of 
samples on the high-probability regions of the state space. This can be done by throwing 
away samples that have very low weight, according to the observations, while multiplying 
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I 
function PARTICLE-FILTERING(~, N, dbn) returns a set of samples for the next time step 

inputs: e, the new incoming evidence 
N, the number of samples to be maintained 

dbn, a DBN with prior P(Xo), transition model P(XIIXo), and sensor model 

P(ElIX1) 
static: S, a vector of samples of size N, initially generated from P(Xo) 
local variables: W, a vector of weights of size N 

for i = 1 to N do 
S[ i ]  t sample from P(X1 1x0 = S [i]) 
W [ i ]  + P(elX1 = S[i]) 

S t WEIGHTED-SAMPLE-WITH-REPLACEMENT(N, S, W) 
return S 

Figure 15.15 The particle filtering algorithm implemented as a recursive update op- 
eration with state (the set of samples). Each of the sampling steps involves sam- 
pling the relevant slice variables in topological order, much as in PRIOR-SAMPLE. The 
WEIGHTED-SAMPLE-WITH-REPLACEMENT operation can be implemented to run in O ( N )  
expected time. 

those that have high weight. In that way, the population of samples will stay reasonably close 
to reality. If we think of samples as a resource for modeling the posterior distribution, then it 
makes sense to use more samples in regions of the state space where the posterior is higher. 

PARTICLE FILTERING A family of algorithms called particle filtering is designed to do just that. Particle 
filtering works as follows: First, a population of N samples is created by sampling from the 
prior distribution at time 0, P(Xo). Then the update cycle is repeated for each time step: 

Each sample is propagated forward by sampling the next state value xt+l given the 
current value xt for the sample, and using the transition model P(Xt+l lxt). 

Each sample is weighted by the likelihood it assigns to the new evidence, P(et+l I X ~ + ~ ) .  

The population is resampled to generate a new population of N samples. Each new 
sample is selected from the current population; the probability that a particular sample 
is selected is proportional to its weight. The new samples are unweighted. 

The algorithm is shown in detail in Figure 15.15, and its operation for the umbrella DBN is 
illustrated in Figure 15.16. 

We can show that this algorithm is consistent-gives the correct probabilities as N tends 
to infinity-by considering what happens during one update cycle. We will assume that the 
sample population starts with a correct representation of the forward message flCt at time t. 
Writing N(xtlelit) for the number of samples occupying state xt after observations elCt have 
been processed, we therefore have 

N(xt l e~ , t ) /N  = P(xt le~: t )  (15.21) 

for large N .  Now we propagate each sample forward by sampling the state variables at t $- 1, 
given the values for the sample at t. The number of samples reaching state xt+l from each 
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Rain, Rain ,+1 Rain,+l Rain,, 

true 

false I::) 1 PI 
(a) Propagate (b) Weight (c) Resample 

Figure 15.16 The particle filtering update cycle for the uml~rella DBN with N = 10, show- 
ing the sample populations of each state. (a) At time t ,  8 samples indicate Ruin and 2 indicate 
 rain. Each is propagated forward by sampling the next state via the transition model. At 
time t + 1, 6 samples indicate Rain and 4 indicate 1Rain. (b) 1 Umbrella is observed at 
t + 1. Each sample is weighted by its likelihood for thie obseirvation, as indicated by the size 
of the circles. (c) A new set of 10 samples is generate~d by weighted random selection from 
the current set, resulting in 2 samples that indicate Rain and 8 that indicate -Rain. 

xt is the transition probability times the population of :ut; hence, the total number of samples 
reaching xt+l is 

Now we weight each sample by its likelihood for the evidence at t + 1. A sample in state 
xt+l receives weight P(ettl lxtil). The total weight o-F the samples in xt+l after seeing et+l 
is therefore 

Now for the resampling step. Since each sample is replicated with probability proportional 
to its weight, the number of samples in state xt+l after resar~pling is proportional to the total 
weight in xt+l before resampling: 

= n N P ( e t + ~ l x t + ~ )  C ~ ( x t + l l x t ) ~ ( x t l e l : ~ )  (by 15.21) 
X t  

= nlP(et+l lxt+l) P(xt+l lxt)P(xt lel:t) 
X t  

= P(xt+l lel,t+l) (by 15.3). 

Therefore the sample population after one update cycle correctly represents the forward mes- 
sage at time t + 1. 

Particle filtering is consistent, therefore, but is it ~eflcient? In practice, it seems that the 
answer is yes: particle filtering seems to maintain a good approximation to the true posterior 
using a constant number of samples. There are, as yet, no theoretical guarantees; particle 
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filtering is currently an area of intensive study. Many variants and improvements have been 
proposed, and the set of applications is growing rapidly. Because it is a sampling algorithm, 
particle filtering can be used easily with hybrid and continuous DBNs, allowing it to be 
applied to areas such as tracking complex motion patterns in video (Isard and Blake, 1996) 
and predicting the stock market (de Freitas et al., 2000). 

In this section, we look at one of the most important applications of temporal probabil- 
SPEECH 
RECOGNITION ity models-speech recognition. The task is to identify a sequence of words uttered by 

a speaker, given the acoustic signal. Speech is the dominant modality for communication 
between humans, and reliable speech recognition by machines would be immensely useful. 
Still more useful would be speech understanding-the identification of the meaning of the 
utterance. For this, we must wait until Chapter 22. 

Speech provides our first contact with the raw, unwashed world of real sensor data. 
These data are noisy, quite literally: there can be background noise as well as artifacts intro- 
duced by the digitization process; there is variation in the way that words are pronounced, 
even by the same speaker; different words can sound the same; and so on. For these reasons, 
speech recognition has come to be viewed as a problem of probabilistic inference. 

At the most general level, we can define the probabilistic inference problem as follows. 
Let Words be a random variable ranging over all possible sequences of words that might 
be uttered, and let signal be the observed acoustic signal sequence. Then the most likely 
interpretation of the utterance is the value of Words that maximizes P(words I signal). As is 
often the case, applying Bayes' rule is helpful: 

P(words I signal) = a P(signa1l words) P(words)  . 

ACOUSTIC MODEL P(signal1 words) is the acoustic model. It describes the sounds of words-that "ceiling" 
begins with a soft "c" and sounds the same as "sealing." (Words that sound the same are 

HOMOPHONES called homophones.) P(words)  is known as the language model. It specifies the prior 
probability of each utterance-for example, that "high ceiling" is a much more likely word 
sequence than "high sealing." 

The language models used in speech recognition systems are usually very simple. The 
bigram model that we describe later in this section gives the probability of each word follow- 
ing each other word. The acoustic model is much more complex. At its heart is an important 

PHONOLOGY discovery made in the field of phonology (the study of how language sounds), namely, that all 
PHONES human languages use a limited repertoire of about 40 or 50 sounds, called phones. Roughly 

speaking, a phone is the sound that corresponds to a single vowel or consonant, but there are 
some complications: combinations of letters, such as "th" and "ng" produce single phones, 
and some letters produce different phones in different contexts (e.g., the "a" in rat and rate. 

PHONEME Figure 15.17 lists phones that are used in English with an example of each. A phoneme is the 
smallest unit of sound that has a distinct meaning to speakers of a particular language. For 
example, in English the "t" phone in "stick is the same phoneme as the "t7' phone in "tick," 
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Vowels 

Phone Example 

but in Thai they are distinguishable as two separate phonemes. 
The existence of phones makes it possible to divide th~e acoustic model into two parts. 

PRONUNCIATION The first part deals with pronunciation and specifies, for each word, a probability distribu- 
tion over possible phone sequences. For example, "ceiling" is pronounced [s iy 1 ih ng], or 
sometimes [s iy 1 ix ng], or sometimes even [s iy 1 en]. The phones are not directly ol?servable, 
so, roughly speaking, speech is represented as a hidden Markov model whose state variable 
Xt specifies which phone is being uttered at time t. 

The second part of the acoustic model deals with the way that phones are realized as 
acoustic signals: that is, the evidence variable Et for the hidden Markov model gives the 
observed features of the acoustic signal at time t ,  and .the acoustic model specifies P(Et IXt), 
where Xt is the current phone. The model must allow for variations in pitch, speed, and 

SIGNAL PROCESSING volume, and relies on techniques from signal processi~ng to provide signal descriptions that 
are reasonably robust against these kinds of variations. 

The remainder of the section describes the models and algorithms from the bottom 
up, beginning with acoustic signals and phones, then individual words, and finally entire 
sentences. We conclude with a description of how all these models are trained and how well 
the resulting systems work. 

Consonants B-N Consonants P-Z 

Phone Example -t Phone Example 

1 i ~  1 beat 
[ihl bit 
[ehl bgt 
[=I bgt 
[ah1 but 
[a01 bought - 
[owl boat 
[uhl book 
[ey 1 bajt 
1 4  Bert 
[ayl buy 
[OY I boy 
[axrl d i n g  
[awl d m n  
[ax] - about 
[ixl rosgs 
[aal cot 

Figure 15.17 The DARPA phonetic alphabet, or ARLPAbelt, listing all the phones used in 
American English. There are several alternative notations, including an International Pho- 
netic Alphabet (IPA), which contains the phones in all Iaown languages. 

[bl - bet 
[chi m e t  
[dl - debt 
[ fl fat 
[g 1 get 
[hhl hat 
[hvl high 
bhl jet - 

[kl - kick 
[ll let 
[ell bottle 
[ml - met 
[em] b o t t w  
[nl - net 
[en] butt- 
[ngl sing 
[eng] washing 

[PI Pet 
[TI - rat 
[s] - set 
[shl shoe 
Ct I ten 
[th] thick. 
[dhl that 
[dxl butter 
[vl - vet 
[wl - wet 
[ \ ~ h l  which 

[Y 1 - yet 
[zl zoo 
[zhl measure 

[-I silence 
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Speech sounds 

Sound waves are periodic changes in pressure that propagate through the air. Sound can 
be measured by a microphone whose diaphragm is displaced by the pressure changes and 
generates a continuously varying current. An analog-to-digital converter measures the size 
of the current-which corresponds to the amplitude of the sound wave-at discrete intervals 

SAMPLING RATE determined by the sampling rate. For speech, a sampling rate between 8 and 16 kHz (i.e., 8 
to 16,000 times per second) is typical. (High-quality music recordings sample at a rate of 44 

QUANT1zAT'ON FACTOR kHz or more.) The precision of each measurement is determined by the quantization factor; 
speech recognizers typically keep 8 to 12 bits. That means that a low-end system, sampling 
at 8 kHz with 8-bit quantization, would require nearly half a megabyte per minute of speech. 
It would be impractical to construct and manipulate P(szgna1Jphone) distributions with so 
much signal information; therefore, we need to develop more concise descriptions of the 
acoustic signal. 

First, we observe that although the sound frequencies in speech may be several kHz, 
the changes in the content of the signal occur much less often, perhaps at no more than 100 
Hz. Therefore, speech systems summarize the properties of the signal over extended intervals 

FRAMES called frames. A frame length of about 10 msecs (i.e., 80 samples at 8 kHz) is short enough to 
ensure that few short-duration phenomena will be smudged out by the summarization process. 

FEATURES Within each frame, we represent what is happening with a vector of features. For example, 
we might want to characterize the amount of energy at each of several frequency ranges. 
Other important features include the overall energy in a frame and the difference from the 
previous frame. Picking out features from a speech signal is like listening to an orchestra 
and saying "here the French horns are playing loudly and the violins are playing softly." 
Figure 15.18 shows the sequence of transformations from the raw sound to a sequence of 
frames. Note that the frames overlap; this prevents us from losing information if an important 
acoustic event just happens to fall on a frame boundary. 

In our example, we have shown frames with just three features. Real systems have tens 
or even hundreds of features. If there are n features and each has, say, 256 possible values, 
then a frame is described by a point in n-dimensional space and there are 256n possible 

Analog acoustic signal: 

10 15 38 22 63 24 10 12 73 

Frames with features: I 52 47 82 89 94 11 , 
Figure 15.18 Translating the acoustic signal into a sequence of frames; each frame is 
described by the values of three acoustic features. 
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frames. For n > 2 it would be impractical to represeint the distribution P(features1phone) 
as an explicit table, so we need further compression. There alre two possible approaches: 

VECTOR 
QUANTIZATION 

The method of vector quantization, or VQ, divides the n-dimensional space into, say, 
256 regions labeled C1 through C256. Each frame can then be represented with a single 
label rather than a vector of n numbers. Thus, the tabulated distribution P( VQlphone)  
has 256 probabilities specified for each phone. Vector quantization is no longer popular 
in large-scale systems. 

Instead of discretizing the feature space, we can use a parameterized continuous distri- 
bution to describe P(features1phone). For example, we could use a Gaussian distri- 
bution with a different mean and covariance matrix for each phone. This works well 
if the acoustic realizations of each phone are clusterled in a single region of feature 
space. In practice, the sounds can be spread over several regions, and a mixture of 
Gaussians must be used. A mixture is a weighted sum of k individual distributions, so 
P(features1phone) has k weights, k mean vectors of size n, and k covariance matrices 
of size n2-that is, O(kn2) parameters for each phone. 

Of course, some information is lost in going from the full speech signal to a VQ label or a 
set of mixture parameters. The art of signal processing lies :in choosing features and regions 
(or Gaussians) so that the loss of useful information is minimized. A given speech sound 
can be pronounced so many ways: loud or soft, fast or slocv, high pitched or low, against a 
background of silence or of noise, and by any of millions of different speakers, each with 
a different accent and vocal tract. Signal processing hopes to eliminate the variations while 
keeping the commonalities that define the sound.5 

There are two more refinements we need to make to the simple model we have de- 
scribed so far. The first deals with the temporal stnucture of phones. In normal speech, 
most phones have a duration of 50-100 milliseconds, or 5-110 frames. The probability model 
P(features1phone) is the same for all these frames, whereas most phones have a good deal 

STOP CONSONANTS of internal structure. For example, [t] is one of several stop c:onsonants, in which the flow of 
air is cut off for a short period before a sharp release. Examining the acoustic signal, we find 
that [t] has a silent beginning, a small explosion in the middle, and (usually) a hissing at the 

THREE-STATE PHONE end. This internal structure of phones can be captured by the: three-state phone model; each 
phone has Onset, Mid, and End states, and each state h.as its own distribution over features. 

The second refinement deals with the context in which the phone is uttered. The sound 
of a given phone can be changed by the surrounding phones.6 Remember that speech sounds 
are produced by moving the lips, tongue, and jaw and forcing air through the vocal tract. To 
coordinate these complex movements at the rate of five or mlore phones per second, the brain 
initiates action for a second phone before the first is compleited, thereby altering one or both 
phones. For example, in pronouncing "sweet" the lips are rounded during the production of 

coART'culnT'oN EFFECTS [s] in anticipation of the following [w]. These coarticulatic~n effects are partially captured 

The complementary problem, speaker identification, eliminates the commonalities and keeps the individual 
differences, and then tries to match the differences to models of individual speakers. 

In this sense, the "phone model" of speech should be thought of as a useful approximation rather than an 
immutable law. 
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TRIPHONE by the triphone model, in which the acoustic model for each phone is allowed to depend on 
the preceding and succeeding phones. Thus, the [w] in "sweet is written [w(s,iy)], i.e., [w] 
with left-context [s] and right-context [iy]. 

The combined effect of the three-state and triphone models is to increase the number of 
possible states of the temporal process from n phones in the original phone alphabet (n E 50 
for the ARPAbet) to 3n3. Experience shows that the improved accuracy more than offsets the 
extra expense in terms of inference and learning. 

Words 

We can think of each word as specifying a distinct probability distribution P(Xl,t(word), 
where Xi specifies the phone state in the ith frame. Typically, we separate this distribution 
into two parts. The pronunciation model gives a distribution over phone sequences (ignoring 
metric time and frames), while the phone model describes how a phone maps into a sequence 
of frames. 

Consider the word "tomato." According to Gershwin (1937), you say [t ow m ey t ow] 
and I say [t ow m aa t ow]. The top of Figure 15.19 shows a transition model that provides 
for this variation. There are only two possible paths through the model, one corresponding to 
the phone sequence [t ow m ey t ow] and the other to [t ow m aa t ow]. The probability of a 
path is the product of the probabilities on the arcs that make up the path: 

The second source of phonetic variation is coarticulation. For example, the [t] phone is 
produced with the tongue at the top of the mouth, whereas the [ow] has the tongue near the 
bottom. When spoken quickly, the tongue often goes to an intermediate position, and we 
get [t ah] rather than [t ow]. The bottom half of Figure 15.19 gives a more complicated 
pronunciation model for "tomato" that takes this coarticulation effect into account. In this 
model, there are four distinct paths, and we have 

P( [towmeytow] I "tomato") = P (  [towmaatow] I "tomato") = 0.1 , 
P([tahmeytow] I"tomato") = P([tahmaatow] IGtomato") = 0.4 . 

Similar models can be constructed for every word we want to be able to recognize. 
The model for a three-state phone is shown as a state transition diagram in Figure 15.20. 

The model is for a particular phone, [m], but all phones will have models with similar topol- 
ogy. For each phone state, we show the associated acoustic model, assuming that the signal is 
represented by a VQ label. For example, the model asserts that P(Et = C1 I Xt = [m]o,,,t) = 
0.5. Notice the self-loops in the figure; for instance, the [mIMid state persists with probability 
0.9, which means that the [mIMid state has an expected duration of 10 frames. In the model 
we have, the duration of each phone is independent of the duration of other phones; a more 
sophisticated model could distinguish between fast and slow speech. 

We can construct similar models for each phone, possibly depending on the triphone 
context. Each word model, when combined with the phone models, gives a complete spec- 
ification of an HMM. The model specifies the transition probabilities between phone states 
from frame to frame, as well as the acoustic feature probabilities for each phone state. 
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(a) Word model with dialect variation: 

(b) Word model with coarticulation and dialect variations 

Figure 15.19 Two pronunciation models of the word "tomato." Each model is shown as 
a transition diagram with states as circles and arrows showing allowed transitions with their 
associated probabilities. (a) A model allowing for dialect differences. The 0.5 numbers are 
estimates based on the two authors' preferred pronunci;ations. (b) A model with a coarticula- 
tion effect on the first vowel, allowing either the [ow] or the [,ah] phone. 

Phone HMM for [m]: 

Output probabilities for the pho~ne HMM: 

Onset: Mid: End: 
C1: 0.5 C3: 0.2 C4: 0.1 
c2: 0.2 c4: 0.7 c6: 0.5 
C3:0.3 C5:0.1 C7:0.4 

Figure 15.20 An HMM for the three-state phone [m]. Each state has several possible 
outputs, each with its own probability. The VQ labels C1 through C7 are arbitrary. 
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ISOLATED WORDS If we want to recognized isolated words-that is, words spoken without any surround- 
ing context and with clear boundaries-then we need to find the word that maximizes 

P ( w ~ r d l e ~ , ~ )  = a P(el:tjword)P(word) . 
The prior probability P(word) can be obtained from actual text data. P(elZt 1 word) is the 
likelihood of the sequence of acoustic features according to the word model. Section 15.2 
covered the computation of such likelihoods; in particular, Equation (15.5) gives a simple 
recursive computation whose cost is linear in t and in the number of states of the Markov 
chain. To find the most likely word, we can perform this calculation for each possible word 
model, multiply by the prior, and select the best word accordingly. 

Sentences 

To have a conversation with a human, a machine needs to be able to recognize continuous 
CONTINUOUS 
SPEECH speech rather than just isolated words. One might think that continuous speech is nothing 

more than a sequence of words, to each of which we can apply the algorithm from the previous 
section. This approach fails for two reasons. First, we have already seen (page 547) that the 
sequence of most likely words is not the most likely sequence of words. For example, in the 
movie Take the Money and Run, a bank teller interprets Woody Allen's sloppily written hold- 
up note as saying "I have a gub." A good language model would suggest "I have a gun" as a 
much more likely sequence, even though the last word looks more like "gub" than "gun." The 

SEGMENTATION second issue we must face with continuous speech is segmentation-the problem of deciding 
where one word ends and the next begins. Anyone who has tried to learn a foreign language 
will appreciate this problem: at first all the words seem to run together. Gradually, one learns 
to pick out words from the jumble of sounds. In this case, first impressions are correct; a 
spectrographic analysis shows that in fluent speech, the words really do run together with no 
silence between them. We learn to identify word boundaries despite the lack of silence. 

Let us begin with the language model, whose job in speech recognition is to specify 
the probability of each possible sequence of words. Using the notation wl - . . w, to denote a 
string of n words and wi to denote the ith word of the string, we can write an expression for 
the probability of a string with the use of the chain rule as  follow^:^ 

P ( w ,  . . . w,) = P ( w l )  P(w21w1) P(w31w1w2) . . . P(w,Iwl . . . w,-~)  
= ne1 ~ ( ~ ~ l ~ ~  . . . . 

Most of these terms are quite complex and difficult to estimate or compute. Fortunately, we 
can approximate this formula with something simpler and still capture a large part of the 

BIGRAM language model. One simple, popular, and effective approach is the bigram model. This 
model approximates P ( w ,  1 wl . . . wi-l)  with P(wi  l ~ i - ~ ) .  In other words, it makes a first- 
order Markov assumption for word sequences. 

A big advantage of the bigram model is that it is easy to train the model by counting 
the number of times each word pair occurs in a representative corpus of strings and using the 

Strictly speaking, the probability of a word sequence depends strongly on the context of the utterance; for 
example, "I have a gun" is much more common on notes passed to a bank teller than it is in, say, the Wall Street 
Journal. Few speech recognizers handle context, other than by training a special-purpose language model for a 
particular task. 
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Word 

the 
on 
of 
to 
is 

model 
agent 
idea 

Unigram 

count 

Previous words 

I Figure 15.21 A partial table of unigrarn and bigram counts for the words in this book. 

model 

28 
0 
88 
9 
47 
6 
0 
0 

of 

3833 1 

0 
0 
3 
8 
10 

I 0 

1 "The" is the most common single word with a count of 33,508 (out of 513,893 total words). 

agent 

24 
6 
7 
82 
127 
4 
36 
0 

/ The bigrarn "of the" is the most common, at 3,833. Some counts are higher than expected 

in 

24'79 0 

0 
4 
6 
1 
3 
0 

(e.g. 4 for "on is") because the bigram counts ignore ]punctuation: one sentence might end 
with "on" and the next begin with "is." 

counts to estimate the probabilities. For example, if "at' appears 10,000 times in the training 
corpus and it is followed by "gun" 37 times, then ~ l ( ~ u n , ~ a , - l )  = 37/10,000, where by 
P we mean the estimated probability. After such training one would expect "I have" and 
"a gun" to have high estimated probabilities, while "I has" and "an gun" would have low 
probabilities. Figure 15.21 shows some bigram counts derived from the words in this book. 

TRIGRAM It is possible to go to a trigram model that provi~des values for P(W,~W,-~W,-~) .  This 
is a more powerful language model, capable of judging that "ate ;a banana" is more likely than 
"ate a bandanna." For trigram models and to a lesser extent for bigram and unigram models, 
there is a problem with counts of zero: We wouldn't want to say that a combination of words 
is impossible just because they didn't happen to appear in the training corpus. The process 
of smoothing gives a small non-zero probability to such clombinations. It is discussed on 
page 835. 

Bigram or trigram models are not as sophisticated as some of the grammar models we 
will see in Chapters 22 and 23, but they account for lolcal context-sensitive effects better and 
manage to capture some local syntax. For example, the fact that the word pairs ''I has" and 
"man have" get low scores is reflective of subject-verb agreement. The problem is that these 
relationships can be detected only locally: "the man have" gets a low score, but "the man 
with the yellow hat have" is not penalized. 

Now we consider how to combine the language model with the word models, so that we 
can handle word sequences properly. We'll assume a bigranl language model for simplicity. 
With such a model, we can combine all the word models ('which are composed in turn of 
pronunciation models and phone models) into one large HPidM model. A state in a single- 
word HMM is a frame labeled by the current phone anid phone state (for example, [m]o,,,t); 
a state in a continuous-speech HMM is also labeled with a word, as in [ m ] E z F .  If each 
word has an average of p three-state phones in its pronunciation model, and there are W 

is 

832 33 
29 
450 

1 
0 
3 
0 

on 

944 2 

1 
21 
4 
1 
2 
0 

to from 

1 3 : r  
0 
4 
2 

14. 
3 
0 0 
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words, then the continuous-speech HMM has 3pW states. Transitions can occur between 
phone states within a given phone, between phones in a given word, and between the final 
state of one word and the initial state of another. The transitions between words occur with 
probabilities specified by the bigram model. 

Once we have constructed the combined HMM, we can use it to analyze the continuous 
speech signal. In particular, the Viterbi algorithm embodied in Equation (15.9) can be used 
to find the most likely state sequence. From this state sequence, we can then extract a word 
sequence simply by reading the word labels from the states. Thus, the Viterbi algorithm 
solves the word segmentation problem by using dynamic programming to consider (in effect) 
all possible word sequences and word boundaries simultaneously. 

Notice that we didn't say "we can extract the most likely word sequence." The most 
likely word sequence is not necessarily the one that contains the most likely state sequence. 
This is because the probability of a word sequence is the sum of the probabilities over all pos- 
sible state sequences consistent with that word sequence. Comparing two word sequences, 
say, "a b a c k  and "aback," it might be that case that there are ten alternative state sequences 
for "a back," each with probability 0.03, but just one state sequence for "aback," with proba- 
bility 0.20. Viterbi chooses "aback," but "a back" is actually more likely. 

In practice, this difficulty is not life-threatening, but it is serious enough that other 
A* DECODER approaches have been tried. The most common is the A* decoder, which makes ingenious 

use of A* search (see Chapter 4) to find the most likely word sequence. The idea is to view 
each word sequence as a path through a graph whose nodes are labeled with words. The 
successors of a node are all the words that can come next; thus, the graph for all sentences of 
length n or less has n layers, each of width at most W, where W is the number of possible 
words. With a bigram model, the cost g(wl, w2) of an arc between nodes labeled wl to w2 is 
given by -log P(wzJwl); in this way, the total path cost of a sequence is 

n n 

Cost(wl - . . w,) = C - log P(wi 1 w,-~) = - log n P(w~ wi-1) . 
i = l  i = l  

With this definition of path cost, finding the shortest path is exactly equivalent to finding the 
most likely word sequence. For the process to be efficient, we also need a good heuristic 
h(wi) to estimate the cost of completing the word sequence. Obviously, this has something 
to do with how much of the speech signal is not yet covered by the words on the current path. 
As yet, no especially interesting heuristics have been devised for this problem. 

Building a speech recognizer 

The quality of a speech recognition system depends on the quality of all of its components- 
the language model, the word pronunciation models, the phone models, and the signal pro- 
cessing algorithms used to extract spectral features from the acoustic signal. We have dis- 
cussed how the language model can be constructed, and we leave the details of signal process- 
ing to other textbooks. We are left with the pronunciation and phone models. The structure of 
the pronunciation models-such as the tomato models in Figure 15.19-is usually developed 
by hand. Large pronunciation dictionaries are now available for English and other languages, 
although their accuracy varies greatly. The structure of the three-state phone models is the 
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same for a11 phones, as shown in Figure 15.20. That leaves the probabilities themselves. 
How are these to be obtained, given that the models c~ould require hundreds of thousands or 
millions of parameters? 

The only plausible method is to learn the models from actual speech data, of which there 
is certainly no shortage. The next question is how to clo the learning. We give the answer in 
full in Chapter 20, but we can present the main ideas here. Consider the bigram language 
model; we explained how to learn it by looking at frequencies of word pairs in actual text. 
Can we do the same for, say, phone transition probabilities in the pronunciation model? The 
answer is yes, but only if someone goes to the trouble of annotating every occurrence of each 
word with the right phone sequence. This is a difficult and error-prone task, but it has been 
carried out for some standard data sets containing several hours of speech. If we know the 
phone sequences, we can estimate transition probabilities for the pronunciation models from 
frequencies of phone pairs. Similarly, if we are given the phone state for each frame-an even 
more excruciating manual labeling task-then we can estimate transition probabililies for the 
phone models. Given the phone state and the acoustic features in each frame, we can also 
estimate the acoustic model, either directly from frequenci~es (for VQ models) or by using 
statistical fitting methods (for mixture-of-Gaussian maldels; :see Chapter 20). 

The cost and rarity of hand-labeled data, and the fact that the available hand-labeled data 
sets might not represent the kinds of speakers and acou,stic conditions found in a new recogni- 
tion context, could doom this approach to failure. Forrfimately, the expectation-maximization 
or EM algorithm learns HMM transition and sensor models without the need for labeled data. 
Estimates derived from hand-labeled data can be used to initialize the models; after that, EM 
takes over and trains the models for the task at hand. The idea is simple: given an HMM and 
an observation sequence, we can use the smoothing algorithms from Sections 15.2 and 15.3 
to compute the probability of each state at each time step and. by a simple extension, the prob- 
ability of each state-state pair at consecutive time steps. These probabilities can be viewed 
as uncertain labels. From the uncertain labels, we can estlmate new transition and sensor 
probabilities, and the EM procedure repeats. The method is guaranteed to increase the fit 
between model and data on each iteration, and it generally converges to a much better set of 
parameter values than those provided by the initial, hand-labeled estimates. 

State-of-the-art speech systems use enormous dalta sets and massive computational re- 
sources to train their models. For isolated word recognition under good acoustic conditions 
(no background noise or reverberation) with a vocablulary of a few thousand words and a 
single speaker, accuracy can be over 99%. For unrestricted continuous speech with a va- 
riety of speakers, 60-80% accuracy is common, even with good acoustic conditions. With 
background noise and telephone transmission, accuracy degrades further. Although fielded 
systems have improved continuously for decades, there is still room for many new ideas. 
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This chapter has addressed the general problem of representing and reasoning about proba- 
bilistic temporal processes. The main points are as follows: 

The changing state of the world is handled by using a set of random variables to repre- 
sent the state at each point in time. 
Representations can be designed to satisfy the Markov property, so that the future 
is independent of the past given the present. Combined with the assumption that the 
process is stationary-that is, the dynamics do not change over time-this greatly 
simplifies the representation. 
A temporal probability model can be thought of as containing a transition model de- 
scribing the evolution and a sensor model describing the observation process. 
The principal inference tasks in temporal models are filtering, prediction, smooth- 
ing, and computing the most likely explanation. Each of these can be achieved using 
simple, recursive algorithms whose runtime is linear in the length of the sequence. 

Three families of temporal models were studied in more depth: hidden Markov mod- 
els, Kalman filters, and dynamic Bayesian networks (which include the other two as 
special cases). 
Speech recognition and tracking are two important applications for temporal proba- 
bility models. 
Unless special assumptions are made, as in Kalman filters, exact inference with many 
state variables appears to be intractable. In practice, the particle filtering algorithm 
seems to be an effective approximation algorithm. 

BIBLIOGRAPHICAL AND HISTORICAL NOTES 

Many of the basic ideas for estimating the state of dynamical systems came from the math- 
ematician C. F. Gauss (1809), who formulated a deterministic least-squares algorithm for 
the problem of estimating orbits from astronomical observations. The Russian mathemati- 
cian A. A. Markov (1913) developed what was later called the Markov assumption in his 
analysis of stochastic processes; he estimated a first-order Markov chain on letters from the 
text of Eugene Onegin. Significant classified work on filtering was done during World War 
I1 by Wiener (1942) for continuous-time processes and by Kolmogorov (1941) for discrete- 
time processes. Although this work led to important technological developments over the 
next 20 years, its use of a frequency-domain representation made many calculations quite 
cumbersome. Direct state-space modeling of the stochastic process turned out to be sim- 
pler, as shown by Swerling (1959) and Kalman (1960). The latter paper introduced what is 
now known as the Kalman filter for forward inference in linear systems with Gaussian noise. 
Important results on smoothing were derived by Rauch et al. (1965), and the impressively 
named Rauch-Tung-Striebel smoother is still a standard technique today. Many early results 
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are gathered in Gelb (1974). Bar-Shalom and Fortmann (1'988) give a more modern treat- 
ment with a Bayesian flavor, as well as many references to the vast literature on the subject. 
Chatfield (1989) covers the "classical7' approach to time series analysis. 

In many applications of Kalman filtering, one must deal not only with uncertain sens- 
ing and dynamics, but also with uncertain identity; thal. is, if there are multiple objects being 
monitored, the system must determine which observations viere generated by which objects 

DATAASSOCIATION before it can update each of the state estimates. This is the problem of data association (Bar- 
Shalom and Fortmann, 1988; Bar-Shalom, 1992). With n observations and n tracks (a fairly 
benign case), there are n! possible assignments of observations to tracks; a proper probabilis- 
tic treatment must take, all of them into account, and this car1 be shown to be NP-hard (Cox, 
1993; Cox and Hingorani, 1994). Polynomial-time approximation methods based on MCMC 
appear to work well in practice (Pasula et al., 1999). It is interesting to note that the data asso- 
ciation problem is an instance of probabilistic inference in a first-order language; unlike most 
probabilistic inference problems, which are purely prlopositional, data association involves 
objects as well as the identity relation. It is therefore intimately connected to the first-order 
probabilistic languages that were mentioned in Chapteir 14. Recent work has shown that rea- 
soning about identity in general, and data association in particular, can be carried out within 
the first-order probabilistic framework (Pasula and Russell, 2001). 

The hidden Markov model and associated algorithms for inference and learning, includ- 
ing the forward-backward algorithm, were developed by Baum and Petrie (1966). Similar 
ideas also appeared independently in the Kalman filtering community (Rauch et al., 1965). 
The forward-backward algorithm was one of the main precursors of the general formulation 
of the EM algorithm (Dempster et al., 1977); see also Chapter 20. Constant-space smooth- 
ing appears in Binder et al. (1997b), as does the divide-and-conquer algorithm developed in 
Exercise 15.3. 

Dynamic Bayesian networks (DBNs) can be viewed as a sparse encoding of a Markov 
process and were first used in A1 by Dean and Kanazawa (1989b), Nicholson (1992), and 
Kjaerulff (1992). The last work includes a generic exlension to the HUGIN belief net system 
to provide the necessary facilities for dynamic Bayesian network generation and compila- 
tion. Dynamic Bayesian networks have become popular for modeling a variety of complex 
motion processes in computer vision (Huang et al., 1994; [ntille and Bobick, 1999). The 
link between HMMs and DBNs, and between the forward-backward algorithm and Bayesian 
network propagation, was made explicitly by Smyth et al. (1997). A further unification with 
Kalman filters (and other statistical models) appears in Roweis and Ghahramani (1999). 

The particle filtering algorithm described in Section 151.5 has a particularly interesting 
history. The first sampling algorithms for filtering were developed in the control theory com- 
munity by Handschin and Mayne (1969), and the resampling idea that is the core of particle 
filtering appeared in a Russian control journal (Zaritskji et al., 1975). It was later reinvented 
in statistics as sequential importance-sampling resampling, or SIR (Rubin, 1988; Liu and 
Chen, 1998), in control theory as particle filtering (Gordon et al., 1993; Gordon, 1994), in 
A1 as survival of the fittest (Kanazawa et al., 1995). (and in computer vision as condensa- 
tion (Isard and Blake, 1996). The paper by Kanazawa et al. (1995) includes an improvement 
called evidence reversal whereby the state at time t + 1 is sampled conditional on both the 
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state at time t and the evidence at time t + 1. This allows the evidence to influence sample 
generation directly and was proved by Doucet (1997) to reduce the approximation error. 

Other methods for approximate filtering include the decayed MCMC algorithm (Marthi 
et al., 2002) and the factored approximation method of Boyen et al. (1999). Both of these 
methods have the important property that the approximation error does not diverge over 
time. Variational techniques (see Chapter 14) have also been developed for temporal models. 
Ghahramani and Jordan (1997) discuss an approximation algorithm for the factorial HMM, 
a DBN in which two or more independently evolving Markov chains are linked by a shared 
observation stream. Jordan et al. (1998) cover a number of other applications. Properties of 
mixing times are discussed by Pak (2001) and by (Luby and Vigoda, 1999). 

The prehistory of speech recognition began in the 1920s with Radio Rex, a voice- 
activated toy dog. Rex jumped in response to sound frequencies near 500 Hz, which cor- 
responds to the [eh] vowel in "Rex!" Somewhat more serious work began after World War 
11. At AT&T Bell Labs, a system was built for recognizing isolated digits (Davis et al., 1952) 
by means of simple pattern matching of acoustic features. Phone transition probabilities 
were first used in a system built at University College, London, by Fry (1959) and Denes 
(1959). Starting in 1971, the Defense Advanced Research Projects Agency (DARPA) of the 
United States Department of Defense funded four competing five-year projects to develop 
high-performance speech recognition systems. The winner, and the only system to meet the 
goal of 90% accuracy with a 1000-word vocabulary, was the HARPY system at CMU (Low- 
erre, 1976; Lowerre and Reddy, 1980).~ The final version of HARPY was derived from a 
system called DRAGON built by CMU graduate student James Baker (1975); DRAGON was 
the first to use HMMs for speech. Almost simultaneously, Jelinek (1976) at IBM had de- 
veloped another HMM-based system. From that point onwards, probabilistic methods in 
general, and HMMs in particular, came to dominate speech recognition research and devel- 
opment. Recent years have been characterized by incremental progress, larger data sets and 
models, and more rigorous competitions on more realistic speech tasks. Some researchers 
have explored the possibility of using DBNs instead of HMMs for speech, with the aim of 
using the greater expressive power of DBNs to capture more of the complex hidden state of 
the speech apparatus (Zweig and Russell, 1998; Richardson et al., 2000). 

Several good textbooks on speech recognition are available (Rabiner and Juang, 1993; 
Jelinek, 1997; Gold and Morgan, 2000; Huang et al., 2001). Waibel and Lee (1990) collect 
important papers in the area, including some tutorial ones. The presentation in this chapter 
drew on the survey by Kay, Gawron, and Norvig (1994) and on the textbook by Jurafsky and 
Martin (2000). Speech recognition research is published in Computer Speech and Language, 
Speech Communications, and the IEEE Transactions on Acoustics, Speech, and Signal Pro- 
cessing and at the DARPA Workshops on Speech and Natural Language Processing and the 
Eurospeech, ICSLP, and ASRU conferences. 

The second-ranked system in the competition, HEARSAY-I1 (Erman et al., 1980), had a great deal of influence 
on other branches of A1 research because of its use of the blackboard architecture. It was a rule-based expert 
system with a number of more or less independent, modular knowledge sources that communicated via a common 
blackboard from which they could write and read. Blackboard systems are the foundation of modern user 
interface architectures. 
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15.1 Show that any second-order Markov process can be rewritten as a first-order Markov 
process with an augmented set of state variables. Can this always be done parsimoniously; 
that is, without increasing the number of parameters needed to specify the transition model? 

15.2 In this exercise, we examine what happens to the probabilities in the umbrella world 
in the limit of long time sequences. 

a. Suppose we observe an unending sequence of days on which the umbrella appears. 
Show that, as the days go by, the probability of rain on the current day increases mono- 
tonically towards a fixed point. Calculate this fixed point. 

b. Now consider forecasting further and further into the future, given just the first two 
umbrella observations. First, compute the probability P ( r 2 + k \ ~ l ,  u2) for lc = 1 . . .20  
and plot the results. You should see that the probability converges towards a fixed point. 
Calculate the exact value of this fixed point. 

15.3 This exercise develops a space-efficient variant of the forward-backward algorithm 
described in Figure 15.4. We wish to compute P(Xklel,t) for lc = 1, . . . , t. This will be done 
with a divide-and-conquer approach. 

a. Suppose, for simplicity, that t is odd, and let the halfway point be h = (t + 1)/2. Show 
that P(Xk can be computed for I; = 1, . . . , h given just the initial forward message 
fpo, the backward message bh+pt, and the evidence el:,;. 

b. Show a similar result for the second half of the sequence. 

c. Given the results of (a) and (b), a recursive divide-and-conquer algorithm can be con- 
structed by first running forward along the sequence and then backwards from the end, 
storing just the required messages at the middle ,and thie ends. Then the algorithm is 
called on each half. Write out the algorithm in detail. 

d. Compute the time and space complexity of the algorithm as a function o f t ,  the length of 
the sequence. How does this change if we divide the input into more than two pieces? 

15.4 On page 547, we outlined a flawed procedure for finding the most likely state sequence, 
given an observation sequence. The procedure involves finding the most likely state at each 
time step, using smoothing, and returning the sequence   compose dl of these states. Show that, 
for some temporal probability models and observation sequei~ces, this procedure returns an 
impossible state sequence (i.e., the posterior probability of the: sequence is zero). 

15.5 Often, we wish to monitor a continuous-state system whose behavior switches unpre- 
dictably among a set of k distinct "modes." For example:, an aircraft trying to evade a missile 
can execute a series of distinct maneuvers that the missile may attempt to track. A Bayesian 
network representation of such a switching Kalman filter model is shown in Figure 15.22. 
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Figure 15.22 A Bayesian network representation of a switching Kalman filter. The 
switching variable St is a discrete state variable whose value determines the transition 
model for the continuous state variables Xt. For any discrete state i, the transition model 
P(Xt+l (Xt , St = i) is a linear Gaussian model, just as in a regular Kalman filter. The tran- 
sition model for the discrete state, P(St+l ISt), can be thought of as a matrix, as in a hidden 
Markov model. 

a. Suppose that the discrete state St has k possible values and that the prior continuous 
state estimate P(Xo) is a multivariate Gaussian distribution. Show that the prediction 
P(X1) is a mixture of Gaussians-that is, a weighted sum of Gaussians such that the 
weights sum to 1. 

b. Show that if the current continuous state estimate P(Xt(el,t) is a mixture of m Gaus- 
s ian~,  then in the general case the updated state estimate P(Xt+1 lel:t+1) will be a mix- 
ture of km Gaussians. 

c. What aspect of the temporal process do the weights in the Gaussian mixture represent? 

Together, the results in (a) and (b) show that the representation of the posterior grows without 
limit even for switching Kalman filters, which are the simplest hybrid dynamic models. 

15.6 Complete the missing step in the derivation of Equation (15.17), the first update step 
for the one-dimensional Kalman filter. 

15.7 Let us examine the behavior of the variance update in Equation (15.18). 

a. Plot the value of a? as a function o f t ,  given various values for a; and 02. 
b. Show that the update has a fixed point a2 such that a: a2 as t -+ oo, and calculate 

the value of 02. 

c. Give a qualitative explanation for what happens as a: -+ 0 and as a: --+ 0. 

15.8 Show how to represent an HMM as a recursive relational probabilistic model, as sug- 
gested in Section 14.6. 

15.9 In this exercise, we analyze in more detail the persistent-failure model for the battery 
sensor in Figure 15.13(a). 

a. Figure 15.13(b) stops at t = 32. Describe qualitatively what should happen as t i. oo 
if the sensor continues to read 0. 
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b. Suppose that the external temperature affects the .battery sensor in such a way that tran- 
sient failures become more likely as temperature increases. Show how to augment the 
DBN structure in Figure 15.13(a), and explain any required changes to the CPTs. 

c. Given the new network structure, can battery readings be used by the robot to infer the 
current temperature? 

15.10 Consider applying the variable elimination algorithm to the umbrella DBN unrolled 
for three slices, where the query is P(R31Ul, U2, Us). Shtow that the complexity of the 
algorithm--the size of the largest factor-is the same, regardless of whether the rain vari- 
ables are eliminated in forward or backward order. 

15.11 The model of "tomato" in Figure 15.19 allows for a ~coarticulation on the first vowel 
by giving two possible phones. An alternative approach is to use a triphone model in which 
the [ow(t,m)] phone automatically includes the change in vowel sound. Draw a complete 
triphone model for "tomato," including the dialect variation. 

15.12 Calculate the most probable path through the HMM. in Figure 15.20 for the output 
sequence [C1, C2, C3, C4, C4, C6, C7]. Also give its probability. 
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In which we see how an agent should make decisions so that it gets what it wants- 
on average, at least. 

In this chapter, we return to the idea of utility theory that was introduced in Chapter 13 and 
show how it is combined with probability theory to yield a decision-theoretic agent-an agent 
that can make rational decisions based on what it believes and what it wants. Such an agent 
can make decisions in contexts where uncertainty and conflicting goals leave a logical agent 
with no way to decide. In effect, a goal-based agent has a binary distinction between good 
(goal) and bad (non-goal) states, while a decision-theoretic agent has a continuous measure 
of state quality. 

Section 16.1 introduces the basic principle of decision theory: the maximization of 
expected utility. Section 16.2 shows that the behavior of any rational agent can be captured 
by supposing a utility function that is being maximized. Section 16.3 discusses the nature of 
utility functions in more detail, and in particular their relation to individual quantities such as 
money. Section 16.4 shows how to handle utility functions that depend on several quantities. 
In Section 16.5, we describe the implementation of decision-making systems. In particular, 
we introduce a formalism called decision networks (also known as influence diagrams) 
that extends Bayesian networks by incorporating actions and utilities. The remainder of the 
chapter discusses issues that arise in applications of decision theory to expert systems. 

16.1 COMBINING BELIEFS AND DESIRES UNDER UNCERTAINTY 

In the Port-Royal Logic, written in 1662, the French philosopher Arnauld stated 

To judge what one must do to obtain a good or avoid an evil, it is necessary to consider 
not only the good and the evil in itself, but also the probability that it happens or does not 
happen; and to view geometrically the proportion that all these things have together. 

Modern texts talk of utility rather than good and evil, but the principle is exactly the same. An 
agent's preferences between world states are captured by a utility function, which assigns 
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a single number to express the desirability of a state. Utilities are combined with outcome 
probabilities of actions to give an expected utility for each action. 

We will use the notation U ( S )  to denote the utility of state S according to the agent 
that is making the decisions. For now, we will consider states as complete snapshots of the 
world, similar to the situations of Chapter 10. This will simplify our initial discussions, but 
it can become rather cumbersome to specify the utility of each possible state separately. In 
Section 16.4, we will see how states can be decomposed under some circumstances for the 
purpose of assigning utilities. 

A nondeterministic action A will have possible outcome states Result, ( A ) ,  where the 
index i ranges over the different outcomes. Prior to the execution of A, the agent assigns prob- 
ability P(Result, (A) I Do ( A ) ,  E )  to each outcome, where E summarizes the agent's available 
evidence about the world and Do(A)  is the proposition that action A is executed in the current 

EXPECTEDUTILITY state. Then we can calculate the expected utility of the action given the evidence, E'U(A1 E), 
using the following formula: 

EU(A1E) = ~ ( ~ e s u l t , ( ~ ) l ~ o ( ~ ) ,  E )  U(Result,(A)) . (16.1) 
2 

EXPECTED The principle of maximum expected utility (MEU) says that a rational agent should choose UTILITY 

an action that maximizes the agent's expected utility. If we wanted to choose the best se- 
quence of actions using this equation we would have to enumerate all action sequences and 
choose the best; this is clearly infeasible for long sequences. Therefore, this chapter will 
focus on simple decisions (usually a single action) and the next chapter will introduce new 
techniques for efficiently dealing with action sequences. 

In a sense, the MEU principle could be seen as defining all of AI. All an intelligent 
agent has to do is calculate the various quantities, maximize utility over its actions, and away 
it goes. But this does not mean that the A1 problem is solved by the definition! 

Although the MEU principle defines the right action to take in any decision problem, 
the computations involved can be prohibitive, and it is som~etimes difficult even to formu- 
late the problem completely. Knowing the initial state of the world requires perception, 
learning, knowledge representation, and inference. Computing P(Result, (A) 1 Do (A ) ,  E )  
requires a complete causal model of the world and, as we saw in Chapter 14, NP-hard in- 
ference in Bayesian networks. Computing the utility of each state, U(Result,(il)), often 
requires searching or planning, because an agent does not know how good a state is until it 
knows where it can get to from that state. So, decision theory is not a panacea that solves the 
A1 problem. On the other hand, it does provide a framework mto which we can see where all 
the components of an A1 system fit. 

The MEU principle has a clear relation to the ideal of performance measures introduced 
in Chapter 2. The basic idea is very simple. Consider t~he environments that could lead to an 
agent having a given percept history, and consider the different agents that we could design. 
I f  an agent maximizes a utility function that correctly reflects the performance measure by 
which its behavior is being judged, then it will achieve the higrhestpossible performance score 
if we average over the environments in which the agent cou1,d be placed. This is the central 
justification for the MEU principle itself. While the claim may seem tautological, it does in 
fact embody a very important transition from a global, external criterion of rationality-the 
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performance measure over environment histories-to a local, internal criterion involving the 
maximization of a utility function applied to the next state. 

ONE-SHOT 
DECISIONS In this chapter, we will be concerned only with single or one-shot decisions, whereas 

Chapter 2 defined performance measures over environment histories, which usually involve 
many decisions. In the next chapter, which covers the case of sequential decisions, we will 
show how these two views can be reconciled. 

Intuitively, the principle of Maximum Expected Utility (MEU) seems like a reasonable way 
to make decisions, but it is by no means obvious that it is the only rational way. After all, why 
should maximizing the average utility be so special? Why not try to maximize the sum of 
the cubes of the possible utilities, or try to minimize the worst possible loss? Also, couldn't 
an agent act rationally just by expressing preferences between states, without giving them 
numeric values? Finally, why should a utility function with the required properties exist at 
all? Perhaps a rational agent can have a preference structure that is too complex to be captured 
by something as simple as a single real number for each state. 

Constraints on rational preferences 

These questions can be answered by writing down some constraints on the preferences that a 
rational agent should have and then showing that the MEU principle can be derived from the 
constraints. We use the following notation to describe an agent's preferences: 

A + B A is preferred to B. 

A - B the agent is indifferent between A and B. 

A k B the agent prefers A to B or is indifferent between them. 

Now the obvious question is, what sorts of things are A and B? If the agent's actions are 
deterministic, then A and B will typically be the concrete, fully specified outcome states 

LOTTERIES of those actions. In the more general, nondeterministic case, A and B will be lotteries. A 
lottery is essentially a probability distribution over a set of actual outcomes (the "prizes" of 
the lottery). A lottery L with possible outcomes C1, . . . , C, that can occur with probabilities 
P I ,  . . . , p, is written 

L =  ~ I , C I ;  ~2 ,C2;  . . .  Pn,Cn] . 
(A lottery with only one outcome can be written either as A or as [I, A].) In general, each 
outcome of a lottery can be either an atomic state or another lottery. The primary issue 
for utility theory is to understand how preferences between complex lotteries are related to 
preferences between the underlying states in those lotteries. 

To do this, we impose reasonable constraints on the preference relation, much as we 
imposed rationality constraints on degrees of belief in order to obtain the axioms of probabil- 
ity in Chapter 13. One reasonable constraint is that preference should be transitive: that is, if 
A + B and B + C,  then we would expect that A + C. We argue for transitivity by showing 
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that an agent whose preferences do not respect transitivity lcvould behave irrationally. Sup- 
pose, for example, that an agent has the nontransitive preferences A + B + C + A, where 
A, B ,  and C are goods that can be freely exchanged. If the agent currently has A, then we 
could offer to trade C for A and some cash. The agent prefers C ,  and so would be willing 
to give up some amount of cash to make this trade. We could then offer to trade B for C,  
extracting more cash, and finally trade A for B. This brings us back where we started from, 
except that the agent has less money (Figure 16.l(a)). We can keep going around the cycle 
until the agent has no money at all. Clearly, this case the agent has not acted rationally. 

ORDERABILITY 

TRANSITIVITY 

CONTINUITY 

is equivalent to 

Figure 16.1 (a) A cycle of exchanges showing that the nontransitive preferences A + 
B > C > A result in irrational behavior. (b) The decoinposability axiom. 

The following six constraints are known as the axioms of utility theory. They specify 
the most obvious semantic constraints on preferences and lotteries. 

0 Orderability: Given any two states, a rational agent miust either prefer one to the other 
or else rate the two as equally preferable. That is, the agent cannot avoid deciding. As 
we said on page 474, refusing to bet is like refusing to allow time to pass. 

(A > B) V ( B  + A) V (A - B) . 

0 Transitivity: Given any three states, if an agent pirefers A to B and prefers B  to C ,  then 
the agent must prefer A to C. 

(A + B )  A ( B  > C )  =+ ( A  + C )  . 

0 Continuity: If some state B is between A and C in preference, then there is some 
proba.bility p for which the rational agent will be indifferent between getting B for sure 
and the lottery that yields A with probability p and C with probability 1 - p. 
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SUBSTITUTABILITY 0 Substitutability: If an agent is indifferent between two lotteries, A  and B, then the 
agent is indifferent between two more complex lotteries that are the same except that B  
is substituted for A in one of them. This holds regardless of the probabilities and the 
other outcome(s) in the lotteries. 

A-  B  + [p,A; 1-p,C] -- b , B ; 1 - p , C ] .  

MONOTONICITY 0 Monotonicity: Suppose there are two lotteries that have the same two outcomes, A  and 
B. If an agent prefers A  to B, then the agent must prefer the lottery that has a higher 
probability for A  (and vice versa). 

A F B  + ( p > q  @ b , A ;  l - p , B I k [ q , A ;  1 - q , B ] ) .  

DECOMPOSABILITY 0 Decomposability: Compound lotteries can be reduced to simpler ones using the laws 
of probability. This has been called the "no fun in gambling" rule because it says that 
two consecutive lotteries can be compressed into a single equivalent lottery, as shown 
in Figure 16.l(b).' 

[P,A; l - p , [ q , B ;  l-q,CIl b , A ;  ( l - p ) q , B ;  ( l - p ) ( l - q ) , C I .  

And then there was Utility 

Notice that the axioms of utility theory do not say anything about utility: They talk only about 
preferences. Preference is assumed to be a basic property of rational agents. The existence of 
a utility function follows from the axioms of utility: 

1. Utility principle 
If an agent's preferences obey the axioms of utility, then there exists a real-valued func- 
tion U that operates on states such that U(A) > U(B)  if and only if A  is preferred to 
B, and U(A) = U(B)  if and only if the agent is indifferent between A and B. 

U(A) > U(B)  # A  F B  ; 
U(A) = U(B)  # A  - B  . 

2. Maximum Expected Utility principle 
The utility of a lottery is the sum of the probability of each outcome times the utility of 
that outcome. 

U([PI ,  SI;. ; ~ n ,  Sn]) = C p i u ( S i )  . 
i 

In other words, once the probabilities and utilities of the possible outcome states are specified, 
the utility of a compound lottery involving those states is completely determined. Because 
the outcome of a nondeterministic action is a lottery, this gives us the MEU decision rule 
from Equation (16.1). 

It is important to remember that the existence of a utility function that describes an 
agent's preference behavior does not necessarily mean that the agent is explicitly maximizing 
that utility function in its own deliberations. As we showed in Chapter 2, rational behavior 
can be generated in any number of ways, some of which are more efficient than explicit 

We can account for the enjoyment of gambling by encoding gambling events into the state description; for 
example, "Have $10 and gambled" could be preferred to "Have $10 and didn't gamble." 
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utility maximization. By observing a rational agent's preferences, however, it is possible to 
construct the utility function that represents what it is that the agent's actions are actually 
trying to achieve. 

Utility is a function that maps from states to real numbers. Is that all we can say about utility 
functions? Strictly speaking, that is it. Beyond the constraints listed earlier, an agent can 
have any preferences it likes. For example, an agent might prefer to have a prime number 
of dollars in its bank account; in which case, if it had $16 it would give away $3. It might 
prefer a dented 1973 Ford Pinto to a shiny new Mercedes. Preferences can also inleract: for 
example, it might only prefer prime numbers of dollars when it owns the Pinto, but when it 
owns the Mercedes, it might prefer more dollars to less. 

If all utility functions were as arbitrary as this, however, then utility theory would not 
be of much help because we would have to observe the agent's preferences in every possible 
combination of circumstances before being able to make any predictions about its behavior. 
Fortunately, the preferences of real agents are usually more systematic. Conversely, there are 
systematic ways of designing utility functions that, when installed in an artificial agent, cause 
it to generate the kinds of behavior we want. 

The utility of money 

Utility theory has its roots in economics, and economics provides one obvious candidate 
for a utility measure: money (or more specifically, an agent's total net assets). The almost 
universal exchangeability of money for all kinds of goods arid services suggests that money 
plays a significant role in human utility functions. (In fact, most people think of economics 
as the study of money, when actually the root of the word c7cordomy refers to management, 
and its current emphasis is on the management of choice.) 

If we restrict our attention to actions that only affect the amount of money that an agent 
has, then it will usually be the case that the agent prefers more money to less, all other things 

MONOTONIC 
PREFERENCE being equal. We say that the agent exhibits a monotonic preference for definite amounts of 

money. This is not, however, sufficient to guarantee that money behaves as a utility function, 
because it says nothing about preferences between lotteries involving money. 

Suppose you have triumphed over the other competitors in a television game show. The 
host now ofTers you a choice: either you can take the $1,000,000 prize or you can gamble it 
on the flip of a coin. If the coin comes up heads, you end up with nothing, but if it comes 
up tails, you get $3,000,000. If you're like most people, you would decline the gamble and 
pocket the million. Are you being irrational? 

EXPECTED 
MONETAW VALUE Assuming you believe that the coin is fair, the expected monetary value (EMV) of the 

gamble is &($o) -t &($3,000,000) = $1,500,000, and the EMV of taking the orignnal prize 
is of course $1,000,000, which is less. But that does not necessarily mean that accepting 
the gamble is a better decision. Suppose we use S, to denote the state of possessing total 
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wealth $n, and that your current wealth is $k. Then the expected utilities of the two actions 
of accepting and declining the gamble are 

EU(Accept) = $ u ( s ~ )  + ~ ~ ( ~ k + 3 , 0 0 0 , 0 0 0 )  , 
EU(Decline) = u(Sk+1,000,000) . 

To determine what to do, we need to assign utilities to the outcome states. Utility is not 
directly proportional to monetary value, because the utility-the positive change in lifestyle- 
for your first million is very high (or so we are told), whereas the utility for an additional 
million is much smaller. Suppose you assign a utility of 5 to your current financial status 
(Sk), a 10 to the state Sk+s,ooo,ooo, and an 8 to the state Sk+l,ooo,ooo. Then the rational action 
would be to decline, because the expected utility of accepting is only 7.5 (less than the 8 for 
declining). On the other hand, suppose that you happen to have $500,000,000 in the bank 
already (and appear on game shows just for fun, one assumes). In this case, the gamble is 
probably acceptable, because the additional benefit of the 503rd million is probably about the 
same as that of the 501st million. 

In a pioneering study of actual utility functions, Grayson (1960) found that the utility 
of money was almost exactly proportional to the logarithm of the amount. (This idea was 
first suggested by Bernoulli (1738); see Exercise 16.3.) One particular curve, for a certain 
Mr. Beard, is shown in Figure 16.2(a). The data obtained for Mr. Beard's preferences are 
consistent with a utility function 

U(Sk+n) = -263.31 + 22.091og(n + 150,000) 

for the range between n = -$150,000 and n = $800,000. 
We should not assume that this is the definitive utility function for monetary value, 

but it is likely that most people have a utility function that is concave for positive wealth. 
Going into debt is usually considered disastrous, but preferences between different levels of 
debt can display a reversal of the concavity associated with positive wealth. For example, 

(a) (b) 

Figure 16.2 The utility of money. (a) Empirical data for Mr. Beard over a limited range. 
(b) A typical curve for the full range. 
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someone already $10,000,000 in debt might well accept a gamble on a fair coin with a gain 
of $10,000,000 for heads and a loss of $20,000,000 for tails.' This yields the S-shaped curve 
shown in Figure 16.2(b). 

If we restrict our attention to the positive part of (he curves, where the slope is decreas- 
ing, then for any lottery L, the utility of being faced with that lottery is less than the utility of 
being handed the expected monetary value of the lottery as a sure thing: 

U ( L )  < ~ ( S E M V ~ L ) )  . 
That is, agents with curves of this shape are risk-av~erse: they prefer a sure thing with a 
payoff that is less than the expected monetary value of a gamble. On the other hand, in the 
"desperate" region at large negative wealth in Figure 16.2(b), the behavior is risk-seeking. 
The value an agent will accept in lieu of a lottery is called the certainty equivalent of the 
lottery. Studies have shown that most people will accept about $400 in lieu of a gamble that 
gives $1000 half the time and $0 the other half-that is, the certainty equivalent of the lottery 
is $400. The difference between the expected monetary value of a lottery and its certainty 
equivalent is called the insurance premium. Risk aversion is the basis for the insurance 
industry, because it means that insurance premiums are positive. People would rather pay a 
small insurance premium than gamble the price of their house against the chance of a fire. 
From the insurance company's point of view, the price of the house is very small compared 
with the firm's total reserves. This means that the insurer's utility curve is approximately 
linear over such a small region, and the gamble costs the conlpany almost nothing. 

Notice that for small changes in wealth relative to the current wealth, almost any curve 
will be approximately linear. An agent that has a linear curve is said to be risk-neutral. For 
gambles with small sums, therefore, we expect risk neutral~ty. In a sense, this justifies the 
simplified procedure that proposed small gambles to assess probabilities and to justify the 
axioms of probability in Chapter 13. 

Utility scales and utility assessment 

The axioms of utility do not specify a unique utility fun'ction for an agent, given its preference 
behavior. For example, we can transform a utility funcition U (S) into 

U1(S)  = k l  + k2U(S) , 
where kl is a constant and k2 is any positive constant. Clearly, this linear transformation 
leaves the agent's behavior unchanged. 

In deterministic contexts, where there are states but no lotteries, behavior is unchanged 
by any morzotonic transformation. For example, we can take the cube root of all the utilities 
without affecting the preference ordering on actions. Ail agent in a deterministic environment 
is said to have a value function or ordinal utility fiinctioa; the function really provides 
just rankings of states rather than meaningful nunlerical values.. We saw this distinction in 
Chapter 6 for games: evaluation functions in deterministic games such as chess are value 
functions, whereas evaluation functions in nondeterministic games like backgammon are true 
utility functions. 

Such behavior might be called desperate, but it is rational if one is already in a desperate situation. 
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HUMAN JUDGMENT AND FALLIBILITY 

Decision theory is a normative theory: it describes how a rational agent should 
act. The application of economic theory would be greatly enhanced if it were 
also a descriptive theory of actual human decision making. However, there is 
experimental evidence indicating that people systematically violate the axioms of 
utility theory. An example is given by the psychologists Tversky and Kahneman 
(1982), based on an example by the economist Allais (1953). Subjects in this 
experiment are given a choice between lotteries A and B and then between C and 
D : 

A : 80% chance of $4000 C : 20% chance of $4000 
B : 100% chance of $3000 D : 25% chance of $3000 . 

The majority of subjects choose B over A and C over D. But if we assign U($O) = 

0, then the first of these choices implies that 0.8U($4000) < U($3000), whereas 
the second choice implies exactly the reverse. In other words, there seems to be 
no utility function that is consistent with these choices. One possible conclusion 
is that humans are simply irrational by the standards of our utility axioms. An 
alternative view is that the analysis does not take into account regret-the feeling 
that humans know they would experience if they gave up a certain reward (B) for 
an 80% chance at a higher reward and then lost. In other words, if A is chosen, 
there is a 20% chance of getting no money and feeling like u complete idiot. 

Kahneman and Tversky go on to develop a descriptive theory that explains 
how people are risk-averse with high-probability events, but are willing to take 
more risks with unlikely payoffs. The connection between this finding and A1 is 
that the choices our agents can make are only as good as the preferences they are 
based on. If our human informants insist on contradictory preference judgments, 
there is nothing our agent can do to be consistent with them. 

Fortunately, preference judgments made by humans are often open to revision 
in the light of further consideration. In early work at Harvard Business School 
on assessing the utility of money, Keeney and Raiffa (1976, p. 210) found the 
following: 

A great deal of empirical investigation has shown that there is a serious defi- 
ciency in the assessment protocol. Subjects tend to be too risk-averse in the 
small and therefore . . . the fitted utility functions exhibit unacceptably large 
risk premiums for lotteries with a large spread. . . . Most of the subjects, how- 
ever, can reconcile their inconsistencies and feel that they have learned an 
important lesson about how they want to behave. As a consequence, some 
subjects cancel their automobile collision insurance and take out more term 
insurance on their lives. 

Even today, human (ir)rationality is the subject of intensive investigation. 
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One procedure for assessing utilities is to establish a scale with a "best possible prize" 
NORMALIZED 
UTILITIES at U(S) = u~ and a "worst possible catastrophe" at U(S)  == u ~ .  Normalized utilities use 

a scale with ul = 0 and u~ = 1. Utilities of intermediate cutcomes are assessed by asking 
STANDARDLOTTERY the agent to indicate a preference between the given outcome state S and a standard lottery 

b, U T ;  (1 - p ) ,  uI]. The probability p is adjusted until the agent is indifferent between S and 
the standard lottery. Assuming normalized utilities, the utility of S is given by p. 

In medical, transportation, and environmental decision problems, among others, peo- 
ple's lives are at stake. In such cases, ul is the value assigned to immediate death (or perhaps 
many deaths). Although nobody feels comfortable with putting a value on human life, it is 
a fact that tradeoffs are made all the time. Aircraft are given a complete overhaul at inter- 
vals determined by trips and miles flown, rather than after every trip. Car bodies are made 
with relatively thin sheet metal to reduce costs, despite the decrease in accident survival rates. 
Leaded fuel is still widely used even though it has known health hazards. Paradoxically, a 
refusal to "put a monetary value on life" means that lifie is often undervalued. Ross Shachter 
relates an experience with a government agency that commissioned a study on removing as- 
bestos from schools. The study assumed a particular dollar value for the life of a school-age 
child, and argued that the rational choice under that assumption was to remove the asbestos. 
The government agency, morally outraged, rejected rh~e report out of hand. It then decided 
against asbestos removal. 

Some attempts have been made to find out the value thai people place on their own lives. 
MICROMORT Two common "currencies" used in medical and safety analysis are the micromort (a one in 
QALY a million chance of death) and the QALY, or quality-a~djusted life year (equivalenl to a year 

in good health with no infirmities). A number of studiles across a wide range of individuals 
have shown that a micromort is worth about $20 (1980 dollars). We have already seen that 
utility functions need not be linear, so this does not innply tlhat a decision maker would kill 
himself for $20 million. Again, the local linearity of any utility curve means that nnicromort 
and QALY values are most appropriate for small incrementall risks and rewards. 

Decision making in the field of public policy involves both millions of dollars and life and 
death. For example, in deciding what levels of a carcinogenic substance to allow into the 
environment, policy makers must weigh the prevention of deaths against the economic hard- 
ship that might result from the elimination of certain products and processes. Siting a new 
airport requires consideration of the disruption caused by construction; the cost of land; the 
distance from centers of population; the noise of flight operations; safety issues arising from 
local topography and weather conditions; and so on. Problems like these, in which outcomes 
are characterized by two or more attributes, are handled by multiattribute utility theory. 

We will call the attributes X = XI,.  . . , X,; a complete vector of assignments will be 
x = (XI ,  . . . , 2,). Each attribute is generally assumed to have discrete or continuous scalar 
values. For simplicity, we will assume that each attribute is defined in such a way that, 
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all other things being equal, higher values of the attribute correspond to higher utilities. For 
example, if we choose AbsenceOfNoise as an attribute in the airport problem then the greater 
its value, the better the solution. In some cases, it may be necessary to subdivide the range of 
values so that utility varies monotonically within each range. 

We begin by examining cases in which decisions can be made without combining the 
attribute values into a single utility value. Then we look at cases where the utilities of attribute 
combinations can be specified very concisely. 

Dominance 

Suppose that airport site S1 costs less, generates less noise pollution, and is safer than site S2. 
STRICTDOMINANCE One would not hesitate to reject S2. We then say that there is strict dominance of Sl over 

S2. In general, if an option is of lower value on all attributes than some other option, it need 
not be considered further. Strict dominance is often very useful in narrowing down the field 
of choices to the real contenders, although it seldom yields a unique choice. Figure 16.3(a) 
shows a schematic diagram for the two-attribute case. 

x2 
I This region 
I dominates A 
I 
I 

Co B, 
I 

A c ---------- 

(a> (b) 

Figure 16.3 Strict dominance. (a) Deterministic: Option A is strictly dominated by B but 
not by C or D. (b) Uncertain: A is strictly dominated by B but not by C. 

That is fine for the deterministic case, in which the attribute values are known for sure. 
What about the general case, where the action outcomes are uncertain? A direct analog of 
strict dominance can be constructed, where, despite the uncertainty, all possible concrete 
outcomes for S1 strictly dominate all possible outcomes for S2. (See Figure 16.3(b).) Of 
course, this will probably occur even less often than in the deterministic case. 

Fortunately, there is a more useful generalization called stochastic dominance, which 
occurs very frequently in real problems. Stochastic dominance is easiest to understand in 
the context of a single attribute. Suppose we believe that the cost of siting the airport at S1 is 
uniformly distributed between $2.8 billion and $4.8 billion and that the cost at S2 is uniformly 
distributed between $3 billion and $5.2 billion. Figure 16.4(a) shows these distributions, with 
cost plotted as a negative value. Then, given only the information that utility decreases with 
cost, we can say that S1 stochastically dominates Sz (i.e., S2 can be discarded). It is important 
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Figure 16.4 Stochastic dominance. (a) S1 stochastically dominates S2 on cost. (b) Cu- 
mulative distributions for the negative cost of S1 and S2. 

to note that this does not follow from comparing the expected costs. For example, if we knew 
the cost of S1 to be exactly $3.8 billion, then we would be unable to make a decision without 
additional information on the utility of money.3 

The exact relationship between the attribute distributiorls needed to establish stochastic 
dominance is best seen by examining the cumulative distributions, shown in Figure 16.4(b). 
The cumulative distribution measures the probability that the cost is less than or equal to any 
given amount-that is, it integrates the original distribution. If the cumulative distribution for 
S1 is always to the riglit of the cumulative distribution for S:2, then, stochastically speaking, 
S1 is cheaper than S2.  Formally, if two actions Al an~d A2 liead to probability distributions 
p1 (x) and p2 (x) on attribute X, then A1 stochastically dominates A2 on X if 

The relevance of this definition to the selection of optimal decisions comes from the following 
property: $Al stochastically dominates A2, then for an,y monotonically nondecreasing utility 
function U(z), the expected utility of A1 is at least as high as the expected utility of A2. 
Hence, if ail action is stochastically dominated by another action on all attributes, then it can 
be discarded. 

The stochastic dominance condition might seem rather technical and perhaps not so 
easy to evaluate without extensive probability calculations. In fact, it can be decided very 
easily in many cases. Suppose, for example, that the construction cost depends on the distance 
to centers of population. The cost itself is uncertain, but the greater the distance, the greater 
the cost. If S1 is less remote than S2, then S1 will dominate S2 on cost. Although we will not 

It might seem odd that more information on the cost of S1 could make the agent less able to decide. The 
paradox is resolved by noting that the decision reached in the abse.nce of exact cost information is less likely to 
have the highest utility payoff. 
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present them here, there exist algorithms for propagating this kind of qualitative information 
among uncertain variables in qualitative probabilistic networks, enabling a system to make 
rational decisions based on stochastic dominance, without using any numeric values. 

Preference structure and multiattribute utility 

Suppose we have n attributes, each of which has d distinct possible values. To specify the 
complete utility function U ( x l ,  . . . , x,), we need dn values in the worst case. Now, the worst 
case corresponds to a situation in which the agent's preferences have no regularity at all. Mul- 
tiattribute utility theory is based on the supposition that the preferences of typical agents have 
much more structure than that. The basic approach is to identify regularities in the preference 
behavior we would expect to see and to use what are called representation theorems to show 
that an agent with a certain lund of preference structure has a utility function 

U(x1, . .  . ? x n )  = f [ f i ( x l ) , . . .  ? f n ( x n )  ,I 
where f is, we hope, a simple function such as addition. Notice the similarity to the use of 
Bayesian networks to decompose the joint probability of several random variables. 

Preferences without uncertainty 

Let us begin with the deterministic case. Remember that for deterministic environments the 
agent has a value function V ( x l , .  . . , x,); the aim is to represent this function concisely. 
The basic regularity that arises in deterministic preference structures is called preference 

PREFERENCE independence. Two attributes X1 and X 2  are preferentially independent of a third attribute 
X3 if the preference between outcomes (zl, 2 2 ,  2 3 )  and ( x i ,  4, 2 3 )  does not depend on the 
particular value xs for attribute X3. 

Going back to the airport example, where we have (among other attributes) Noise, 
Cost, and Deaths to consider, one may propose that Noise and Cost are preferentially inde- 
pendent of Deaths. For example, if we prefer a state with 20,000 people residing in the flight 
path and a construction cost of $4 billion to a state with 70,000 people residing in the flight 
path and a cost of $3.7 billion when the safety level is 0.06 deaths per million passenger miles 
in both cases, then we would have the same preference when the safety level is 0.13 or 0.01; 
and the same independence would hold for preferences between any other pair of values for 
Noise and Cost. It is also apparent that Cost and Deaths are preferentially independent of 
Noise and that Noise and Deaths are preferentially independent of Cost. We say that the 

MUTUAL 
PREFERENTIAL set of attributes {Nozse, Cost, Deaths) exhibits mutual preferential independence (MPI). 
INDEPENDENCE 

MPI says that, whereas each attribute may be important, it does not affect the way in which 
one trades off the other attributes against each other. 

Mutual preferential independence is something of a mouthful, but thanks to a remark- 
able theorem due to the economist Debreu (1960), we can derive from it a very simple form 
for the agent's value function: Ifattributes X I ,  . . . , X ,  are mutuallypreferentially indepen- 
dent, then the agent's preference behavior can be described as maximizing the function 
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where each V, is a valuefunction referring only to the attribute Xi. For example, it might 
well be the case that the airport decision can be made using a value function 

V ( n o i s e ,  cost, deaths) = -noise x lo4 - cost - deaths x 1012 . 
ADDITIVEVALUE FUNCTION A value function of this type is called an additive value function. Additive functions are an 

extremely natural way to describe an agent's value function and are valid in many real-world 
situations. Even when MPI does not strictly hold, as might be the case at extreme values 
of the attributes, an additive value function might still provide a good approximation to the 
agent's preferences. This is especially true when the violatjons of MPI occur in portions of 
the attribute ranges that are unlikely to occur in practice. 

Preferences with uncertainty 

When uncertainty is present in the domain, we will also need to consider the structure of pref- 
erences between lotteries and to understand the resulting properties of utility functions, rather 
than just value functions. The mathematics of this problem can become quite complicated, so 
we will present just one of the main results to give a flavor of what can be done. The reader 
is referred to Keeney and Raiffa (1976) for a thorough survey of the field. 

UTILITY 
INDEPENDENCE The basic notion of utility independence extends preference independence to cover 

lotteries: a set of attributes X is utility-independent of a set of attributes Y if preferences be- 
tween lotteries on the attributes in X are independent of the particular values of the attributes 
in Y. A set of attributes is mutually utility-indepeindent (MUI) if each of its subsets is INDEPENDENT 

utility-independent of the remaining attributes. Again, it seems reasonable to propose that 
the airport attributes are MUI. 

MU1 implies that the agent's behavior can be described using a multiplicative utility 
$ ' , ~ ~ ~ L ~ ~ ~ & o N  function (Keeney, 1974). The general form of a multiplicati-ve utility function is best seen by 

looking at the case for three attributes. For conciseness, we will use U, to mean U, (x,) : 

Although this does not look very simple, it contains just three single-attribute utility functions 
and three constants. In general, an n-attribute problem exhibiting MU1 can be modeled using 
n single-attribute utilities and n constants. Each of the single-attribute utility functions can 
be developed independently of the other attributes, and this combination will be guaranteed 
to generate the correct overall preferences. Additional assumptions are required to obtain a 
purely additive utility function. 

In this section, we will look at a general mechanism for making rational decisions. The 
INFLUENCE DIAGRAM notation is often called an influence diagram (Howard. and l\rlatheson, 1984), but we will use 
DECISION NETWORK the more descriptive term decision network. Decision networks combine Bayesian networks 

with additional node types for actions and utilities. We, will use airport siting as an example. 



598 Chapter 16. Malung Simple Decisions 

Airpofl Site 

/ Figure 16.5 A simple decision network for the airport-siting problem. i 
Representing a decision problem with a decision network 

In its most general form, a decision network represents information about the agent's current 
state, its possible actions, the state that will result from the agent's action, and the utility of 
that state. It therefore provides a substrate for implementing utility-based agents of the type 
first introduced in Section 2.4. Figure 16.5 shows a decision network for the airport siting 
problem. It illustrates the three types of nodes used: 

CHANCE NODES 0 Chance nodes (ovals) represent random variables, just as they do in Bayes nets. The 
agent could be uncertain about the construction cost, the level of air traffic and the 
potential for litigation, and the Deaths, Noise, and total Cost variables, each of which 
also depends on the site chosen. Each chance node has associated with it a conditional 
distribution that is indexed by the state of the parent nodes. In decision networks, the 
parent nodes can include decision nodes as well as chance nodes. Note that each of the 
current-state chance nodes could be part of a large Bayes net for assessing construction 
costs, air traffic levels, or litigation potentials. 

DECISION NODES Decision nodes (rectangles) represent points where the decision-maker has a choice of 
actions. In this case, the Airportsite action can take on a different value for each site 
under consideration. The choice influences the cost, safety, and noise that will result. In 
this chapter, we will assume that we are dealing with a single decision node. Chapter 17 
deals with cases where more than one decision must be made. 

UTILITY NODES 0 Utility nodes (diamonds) represent the agent's utility f ~ n c t i o n . ~  The utility node has 
as parents all variables describing the outcome that directly affect utility. Associated 
with the utility node is a description of the agent's utility as a function of the parent 
attributes. The description could be just a tabulation of the function, or it might be a 
parameterized additive or multilinear function. 

These nodes are often called value nodes in the literature. We prefer to maintain the distinction between utility 
and value functions, as discussed earlier, because the outcome state may represent a lottery. 
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A simplified form is also used in many cases. The notation remains identical, but the 
chance nodes describing the outcome state are omitted. Instead, the utility node is connected 
directly to the current-state nodes and the decision node. In this case, rather than representing 
a utility function on states, the utility node represents the expected utility associated with 

ACT'oN-UT'L'TY TABLES each action, as defined in Equation (16.1). We therefore call such tables action-utility tables. 
Figure 16.6 shows the action-utility representation of the airport problem. 

Air Trafic a 
Litigation c3 

Figure 16.6 A simplified representation of the airport-siting problem. Chance nodes cor- 
responding to outcome states have been factored out. 

Notice that, because the Noise, Deaths, and Cost chance nodes in Figure 16.5 refer to 
future states, they can never have their values set as evidence variables. Thus, the simplified 
version that omits these nodes can be used whenever the rnore general form car1 be used. 
Although the simplified form contains fewer nodes, the omission of an explicit description 
of the outcome of the siting decision means that it is less flexible with respect to changes in 
circumstances. For example, in Figure 16.5, a change in aircraft noise levels can be reflected 
by a change in the conditional probability table associated with the Noise node, whereas a 
change in the weight accorded to noise pollution in the utility function can be reflected by 
a change in the utility table. In the action-utility diagram, Figure 16.6, on the other hand, 
all such changes have to be reflected by changes to th~e action-utility table. Essentially, the 
action-utility formulation is a compiled version of the original formulation. 

Evaluating decision networks 

Actions are selected by evaluating the decision network for each possible setting of the deci- 
sion node. Once the decision node is set, it behaves exactly like a chance node that has been 
set as an evidence variable. The algorithm for evaluating decision networks is the following: 

I. Set the evidence variables for the current state. 

2. For each possible value of the decision node; 

(a) Set the decision node to that value. 
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(b) Calculate the posterior probabilities for the parent nodes of the utility node, using 
a standard probabilistic inference algorithm. 

(c) Calculate the resulting utility for the action. 

3. Return the action with the highest utility. 

This is a straightforward extension of the Bayes net algorithm and can be incorporated directly 
into the agent design given in Figure 13.1. We will see in Chapter 17 that the possibility of 
executing several actions in sequence makes the problem much more interesting. 

In the preceding analysis, we have assumed that all relevant information, or at least all avail- 
able information, is provided to the agent before it makes its decision. In practice, this is 
hardly ever the case. One of the most important parts of decision making is knowing what 
questions to ask. For example, a doctor cannot expect to be provided with the results of all 
possible diagnostic tests and questions at the time a patient first enters the consulting room.5 
Tests are often expensive and sometimes hazardous (both directly and because of associated 
delays). Their importance depends on two factors: whether the test results would lead to a 
significantly better treatment plan, and how likely the various test results are. 

INFORMATION VALUE 
THEORY This section describes information value theory, which enables an agent to choose 

what information to acquire. The acquisition of information is achieved by sensing actions, 
as described in Chapter 12. Because the agent's utility function seldom refers to the contents 
of the agent's internal state, whereas the whole purpose of sensing actions is to affect the 
internal state, we must evaluate sensing actions by their effect on the agent's subsequent 
"real7' actions. Thus, information value theory involves a form of sequential decision making. 

A simple example 

Suppose an oil company is hoping to buy one of n indistinguishable blocks of ocean drilling 
rights. Let us assume f~lrther that exactly one of the blocks contains oil worth C dollars and 
that the price of each block is C/n dollars. If the company is risk-neutral, then it will be 
indifferent between buying a block and not buying one. 

Now suppose that a seismologist offers the company the results of a survey of block 
number 3, which indicates definitively whether the block contains oil. How much should 
the company be willing to pay for the information? The way to answer this question is to 
examine what the company would do if it had the information: 

With probability l ln,  the survey will indicate oil in block 3. In this case, the company 
will buy block 3 for Cln dollars and make a profit of C - C/n = (n  - 1)Cln dollars. 

With probability (n  - l ) /n ,  the survey will show that the block contains no oil, in which 
case the company will buy a different block. Now the probability of finding oil in one 

In the United States, the only question that is always asked beforehand is whether the patient has insurance. 
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of the other blocks changes from 1 / n  to 1 / (n - It), so the company makes an expected 
profit of C / ( n  - 1) - C / n  = C/n(n - 1) dollars. 

Now we can calculate the expected profit, given the suirvey information: 

Therefore, the company should be willing to pay the seismc~logist up to C / n  dollars for the 
information: the information is worth as much as the block itself. 

The value of information derives from the fact that with the information, one's course 
of action ca.n be changed to suit the actual situation. One can discriminate according to the 
situation, whereas without the information, one has to do what's best on average over the 
possible situations. In general, the value of a given piece of information is definedl to be the 
difference in expected value between best actions before and after information is obtained. 

A general formula 

It is simple to derive a general mathematical formula for the value of information. Usually, 
we assume that exact evidence is obtained about the value of some random variable E j ,  so 

OF the phrase value of perfect information (VPI) is used.6 Let the agent's current knowledge INFORMATION 

be E. Then the value of the current best action a is defined by 

E U ( a ( E )  = max U(Resu l t i (A ) )  P ( R e s z ~ l t , ~ ( A )  1 D o ( A ) ,  E )  
A i 

and the value of the new best action (after the new evidence .Ej is obtained) will be 

E U ( ~ E ,  IE, E j )  = max U(Resu l t i (A ) )  P (Eesz~ l t~ (A)  IDo(A) ,  E ,  El)  . 
A i 

But E,, is a random variable whose value is currently unknown, so we must average over all 
possible values elk that we might discover for E,, usiing our current beliefs about its value. 
The value of discovering E:,, given current information E, is then defined as 

In order to get some intuition for this formula, coinsider the simple case where there are 
only two actions, A1 and A2, from which to choose. Their current expected utilities are Ul 
and U2. The information E:, will yield some new expected utilities Ul and U i  for the actions, 
but before we obtain E,, we will have some probability distributions over the possible values 
of U: and Ui (which we will assume are independent). 

Suppose that Al and A2 represent two different routes through a mountain range in 
winter. A1 is a nice, straight highway through a low pass, and A2 is a winding dirt road over 
the top. Just given this information, A1 is clearly preferable, because it is quite likely that 
the second route is blocked by avalanches, whereas it is quite unlikely that the first route is 
blocked by traffic. Ul is therefore clearly higher than U2. It is possible to obtain satellite 

Imperfect information about a variable X can be modeled as perfect nnformation about a variable Y that is 
probabilistically related to X. See Exercise 16.1 1 for an example of this. 
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Figure 16.7 Three generic cases for the value of information. In (a), Al will almost cer- 
tainly remain superior to A2, so the information is not needed. In (b), the choice is unclear 
and the information is crucial. In (c), the choice is unclear but because it makes little differ- 
ence, the information is less valuable. 

reports E3 on the actual state of each road that would give new expectations, Ui and Ui ,  
for the two crossings. The distributions for these expectations are shown in Figure 16.7(a). 
Obviously, in this case, it is not worth the expense of obtaining satellite reports, because it 
is unlikely that the information derived from them will change the plan. With no change, 
information has no value. 

Now suppose that we are choosing between two different winding dirt roads of slightly 
different lengths and we are carrying a seriously injured passenger. Then, even when Ul 
and U2 are quite close, the distributions of Ui and U; are very broad. There is a significant 
possibility that the second route will turn out to be clear while the first is blocked, and in this 
case the difference in utilities will be very high. The VPI formula indicates that it might be 
worthwhile getting the satellite reports. Such a situation is shown in Figure 16.7(b). 

Now suppose that we are choosing between the two dirt roads in summertime, when 
blockage by avalanches is unlikely. In this case, satellite reports might show one route to be 
more scenic than the other because of flowering alpine meadows, or perhaps wetter because 
of errant streams. It is therefore quite likely that we would change our plan if we had the 
information. But in this case, the difference in value between the two routes is still likely 
to be very small, so we will not bother to obtain the reports. This situation is shown in 
Figure 16.7(c). 

In sum, information has value to the extent that it is likely to cause a change of plan 
and to the extent that the new plan will be signijicantly better than the old plan. 

Properties of the value of information 

One might ask whether it is possible for information to be deleterious: can it actually have 
negative expected value? Intuitively, one should expect this to be impossible. After all, one 
could in the worst case just ignore the information and pretend that one has never received it. 
This is confirmed by the following theorem, which applies to any decision-theoretic agent: 
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The value of information is nonnegative: 

V j , E  VPIE(Ej) 2 0 .  

The theorem follows directly from the definition of VPI, and we leave the proof as an exer- 
cise (Exercise 16.12). It is important to remember tha~t VPI depends on the current state of 
information, which is why it is subscripted. It can change as more information is acquired. In 
the extreme case, it will become zero if the variable in question already has a known value. 
Thus, VPI is not additive. That is, 

VPIE(EJ, Ek) # VPIE(E,) + VPIE(Ek) (in general) . 

VPI is, however, order-independent, which should be iintuitively obvious. That is, 

VPIE(E~, Ek) = VPIE(E,) + VPIE,E~ (Ek) = VPIE(E~) + VPIE,E~(JT~) . 

Order independence distinguishes sensing actions froin ordinary actions and simplifies the 
problem of calculating the value of a sequence of sensing actions. 

Implementing an information-gathering agent 

A sensible agent should ask questions of the user in a reasonable order, should avoid aslung 
questions that are irrelevant, should take into account the importance of each piece of infor- 
mation in relation to its cost, and should stop asking qluestions when that is appropriate. All 
of these capabilities can be achieved by using the value of information as a guide. 

Figure 16.8 shows the overall design of an agent that can gather information intelli- 
gently before acting. For now, we will assume that with each observable evidence variable 
E,, there is an associated cost, Cost(E,), which reflects the cost of obtaining the evidence 
through tests, consultants, questions, or whatever. The agent requests what appears to be the 
most valuable piece of information, compared with its cost. We assume that the result of the 
action Request(E,) is that the next percept provides the value of EJ. If no observation is 
worth its cost, the agent selects a "real" action. 

The agent algorithm we have described implernents a form of information gathering 
MYOPIC that is called myopic. This is because it uses the VE'I formula shortsightedly, calculating 

function INF~RMATION-GATHERING-AGENT(~~~C~~~) returns an action 
static: D, a decision network 

integrate percept into D 
j +- the value that maximizes VPI  (E j )  - Cost ( E j )  
if VPI(Ej )  > Cost(Ej) 

then return REQUEST(E,.) 
else return the best action from D 

Figure 16.8 Design of a simple information-gathering agent. The agent works by repeat- 
edly selecting the observation with the highest information value, until the cost of the next 
observation is greater than its expected benefit. 
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the value of information as if only a single evidence variable will be acquired. If there is 
no single evidence variable that will help a lot, a myopic agent might hastily take an action 
when it would have been better to request two or more variables first and then take action. 
Myopic control is based on the same heuristic idea as greedy search and often works well in 
practice. (For example, it has been shown to outperform expert physicians in selecting diag- 
nostic tests.) However, a perfectly rational information-gathering agent should consider all 
possible sequences of information requests terminating in an external action and all possible 
outcomes of those requests. Because the value of the second request depends on the outcome 
of the first request, the agent needs to explore the space of conditional plans, as described in 
Chapter 12. 

DECISION ANALYSIS The field of decision analysis, which evolved in the 1950s and 1960s, studies the application 
of decision theory to actual decision problems. It is used to help make rational decisions in 
important domains where the stakes are high, such as business, government, law, military 
strategy, medical diagnosis and public health, engineering design, and resource management. 
The process involves a careful study of the possible actions and outcomes, as well as the 
preferences placed on each outcome. It is traditional in decision analysis to talk about two 

DECISIONMAKER roles: the decision maker states preferences between outcomes, and the decision analyst 
DECISION ANALYST enumerates the possible actions and outcomes and elicits preferences from the decision maker 

to determine the best course of action. Until the early 1980s, the main purpose of decision 
analysis was to help humans make decisions that actually reflect their own preferences. In the 
current day, more and more decision processes are automated, and decision analysis is used 
to make sure that the automated processes are behaving as desired. 

As we discussed in Chapter 14, early expert system research concentrated on answering 
questions, rather than on making decisions. Those systems that did recommend actions rather 
than providing opinions on matters of fact generally did so using condition-action rules, rather 
than with explicit representations of outcomes and preferences. The emergence of Bayesian 
networks in the late 1980s made it possible to build large-scale systems that generated sound 
probabilistic inferences from evidence. The addition of decision networks means that expert 
systems can be developed that recommend optimal decisions, reflecting the preferences of 
the user as well as the available evidence. 

A system that incorporates utilities can avoid one of the most common pitfalls associ- 
ated with the consultation process: confusing likelihood and importance. A common strategy 
in early medical expert systems, for example, was to rank possible diagnoses in order of like- 
lihood and report the most likely. Unfortunately, this can be disastrous! For the majority of 
patients in general practice, the two most likely diagnoses are usually "There's nothing wrong 
with you" and "You have a bad cold," but if the third-most-likely diagnosis for a given patient 
is lung cancer, that's a serious matter. Obviously, a testing or treatment plan should depend 
both on probabilities and utilities. 
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We will now describe the knowledge engineering process for decision-theoretic expert 
systems. As an example we will consider the problem of selecting a medical treatment for a 
kind of congenital heart disease in children (see Lucas, 1996). 

About 0.8% of children are born with a heart anomaly, the most common beang aortic 
AORTIC 
COARCTATION 

coarctation (a constriction of the aorta). It can be treared with surgery, angioplasty (expand- 
ing the aorta with a balloon placed inside the artery) or medication. The problem is to decide 
what treatment to use and when to do it: the younger the infant the greater the risks of certain 
treatments, but one mustn't wait too long. A decision-theoretiic expert system for this problem 
can be created by a team consisting of at least one domain expert ~(a pediatric cardiologist) and 
one knowledge engineer. The process can be broken (down into the following steps (which 
you can compare to the steps in developing a logic-based system in Section 8.4). 

Create a causal model. Determine what are the possible symptoms, disorders, treat- 
ments, and outcomes. Then draw arcs between them, indicating what disorders cause what 
symptoms, and what treatments alleviate what disorders. Some of this will be well known to 
the domain expert, and some will come from the literature. Often the model will match well 
with the informal graphical descriptions given in medical textbooks. 

Simplify to a qualitative decision model. Since we are using the modell to make 
treatment decisions and not for other purposes (such as determining the joint probability of 
certain symptom/disorder combinations), we can often simplify by removing variables that 
are not involved in treatment decisions. Sometimes variables will have to be split or joined 
to match the expert's intuitions. For example, the original aortic coarctation model had a 
Treatment variable with values surgery, angioplasty and medication, and a separate variable 
for Timing of the treatment. But the expert had a hard time thinking of these separately, so 
they were combined, with Treatment taking on values such as surgery in 1 nzonth. 'This gives 
us the model of Figure 16.9. 

Assign probabilities. Probabilities can come from patient databases, literature studies, 
or the expert's subjective assessments. In cases where the wrong kinds of probabilities are 
given in the literature, techniques such as Bayes' rule and marginalization can be used to 
compute the desired probabilities. It has been found that experts are best able to assess the 
probability of an effect given a cause (e.g. P(dyspnoea1 heartfailure)) rather than the other 
way around. 

Assign utilities. When there are a small number of possible outcomes, they can be 
enumerated and evaluated individually. We would create a scale from best to worst outcome 
and give each a numeric value, for example - 1000 for death and 0 for complete recovery. We 
would then place the other outcomes on this scale. This can be done by the expent, but it is 
better if the patient (or in the case of infants, the patient's parents) can be involved, because 
different people have different preferences. If there are exponentially many outcomes, we 
need some way to combine them using multiattribute utility functions. For example, we may 
say that the negative utility of various complications is additive. 

Verify and refine the model. To evaluate the system we will need a set of correct 
GOLDSTANDARD (input, output) pairs; a so-called gold standard to compare against. For medical expert 

systems this usually means assembling the best available doctors, presenting them with a few 
cases, and ashng them for their diagnosis and recommended treatment plan. We then see 
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Figure 16.9 Influence diagram for aortic coarctation (courtesy of Peter Lucas). 

how well the system matches their recommendations. If it does poorly, we try to isolate the 
parts that are going wrong and fix them. It can be useful to run the system "backwards." 
Instead of presenting the system with symptoms and asking for a diagnosis, we can present it 
with a diagnosis such as "heart failure," examine the predicted probability of symptoms such 
as tachycardia, and compare to the medical literature. 

Perform sensitivity analysis. This important step checks whether the best decision is 
sensitive to small changes in the assigned probabilities and utilities by systematically varying 
those parameters and running the evaluation again. If small changes lead to significantly 
different decisions, then it could be worthwhile to spend more resources to collect better 
data. If all variations lead to the same decision, then the user will have more confidence that 
it is the right decision. Sensitivity analysis is particularly important, because one of the main 
criticisms of probabilistic approaches to expert systems is that it is too difficult to assess the 
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numerical probabilities required. Sensitivity analysis often reveals that many of the numbers 
need be specified only very approximately. For example, we might be uncertain about the 
prior probability P(tachycardia), but if we try many different values for this probability and 
in each case the recommended action of the influence diagram is the same then we can be 
less concerned about our ignorance. 

This chapter shows how to combine utility theory with proba1)ilicy to enable an agent to select 
actions that will maximize its expected performance. 

Probability theory describes what an agent should believe on the basis of evidence, 
utility theory describes what an agent wants, and decision theory puts the two together 
to describe what an agent should do. 

We can use decision theory to build a system that makes decisions by considering all 
possible actions and choosing the one that leads .to the best expected outcome. Such a 
system is known as a rational agent. 

e Utility theory shows that an agent whose preferences between lotteries are consistent 
with a set of simple axioms can be described as posselssing a utility function; further- 
more, the agent selects actions as if maximizing its expected utility. 

e Multiattribute utility theory deals with utilities that depend on several distinct at- 
tributes of states. Stochastic dominance is a particularly useful technique for making 
unambiguous decisions, even without precise utility values for attributes. 

e Decision networks provide a simple formalism for expressing and solving decision 
problems. They are a natural extension of Bayesian nei:wolrks, containing decision and 
utility nodes in addition to chance nodes. 

e Sometimes, solving a problem involves finding more information before making a de- 
cision. The value of information is defined as the expected improvement in utility 
compared with making a decision without the infonnatjon. 

e Expert systems that incorporate utility information ha.ve additional capabilities com- 
pared with pure inference systems. In addition to being able to make decisions, they 
can use the value of information to decide whether to acquire it and they can calculate 
the sensitivity of their decisions to small changes in probability and utility assessments. 

BIBLIOGRAPHICAL AND HISTORICAL NOTES 

One of the earliest applications of the principle of maximum expected utility (although a 
deviant one involving infinite utilities) was Pascal's wager, first published as part of the Port- 
Royal Logic (Arnauld, 1662). Daniel Bernoulli (17381, investigating the St. Petersburg para- 
dox (see Exercise 16.3), was the first to realize the importance of preference measurement 
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for lotteries, writing "the value of an item must not be based on its price, but rather on the 
utility that it yields" (italics his). Jeremy Bentham (1823) proposed the hedonic calculus for 
weighing "pleasures" and "pains," arguing that all decisions (not just monetary ones) could 
be reduced to utility comparisons. 

The derivation of numerical utilities from preferences was first carried out by Ram- 
sey (1931); the axioms for preference in the present text are closer in form to those rediscov- 
ered in Theory of Games and Economic Behavior (von Neumann and Morgenstern, 1944). 
A good presentation of these axioms, in the course of a discussion on risk preference, is given 
by Howard (1977). Ramsey had derived subjective probabilities (not just utilities) from an 
agent's preferences; Savage (1954) and Jeffrey (1983) carry out more recent constructions 
of this kind. Von Winterfeldt and Edwards (1986) provide a modern perspective on decision 
analysis and its relationship to human preference structures. The rnicromort utility measure 
is discussed by Howard (1989). A 1994 survey by the Economist set the value of a life at be- 
tween $750,000 and $2.6 million. However, Richard Thaler (1992) found irrational variation 
in the price one is willing to pay to avoid a risk of death versus the price one is willing to 
be paid to accept a risk. For a 1/1000 chance, a respondent wouldn't pay more than $200 to 
remove the risk, but wouldn't accept $50,000 to take on the risk. 

QALYs are much more widely used in medical and social policy decision making than 
are micromorts; see (Russell, 1990) for a typical example of an argument for a major change 
in public health policy on grounds of increased expected utility measured in QALYs. 

The book Decisions with Multiple Objectives: Preferences and Value Tradeoffs (Keeney 
and Raiffa, 1976) gives a thorough introduction to multiattribute utility theory. It describes 
early computer implementations of methods for eliciting the necessary parameters for a mul- 
tiattribute utility function and includes extensive accounts of real applications of the theory. 
In AI, the principal reference for MAUT is Wellman's (1985) paper, which includes a sys- 
tem called URP (Utility Reasoning Package) that can use a collection of statements about 
preference independence and conditional independence to analyze the structure of decision 
problems. The use of stochastic dominance together with qualitative probability models was 
investigated extensively by Wellman (1988, 1990a). Wellman and Doyle (1992) provide a 
preliminary sketch of how a complex set of utility-independence relationships might be used 
to provide a structured model of a utility function, in much the same way that Bayesian 
networks provide a structured model of joint probability distributions. Bacchus and Grove 
(1995, 1996) and La Mura and Shoham (1999) give further results along these lines. 

Decision theory has been a standard tool in economics, finance, and management sci- 
ence since the 1950s. Until the 1980s, decision trees were the main tool used for representing 
simple decision problems. Smith (1988) gives an overview of the methodology of decision 
analysis. Decision networks or influence diagrams were introduced by Howard and Math- 
eson (1984), based on earlier work by a group (including Howard and Matheson) at SRI 
(Miller et al., 1976). Howard and Matheson's method involved the derivation of a decision 
tree from a decision network, but in general the tree is of exponential size. Shachter (1986) 
developed a method for making decisions based directly on a decision network, without the 
creation of an intermediate decision tree. This algorithm was also one of the first to provide 
complete inference for multiply connected Bayesian networks. Recent work by Nilsson and 
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Lauritzen (2000) links algorithms for decision networks to ongoing developments in clus- 
tering algorithms for Bayesian networks. The collection by Oliver and Smith (1990) has a 
number of useful articles on decision networks, as does the 1990 special issue of the jour- 
nal Networks. Papers on decision networks and utility modeling also appear regularly in the 
journal Management Science. 

Information value theory was first analyzed by Ron Howard (1966). His paper ends 
with the remark "If information value theory and associated decision theoretic structures do 
not in the future occupy a large part of the education of engineers, then the engineering 
profession will find that its traditional role of managing scientific and economic resources for 
the benefit of man has been forfeited to another profession." To date, the implied revolution 
in managerial methods has not occurred, although this may change as the use of information 
value theory in Bayesian expert systems becomes more widespread. 

Surprisingly few A1 researchers adopted decisioin-theoretic tools after the early appli- 
cations in medical decision making described in Chapter 13. One of the few exceptions was 
Jerry Feldman, who applied decision theory to problems in vision (Feldman and Yakimovsky, 
1974) and planning (Feldman and Sproull, 1977). After the resurgence of interest in prob- 
abilistic methods in A1 in the 1980s, decision-theoretic expert systems gained widespread 
acceptance (Horvitz et al., 1988). In fact, from 1991 onward, the cover design of the journal 
A~tijicial Intelligence has depicted a decision network, although some artistic license appears 
to have been taken with the direction of the arrows. 

16.1 (Adapted from David Heckerman.) This exercise: concerns the Almanac Game, which 
is used by decision analysts to calibrate numeric estimations. For each of the questions that 
follow, give your best guess of the answer, that is, a number that you think is as likely to be 
too high as it is to be too low. Also give your guess at a 25th percentile estimate, that is, a 
number that you think has a 25% chance of being too high, and a 75% chance of being too 
low. Do the same for the 75th percentile. (Thus, you sh~ould give three estimates in all-low, 
median, and high-for each question.) 

a.  Number of passengers who flew between New York and Los Angeles in 1989. 
b. Population of Warsaw in 1992. 

c. Year in which Coronado discovered the Mississippi River. 
d. Number of votes received by Jimmy Carter in the 1976 presidential election. 

e. Age of the oldest living tree, as of 2002. 
f. Height of the Hoover Dam in feet. 

g. Number of eggs produced in Oregon in 1985. 
h. Number of Buddhists in the world in 1992. 
i.  Number of deaths due to AIDS in the United States in 198 1. 

j. Number of U.S. patents granted in 1901. 
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The correct answers appear after the last exercise of this chapter. From the point of view of 
decision analysis, the interesting thing is not how close your median guesses came to the real 
answers, but rather how often the real answer came within your 25% and 75% bounds. If it 
was about half the time, then your bounds are accurate. But if you're like most people, you 
will be more sure of yourself than you should be, and fewer than half the answers will fall 
within the bounds. With practice, you can calibrate yourself to give realistic bounds, and thus 
be more useful in supplying information for decision making. Try this second set of questions 
and see if there is any improvement: 

a. Year of birth of Zsa Zsa Gabor. 

b. Maximum distance from Mars to the sun in miles. 

c. Value in dollars of exports of wheat from the United States in 1992. 

d. Tons handled by the port of Honolulu in 199 1. 

e. Annual salary in dollars of the governor of California in 1993. 

f. Population of San Diego in 1990. 

g. Year in which Roger Williams founded Providence, Rhode Island. 

h. Height of Mt. Kilimanjaro in feet. 

i. Length of the Brooklyn Bridge in feet. 

j. Number of deaths due to automobile accidents in the United States in 1992. 

16.2 Tickets to a lottery cost $1. There are two possible prizes: a $10 payoff with probabil- 
ity 1/50, and a $1,000,000 payoff with probability 1/2,000,000. What is the expected mone- 
tary value of a lottery ticket? When (if ever) is it rational to buy a ticket? Be precise-show 
an equation involving utilities. You may assume current wealth of $k and that U(Sk) = 0. 
You may also assume that U(Sk+lo) = 10 x U(Sk+l)), but you may not make any assump- 
tions about U(Sk+l,ooo,ooo). Sociological studies show that people with lower income buy 
a disproportionate number of lottery tickets. Do you think this is because they are worse 
decision makers or because they have a different utility function? 

16.3 In 1738, J. Bernoulli investigated the St. Petersburg paradox, which works as follows. 
You have the opportunity to play a game in which a fair coin is tossed repeatedly until it 
comes up heads. If the first heads appears on the nth toss, you win 2, dollars. 

a. Show that the expected monetary value of this game is infinite. 

b. How much would you, personally, pay to play the game? 

c.  Bernoulli resolved the apparent paradox by suggesting that the utility of money is mea- 
sured on a logarithmic scale (i.e., U(S,) = a logz n + b, where S, is the state of having 
$n). What is the expected utility of the game under this assumption? 

d. What is the maximum amount that it would be rational to pay to play the game, assum- 
ing that one's initial wealth is $k ? 

16.4 Assess your own utility for different incremental amounts of money by running a series 
of preference tests between some definite amount MI and a lottery Ip, M2; (1 - p ) ,  01. Choose 
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different values of MI and M2, and vary p until you are indifferent between the two choices. 
Plot the resulting utility function. 

lgzjtnp 16.5 Write a computer program to automate the process in Exercise 16.4. Try your pro- 
gram out on several people of different net worth and political outlook. Comment on the 
consisteilcy of your results, both for an individual and across individuals. 

16.6 How much is a micromort worth to you? Devise a protocol to determine this. Ask 
questions based both on paying to avoid risk and being paid to accept risk. 

16.7 Show that if X1 and X2 are preferentially independent of X3,  and X2 and X3 are 
preferentially independent of X1, then X3 and XI are prefere:ntially independent of X2. 

1-p 16.8 This exercise completes the analysis of the airport-siting problem in Figure 16.5. 

a. Provide reasonable variable domains, probabilities, and utilities for the network, assum- 
ing that there are three possible sites. 

b. Solve the decision problem. 

c. What happens if changes in technology mean that each aircraft generates half as much 
noise? 

d. What if noise avoidance becomes three times more important? 

e. Calculate the VPI for AirTrafic, Litigation, and Construction in your model. 

16.9 Repeat Exercise 16.8, using the action-utility representation shown in Figure 16.6. 

16.10 For either of the airport-siting diagrams from Exercises 16.8 and 16.9, to which con- 
ditional probability table entry is the utility most sensitive, given the available evidence? 

16.11 (Adapted from Pearl (1988).) A used-car buyer can decide to carry out various tests 
with various costs (e.g., kick the tires, take the car to a qualified mechanic) and then, depend- 
ing on the outcome of the tests, decide which car to buy. We will assume that the buyer is 
deciding whether to buy car cl, that there is time to carry ouit at most one test, and that tl is 
the test of el and costs $50. 

A car can be in good shape (quality q+) or bad shape (quality q - ) ,  and the tests might 
help to indicate what shape the car is in. Car cl costs $1,500, and its market value is $2,000 
if it is in good shape; if not, $700 in repairs will be needed to make it in good shape. The 
buyer's estimate is that cl has a 70% chance of being in good shape. 

a. Draw the decision network that represents this pr'oblem~. 

b. Calculate the expected net gain from buying cl, given no test. 
c.  Tests can be described by the probability that the car will pass or fail the test given that 

the car is in good or bad shape. We have the following information: 
P(pass(c1, t ~ )  lq+(cl)) = 0.8 
P(pass(c1, tl)lq-(ci)) = 0.35 
Use Bayes' theorem to calculate the probability th.at the car will pass (or fail) its test and 
hence the probability that it is in good (or bad) shape gjven each possible test outcome. 
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d. Calculate the optimal decisions given either a pass or a fail, and their expected utilities. 

e. Calculate the value of information of the test, and derive an optimal conditional plan 
for the buyer. 

16.12 Prove that the value of information is nonnegative and order-independent, as stated in 
Section 16.6. Explain how it is that one can make a worse decision after receiving information 
than one would have made before receiving it. 

1-p 16.13 Modify and extend the Bayesian network code in the code repository to provide for 
creation and evaluation of decision networks and the calculation of information value. 

The answers to Exercise 16.1 (where M stands for million): First set: 3M, 1.6M, 1541,41M, 
4768, 221, 649M, 295M, 132, 25,546. Second set: 1917, 155M, 4,50OM, l lM, 120,000, 
l.lM, 1,636, 19,340, 1,595,41,710. 



MAKING COMPLEX 17 DEClSlONS 
-- 

In which we examine methods for deciding what to do today, given that we may 
decide again tomorrow. 

In this chapter, we address the computational issues involved in making decisions. Whereas 
Chapter 16 was concerned with one-shot or episodic decision problems, in which the util- 
ity of each action's outcome was well known, we will be concerned here with sequential 

SEQUENTIAL 
DECISION 
PROBLEMS 

decision problems, in which the agent's utility depends on a sequence of decisions. Se- 
quential decision problems, which include utilities, uncertainty, and sensing, generalize the 
search and planning problems described in Parts I1 and IV. Section 17.1 explains how se- 
quential decision problems are defined, and Sections 17.2 and 17.3 explain how they can 
be solved to produce optimal behavior that balances tlhe rislks and rewards of actnng in an 
uncertain environment. Section 17.4 extends these ideas to the case of partially observable 
environments, and Section 17.5 develops a complete design for decision-theoretic agents in 
partially observable environments, combining dynamic Bayesian networks from Chapter 15 
with decision networks from Chapter 16. 

The second part of the chapter covers environments with multiple agents. In such envi- 
ronments, the notion of optimal behavior becomes much more complicated by the interactions 
among the agents. Section 17.6 introduces the main ideas of game theory, including the idea 
that rational agents might need to behave randomly. Sectioni 17.7 looks at how multiagent 
systems can be designed so that multiple agents can achieve a common goal. 

An example 

Suppose that an agent is situated in the 4 x 3 environment shown in Figure 17.l(a). Begin- 
ning in the start state, it must choose an action at each time step. The interaction with the 
environment terminates when the agent reaches one of the goal states, marked +1 or -1. In 
each location, the available actions are called Up, Down, Left, and Right. We will assume for 
inow that the environment is fully observable, so that the age~nt always knows where it is. 
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Figure 17.1 (a) A simple 4 x 3 environment that presents the agent with a sequential 
decision problem. (b) Illustration of the transition model of the environment: the "intended" 
outcome occurs with probability 0.8, but with probability 0.2 the agent moves at right angles 
to the intended direction. A collision with a wall results in no movement. The two terminal 
states have reward +1 and -1, respectively, and all other states have a reward of -0.04. 

1 

If the environment were deterministic, a solution would be easy: [Up, Up, Right, Right, 
Right]. Unfortunately, the environment won't always go along with this solution, because the 
actions are unreliable. The particular model of stochastic motion that we adopt is illustrated 
in Figure 17.l(b). Each action achieves the intended effect with probability 0.8, but the rest 
of the time, the action moves the agent at right angles to the intended direction. Furthermore, 
if the agent bumps into a wall, it stays in the same square. For example, from the start square 
(1,1), the action Up moves the agent to (1,2) with probability 0.8, but with probability 0.1, it 
moves right to (2,1), and with probability 0.1, it moves left, bumps into the wall, and stays in 
(1,l). In such an environment, the sequence [Up, Up, Right, Right, Right] goes up around 
the barrier and reaches the goal state at (4,3) with probability 0 . 8 ~  = 0.32768. There is also a 
small chance of accidentally reaching the goal by going the other way around with probability 
0.14 x 0.8, for a grand total of 0.32776. (See also Exercise 17.1.) 

A specification of the outcome probabilities for each action in each possible state is 
TRANSITIONMODEL called a transition model (or just "model," whenever no confusion can arise). We will use 

T ( s ,  a, s') to denote the probability of reaching state s' if action a  is done in state s. We will 
assume that transitions are Markovian in the sense of Chapter 15, that is, the probability of 
reaching s' from s depends only on s and not on the history of earlier states. For now, you 
can think of T ( s ,  a,  st)  as a big three-dimensional table containing probabilities. Later, in 
Section 17.5, we will see that the transition model can be represented as a dynamic Bayesian 
network, just as in Chapter 15. 

To complete the definition of the task environment, we must specify the utility function 
for the agent. Because the decision problem is sequential, the utility function will depend 
on a sequence of states-an environment history-rather than on a single state. Later in 
this section, we will investigate how such utility functions can be specified in general; for 

REWARD now, we will simply stipulate that in each state s, the agent receives a reward R(s ) ,  which 
may be positive or negative, but must be bounded. For our particular example, the reward is 
-0.04 in all states except the terminal states (which have rewards +1 and -1). The utility of 

START 
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an environment history is just (for now) the sum of the rewards received. For example, if the 
agent reaches the + l  state after 10 steps, its total utility will be 0.6. The negative reward of 
-0.04 gives the agent an incentive to reach (4,3) quickly, so our environment is a stochastic 
generalization of the search problems of Chapter 3. A,nother way of saying this is that the 
agent does not enjoy living in this environment and so wants to get out of the game as soon 
as possible. 

The specification of a sequential decision problem for a fully observable environment 
MARKoV PROCESS DECISlON with a Markovian transition model and additive rewards is called a Markov decision process, 

or MDP. An MDP is defined by the following three components: 
Initial State: So 
Transition Model: T ( s ,  a ,  s') 
Reward   unction:' R ( s )  

The next question is, what does a solution to the probl~em look like? We have seen that any 
fixed action sequence won't solve the problem, because the agent might end up in a state 
other than the goal. Therefore, a solution must specify what tlhe agent should do for any state 

POLICY that the agent might reach. A solution of this kind is called a policy. We usually denote a 
policy by T ,  and ~ ( s )  is the action recommended by the policy 7i for state s. If the agent has a 
complete policy, then no matter what the outcome of any action, the agent will always know 
what to do next. 

Each time a given policy is executed starting from the initial state, the stochastic nature 
of the environment will lead to a different environment history. The quality of a policy is 
therefore measured by the expected utility of the possible environment histories generated 

OPTIMALPOLICY by that policy. An optimal policy is a policy that yields the highest expected utility. We 
use T* to denote an optimal policy. Given T*, the agent decides what to do by consulting 
its current percept, which tells it the current state s, and then[ executing the action T* ( s ) .  A 
policy represents the agent function explicitly and is therefore a description of a simple reflex 
agent, computed from the information used for a utility-based agent. 

An optimal policy for the world of Figure 17.1 is shown in Figure 17.2(a). Notice 
that, because the cost of taking a step is fairly small compared with the penalty for ending 
up in (4,2) by accident, the optimal policy for the state (3,l) is conservative. The policy 
recommends taking the long way round, rather than taking the short cut and thereby risking 
entering (4,2). 

The balance of risk and reward changes depends on the value of R(s) for the nonter- 
minal states. Figure 17.2(b) shows optimal policies for four different ranges of R ( s ) .  When 
R(s) < -1.6284, life is so painful that the agent heads straight for the nearest exit, even if 
the exit is worth -1. When -0.4278 < R ( s )  < -0.0850, life is quite unpleasant; the agent 
takes the shortest route to the +1 state and is willing to risk falling into the -1 state by acci- 
dent. In particular, the agent takes the shortcut from (3,P). When life is only slightly dreary 
(-0.0221 < R ( s )  < 01, the optimal policy takes no risks at all. In (4,l) and (3,2), {.he agent 

Some definitions of MDPs allow the reward to depend on the action and outcome too, so the reward function 
is R(s ,  a ,  s'). This simplifies the description of some environments but does not change the problem in any 
fundamental way. 
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heads directly away from the -1 state so that it cannot fall in by accident, even though this 
means banging its head against the wall quite a few times. Finally, if R ( s )  > 0, then life is 
positively enjoyable and the agent avoids both exits. As long as the actions in (4,1), (3,2), 
and (3,3) are as shown, every policy is optimal, and the agent obtains infinite total reward be- 
cause it never enters a terminal state. Surprisingly, it turns out that there are six other optimal 
policies for various ranges of R(s); Exercise 17.7 asks you to find them. 

The careful balancing of risk and reward is a characteristic of MDPs that does not 
arise in deterministic search problems; moreover, it is a characteristic of many real-world 
decision problems. For this reason, MDPs have been studied in several fields, including AI, 
operations research, economics, and control theory. Dozens of algorithms have been proposed 
for calculating optimal policies. In sections 17.2 and 17.3 we will describe two of the most 
important algorithm families. First, however, we must complete our investigation of utilities 
and policies for sequential decision problems. 

Optimality in sequential decision problems 

In the MDP example in Figure 17.1, the performance of the agent was measured by a sum 
of rewards for the states visited. This choice of performance measure is not arbitrary, but it 
is not the only possibility. This section investigates the possible choices for the performance 
measure-that is, choices for the utility function on environment histories, which we will 
write as Uh([so ,  s l ,  . . . , s,]). The section draws on ideas from Chapter 16 and is somewhat 
technical; the main points are summarized at the end. 

FINITE HORIZON The first question to answer is whether there is a finite horizon or an infinite horizon 
INFINITE HORIZON for decision making. A finite horizon means that there is afied time N after which nothing 

matters-the game is over, so to speak. Thus, Uh ([so,  sl , . . . , sNSlc] )  = Uh ([so,  SI , . . . , S N ] )  

for all k > 0. For example, suppose an agent starts at (3,l) in the 4 x 3 world of Figure 17.1, 
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and suppose that N = 3. Then, to have any chance of reaching the +I state, the agent must 
head directly for it, and the optimal action is to go Up. (On the other hand, if N = 100 
then there is plenty of time to take the safe route by going Left. So, with a jnite horizon, 
the optimal action in a given state could change over time. We say that the optimal policy 

NONSTATIoNARY POLICY for a finite horizon is nonstationary. With no fixed time limit, on the other hand, there 
is no reason to behave differently in the same state at different times. Hence, the optimal 

STATIONARY POLICY action depends only on the current state, and the optimal policy is stationary. Policies for 
the infinite-horizon case are therefore simpler than those for the finite-horizon case, and we 
will deal mainly with the infinite-horizon case in this chapter.2 Note that "infinite horizon" 
does not necessarily mean that all state sequences are infini1.e; it just means that there is no 
fixed deadline. In particular, there can be finite state sequences in an infinite-horizon MDP 
containing a terminal state. 

The next question we must decide is how to calculate the utility of state sequences. 
We can view this as a question in multiattribute utility theory (see Section 16.4), where 
each state s, is viewed as an attribute of the state sequence [so, s l ,  s2 . . .]. TO obtain a simple 
expression m terms of the attributes, we will need to make some sort of preference inde- 
pendence assumption. The most natural assumption is that the agent's preferences between 

STATIONARY 
PREFERENCE state sequences are stationary. Stationarity for prefereinces means the following: if two state 

sequences [so, s l ,  sg, . . .] and [sb, s i ,  s;, . . .] begin with the same state (i.e., so = sb) then 
the two sequences should be preference-ordered the same way as the sequences [sl, s2, . . .] 
and [si , s; , . . .I. In English, this means that if you prefer one future to another starting to- 
morrow, then you should still prefer that future if it ,were lo start today. Stationarity is a 
fairly innocuous-looking assumption with very strong consequences: it turns out that under 
stationarity there are just two ways to assign utilities to sequences: 

ADDITIVE REWARDS 1. Additive rewards: The utility of a state sequence is 

U h ( [ s ~ ,  s l ,  ~ 2 , .  . .I) = R(so) + R(sl) + R ( s ~ )  4- . . . . 
The 4 x 3 world in Figure 17.1 uses additive rewards. Notice that additivity was used 
implicitly in our use of path cost functions in heuristic search algorithms (Chapter 4). 

DISCOUNTED 
REWARDS 2. Discounted rewards: The utility of a state seque:nce is 

U~([SO,  SI, ~ 2 ,  . . . I )  = R(so) + YR(SI) + r2R(s2) + . . . , 
DISCOUNT FACTOR where the discount factory is a number between 0 and 1. The discount factor describes 

the preference of an agent for current rewards over future rewards. When .y is close 
to 0, rewards in the distant future are viewed as insignificant. When y is 1, discounted 
rewards are exactly equivalent to additive rewar~ds, so additive rewards are a special 
case of discounted rewards. Discounting appears to be a good model of both animal 
and human preferences over time. A discount fact'or of -y is equivalent to an interest rate 
of ( l /y )  - 1. 

For reasons that will shortly become clear, we will assume discounted rewards in the remain- 
der of the chapter, although sometimes we will allow y = 1. 

This is for completely observable environments. We will see later that for partially observable environments, 
the infinite-horizon case is not so simple. 



618 Chapter 17. Making Complex Decisions 

Lurking beneath our choice of infinite horizons is a problem: if the environment does 
not contain a terminal state, or if the agent never reaches one, then all environment histories 
will be infinitely long, and utilities with additive rewards will generally be infinite. Now, we 
can agree that +m is better than -m, but comparing two state sequences, both having +m 
utility is more difficult. There are three solutions, two of which we have seen already: 

1. With discounted rewards, the utility of an infinite sequence is finite. In fact, if rewards 
are bounded by Rmax and y < 1, we have 

using the standard formula for the sum of an infinite geometric series. 
2. If the environment contains terminal states and ifthe agent is guaranteed to get to one 

eventually, then we will never need to compare infinite sequences. A policy that is 
PROPER POLICY guaranteed to reach a terminal state is called a proper policy. With proper policies, we 

can use y = 1 (i.e., additive rewards). The first three policies shown in Figure 17.2(b) 
are proper, but the fourth is improper. It gains infinite total reward by staying away from 
the terminal states when the reward for the noaterminal states is positive. The existence 
of improper policies can cause the standard algorithms for solving MDPs to fail with 
additive rewards, and so provides a good reason for using discounted rewards. 

AVERAGE REWARD 3. Another possibility is to compare infinite sequences in terms of the average reward 
obtained per time step. Suppose that square (1,l) in the 4 x 3 world has a reward of 
0.1 while the other nonterminal states have a reward of 0.01. Then a policy that does 
its best to stay in (1,l) will have higher average reward than one that stays elsewhere. 
Average reward is a useful criterion for some problems, but the analysis of average- 
reward algorithms is beyond the scope of this book. 

In sum, the use of discounted rewards presents the fewest difficulties in evaluating state se- 
quences. The final step is to show how to choose between policies, bearing in mind that 
a given policy 7r generates not one state sequence, but a whole range of possible state se- 
quences, each with a specific probability determined by the transition model for the envi- 
ronment. Thus, the value of a policy is the expected sum of discounted rewards obtained, 
where the expectation is taken over all possible state sequences that could occur, given that 
the policy is executed. An optimal policy n* satisfies 

00 

7r* = argmax E yt  st) I 7r . I (17.2) 
7r [ L  = n 

The next two sections describe algorithms for finding optimal policies. 

VALUE ITERATION In this section, we present an algorithm, called value iteration, for calculating an optimal 
policy. The basic idea is to calculate the utility of each state and then use the state utilities to 
select an optimal action in each state. 
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Utilities of states 

The utility of states is defined in terms of the utility of state sequences. Roughly speaking, the 
utility of a state is the expected utility of the state sequences that might follow it. Obviously, 
the state sequences depend on the policy that is executed, so we begin by defining the utility 
U" (s) with respect to a specific policy T.  If we let st be the state the agent is in after executing 
T for t steps (note that st is a random variable), then we have 

Given this definition, the true utility of a state, which we write as U(s), is just uT* (s)-that 
is, the expected sum of discounted rewards if the agent executes an optimal policy. Notice 
that U(s) and R(s) are quite different quantities; R(s) is the "short-term" reward for being 
in s, whereas U(s) is the "long-term" total reward from s onwards. Figure 17.3 shows the 
utilities for the 4 x 3 world. Notice that the utilities are higher for states closer to the +1 exit, 
because fewer steps are required to reach the exit. 

1 2 3 4 
-- 

Figure 17.3 The utilities of the states in the 4 x 3 worlld, calculated with y = 1 and 
R(s) = - 0.04 for nonterminal states. 

The utility function U(s) allows the agent to select actions by using the Maximum 
Expected Utility principle from Chapter 16-that is, choose: the action that maximizes the 
expected utility of the subsequent state: 

Now, if the utility of a state is the expected sum of discounted rewards from that point on- 
wards, then there is a direct relationship between the utility of a state and the utility of its 
neighbors: the utility of a state is the immediate reward for that state plus the expected dis- 
counted utility of the next state, assuming that the agent chooses the optimal action. That is, 
the utility of a state is given by 
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BELLMAN EQUATION Equation (17.5) is called the Bellman equation, after Richard Bellman (1957). The 
utilities of the states-defined by Equation (17.3) as the expected utility of subsequent state 
sequences-are solutions of the set of Bellman equations. In fact, they are the unique solu- 
tions, as we show in the next two sections. 

Let us look at one of the Bellman equations for the 4 x 3 world. The equation for the 
state (1,l) is 

U ( 1 , l )  = -0.04+y max{ 0.8U(1,2) +O.lU(2,1)  + O . l U ( l , l ) ,  ( UP) 
0.9U(1,1) + O.lU(1,2), (Left)  
0.9U(1,1) + O.lU(2, I ) ,  (Down) 
0 .8u(2 ,1 )  + O . l U ( l 1 2 )  + O.lU(1, l )  ) (Right) 

When we plug in the numbers from Figure 17.3, we find that Up is the best action. 

The value iteration algorithm 

The Bellman equation is the basis of the value iteration algorithm for solving MDPs. If there 
are n possible states, then there are n Bellman equations, one for each state. The n equations 
contain n unknowns-the utilities of the states. So we would like to solve these simultaneous 
equations to find the utilities. There is one problem: the equations are nonlinear, because the 
"max" operator is not a linear operator. Whereas systems of linear equations can be solved 
quickly using linear algebra techniques, systems of nonlinear equations are more problematic. 
One thing to try is an iterative approach. We start with arbitrary initial values for the utilities, 
calculate the right-hand side of the equation, and plug it into the left-hand side-thereby 
updating the utility of each state from the utilities of its neighbors. We repeat this until we 
reach an equilibrium. Let Ui ( s )  be the utility value for state s at the ith iteration. The iteration 

BELLMAN UPDATE step, called a Bellman update, looks like this: 

Ui+l ( s )  +- R(s) + max T ( s ,  a ,  s') Ui ( s f )  . (17.6) 
s' 

If we apply the Bellman update infinitely often, we are guaranteed to reach an equilibrium 
(see the next subsection), in which case the final utility values must be solutions to the Bell- 
man equations. In fact, they are also the unique solutions, and the corresponding policy 
(obtained using Equation (17.4)) is optimal. The algorithm, called VALUE-ITERATION, is 
shown in Figure 17.4. 

We can apply value iteration to the 4 x 3 world in Figure 17.l(a). Starting with initial 
values of zero, the utilities evolve as shown in Figure 17.5(a). Notice how the states at differ- 
ent distances from (4,3) accumulate negative reward until, at some point, a path is found to 
(4,3) whereupon the utilities start to increase. We can think of the value iteration algorithm 
as propagating information through the state space by means of local updates. 

Convergence of value iteration 

We said that value iteration eventually converges to a unique set of solutions of the Bellman 
equations. In this section, we explain why this happens. We introduce some useful mathe- 
matical ideas along the way, and we obtain some methods for assessing the error in the utility 
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function VALUE- ITERATION(^^^, E) returns a utility function 
inputs: mdp,  an MDP with states S ,  transition model T ,  reward function R, discount y 

E ,  the maximum error allowed in the utility of any state 
local variables: U, U', vectors of utilities for states in S ,  initially zero 

6, the maximum change in the utility of any state in an iteration 

repeat 
U < -  U 1 ; 6 t 0  
for each state s in S do 

Uf[sj t R[s] + y rnax T(s, a, s f)  U[sf] 
a 

s' 

iflUf[s] - U[sjl > GthenSclU1[s]  - U[s]/ 
until 6 < t (1  - y)/y 
return U 

Figure 17.4 The value iteration algorithm for calculating utilities of states. The terrnina- 
tion condition is from Equation (17.8). 

0 5 10 15 20 25 30 0.50.550.60.650.70.750.80.850.90.95 1 

Number of iterations Discount factor y 

( 4  (b) 

Figure 17.5 (a) Graph showing the evolution of the utilities of selected states using value 
iteration. (b) The number of value iterations k required to guarantee an error of at most 
E = c . Rmax,  for different values of c, as a function of the discount factor y. 

function returned when the algorithm is terminated early; this is useful because it means that 
we don't have to run forever. The section is quite technical. 

The basic concept used in showing that value iteration converges is the notion of a con- 
CONTRACTION traction. Roughly speaking, a contraction is a function of one argument that, when applied 

to two different inputs in turn, produces two output values that are "closer together," by at 
least some constant amount, than the original arguments. For example, the function "divide 
by two" is a contraction, beca~~se,  after we divide any two numbers by two, their difference 
is halved. Notice that the "divide by two" function has a fixed point, namely zero, that is un- 
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changed by the application of the function. From this example, we can discern two important 
properties of contractions: 

A contraction has only one fixed point; if there were two fixed points they would not 
get closer together when the function was applied, so it would not be a contraction. 

When the function is applied to any argument, the value must get closer to the fixed 
point (because the fixed point does not move), so repeated application of a contraction 
always reaches the fixed point in the limit. 

Now, suppose we view the Bellman update (Equation (17.6)) as an operator B that is applied 
simultaneously to update the utility of every state. Let Ui denote the vector of utilities for all 
the states at the ith iteration. Then the Bellman update equation can be written as 

Ui+l +- B U i .  

Next, we need a way to measure distances between utility vectors. We will use the max 
MAX NORM norm, which measures the length of a vector by the length of its biggest component: 

With this definition, the "distance" between two vectors, I IU - U'I 1, is the maximum dif- 
ference between any two corresponding elements. The main result of this section is the 
following: Let U, and U,' be any two utility vectors. Then we have 

l ( B U ,  - BU,'(( _< 7 I / U ,  - U,'(( . (17.7) 

That is, the Bellman update is a contraction by a factor of y on the space of utility vectors. 
Hence, value iteration always converges to a unique solution of the Bellman equations. 

In particular, we can replace U,' in Equation (17.7) with the true utilities U ,  for which 
B U = U .  Then we obtain the inequality 

IIBIi, - Ull I ylJU,  - Ull . 
So, if we view I I U, - UI I as the error in the estimate U,, we see that the error is reduced by a 
factor of at least y on each iteration. This means that value iteration converges exponentially 
fast. We can calculate the number of iterations required to reach a specified error bound E 

as follows: First, recall from Equation (17.1) that the utilities of all states are bounded by 
~kR,,,/(l - y). This means that the maximum initial error 1 1 Uo - U I I 5 2Rmax/(1 - y) .  
Suppose we run for N iterations to reach an error of at most E. Then, because the error is 
reduced by at least y each time, we require yN . 2Rma,/(1 - y )  < E .  Taking logs, we find 

N =  rlog(2Rrnaxl~(1- y))llog(lly)l 

iterations suffice. Figure 17.5(b) shows how N varies with y,  for different values of the ratio 
EIR,,. The good news is that, because of the exponentially fast convergence, N does not 
depend much on the ratio EIR,,. The bad news is that N grows rapidly as y becomes close 
to 1. We can get fast convergence if we make y small, but this effectively gives the agent a 
short horizon and could miss the long-term effects of the agent's actions. 

The error bound in the preceding paragraph gives some idea of the factors influencing 
the runtime of the algorithm, but is sometimes overly conservative as a method of deciding 
when to stop the iteration. For the latter purpose, we can use a bound relating the error 
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to the size of the Bellman update on any given iteration. From the contraction property 
(Equation (17.7)), it can be shown that if the update is small (i.e., no state's utility changes by 
much), then the error, compared with the true utility function, allso is small. More precisely, 

if IIUZ+1 -U,/I < ~ ( 1 - Y ) / Y  then IIU,+I - U /  < c .  (17.8) 

This is the termination condition used in the VALUE-ITERATION algorithm of Figlure 17.4. 
So far, we have analyzed the error in the utility function returned by the value iteration 

algorithm. What the agent really cares about, howeve6 is how well it will do if i f  makes its 
decisions on the basis of this utility function. Suppose that after z iterations of value iteration, 
the agent has an estimate U, of the true utility U andl obtarns the MEU policy n ,  based on 
one-step look-ahead using U, (as in Equation (17.4)). Will the resulting behavior be nearly 
as good as the optimal behavior? This is a crucial question for any real agent, and ~t turns out 
that the answer is yes. Unz (s) is the utility obtained if n, is executed starting in s, and the 

POLICY LOSS policy loss I I Unz - UI I is the most the agent can lose by execuiing T ,  instead of tlhe optimal 
policy T*. The policy loss of n, is connected to the enor in r'/, by the following inequality: 

if / IU , -UI I<e  then IIUn"UU/(<2~y/(1-xy). (17.9) 

In practice, it often occurs that ni becomes optimal long before U, has converged. Figure 17.6 
shows how the maximum error in Ui and the policy lolss approach zero as the value iteration 
process proceeds for the 4 x 3 environment with y = 0.9. The policy .i7i is optimal when i = 4, 
even though the maximum error in Ui is still 0.46. 

Now we have everything we need to use value iteration in practice. We know that 
it converges to the correct utilities, we can bound the errlor in the utility estimates if we 
stop after a finite number of iterations, and we can bound the policy loss that results from 
executing the corresponding MEU policy. As a final note, all of the results in this section 
depend on discounting with y < 1. If y = 1 and the environ~~lent contains terminal states, 
then a similar set of convergence results and error bounds can be derived whenever certain 
technical conditions are satisfied. 

' 1  Max error -- 

Number of iterations 

Figure 17.6 The maximum error /IUi - UII of the utility estimates and the policy loss 
((UTz - U ( (  compared with the optimal policy, as a function of the number of iterations of 
value iteration. 
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In the previous section, we observed that it is possible to get an optimal policy even when 
the utility function estimate is inaccurate. If one action is clearly better than all others, then 
the exact magnitude of the utilities on the states involved need not be precise. This insight 

POLICY ITERATION suggests an alternative way to find optimal policies. The policy iteration algorithm alternates 
the following two steps, beginning from some initial policy TO: 

POLICY EVALUATION Policy evaluation: given a policy ~ i ,  calculate Ui = UTi, the utility of each state if ~i 

were to be executed. 

POLICY 
IMPROVEMENT Policy improvement: Calculate a new MEU policy T ~ + I ,  using one-step look-ahead 

based on Ui (as in Equation (17.4)). 

The algorithm terminates when the policy improvement step yields no change in the utilities. 
At this point, we know that the utility function Ui is a fixed point of the Bellman update, so 
it is a solution to the Bellman equations, and i.ri must be an optimal policy. Because there are 
only finitely many policies for a finite state space, and each iteration can be shown to yield a 
better policy, policy iteration must terminate. The algorithm is shown in Figure 17.7. 

The policy improvement step is obviously straightforward, but how do we implement 
the POLICY-EVALUATION routine? It turns out that doing so is much simpler than solving 
the standard Bellman equations (which is what value iteration does), because the action in 
each state is fixed by the policy. At the ith iteration, the policy ni  specifies the action Ti ( s )  in 
state s. This means that we have a simplified version of the Bellman equation (17.5) relating 

- 

function POLICY- ITERATION(^^^) returns a policy 
inputs: m d p ,  an MDP with states S, transition model T 
local variables: U ,  a vector of utilities for states in S, initially zero 

i7, a policy vector indexed by state, initially random 

repeat 
U  + POLICY- EVALUATION(^, U ,  m d p )  
unchanged? +- true 
for each state s in S do 

if max, T ( s , a , s f )  U [ s f ]  > C T ( s , n [ s ] , s f)  U[s ' ]  then 
S' S' 

n [ s ]  + argmax, C T ( s ,  a ,  s

f

)  U [ s f ]  
sf 

unchanged? + false 
until unchanged? 
return n 

Figure 17.7 The policy iteration algorithm for calculating an optimal policy. 
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the utility of s (under ni) to the utilities of its neighbors: 

Ui ( 5 )  = R(s) + C T ( S ;  ni ( 3 )  ; s') l/ ,  (s ')  . (17.10) 
s' 

For example, suppose ni is the policy shown in Figure 17.2(a). Then we have ni(l ,  1) = Up, 
ni ( l , 2 )  = Up, and so on, and the simplified Bellman equations are 

ui(a, 1 )  = -0.04 + o.8ui( l ,  2 )  -t 0.1ui( l ,  1 )  + 0.1Ui(2, 1)  , 
U i ( l , 2 )  = -0.04 + 0.8Ui(l ,3)  + 0.2Ui(l, 2 )  , 

The important point is that these equations are linear, because the "max" operator has been 
removed. For n states, we have n linear equations with n unknowns, which can be solved 
exactly in time O ( n 3)  by standard linear algebra methods. 

For small state spaces, policy evaluation using ex.act solution methods is often the most 
efficient approach. For large state spaces, O ( n 3 )  time might be prohibitive. Fortunately, it 
is not necessary to do exact policy evaluation. Instead, we can perform some number of 
simplified value iteration steps (simplified because the policy is fixed) to give a reasonably 
good approximation of the utilities. The simplified Belllman update for this process is 

Ui+l ( s )  + R ( s )  + Y C T ( s ,  T ~ ( s ) ,  s l)Ui(sl)  
s' 

and this is repeated k times to produce the next utility estimate. The resulting algorithm is 
called modified policy iteration. It is often much more: efficient than standard policy iteration ITERATION 

or value iteration. 
The a.lgorithms we have described so far require updating the utility or policy for all 

states at once. It turns out that this is not strictly necessary. I[n fact, on each iteration, we can 
pick any subset of states and apply either kind of updating (policy improvement or simplified 
value iteration) to that subset. This very general algorithm is called asynchronous policy 

, iteration. Given certain conditions on the initial policy and utility function, asyi~chronous 
policy iteration is guaranteed to converge to an optirnal policy. The freedom to choose any 
states to work on means that we can design much more efficient heuristic algorithms-for 
example, algorithms that concentrate on updating the values of states that are likely to be 
reached by a good policy. This makes a lot of sense In real life: if one has no intention of 
throwing oneself off a cliff, one should not spend time worrying about the exact value of the 
resulting states. 

17.4 PARTIALLY OBSERVABLE MDPs 

The description of Markov decision processes in Sectilon 17.1 assumed that the environment 
was fully observable. With this assumption, the agent always knows which state it is in. 
This, combined with the Markov assumption for the transition model, means that the optimal 
policy depends only on the current state. When the environment is only partially observable, 
the situation is, one might say, much less clear. The agent does not necessarily know which 
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PARTIALLY 
OBSERVABLE MDP 

state it is in, so it cannot execute the action ~ ( s )  recommended for that state. Furthermore, the 
utility of a state s and the optimal action in s depend not just on s, but also on how much the 
agent knows when it is in s. For these reasons, partially observable MDPs (or POMDPs- 
pronounced "pom-dee-pees") are usually viewed as much more difficult than ordinary MDPs. 
We cannot avoid POMDPs, however, because the real world is one. 

As an example, consider again the 4 x 3 world of Figure 17.1, but now let's suppose 
that the agent has no sensors whatsoever and has no idea where it is. More precisely, let's 
suppose the agent's initial state is equally likely to be any of the nine nonterminal states 
(Figure 17.8(a)). Clearly, if the agent knew it was in (3,3), it would move Right; if it knew 
it was in (1,1), it would move Up; but since it could be anywhere, what should it do? One 
possible answer is that the agent should first act so as to reduce its uncertainty, and only 
then should it try heading for the +1 exit. For example, if the agent moves Left five times, 
then it is quite likely to be at the left wall (Figure 17.8(b)). Then, if it moves Up five times, 
it is quite likely to be at the top, probably in the top left corner (Figure 17.8(c)). Finally, 
if it moves Right five times, it has a good chance-about 77.5%--of reaching the +1 exit 
(Figure 17.8(d)). Continuing to move right thereafter increases its chances to 8 1.8%. This 
policy is therefore surprisingly safe, but under it, the agent is rather slow to reach the exit, 
and has an expected utility of only about 0.08. The optimal policy, which we will describe 
shortly, does much better. 

OBSERVATION 
MODEL 

I Figure 17.8 (a) The initial probability distribution for the agent's location. (b) After mov- / 
1 ing Left five times. (c) After moving Up five times. (d) After moving Right five times. 1 

To get a handle on POMDPs, we must first define them properly. A POMDP has the 
same elements as an MDP-the transition model T ( s ,  a, s') and the reward function R(s)- 
but it also has an observation model O ( s ,  o )  that specifies the probability of perceiving the 
observation o in state s.3 For example, our agent with no sensors has only one possible 
observation (the empty observation), and this occurs with probability 1 in every state. 

In Chapters 3 and 12, we studied nondeterministic and partially observable planning 
problems and identified the belief state-the set of actual states the agent might be in-as 
a key concept for describing and calculating solutions. In POMDPs, the concept is refined 
somewhat. A belief state b is now aprobability distribution over all possible states. For exam- 
ple, the initial belief state in Figure 17.8(a) could be written as ($, $, $, $, ;, $, ;, $, $, 0,O). 

The observation model is essentially identical to the sensor model for temporal processes, as described in 
Chapter 15. As with the reward function for MDPs, the observation model can also depend on the action and 
outcome state, but again this change is not fundamental. 
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We will write b(s)  for the probability assigned to the actual state s by belief state b. The agent 
can calculate its current belief state as the conditional probability distribution over the actual 
states given the sequence of observations and actions so far. This is essentially the filtering 
task. (See Chapter 15.) The basic recursive filtering equation (15.3 on page 543) shows how 
to calculate the new belief state from the previous beli~ef state and the new observation. For 
POMDPs, we also have an action to consider and a slightly different notation, but the result 
is essentially the same. If b(s)  was the previous belief state, and the agent does acttion a and 
perceives observation o, then the new belief state is given by 

bt(s') = a ~ ( s ' ,  o) x ~ ( s ,  a, st)b(s) (17.1 1) 
s 

where a is a normalizing constant that makes the belnef state sum to 1. We can abbreviate 
this equation as b' = FORWARD@, a ,  0). 

The fundamental insight required to understand POMDPs is this: the optimal action 
depends only on the agent's current belief state. That is, the optimal policy can be described 
by a mapping i.r*(b) from belief states to actions. It does not depend on the actual state the 
agent is in. This is a good thing, because the agent does not know its actual state; all it knows 
is the belief state. Hence, the decision cycle of a POMIDP agent is this: 

1. Given the current belief state b, execute the actioin a = T* (b) . 
2. Receive observation o. 

3. Set the current belief state to  FORWARD(^, a ,  o) and repeat. 

Now we cam think of POMDPs as requiring a search in belief state space, just like the meth- 
ods for sensorless and contingency problems in Chapter 3. The main difference is that the 
POMDP belief state space is continuous, because a PCIMDP' belief state is a probability dis- 
tribution. For example, a belief state for the 4 x 3 world is a point in an 11-dimensional 
continuous space. An action changes the belief state, not just the physical state, so it is eval- 
uated according to the information the agent acquires als a re:sult. POMDPs therefore include 
the value of information (Section 16.6) as one component of the decision problem. 

Let's look more carefully at the outcome of actions. In particular, let's calculate the 
probability that an agent in belief state b reaches belief state lit after executing action a. Now, 
if we knew the action and the subsequent observation, then Equation (17.1 1) would provide 
a deterministic update to the belief state: b' =  FORWARD(^, a ,  o) . Of course, the subsequent 
observation is not yet known, so the agent might arrive in one of several possible belief states 
b', depending on the observation that occurs. The probability of perceiving o, given that a 
was performed starting in belief state b, is given by summing over all the actual states st that 
the agent might reach: 
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Let us write the probability of reaching b' from b, given action a ,  as ~ ( b ,  a ,  b'). Then that 
gives us 

~ ( b ,  a ,  b') = P ( b t a ,  b) = x ~ ( b ' l o ,  a ,  b ) ~ ( o a ,  b) 

where P(b'10, a ,  b) is 1 if b' =  FORWARD(^, a ,  o) and 0 otherwise. 
Equation (17.12) can be viewed as defining a transition model for the belief state space. 

We can also define a reward function for belief states (i.e., the expected reward for the actual 
states the agent might be in): 

So it seems that ~ ( b ,  a ,  b') and p(b) together define an observable MDP on the space of belief 
states. Furthermore, it can be shown that an optimal policy for this MDP, ~ * ( b ) ,  is also an 
optimal policy for the original POMDP. In other words, solving a POMDP on aphysical state 
space can be reduced to solving an MDP on the corresponding belief state space. This fact is 
perhaps less surprising if we remember that the belief state is always observable to the agent, 
by definition. 

Notice that, although we have reduced POMDPs to MDPs, the MDP we obtain has 
a continuous (and usually high-dimensional) state space. None of the MDP algorithms de- 
scribed in Sections 17.2 and 17.3 applies directly to such MDPs. It turns out that we can 
develop versions of value and policy iteration that apply to continuous-state MDPs. The ba- 
sic idea is that a policy ~ ( b )  can be represented as a set of regions of belief state space, each 
of which is associated with a particular optimal a ~ t i o n . ~  The value function associates a dis- 
tinct linear function of b with each region. Each value- or policy-iteration step refines the 
boundaries of the regions and might introduce new regions. 

The details of the algorithms are beyond the scope of this book, but we will report the 
solution for the sensorless 4 x 3 world. The optimal policy is the following: 

[Left ,  Up,  Up,  Right ,  Up ,  Up,  Right ,  Up,  Up,  Right ,  Up,  Right ,  Up,  Right ,  U p , .  . .] . 

The policy is a sequence because this problem is deterministic in belief state space-there 
are no observations. The "trick" it embodies is to have the agent move Left once to ensure 
that it's not in (4,1), so that it's then fairly safe to keep moving Up and Right to reach the +1 
exit. The agent reaches the +1 exit 86.6% of the time and does so much faster than the policy 
given earlier in the section, so its expected utility is 0.38 compared with 0.08. 

For more complex POMDPs with observations, finding approximately optimal policies 
is very difficult (PSPACE-hard, in fact-i.e., very hard indeed). Problems with a few dozen 
states are often infeasible. The next section describes a different, approximate method for 
solving POMDPs, one based on look-ahead search. 

For some POMDPs, the optimal policy has infinitely many regions, so the simple list-of-regions approach fails 
and more ingenious methods are needed to find even an approximation. 
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In this section, we outline a comprehensive approach to agenit design for partially observable, 
stochastic environments. The basic elements of the design are already familiar: 

The transition and observation models are represented by a dynamic Bayesian network 
(as described in Chapter 15). 

The dynamic Bayesian network is extended with decision and utility nodes, as used in 
decision networks in Chapter 16. The resulting model is called a dynamic decision 

DYNAMIC DECISION 
NETWORK network or DDN. 

A filtering algorithm is used to incorporate each new percept and action and to update 
the belief state representation. 

Decisions are made by projecting forward possilble action sequences and choosing the 
best one. 

The primary advantage of using a dynamic Bayesian network to represent the transition and 
sensor models is that it decomposes the state description into! a set of random variables, much 
as planning algorithms use logical representations to decompose the state space used by 
search algorithms. The agent design is therefore a practical implementation of the utility- 
based agent sketched in Chapter 2. 

Because we are using dynamic Bayesian networks, we will revert to the notation of 
Chapter 15, where Xt referred to the set of state variables for time t and Et referred to the 
evidence variables. Thus, where we have used st (the: state at time t )  so far in this chapter, 
we will now use Xt. We will use ,4t to refer to the action at time t ,  so the transition model 
T ( s ,  a, s') is the same as P(Xt+l lXt, At) and the obs~ervation model O(s ,  o) is the same as 
P(Ec /Xt). We will use Rt to refer to the reward received at time t and Ut to refer to the utility 
of the state at time t .  With this notation, a dynamic deersion network looks like the one shown 
in Figure 17.9. 

Figure 17.9 The generic structure of a dynamic decision network. Variables with known 
values are shaded. The current time is t and the agent must decide what to do--that is, choose 
a value for At. The network has been unrolled into the future for three steps and represents 
future rewards, as well as the utility of the state at the look-ahead horizon. 
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10 4 6 3 

Figure 17.10 Part of the look-ahead solution of the DDN in Figure 17.9. 

Dynamic decision networks provide a concise representation for large POMDPs, so 
they can be used as inputs for any POMDP algorithm including those for value- and policy- 
iteration methods. In this section, we will focus on look-ahead methods that project action 
sequences forward from the current belief state in much the same way as do the game-playing 
algorithms of Chapter 6. The network in Figure 17.9 has been projected three steps into 
the future; the current and future decisions and the future observations and rewards are all 
unknown. Notice that the network includes nodes for the rewards for Xt+1 and Xt+2, but 
the utility for Xt+3. This is because the agent must maximize the (discounted) sum of all 
future rewards, and U(Xt+3) represents the reward for Xt+3 and all subsequent rewards. As 
in Chapter 6, we assume that U is available only in some approximate form: if exact utility 
values were available, there would be no need for look-ahead beyond depth 1. 

Figure 17.10 shows part of the search tree corresponding to the three-step look-ahead 
DDN in Figure 17.9. Each of the triangular nodes is a belief state in which the agent makes a 
decision At+i for i = 0 ,1 ,2 ,  . . .. The round nodes correspond to choices by the environment, 
namely, what observation Etii occurs. Notice that there are no chance nodes corresponding 
to the action outcomes; this is because the belief state update for an action is deterministic 
regardless of the actual outcome. 

The belief state at each triangular node can be computed by applying a filtering algo- 
rithm to the sequence of observations and actions leading to it. In this way, the algorithm 
takes into account the fact that, for decision At+i, the agent will have available percepts 
Et+1, . . . , Et+i, even though at time t it does not know what those percepts will be. In this 
way, a decision-theoretic agent automatically takes into account the value of information and 
will execute information-gathering actions where appropriate. 

A decision can be extracted from the search tree by backing up the utility values from 
the leaves, taking an average at the chance nodes and taking the maximum at the decision 
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nodes. This is similar to the EXPECTIMINIMAX algorithm for game trees with chance nodes, 
except that (1) there can also be rewards at non-leaf states and (2) the decision nodes corre- 
spond to belief states rather than actual states. The tnrne co~nplexity of an exhaustive search 
to depth d is 0 ( 1  D I d  . J E ~ ~ ) ,  where 1 D 1 is the number of available actions and E is the number 
of possible observations. For problems in which the discount factor y is not too close to 1, 
a shallow search is often good enough to give near-optimal decisions. It is also possible to 
approximate the averaging step at the chance nodes, by sampling from the set of possible 
observations instead of summing over all possible observations. There are various other ways 
of finding good approximate solutions quickly, but we defer them to Chapter 21. 

Decision-theoretic agents based on dynamic decision networks have a number of advan- 
tages compared with other, simpler agent designs presented in earlier chapters. In particular, 
they handle partially observable, uncertainty environments and can easily revise their "plans" 
to handle unexpected observations. With appropriate sensor models, they can handle sensor 
failure and can plan to gather information. They exhibit "graceful degradation" under time 
pressure and in complex environments, using various approximation techniques. (30 what is 
missing? The most important defect of our DDN-based algorithm is its reliance on forward 
search, just like the state-space search algorithms of Part 11. In Part IV, we explained how 
the ability to consider partially ordered, abstract plans via goal-directed search provided a 
massive increase in problem-solving power, particularly when combined with plan libraries. 
There have been attempts to extend these methods into the probabilistic domain, but so far 
they have proven to be inefficient. A second, related problem is the basically propositional 
nature of the DDN language. We would like to be able to extend some of the ideas for first- 
order probabilistic languages in Section 14.6 to the problem of decision making. Current 
research has shown that this extension is possible and has significant benefits, as discussed in 
the notes at the end of the chapter. 

17.6 DECISIONS WITH MULTIPLE AGENTS: GAME THEORY 

This chapter has concentrated on making decisions in uncertain environments. But what if 
the uncertainty is due to other agents and the decisions they make? And what if the decisions 
of those agents are in turn influenced by our decisioins? Vie addressed this question once 
before, when we studied games in Chapter 6. There, however, we were concerned with 
turn-talung games with perfect information, for which minimax search can be used to find 

GAMETHEORY optimal moves. In this section we study the aspects of game theory that can be used to 
analyze games with simultaneous moves. To simplify matters, we will look first at games 
that are only one move long. The word "game" and the simplification to single moves might 
make this seem trivial, but in fact, game theory is used in very serious decision making 
situations including bankruptcy proceedings, the auctioning of wireless frequency spectrums, 
product development and pricing decisions, and national defense, situations involving billions 
of dollars and hundreds of thousands of lives. Game theory can be used in at least two ways: 
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1. Agent design: Game theory can analyze the agent's decisions, and compute the ex- 
pected utility for each decision (under the assumption that other agents are acting op- 
timally according to game theory). For example, in the game two-finger Morra, two 
players, 0 and E, simultaneously display one or two fingers. Let the total number of 
fingers be f .  If f is odd, 0 collects f dollars from E,  and if f is even, E  collects f 
dollars from 0. Game theory can determine the best strategy against a rational player 
and the expected return for each player.5 

2. Mechanism Design: When an environment is inhabited by many agents, it might be 
possible to define the rules of the environment (i.e., the game that the agents must 
play) so that the collective good of all agents is maximized when each agent adopts the 
game-theoretic solution that maximizes its own utility. For example, game theory can 
help design the protocols for a collection of Internet traffic routers so that each router 
has an incentive to act in such a way that global throughput is maximized. Mechanism 
design can also be used to construct intelligent multiagent systems that solve complex 
problems in a distributed fashion without the need for each agent to know about the 
whole problem being solved. 

A game in game theory is defined by the following components: 

PLAYERS Players or agents who will be making decisions. Two-player games have received the 
most attention, although n-player games for n > 2 are also common. We will give 
players capitalized names, like Alice and Bob or 0 and E. 

ACTIONS 

PAYOFF MATRIX 

Actions that the players can choose. We will give actions lowercase names, like one or 
testzfy. The players may or may not have the same set of actions available. 

A payoff matrix that gives the utility to each player for each combination of actions by 
all the players. The payoff matrix for two-finger Morra is as follows: 

For example, the lower-right corner shows that when 0 chooses action two and E also 
chooses two, the payoff is 4 for E and -4 for 0. 

0 :  two 
E = - 3 , 0 = 3  
E = 4 , 0 = - 4  

E:one 
E:two 

Each player in a game must adopt and then execute a strategy (which is the name used in 
PURE STRATEGY game theory for a policy). A pure strategy is a deterministic policy specifying a particular 

action to take in each situation; for a one-move game, a pure strategy is just a single ac- 
MIXEDSTRATEGY tion. The analysis of games leads to the idea of a mixed strategy, which is a randomized 

policy that selects particular actions according to a specific probability distribution over ac- 
tions. The mixed strategy that chooses action a with probability p  and action b otherwise 
is written b: a; (1 - p ) :  b]. For example, a mixed strategy for two-finger Morra might be 

STRATEGYPROFILE [0.5: one; 0.5: two]. A strategy profile is an assignment of a strategy to each player; given 
OUTCOME the strategy profile, the game's outcome is a numeric value for each player. 

0 :  one 
E = 2 , 0 = - 2  
E = - 3 , 0 = 3  

Morra is a recreational version of an inspection game. In such games, an inspector chooses a day to inspect a 
facility (such as a restaurant or a biological weapons plant), and the facility operator chooses a day to hide all the 
nasty stuff. The inspector wins if the days are different and the facility operator wins if they are the same. 
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SOLUTION A solution to a game is a strategy profile in which each player adopts a rational strategy. 
We will see that the most important issue in game theory is to define what "rational" means 
when each agent chooses only part of the strategy profile that determines the outcome. It 
is important to realize that outcomes are actual results of playing a game, while solutions 
are theoretical constructs used to analyze a game. We will see that some games only have a 
solution in mixed strategies. But that does not mean that a player must literally be adopting a 
mixed strategy to be rational. 

Consider the following story: Two alleged burglars, Alice and Bob, are caught red- 
handed near the scene of a burglary and are interrogated separately by the police. Both know 
that if they both confess to the crime, they will each serve 5 years in prison for burglary, but 
if both refuse to confess, they will serve only 1 year each foir the lesser charge of possessing 
stolen property. However, the police separately offer e,ach a deal: if you testify against your 
partner as the leader of a burglary ring, you'll go free, while: the partner will serve 10 years. 
Now Alice and Bob face the so-called prisoner's dikemma~: should they testify or refuse? 
Being rational agents, Alice and Bob each want to maximize their own expected utility. Let's 
assume that Alice is callously unconcerned about her partner's fate, so her utility decreases 
in proportion to the number of years she will spend in prison, regardless of what happens to 
Bob. Bob feels exactly the same way. To help reach a rational decision, they both construct 
the following payoff matrix: 

Alice analyzes the payoff matrix as follows: Suppose Bob testifies. Then I get 5 years if I 
testify and 10 years if 1 don't, so in that case testifying is better. On the other hand, if Bob 
refuses, then I get 0 years if I testify and I year if I refuse, so in that case as well testifying is 
better. So in either case, it's better for me to testify, so ]that's what I must do. 

DOMINANT 
STRATEGY Alice has discovered that testzfy is a dominant strategy for the game. We say that a 
STRONGLY 
DOMINATES strategy s for player p strongly dominates strategy s' if the outcome for s is better for p than 

the outcome for sf, for every choice of strategies by Ithe otlner players. Strategy s weakly 
WEAKLVDOMINATES dominates s' if s is better than s' on at least one strategy profile and no worse on any other. 

A dominant strategy is a strategy that dominates all others. lit is irrational to play a strongly 
dominated strategy, and irrational not to play a dominant strategy if one exists. Being rational, 
Alice chooses the dominant strategy. We need just a bit more terminology before we go on: 

PARETO OPTIMAL we say that an outcome is Pareto optimal6 if there is no other outcome that all players would 
PARETO DOMINATED prefer. An outcome is Pareto dominated by another outcome if all players would :prefer the 

other outcome. 
If Alice is clever as well as rational, she will continue to reason as follows: Bob's 

dominant strategy is also to testify. Therefore, he will testify and we will both get five years. 
When each player has a dominant strategy, the combnnation of' those strategies is called a 

DOMINANT 
STRATEGY 
EQUILIBRIUM 

dominant strategy equilibrium. In general, a strategy profile forms an equilibrium if no 
EQUILIBRIUM 

Pareto optimality is named after the economist Vilfredo Pareto (1848-1923). 
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player can benefit by switching strategies, given that every other player sticks with the same 
strategy. An equilibrium is essentially a local optimum in the space of policies; it is the top 
of a peak that slopes downward along every dimension, where a dimension corresponds to a 
player's strategy choices. 

The dilemma in the prisoner's dilemma is that the outcome of the equilibrium point is 
worse for both players than the outcome they would get if they both refused to testify. In other 
words, the outcome for the equilibrium solution is Pareto dominated by the (-1, -1) outcome 
of (refuse ,  refuse).  

Is there any way for Alice and Bob to arrive at the (-1, -1) outcome? It is certainly 
an allowable option for both of them to refuse to testify, but is is an unlikely option. Either 
player contemplating playing refuse will realize that he or she would do better by playing 
testzfy. That is the attractive power of an equilibrium point. 

The mathematician John Nash (1928-) proved that every game has an equilibrium of 
the type dejned here. It is now called a Nash equilibrium in his honor. Clearly, a dominant 

NASH EQUILIBRIUM strategy equilibrium is a Nash equilibrium (Exercise 17.9), but not all games have dominant 
strategies. Nash's theorem means that there are equilibrium strategies even when there is no 
dominant strategy. 

For the prisoner's dilemma, only the strategy profile ( tes t i fy ,  testzfy) is a Nash equilib- 
rium. It is hard to see how rational players can avoid this outcome, because in any proposed 
non-equilibrium solution at least one of the players will be tempted to change strategies. 
Game theorists agree that being a Nash equilibrium is a necessary condition for being a 
solution-although they disagree whether it is a sufficient condition. 

It is easy enough to avoid the ( tes t i fy ,  testzfy) solution if we change the game (or the 
players) in some way. For example, we could change to an iterated game in which the players 
know that they will meet again (but crucially, they must be uncertain about how many times 
they will meet again). Or if the agents have moral beliefs that encourage cooperation and 
fairness, we could change the payoff matrix to reflect the utility to each agent of cooperating 
with the other. We will see later that changing the agents to have limited computational 
powers, rather than the ability to reason absolutely rationally, can also affect the outcome, as 
can telling one agent that the other has limited rationality. 

Now, let's look at a game that has no dominant strategy. Acme, a video game hardware 
manufacturer, has to decide whether its next game machine will use DVDs or CDs. Mean- 
while, the video game software producer Best needs to decide whether to produce its next 
game on DVD or CD. The profits for both will be positive if they agree and negative if they 
disagree, as shown in the following payoff matrix: 

There is no dominant strategy equilibrium for this game, but there are two Nash equilibria: 
(dvd, dvd) and (cd, cd). We know these are Nash equilibria because, if either player uni- 
laterally moves to a different strategy, that player will be worse off. Now the agents have 
a problem: there are multiple acceptable solutions, but if each agent chooses a diferent 

Acme:  cd 
A = -4, B = -1 

A = 5 , B  = 5 
Best:dvd 
Best:cd 

Acme:  dud 
A = 9 ,  B = 9 

A = -3, B = -1 
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solution then the resulting strategy projile won't be a solution at all and both agents will 
suffeer: How can they agree on a solution? One answer is that both should choose the Pareto- 
optimal solution (dvd, dv4;  that is, we can restrict the definition of "solution" to the unique 
Pareto-optimal Nash equilibrium provided that one exists. Every game has at least one Pareto- 
optimal solution, but a game might have several, or they might not be equilibrium points. For 
example, we could set the payoffs for (dvd, dvd) to 5 instead of 9. In that case, there are 
two equal Pareto-optimal equilibrium points. To choose between them the agents can either 
guess or communicate, which can be done either by establishing a convention that orders the 
solutions before the game begins or by negotiating to reach a mutually beneficial solution 
during the game (which would mean including communicative actions as part of a multimove 
game). Communication thus arises in game theory for exaclly the same reasons that it arose 
in multiagent planning in Chapter 12. Games in which players need to communicate like this 

CooRDINAT'oN GAME are called coordination games. 
We have seen that a game can have more than one Nash equilibrium; how do we know 

that every game must have at least one? It can be that a game has no pure-strategy Nash 
equilibria. Consider, for example, any pure strategy profile for two-finger Morra (page 632). 
If the total number of fingers is even then 0 will want to switch; if the total is odd then E will 
want to switch. Therefore no pure strategy profile can be an equilibrium and we milst look to 
mixed strategies. 

But which mixed strategy? In 1928, von Neumalnn developed a method for finding the 
ZERO-SUMGAME optimal mixed strategy for two-player, zero-sum games. A zero-sum game is a game in 

which the payoffs in each cell of the payoff matrix sum to zero.7 Clearly, Morra is such a 
game. For two-player, zero-sum games, we know that the payoffs are equal and opposite, 
so we need consider the payoffs of only one player, who will be the maximizer ('just as in 
Chapter 6). For Morra, we pick the even player E to be the m

ax

imizer, so we can define the 
payoff matrix by the values UE(e ,  0)-the payoff to E if E does e  and 0 does o. 

MAXIMIN Von Neumann's method is called the the maximiin technique, and it works as follows: 

Suppose we change the rules to force E to reveal his or her strategy first, followed by 
0. Then we have a turn-taking game to which we can apply the standard minimax 
algorithm from Chapter 6. Let's suppose this gives an outcome U E . ~ .  Clearly, this 
game favors 0, so the true utility U  of the game (from E's point of view) is at least 
U E , ~ .  For example, if we just look at pure strategies, the minimax game tree has a root 
value of -3 (see Figure 17.11 (a)), so we know that U 2 - 3. 

Now suppose we change the rules to force 0 to reveal his or her strategy first, followed 
by E. ~hen ' the  minimax value of this game is U O , ~ ,  anld because this game favors E we 
know that U  is a t  most UO,E. With pure strategies, the value is +2 (see Figure 17.11 (b)), 
so we know U  < +2. 

More general is the concept of constant-sum games, in which the sum of every cell in the game adds up 
to a constant, c. An n-person constant-sum game can be turned into a zero-sum game by subtracting c / n  from 
every payoff. Thus chess, with traditional payoff of 1 for a win, 1 /2 for a draw, and 0 for a loss, is technically 
a constant-sunn game with c  = 1, but can easily be transformed into a zl-ro-sum game by subtracting 112 from 
every payoff. 
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Combining these two arguments, we see that the true utility U of the solution must satisfy 

UE,0 < U < UO,E or in this case, - 3 _ < U < 2 .  

To pinpoint the value of U ,  we need to turn our analysis to mixed strategies. First, observe the 
following: once theJirstplayer has revealed his or her strategy, the secondplayer cannot lose 
by playing a pure strategy. The reason is simple: if the second player plays a mixed strategy, 
I: one;  ( 1  - p): two] ,  its expected utility is a linear combination ( p  . uone + ( 1  - p) . utzuo) of 
the utilities of the pure strategies, u,,, and ut,,. This linear combination can never be better 
than the best of u,,, and ut,,, so the second player might as well play a pure strategy. 

With this observation in mind, the minimax trees can be thought of as having infinitely 
many branches at the root, corresponding to the infinitely many mixed strategies the first 
player can choose. Each of these leads to a node with two branches corresponding to the 
pure strategies for the second player. We can depict these infinite trees finitely by having one 
"parameterized" choice at the root: 

If E moves first, the situation is as shown in Figure 17.11(c). E plays b: one; ( 1  - 
p): two] at the root, and then 0 chooses a move given the value of p. If 0 chooses one, 
the expected payoff (to E )  is 2p - 3(1  - p) = 5p - 3; if 0 chooses two, the expected 
payoff is -3p + 4 ( 1  - p) = 4 - 7p. We can draw these two payoffs as straight lines on 
a graph, where p ranges from 0 to 1 on the x-axis, as shown in Figure 17.1 l(e). 0 ,  the 
minimizer, will always choose the lower of the two lines, as shown by the heavy lines 
in the figure. Therefore, the best that E can do at the root is to choose p to be at the 
intersection point, which is where 

5 p - 3 = 4 - 7 p  p = 7 / 1 2 .  

The utility for E at this point is UE,o = - 1/12. 

If 0 moves first, the situation is as shown in Figure 17.11(d). 0 plays [q: one; ( 1  - 
q):  two] at the root, and then E chooses a move given the value of q. The payoffs are 
2q - 3(1  - q) = 5q - 3 and -3q + 4 ( 1  - q) = 4 - 7q.8 Again, Figure 17.11(f) shows 
that the best 0 can do at the root is to choose the intersection point: 

5 q - 3 = 4 - 7 q  q = 7 / 1 2 .  

The utility for E at this point is UO,E = - 1/12. 

Now we know that the true utility of the game lies between -1112 and -1112, that is, it is 
exactly -1/12! (The moral is that it is better to be 0 than E if you are playing this game.) 
Furthermore, the true utility is attained by the mixed strategy [7/12: one; 5/12: two],  which 

MAXIMIN 
EQUILIBRIUM should be played by both players. This strategy is called the maximin equilibrium of the 

game, and is a Nash equilibrium. Note that each component strategy in an equilibrium mixed 
strategy has the same expected utility. In this case, both one and two have the same expected 
utility, -1112, as the mixed strategy itself. 

Our result for two-finger Morra is an example of the general result by von Neumann: 
every two-player zero-sum game has a maximin equilibrium when you allow mixed strategies. 

It is a coincidence that these equations are the same as those for p; the coincidence arises because 
UE (one, two) = UE (two, one) = - 3. This also explains why the optimal strategy is the same for both players. 
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[p: one; ( 1  -p): two] [q: one; (1 - q): two] 

Figure 17.11 (a) and (b): Minimax game trees for two-finger Morra if the players take 
turns playing pure strategies. (c) and (d): Paramete

riz

ed game trees where the first player 
plays a mixed strategy. The payoffs depend on the probability parameter ( p  or q)  in the 
mixed strategy. (e) and (f): For any particular value of the probability parameter, the second 
player will choose the "better" of the two actions, so the value of the first player's mixed 
strategy is given by the heavy lines. The first player will choose the probability parameter for 
the mixed strategy at the intersection point. 

Furthermore, every Nash equilibrium in a zero-sum game is a maximin for both players. 
The general algorithm for finding maximin equilibria in zero-sum games is somewhat more 
involved than Figures 17.1 1(e) and (f) might suggest. When there are n possible actions, 
a mixed strategy is a point in n-dimensional space and the lines become hyperplanes. It's 
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also possible for some pure strategies for the second player to be dominated by others, so 
that they are not optimal against any strategy for the first player. After removing all such 
strategies (which might have to be done repeatedly), the optimal choice at the root is the 
highest (or lowest) intersection point of the remaining hyperplanes. Finding this choice is 
an example of a linear programming problem: maximizing an objective function subject to 
linear constraints. Such problems can be solved by standard techniques in time polynomial 
in the number of actions (and in the number of bits used to specify the reward function, if you 
want to get technical). 

The question remains, what should a rational agent actually do in playing a single game 
of Morra? The rational agent will have derived the fact that [7/12: one; 5/12: two] is the 
maximin equilibrium strategy, and will assume that this is mutual knowledge with a rational 
opponent. The agent could use a 12-sided die or a random number generator to pick randomly 
according to this mixed strategy, in which case the expected payoff would be -1/12 for E. Or 
the agent could just decide to play one, or two. In either case, the expected payoff remains 
- 1/12 for E. Curiously, unilaterally choosing a particular action does not harm one's expected 
payoff, but allowing the other agent to know that one has made such a unilateral decision does 
affect the expected payoff, because then the opponent can adjust his strategy accordingly. 

Finding solutions to non-zero-sum finite games (i.e., Nash equilibria) is somewhat more 
complicated. The general approach has two steps: (1) Enumerate all possible subsets of 
actions that might form mixed strategies. For example, first try all strategy profiles where 
each player uses a single action, then those where each player uses either one or two actions, 
and so on. This is exponential in the number of actions, and so only applies to relatively small 
games. (2) For each strategy profile enumerated in (I), check to see if it is an equilibrium. 
This is done by solving a set of equations and inequalities that are similar to the ones used in 
the zero-sum case. For two players these equations are linear and can be solved with basic 
linear programming techniques, but for three or more players they are nonlinear and may be 
very difficult to solve. 

So far we have looked only at games that last a single move. The simplest kind of 
REPEATEDGAME multiple-move game is the repeated game, in which players face the same choice repeatedly, 

but each time with knowledge of the history of all players' previous choices. A strategy 
profile for a repeated game specifies an action choice for each player at each time step for 
every possible history of previous choices. As with MDPs, payoffs are additive over time. 

Let's consider the repeated version of the prisoner's dilemma. Will Alice and Bob work 
together and refuse to testify, knowing that they will meet again? The answer depends on the 
details of the engagement. For example, suppose Alice and Bob know that they must play 
exactly 100 rounds of prisoner's dilemma. Then they both know that the 100th round will not 
be a repeated game-that is, its outcome can have no effect on future rounds-and therefore 
they will both choose the dominant strategy, testify, in that round. But once the 100th round 
is determined, the 99th round can have no effect on subsequent rounds, so it too will have 
a dominant strategy equilibrium at (testzfy, testzf~). By induction, both players will choose 
testify on every round, earning a total jail sentence of 500 years each. 

We can get different solutions by changing the rules of the interaction. For example, 
suppose that after each round there is a 99% chance that the players will meet again. Then 
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the expected number of rounds is still 100, but neither p1ay1:r knows for sure which round 
will be the last. Under these conditions, more cooperative behavior is possible. For example, 
one equilibrium strategy is for each player to refuse unless the other player has ever played 

PERPETUAL 
PUNISHMENT testify. This strategy could be called perpetual punishment. Suppose both players have 

adopted this strategy, and this is mutual knowledge. Then as long as neither player has played 
testify, then at any point in time the expected future total payoff for each player is 

A player who chooses testify will gain a score of 0 rather than - 1 on the very next move, but 
his or her total expected future payoff becomes 

Therefore, at every step, there is no incentive to deviate from (refuse, refuse). Perpetual 
punishment is the "mutually assured destruction" strat~cgy off the prisoner's dilemma: once 
either player decides to testify, it assures that both players suffer a great deal. But it only 
works as a deterrent if the other player believes you have adopted this strategy--or at least 
that you might have adopted it. 

There are other strategies that are more forgiving. The most famous, called tit-for- 
TIT-FOR-TAT tat, calls for starting with refuse and then echoing the other player's previous move on all 

subsequent moves. So Alice would refuse as long as Bob refu~ses and would testify the move 
after Bob testified, but would go back to refusing if Bob did. Although very simple, this 
strategy has proven to be highly robust and effective against a wide variety of strategies. 

We can also get different solutions by changing the agents, rather than changing the 
rules of engagement. Suppose the agents are finite-state machines with n states and they 
are playing a game with m > n total steps. The agents are thus incapable of representing 
the number of remaining steps, and must treat it as an unknown. Therefore they cannot do 
the induction, and are free to arrive at the more favorable (refuse, refuse) equilibrium. In 
this case, ignorance is bliss-or rather, having your opponent believe that you are ignorant is 
bliss. Your success in these repeated games depends on the other player's perception of you 
as a bully or a simpleton, and not on your actual characteristics. 

Repeated games in full generality are beyond the scope of this book, but they arise in 
many settings. For example, we can construct a sequential game by putting two agents in the 
4 x 3 world of Figure 17.1. If we specify that no movement occurs when the two agents try to 
move into the same square simultaneously (a common problern at many traffic intersections), 
then certain pure strategies can get stuck forever. One sollution is for each agent to randomize 
its choice between moving forward and staying put; the stalemate will be resolved quickly 
and both agents will be happy. This is exactly what is done to resolve packet collisions in 
Ethernet networks. 

Currently known solution methods for repeated games resemble those for turn-taking 
games in Chapter 6, in that a game tree can be constnucted from the root downwards and 
solved from the leaves upwards. The main difference is that, instead of simply taking the 
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PARTIAL 
INFORMATION 

BAYES-NASH 
EQUILIBRIUM 

maximum or minimum of the child values, the algorithm must solve a game in mixed strate- 
gies at each level, assuming that the child nodes have been solved and have well-defined 
values to work with. 

Repeated games in partially observable environments are called games of partial in- 
formation. Examples include card games such as poker and bridge, wherein each player can 
see only a subset of the cards, and more serious "games7' such as abstractions of nuclear war, 
where neither side knows the location of all its opponent's weapons. Games of partial infor- 
mation are solved by considering a tree of belief states, as in POMDPs. (See Section 17.4.) 
One important difference is that, while one's own belief state is observable, the opponent's 
belief state is not. Only recently have practical algorithms been developed for such games. 
Some simplified versions of poker have been solved, proving that bluffing is indeed a rational 
choice, as part of a well balanced mixed strategy. One important insight to emerge from such 
studies is that mixed strategies are useful not just for making one's actions unpredictable, but 
also for minimizing the amount of information that one's opponent can learn from observing 
one's actions. It is interesting that, although designers of programs for playing bridge are 
well aware of the importance of gathering and hiding information, none has yet proposed the 
use of randomized strategies. 

So far, there have been some barriers that have prevented game theory from being 
widely used in agent design. First, note that in a Nash equilibrium solution, a player is 
assuming that the opponents will definitely play the equilibrium strategy. This means that 
the player is unable to incorporate any beliefs it might have about how the other players are 
likely to act, and therefore that it might be wasting some of its value defending against threats 
that will never materialize. The notion of a Bayes-Nash equilibrium partially addresses this 
point: it is an equilibrium with respect to a player's prior probability distribution over the 
other players' strategies-in other words, it expresses a player's beliefs about the other play- 
ers' likely strategies. Second, there is currently no good way to combine game theoretic and 
POMDP control strategies. Because of these and other problems, game theory has been used 
primarily to analyze environments that are at equilibrium, rather than to control agents within 
an environment. We shall soon see how it can help design environments. 

In the previous section, we looked at the question "Given a game, what is a rational strat- 
egy?" In this section, we ask "Given that agents are rational, what game should we design?" 
More specifically, we would like to design a game whose solutions, consisting of each agent 
pursuing its own rational strategy, result in the maximization of some global utility function. 

MECHANISM DESIGN This problem is called mechanism design, or sometimes inverse game theory. Mechanism 
design is a staple of economics and political science. For collections of agents, it holds the 
possibility of using game-theoretic mechanisms to construct smart systems out of a collection 
of more limited systems--even noncooperative systems-in much the same way that teams 
of humans can achieve goals far beyond the reach of any individual. 
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Examples of mechanism design include auctioning off cheap airline tickets, routing 
TCP packets between computers, deciding how medical interns will be assigned to hospitals, 
and deciding how robotic soccer players will cooperate with their teammates. Mechanism 
design became more than an academic subject in the 1990s when several nations, faced with 
the problem of auctioning off licenses to broadcast in various frequency bands, lost hundreds 
of millions of dollars in potential revenue as a result of poor mechanism design. Formally, a 

MECHANISM mechanism consists of (1) a language for describing the (possibly infinite) set of allowable 
strategies that agents may adopt and (2) an outcome rule G that determines the payoffs to the 
agents given a strategy profile of allowable strategies. 

At first sight, the mechanism design problem can seem trivial. Suppose that the global 
utility function U is decomposed into any set of individual agent utility functions U,, such 
that U = C ,  U,. Then, one might say, if each agent maximizes its own utility, surely that will 
lead automatically to the maximization of the global utility. (For example, Capitalism 101 
says that if everyone tries to get rich, the total wealth of society will increase.) Unfortunately, 
this doesn't work. The actions of each agent could afifect th~e well-being of other agents in 

TRAGEDyOFTHE COMMONS ways that decrease global utility. One example of this is the tragedy of the commons, a 
situation in which individual farmers all bring their livestock to graze for free on the town 
commons, with the result being the destruction of the commons and a negative utility for all 
the farmers. Each farmer individually acted rationally, reasoning that the use of the commons 
was free and that, although using the commons could 11sad to its destruction, refraining from 
using it would not help (because the others would use it anyway). Similar arguments apply 
to the use of the atmosphere and the oceans for free dumping of pollutants. 

A standard approach in mechanism design for dealing with such problems is to charge 
EXTERNALITIES each agent for using the commons. More generally, we need to ensure that all externalities- 

effects on global utility that are not recognized in the individual agents' transactions-are 
made explicit. Setting the prices correctly is the difficult part. In the limit, this approach 
amounts to creating a mechanism in which each agent is effectively required to maximize 
global utility. This is an impossibly difficult task for the agent, who can neither alssess the 
current state of the world nor observe the effects of its actions on all other agents. Mechanism 
design therefore concentrates on finding mechanisms for which the decision problem for the 
individual agents is straightforward. 

Let's consider auctions first. In the most comrn~on form, an auction is a mechanism 
for selling some goods to members of a pool of bidders. The strategies are the bids and the 
outcome determines who gets the goods and how much they pay. One example of where 
auctions can come into play within A1 is when a collection of agents are deciding whether to 
cooperate orn a joint plan. Hunsberger and Grosz (2000) show that this can be accomplished 
efficiently with an auction in which the agents bid for roles in the joint plan. 

For now, we'll consider auctions wherein (1) there is a single good, (2) each bidder has 
a utility value v, for the good, and (3) these values are known only to the bidder. Bidders 
make bids b,, and the highest bid wins the goods, but the mechanism determines how the 
bids are made and the price paid by the winner (it need not be b,). The best-known type of 

ENGLISHAUCTION auction is the English auction, in which the auctioneer increments the price of the goods, 
checking whether bidders are still interested, until only one bidder is left. This mechanism 
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has the property that the bidder with the highest value vi gets the goods at a price of b, + d, 
where b, is the highest bid among all the other players and d is the auctioneer's increment 
between bids.9 The English auction also has the property that bidders have a simple dominant 
strategy: keep bidding as long as the current cost is below your personal value. Recall that 
"dominant" means that the strategy works against all other strategies, which in turn means 
that a player can adopt it without regard for the other strategies. Therefore, players don't 
have to waste time and energy contemplating other players' possible strategies. A mechanism 
where players have a dominant strategy that involves revealing their true incentives is called 

STRATEGY-PROOF a strategy-proof mechanism. 
One negative property of the English auction is its high communication costs, so either 

the auction takes place in one room or all bidders have to have high-speed, secure communi- 
cation lines. An alternative mechanism that requires much less communication is the sealed 

SEALEDBIDAUCTION bid auction. Here, each bidder makes a single bid and communicates it to the auctioneer, 
and the highest bid wins. With this mechanism, the strategy of bidding your true value is 
no longer dominant. If your value is vi and you believe that the maximum of all the other 
players' bids will be b,, then you should bid the lower of vi and b, + .e. Two drawbacks of 
the sealed bid auction are that the player with the highest vi might not get the goods and that 
players must spend effort contemplating the other players' strategies. 

A small change in the rules for sealed bid auctions produces the sealed bid second- 
SEALED BID 
SECOND-PRICE price auction, also known as a Vickrey auction.'' In such auctions, the winner pays the 
AUCTION 
VICKREYAUCTION price of the second highest bid, rather than paying his own bid. This simple modification 

completely eliminates the complex deliberations required for standard (or first-price) sealed 
bid auctions, because the dominant strategy is now to bid your actual value. To see that, we 
note that any player can think of the auction as a two-player game, ignoring all players except 
himself and the highest bidder among the other players. The utility of player i in terms of his 
bid bi, his value vi, and the best bid among the other players, b,, is 

To see that bi = vi is a dominant strategy, note that when (vi - b,) is positive, any bid 
that wins the auction is optimal, and bidding vi in particular wins the auction. On the other 
hand, when (vi - b,) is negative, any bid that loses the auction is optimal, and bidding vi 
in particular loses the auction. So bidding vi is optimal for all possible values of b,, and 
in fact, vi is the only bid that has this property. Because of its simplicity and the minimal 
computation requirements for both seller and bidders, the Vickrey auction is widely used in 
constructing distributed A1 systems. 

Now let's consider the Internet routing problem. The players correspond to edges in 
the graph of network connections. Each player knows the cost ci of sending a message along 
its own edge; the cost of not having a message to send is 0. The goal is to find the cheapest 
path for a message to travel from origin to destination, where the cost of the whole route 

There is actually a small chance that the player with highest vi fails to get the goods, in the case where 
b, < wi < b, + d. The chance of this happening can be made arbitrarily small by decreasing the increment d. 
lo Named after William Vickrey (1914-1996), winner of the 1996 Nobel prize in economics. 
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is the sum of the individual edge costs. Chapter 4 gives several algorithms for computing 
the shortest path, given the edge costs, so all we have to do is get each agent to report its 
true cost, ci. Unfortunately, if we just ask each ageill:, it will report costs that are high, to 
encourage us to send traffic elsewhere. We need to develop a strategy-proof mechanism. One 
such mechanism is to pay each player a payoff pi equal to the length of the shortest path that 
does not contain the ith edge minus the length of the shortest path (as computed by a search 
algorithm) where the cost of the ith edge is assumed to be 0: 

pi =  LENGTH(^^^^ with ci = co) - LENGTH(path with ci = 0) . 

We can show that, under this mechanism, the dominant strategy for each player is to report 
c, truthfully and that doing so will result in a cheapest path. Despite this desirable property, 
the mechanism outlined here is not used in practice, because of the high communication and 
central computation cost. The mechanism designer rnust communicate with all n players 
and then must solve the optimization problem. This might be worth it if the costs could be 
amortized over many messages, but in a real network tlhe costs c, would fluctuate constantly, 
because of traffic congestion and because some machines will crash and others will come 
online. No completely satisfactory solution has yet been devj sed. 

This chapter shows how to use knowledge about the wlorld to make decisions even when the 
outcomes of an action are uncertain and the rewards for acting might not be reaped until many 
actions have passed. The main points are as follows: 

e Sequential decision problems in uncertain envirsinments, also called Markov decision 
processes, or MDPs, are defined by a transition model specifying the probabilistic 
outcomes of actions and a reward function specifying the reward in each state. 

o The utility of a state sequence is the sum of all the rewards over the sequence, possibly 
discounted over time. The solution of an MDP is a policy that associates a decision 
with every state that the agent might reach. An optimal policy maximizes the utility of 
the state sequences encountered when it is execut~ed. 

e The utility of a state is the expected utility of the state sequences encountered when 
an optimal policy is executed, starting in that state. The value iteration algorithm for 
solving MDPs works by iteratively solving the equations relating the utilities of each 
state to that of its neighbors. 

Policy iteration alternates between calculating the utilities of states under the current 
policy and improving the current policy with respect to the current utilities. 

* Partially observable MDPs, or POMDPs, are much more difficult to solve than are 
MDPs. They can be solved by conversion to an MDP in the continuous space of belief 
states. Optimal behavior in POMDPs includes information gathering to reduce uncer- 
tainty and therefore make better decisions in the fiuture. 
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A decision-theoretic agent can be constructed for POMDP environments. The agent 
uses a dynamic decision network to represent the transition and observation models, 
to update its belief state, and to project forward possible action sequences. 

Game theory describes rational behavior for agents in situations where multiple agents 
interact simultaneously. Solutions of games are Nash equilibria-strategy profiles in 
which no agent has an incentive to deviate from the specified strategy. 

Mechanism design can be used to set the rules by which agents will interact, in order 
to maximize some global utility through the operation of individually rational agents. 
Sometimes, mechanisms exist that achieve this goal without requiring each agent to 
consider the choices made by other agents. 

We shall return to the world of MDPs and POMDP in Chapter 21, when we study rein- 
forcement learning methods that allow an agent to improve its behavior from experience in 
sequential, uncertain environments. 

BIBLIOGRAPHICAL AND HISTORICAL NOTES 

Richard Bellman (1957) initiated the modem approach to sequential decision problems and 
proposed the dynamic programming approach in general and the value iteration algorithm 
in particular. Ron Howard's Ph.D. thesis (1960) introduced policy iteration and the idea of 
average reward for solving infinite-horizon problems. Several additional results were intro- 
duced by Bellman and Dreyfus (1962). Modified policy iteration is due to van Nunen (1976) 
and Puterman and Shin (1978). Asynchronous policy iteration was analyzed by Williams 
and Baird (1993), who also proved the policy loss bound in Equation (17.9). The analysis 
of discounting in terms of stationary preferences is due to Koopmans (1972). The texts by 
Bertsekas (1987), Puterman (1994), and Bertsekas and Tsitsiklis (1996) provide a rigorous 
introduction to sequential decision problems. Papadimitriou and Tsitsiklis (1987) describe 
results on the computational complexity of MDPs. 

Seminal work by Sutton (1988) and Watkins (1989) on reinforcement learning methods 
for solving MDPs played a significant role in introducing MDPs into the A1 community, as 
did the later survey by Barto et al. (1995). (Earlier work by Werbos (1977) contained many 
similar ideas, but was not taken up to the same extent.) The connection between MDPs and 
A1 planning problems was made first by Sven Koenig (1991), who showed how probabilistic 
STRIPS operators provide a compact representation for transition models. (See also Wellman 
(1990b).) Work by Dean et al. (1993) and Tash and Russell (1994) attempted to overcome 
the combinatorics of large state spaces by using a limited search horizon and abstract states. 
Heuristics based on the value of information can be used to select areas of the state space 
where a local expansion of the horizon will yield a significant improvement in decision qual- 
ity. Agents using this approach can tailor their effort to handle time pressure and generate 
some interesting behaviors such as using familiar "beaten paths" to find their way around 
the state space quickly without having to recompute optimal decisions at each point. Recent 
work by Boutilier and others (Boutilier et al., 2000,2001) has focused on dynamic program- 
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ming using symbolic representations of both transition modells and value functions, based on 
propositional and first-order formula!. 

The observation that a partially observable MDP can be transformed into a regular MDP 
by using the belief states is due to Astrom (1965). The first complete algorithm for the 
exact solution of partially-observable Markov decisior~ processes (POMDPs) was proposed 
by Edward Sondik (1971) in his Ph.D. thesis. (A later journal paper by Small\vood and 
Sondik (1973) contains some errors, but is more accessible.) ILovejoy (1991) surveys the 
state of the art in POMDPs. The first significant con~tribution within A1 was the Witness 
algorithm (Cassandra et al., 1994; Kaelbling et al., 1998), an improved version of POMDP 
value iteration. Other algorithms soon followed, including an approach due to Hansen (1998) 
that constructs a policy incrementally in the form of a finite-state automaton. In this policy 
representation, the belief state corresponds directly to a particular state in the automaton. 
Approximately optimal policies for POMDPs can be co~istructed by forward search combined 
with sampling of possible observations and action outcomes (Kearns et al., 2000; Ng and 
Jordan, 2000). Additional work on POMDP algorithms is covered in Chapter 21. 

The basic ideas for an agent architecture using dynamic decision networks were pro- 
posed by Dean and Kanazawa (1989a). The book Plafilning tznd Control by Dean and Well- 
man (1991) goes into much greater depth, making connections between DBNIDDIV models 
and the classical control literature on filtering. Tatman and Shachter (1990) showed how to 
apply dynamic programming algorithms to DDN models. Russell (1998) explains various 
ways in which such agents can be scaled up and identifies a number of open research issues. 

The early roots of game theory can be traced back to proposals made in the 17th century 
by Christiaan Huygens and Gottfried Leibniz to study competitive and cooperative human in- 
teractions scientifically and mathematically. Throughout the 19th century, several leading 
economists created simple mathematical examples to analyze particular examples of com- 
petitive situations. The first formal results in game theory are due to Zermelo (1913) (who 
had, the year before, suggested a form of minimax search for games, albeit an incorrect one). 
Emile Bore1 (1921) introduced the notion of a mixed strategy. John von Neumann (1928) 
proved that every two-person, zero-sum game has a maKimin equilibrium in mixed strategies 
and a well-defined value. Von Neumann's collaboration with the economist Oskar Morgen- 
stern led to the publication in 1944 of the Theory of Games and Economic Behavior, the 
defining book for game theory. Publication of the book was delayed by the warti~rne paper 
shortage until a member of the Rockefeller family personally subsidized its publicaltion. 

In 1950, at the age of 21, John Nash published his ideas concerning equilibria in general 
games. His definition of an equilibrium solution, although originating in the work of Cournot 
(1838), became known as Nash equilibrium. After a long delay (due to the schizophrenia he 
suffered from 1959 onwards, Nash was awarded the Nobel prize in Economics (along with 
Reinhart Selten and John Harsanyi) in 1994. 

The Bayes-Nash equilibrium is described by Harsanyi (1967) and discussed by Kadane 
and Larkey (1982). Some issues in the use of game theory for agent control are covered by 
Binmore (1982). 

The prisoner's dilemma was invented as a classroom exercise by Albert W. Tucker in 
1950 and is covered extensively by Axelrod (1985). ]Repeated games were introduced by 
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Luce and Raiffa (1957) as were games of partial information by Kuhn (1953). The first 
practical algorithm for partial information games was developed within A1 by Koller et al. 
(1996); the paper by Koller and Pfeffer (1997) provides a readable introduction to the general 
area and describes a working system for representing and solving sequential games. Game 
theory and MDPs are combined in the theory of Markov games (Littman, 1994). Shapley 
(1953) actually described the value iteration algorithm before Bellman, but his results were 
not widely appreciated, perhaps because they were presented in the context of Markov games. 
Textbooks on game theory include those by Myerson (1991), Fudenberg and Tirole (1991), 
and Osborne and Rubinstein (1994). 

The tragedy of the commons, a motivating problem for the field of mechanism design, 
was presented by Hardin (1968). Hurwicz (1973) created a mathematical foundation for 
mechanism design. Milgrom (1997) writes about the multibillion-dollar spectrum auction 
mechanism he designed. Auctions can also be used in planning (Hunsberger and Grosz, 2000) 
and scheduling (Rassenti et al., 1982). Varian (1995) gives a brief overview with connections 
to the computer science literature, and Rosenschein and Zlotkin (1994) present a book-length 
treatment with applications to distributed AI. Related work on distributed A1 also goes under 
other names, including Collective Intelligence (Turner and Wolpert, 2000) and market-based 
control (Clearwater, 1996). Papers on computational issues in auctions often appear in the 
ACM Conferences on Electronic Commerce. 

17.1 For the 4 x 3 world shown in Figure 17.1, calculate which squares can be reached from 
(1,l) by the action sequence [Up,  Up, Right, Right, Right] and with what probabilities. Ex- 
plain how this computation is related to the task of projecting a hidden Markov model. 

17.2 Suppose that we define the utility of a state sequence to be the maximum reward ob- 
tained in any state in the sequence. Show that this utility function does not result in stationary 
preferences between state sequences. Is it still possible to define a utility function on states 
such that MEU decision making gives optimal behavior? 

17.3 Can any finite search problem be translated exactly into a Markov decision problem 
such that an optimal solution of the latter is also an optimal solution of the former? If so, 
explain precisely how to translate the problem and how to translate the solution back; if not, 
explain precisely why not (i.e., give a counterexample). 

17.4 Consider an undiscounted MDP having three states, (1, 2, 3), with rewards -1, -2, 0 
respectively. State 3 is a terminal state. In states 1 and 2 there are two possible actions: a and 
b. The transition model is as follows: 

In state 1, action a moves the agent to state 2 with probability 0.8 and makes the agent 
stay put with probability 0.2. 
In state 2, action a moves the agent to state 1 with probability 0.8 and makes the agent 
stay put with probability 0.2. 
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a In either state 1 or state 2, action b moves the agent to state 3 with probability 0.1 and 
makes the agent stay put with probability 0.9. 

Answer the following questions: 

a. What can be determined qualitatively about the optimal policy in states 1 and 2? 
b. Apply policy iteration, showing each step in full, to determine the optimal policy and 

the values of states 1 and 2. Assume that the initial policy has action b in both states. 

c.  What happens to policy iteration if the initial policy has action a in both states? Does 
discounting help? Does the optimal policy depend on the discount factor? 

17.5 Sometimes MDPs are formulated with a reward function R ( s ,  a )  that depends on the 
action taken. or a reward function R ( s ,  a, s') that also depends on the outcome state. 

a. Write the Bellman equations for these formulations. 

b. Show how an MDP with reward function R ( s ,  a,  .s f )  can be transformed into a different 
MDP with reward function R ( s ,  a), such that optimal policies in the new MlDP corre- 
spond exactly to optimal policies in the original MDP. 

c.  Now do the same to convert MDPs with R(s ,  a )  into M.DPs with R(s). 

1-p 17.6 Consider the 4 x 3 world shown in Figure 17.1. 

a. Implement an environment simulator for this environment, such that the specific geog- 
raphy of the environment is easily altered. Some code for doing this is already in the 
online code repository. 

b. Create an agent that uses policy iteration, and measure its performance in the environ- 
ment simulator from various starting states. Perform several experiments from each 
starting state, and compare the average total rewa.rd received per run with the utility of 
the state, as determined by your algorithm. 

c.  Experiment with increasing the size of the environment. How does the runtime for 
policy iteration vary with the size of the environment? 

1-p 17.7 For the environment shown in Figure 17.1, find all the threshold values for R ( s )  such 
that the optimal policy changes when the threshold is crossed. You will need a way to calcu- 
late the optimal policy and its value for fixed R(s ) .  [Hint: Prove that the value of any fixed 
policy varies linearly with R ( s )  .] 

17.8 In this exercise we will consider two-player MDPs that correspond to zero-sum, turn- 
taking games like those in Chapter 6. Let the players be: A and B ,  and let R ( s )  be the reward 
for player A in s. (The reward for B is always equal and opposite.) 

a. Let UA(s)  be the utility of state s  when it is A's turn to move in s,  and let UB (s) be the 
utility of state s  when it is B's turn to move in s. All rewards and utilities are calculated 
from A's point of view (just as in a minimax game tree). Write down Bellman r:quations 
defining UA ( s )  and UB ( s )  . 

b. Explain how to do two-player value iteration with these equations, and define a suitable 
stopping criterion. 
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c. Consider the game described in Figure 6.14 on page 190. Draw the state space (rather 
than the game tree), showing the moves by A as solid lines and moves by B as dashed 
lines. Mark each state with R ( s ) .  You will find it helpful to arrange the states ( sA ,  sB )  
on a two-dimensional grid, using S A  and S B  as "coordinates." 

d. Now apply two-player value iteration to solve this game, and derive the optimal policy. 

17.9 Show that a dominant strategy equilibrium is a Nash equilibrium, but not vice versa. 

17.10 In the children's game of rock-paper-scissors each player reveals at the same time 
a choice of rock, paper, or scissors. Paper wraps rock, rock blunts scissors, and scissors 
cut paper. In the extended version rock-paper-scissors-fire-water, fire beats rock, paper and 
scissors; rock, paper and scissors beat water, and water beats fire. Write out the payoff matrix 
and find a mixed-strategy solution to this game. 

17.11 Solve the game of three-finger Mona. 

17.12 Prior to 1999, teams in the National Hockey League received 2 points for a win, 1 for 
a tie, and 0 for a loss. Is this a constant-sum game? In 1999, the rules were amended so that a 
team receives 1 point for a loss in overtime. The winning team still gets 2 points. How does 
this modification change the answers to the questions above? If it were legal to do so, when 
would it be rational for the two teams to secretly agree to end regulation play in a tie and 
then battle it out in overtime? Assume that the utility to each team is the number of points it 
receives, and that there is a mutually known prior probability p that the first team will win in 
overtime. For what values of p would both teams agree to this arrangement? 

17.13 The following payoff matrix, from Blinder (1983) by way of Bernstein (1996), shows 
a game between politicians and the Federal Reserve. 

Politicians can expand or contract fiscal policy, while the Fed can expand or contract mon- 
etary policy. (And of course either side can choose to do nothing.) Each side also has pref- 
erences for who should do what-neither side wants to look like the bad guys. The payoffs 
shown are simply the rank orderings: 9 for first choice through 1 for last choice. Find the 
Nash equilibrium of the game in pure strategies. Is this a Pareto optimal solution? The reader 
might wish to analyze the policies of recent administrations in this light. 

Fed: expand 
F = 6, P  = 6 

Pol: do nothing 
Po1:expand 

Fed: do nothing 
F = 9, P  = 4 Pol: contract 

Fed: contract 
F  = 7 ,  P  = 1 
F  = 8, P = 2 
F = 3 , P = 3  

F  = 5, P  = 5 
F = 2 , P = 7  

F  = 4, P  = 9 
F = l , P = 8  



1 LEARNING FROM 
OBSERVATIONS 

In which we describe agents that can improve their behavior through diligent 
study of their own experiences. 

The idea behind learning is that percepts should be used not only for acting, but also for 
improving the agent's ability to act in the future. Learning takes place as the agent observes its 
interactions with the world and its own decision-making processes. Learning can range from 
trivial memorization of experience, as exhibited by the wunlpus-world agent in Chapter 10, 
to the creation of entire scientific theories, as exhibited by Albert Einstein. This chapter 
describes inductive learning from observations. In particular, we describe how to learn 
simple theories in propositional logic. We also give a theoretical analysis that explains why 
inductive learning works. 

In Chapter 2, we saw that a learning agent can be thought of as containing a performance ele- 
ment that decides what actions to take and a learning element that modifies the performance 
element so that it makes better decisions. (See Figure 2.15.) Machine learning researchers 
have come up with a large variety of learning elements. To understand them, it will help to 
see how their design is affected by the context in which they will operate. The design of a 
learning element is affected by three major issues: 

Which components of the performance element are to be learned. 

What feedback is available to learn these components. 

What representation is used for the components. 

We now analyze each of these issues in turn. We have seen that there are many ways to 
build the performance element of an agent. Chapter 2 described several agent designs (Fig- 
ures 2.9, 2.1 1,2.13, and 2.14). The components of thes,e agents include the following: 

I .  A direct mapping from conditions on the current state to actions. 

2. A mealns to infer relevant properties of the world from the percept sequence. 
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3. Information about the way the world evolves and about the results of possible actions 
the agent can take. 

4. Utility information indicating the desirability of world states. 
5. Action-value information indicating the desirability of actions. 
6. Goals that describe classes of states whose achievement maximizes the agent's utility. 

Each of these components can be learned from appropriate feedback. Consider, for example, 
an agent training to become a taxi driver. Every time the instructor shouts "Brake!" the agent 
can learn a condition-action rule for when to brake (component 1). By seeing many camera 
images that it is told contain buses, it can learn to recognize them (2). By trying actions and 
observing the results-for example, braking hard on a wet road-it can learn the effects of its 
actions (3). Then, when it receives no tip from passengers who have been thoroughly shaken 
up during the trip, it can learn a useful component of its overall utility function (4). 

The type of feedback available for learning is usually the most important factor in deter- 
mining the nature of the learning problem that the agent faces. The field of machine learning 
usually distinguishes three cases: supervised, unsupervised, and reinforcement learning. 

SUPERVISED 
LEARNING The problem of supervised learning involves learning a function from examples of its 

inputs and outputs. Cases (I), (2), and (3) are all instances of supervised learning problems. 
In (I), the agent learns condition-action rule for braking-this is a function from states to a 
Boolean output (to brake or not to brake), In (2), the agent learns a function from images to a 
Boolean output (whether the image contains a bus). In (3), the theory of braking is a function 
from states and braking actions to, say, stopping distance in feet. Notice that in cases (1) 
and (2), a teacher provided the correct output value of the examples; in the third, the output 
value was available directly from the agent's percepts. For fully observable environments, it 
will always be the case that an agent can observe the effects of its actions and hence can use 
supervised learning methods to learn to predict them. For partially observable environments, 
the problem is more difficult, because the immediate effects might be invisible. 

UNSUPERVISED 
LEARNING The problem of unsupervised learning involves learning patterns in the input when no 

specific output values are supplied. For example, a taxi agent might gradually develop a con- 
cept of "good traffic days" and "bad traffic days" without ever being given labelled examples 
of each. A purely unsupervised learning agent cannot learn what to do, because it has no 
information as to what constitutes a correct action or a desirable state. We will study unsu- 
pervised learning primarily in the context of probabilistic reasoning systems (Chapter 20). 

REINFORCEMENT 
LEARNING The problem of reinforcement learning, which we cover in Chapter 21, is the most 

general of the three categories. Rather than being told what to do by a teacher, a reinforcement 
RErNwRcEMENr learning agent must learn from reinforcement.' For example, the lack of a tip at the end of 

the journey (or a hefty bill for rear-ending the car in front) gives the agent some indication 
that its behavior is undesirable. Reinforcement learning typically includes the subproblem of 
learning how the environment works. 

The representation of the learned information also plays a very important role in de- 
termining how the learning algorithm must work. Any of the components of an agent can 
be represented using any of the representation schemes in this book. We have seen sev- 

The term reward as used in Chapter 17 is a synonym for reinforcement. 
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era1 examples: linear weighted polynomials for utility functions in game-playing programs; 
propositional and first-order logical sentences for all of the cornponents in a logical agent; 
and probabilistic descriptions such as Bayesian networks for the inferential components of 
a decision-theoretic agent. Effective learning algorithms have been devised for all of these. 
This chapter will cover methods for propositional logic, Chapter 19 describes methods for 
first-order logic, and Chapter 20 covers methods for Bayesian networks and for neural net- 
works (which include linear polynomials as a special case). 

The last major factor in the design of learning systems is the availability ofprror knowl- 
edge. The majority of learning research in AI, computer science, and psychology has studied 
the case in which the agent begins with no knowledge at all about what it is trying to learn. 
It has access only to the examples presented by its exp~erience. Although this is an important 
special case, it is by no means the general case. Most human learning takes place in the con- 
text of a good deal of background knowledge. Some psychologists and linguists claim that 
even newborn babies exhibit knowledge of the world. 'Whatever the truth of this claim, there 
is no doubt that prior knowledge can help enormously in learning. A physicist examining a 
stack of bubble-chamber photographs might be able to induce a 1.heory positing the existence 
of a new particle of a certain mass and charge; but ain art critic examining the same stack 
might learn nothing more than that the "artist" must ble some sort of abstract expressionist. 
Chapter 19 shows several ways in which learning is helped by the use of existirig knowl- 
edge; it also shows how knowledge can be compiled in order to speed up decision making. 
Chapter 20 shows how prior knowledge helps in the learning of probabilistic theories. 

An algorithm for deterministic supervised learning is given as input the correct value of the 
unknown function for particular inputs and must try to recover the unknown function or some- 

EXAMPLE thing close to it. More formally, we say that an example is a pair (x, f (z)), where x is the 
input and f(x) is the output of the function applied to x. The ta~sk of pure inductive infer- 

INDUCTIVE ence (or induction) is this: INFERENCE 

Given a collection of examples of f ,  return a function h that approximates f .  

HYPOTHESIS The function h is called a hypothesis. The reason that learning is difficult, from a conceptual 
point of view, is that it is not easy to tell whether any p,articular h is a good approximation of 

GENERALIZ~TION f .  A good hypothesis will generalize well-that is, will predict unseen examples correctly. 
PROBLEM OF 
INDUCTION This is the fundamental problem of induction. The problem has been studied for centuries; 

Section 18.5 provides a partial solution. 
Figure: 18.1 shows a familiar example: fitting a function of a single variable to some 

data points. The examples are (x, f (x)) pairs, where both x and f (x) are real numbers. We 
HYPOTHESISSPACE choose the hypothesis space H-the set of hypotheses we will consider-to be the set of 

polynomials of degree at most k ,  such as 3x2 $ 2, x17 - 4x3, and so on. Figure 18.l(a) 
shows some data with an exact fit by a straight line (a polynomial of degree I). The line is 

CONSISTENT called a consistent hypothesis because it agrees with all the data. Figure 18.l(b) shows a 
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Figure 18.1 (a) Example (x, f (x)) pairs and a consistent, linear hypothesis. (b) A consis- 
tent, degree-7 polynomial hypothesis for the same data set. (c) A different data set that admits 
an exact degree-6 polynomial fit or an approximate linear fit. (d) A simple, exact sinusoidal 
fit to the same data set. 

high-degree polynomial that is also consistent with the same data. This illustrates the first 
issue in inductive learning: how do we choose from among multiple consistent hypotheses? 
One answer is Ockham's2 razor: prefer the simplest hypothesis consistent with the data. 

OCKHAM'S RAZOR Intuitively, this makes sense, because hypotheses that are no simpler than the data themselves 
are failing to extract any pattern from the data. Defining simplicity is not easy, but it seems 
reasonable to say that a degree- 1 polynomial is simpler than a degree- 12 polynomial. 

Figure 18.l(c) shows a second data set. There is no consistent straight line for this data 
set; in fact, it requires a degree-6 polynomial (with 7 parameters) for an exact fit. There are 
just 7 data points, so the polynomial has as many parameters as there are data points: thus, 
it does not seem to be finding any pattern in the data and we do not expect it to generalize 
well. It might be better to fit a simple straight line that is not exactly consistent but might 
make reasonable predictions. This amounts to accepting the possibility that the true function 
is not deterministic (or, roughly equivalently, that the true inputs are not fully observed). 
For nondeterministic functions, there is an inevitable tradeoff between the complexity of the 
hypothesis and the degree of jit to the data. Chapter 20 explains how to make this tradeoff 
using probability theory. 

One should keep in mind that the possibility or impossibility of finding a simple, con- 
sistent hypothesis depends strongly on the hypothesis space chosen. Figure 18.l(d) shows 
that the data in (c) can be fit exactly by a simple function of the form ax + b + c sin x. This 
example shows the importance of the choice of hypothesis space. A hypothesis space con- 
sisting of polynomials of finite degree cannot represent sinusoidal functions accurately, so a 
learner using that hypothesis space will not be able to learn from sinusoidal data. We say that 

REALIZABLE a learning problem is realizable if the hypothesis space contains the true function; otherwise, 
UNREALIZABLE it is unrealizable. Unfortunately, we cannot always tell whether a given learning problem is 

realizable, because the true function is not known. One way to get around this barrier is to 
use prior knowledge to derive a hypothesis space in which we know the true function must 
lie. This topic is covered in Chapter 19. 

Named after the 14th-century English philosopher, William of Ockham. The name is often misspelled as 
"Occam," perhaps from the French rendering, "Guillaume d'Occain." 
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Another approach is to use the largest possible hypothesis space. For example, why 
not let H be the class of all Turing machines? After all, every computable function can be 
represented by some Turing machine, and that is the blest we can do. The problem with this 
idea is that it does not take into account the computational complexity of learning. There 
is a tradeoff between the expressiveness of a hypothesis space and the complexity of finding 
simple, consistent hypotheses within that space. For example, fitting straight lines to data is 
very easy; fitting high-degree polynomials is harder; and fitting Turing machines is very hard 
indeed because determining whether a given Turing machine is consistent with the data is 
not even decidable in general. A second reason to prefer simple hypothesis spaces is that the 
resulting hypotheses may be simpler to use-that is, it is faster to compute h(x) when h is a 
linear function than when it is an arbitrary Turing maclhine program. 

For these reasons, most work on learning has folcused on relatively simple representa- 
tions. In this chapter, we concentrate on propositional logic and related languages. Chapter 19 
looks at learning theories in first-order logic. We will see that the expressiveness-complexity 
tradeoff is not as simple as it first seems: it is often the case. as we saw in Chapter 8, that an 
expressive llanguage makes it possible for a simple theory to fit the data, whereas restricting 
the expressiveness of the language means that any consistent theory must be very complex. 
For example, the rules of chess can be written in a page or two of first-order logic, but require 
thousands of pages when written in propositional logic. In such cases, it should be possible 
to learn much faster by using the more expressive language. 

Decision tree induction is one of the simplest, and yet most successful forms of learning 
algorithm. It serves as a good introduction to the area of inductive learning, and is easy to 
implement. We first describe the performance element, and then show how to learn it. Along 
the way, we will introduce ideas that appear in all areas of inductive learning. 

Decision trees as performance elements 

DECISIONTREE A decision tree takes as input an object or situation described by a set of attributes and 
ATTRIBUTES returns a "decisionw-the predicted output value for the input. The input attributes can be 

discrete or continuous. For now, we assume discrete inputs. The output value can also be 
CLASSIFICATION discrete or continuous; learning a discrete-valued function is called classification learning; 
REGRESSION learning a continuous function is called regression. We will concentrate on Boolean classifi- 
POSITIVE cation, wherein each example is classified as true (positive) or false (negative). 
NEGATIVE A decision tree reaches its decision by performing a sequence of tests. Each internal 

node in the tree corresponds to a test of the value of oine of the properties, and the branches 
from the node are labeled with the possible values of the test. Each leaf node in the tree 
specifies the value to be returned if that leaf is reached. The decision tree representation 
seems to be very natural for humans; indeed, many "How To" manuals (e.g., for car repair) 
are written entirely as a single decision tree stretching over hundreds of pages. 
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A somewhat simpler example is provided by the problem of whether to wait for a table 
GOALPREDICATE at a restaurant. The aim here is to learn a definition for the goal predicate Will Wait. In 

setting this up as a learning problem, we first have to state what attributes are available to 
describe examples in the domain. In Chapter 19, we will see how to automate this task; for 
now, let's suppose we decide on the following list of attributes: 

1. Alternate: whether there is a suitable alternative restaurant nearby. 

2. Bar: whether the restaurant has a comfortable bar area to wait in. 

3. Fri/Sat: true on Fridays and Saturdays. 

4. Hungry: whether we are hungry. 

5. Patrons: how many people are in the restaurant (values are None, Some, and Full). 

6. Price: the restaurant's price range ($, $$, $$$). 

7. Raining: whether it is raining outside. 

8. Reservation: whether we made a reservation. 

9. Type: the kind of restaurant (French, Italian, Thai, or burger). 

10. WaitEstimate: the wait estimated by the host (0-10 minutes, 10-30, 30-60, >60). 

The decision tree usually used by one of us (SR) for this domain is shown in Figure 18.2. 
Notice that the tree does not use the Price and Type attributes, in effect considering them 
to be irrelevant. Examples are processed by the tree starting at the root and following the 
appropriate branch until a leaf is reached. For instance, an example with Patrons = Full and 
WaitEstimate = 0-10 will be classified as positive (i.e., yes, we will wait for a table). 

Figure 18.2 A decision tree for deciding whether to wait for a table. 
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Expressiveness of decision trees 

Logically speaking, any particular decision tree hypotlhesis Ifor the Will Wait goal predicate 
can be seen as an assertion of the form 

Vs WillWait(s) H ( P l ( s ) V P 2 ( s ) V . . . V P n ( s ) ) ,  

where each condition P,(s) is a conjunction of tests corresponding to a path from the root 
of the tree to a leaf with a positive outcome. Although this looks like a first-order sentence, 
it is, in a sense, propositional, because it contains just one variable and all the predicates 
are unary. The decision tree is really describing a relaltionship between Will Wait and some 
logical combination of attribute values. We cannot use decjsion trees to represenl tests that 
refer to two or more different objects-for example, 

3 ra Nearby (rz, r) A Price(r,p) A Price(r2,pa) A Cheaper(p2, p) 

(is there a cheaper restaurant nearby?). Obviously, we could add another Boolean attribute 
with the name CheaperRestaurantNearby, but it is intractable to add all such attributes. 
Chapter 19 will delve further into the problem of learning in first-order logic prope:r. 

Decision trees are fully expressive within the class of pro,positional languages; that is, 
any Boolean function can be written as a decision tree. This can be done trivially by having 
each row in the truth table for the function correspond to a path in the tree. This w'ould yield 
an exponentially large decision tree representation because the truth table has exponentially 
many rows. Clearly, decision trees can represent many functions with much smaller trees. 

For some kinds of functions, however, this is a real problem. For example, if the func- 
PARITY FUNCTION tion is the parity function, which returns 1 if and only if an even number of inputs are 1, 

then an exponentially large decision tree will be needed. It j.s also difficult to use ;a decision 
MAJORIWFUNCTION tree to represent a majority function, which returns 1 if more than half of its inputs are 1. 

In other words, decision trees are good for some kinds of functions and bad Ior others. 
Is there any kind of representation that is efficient for ,all kinds of functions? Unfortunately, 
the answer is no. We can show this in a very general way. Consider the set of all Boolean 
functions on n attributes. How many different functions are in this set? This is just the number 
of different truth tables that we can write down, because the fuinction is defined by its truth 
table. The truth table has 2n rows, because each input case is described by n attrilbutes. We 
can consider the "answer" column of the table as a 2n-bit number that defines the function. 
No matter what representation we use for functions, some of the functions (almost all1 of them, 
in fact) are going to require at least that many bits to represent. 

If it takes 2n bits to define the function, then tliere are 22n different functions on n 
attributes. This is a scary number. For example, with just six Boolean attributes, there are 
226 = 18,446,744,073,709,551,616 different functions to choose from. We will need some 
ingenious algorithms to find consistent hypotheses in such a large space. 

Inducing decision trees from examples 

An example for a Boolean decision tree consists of a vector of' input attributes, X, antd a single 
Boolean output value 3. A set of examples (XI, yl) . . . , (XI2, y12) is shown in Figure 18.3. 
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Bar 
Example 
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X2 
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x4 

X5 
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No 
Yes 
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Yes 
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No 
No 
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Some 
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Full 
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None 
Some 
Full 
Full 

None 
Full 

L 
I 

Yes 
No 
No 
No 
Yes 
Yes 
No 
Yes 
No 
Yes 
No 
No 
- 

French 
Thai 

Burger 
Thai 

French 
Italian 
Burger 
Thai 

Burger 
Italian 
Thai 

Burger 

1 Figure 18.3 Examples for the restaurant domain. I 

Est 

0-1 0 
3040 
0-1 0 
10-30 
>60 
0-10 
0-1 0 
0-1 0 
>60 

10-30 
0-1 0 

30-60 

The positive examples are the ones in which the goal Will Wait is true (XI, X3,  . . .); the neg- 
ative examples are the ones in which it is false (X2, X 5 ,  . . .). The complete set of examples 

TRAINING SET is called the training set. 
The problem of finding a decision tree that agrees with the training set might seem 

difficult, but in fact there is a trivial solution. We could simply construct a decision tree 
that has one path to a leaf for each example, where the path tests each attribute in turn and 
follows the value for the example and the leaf has the classification of the example. When 
given the same example again,3 the decision tree will come up with the right classification. 
Unfortunately, it will not have much to say about any other cases! 

The problem with this trivial tree is that it just memorizes the observations. It does 
not extract any pattern from the examples, so we cannot expect it to be able to extrapolate 
to examples it has not seen. Applying Ockham's razor, we should find instead the smallest 
decision tree that is consistent with the examples. Unfortunately, for any reasonable defi- 
nition of "smallest," finding the smallest tree is an intractable problem. With some simple 
heuristics, however, we can do a good job of finding a "smallish" one. The basic idea behind 
the DECISION-TREE-LEARNING algorithm is to test the most important attribute first. By 
"most important," we mean the one that makes the most difference to the classification of an 
example. That way, we hope to get to the correct classification with a small number of tests, 
meaning that all paths in the tree will be short and the tree as a whole will be small. 

Figure 18.4 shows how the algorithm gets started. We are given 12 training examples, 
which we classify into positive and negative sets. We then decide which attribute to use as 
the first test in the tree. Figure 18.4(a) shows that Type is a poor attribute, because it leaves 
us with four possible outcomes, each of which has the same number of positive and negative 
examples. On the other hand, in Figure 18.4(b) we see that Patrons is a fairly important 

The same example or an example with the same description-this distinction is very important, and we will 
return to it in Chapter 19. 

Goal 

Will Wait 

Yes 
No 
Yes 
Yes 
No 
Yes 
No 
Yes 
No 
No 
NO 

Yes 
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NOISE 

Patrons? 

Figure 18.4 Splitting the examples by testing on attributes. (a) Splitting on Type brings us 
no nearer to distinguishing between positive and negative examples. (b) Splitting on Patrons 
does a good job of separating positive and negative examples. After splitting on F'atrons, 
Hungry is a fairly good second test. 

attribute, because if the value is None or Some, then we are left with example sets for which 
we can answer definitively (No and Yes, respectively).. If the value is Full, we are left with 
a mixed set of examples. In general, after the first attribute test splits up the examples, each 
outcome is a new decision tree learning problem in itself, with fewer examples and one fewer 
attribute. There are four cases to consider for these recursive problems: 

1. If there are some positive and some negative examples, then choose the best attribute to 
split them. Figure 18.4(b) shows Hungry being used to split the remaining examples. 

2. If all the remaining examples are positive (or all. negative), then we are done: we can 
answer Yes or No. Figure 18.4(b) shows examples of this in the None and Some cases. 

3. If there are no examples left, it means that no such example has been observed, and we 
return a default value calculated from the majority classification at the node's parent. 

4. If there are no attributes left, but both positive and neg,ative examples, we have a prob- 
lem. It means that these examples have exactly the same description, but different 
classifications. This happens when some of the data are incorrect; we say there is noise 
in the data. It also happens either when the attributes do not give enough information to 
describe the situation fully, or when the domain is truly nondeterministic. One simple 
way out of the problem is to use a majority vote. 

The DECISION-TREE-LEARNING algorithm is showin in Figure 18.5. The details of the 
method for CHOOSE-ATTRIBUTE are given in the next subsection. 

The final tree produced by the algorithm applied to the 12-example data set is shown in 
Figure 18.6. The tree is clearly different from the original tree shown in Figure 18.2, despite 
the fact that the data were actually generated from an agent using the original tree. One might 
conclude that the learning algorithm is not doing a very good job of learning the correct 
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function DECISION-TREE-LEARNING(~X~~~~~~, attribs, default) returns a decision tree 
inputs: examples, set of examples 

attrzbs, set of attributes 
default, default value for the goal predicate 

if examples is empty then return default 
else if all examples have the same classification then return the classification 
else if attrzbs is empty then return M A J O R I T Y - V A L U E ( ~ ~ ~ ~ ~ ~ ~ ~ )  
else 

best +- C H O O S E - A T T R I B U T E ( ~ ~ ~ ~ ~ ~ ~ ,  examples) 
tree + a  new decision tree with root test best 
m +- M A J O R I T Y - V A L U E ( ~ X ~ ~ ~ ~ ~ S )  
for each value vi of best do 

examplesi + {elements of examples with best = v i )  
subtree + DECISION-TREE-LEARNING(~X~~~~~~~, attribs - best, m )  
add a branch to tree with label vi and subtree subtree 

return tree 

Figure 18.5 The decision tree learning algorithm. 

Figure 18.6 The decision tree induced from the 12-example training set. 

function. This would be the wrong conclusion to draw, however. The learning algorithm 
looks at the examples, not at the correct function, and in fact, its hypothesis (see Figure 18.6) 
not only agrees with all the examples, but is considerably simpler than the original tree. The 
learning algorithm has no reason to include tests for Raining and Reservation,  because it 
can classify all the examples without them. It has also detected an interesting and previously 
unsuspected pattern: the first author will wait for Thai food on weekends. 

Of course, if we were to gather more examples, we might induce a tree more similar 
to the original. The tree in Figure 18.6 is bound to make a mistake; for example, it has 
never seen a case where the wait is 0-10 minutes but the restaurant is full. For a case where 



Section 18.3. Learning Decision Trees 659 

Hungry is false, the tree says not to wait, but I (SR) would certainly wait. This raises an 
obvious question: if the algorithm induces a consistent, but incorrect, tree from the examples, 
how incorrect will the tree be? We will show how to analyze this question experimentally, 
after we explain the details of the attribute selection step. 

Choosing attribute tests 

The scheme used in decision tree learning for selecting attributes is designed to minimize the 
depth of the final tree. The idea is to pick the attribute that goes as far as possible toward 
providing an exact classification of the examples. A perfect attribute divides the examples 
into sets that are all positive or all negative. The Patrons attribute is not perfect, but it is 
fairly good. A really useless attribute, such as Type, leaves the example sets with roughly the 
same proportion of positive and negative examples as the original set. 

All we need, then, is a formal measure of "fairlly good" and "really useless" and we 
can implement the CHOOSE-ATTRIBUTE function of Figure 18.5. The measure should have 
its maximum value when the attribute is perfect and ~ ~ t s  miilimum value when the attribute 

INFORMATION is of no use at all. One suitable measure is the expected amount of information provided 
by the attribute, where we use the term in the mathematical sense first defined in Shannon 
and Weaver (1949). To understand the notion of information, think about it as providing 
the answer to a question-for example, whether a coin will come up heads. The amount of 
information( contained in the answer depends on one's prior knolwledge. The less you know, 
the more information is provided. Information theory measures information content in bits. 
One bit of information is enough to answer a yeslno question about which one has no idea, 
such as the flip of a fair coin. In general, if the possibl'e answers vi have probabilities P ( v i ) ,  
then the information content I of the actual answer is given by 

To check this equation, for the tossing of a fair coin, we get 

logz = 1 bit. 
2 

If the coin is loaded to give 99% heads, we get I (1/100,99/100) = 0.08 bits, and as the 
probability of heads goes to 1, the information of the actual ansvver goes to 0. 

For decision tree learning, the question that needs answering is; for a given example, 
what is the correct classification? A correct decision tree will answer this question. An esti- 
mate of the probabilities of the possible answers before any of the attributes have been tested 
is given by the proportions of positive and negative exalmples in the training set. Suppose the 
training set contains p positive examples and n negative examples. Then an estimate of the 
information contained in a correct answer is 

The restaurant training set in Figure 18.3 has p = n = 6, so we need 1 bit of information. 
Now a test on a single attribute A will not usually tell us this much information, but 

it will give us some of it. We can measure exactly how much by looking at how much 
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information we still need after the attribute test. Any attribute A divides the training set E into 
subsets El, . . . , E, according to their values for A, where A can have v distinct values. Each 
subset Ei has pi positive examples and ni negative examples, so if we go along that branch, 
we will need an additional I ( p i / ( p i  + ni), n i / ( p i  + ni))  bits of information to answer the 
question. A randomly chosen example from the training set has the ith value for the attribute 
with probability (pi + n i ) / ( p  + n) ,  so on average, after testing attribute A, we will need 

INFORMATION GAIN bits of information to classify the example. The information gain from the attribute test is 
the difference between the original information requirement and the new requirement: 

The heuristic used in the CHOOSE-ATTRIBUTE function is just to choose the attribute with 
the largest gain. Returning to the attributes considered in Figure 18.4, we have 

Gain(Patrons)  = 1 - [&I(o ,  1) + &1(1,0) + $1 (a,  $)I = 0.541 bits. 

confirming our intuition that Patrons is a better attribute to split on. In fact, Patrons has 
the highest gain of any of the attributes and would be chosen by the decision-tree learning 
algorithm as the root. 

Assessing the performance of the learning algorithm 

A learning algorithm is good if it produces hypotheses that do a good job of predicting the 
classifications of unseen examples. In Section 18.5, we will see how prediction quality can 
be estimated in advance. For now, we will look at a methodology for assessing prediction 
quality after the fact. 

Obviously, a prediction is good if it turns out to be true, so we can assess the quality of a 
hypothesis by checking its predictions against the correct classification once we know it. We 

TEST SET do this on a set of examples known as the test set. If we train on all our available examples, 
then we will have to go out and get some more to test on, so often it is more convenient to 
adopt the following methodology: 

1. Collect a large set of examples. 
2. Divide it into two disjoint sets: the training set and the test set. 
3. Apply the learning algorithm to the training set, generating a hypothesis h. 

4. Measure the percentage of examples in the test set that are correctly classified by h. 
5. Repeat steps 2 to 4 for different sizes of training sets and different randomly selected 

training sets of each size. 

The result of this procedure is a set of data that can be processed to give the average prediction 
quality as a function of the size of the training set. This function can be plotted on a graph, 

LEARNINGCURVE giving what is called the learning curve for the algorithm on the particular domain. The 
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Figure 18.7 A learning curve for the decision tree algorithm on 100 randomly generated 
examples in the restaurant domain. The graph summarizes 20 trials. 

learning curve for DECISION-TREE-LEARNING with( the restaurant examples is shown in 
Figure 18.7'. Notice that, as the training set grows, the prediction quality increases. (For this 
reason, such curves are also called happy graphs.) This is a good sign that there: is indeed 
some pattern in the data and the learning algorithm is picking it up. 

Obviously, the learning algorithm must not be allowed to "see" the test data before the 
learned hypothesis is tested on them. Unfortunately, it is all too easy to fall into the trap 

PEEKING of peeking at the test data. Peeking typically happens as follows: A learning algorithm can 
have various "knobs" that can be twiddled to tune its behavior-for example, various different 
criteria for choosing the next attribute in decision tree learning. We generate hypotheses for 
various different settings of the knobs, measure their perforinance on the test set, and report 
the prediction performance of the best hypothesis. Alas, peeking has occurred! The reason is 
that the hypothesis was selected on the basis of its test setperjiormance, so information about 
the test set has leaked into the learning algorithm. The moral of this tale is that any process 
that involves comparing the performance of hypotheses on a test set must use a new test set 
to measure the performance of the hypothesis that is finally selected. In practice, this is too 
difficult, so people continue to run experiments on tain.ted sets of examples. 

Noise and overfitting 

We saw earlier that if there are two or more examples with the same description (in terms of 
the attributes) but different classifications, then the DIZCISI~N-TREE-LEARNING algorithm 
must fail to find a decision tree consistent with all the examples. The solution we mentioned 
before is to have each leaf node report either the majority classification for its set of exam- 
ples, if a deterministic hypothesis is required, or report the estimated probabilities of each 
classification using the relative frequencies. Unfortunately, this is far from the whole story. It 
is quite possible, and in fact likely, that even when vital information is missing, the decision 
tree learning algorithm will find a decision tree that is consistent with all the examples. This 
is because the algorithm can use the irrelevant attributes, if any, to make spurious distinctions 
among the examples. 
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Consider the problem of trying to predict the roll of a die. Suppose that experiments 
are carried out during an extended period of time with various dice and that the attributes 
describing each training example are as follows: 

1. Day: the day on which the die was rolled (Mon, Tue, Wed, Thu). 

2. Month: the month in which the die was rolled (Jan or Feb). 

3. Color: the color of the die (Red or Blue). 

As long as no two examples have identical descriptions, DECISION-TREE-LEARNING will 
find an exact hypothesis. The more attributes there are, the more likely it is that an exact 
hypothesis will be found. Any such hypothesis will be totally spurious. What we would like 
is that DECISION-TREE-LEARNING return a single leaf node with probabilities close to 116 
for each roll, once it has seen enough examples. 

Whenever there is a large set of possible hypotheses, one has to be careful not to use 
the resulting freedom to find meaningless "regularity" in the data. This problem is called 

OVERFITTING overfitting. A very general phenomenon, overfitting occurs even when the target function is 
not at all random. It afflicts every kind of learning algorithm, not just decision trees. 

A complete mathematical treatment of overfitting is beyond the scope of this book. 
DEClsloN PRUNING TREE Here we present a simple technique called decision tree pruning to deal with the problem. 

Pruning works by preventing recursive splitting on attributes that are not clearly relevant, 
even when the data at that node in the tree are not uniformly classified. The question is, how 
do we detect an irrelevant attribute? 

Suppose we split a set of examples using an irrelevant attribute. Generally speaking, we 
would expect the resulting subsets to have roughly the same proportions of each class as the 
original set. In this case, the information gain will be close to zero.4 Thus, the information 
gain is a good clue to irrelevance. Now the question is, how large a gain should we require in 
order to split on a particular attribute? 

SIGNIFICANCE TEST We can answer this question by using a statistical significance test. Such a test begins 
NULLHYPOTHESIS by assuming that there is no underlying pattern (the so-called null hypothesis). Then the ac- 

tual data are analyzed to calculate the extent to which they deviate from a perfect absence of 
pattern. If the degree of deviation is statistically unlikely (usually taken to mean a 5% prob- 
ability or less), then that is considered to be good evidence for the presence of a significant 
pattern in the data. The probabilities are calculated from standard distributions of the amount 
of deviation one would expect to see in random sampling. 

In this case, the null hypothesis is that the attribute is irrelevant and, hence, that the 
information gain for an infinitely large sample would be zero. We need to calculate the 
probability that, under the null hypothesis, a sample of size v would exhibit the observed 
deviation from the expected distribution of positive and negative examples. We can measure 
the deviation by comparing the actual numbers of positive and negative examples in each 
subset, pi and ni, with the expected numbers, pi and f i i ,  assuming true irrelevance: 

* In fact, the gain will be positive unless the proportions are all exactly the same. (See Exercise 18.10.) 
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A convenient measure of the total deviation is given by 

D = C  " (pi - J3i)2 + (ni - f i i )2  

i=l J3i fii 

Under the null hypothesis, the value of D is distributed according to the X2 (chi-squared) 
distribution with v - 1 degrees of freedom. The probability that the attribute is really ir- 
relevant can be calculated with the help of standard X2  tables or with statistical software. 
Exercise 18.11 asks you to make the appropriate changes to DECISION-TREE-LEARNING to 

X2  PRUNING implement this form of pruning, which is known as X2 pruning. 
With pruning, noise can be tolerated: classification errors give a linear increase in pre- 

diction error, whereas errors in the descriptions of ex,amples have an asymptotic effect that 
gets worse as the tree shrinks down to smaller sets. Trees constructed with pruning per- 
form significantly better than trees constructed without pruning when the data contain a large 
amount of noise. The pruned trees are often much smaller and hence easier to understand. 

CROSS-VALIDATION Cross-validation is another technique that reduces overfitting. It can be applied to any 
learning algorithm, not just decision tree learning. The basic idea is to estimate how well 
each hypothesis will predict unseen data. This is done by setting aside some fraction of the 
known data and using it to test the prediction performance of a hypothesis induced from the 
remaining data. K-fold cross-validation means that you run k experiments, each time setting 
aside a different I l k  of the data to test on, and average th~e results. Popular values for k 
are 5 and 10. The extreme is k = n, also known as leave-one-out cross-validation. Cross- 
validation can be used in conjunction with any tree-construction method (including pruning) 
in order to select a tree with good prediction performance. 'To avoid peeking, we must then 
measure this performance with a new test set. 

Broadening the applicability of decision trees 

In order to extend decision tree induction to a wider variety of problems, a number of issues 
must be addressed. We will briefly mention each, suggesting that a full understanding is best 
obtained by doing the associated exercises: 

0 Missing data: In many domains, not all the attribute values will be known for every 
example. The values might have gone unrecord~ed, or they might be too expensive to 
obtain. This gives rise to two problems: First, given a complete decision tree, how 
should one classify an object that is missing one of the test attributes? Second, how 
should one modify the information gain formula when some examples have unknown 
values for the attribute? These questions are addressed in Exercise 18.12. 

0 Multivalued attributes:When an attribute has nnany possible values, the information 
gain measure gives an inappropriate indication of the attribute's usefulness. In the ex- 
treme case, we could use an attribute, such as IlestaurantName, that has a different 
value for every example. Then each subset of examples would be a singleton with a 
unique classification, so the information gain measure would have its highest value for 
this attribute. Nonetheless, the attribute could be irrelevant or useless. One solution is 
to use the gain ratio (Exercise 18.13). 
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SPLIT POINT 

0 Continuous and integer-valued input attributes: Continuous or integer-valued at- 
tributes such as Height and Weight, have an infinite set of possible values. Rather than 
generate infinitely many branches, decision-tree learning algorithms typically find the 
split point that gives the highest information gain. For example, at a given node in the 
tree, it might be the case that testing on Weight > 160 gives the most information. Ef- 
ficient dynamic programming methods exist for finding good split points, but it is still 
by far the most expensive part of real-world decision tree learning applications. 

0 Continuous-valued output attributes: If we are trying to predict a numerical value, 
such as the price of a work of art, rather than a discrete classification, then we need 

REGRESSION TREE a regression tree. Such a tree has at each leaf a linear function of some subset of 
numerical attributes, rather than a single value. For example, the branch for hand- 
colored engravings might end with a linear function of area, age, and number of colors. 
The learning algorithm must decide when to stop splitting and begin applying linear 
regression using the remaining attributes (or some subset thereof). 

A decision-tree learning system for real-world applications must be able to handle all of 
these problems. Handling continuous-valued variables is especially important, because both 
physical and financial processes provide numerical data. Several commercial packages have 
been built that meet these criteria, and they have been used to develop several hundred fielded 
systems. In many areas of industry and commerce, decision trees are usually the first method 
tried when a classification method is to be extracted from a data set. One important property 
of decision trees is that it is possible for a human to understand the output of the learning 
algorithm. (Indeed, this is a legal requirement for financial decisions that are subject to anti- 
discrimination laws.) This is a property not shared by neural networks (see Chapter 20). 

So far we have looked at learning methods in which a single hypothesis, chosen from a 
hypothesis space, is used to make predictions. The idea of ensemble learning methods is to 
select a whole collection, or ensemble, of hypotheses from the hypothesis space and combine 
their predictions. For example, we might generate a hundred different decision trees from the 
same training set and have them vote on the best classification for a new example. 

The motivation for ensemble learning is simple. Consider an ensemble of M = 5 hy- 
potheses and suppose that we combine their predictions using simple majority voting. For the 
ensemble to misclassify a new example, at least three of theJCive hypotheses have to misclas- 
s ib  it. The hope is that this is much less likely than a misclassification by a single hypothesis. 
Suppose we assume that each hypothesis hi in the ensemble has an error of p-that is, the 
probability that a randomly chosen example is rnisclassified by hi is p. Furthermore, suppose 
we assume that the errors made by each hypothesis are independent. In that case, if p is small, 
then the probability of a large number of misclassifications occurring is minuscule. For ex- 
ample, a simple calculation (Exercise 18.14) shows that using an ensemble of five hypotheses 
reduces an error rate of 1 in 10 down to an error rate of less than 1 in 100. Now, obviously 
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Figure 18.8 Illustration of the increased expressive power obtained by ensemble learning. 
We take three linear threshold hypotheses, each of which classifies positively on the non- 
shaded side, and classify as positive any example classified positively by all three. The 
resulting triangular region is a hypothesis not expressible in the original hypothesis space. 

the assumption of independence is unreasonable, because hypotheses are likely to be misled 
in the same way by any misleading aspects of the training data. But if the hypotheses are at 
least a little bit different, thereby reducing the correlation between their errors, then ensemble 
learning can be very useful. 

Anoth~er way to think about the ensemble idea is as a generic way of enlarging the 
hypothesis space. That is, think of the ensemble itself as a hypothesis and the new h~ypothesis 
space as the set of all possible ensembles constructible from hypotheses in the original space. 
Figure 18.8 shows how this can result in a more expressive hypothesis space. If the original 
hypothesis space allows for a simple and efficient learning algorithm, then the ensemble 
method provides a way to learn a much more expressive class of hypotheses without incurring 
much additional computational or algorithmic complexity. 

BOOSTING The most widely used ensemble method is called boosting. To understand how it works, 
W E I G H T E D T R A ' N I N G  SET we need first to explain the idea of a weighted training set. In such a training set, each 

example has an associated weight wJ > 0. The higher the weight of an example, the higher 
is the importance attached to it during the learning of a hypothesis. It is straightforward to 
modify the learning algorithms we have seen so far to operate with weighted training sets5 

Boosting starts with w:, = 1 for all the examples (i.e., a normal training set). From this 
set, it generates the first hypothesis, hl. This hypothesis wall classify some of the training 
examples correctly and some incorrectly. We would like the next hypothesis to do better on 
the misclassified examples, so we increase their weights while decreasing the weights of the 
correctly classified examples. From this new weighted training set, we generate hypothesis 
h2. The process continues in this way until we have generated M hypotheses, where M is 

For learning algorithms in which this is not possible, one can instead create a replicated training set where 
the ith example appears w, times, using randomization to handle fractional weights. 
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8 1 I 
h l =  f i  h h 3 = k  

I 
h 

Figure 18.9 How the boosting algorithm works. Each shaded rectangle corresponds to 
an example; the height of the rectangle corresponds to the weight. The ticks and crosses 
indicate whether the example was classified correctly by the current hypothesis. The size of 
the decision tree indicates the weight of that hypothesis in the final ensemble. 

an input to the boosting algorithm. The final ensemble hypothesis is a weighted-majority 
combination of all the M hypotheses, each weighted according to how well it performed on 
the training set. Figure 18.9 shows how the algorithm works conceptually. There are many 
variants of the basic boosting idea with different ways of adjusting the weights and combining 
the hypotheses. One specific algorithm, called ADABOOST, is shown in Figure 18.10. While 
the details of the weight adjustments are not so important, ADABOOST does have a very 

WEAK LEARNING important property: if the input learning algorithm L is a weak learning algorithm-which 
means that L always returns a hypothesis with weighted error on the training set that is slightly 
better than random guessing (i.e., 50% for Boolean classification)-then ADABOOST will 
return a hypothesis that classiJies the training data perfectly for large enough M. Thus, the 
algorithm boosts the accuracy of the original learning algorithm on the training data. This 
result holds no matter how inexpressive the original hypothesis space and no matter how 
complex the function being learned. 

Let us see how well boosting does on the restaurant data. We will choose as our original 
DECISION STUMP hypothesis space the class of decision stumps, which are decision trees with just one test at 

the root. The lower curve in Figure 18.1 1(a) shows that unboosted decision stumps are not 
very effective for this data set, reaching a prediction performance of only 8 1 % on 100 training 
examples. When boosting is applied (with M = 5), the performance is better, reaching 93% 
after 100 examples. 

An interesting thing happens as the ensemble size M increases. Figure 18.11(b) shows 
the training set performance (on 100 examples) as a function of M. Notice that the error 
reaches zero (as the boosting theorem tells us) when M is 20; that is, a weighted-majority 
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function A ~ ~ B o o s ~ ( e x a m p l e s ,  L, M) returns a weighted-majority hypothesis 
inputs: examples,  set of N labelled examples ( X I ,  y l ) ,  . . . , ( X N ,  y ~ )  

L, a learning algorithm 
M, the number of hypotheses in the ensemble 

local variables: w, a vector of N example weights, initially l./N 
h, a vector of M hypotheses 
z, a vector of M hypothesis weights 

for m =: 1 to M do 
h[m] + L(examples,  w) 
e r r o r  c 0 
f o r j = l t o N d o  

if h[m] (xj) # y j  then e r r o r  c e r r o r  + w[j] 
f o r j = l t o N d o  

if h[m] (xj) = y j  then w[j] +- w[j] . e r r o r / ( l  - 

w +- NORMALIZE(W) 

z[m] t log (1 - e r r o r ) /  e r r o r  

return WEIGHTED-MAJORITY(~, z) 

e r r o r )  

Figure 18.10 The ADABOOST variant of the boosting method for ensemble learning. The 
algorithm generates hypotheses by successively reweighting the trainng examples. The func- 
tion WEIGHTED-MAJORITY generates a hypothesis that returns the output value with the 
highest vote from the hypotheses in h ,  with votes weighted by z. 
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Figure 18.11 (a) Graph showing the performance of boosted decision stumps with M = 5 
versus decision stumps on the restaurant data. (b) The propoition correct on the training set 
and the test set as a function of M, the number of hypotheses in the ensemble. Notice that 
the test set accuracy improves slightly even after the training, accuracy reaches 1, i.e., after 
the ensemble fits the data exactly. 
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combination of 20 decision stumps suffices to fit the 100 examples exactly. As more stumps 
are added to the ensemble, the error remains at zero. The graph also shows that the test 
set performance continues to increase long afer  the training set error has reached zero. At 
M = 20, the test performance is 0.95 (or 0.05 error), and the performance increases to 0.98 
as late as M = 137, before gradually dropping to 0.95. 

This finding, which is quite robust across data sets and hypothesis spaces, came as quite 
a surprise when it was first noticed. Ockham's razor tells us not to make hypotheses more 
complex than necessary, but the graph tells us that the predictions improve as the ensemble 
hypothesis gets more complex! Various explanations have been proposed for this. One view 
is that boosting approximates Bayesian learning (see Chapter 20), which can be shown to 
be an optimal learning algorithm, and the approximation improves as more hypotheses are 
added. Another possible explanation is that the addition of further hypotheses enables the 
ensemble to be more deJinite in its distinction between positive and negative examples, which 
helps it when it comes to classifying new examples. 

The main unanswered question posed in Section 18.2 was this: how can one be sure that 
one's learning algorithm has produced a theory that will correctly predict the future? In 
formal terms, how do we know that the hypothesis h is close to the target function f if we 
don't know what f is? These questions have been pondered for several centuries. Until we 
find answers, machine learning will, at best, be puzzled by its own success. 

COMPUTATIONAL 
LEARNING THEORY The approach taken in this section is based on computational learning theory, a field 

at the intersection of AI, statistics, and theoretical computer science. The underlying principle 
is the following: any hypothesis that is seriously wrong will almost certainly be "$ound out" 
with high probability after a small number of examples, because it will make an incorrect 
prediction. Thus, any hypothesis that is consistent with a suficiently large set of training 

PROBABLY 
APPROXIMATELY examples is unlikely to be seriously wrong: that is, it must beprobably approximately correct. 
CORRECT 

Any learning algorithm that returns hypotheses that are probably approximately correct is 
PAC-LEARNING called a PAC-learning algorithm. 

There are some subtleties in the preceding argument. The main question is the con- 
nection between the training and the test examples; after all, we want the hypothesis to be 
approximately correct on the test set, not just on the training set. The key assumption is 
that the training and test sets are drawn randomly and independently from the same pop- 

STATIONARITY ulation of examples with the same probability distribution. This is called the stationarity 
assumption. Without the stationarity assumption, the theory can make no claims at all about 
the future, because there would be no necessary connection between future and past. The 
stationarity assumption amounts to supposing that the process that selects examples is not 
malevolent. Obviously, if the training set consists only of weird examples-two-headed dogs, 
for instance-then the learning algorithm cannot help but make unsuccessful generalizations 
about how to recognize dogs. 
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How many examples are needed? 

In order to put these insights into practice, we will need some notation: 

Let X be the set of all possible examples. 
Let D be the distribution from which examples aire drawn. 
Let I1 be the set of possible hypotheses. 
Let N be the number of examples in the training set. 

Initially, we will assume that the true function f is a member of H. Now we can define the 
ERROR error of a hypothesis h with respect to the true functiion f given a distribution L) over the 

examples a.s the probability that h is different from f on an example: 

error(h) = P(h(x)  # f (x) Ix drawn from D) . 
This is the same quantity being measured experimentally by the learning curves shown earlier. 

A hypothesis h is called approximately correct if error(h) < E, where 6 is a small 
constant. The plan of attack is to show that after seeing N examples, with high probability, 
all consistent hypotheses will be approximately correct. One can think of an approximately 
correct hypothesis as being "close" to the true function in hypothesis space: it lies inside what 

€-BALL is called the €-ball around the true function f .  Figure 18.12 shows the set of all hypotheses 
H, divided into the €-ball around f and the remainder, which we call Hbad. 

Figure 18.12 Schematic diagram of hypothesis space, showing the "6-ball" around the 
true function f. 

We can calculate the probability that a "seriously wrong" hypothesis hb E Hbad is 
consistent with the first N examples as follows. We know that error(hb) > E. Thus, the 
probability that it agrees with a given example is at least 1 - c. The bound for N examples is 

P ( h b  agrees with N examples) 5 (1 - E ) ~  . 
The probability that Hbad contains at least one consistent hypothesis is bounded by the sum 
of the individual probabilities: 

P(Hbad contains a consistent hypothesis) 5 IHbadJ(l - E ) ~  5 IHI (1 - E ) ~  , 
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SAMPLE 
COMPLEXITY 

where we have used the fact that lHbadl < IHI. We would like to reduce the probability of 
this event below some small number 6: 

IHl(1- e l N  5 6 .  

Given that 1 - E 5 em', we can achieve this if we allow the algorithm to see 

examples. Thus, if a learning algorithm returns a hypothesis that is consistent with this many 
examples, then with probability at least 1 - 6, it has error at most E .  In other words, it is 
probably approximately correct. The number of required examples, as a function of E and 6, 
is called the sample complexity of the hypothesis space. 

It appears, then, that the key question is the size of the hypothesis space. As we saw 
earlier, if H is the set of all Boolean functions, on n attributes, then IHI = 22n. Thus, the 
sample complexity of the space grows as 2n. Because the number of possible examples is 
also 2n, this says that any learning algorithm for the space of all Boolean functions will do no 
better than a lookup table if it merely returns a hypothesis that is consistent with all known 
examples. Another way to see this is to observe that for any unseen example, the hypothesis 
space will contain as many consistent hypotheses that predict a positive outcome as it does 
hypotheses that predict a negative outcome. 

The dilemma we face, then, is that unless we restrict the space of functions the algorithm 
can consider, it will not be able to learn; but if we do restrict the space, we might eliminate 
the true function altogether. There are two ways to "escape" this dilemma. The first way is to 
insist that the algorithm return not just any consistent hypothesis, but preferably a simple one 
(as is done in decision tree learning). The theoretical analysis of such algorithms is beyond the 
scope of this book, but in cases where finding simple consistent hypotheses is tractable, the 
sample complexity results are generally better than for analyses based only on consistency. 
The second escape, which we pursue here, is to focus on learnable subsets of the entire set of 
Boolean functions. The idea is that in most cases we do not need the full expressive power 
of Boolean functions, and can get by with more restricted languages. We now examine one 
such restricted language in more detail. 

Learning decision lists 

DECISION LIST A decision list is a logical expression of a restricted form. It consists of a series of tests, each 
of which is a conjunction of literals. If a test succeeds when applied to an example description, 
the decision list specifies the value to be returned. If the test fails, processing continues with 
the next test in the list.6 Decision lists resemble decision trees, but their overall structure is 
simpler. In contrast, the individual tests are more complex. Figure 18.13 shows a decision 
list that represents the following hypothesis: 

'dx WzllWait(x) # Patrons(x, Some) V (Patrons(x, Full) A Fri/Sat(x)) . 
If we allow tests of arbitrary size, then decision lists can represent any Boolean function 

(Exercise 18.15). On the other hand, if we restrict the size of each test to at most k literals, 

A decision list is therefore identical in structure to a COND statement in Lisp. 
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No 
L. trons(4  some) 1-4 Patrons(x, Full) A F n  

I (yes I yes I 

1 Figure 18.13 A decision list for the restaurant problem. I 

then it is possible for the learning algorithm to generalize successfully from a small number 
k-DL of examples. We call this language ,%-DL. The example in Figure 18.13 is in 2-DL. It is easy to 
k-DT show (Exercise 18.15) that k-DL includes as a subset the language k-DT, the set of all decision 

trees of depth at most k. It is important to remember tlhat the particular language referred to 
by k-DL depends on the attributes used to describe the examples. We will use the notation 
k - D L ( ~ )  to denote a k-DL language using n Boolean attributes. 

The first task is to show that k-DL is learnable--that is, that any function in k-DL can 
be approximated accurately after training on a reasonable number of examples. 7b do this, 
we need to calculate the number of hypotheses in the language. Let the language of tests- 
conjunctions of at most k literals using n attributes-be Conj (n ,  k ) .  Because a decision list 
is constructed of tests, and because each test can be attached to either a Yes or a No outcome 
or can be absent from the decision list, there are at most 31C0'nj(n1k)l distinct sets of component 
tests. Each of these sets of tests can be in any order, so 

The number of conjunctions of k literals from n attributes is given by 

Hence, after some work, we obtain 

1 kuL(n) 1 = 20(n* '09'2 ( n k ) )  . 

We can plug this into Equation (18.1) to show that the inumber of examples needed for PAC- 
learning a k-DL function is polynomial in n: 

Therefore, any algorithm that returns a consistent decision list will PAC-learn a k-DL. function 
in a reasonable number of examples, for small k .  

The next task is to find an efficient algorithm that returns a consistent decision list. 
We will use a greedy algorithm called DECISION-LIST-LEARNING that repeatedly finds a 
test that agrees exactly with some subset of the training set. Once it finds such a test, it 
adds it to the decision list under construction and removes the corresponding examples. It 
then constructs the remainder of the decision list, using just the remaining examples. This is 
repeated until there are no examples left. The algorithm is shown in Figure 18.14. 

This algorithm does not specify the method for selecting the next test to add to the 
decision list. Although the formal results given earlier do not depend on the selection method, 
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function DECISION-LIST-LEARNING(~X~~~~~~) returns a decision list, or failure 

if examples is empty then return the trivial decision list No 
t +- a test that matches a nonempty subset examples ,  of examples 

such that the members of examples ,  are all positive or all negative 
if there is no such t then return f a i l ~ ~ r e  
if the examples in examples ,  are positive then o + Y e s  else o + No 
return a decision list with initial test t and outcome o and remaining tests given by 

D E C ~ S I O N - L I S T - L E A R N I N G ( ~ ~ ~ ~ ~ ~ ~ ~  - examples,) 

Figure 18.14 An algorithm for learning decision lists. 

Decision tree - 
Decision list -------- 

Training set size 

( Figure 18.15 Learning curve for DECISION-LIST-LEARNING algorithm on the restaurant I 
data. The curve for DECISION-TREE-LEARNING is shown for comparison. 

it would seem reasonable to prefer small tests that match large sets of uniformly classified 
examples, so that the overall decision list will be as compact as possible. The simplest strategy 
is to find the smallest test t that matches any uniformly classified subset, regardless of the size 
of the subset. Even this approach works quite well, as Figure 18.15 suggests. 

Discussion 

Computational learning theory has generated a new way of looking at the problem of learn- 
ing. In the early 1960s, the theory of learning focused on the problem of identification in 

lDENTlFlcATloNIN the limit. According to this notion, an identification algorithm must return a hypothesis that THE LIMIT 

exactly matches the true function. One way to do that is as follows: First, order all the hy- 
potheses in H according to some measure of simplicity. Then, choose the simplest hypothesis 
consistent with all the examples so far. As new examples arrive, the method will abandon a 
simpler hypothesis that is invalidated and adopt a more complex one instead. Once it reaches 
the true function, it will never abandon it. Unfortunately, in many hypothesis spaces, the num- 
ber of examples and the computation time required to reach the true function are enormous. 
Thus, computational learning theory does not insist that the learning agent find the "one true 
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law" governing its environment, but instead that it findl a hypothesis with a certain degree of 
predictive accuracy. Computational learning theory also brings sharply into focus the tradeoff 
between the expressiveness of the hypothesis language and the complexity of learning, and 
has led directly to an important class of learning algorithms called support vector machines. 

The PAC-learning results we have shown are worst-case complexity results and do not 
necessarily reflect the average-case sample comp1exit:y as measured by the learning curves 
we have shown. An average-case analysis must also imake assumptions about the distribu- 
tion of exarnples and the distribution of true functions that the algorithm will have to learn. 
As these issues become better understood, computational learnrng theory continues to pro- 
vide valuable guidance to machine learning researchers who are interested in predicting or 
modifying the learning ability of their algorithms. Besides decision lists, results have been 
obtained for almost all known subclasses of Boolean fimctions, for sets of first-order logical 
sentences (see Chapter 19), and for neural networks (see Chapter 20). The results show that 
the pure indluctive learning problem, where the agent begins with no prior knowledge about 
the target function, is generally very hard. As we show in Chapter 19, the use of prior knowl- 
edge to guide inductive learning makes it possible to learn quite large sets of sentences from 
reasonable numbers of examples, even in a language as expressive as first-order logic. 

This chapter has concentrated on inductive learning of dleterrministic functions from examples. 
The main points were as follows: 

e Learning takes many forms, depending on the nature o~f the performance element, the 
component to be improved, and the available feedback. 

e If the available feedback, either from a teacher or from the environment, provides the 
correct value for the examples, the learning problem is called supervised Ilearning. 
The task, also called inductive learning, is the11 to learn a function from examples 
of its inputs and outputs. Learning a discrete-valued function is called classification; 
learning a continuous function is called regression. 

e Inductnve learning involves finding a consistent hypothesis that agrees with the ex- 
amples. Ockham's razor suggests choosing the simplest consistent hypothesis. The 
difficulty of this task depends on the chosen representation. 

o Decision trees can represent all Boolean functions. The information gain heuristic 
provides an efficient method for finding a simple, consistent decision tree. 

e The performance of a learning algorithm is mealsured by the learning curve, which 
shows the prediction accuracy on the test set as a function of the training set size. 

e Ensemble methods such as boosting often perform better than individual methods. 

e Computational learning theory analyzes the sample complexity and computational 
complexity of inductive learning. There is a tradeoff between the expressiveness of the 
hypothesis language and the ease of learning. 
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BIBLIOGRAPHICAL AND HISTORICAL NOTES 

Chapter 1 outlined the history of philosophical investigations into inductive learning. William 
of Ockham (1280-1349), the most influential philosopher of his century and a major con- 
tributer to medieval epistemology, logic, and metaphysics, is credited with a statement called 
"Ockham's Razor"-in Latin, Entia non sunt multiplicands praeter necessitatem, and in En- 
glish, "Entities are not to be multiplied beyond necessity." Unfortunately, this laudable piece 
of advice is nowhere to be found in his writings in precisely these words. 

EPAM, the "Elementary Perceiver And Memorizer" (Feigenbaum, 1961), was one of 
the earliest systems to use decision trees (or discrimination nets). EPAM was intended 
as a cognitive-simulation model of human concept learning. CLS (Hunt et al., 1966) used 
a heuristic look-ahead method to construct decision trees. ID3 (Quinlan, 1979) added the 
crucial idea of using information content to provide the heuristic function. Information theory 
itself was developed by Claude Shannon to aid in the study of communication (Shannon and 
Weaver, 1949). (Shannon also contributed one of the earliest examples of machine learning, a 
mechanical mouse named Theseus that learned to navigate through a maze by trial and error.) 
The X2 method of tree pruning was described by Quinlan (1986). C4.5, an industrial-strength 
decision tree package, can be found in Quinlan (1993). An independent tradition of decision 
tree learning exists in the statistical literature. Classification and Regression Trees (Breiman 
et al., 1984), known as the "CART book," is the principal reference. 

Many other algorithmic approaches to learning have been tried. The current-best- 
hypothesis approach maintains a single hypothesis, specializing it when it proves too broad 
and generalizing it when it proves too narrow. This is an old idea in philosophy (Mill, 1843). 
Early work in cognitive psychology also suggested that it is a natural form of concept learning 
in humans (Bruner et al., 1957). In AI, the approach is most closely associated with the work 
of Patrick Winston, whose Ph.D. thesis (Winston, 1970) addressed the problem of learning 
descriptions of complex objects. The version space method (Mitchell, 1977, 1982) takes 
a different approach, maintaining the set of all consistent hypotheses and eliminating those 
found to be inconsistent with new examples. The approach was used in the M ~ ~ ~ - D E N D R A L  
expert system for chemistry (Buchanan and Mitchell, 1978), and later in Mitchell's (1983) 
LEX system, which learns to solve calculus problems. A third influential thread was formed 
by the work of Michalski and colleagues on the AQ series of algorithms, which learned sets 
of logical rules (Michalski, 1969; Michalski et al., 1986b). 

Ensemble learning is an increasingly popular technique for improving the performance 
BAGGING of learning algorithms. Bagging (Breiman, 1996), the first effective method, combines hy- 

potheses learned from multiple bootstrap data sets, each generated by subsampling the orig- 
inal data set. The boosting method described in the chapter originated with theoretical work 
by Schapire (1990). The ADABOOST algorithm was developed by Freund and Schapire 
(1996) and analyzed theoretically by Schapire (1999). Friedman et al. (2000) explain boost- 
ing from a statistician's viewpoint. 

Theoretical analysis of learning algorithms began with the work of Gold (1967) on 
identification in the limit. This approach was motivated in part by models of scientific 
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discovery from the philosophy of science (Popper, 1962), but has been applied mainly to the 
problem of learning grammars from example sentences (Osherson et al., 1986). 

Whereas the identification-in-the-limit approach concentrates on eventual convergence, 

KOLMOGOROV COMPLEXITY the study of Kolmogorov complexity or algorithmic ccomplexity, developed indelpendently 
by Solomonoff (1964) and Kolmogorov (1965), attempts to provide a formal definition for the 
notion of siinplicity used in Ockham's razor. To escape the problem that simplicity depends 
on the way in which information is represented, it is proposed that simplicity be measured by 
the length of the shortest program for a universal Turing machine that correctly reproduces 
the observed data. Although there are many possible universal Turing machines, and hence 
many possible "shortest" programs, these programs difl'er in length by at most a constant that 
is independent of the amount of data. This beautiful insight, which essentially shows that any 
initial representation bias will eventually be overcome by the data itself, is marred only by the 
undecidability of computing the length of the shortest program. Approximate measures such 

MINIMUM 
DESCRIPTION 
LENGTH 

as the minimum description length, or MDL (Rissanen, 1984) can be used instead and have 
produced excellent results in practice. The text by Li and Vitanyi (1993) is the best source 
for Kolmogorov complexity. 

Computational learning theory-that is, the theory of PAC-learning-was inaugurated 
by Leslie Valiant (1984). Valiant's work stressed the importance of computational and sample 
complexity. With Michael Kearns (1990), Valiant showed that several concept classes cannot 
be PAC-learned tractably, even though sufficient information is available in the examples. 
Some positive results were obtained for classes such as decislon lists (Rivest. 1987). 

An independent tradition of sample complexity analysis has existed in statistics, begin- 
UNIFORM 
CONVERGENCE ning with the work on uniform convergence theory ('ITapnik and Chervonenkis, 1971). The 
THEORY 
vc DIMENSION so-called VC dimension provides a measure roughly analogous to, but more general than, the 

In IH/ measure obtained from PAC analysis. The VC dimension can be applied to continuous 
function classes, to which standard PAC analysis does not apply. PAC-learning theory and 
VC theory were first connected by the "four Germans" (none of whom actually is German): 
Blumer, Ehrenfeucht, Haussler, and Warmuth (1989). Subsequent developments in VC the- 
ory led to the invention of the support vector machine or SVM (Boser et al., 1992; Vapnik, 
1998), which we describe in Chapter 20. 

A large number of important papers on machine learning have been collected in Read- 
ings in Machine Learning (Shavlik and Dietterich, 1990). The two volumes Machine Learn- 
ing I (Michailski et al., 1983) and Machine Learning 2 (Michalski et al., 1986a) also contain 
many important papers, as well as huge bibliographies. Weiss and Kulikowski (1991) pro- 
vide a broad introduction to function-learning methods from machine learning, statistics, and 
neural networks. The STATLOG project (Michie et al., 1994) is by far the most exhaustive 
investigation into the comparative performance of learning algorithms. Good current research 
in machine learning is published in the annual proceedings of the International Conference 
on Machine Learning and the conference on Neural Information Processing Systems, in Ma- 
(chine Learning and the Journal of Machine Learning Research, and in mainstream A1 jour- 
nals. Work iin computational learning theory also appears in \he annual ACM Workshop on 
Computational Learning Theory (COLT), and is described in the texts by Kearns and Vazirani 
(1994) and Anthony and Bartlett (1999). 
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18.1 Consider the problem faced by an infant learning to speak and understand a language. 
Explain how this process fits into the general learning model, identifying each of the compo- 
nents of the model as appropriate. 

18.2 Repeat Exercise 18.1 for the case of learning to play tennis (or some other sport with 
which you are familiar). Is this supervised learning or reinforcement learning? 

18.3 Draw a decision tree for the problem of deciding whether to move forward at a road 
intersection, given that the light has just turned green. 

18.4 We never test the same attribute twice along one path in a decision tree. Why not? 

18.5 Suppose we generate a training set from a decision tree and then apply decision-tree 
learning to that training set. Is it the case that the learning algorithm will eventually return 
the correct tree as the training set size goes to infinity? Why or why not? 

18.6 A good "straw man" learning algorithm is as follows: create a table out of all the 
training examples. Identify which output occurs most often among the training examples; 
call it d. Then when given an input that is not in the table, just return d. For inputs that are 
in the table, return the output associated with it (or the most frequent output, if there is more 
than one). Implement this algorithm and see how well it does on the restaurant domain. This 
should give you an idea of the baseline for the domain-the minimal performance that any 
algorithm should be able to obtain. 

18.7 Suppose you are running a learning experiment on a new algorithm. You have a data 
set consisting of 25 examples of each of two classes. You plan to use leave-one-out cross- 
validation. As a baseline, you run your experimental setup on a simple majority classifier. (A 
majority classifier is given a set of training data and then always outputs the class that is in 
the majority in the training set, regardless of the input.) You expect the majority classifier to 
score about 50% on leave-one-out cross-validation, but to your surprise, it scores zero. Can 
you explain why? 

18.8 In the recursive construction of decision trees, it sometimes happens that a mixed set 
of positive and negative examples remains at a leaf node, even after all the attributes have 
been used. Suppose that we have p positive examples and n negative examples. 

a. Show that the solution used by DECISION-TREE-LEARNING, which picks the majority 
classification, minimizes the absolute error over the set of examples at the leaf. 

CLASSPROBABILITY b. Show that the class probability p / ( p  + n) minimizes the sum of squared errors. 

18.9 Suppose that a learning algorithm is trying to find a consistent hypothesis when the 
classifications of examples are actually random. There are n Boolean attributes, and examples 
are drawn uniformly from the set of 2n possible examples. Calculate the number of examples 
required before the probability of finding a contradiction in the data reaches 0.5. 
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18.10 Suppose that an attribute splits the set of examples E into subsets Ei and that each 
subset has pi positive examples and ni negative e~ampl~es. Show that the attribute has strictly 
positive information gain unless the ratio p i / (p i  + ni) is the same for all i. 

18.11 Modify DECISION-TREE-LEARNING to include X2-pruning. You might wish to con- 
sult Quinlan (1986) for details. 

\piiiiglp 18.12 The standard DECISION-TREE-LEARNING algorithm described in the chapter does 
not handle cases in which some examples have missing attribute values. 

a. First, we need to find a way to classify such examples, given a decision tree thal. includes 
tests on the attributes for which values can be missing. Suppose that an example X has 
a missing value for attribute A and that the decision tree tests for A at a node that X 
reaches. One way to handle this case is to pretend that the example has all possible 
values for the attribute, but to weight each value according to its frequency among all 
of the examples that reach that node in the decision tree. The classification algorithm 
should follow all branches at any node for which a~ value is missing and should multiply 
the weights along each path. Write a modified classifical-ion algorithm for decision trees 
that has this behavior. 

b. Now modify the information gain calculation so .that in arry given collection of exam- 
ples C at a given node in the tree during the construction process, the examples with 
missing values for any of the remaining attributes are given "as-if" values according to 
the frequencies of those values in the set C. 

18.13 In the chapter, we noted that attributes with many different possible values can cause 
problems with the gain measure. Such attributes tend to split the examples into numerous 
small classes or even singleton classes, thereby appearing to be highly relevant acc~~rding to 
the gain measure. The gain ratio criterion selects attributes according to the ratio between 
their gain and their intrinsic information content-that is, the amount of information con- 
tained in the answer to the question, "What is the value of this attribute?" The gain ratio crite- 
rion therefore tries to measure how efficiently an attribute pro\~ides information on th~e correct 
classification of an example. Write a mathematical expression for the information content of 
an attribute, and implement the gain ratio criterion in DECISION-TREE-LEARNING,. 

18.14 Consider an ensemble learning algorithm that uses simple majority voting among 
M learned hypotheses. Suppose that each hypothesis has error E and that the errors made 
by each hypothesis are independent of the others'. Calculate a formula for the error of the 
ensemble algorithm in terms of M and E ,  and evaluate it for the cases where M = 5, 10, and 
20 and E = 0.1,0.2, and 0.4. If the independence assumption is removed, is it possible for the 
ensemble error to be worse than E? 

18.15 This exercise concerns the expressiveness of decision lists (Section 18.5). 

a. Show that decision lists can represent any Boolean function, if the size of the tests is 
not limited. 

b. Show that if the tests can contain at most k literals each, then decision lists can represent 
any function that can be represented by a decision tree of depth k. 



KNOWLEDGE IN 19 LEARNING 

In which we examine the problem of learning when you know something already. 

In all of the approaches to learning described in the previous three chapters, the idea is to 
construct a function that has the inputloutput behavior observed in the data. In each case, 
the learning methods can be understood as searching a hypothesis space to find a suitable 
function, starting from only a very basic assumption about the form of the function, such as 
"second degree polynomial" or "decision tree" and a bias such as "simpler is better." Doing 
this amounts to saying that before you can learn something new, you must first forget (almost) 
everything you know. In this chapter, we study learning methods that can take advantage 

PRIORKNOWLEDGE of prior knowledge about the world. In most cases, the prior knowledge is represented 
as general first-order logical theories; thus for the first time we bring together the work on 
knowledge representation and learning. 

Chapter 18 defined pure inductive learning as a process of finding a hypothesis that agrees 
with the observed examples. Here, we specialize this definition to the case where the hypoth- 
esis is represented by a set of logical sentences. Example descriptions and classifications will 
also be logical sentences, and a new example can be classified by inferring a classification 
sentence from the hypothesis and the example description. This approach allows for incre- 
mental construction of hypotheses, one sentence at a time. It also allows for prior knowledge, 
because sentences that are already known can assist in the classification of new examples. 
The logical formulation of learning may seem like a lot of extra work at first, but it turns out 
to clarify many of the issues in learning. It enables us to go well beyond the simple learning 
methods of Chapter 18 by using the full power of logical inference in the service of learning. 

Examples and hypotheses 

Recall from Chapter 18 the restaurant learning problem: learning a rule for deciding whether 
to wait for a table. Examples were described by attributes such as Alternate, Bar,  FrilSat ,  
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and so on. In a logical setting, an example is an object that is described by a logical sentence; 
the attributes become unary predicates. Let us generically call the ith example Xi. For 
instance, the first example from Figure 18.3 is described by the sentences 

We will use the notation Di ( X i )  to refer to the description of Xi, where Di can be any logical 
expression taking a single argument. The classification of the object is given by the sentence 

Will Wait (XI) . 

We will use the generic notation Q (X,) if the example is posil.ive, and 1 Q  (X , )  if the example 
is negative. The complete training set is then just the conjuriction of all the description and 
classification sentences. 

The aim of inductive learning in the logical setting is to find an equivalent logical ex- 
pression for the goal predicate Q that we can use to classify examples correctly. Each hypoth- 

CANDIDATE 
DEFINITION esis proposes such an expression, which we call a candidate definition of the goal predicate. 

Using C, to denote the candidate definition, each hypothes~s Hz is a sentence of the form 
'v' x Q ( x )  * C,(x) .  For example, a decision tree asserts that the goal predicate is true 
of an object if only if one of the branches leading to true is satisfied. Thus, the Figure 18.6 
expresses the following logical definition (which we will call H, for future reference): 

'v' r 1Wzll Wazt ( r )  Patrons ( r ,  Some) 
V Patrons(r, Full) A Hungry(r) A Type(r, French) 
V Patrons(r, Full) A Hungry(r) A Type(r, Thaz) (19.1) 

A Frz/Sat(r) 
V Patrons(r, Full) A Hungry(r) A Type(r, Burger) . 

Each hypothesis predicts that a certain set of examples--namely, those that satisfy its candi- 
EXTENSION date definition-will be examples of the goal predicate. This set is called the extension of 

the predicate. Two hypotheses with different extensions are therefore logically inconsistent 
with each other, because they disagree on their predictions for at least one example. If they 
have the same extension, they are logically equivalent. 

The hypothesis space H is the set of all hypotheses ( H I ,  . . . , H,) that the learning algo- 
rithm is designed to entertain. For example, the DECISION-TREE-LEARNING algorithm can 
entertain any decision tree hypothesis defined in terms of the attributes provided; it!; hypoth- 
esis space therefore consists of all these decision trees. Presumably, the learning algorithm 
believes that one of the hypotheses is correct; that is, it believes the sentence 

As the examples arrive, hypotheses that are not consistent with the examples can be ruled 
out. Let us examine this notion of consistency more car~efully. Obviously, if hypothesis Hi is 
consistent with the entire training set, it has to be consistent with each example. What would 
it mean for it to be inconsistent with an example? This can happen in one of two ways: 

FALSE NEGATIVE e An example can be a false negative for the hypotliesis, if the hypothesis says it should 
be negative but in fact it is positive. For instance, the new example X I 3  described by 
Patrons (X13, Full) A Wait(X13, 0-10) A ~ H u n y r y  (X-13) A . . . A Will Wait (X13)  
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would be a false negative for the hypothesis H, given earlier. From H, and the example 
description, we can deduce both WillWait(X13), which is what the example says, 
and 1 WzllWait(X13), which is what the hypothesis predicts. The hypothesis and the 
example are therefore logically inconsistent. 

FALSE POSITIVE An example can be a false positive for the hypothesis, if the hypothesis says it should 
be positive but in fact it is negative.' 

If an example is a false positive or false negative for a hypothesis, then the example and the 
hypothesis are logically inconsistent with each other. Assuming that the example is a correct 
observation of fact, then the hypothesis can be ruled out. Logically, this is exactly analo- 
gous to the resolution rule of inference (see Chapter 9), where the disjunction of hypotheses 
corresponds to a clause and the example corresponds to a literal that resolves against one of 
the literals in the clause. An ordinary logical inference system therefore could, in principle, 
learn from the example by eliminating one or more hypotheses. Suppose, for example, that 
the example is denoted by the sentence 11, and the hypothesis space is Hl V H2 V H3 V H4. 
Then if Il is inconsistent with H2 and H3, the logical inference system can deduce the new 
hypothesis space H1 V H4. 

We therefore can characterize inductive learning in a logical setting as a process of 
gradually eliminating hypotheses that are inconsistent with the examples, narrowing down 
the possibilities. Because the hypothesis space is usually vast (or even infinite in the case of 
first-order logic), we do not recommend trying to build a learning system using resolution- 
based theorem proving and a complete enumeration of the hypothesis space. Instead, we will 
describe two approaches that find logically consistent hypotheses with much less effort. 

Current-best-hypothesis search 

CURRENT-BEST HYPOTHESIS The idea behind current-best-hypothesis search is to maintain a single hypothesis, and to 
adjust it as new examples arrive in order to maintain consistency. The basic algorithm was 
described by John Stuart Mill (1843), and may well have appeared even earlier. 

Suppose we have some hypothesis such as H,, of which we have grown quite fond. 
As long as each new example is consistent, we need do nothing. Then along comes a false 
negative example, X13. What do we do? Figure 19.l(a) shows H, schematically as a region: 
everything inside the rectangle is part of the extension of H,. The examples that have actually 
been seen so far are shown as "+" or "-", and we see that H, correctly categorizes all the 
examples as positive or negative examples of Will Wait. In Figure 19.l(b), a new example 
(circled) is a false negative: the hypothesis says it should be negative but it is actually positive. 

GENERALIZATION The extension of the hypothesis must be increased to include it. This is called generalization; 
one possible generalization is shown in Figure 19.l(c). Then in Figure 19.l(d), we see a false 
positive: the hypothesis says the new example (circled) should be positive, but it actually is 
negative. The extension of the hypothesis must be decreased to exclude the example. This is 

SPECIALIZATION called specialization; in Figure 19.l(e) we see one possible specialization of the hypothesis. 

The tenns "false positive" and "false negative" are used in medicine to describe erroneous results from lab 
tests. A result is a false positive if it indicates that the patient has the disease when in fact no disease is present. 
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Figure 19.1 (a) A consistent hypothesis. (b) A false negative. (c) The hypothesis is gen- 
eralized. (d) A false positive. (e) The hypothesis is specialized. J 

The "more general than" and "more specific than" relations between hypotheses provide the 
logical structure on the hypothesis space that makes efficient search possible. 

We can now specify the CURRENT-B EST-LEARNING algorithm, shown in Figure 19.2. 
Notice that each time we consider generalizing or specializing the hypothesis, we miust check 
for consistency with the other examples, because an arbitrary increaseldecrease in the exten- 
sion might includelexclude previously seen negativelpositive exaimples. 

function CURRENT-BEST-LEARNING(~X~~~~~S) returns a hypothesis 

H c any hypothesis consistent with the first example in examples 
for each remaining example in examples  do 

if e is false positive for H then 
H t choose a specialization of H consistent with examples 

else if e is false negative for H then 
H + choose a generalization of H consistent with examples 

if no consistent specialization/generalization can be found then fail 
return H 

Figure 19.2 The current-best-hypothesis learning algorithm. It searches for a consistent 
hypothesis and backtracks when no consistent specialization/generalization can be found. 

We have defined generalization and specialization as operations that change the exten- 
sion of a hypothesis. Now we need to determine exactly how they can be implemented as 
syntactic operations that change the candidate definition associated with the hypothesis, so 
that a prograin can carry them out. This is done by first noting that generalization and. special- 
ization are also logical relationships between hypotheses. If hypothesis HI, with definition 
C1, is a generalization of hypothesis H2 with definition C2, then we must have 

't x C2(x) =+ Cl (x) . 
Therefore in order to construct a generalization of Hz,  we simply need to find a defini- 
tion Cl that is logically implied by C2. This is easily done. For example, if C2(x) is 
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Alternate(x) A Patrons(x, Some), then one possible generalization is given by Cl ( x )  - 
Patrons(x, Some). This is called dropping conditions. Intuitively, it generates a weaker 
definition and therefore allows a larger set of positive examples. There are a number of other 
generalization operations, depending on the language being operated on. Similarly, we can 
specialize a hypothesis by adding extra conditions to its candidate definition or by removing 
disjuncts from a disjunctive definition. Let us see how this works on the restaurant example, 
using the data in Figure 18.3. 

The first example X1 is positive. Alternate(X1) is true, so let the initial hypothesis be 

HI : V x  Will Wait(x)  H Alternate(x) . 

The second example X2  is negative. HI predicts it to be positive, so it is a false positive. 
Therefore, we need to specialize H I .  This can be done by adding an extra condition 
that will rule out X2. One possibility is 

H2 : V x  Will Wait ( x )  # Alternate(x) A Patrons(x, Some) 

The third example X g  is positive. H2 predicts it to be negative, so it is a false negative. 
Therefore, we need to generalize H2. We drop the Alternate condition, yielding 

H3 : V x Will Wait(x)  ++ Patrons ( x ,  Some) 

The fourth example X g  is positive. H3 predicts it to be negative, so it is a false negative. 
We therefore need to generalize H3. We cannot drop the Patrons condition, because 
that would yield an all-inclusive hypothesis that would be inconsistent with X2.  One 
possibility is to add a disjunct: 

H4 : V x  Will Wait ( x )  ($ Patrons(x, Some) 
V (Patrons(x, Full) A Fri /Sat(x))  

Already, the hypothesis is starting to look reasonable. Obviously, there are other possibilities 
consistent with the first four examples; here are two of them: 

Hi  : V x  Will Wait(x)  # 1 WaitEstimate(x, 30-60) . 

H i  : 'd x Will Wait ( x )  # Patrons ( x ,  Some) 
V (Patrons ( x ,  Full) A WaitEstimate ( x ,  10-30)) . 

The CURRENT-BEST-LEARNING algorithm is described nondeterministically, because at any 
point, there may be several possible specializations or generalizations that can be applied. The 
choices that are made will not necessarily lead to the simplest hypothesis, and may lead to an 
unrecoverable situation where no simple modification of the hypothesis is consistent with all 
of the data. In such cases, the program must backtrack to a previous choice point. 

The CURRENT-BEST-LEARNING algorithm and its variants have been used in many 
machine learning systems, starting with Patrick Winston's (1970) "arch-learning" program. 
With a large number of instances and a large space, however, some difficulties arise: 

1. Checking all the previous instances over again for each modification is very expensive. 
2. The search process may involve a great deal of backtracking. As we saw in Chapter 18, 

hypothesis space can be a doubly exponentially large place. 
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Least-commitment search 

Backtracking arises because the current-best-hypothesi~s approach has to choose a particular 
hypothesis as its best guess even though it does not have enough data yet to be wre of the 
choice. What we can do instead is to keep around all and only those hypotheses that are 
consistent with all the data so far. Each new instance will either have no effect or will get 
rid of some of the hypotheses. Recall that the original hypothesis space can be viewed as a 
disjunctive sentence 

H l V H 2 V H  3 . . . V H n .  

As various hypotheses are found to be inconsistent with the examples, this disjunction shrinks, 
retaining only those hypotheses not ruled out. Assuming that the original hypothesis space 
does in fact contain the right answer, the reduced disjunction must still contain the right an- 
swer because only incorrect hypotheses have been removed. The set of hypotheses remaining 

VERSIONSPACE is called the version space, and the learning algorithm (sketched in Figure 19.3) is called the 
CANDIDATE 
ELIMINATION version space learning algorithm (also the candidate ellimination algorithm). 

function VERSION-SPACE-LEARNING(~X~~~~~S) retur~ns a version space 
local variables: V, the version space: the set of all hypotheses 

V c the set of all hypotheses 
for each example e in examples do 

if V is not empty then V + VERSION-SPACE-UPDATE('V, e )  
return V 

function VERSION-SPACE-UPDATE( V, e) returns an upldated version space 

V c {h E V : h is consistent with e) 

Figure 19.3 The version space learning algorithm. 11: finds a subset of V that is consistent 
with the examples. 

One important property of this approach is that it is incremental: one never has to 
go back and reexamine the old examples. All remaining hypotheses are guaranteed to be 
consistent with them anyway. It is also a least-commiltment algorithm because it makes no 
arbitrary choices (cf. the partial-order planning algorithm in Chapter 11). But there is an 
obvious problem. We already said that the hypothesis space is enormous, so how can we 
possibly write down this enormous disjunction? 

The following simple analogy is very helpful. Mow do you represent all the real num- 
bers between 1 and 2? After all, there is an infinite number of them! The answer is to use an 
interval representation that just specifies the boundaries of the set: [1,2]. It works because we 
have an ordering on the real numbers. 

We alslo have an ordering on the hypothesis space, namely, generalization/specialization. 
This is a pal-tial ordering, which means that each boundary will not be a point but rather a 

BOUNDARY SET set of hypotheses called a boundary set. The great thing is that we can represent the entire 
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This regian all inconsistent 

More general 

I 
More specific 

I 

This region all inconsistent 

I Figure 19.4 The version space contains all hypotheses consistent with the examples. I 

G-SET version space using just two boundary sets: a most general boundary (the G-set) and a most 
S-SET specific boundary (the S-set). Everything in between is guaranteed to be consistent with the 

examples. Before we prove this, let us recap: 

The current version space is the set of hypotheses consistent with all the examples so 
far. It is represented by the S-set and G-set, each of which is a set of hypotheses. 
Every member of the S-set is consistent with all observations so far, and there are no 
consistent hypotheses that are more specific. 
Every member of the G-set is consistent with all observations so far, and there are no 
consistent hypotheses that are more general. 

We want the initial version space (before any examples have been seen) to represent all possi- 
ble hypotheses. We do this by setting the G-set to contain Due (the hypothesis that contains 
everything), and the S-set to contain False (the hypothesis whose extension is empty). 

Figure 19.4 shows the general structure of the boundary set representation of the version 
space. To show that the representation is sufficient, we need the following two properties: 

1. Every consistent hypothesis (other than those in the boundary sets) is more specific than 
some member of the G-set, and more general than some member of the S-set. (That is, 
there are no "stragglers" left outside.) This follows directly from the definitions of S 
and G. If there were a straggler h, then it would have to be no more specific than any 
member of G, in which case it belongs in G; or no more general than any member of 
S, in which case it belongs in S .  

2. Every hypothesis more specific than some member of the G-set and more general than 
some member of the S-set is a consistent hypothesis. (That is, there are no "holes" be- 
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tween the boundaries.) Any h between S and G must reject all the negative examples 
rejected by each member of G (because it is more specific), and must accept all the pos- 
itive examples accepted by any member of S (because it is more general). Thus, h must 
agree with all the examples, and therefore cannot be inconsistent. Figure 19.5 shows 
the si1:uation: there are no known examples outside S but inside G, so any hypothesis 
in the gap must be consistent. 

We have therefore shown that if S and G are maintained according to their definitions, then 
they provide a satisfactory representation of the version space. The only remaining problem 
is how to update S and G for a new example (the job of the VERSION-SPACE-UPDATE 

function). This may appear rather complicated at first, but from the definitions and with the 
help of Figure 19.4, it is not too hard to reconstruct the algorithm. 

1 Figure 19.5 The extensions of the members of G and S. No known examples lie in 
between the two sets of boundaries. 

We need to worry about the members Si and Gi of the S- and G-sets. For each one, the 
new instance may be a false positive or a false negative. 

I .  False positive for Si: This means Si is too general, but there are no consistent special- 
izations of Si (by definition), so we throw it out ad the S-set. 

2. False negative for Si: This means Si is too specific, so we replace it by all its immediate 
generalizations, provided they are more specific t.han some member of G. 

3. False positive for Gi: This means Gi is too general, so we replace it by all its immediate 
specializations, provided they are more general th~an some member of S. 

4. False negative for Gi: This means Gi is too specific, but there are no consistent gener- 
alizations of Gi (by definition) so we throw it out of the G-set. 

We continue these operations for each new instance until one of three things happens: 

1. We have exactly one concept left in the version space, in which case we return it as the 
unique hypothesis. 

2. The version space collapses-either S or G becomes empty, indicating that there are 
no con~sistent hypotheses for the training set. This is the same case as the failure of the 
simple version of the decision tree algorithm. 
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3. We run out of examples with several hypotheses remaining in the version space. This 
means the version space represents a disjunction of hypotheses. For any new example, 
if all the disjuncts agree, then we can return their classification of the example. If they 
disagree, one possibility is to take the majority vote. 

We leave as an exercise the application of the VERSION-SPACE-LEARNING algorithm to the 
restaurant data. 

There are two principal drawbacks to the version-space approach: 

If the domain contains noise or insufficient attributes for exact classification, the version 
space will always collapse. 

If we allow unlimited disjunction in the hypothesis space, the S-set will always contain 
a single most-specific hypothesis, namely, the disjunction of the descriptions of the 
positive examples seen to date. Similarly, the G-set will contain just the negation of the 
disjunction of the descriptions of the negative examples. 

For some hypothesis spaces, the number of elements in the S-set of G-set may grow 
exponentially in the number of attributes, even though efficient learning algorithms exist 
for those hypothesis spaces. 

To date, no completely successful solution has been found for the problem of noise. The 
problem of disjunction can be addressed by allowing limited forms of disjunction or by in- 

GENERnLJzAT'oN HIERARCHY cluding a generalization hierarchy of more general predicates. For example, instead of 
using the disjunction WaitEstimate(x, 30-60) V WaitEstimate(x, >60), we might use the 
single literal Long Wait(x). The set of generalization and specialization operations can be 
easily extended to handle this. 

The pure version space algorithm was first applied in the M ~ ~ ~ - D E N D R A L  system, 
which was designed to learn rules for predicting how molecules would break into pieces in 
a mass spectrometer (Buchanan and Mitchell, 1978). M ~ ~ ~ - D E N D R A L  was able to generate 
rules that were sufficiently novel to warrant publication in a journal of analytical chernistry- 
the first real scientific knowledge generated by a computer program. It was also used in the 
elegant LEX system (Mitchell et al., 1983), which was able to learn to solve symbolic integra- 
tion problems by studying its own successes and failures. Although version space methods 
are probably not practical in most real-world learning problems, mainly because of noise, 
they provide a good deal of insight into the logical structure of hypothesis space. 

The preceding section described the simplest setting for inductive learning. To understand the 
role of prior knowledge, we need to talk about the logical relationships among hypotheses, 
example descriptions, and classifications. Let Descriptions denote the conjunction of all the 
example descriptions in the training set, and let Classifications denote the conjunction of all 
the example classifications. Then a Hypothesis that "explains the observations" must satisfy 
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the followiizg property (recall that k means "logically entails"): 

Hypothesis A Descrzptions k Classifications . (19.3) 
ENTAILMENT 
CONSTRAINT We call this kind of relationship an entailment constraint, in which Hypothesis is the "un- 

known." Pure inductive learning means solving this constraint, where Hypotheszs is drawn 
from some predefined hypothesis space. For example, if we consider a decision tree as a 
logical formula (see Equation (19.1) on page 679), then a decision tree that is consistent with 
all the examples will satisfy Equation (19.3). If we place no restrictions on the logical form 
of the hypothesis, of course, then Hypotheszs = Classzficatzons also satisfies the constraint. 
Ockham7s razor tells us to prefer small, consistent hypotheses, so we try to do better than 
simply memorizing the examples. 

This simple knowledge-free picture of inductive learning persisted until the early 1980s. 
The modem approach is to design agents that already kitow something and are trying to learn 
some more This may not sound like a terrifically deep insight, but it makes quite a difference 
to the way we design agents. It might also have some relevance to our theories albout how 
science itself works. The general idea is shown schematically in Figure 19.6. 

Figure 19.6 A cumulative learning process uses, and adds to, its stock of background 
knowledge over time. 

If we want to build an autonomous learning agent that uses background knowledge, the 
agent must have some method for obtaining the background knowledge in the first place, in 
order for it to be used in the new learning episodes. This method rnust itself be a learning 
process. The agent's life history will therefore be characterized by cumulative, or incremen- 
tal, development. Presumably, the agent could start out with nothing, performing inductions 
in vacuo like a good little pure induction program. But once it has eaten from the Tree of 
Knowledge, it can no longer pursue such naive speculations and. should use its background 
knowledge to learn more and more effectively. The question is then how to actually do this. 

Some simple examples 

Let US consider some commonsense examples of learning with background knowledge. Many 
apparently rational cases of inferential behavior in the face of observations clearly do not 
follow the simple principles of pure induction. 

Sometimes one leaps to general conclusions after only one observation. Gary Larson 
once drew a cartoon in which a bespectacled caveman, Zog, is roasting his lizard on 
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the end of a pointed stick. He is watched by an amazed crowd of his less intellectual 
contemporaries, who have been using their bare hands to hold their victuals over the fire. 
This enlightening experience is enough to convince the watchers of a general principle 
of painless cooking. 

r Or consider the case of the traveller to Brazil meeting her first Brazilian. On hearing 
him speak Portuguese, she immediately concludes that Brazilians speak Portuguese, yet 
on discovering that his name is Fernando, she does not conclude that all Brazilians are 
called Fernando. Similar examples appear in science. For example, when a freshman 
physics student measures the density and conductance of a sample of copper at a par- 
ticular temperature, she is quite confident in generalizing those values to all pieces of 
copper. Yet when she measures its mass, she does not even consider the hypothesis that 
all pieces of copper have that mass. On the other hand, it would be quite reasonable to 
make such a generalization over all pennies. 

r Finally, consider the case of a pharmacologically ignorant but diagnostically sophisti- 
cated medical student observing a consulting session between a patient and an expert 
internist. After a series of questions and answers, the expert tells the patient to take a 
course of a particular antibiotic. The medical student infers the general rule that that 
particular antibiotic is effective for a particular type of infection. 

These are all cases in which the use of background knowledge allows much faster learning 
than one might expect from a pure induction program. 

Some general schemes 

In each of the preceding examples, one can appeal to prior knowledge to try to justify the 
generalizations chosen. We will now look at what kinds of entailment constraints are operat- 
ing in each case. The constraints will involve the Background knowledge, in addition to the 
Hypothesis and the observed Descriptions and Classifications. 

In the case of lizard toasting, the cavemen generalize by explaining the success of the 
pointed stick: it supports the lizard while keeping the hand away from the fire. From this 
explanation, they can infer a general rule: that any long, rigid, sharp object can be used to toast 
small, soft-bodied edibles. This kind of generalization process has been called explanation- 

EXPLANATION 
BASED 
LEARNING 

based learning, or EBL. Notice that the general rule follows logically from the background 
knowledge possessed by the cavemen. Hence, the entailment constraints satisfied by EBL are 
the following: 

Hypothesis A Descrzptions I= Classificatzons 
Background Hypothesis . 

Because EBL uses Equation (19.3), it was initially thought to be a better way to learn from 
examples. But because it requires that the background knowledge be sufficient to explain 
the Hypothesis, which in turn explains the observations, the agent does not actually learn 
anything factually new from the instance. The agent could have derived the example from 
what it already knew, although that might have required an unreasonable amount of compu- 
tation. EBL is now viewed as a method for converting first-principles theories into useful, 
special-purpose knowledge. We describe algorithms for EBL in Section 19.3. 
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The situation of our traveler in Brazil is quite different, for she cannot necessarily ex- 
plain why Fernando speaks the way he does, unless she knows her Papal bulls. Moreover, 
the same generalization would be forthcoming from a traveler entirely ignorant of colonial 
history. The relevant prior knowledge in this case is that, within any given country, most 
people tend to speak the same language; on the other hand, Fernando is not assumed to be 
the name sf all Brazilians because this kind of regularity does not hold for names. Similarly, 
the freshma.n physics student also would be hard put to explain the particular values that she 
discovers for the conductance and density of copper. Slhe does know, however, that the mate- 
rial of which an object is composed and its temperature together determine its con~ductance. 

RELEVANCE In each case, the prior knowledge Background concerns the relevance of a set of features to 
the goal predicate. This knowledge, together with the obsen~ations, allows the agent to infer 
a new, general rule that explains the observations: 

Hypothesis A Descriptions I= ClasszficaiFions , 
(19.4) 

Background A Descrzptions A Classifications + ,Hypothesis . 
RELEVANCE-BASED We call this kind of generalization relevance-based learning, or RBL (although the name is LEARNING 

not standard). Notice that whereas RBL does make usie of the content of the observations, it 
does not produce hypotheses that go beyond the logical content of the background knowledge 
and the observations. It is a deductive form of learning and cannot by itself account for the 
creation of new knowledge starting from scratch. 

In the case of the medical student watching the expert, we assume that the student's 
prior knowledge is sufficient to infer the patient's disease D from the symptoms. This is 
not, however, enough to explain the fact that the doctor prescribes a particular medicine M .  
The student needs to propose another rule, namely, that Ad generally is effective against 
D. Given this rule and the student's prior knowledge, the student can now explain why the 
expert prescribes M in this particular case. We can generalize this example to come up with 
the entailment constraint: 

Background A Hypothesis A Descriptions I= c7lassijications . (19.5) 

That is, the background knowledge and the new hypothesis combine to explain the examples. 
As with pure inductive learning, the learning algorithm should propose hypotheses that are as 
simple as possible, consistent with this constraint. Algorithms that satisfy constraint (19.5) 

KNOWLEDGE-BASED 
INDUCTIVE 
LEARNING 

are called knowledge-based inductive learning, or KBIL, algorithms. 
KBIL algorithms, which are described in detail in Section 19.5, have been studied 

~ ~ $ ~ ~ ~ $ M : ~ I C  mainly in the field of inductive logic programming, or ILP. In ILP systems, prior knowl- 
edge plays two key roles in reducing the complexity of learning: 

1. Because any hypothesis generated must be consistent with the prior knowledge as well 
as with the new observations, the effective hypothesis space size is reduced .to include 
only those theories that are consistent with what is already known. 

2. For any given set of observations, the size of the hypothesis required to construct an 
explanation for the observations can be much reduced, because the prior knowledge 
will be available to help out the new rules in explaining the observations. The smaller 
the hypothesis, the easier it is to find. 
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In addition to allowing the use of prior knowledge in induction, ILP systems can formulate 
hypotheses in general first-order logic, rather than in the restricted attribute-based language 
of Chapter 18. This means that they can learn in environments that cannot be understood by 
simpler systems. 

As we explained in the introduction to this chapter, explanation-based learning is a method for 
extracting general rules from individual observations. As an example, consider the problem 
of differentiating and simplifying algebraic expressions (Exercise 9.15). If we differentiate 
an expression such as x2 with respect to X ,  we obtain 2X. (Notice that we use a capital 
letter for the arithmetic unknown X ,  to distinguish it from the logical variable x.) In a logical 
reasoning system, the goal might be expressed as ~ ~ ~ ( ~ e r i v a t i v e ( ~ ~ ,  X )  = d, KB), with 
solution d = 2X. 

Anyone who knows differential calculus can see this solution "by inspection" as a result 
of practice in solving such problems. A student encountering such problems for the first time, 
or a program with no experience, will have a much more difficult job. Application of the 
standard rules of differentiation eventually yields the expression 1 x (2 x ( x ( ~ ~ ' ) ) ) ,  and 
eventually this simplifies to 2X. In the authors7 logic programming implementation, this 
takes 136 proof steps, of which 99 are on dead-end branches in the proof. After such an 
experience, we would like the program to solve the same problem much more quickly the 
next time it arises.. 

MEMOIZATION The technique of memoization has long been used in computer science to speed up 
programs by saving the results of computation. The basic idea of memo functions is to 
accumulate a database of inputloutput pairs; when the function is called, it first checks the 
database to see whether it can avoid solving the problem from scratch. Explanation-based 
learning takes this a good deal further, by creating general rules that cover an entire class 
of cases. In the case of differentiation, memoization would remember that the derivative of 
x2 with respect to X is 2X, but would leave the agent to calculate the derivative of Z2  with 
respect to Z from scratch. We would like to be able to extract the general rule2 that for any 
arithmetic unknown u, the derivative of u2 with respect to u is 2u. In logical terms, this is 
expressed by the rule 

Arithmetic Unknowa(u) + ~ e r i v a t i v e ( u ~ ,  u) = 2u . 

If the knowledge base contains such a rule, then any new case that is an instance of this rule 
can be solved immediately. 

This is, of course, merely a trivial example of a very general phenomenon. Once some- 
thing is understood, it can be generalized and reused in other circumstances. It becomes an 
"obvious" step and can then be used as a building block in solving problems still more com- 
plex. Alfred North Whitehead (191 I), co-author with Bertrand Russell of Principia Mathe- 

Of course, a general rule for un can also be produced, but the current example suffices to make the point. 
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matica, wrote "Civilization advances by extending the number of important operations that 
we can do without thinking about them," perhaps himself applying EBL to his understanding 
of events such as Zog's discovery. If you have understood the basic idea of the differenti- 
ation example, then your brain is already busily trying to extract the general principles of 
explanation-based learning from it. Notice that you hadn't already invented EBL before you 
saw the example. Like the cavemen watching Zog, you (and we) needed an example before 
we could generate the basic principles. This is because explaining why something is a good 
idea is mucli easier than coming up with the idea in the first place. 

Extracting general rules from examples 

The basic idea behind EBL is first to construct an explanation of the observation using prior 
knowledge, and then to establish a definition of the cla.ss of cases for which the saime expla- 
nation structure can be used. This definition provides  the basis for a rule covering all of the 
cases in the class. The "explanation" can be a logical proof, but more generally it can be any 
reasoning or problem-solving process whose steps are well defined. The key is to be able to 
identify the necessary conditions for those same steps to apply to another case. 

We will use for our reasoning system the simple backward-chaining theorem prover 
described in Chapter 9. The proof tree for ~ e r i v a t i v e ( ~ ~ ,  X) = 2X is too large to use as an 
example, so we will use a simpler problem to illustrate the generalization method. Suppose 
our problerri is to simplify 1 x (0 + X ) .  The knowledge base includes the following rules: 

Rewrite(u, v )  A Simplify(v, w) + Simplzfy(u, w) . 
Primitive ( u )  ==+- Simp Lify ( u ,  u) . 
A~ithmetic Unknown ( u )  + Primitive ( u )  . 
Number ( u )  + Primitive ( u )  . 
Rewrite(1 x u ,  u )  . 
Rewrite(0 + u ,  u )  . 

The proof that the answer is X is shown in the top half of Figure 19.7. The EBL method 
actually conlstructs two proof trees simultaneously. The second proof tree uses a variabilized 
goal in which the constants from the original goal are replaced by variables. As the original 
proof proce~eds, the variabilized proof proceeds in step, using exactly the same rule applica- 
tions. This could cause some of the variables to become instantiated. For example, in order 
to use the rule Rewrite(1 x u ,  u ) ,  the variable x in the subgoal Rewrite(x x (y + z ) ,  v )  must 
be bound to 1. Similarly, y must be bound to 0 in the subgoal Rewrite(y + z ,  v') in order to 
use the rule Rewrite(0 + u ,  u ) .  Once we have the generalized proof tree, we take the leaves 
(with the necessary bindings) and form a general rule fior the goal predicate: 

Rewrite(1 x (0 + z ) ,  0 + z )  A Rewrite(0 + z ,  z )  A Arithmetic Unknown(z) 
+ Simplify(1 x (0 + z ) ,  z )  . 

Notice that the first two conditions on the left-hand side are true regardless of the value of z. 
We can therefore drop them from the rule, yielding 

ArithmeticUnknown(z) + Szmplify(1 x (0 $- z ) ,  z )  
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Rewrite(1 x (O+X),v) 

Yes. Iv/O+Xl 

Rewrite(O+X,vf) 

Yes, { v ' / X ]  

Figure 19.7 Proof trees for the simplification problem. The first tree shows the proof for 
the original problem instance, from which we can derive 

I 

ArithmeticUnknown(X) 

I Arithmetic Unknown(z) =+ Simplify(1 x (0 + z), z) 

Simplify(x x Cy+z),w) 

The second shows the proof for a problem instance with all constants replaced by variables, 
from which we can derive a variety of other rules. 

Yes, { } 

In general, conditions can be dropped from the final rule if they impose no constraints on the 
variables on the right-hand side of the rule, because the resulting rule will still be true and 
will be more efficient. Notice that we cannot drop the condition ArithmeticUnknown(z),  
because not all possible values of x are arithmetic unknowns. Values other than arithmetic 
unknowns might require different forms of simplification: for example, if z were 2 x 3, then 
the correct simplification of 1 x (0 + (2 x 3 ) )  would be 6 and not 2 x 3. 

To recap, the basic EBL process works as follows: 

1. Given an example, construct a proof that the goal predicate applies to the example using 
the available background knowledge. 

2. In parallel, construct a generalized proof tree for the variabilized goal using the same 
inference steps as in the original proof. 

3. Construct a new rule whose left-hand side consists of the leaves of the proof tree and 
whose right-hand side is the variabilized goal (after applying the necessary bindings 
from the generalized proof). 

4. Drop any conditions that are true regardless of the values of the variables in the goal. 

Rewrite(x x Cy+z),v) 1 ~impl i f~(y+z ,w)  1 
Yes, {x/l, v / y + z ]  

Simplzfi(z, w) 

Yes, { y / O ,  i ~ ' / z }  { w / z )  

Primitive(z) 
I 
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Improving efficiency 

The generalized proof tree in Figure 19.7 actually yields more than one generalized rule. For 
example, if we terminate, or prune, the growth of the right-hand branch in the proof tree 
when it reaches the Primitive step, we get the rule 

Prirnitive(z) + Simplify(1 x (0 + z ) ,  z )  . 

This rule is as valid as, but more general than, the rule using Arithmetic Unknown, because 
it covers cases where z is a number. We can extract a still more general rule by pruning after 
the step Simplify(y + 2,  w ) ,  yielding the rule 

Simplzfy(y + z ,  w )  + Simplify(1 x ( y  + x ) ,  w )  . 

In general, a rule can be extracted from any partial subtree of the generalized proof tree. Now 
we have a problem: which of these rules do we choose? 

The choice of which rule to generate comes down to the question of efficiency. There 
are three factors involved in the analysis of efficiency gains from EBL: 

1. Adding large numbers of rules can slow down the reasoning process, because the in- 
ference mechanism must still check those rules even in cases where they do riot yield a 
solution. In other words, it increases the branching factor in the search space. 

2. To compensate for the slowdown in reasoning, tlhe derived rules must offer significant 
increases in speed for the cases that they do cover. These increases come about mainly 
because the derived rules avoid dead ends that would otherwise be taken, but also be- 
cause they shorten the proof itself. 

3. Deriv~ed rules should be as general as possible, SCI that they apply to the largest possible 
set of cases. 

A common approach to ensuring that derived rules are efficient is to insist on the operational- 
OPERATIONALITY ity of each subgoal in the rule. A subgoal is operational if it is "easy" to solve. For example, 

the subgoal Primitive(z) is easy to solve, requiring at most two steps, whereas th~e subgoal 
Simplify(y + z ,  w) could lead to an arbitrary amount of inference, depending on the values 
of y and z.  If a test for operationality is carried out at each step in the construction of the 
generalized proof, then we can prune the rest of a branch as soon as an operational subgoal is 
found, keeping just the operational subgoal as a conjur~ct of  he new rule. 

Unfortunately, there is usually a tradeoff between operationality and generality. More 
specific subgoals are generally easier to solve but cover fewer cases. Also, ope]-ationality 
is a matter of degree: one or 2 steps is definitely operational, but what about 110 or loo? 
Finally, the cost of solving a given subgoal depends om what other rules are available in the 
knowledge base. It can go up or down as more rules are added. Thus, EBL systems really 
face a very complex optimization problem in trying to maximize the efficiency of a given 
initial knowledge base. It is sometimes possible to derive a mathematical model of the effect 
on overall efficiency of adding a given rule and to use this model to select the best rule to 
add. The analysis can become very complicated, however, especially when recursive rules 
are involved. One promising approach is to address the problem of efficiency empirically, 
simply by adding several rules and seeing which ones are useful and actually speed things up. 
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Empirical analysis of efficiency is actually at the heart of EBL. What we have been 
calling loosely the "efficiency of a given knowledge base" is actually the average-case com- 
plexity on a distribution of problems. By generalizing from past example problems, EBL 
makes the knowledge base more eficient for the kind of problems that it is reasonable to 
expect. This works as long as the distribution of past examples is roughly the same as for 
future examples-the same assumption used for PAC-learning in Section 18.5. If the EBL 
system is carefully engineered, it is possible to obtain significant speedups. For example, a 
very large Prolog-based natural language system designed for speech-to-speech translation 
between Swedish and English was able to achieve real-time performance only by the appli- 
cation of EBL to the parsing process (Samuelsson and Rayner, 1991). 

Our traveler in Brazil seems to be able to make a confident generalization concerning the lan- 
guage spoken by other Brazilians. The inference is sanctioned by her background knowledge, 
namely, that people in a given country (usually) speak the same language. We can express 
this in first-order logic as  follow^:^ 

(Literal translation: "If x and y have the same nationality n and x speaks language 1,  then y 
also speaks it.") It is not difficult to show that, from this sentence and the observation that 

Nationality(Fernando, Brazil) A Language(Fernand0, Portuguese) , 
the following conclusion is entailed (see Exercise 19.1): 

Nationality (x, Brazil) + Language ( x ,  Portuguese) . 

Sentences such as (19.6) express a strict form of relevance: given nationality, language 
is fully determined. (Put another way: language is a function of nationality.) These sentences 

FUNCTIONAL are called functional dependencies or determinations. They occur so commonly in certain 
DETERMINATIONS kinds of applications (e.g., defining database designs) that a special syntax is used to write 

them. We adopt the notation of Davies (1985): 

Nationality ( x ,  n)  + Language(x, 1 )  

As usual, this is simply a syntactic sugaring, but it makes it clear that the determination is 
really a relationship between the predicates: nationality determines language. The relevant 
properties determining conductance and density can be expressed similarly: 

Material(x, m) A Temperature(x, t )  F Conductance(x, p) ; 
Material(x, m)  A Temperature(x, t )  F Density (x, d)  . 

The corresponding generalizations follow logically from the determinations and observations. 

We assume for the sake of simplicity that a person speaks only one language. Clearly, the rule also would have 
to be amended for countries such as Switzerland and India. 
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Determining the hypothesis space 

Although the determinations sanction general conclusions concerning all Brazilians, or all 
pieces of copper at a given temperature, they cannot, of course, yield a general predictive 
theory for all nationalities, or for all temperatures and materials, from a single example. 
Their main (effect can be seen as limiting the space of hypotheses that the learning agent need 
consider. In predicting conductance, for example, one need consider only material and tem- 
perature and can ignore mass, ownership, day of the week, the current president, and so on. 
Hypotheses can certainly include terms that are in turn determined by material and temper- 
ature, such as molecular structure, thermal energy, or free-electron density. Determinations 
specib a suficient basis vocabulary from which to construct hypotlzeses concerning the target 
predicate. This statement can be proven by showing that a given determination is logically 
equivalent to a statement that the correct definition of the target predicate is one of the set of 
all definitioins expressible using the predicates on the left-hand side of the determination. 

Intuitively, it is clear that a reduction in the hypothesis space size should make it eas- 
ier to learn the target predicate. Using the basic results of computational learning theory 
(Section 18.5), we can quantify the possible gains. First, recall that for Boolean Functions, 
log(lH1) examples are required to converge to a reasonable hypothesis, where jH1 is the size 
of the hypothesis space. If the learner has n Boolean features with which to construct hy- 
potheses, then, in the absence of further restrictions, JEII = 0 ( 2 " ) ,  so the number of exam- 
ples is 0 ( 2 n ) .  If the determination contains d predicates in th~e left-hand side, the learner will 
require only ~ ( 2 ~ )  examples, a reduction of 0 ( 2 n - d ) .  For biased hypothesis spaces, such as 
a conjunctively biased space, the reduction will be less dramatic, but still significant. 

Learning and using relevance information 

As we stated in the introduction to this chapter, prior knowledge is useful in learning, but it too 
has to be learned. In order to provide a complete story of relevance-based learning, we must 
therefore provide a learning algorithm for determinations. 'The learning algorithm we now 
present is based on a straightforward attempt to find the simplest determination consistent 
with the observations. A determination P + Q says that if any examples match on P, then 
they must also match on Q. A determination is therefore consistent with a set of examples 
if every pail. that matches on the predicates on the left-hand side also matches on the target 
predicate-that is, has the same classification. For example, suppose we have the following 
examples of conductance measurements on material samples: 

Copper 

100 Lead 0.04 
26 Lead 0.05 



696 Chapter 19. Knowledge in Learning 

function MINIMAL-CONSISTENT-DET(E, A) returns a set of attributes 
inputs: E, a set of examples 

A, a set of attributes, of size n 

forii-0, . . . ,  ndo 
for each subset Ai of A of size i do 

if CONSISTENT-DET?(A~, E) then return Ai 

function CONSISTENT-DET?(A, E) returns a h-uth-value 
inputs: A, a set of attributes 

E, a set of examples 
local variables: H. a hash table 

for each example e in E do 
if some example in H has the same values as e for the attributes A 

but a different classification then return false 
store the class of e in H, indexed by the values for attributes A of the example e 

return true 

Figure 19.8 An algorithm for finding a minimal consistent determination. 

The minimal consistent determination is Material A Temperature > Conductance. There 
is a nonminimal but consistent determination, namely, Mass A Size A Temperature > 
Conductance. This is consistent with the examples because mass and size determine density 
and, in our data set, we do not have two different materials with the same density. As usual, 
we would need a larger sample set in order to eliminate a nearly correct hypothesis. 

There are several possible algorithms for finding minimal consistent determinations. 
The most obvious approach is to conduct a search through the space of determinations, check- 
ing all determinations with one predicate, two predicates, and so on, until a consistent deter- 
mination is found. We will assume a simple attribute-based representation, like that used 
for decision-tree learning in Chapter 18. A determination d will be represented by the set 
of attributes on the left-hand side, because the target predicate is assumed fixed. The basic 
algorithm is outlined in Figure 19.8. 

The time complexity of this algorithm depends on the size of the smallest consistent 
determination. Suppose this determination has p attributes out of the n total attributes. Then 
the algorithm will not find it until searching the subsets of A of size p. There are (F) = O(nP) 
such subsets; hence the algorithm is exponential in the size of the minimal determination. It 
turns out that the problem is NP-complete, so we cannot expect to do better in the general 
case. In most domains, however, there will be sufficient local structure (see Chapter 14 for a 
definition of locally structured domains) that p will be small. 

Given an algorithm for learning determinations, a learning agent has a way to construct 
a minimal hypothesis within which to learn the target predicate. For example, we can combine 
MINIMAL-CONSISTENT-DET with the DECISION-TREE-LEARNING algorithm. This yields 
a relevance-based decision-tree learning algorithm RBDTL that first identifies a minimal 
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1 d RBDTL -- 
DTL . - - - - - - . 

0.4 1-- 
0 20 40 60 80 100 120 140 

Training set size 

Figure 19.9 A performance comparison between RBDTL 

depends on only 5 of 16 attributes. 
DECIS~ON-TREE-LEARNING on randomly generatled data for a target function that 

set of relevant attributes and then passes this set to the decision tree algorithm for learning. 
Unlike DECISION-TREE-LEARNING, RBDTL simultaneously learns and uses relevance in- 
formation in order to minimize its hypothesis space. We expect that RBDTL will learn faster 
than DECISION-TREE-LEARNING, and this is in fact the case. Figure 19.9 shows the learning 
performance for the two algorithms on randomly generated data for a function that depends 
on only 5 of 16 attributes. Obviously, in cases where all the available attributes are relevant, 
RBDTL will show no advantage. 

DECLARATIVE BIAS This section has only scratched the surface of the: field of declarative bias, which aims 
to understand how prior knowledge can be used to identify the appropriate hypothesis space 
within which to search for the correct target definition. There are many unanswered questions: 

How can the algorithms be extended to handle noise? 

Can we handle continuous-valued variables? 

How can other kinds of prior knowledge be used, besides determinations? 

How (can the algorithms be generalized to cover any first-order theory, rather than just 
an attribute-based representation? 

Some of these questions are addressed in the next section. 

Inductive logic programming (ILP) combines inductive: methods with the power of first-order 
representations, concentrating in particular on the relpresentati~on of theories as logic pro- 
g r a m ~ . ~  It lhas gained popularity for three reasons. First, IL,P offers a rigorous approach to 

It might be appropriate at this point for the reader to refer to Chapter 9 for some of the underlying concepts, 
including Horn clauses, conjunctive normal form, unification, and resolution. 
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Zmhr - Four-helical up-and-down bundle lomd - EF-Hand 

(a) (b) 

Figure 19.10 (a) and (b) show positive and negative examples, respectively, of the 
"four-helical up-and-down bundle" concept in the domain of protein folding. Each 
example structure is coded into a logical expression of about 100 conjuncts such as 
TotalLength (D2mhr, 118) A NumberHelices (D2mhr, 6) A. . .. From these descriptions and 
from classifications such as Fold(F0~~-HELICAL-UP-AND-DOWN-BUNDLE, D2mhr), 
the inductive logic programming system PROGOL (Muggleton, 1995) learned the following 
rule: 

Fold(Fou~-HELICAL-UP-AND-DOWN-BUNDLE, p) e 
Helix(p, h l )  A Length(hl, HIGH) A Position(p, h l ,  n )  
A ( 1  5 n < 3) A Adjacent(p, h l ,  h z )  A Helix(p, ha) . 

This kind of rule could not be learned, or even represented, by an attribute-based mechanism 
such as we saw in previous chapters. The rule can be translated into English as 

The protein P has fold class "Four helical up and down bundle" if it contains a 
long helix hl at a secondary structure position between 1 and 3 and hl is next to 
a second helix. 

the general knowledge-based inductive learning problem. Second, it offers complete algo- 
rithms for inducing general, first-order theories from examples, which can therefore learn 
successfully in domains where attribute-based algorithms are hard to apply. An example is 
in learning how protein structures fold (Figure 19.10). The three-dmensional configuration 
of a protein molecule cannot be represented reasonably by a set of attributes, because the 
configuration inherently refers to relationships between objects, not to attributes of a single 
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object. First-order logic is an appropriate language for describing the relationships. Third, 
inductive logic programming produces hypotheses that are (relatively) easy for humans to 
read. For example, the English translation in Figure 19.10 can be scrutinized and criticized 
by working biologists. This means that inductive logic programming systems can participate 
in the scien1:ific cycle of experimentation, hypothesis generation, debate, and refutation. Such 
participatioin would not be possible for systems that generate "black-box" classifiers, such as 
neural networks. 

An example 

Recall from Equation (19.5) that the general knowledge-based induction problem is to "solve" 
the entailment constraint 

Background A Hypothesis A Descriptions + (7lasszfications 

for the unknown Hypothesis, given the Background kaowledge and examples described by 
Descriptions and Classifications. To illustrate this, we will use the problem of learning 
family relafionships from examples. The descriptions will consist of an extended family 
tree, described in terms of Mother, Father, and Married relations and Male and Female 
properties. As an example, we will use the family tree from Exercise 8.1 1, shown here in 
Figure 19.11. The corresponding descriptions are as follows: 

Father (Philip, Charles) Father (Philip, Anne) . . . 
Mother(Mum, Margaret) Mother(Mum, Elizabeth) . . . 
Married(Diana, Charles) Married(Elixabeth, Philip) . . . 
Male (Philip) Male( Charles) . . .  
Fenaale (Beatrice) Female (Margaret:) . . . 

The sentences in Classifications depend on the target concept being learned. We might want 
to learn Grandparent, BrotherInLaw, or Ancestor, for example. For Grandparent, the 
complete set of Classifications contains 20 x 20 = 400 conjuncts of the form 

Grandparent(Mum, Charles) Grandparent(Elizabeth, Beatrice) . . . 
7 Grandparent(Mum, Harry) 1 Grandparent(Spencer, Peter) . . . 

We could of course learn from a subset of this complet~e set. 

Spencer W Kydd Elizabeth W Philip 

\ &>.- 
Diana W Charles Anne W Mark Andrew W Sarah Edward 

A A /\ 
William Harry Peter Zara Beatrice Eugenie 

Figure 19.11 A typical family tree. 
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The object of an inductive learning program is to come up with a set of sentences for 
the Hypothesis such that the entailment constraint is satisfied. Suppose, for the moment, that 
the agent has no background knowledge: Background is empty. Then one possible solution 
for Hypothesis is the following: 

Grandparent(x, y) [3 z Mother(x, z )  A Mother ( z ,  y)] 
V [3 z Mother(x, z )  A Father(z, y)] 
V [3 z Father(x, z )  A Mother(z, y)] 
V [3 z Father(x, z )  A Father(x, y)] . 

Notice that an attribute-based learning algorithm, such as DECISION-TREE-LEARNING, will 
get nowhere in solving this problem. In order to express Grandparent as an attribute (i.e., a 
unary predicate), we would need to make pairs of people into objects: 

Grandparent((Mum, Charles)) . . . 

Then we get stuck in trying to represent the example descriptions. The only possible attributes 
are horrible things such as 

FzrstElementIsMotherOfElixabeth((Mum, Charles)) . 

The definition of Grandparent in terms of these attributes simply becomes a large disjunc- 
tion of specific cases that does not generalize to new examples at all. Attribute-based learning 
algorithms are incapable of learning relational predicates. Thus, one of the principal advan- 
tages of ILP algorithms is their applicability to a much wider range of problems, including 
relational problems. 

The reader will certainly have noticed that a little bit of background knowledge would 
help in the representation of the Grandparent definition. For example, if Background in- 
cluded the sentence 

Parent ( x ,  y) H [Mother(x, y) V Father(x, y)] , 
then the definition of Grandparent would be reduced to 

Grandparent(x, y) * [3 z Parent ( x ,  z )  A Parent ( z ,  y)] . 

This shows how background knowledge can dramatically reduce the size of hypotheses re- 
quired to explain the observations. 

It is also possible for ILP algorithms to create new predicates in order to facilitate the 
expression of explanatory hypotheses. Given the example data shown earlier, it is entirely 
reasonable for the ILP program to propose an additional predicate, which we would call 
"Parent," in order to simplify the definitions of the target predicates. Algorithms that can 

CoNsTRUCTIVE INDUCTION generate new predicates are called constructive induction algorithms. Clearly, constructive 
induction is a necessary part of the picture of cumulative learning sketched in the introduction. 
It has been one of the hardest problems in machine learning, but some ILP techniques provide 
effective mechanisms for achieving it. 

In the rest of this chapter, we will study the two principal approaches to ILP. The first 
uses a generalization of decision-tree methods, and the second uses techniques based on 
inverting a resolution proof. 
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Top-down inductive learning methods 

The first approach to ILP works by starting with a very general rule and gradually specializing 
it so that it fits the data. This is essentially what happens in decision-tree learning, where a 
decision tree is gradually grown until it is consistent with the observations. To do ILP we 
use first-order literals instead of attributes, and the hypothesis is a set of clauses instead of a 
decision tree. This section describes FOIL (Quinlan, 1990), one of the first ILP programs. 

Suppose we are trying to learn a definition of the Grandfzther(x, y) predicate, using 
the same fanily data as before. As with decision-tree learning, we can divide the examples 
into positive and negative examples. Positive examples are 

(George, Anne), (Philip, Peter), (Spencer, Harry) : . . 

and negative examples are 

(George, Elizabeth), (Harry, Zara) , (Charles, Philzp) , . . . 
Notice that each example is apair  of objects, because  grandfather is a binary predicate. In 
all, there are 12 positive examples in the family tree and 388 negative examples (all the other 
pairs of people). 

FOIL constructs a set of clauses, each with Grandfather(x, y) as the head. The clauses 
must classify the 12 positive examples as instances of the (:randfather(x, y) relationship, 
while ruling out the 388 negative examples. The clauses are Horn clauses, extended with 
negated literals using negation as failure, as in Prolog. The initial clause has an empty body: 

+ Grandfather(x, y) . 

This clause classifies every example as positive, so it needs to be specialized. We do this by 
adding literals one at a time to the left-hand side. Here are three potential additions: 

Father(%, y)  + Grandfather(x, y) . 
Parent(x, z )  + Grandfather(x, y) . 
Father(x, z )  =+ Grandfather(x, y )  . 

(Notice that we are assuming that a clause defining Parent is already part of the batckground 
knowledge.)l The first of these three clauses incorrectly classifies all of the 12 positive exam- 
ples as negative and can thus be ignored. The second and third agree with all of the positive 
examples, but the second is incorrect on a larger fraction of the negative examples--twice as 
many, because it allows mothers as well as fathers. Hence, we prefer the third clause. 

Now we need to specialize this clause further, to rule out the cases in which x is the 
father of some x ,  but z is not a parent of y. Adding the single literal Parent(z, y) gives 

Father(x, z )  A Parent(z, y) + Grandfather(%, y) , 
which correctly classifies all the examples. FOIL will find (and choose this literal, thereby 
solving the learning task. In general, FOIL will have to search through many unsuccessful 
clauses before finding a correct solution. 

This example is a very simple illustration of how FOIL operates. A sketch of the com- 
plete algorithm is shown in Figure 19.12. Essentially, ithe algorithm repeatedly constructs a 
clause, literal by literal, until it agrees with some subset of the positive examples and none of 
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function For~(examples,  target) returns a set of Horn clauses 
inputs: examples, set of examples 

target, a literal for the goal predicate 
local variables: clauses, set of clauses, initially empty 

while examples contains positive examples do 
clause + N E W - C L A U S E ( ~ ~ ~ ~ ~ ~ ~ ~ ,  target) 
remove examples covered by clause from examples 
add clause to clauses 

return clauses 

function NEW-CLAus~(examples,  target) returns a Horn clause 
local variables: clause, a clause with target as head and an empty body 

1, a literal to be added to the clause 
extended-examples, a set of examples with values for new variables 

eztended-examples +- examples 
while extended-examples contains negative examples do 

1 + CHOOSE-LITERAL(NEW-LITERALS(~~~~~~), extended-examples) 
append 1 to the body of clause 
extended-examples + set of examples created by applying EXTEND-EXAMPLE 

to each example in extended-examples 
return clause 

function E X T E N D - E X A M P L E ( ~ ~ ~ ~ ~ ~ ~ ,  literal) returns 
if example satisfies literal 

then return the set of examples created by extending example with 
each possible constant value for each new variable in literal 

else return the empty set 

Figure 19.12 Sketch of the FOIL algorithm for learning sets of first-order Horn clauses 
from examples. NEW-LITERAL and CHOOSE-LITERAL are explained in the text. 

the negative examples. Then the positive examples covered by the clause are removed from 
the training set, and the process continues until no positive examples remain. The two main 
subroutines to be explained are NEW-LITERALS, which constructs all possible new literals to 
add to the clause, and CHOOSE-LITERAL, which selects a literal to add. 

NEW-LITERALS takes a clause and constructs all possible "useful" literals that could 
be added to the clause. Let us use as an example the clause 

There are three kinds of literals that can be added: 

1. Literals using predicates: the literal can be negated or unnegated, any existing predicate 
(including the goal predicate) can be used, and the arguments must all be variables. Any 
variable can be used for any argument of the predicate, with one restriction: each literal 



Section 19.5. Inductive Logic Programming 703 

must include at least one variable from an earlier literal or from the head of the clause. 
Literals such as Mother(%, u ) ,  Married ( z ,  z ) ,  -1Male ( y ) ,  and Grandfather(v, x) are 
allowed, whereas Married(u, v) is not. Notice that the use of the predicate from the 
head of the clause allows FOIL to learn recursive definitions. 

2. Equality and inequality literals: these relate variables already appearing in the clause. 
For example, we might add z # x. These literals can also include user-specified con- 
stants. For learning arithmetic we might use 0 antd I, and for learning list functions we 
might use the empty list [I. 

3. Arithmetic comparisons: when dealing with functions of continuous variables, literals 
such as x > y and y < z can be added. As in decision-tree learning, a constant 
threshold value can be chosen to maximize the di~scriminatory power of the test. 

The resulting branching factor in this search space is very large (see Exercise 19.6), but FOIL 

can also use type information to reduce it. For example, if the domain included numbers as 
well as people, type restrictions would prevent NEW-LITERALS from generating literals such 
as Parent(x, n), where x is a person and n is a number. 

CHOOSE-LITERAL uses a heuristic somewhat similar to information gain (see page 660) 
to decide which literal to add. The exact details are not so important here, and a number of 
different variations have been tried. One interesting additional feature of FOIL is the use of 
Ockham's razor to eliminate some hypotheses. If a clause becomes longer (according to some 
metric) than the total length of the positive examples that the clause explains, that clause is 
not considered as a potential hypothesis. This technique provides a way to avoid overcom- 
plex clauses that fit noise in the data. For an explanation of the connection between noise and 
clause lengt.h, see page 715. 

FOIL and its relatives have been used to learn a wide variety of definitions. One of the 
most impressive demonstrations (Quinlan and Cameron-Jones, 1993) involved solving a long 
sequence of exercises on list-processing functions fronn Bratko's (1986) Prolog textbook. In 
each case, the program was able to learn a correct defiinition of the function from a1 small set 
of examples, using the previously learned functions as background knowledge. 

Inductive learning with inverse deduction 

The second major approach to ILP involves inverting the normal deductive proof process. 
INVERSE 
RESOLUTION Inverse resolution is based on the observation that if the example Classifications follow 

from Background A Hypothesis A Descriptions, then one must be able to prove this fact by 
resolution (lbecause resolution is complete). If we can "run the proof backward," then we can 
find a Hypothesis such that the proof goes through. Tihe key, then, is to find a way to invert 
the resolution process. 

We will show a backward proof process for inverse resolution that consists of individual 
backward steps. Recall that an ordinary resolution step takes two clauses C1 and C2 and 
resolves them to produce the resolvent C.  An inverse resolution step takes a resolvent C 
and produces two clauses C1 and C2, such that C is the result of resolving C1 and C2. 
Alternatively, it may take a resolvent C and clause C1 and produce a clause C2 such that C 
is the result of resolving C1 and Cz. 
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The early steps in an inverse resolution process are shown in Figure 19.13, where we 
focus on the positive example Grandparent ( George, Anne). The process begins at the end 
of the proof (shown at the bottom of the figure). We take the resolvent C to be empty 
clause (i.e. a contradiction) and C2 to be 1 Grandparent ( George, Anne), which is the nega- 
tion of the goal example. The first inverse step takes C and C2 and generates the clause 
Grandparent(George, Anne) for C1. The next step takes this clause as C and the clause 
Parent(Elizabeth, Anne) as C2, and generates the clause 

1 Parent (Elizabeth, y) V Grandparent (George, y) 

as Cl .  The final step treats this clause as the resolvent. With Parent(George, Elizabeth) as 
C2, one possible clause C1 is the hypothesis 

Parent (x, z )  A Parent ( z ,  y) + Grandparent (x, y) 

Now we have a resolution proof that the hypothesis, descriptions, and background knowledge 
entail the classification Grandparent (George, Anne). 

Clearly, inverse resolution involves a search. Each inverse resolution step is nonde- 
terministic, because for any C ,  there can be many or even an infinite number of clauses 
C1 and C2 that resolve to C. For example, instead of choosing iParent(Elizabeth, y) V 
Grandparent (George, y) for C1 in the last step of Figure 19.13, the inverse resolution step 
might have chosen any of the following sentences: 

1 Parent (Elizabeth, Anne) V Grandparent (George, Anne) . 
lParent(z,  Anne) V Grandparent (George, Anne) . 
1 Parent ( z ,  y) V Grandparent (George, y) . 

(See Exercises 19.4 and 19.5.) Furthermore, the clauses that participate in each step can be 
chosen from the Background knowledge, from the example Descriptions, from the negated 

Figure 19.13 Early steps in an inverse resolution process. The shaded clauses are gen- 
erated by inverse resolution steps from the clause to the right and the clause below. The 
unshaded clauses are from the Descriptions and Classifications. 



Section 19.5. Inductive Logic Programming 705 

Classifications, or from hypothesized clauses that have, already been generated in the inverse 
resolution tree. The large number of possibilities means a large branching factor (and there- 
fore an inefficient search) without additional controls. 12 number of approaches to taming the 
search have been tried in implemented ILP systems: 

I. Redundant choices can be eliminated-for example, by generating only the most spe- 
cific hypotheses possible and by requiring that all the hypothesized clauses be consistent 
with each other, and with the observations. This last criterion would rule out Ithe clause 
1 Parent (x, y )  V Grandparent ( George, y ) ,  listed befolre. 

2. The proof strategy can be restricted. For example, we saw in Chapter 9 that linear 
resolution is a complete, restricted strategy that alllows proof trees to have only a linear 
branching structure (as in Figure 19.13). 

3. The representation language can be restricted, for example by eliminating function sym- 
bols or by allowing only Horn clauses. For instance, PROGOL operates vvith Horn 

INVERSE 
ENTAILMENT clauses using inverse entailment. The idea is to (change the entailment constraint 

Background A Hypothesis A Descriptions + (?lassifications 

to the logically equivalent form 

Background A Descriptions A 1  classification,^ + ~ H y p o t h e s i s .  

From this, one can use a process similar to the normal Prolog Horn-clause deduction, 
with negation-as-failure to derive Hypothesis. B~ecause it is restricted to Horn clauses, 
this is an incomplete method, but it can be more (efficient than full resolution. It is also 
possible to apply complete inference with inverse: entailment Inoue (2001). 

4. Inference can be done with model checking rather than theorem proving. The PROGOL 
system (Muggleton, 1995) uses a form of model checking to limit the search. That 
is, like answer set programming, it generates possible values for logical variables, and 
checks. for consistency. 

5. Inference can be done with ground propositional clauses rather than in first-order logic. 
The LINUS system (LavraC and Dieroski, 1994) works by translating first-order theories 
into p~ropositional logic, solving them with a propositional learning system, and then 
translating back. Working with propositional formulas can be more efficient on some 
problems, as we saw with SATPLAN in Chapter 11. 

Making discoveries with inductive logic prograimming 

An inverse resolution procedure that inverts a complete resolution strategy is, in principle, a 
complete algorithm for learning first-order theories. That is, if some unknown Hypothesis 
generates a set of examples, then an inverse resolution procedure can generate Hypothesis 
from the examples. This observation suggests an inte:resting possibility: Suppose that the 
available examples include a variety of trajectories of falling bodies. Would an inverse reso- 
lution program be theoretically capable of inferring the law of gravity? The answer is clearly 
yes, because the law of gravity allows one to explain the examples, given suitable background 
mathematics. Similarly, one can imagine that electromagnetism, quantum mechanics, and the 
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theory of relativity are also within the scope of ILP programs. Of course, they are also within 
the scope of a monkey with a typewriter; we still need better heuristics and new ways to 
structure the search space. 

One thing that inverse resolution systems will do for you is invent new predicates. This 
ability is often seen as somewhat magical, because computers are often thought of as "merely 
working with what they are given." In fact, new predicates fall directly out of the inverse 
resolution step. The simplest case arises in hypothesizing two new clauses C1 and C2, given 
a clause C. The resolution of C1 and C2 eliminates a literal that the two clauses share; hence, 
it is quite possible that the eliminated literal contained a predicate that does not appear in C .  
Thus, when working backward, one possibility is to generate a new predicate from which to 
reconstruct the missing literal. 

Figure 19.14 shows an example in which the new predicate P is generated in the process 
of learning a definition for Ancestor. Once generated, P can be used in later inverse resolu- 
tion steps. For example, a later step might hypothesize that Mother(x, y )  =+ P ( x ,  y) .  Thus, 
the new predicate P has its meaning constrained by the generation of hypotheses that involve 
it. Another example might lead to the constraint Father(x, y) + P(x, y ) .  In other words, 
the predicate P is what we usually think of as the Parent relationship. As we mentioned 
earlier, the invention of new predicates can significantly reduce the size of the definition of 
the goal predicate. Hence, by including the ability to invent new predicates, inverse resolution 
systems can often solve learning problems that are infeasible with other techniques. 

/ Figure 19.14 An inverse resolution step that generates a new predicate P 

Some of the deepest revolutions in science come from the invention of new predicates 
and functions-for example, Galileo's invention of acceleration or Joule's invention of ther- 
mal energy. Once these terms are available, the discovery of new laws becomes (relatively) 
easy. The difficult part lies in realizing that some new entity, with a specific relationship 
to existing entities, will allow an entire body of observations to be explained with a much 
simpler and more elegant theory than previously existed. 

As yet, ILP systems have not made discoveries on the level of Galileo or Joule, but their 
discoveries have been deemed publishable in the scientific literature. For example, in the 
Journal of Molecular Biology, Turcotte et al. (2001) describe the automated discovery of rules 
for protein folding by the ILP program PROGOL. Many of the rules discovered by PROGOL 
could have been derived from known principles, but most had not been previously published 
as part of a standard biological database. (See Figure 19.10 for an example.). In related 
work, Srinivasan et al. (1994) dealt with the problem of discovering molecular-structure- 
based rules for the mutagenicity of nitroaromatic compounds. These compounds are found in 
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automobile exhaust fumes. For 80% of the compounds in a standard database, it is possible 
to identify four important features, and linear regression on these features outperforms ILP. 
For the remaining 20%, the features alone are not predictive, and ILP identifies relationships 
which allow it to outperform linear regression, neural nets, and decision trees. King et al. 
(1992) showed how to predict the therapeutic efficacy of various drugs from their ~nolecular 
structures. ]For all these examples it appears that both the ability to represent rela.tions and 
to use background knowledge contribute to ILP's high perfa~rmance. The fact that the rules 
found by ILP can be interpreted by humans contributes to the: acceptance of these techniques 
in biology journals rather than just computer science journals. 

ILP has made contributions to other sciences besides biology. One of the most impor- 
tant is natural language processing, where ILP has been used to extract complex relational 
information from text. These results are summarized in Chapter 23. 

This chapter has investigated various ways in which prior knowledge can help an agent to 
learn from new experiences. Because much prior knowledge is expressed in terms of rela- 
tional models rather than attribute-based models, we have also covered systems that allow 
learning of relational models. The important points are: 

0 The use of prior knowledge in learning leads to a picture of cumulative learning, in 
which learning agents improve their learning ability as they acquire more knowledge. 

o Prior knowledge helps learning by eliminating otlherwise consistent hypotheses and by 
"filling in" the explanation of examples, thereby allowin~g for shorter hypotheses. These 
contributions often result in faster learning from fewer examples. 

o Understanding the different logical roles played by prior knowledge, as expiressed by 
entailment constraints, helps to define a variety of leaning techniques. 

e Explanation-based learning (EBL) extracts general rules from single examples by ex- 
plaining the examples and generalizing the explanlation. It provides a deductive method 
turning first-principles knowledge into useful, efficient, special-purpose expertise. 

0 Relevance-based learning (RBL) uses prior knowledge in the form of determinations 
to identify the relevant attributes, thereby generating a reduced hypothesis space and 
speeding up learning. RBL also allows deductive generalizations from single examples. 

e Knowledge-based inductive learning (KBIL) finds inductive hypotheses that explain 
sets of observations with the help of background knowledge. 

o Inductive logic programming (ILP) techniques perform KBIL on knowledge that is 
expressed in first-order logic. ILP methods can learn relational knowledge that is not 
expressible in attribute-based systems. 

o ILP can be done with a top-down approach of refi~ning a very general rule or through a 
bottom-up approach of inverting the deductive process. 

o ILP methods naturally generate new predicates with which concise new theories can be 
expressed and show promise as general-purpose scientific theory formation systems. 
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BIBLIOGRAPHICAL AND HISTORICAL NOTES 

Although the use of prior knowledge in learning would seem to be a natural topic for philoso- 
phers of science, little formal work was done until quite recently. Fact, Fiction, and Forecast, 
by the philosopher Nelson Goodman (1954), refuted the earlier supposition that induction 
was simply a matter of seeing enough examples of some universally quantified proposition 
and then adopting it as a hypothesis. Consider, for example, the hypothesis "All emeralds are 

GRUE grue," where grue means "green if observed before time t ,  but blue if observed thereafter." 
At any time up to t ,  we might have observed millions of instances confirming the rule that 
emeralds are grue, and no disconfirming instances, and yet we are unwilling to adopt the rule. 
This can be explained only by appeal to the role of relevant prior knowledge in the induction 
process. Goodman proposes a variety of different kinds of prior knowledge that might be use- 
ful, including a version of determinations called overhypotheses. Unfortunately, Goodman's 
ideas were never pursued in machine learning. 

EBL had its roots in the techniques used by the STRIPS planner (Fikes et al., 1972). 
When a plan was constructed, a generalized version of it was saved in a plan library and 
used in later planning as a macro-operator. Similar ideas appeared in Anderson's ACT* 
architecture, under the heading of knowledge compilation (Anderson, 1983), and in the 
SOAR architecture, as chunking (Laird et al., 1986). Schema acquisition (DeJong, 1981), 
analytical generalization (Mitchell, 1982), and constraint-based generalization (Minton, 
1984) were immediate precursors of the rapid growth of interest in EBL stimulated by the 
papers of Mitchell et al. (1986) and DeJong and Mooney (1986). Hirsh (1987) introduced 
the EBL algorithm described in the text, showing how it could be incorporated directly into a 
logic programming system. Van Harmelen and Bundy (1988) explain EBL as a variant of the 
partial evaluation method used in program analysis systems (Jones et al., 1993). 

More recently, rigorous analysis has led to a better understanding of the potential costs 
and benefits of EBL in terms of problem-solving speed. Minton (1988) showed that, with- 
out extensive extra work, EBL could easily slow down a program significantly. Tambe et 
al. (1990) found a similar problem with chunking and proposed a reduction in the expressive 
power of the rule language in order to minimize the cost of matching rules against working 
memory. This work has strong parallels with recent results on the complexity of inference 
in restricted versions of first-order logic. (See Chapter 9.) Formal probabilistic analysis of 
the expected payoff of EBL can be found in Greiner (1989) and Subramanian and Feldman 
(1990). An excellent survey appears in Dietterich (1990). 

Instead of using examples as foci for generalization, one can use them directly to solve 
ANALOGICAL 
REASONING new problems, in a process known as analogical reasoning. This form of reasoning ranges 

from a form of plausible reasoning based on degree of similarity (Gentner, 1983), through 
a form of deductive inference based on determinations but requiring the participation of the 
example (Davies and Russell, 1987), to a form of "lazy" EBL that tailors the direction of 
generalization of the old example to fit the needs of the new problem. This latter form of 
analogical reasoning is found most commonly in case-based reasoning (Kolodner, 1993) 
and derivational analogy (Veloso and Carbonell, 1993). 
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Releva~nce information in the form of functional dependencies was first developed in 
the database community, where it is used to structure large sets of attributes into manage- 
able subsets. Functional dependencies were used for ailalogical reasoning by Carbonell and 
Collins (1973) and were given a more logical flavor by Bobrow and Raphael (1974). De- 
pendencies were independently rediscovered and given a full logical analysis by Davies and 
Russell (Dzvies, 1985; Davies and Russell, 1987). Th~ey were used for declarative bias by 
Russell and Grosof (1987). The equivalence of determinations to a restricted-vocabulary hy- 
pothesis space was proved in Russell (1988). Learning algorithms for determinations and 
the improved performance obtained by RBDTL were first shown in the FOCUS algorithm 
in Almuallim and Dietterich (1991). Tadepalli (1993) describes an ingenious algorithm for 
learning with determinations that shows large improvennents in learning speed. 

The idea that inductive learning can be performed by inverse deduction can be traced 
to W. S. Jevons (1874), who wrote, "The study both of Forrnal Logic and of the Theory of 
Probabilities has led me to adopt the opinion that there is no such thing as a distinct method 
of induction as contrasted with deduction, but that induction is simply an inverse employ- 
ment of deduction." Computational investigations began with the remarkable Ph.D. thesis 
by Gordon Plotkin (1971) at Edinburgh. Although Plotkin developed many of the theorems 
and methods that are in current use in ILP, he was discouraged by some undecidability re- 
sults for certain subproblems in induction. MIS (Shapiro, 1981) reintroduced the problem of 
learning logic programs, but was seen mainly as a contribution to the theory of automated 
debugging. Work on rule induction, such as the ID3 (Quinlan, 1986) and CN2 (Clark and 
Niblett, 1989) systems, led to FOIL (Quinlan, 1990), which for the first time allowed practical 
induction of relational rules. The field of relational learning was reinvigorated by Muggle- 
ton and Buntine (1988), whose CIGOL program incorporated a slightly incomplete version 
of inverse resolution and was capable of generating new predicates.5 Wirth and O'Rorke 
(1991) also cover predicate invention. The next major system was GOLEM (Muggleton and 
Feng, 1990), which uses a covering algorithm based on Plotkin's concept of relative least 
general generalization. Where FOIL was top-down, CIGOL and GOLEM worked bottom-up. 
ITOU (Rouveirol and Puget, 1989) and CLINT (De Raedt, 1992) were other systems of that 
era. More recently, PROGOL (Muggleton, 1995) has taken a hybrid (top-down andl bottom- 
up) approach to inverse entailment and has been applied to a number of practical problems, 
particularly in biology and natural language processing. Muggleton (2000) describes an ex- 
tension of PROGOL to handle uncertainty in the form of stochastic logic programs. 

A formal analysis of ILP methods appears in Mulggleton (1991), a large collection of 
papers in Muggleton (1992), and a collection of techniques and applications in the book 
by Lavrai: and Dieroski (1994). Page and Srinivasan (2002) give a more recent overview of 
the field's history and challenges for the future. Early complexity results by Haussler (1989) 
suggested that learning first-order sentences was hopelessly complex. However, with better 
understanding of the importance of various kinds of syntactic restrictions on clauses, positive 
results have been obtained even for clauses with recursion (Dzeroski et al., 1992). Learnabil- 
ity results for ILP are surveyed by Kietz and Dzeroski (1994) and Cohen and Page (1995). 

The inverse resolution method also appears in (Russell, 1986), with a simple algorithm given in a footnote. 
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Although ILP now seems to be the dominant approach to constructive induction, it has 
DISCOVERY 
SYSTEMS not been the only approach taken. So-called discovery systems aim to model the process 

of scientific discovery of new concepts, usually by a direct search in the space of concept 
definitions. Doug Lenat's Automated Mathematician, or AM, (Davis and Lenat, 1982) used 
discovery heuristics expressed as expert system rules to guide its search for concepts and 
conjectures in elementary number theory. Unlike most systems designed for mathematical 
reasoning, AM lacked a concept of proof and could only make conjectures. It rediscovered 
Goldbach's conjecture and the Unique Prime Factorization theorem. AM'S architecture was 
generalized in the EURISKO system (Lenat, 1983) by adding a mechanism capable of rewrit- 
ing the system's own discovery heuristics. EURISKO was applied in a number of areas other 
than mathematical discovery, although with less success than AM. The methodology of AM 
and EURISKO has been controversial (Ritchie and Hanna, 1984; Lenat and Brown, 1984). 

Another class of discovery systems aims to operate with real scientific data to find new 
laws. The systems DALTON, GLAUBER, and STAHL (Langley et al., 1987) are rule-based 
systems that look for quantitative relationships in experimental data from physical systems; 
in each case, the system has been able to recapitulate a well-known discovery from the his- 
tory of science. Discovery systems based on probabilistic techniques-especially clustering 
algorithms that discover new categories-are discussed in Chapter 20. 

19.1 Show, by translating into conjunctive normal form and applying resolution, that the 
conclusion drawn on page 694 concerning Brazilians is sound. 

19.2 For each of the following determinations, write down the logical representation and 
explain why the determination is true (if it is): 

a. Zip code determines the state (U.S.). 

b. Design and denomination determine the mass of a coin. 

c. For a given program, input determines output. 

d. Climate, food intake, exercise, and metabolism determine weight gain and loss. 

e. Baldness is determined by the baldness (or lack thereof) of one's maternal grandfather. 

19.3 Would a probabilistic version of determinations be useful? Suggest a definition. 

19.4 Fill in the missing values for the clauses C1 or Cz (or both) in the following sets of 
clauses, given that C is the resolvent of Cl and Cz: 

a. C = True + P(A, B), C1 = P(x,y) + Q(x, y), Cz =??. 
b. C = True =+ P(A, B), C1 =??, Cz =??. 

c. C = P(x, y) =+ P(x, f (y)), C1 =??, C2 =??. 

If there is more than one possible solution, provide one example of each different kind. 
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\ggiijiEp 19.5 Suppose one writes a logic program that carries out a resolution inference step. That 
is, let Resolve(cl, c2, c) succeed if c is the result of resolving cl and cz. Normally, Resolve 
would be used as part of a theorem prover by calling it with cl and c2 instantiated to par- 
ticular clauses, thereby generating the resolvent c. Now suppose instead that we call it with 
c instantiated and cl and cz uninstantiated. Will this succeed in generating the appropriate 
results of an inverse resolution step? Would you need any special modifications to the logic 
programming system for this to work? 

19.6 Suppose that FOIL is considering adding a literal to a clause using a binary predicate 
P and that previous literals (including the head of the  clause)^ contain five different variables. 

a. How many functionally different literals can be generated? Two literals are functionally 
identical if they differ only in the names of the new variablles that they contain. 

b. Can you find a general formula for the number of different literals with a predicate of 
arity r. when there are n variables previously used? 

c.  Why does FOIL not allow literals that contain no previously used variables? 

19.7 Using the data from the family tree in Figure 19.11, or a subset thereof, apply the FOIL 

algorithm to learn a definition for the Ancestor predicate. 
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In which we view learning as a form of uncertain reasoning from observations. 

Part V pointed out the prevalence of uncertainty in real environments. Agents can 
handle uncertainty by using the methods of probability and decision theory, but first they 
must learn their probabilistic theories of the world from experience. This chapter explains 
how they can do that. We will see how to formulate the learning task itself as a process 
of probabilistic inference (Section 20.1). We will see that a Bayesian view of learning is 
extremely powerful, providing general solutions to the problems of noise, overfitting, and 
optimal prediction. It also takes into account the fact that a less-than-omniscient agent can 
never be certain about which theory of the world is correct, yet must still make decisions by 
using some theory of the world. 

We describe methods for learning probability models-primarily Bayesian networks- 
in Sections 20.2 and 20.3. Section 20.4 looks at learning methods that store and recall specific 
instances. Section 20.5 covers neural network learning and Section 20.6 introduces kernel 
machines. Some of the material in this chapter is fairly mathematical (requiring a basic un- 
derstanding of multivariate calculus), although the general lessons can be understood without 
plunging into the details. It may benefit the reader at this point to review the material in 
Chapters 13 and 14 and to peek at the mathematical background in Appendix A. 

The key concepts in this chapter, just as in Chapter 18, are data and hypotheses. Here, the 
data are evidence-that is, instantiations of some or all of the random variables describing 
the domain. The hypotheses are probabilistic theories of how the domain works, including 
logical theories as a special case. 

Let us consider a very simple example. Our favorite Surprise candy comes in two 
flavors: cherry (yum) and lime (ugh). The candy manufacturer has a peculiar sense of humor 
and wraps each piece of candy in the same opaque wrapper, regardless of flavor. The candy is 
sold in very large bags, of which there are known to be five kinds-again, indistinguishable 
from the outside: 
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hl: 100% cherry 
hB: 75% cherry + 25% lime 
hs: 50% cherry + 50% lime 
hg: 25% cherry + 75% lime 
h5: 100% lime 

Given a new bag of candy, the random variable H (for hypothesis) denotes the type of the 
bag, with possible values hl through h5. H is not directly observable, of course. As the 
pieces of candy are opened and inspected, data are revealed--Dl, D2, . . ., DN, where each 
Di is a random variable with possible values cherry and lime. The basic task faced by the 
agent is to predict the flavor of the next piece of  and:^.' Despite its apparent triviality, this 
scenario serves to introduce many of the major issues. The agent really does need to infer a 
theory of its world, albeit a very simple one. 

BAYESIAN LEARNING Bayesian learning simply calculates the probability of each hypothesis, given the data, 
and makes predictions on that basis. That is, the predlictions are made by using all the hy- 
potheses, weighted by their probabilities, rather than by using just a single "best" h:ypothesis. 
In this way, learning is reduced to probabilistic inference. Let I) represent all the (data, with 
observed vadue d; then the probability of each hypothelsis is obtained by Bayes' rule: 

P(hild) = aP(dJhi )P(hi )  . (20.1) 

Now, suppose we want to make a prediction about an urnknown quantity X .  Then we have 

P(x ld )  = 1 ~ ( x l d ,  hi)P(hild) = C p ( x l h i ) p ( h ,  Id) (20.2) 
i i 

where we have assumed that each hypothesis determines a probability distributio~n over X. 
Thi.s equation shows that predictions are weighted averages over the predictions of the indi- 
vidual hypotheses. The hypotheses themselves are e~s~entially "intermediaries" between the 
raw data and the predictions. The key quantities in the Bayesian approach are the hypothesis 

HYPOTHESISPRIOR prior, P(hi ) ,  and the likelihood of the data under each hypothesis, P(dJ  hi).  
LIKELIHOOD For our candy example, we will assume for the time being that the prior distribution 

over hl , . . . , h5 is given by (0.1,0.2,0.4,0.2,O.l) , as advertised by the manufacturer. The 
I.I.D. likelihood of the data is calculated under the assumption that the observations are i.i.d.-that 

is, independently and identically distributed-so that 

~ ( d l 1 1 ~ )  = 11 ~ ( d j  lhi) . (20.3) 
j 

For example, suppose the bag is really an all-lime bag (h5) and the first 10 candies are all 
lime; then P(dlhs) is 0.51°, because half the candies in an hs bag are lime.2 Figure 20.l(a) 
shows how the posterior probabilities of the five hypotheses change as the sequence of 10 
lime candies is observed. Notice that the probabilities start out at their prior values, so hs 
is initially the most likely choice and remains so after 1 lime candy is unwrapped. After 2 

Statistically sophisticated readers will recognize this scenario as a variant of the urn-and-ball setup. We find 
urns and balls less compelling than candy; furthermore, candy lends itself to other tasks, such as deciding whether 
to trade the bag with a friend-see Exercise 20.3. 

We stated earlier that the bags of candy are very large; otherwise, the i.i.d. assumption fails to hold. Technically, 
it is more correct (but less hygienic) to rewrap each candy after inspection and return it to the hag. 
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Figure 20.1 (a) Posterior probabilities P(hi Idl, . . .  , d N )  from Equation (20.1). The num- 
ber of observations N ranges from 1 to 10, and each observation is of a lime candy. (b) 
Bayesian prediction P ( d N + i  = lime ( d l ,  . . .  , d N )  from Equation (20.2). 

lime candies are unwrapped, h4 is most likely; after 3 or more, h5 (the dreaded all-lime bag) 
is the most likely. After 10 in a row, we are fairly certain of our fate. Figure 20.l(b) shows 
the predicted probability that the next candy is lime, based on Equation (20.2). As we would 
expect, it increases monotonically toward 1. 

The example shows that the true hypothesis eventually dominates the Bayesian predic- 
tion. This is characteristic of Bayesian learning. For any fixed prior that does not rule out the 
true hypothesis, the posterior probability of any false hypothesis will eventually vanish, sim- 
ply because the probability of generating "uncharacteristic" data indefinitely is vanishingly 
small. (This point is analogous to one made in the discussion of PAC learning in Chapter 18.) 
More importantly, the Bayesian prediction is optimal, whether the data set be small or large. 
Given the hypothesis prior, any other prediction will be correct less often. 

The optimality of Bayesian learning comes at a price, of course. For real learning 
problems, the hypothesis space is usually very large or infinite, as we saw in Chapter 18. In 
some cases, the summation in Equation (20.2) (or integration, in the continuous case) can be 
carried out tractably, but in most cases we must resort to approximate or simplified methods. 

A very common approximation-one that is usually adopted in science-is to make pre- 
dictions based on a single most probable hypothesis-that is, an h, that maximizes P(h,Id). 

MAXIMUM A 
POSTERIORI This is often called a maximum a posteriori or MAP (pronounced "em-ay-pee") hypothe- 

sis. Predictions made according to an MAP hypothesis hMAP are approximately Bayesian to 
the extent that P(XJd) rn P(XJhMAp). In our candy example, hMAP = h5 after three lime 
candies in a row, so the MAP learner then predicts that the fourth candy is lime with prob- 
ability 1.0-a much more dangerous prediction than the Bayesian prediction of 0.8 shown 
in Figure 20.1. As more data arrive, the MAP and Bayesian predictions become closer, be- 
cause the competitors to the MAP hypothesis become less and less probable. Although our 
example doesn't show it, finding MAP hypotheses is often much easier than Bayesian learn- 
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ing, because it requires solving an optimization problem instead of a large summation (or 
integration) problem. We will see examples of this later in the chapter. 

In both Bayesian learning and MAP learning, the hypothesis prior P(h,)  plays an im- 
portant role. We saw in Chapter 18 that overfitting can occur when the hypothesis space 
is too expressive, so that it contains many hypotheses lhat fit the data set well. Rather than 
placing an arbitrary limit on the hypotheses to be considered, Bayesian and MAP learning 
methods use the prior to penalize complexity. Typically, more complex hypotheses have a 
lower prior probability-in part because there are usually many more complex hypotheses 
than simple hypotheses. On the other hand, more complex hypotheses have a greater capac- 
ity to fit the data. (In the extreme case, a lookup table can reproduce the data exactly with 
probability 1 .) Hence, the hypothesis prior embodies a trade-off between the complexity of a 
hypothesis and its degree of fit to the data. 

We can see the effect of this trade-off most clearly in the logical case, where H contains 
only deterministic hypotheses. In that case, P(dlh,) is 1 if h, is consistent and 0 otherwise. 
Looking at Equation (20.1), we see that hMAP will then be the simplest logical theory that 
is consistent with the data. Therefore, maximum a posteriori learning provides a natural 
embodiment of Ockham's razor. 

Another insight into the trade-off between complexity and degree of fit is obtained 
by taking the logarithm of Equation (20.1). Choosing hMAp to maximize P(d(h, )  P(h,) 
is equivalent to minimizing 

- log, P(d(h,)  - log2 P(h,) - 
Using the connection between information encoding and probability that we intro~duced in 
Chapter 18, we see that the - logz P(h,)  term equals the number of bits required to specify 
the hypothesis h,. Furthermore, - loga P(dlh,) is the additional number of bits required 
to specify the data, given the hypothesis. (To see this, consider that no bits are required 
if the hypothesis predicts the data exactly-as with h5 and the string of lime candies-and 
log, 1 = 0.) Hence, MAP learning is choosing the hypothesis that provides maximum com- 
pression of the data. The same task is addressed more directly by the minimum description 

MINIMUM 
DESCRIPTION 
LENGTH 

length, or MDL, learning method, which attempts to minimize the size of hypothesis and 
data encodings rather than work with probabilities. 

A final simplification is provided by assuming a uniform prior over the space of hy- 
potheses. In that case, MAP learning reduces to choosing an h, that maximizes P(dIH,). 

MAXIMUM- 
LIKELIHOOD This is called a maximum-likelihood (ML) hypothesis, hML. Maximum-likelihood learning 

is very common in statistics, a discipline in which many researchers distrust the subjective 
nature of hypothesis priors. It is a reasonable approach when there is no reason to prefer one 
hypothesis over another a priori-for example, when all1 hypotheses are equally coinplex. It 
provides a good approximation to Bayesian and MAP learning when the data set is large, 
because the data swamps the prior distribution over hypotheses, but it has problems (as we 
shall see) with small data sets. 
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20.2 LEARNING WITH COMPLETE DATA 

Our development of statistical learning methods begins with the simplest task: parameter 
PARAMETER 
LEARNING learning with complete data. A parameter learning task involves finding the numerical pa- 
COMPLETE DATA rameters for a probability model whose structure is fixed. For example, we might be interested 

in learning the conditional probabilities in a Bayesian network with a given structure. Data 
are complete when each data point contains values for every variable in the probability model 
being learned. Complete data greatly simplify the problem of learning the parameters of a 
complex model. We will also look briefly at the problem of learning structure. 

Maximum-likelihood parameter learning: Discrete models 

Suppose we buy a bag of lime and cherry candy from a new manufacturer whose lime-cherry 
proportions are completely unknown-that is, the fraction could be anywhere between 0 and 
1. In that case, we have a continuum of hypotheses. The parameter in this case, which we 
call 8, is the proportion of cherry candies, and the hypothesis is he. (The proportion of limes 
is just 1 - 8.) If we assume that all proportions are equally likely a priori, then a maximum- 
likelihood approach is reasonable. If we model the situation with a Bayesian network, we 
need just one random variable, Flavor (the flavor of a randomly chosen candy from the bag). 
It has values cherry and lime, where the probability of cherry is 8 (see Figure 20.2(a)). Now 
suppose we unwrap N candies, of which c are cherries and & = N - c  are limes. According 
to Equation (20.3), the likelihood of this particular data set is 

N 
e P(dlhs) = n P(djlhs) = OC . (1 - 8) . 

j=1 
The maximum-likelihood hypothesis is given by the value of 0 that maximizes this expres- 

LOG LIKELIHOOD sion. The same value is obtained by maximizing the log likelihood, 
N 

L(dl hs) = log P ( d  ho) = log P(d j  1 hs) = e log 8 + t log(1 - 8) 
j=1 

(By taking logarithms, we reduce the product to a sum over the data, which is usually easier 
to maximize.) To find the maximum-likelihood value of 0, we differentiate L with respect to 
8 and set the resulting expression to zero: 

e dL(dlhs) - C 
- 

C 
- = 0 + 8 = ---- - 

d8 8 1 - 0  c + &  N '  
In English, then, the maximum-likelihood hypothesis hML asserts that the actual proportion 
of cherries in the bag is equal to the observed proportion in the candies unwrapped so far! 

It appears that we have done a lot of work to discover the obvious. In fact, though, we 
have laid out one standard method for maximum-likelihood parameter learning: 

1. Write down an expression for the likelihood of the data as a function of the parameter(s). 
2. Write down the derivative of the log likelihood with respect to each parameter. 
3. Find the parameter values such that the derivatives are zero. 
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Flavor 0 
(a) 

Figure 20.2 (a) Bayesian network model for the case of candies with an unknown propor- 
tion of cherries and limes. (b) Model for the case where the wrapper color depends (proba- 
bilistically) on the candy flavor. 

The trickiest step is usually the last. In our example, it was trivial, but we will see that in 
many cases we need to resort to iterative solution algorithms or other numerical optimization 
techniques, as described in Chapter 4. The example also illustrates a significant problem 
with maximum-likelihood learning in general: when the data set is small enough that some 
events have not yet been observed-for instance, no cherry candies-the maximum I'ikelihood 
hypothesis assigns zero probability to those events. Various tricks are used to avoid this 
problem, such as initializing the counts for each event to 1 instead of zero. 

Let us look at another example. Suppose this new candy manufacturer wants to give a 
little hint to the consumer and uses candy wrappers colored red and green. The Wrapper for 
each candy is selectedprobabilistically, according to solme unknown conditional distribution, 
depending on the flavor. The corresponding probability model is shown in Figure 20.2(b). 
Notice that it has three parameters: 8, 01, and 02. Wilh these parameters, the likelihood of 
seeing, say, a cherry candy in a green wrapper can be (obtained from the standard semantics 
for Bayesian networks (page 495): 

P(F1avor = cherry, Wrapper = green1 hs,el,e2) 

= P(F1avor = cherry1 he,e,,Bz) P( Wrapper = green I Flavor = cherry, he,ol e 2 )  
= 6 . (1 - 01) . 

Now, we unwrap N candies, of which c are cherries and & are limes. The wrapper counts are 
as follows: 7-, of the cherries have red wrappers and g, have green, while re of the limes have 
red and ge have green. The likelihood of the data is given by 

P(d(hs,s,,e2) = OC(l - 0)" Oy(1 - O1)gc  . By([  - 82)ge . 
This looks pretty horrible, but taking logarithms helps: 

L = [clog 0 + 1 log(1 - O ) ]  + [r, log 81 + g, log(1 - d l ) ]  -1- [re log 0 2  + gg log(1 - 8 2 ) ]  . 

The benefit of taking logs is clear: the log likelihood is the sum of three terms, each of which 
contains a single parameter. When we take derivatives with respect to each parameter and set 
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them to zero, we get three independent equations, each containing just one parameter: 

The solution for Q is the same as before. The solution for Q1, the probability that a cherry 
candy has a red wrapper, is the observed fraction of cherry candies with red wrappers, and 
similarly for 82. 

These results are very comforting, and it is easy to see that they can be extended to any 
Bayesian network whose conditional probabilities are represented as tables. The most impor- 
tant point is that, with complete data, the maximum-likelihood parameter learning problem 
for a Bayesian network decomposes into separate learning problems, one for each parame- 
tez3 The second point is that the parameter values for a variable, given its parents, are just the 
observed frequencies of the variable values for each setting of the parent values. As before, 
we must be careful to avoid zeroes when the data set is small. 

Naive Bayes models 

Probably the most common Bayesian network model used in machine learning is the naive 
Bayes model. In this model, the "class" variable C (which is to be predicted) is the root 
and the "attribute" variables Xi are the leaves. The model is "naive7' because it assumes that 
the attributes are conditionally independent of each other, given the class. (The model in 
Figure 20.2(b) is a naive Bayes model with just one attribute.) Assuming Boolean variables, 
the parameters are 

Q=P(C=true),Qil= P(Xi = truelC= true), Qi2 = P(Xi= trueIC=false). 

The maximum-likelihood parameter values are found in exactly the same way as for Fig- 
ure 20.2(b). Once the model has been trained in this way, it can be used to classify new exam- 
ples for which the class variable C is unobserved. With observed attribute values XI, . . . , x,, 
the probability of each class is given by 

P(C/xl,. . . ; rc,) = tr P(C) ~ P ( , ~ C )  . 
Z 

A deterministic prediction can be obtained by choosing the most likely class. Figure 20.3 
shows the learning curve for this method when it is applied to the restaurant problem from 
Chapter 18. The method learns fairly well but not as well as decision-tree learning; this is 
presumably because the true hypothesis-which is a decision tree-is not representable ex- 
actly using a naive Bayes model. Naive Bayes learning turns out to do surprisingly well in a 
wide range of applications; the boosted version (Exercise 20.5) is one of the most effective 
general-purpose learning algorithms. Naive Bayes learning scales well to very large prob- 
lems: with n Boolean attributes, there are just 2n + 1 parameters, and no search is required 
to$nd hML, the maximum-likelihood naive Bayes hypothesis. Finally, naive Bayes learning 
has no difficulty with noisy data and can give probabilistic predictions when appropriate. 

See Exercise 20.7 for the nontabulated case, where each parameter affects several conditional probabilities. 
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Figure 20.3 The learning curve for naive Bayes learning applie~d to the restaurant problem 
from Chapter 18; the learning curve for decision-tree learning is shown for comparison. 

Maximum-likelihood parameter learning: Con1;inuons models 

Continuous probability models such as the linear-Gaussian model were introduced in Sec- 
tion 14.3. Because continuous variables are ubiquitous in real-world applications, it is im- 
portant to know how to learn continuous models from data. The principles for maximum- 
likelihood learning are identical to those of the discrete case. 

Let us begin with a very simple case: learning the parameters of a Gaussian density 
function on a single variable. That is, the data are generated als follows: 

The parameters of this model are the mean ,Y and the standard deviation a. (Notice that the 
normalizing "constant" depends on a, so we cannot ignore it.) Let the observed values be 
XI, . . . , XN. Then the log likelihood is 

N (xj-~ ,12 1 -- 
N 

(x.i - 1-1) 
2 

L = c log - e 202 = ~ ( - l o ~ \ & - - l o g o ) -  C 
j=1 f in j = 1  2a2 

Setting the derivatives to zero as usual, we obtain 

That is, the maximum-likelihood value of the mean is the sample average and the maximum- 
likelihood value of the standard deviation is the square root (of the sample variance. Again, 
these are comforting results that confirm "commonsense" practice. 

Now consider a linear Gaussian model with one c~ontinuous parent X and a continuous 
child Y. As explained on page 502, Y has a Gaussian distribution whose mean depends 
linearly on the value of X and whose standard deviation is fixed. To learn the conditional 
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Figure 20.4 (a) A linear Gaussian model described as y = Olx + O2 plus Gaussian noise 
with fixed variance. (b) A set of 50 data points generated from this model. 

distribution P ( Y  IX) ,  we can maximize the conditional likelihood 

Here, the parameters are 01, 02, and o. The data are a collection of (xj, yj) pairs, as illustrated 
in Figure 20.4. Using the usual methods (Exercise 20.6), we can find the maximum-likelihood 
values of the parameters. Here, we want to make a different point. If we consider just the 
parameters O1 and Oa that define the linear relationship between x and y, it becomes clear that 
maximizing the log likelihood with respect to these parameters is the same as minimizing the 
numerator in the exponent of Equation (20.5): 

N 
2 E = C ( y j  - ( $ 1 ~ ~  + & ) )  . 

j = 1  

ERROR The quantity (yj - (B1xj + 02)) is the error for (zj, yj)-that is, the difference between the 
actual value yj  and the predicted value (01 x j  + $2)-SO E is the well-known sum of squared 
errors. This is the quantity that is minimized by the standard linear regression procedure. ERRORS 

LINEARREGRESSION NOW we can understand why: minimizing the sum of squared errors gives the maximum- 
likelihood straight-line model, provided that the data are generated with Gaussian noise of 
$xed variance. 

Bayesian parameter learning 

Maximum-likelihood learning gives rise to some very simple procedures, but it has some 
serious deficiencies with small data sets. For example, after seeing one cherry candy, the 
maximum-likelihood hypothesis is that the bag is 100% cherry (i.e., 0 = 1.0). Unless one's 
hypothesis prior is that bags must be either all cherry or all lime, this is not a reasonable 
conclusion. The Bayesian approach to parameter learning places a hypothesis prior over the 
possible values of the parameters and updates this distribution as data arrive. 
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Figure 20.5 Examples of the beta[a, b] distribution for different values of [a, b]. 

The candy example in Figure 20.2(a) has one parameter, 8: the probability tliat a ran- 
domly selected piece of candy is cherry flavored. In th~e Bayesian view, 8 is the (unknown) 
value of a random variable 0; the hypothesis prior is just the prior distribution P ( 8 ) .  Thus, 
P(O = 8)  is the prior probability that the bag has a fraction 8 of cherry candies. 

If the parameter 8 can be any value between 0 and 1, then P(O) must be a continuous 
distribution that is nonzero only between 0 and 1 and that integrates to 1. The uniform density 
P(8 )  = U [ O , l ]  (8 )  is one candidate. (See Chapter 13.) It turns out that the uniform density 

BETADISTRIBUTIONS is a member of the family of beta distributions. Each beta distribution is defined by two 
HYPERPARAMETER hyperparameters4 a and b such that 

beta[a, b] (8 )  = a oa-' (1 - o)~- '  , (20.6) 

for 8 in the range [0, 11. The normalization constant a depends on a and b. (See Exer- 
cise 20.8.) Figure 20.5 shows what the distribution looks like for various values of a and b. 
The mean value of the distribution is a / ( a  + b), so larger values of a suggest a belief that O 
is closer to 1 than to 0. Larger values of a + b make the distribution more peaked, suggest- 
ing greater certainty about the value of O. Thus, the beta family provides a useful range of 
possibilities for the hypothesis prior. 

Besides its flexibility, the beta family has another wonclerfi~l property: if O has a prior 
beta[a, b], then, after a data point is observed, the posterior distribution for O is also a beta 

CONJUGATE PRIOR distribution. The beta family is called the conjugate prior for the family of distributions for 
a Boolean variable.' Let's see how this works. Suppose we observe a cherry candy; then 

P(81D1 = cherry) = a P ( D 1  = cherrylQ)P(8:) 

= a' 8 .  beta[a, bj(8) = a' 8 .  Oa-'(1 - B ) ~ - '  
= a' Oa (1 - 8)  b-l = beta[a + 1, b] ( 8 )  . 

They are called hyperparameters because they parameterize a distribution over 8, which is itself a parameter. 
Other conjugate priors include the Dirichlet family for the parameters of a discrete multivalued distribution 

and the Normal-Wishart family for the parameters of a Gaussian distribution. See Bernardo and Smith (1994). 
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Thus, after seeing a cherry candy, we simply increment the a parameter to get the posterior; 
similarly, after seeing a lime candy, we increment the b parameter. Thus, we can view the a 

VIRTUALCOUNTS and b hyperparameters as virtual counts, in the sense that a prior beta[a, b] behaves exactly 
as if we had started out with a uniform prior beta[l ,  11 and seen a - 1 actual cherry candies 
and b - 1 actual lime candies. 

By examining a sequence of beta distributions for increasing values of a and b, keeping 
the proportions fixed, we can see vividly how the posterior distribution over the parameter O 
changes as data arrive. For example, suppose the actual bag of candy is 75% cherry. Fig- 
ure 20.5(b) shows the sequence beta[3,1], beta[6,2], beta[30, lo]. Clearly, the distribution 
is converging to a narrow peak around the true value of O.  For large data sets, then, Bayesian 
learning (at least in this case) converges to give the same results as maximum-likelihood 
learning. 

The network in Figure 20.2(b) has three parameters, 0, 81, and 02, where O1 is the 
probability of a red wrapper on a cherry candy and 82 is the probability of a red wrapper on a 
lime candy. The Bayesian hypothesis prior must cover all three parameters-that is, we need 

PARAMETER to specify P(O,  01, 0 2 ) .  Usually, we assume parameter independence: 

With this assumption, each parameter can have its own beta distribution that is updated sep- 
arately as data arrive. 

Once we have the idea that unknown parameters can be represented by random variables 
such as O,  it is natural to incorporate them into the Bayesian network itself. To do this, we 
also need to make copies of the variables describing each instance. For example, if we have 
observed three candies then we need Flavorl, Flavor2, Flavor3 and Wrapperl, Wrapper2, 
Wrapper3. The parameter variable O determines the probability of each Flavori variable: 

Similarly, the wrapper probabilities depend on O1 and 0 2 ,  For example, 

P( Wrapperi = red (Flavori = cherry, O1 = 01)  = O1 . 

Now, the entire Bayesian learning process can be formulated as an inference problem in a 
suitably constructed Bayes net, as shown in Figure 20.6. Prediction for a new instance is 
done simply by adding new instance variables to the network, some of which are queried. 
This formulation of learning and prediction makes it clear that Bayesian learning requires no 
extra "principles of learning." Furthermore, there is, in essence, just one learning algorithm, 
i.e., the inference algorithm for Bayesian networks. 

Learning Bayes net structures 

So far, we have assumed that the structure of the Bayes net is given and we are just trying to 
learn the parameters. The structure of the network represents basic causal knowledge about 
the domain that is often easy for an expert, or even a naive user, to supply. In some cases, 
however, the causal model may be unavailable or subject to dispute-for example, certain 
corporations have long claimed that smoking does not cause cancer-so it is important to 
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Figure 20.6 A Bayesian network that corresponds lo a Bayesian learning process. Poste- 
rior distributions for the parameter variables 0, el, and e2 can be inferred from their prior 
distributions and the evidence in the Flavor, and Wra,pper variables. 

-- 

understand how the structure of a Bayes net can be learned Fronn data. At present, structural 
learning algorithms are in their infancy, so we will give only a brief sketch of the main ideas. 

The most obvious approach is to search for a good model. We can start with a model 
containing no links and begin adding parents for each node, fitting the parameters with the 
methods we have just covered and measuring the accuracy of the resulting model. Alterna- 
tively, we can start with an initial guess at the structure and use hill-climbing or simulated 
annealing search to make modifications, retuning the parameters after each change in the 
structure. Modifications can include reversing, adding, or deleting arcs. We must not in- 
troduce cycles in the process, so many algorithms assume that an ordering is given for the 
variables, and that a node can have parents only among those nlodes that come earlier in the 
ordering Gust as in the construction process Chapter 14). For full generality, we also need to 
search over possible orderings. 

There are two alternative methods for deciding when a good structure has been found. 
The first is to test whether the conditional independence assertions implicit in the structure are 
actually satisfied in the data. For example, the use of a naive Bayes model for the restaurant 
problem assumes that 

P(Fr i /Sa t ,  B a r (  Will  W a i t )  = P(Fri /Sa t  ( Will Wai t )P (Bar (  Will W a i t )  

and we can check in the data that the same equation holds between the corresponding condi- 
tioilal frequencies. Now, even if the structure describes the true causal nature of the domain, 
statistical fluctuations in the data set mean that the equation will never be satisfied exactly, 
so we need to perform a suitable statistical test to see if there is sufficient evidence that the 
independence hypothesis is violated. The complexity of the resulting network will depend 
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on the threshold used for this test-the stricter the independence test, the more links will be 
added and the greater the danger of overfitting. 

An approach more consistent with the ideas in this chapter is to the degree to which 
the proposed model explains the data (in a probabilistic sense). We must be careful how we 
measure this, however. If we just try to find the maximum-likelihood hypothesis, we will end 
up with a fully connected network, because adding more parents to a node cannot decrease 
the likelihood (Exercise 20.9). We are forced to penalize model complexity in some way. 
The MAP (or MDL) approach simply subtracts a penalty from the likelihood of each structure 
(after parameter tuning) before comparing different structures. The Bayesian approach places 
a joint prior over structures and parameters. There are usually far too many structures to 
sum over (superexponential in the number of variables), so most practitioners use MCMC to 
sample over structures. 

Penalizing complexity (whether by MAP or Bayesian methods) introduces an important 
connection between the optimal structure and the nature of the representation for the condi- 
tional distributions in the network. With tabular distributions, the complexity penalty for a 
node's distribution grows exponentially with the number of parents, but with, say, noisy-OR 
distributions, it grows only linearly. This means that learning with noisy-OR (or other com- 
pactly parameterized) models tends to produce learned structures with more parents than does 
learning with tabular distributions. 

20.3 LEARNING W I T H  HIDDEN VARIABLES: THE EM ALGORITHM 

The preceding section dealt with the fully observable case. Many real-world problems have 
LATENTVARIABLES hidden variables (sometimes called latent variables) which are not observable in the data 

that are available for learning. For example, medical records often include the observed 
symptoms, the treatment applied, and perhaps the outcome of the treatment, but they sel- 
dom contain a direct observation of the disease i t ~ e l f ! ~  One might ask, "If the disease is 
not observed. why not construct a model without it?' The answer appears in Figure 20.7, 
which shows a small, fictitious diagnostic model for heart disease. There are three observ- 
able predisposing factors and three observable symptoms (which are too depressing to name). 
Assume that each variable has three possible values (e.g., none, moderate, and severe). Re- 
moving the hidden variable from the network in (a) yields the network in (b); the total number 
of parameters increases from 78 to 708. Thus, latent variables can dramatically reduce the 
number ofparameters required to specifi a Bayesian network. This, in turn, can dramatically 
reduce the amount of data needed to learn the parameters. 

Hidden variables are important, but they do complicate the learning problem. In Fig- 
ure 20.7(a), for example, it is not obvious how to learn the conditional distribution for 
HeartDisease, given its parents, because we do not know the value of HeartDisease in each 
case; the same problem arises in learning the distributions for the symptoms. This section 

Some records contain the diagnosis suggested by the physician, but this is a causal consequence of the symp- 
toms, which are in turn caused by the disease. 
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(a) (b) 

Figure 20.7 (a) A simple diagnostic network for heart disease, which is assumed to be 
a hidden variable. Each variable has three possible values and is labeled with the number 
of independent parameters in its conditional distribution; the total number is 78. (b) The 
equivalent network with HeartDisease removed. Note that the symptom variables are no 
longer conditionally independent given their parents. This network requires 708 parameters. 

describes an algorithm called expectation-maximization, or EM, that solves this problem MAXIMIZATION 

in a very general way. We will show three examples and them provide a general description. 
The algoritl~m seems Pike magic at first, but once the intuition has been developed, one can 
find applications for EM in a huge range of learning problems. 

Unsupervised clustering: Learning mixtures of' Gaussians 

UNsUPERVlsED CLUSTERING Unsupervised clustering is the problem of discerning multiiple categories in a col.lection of 
objects. The problem is unsupervised because the category 1a.bels are not given. For example, 
suppose we record the spectra of a hundred thousand stars; are there different types of stars 
revealed by the spectra, and, if so, how many and what are their characteristics? We are all 
familiar with terms such as "red giant" and "white dwarf," but the stars do not c,arry these 
labels on their hats-astronomers had to perform unsupervised clustering to identify these 
categories. Other examples include the identification o~f species, genera, orders, and so on in 
the Linnzan taxonomy of organisms and the creation of natural kinds to categorize ordinary 
objects (see Chapter 10). 

Unsupervised clustering begins with data. Figure 20.8(a) shows 500 data points, each of 
which specifies the values of two continuous attributes. The data points might correspond to 
stars, and the attributes might correspond to spectral intensities at two particular frequencies. 
Next, we need to understand what kind of probability distribution might have generated the 

MIXTURE 
DISTRIBUTION data. Clustering presumes that the data are generated from a mixture distribution, P. Such a 
COMPONENT distribution has k components, each of which is a distritbutio~l in its own right. A data point is 

generated by first choosing a component and then generating a sample from that component. 
Let the random variable C denote the component, with values 1, . . . , k ;  then the mixture 
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Figure 20.8 (a) 500 data points in two dimensions, suggesting the presence of three clus- 
ters. (b) A Gaussian mixture model with three components; the weights (left-to-right) are 0.2, 
0.3, and 0.5. The data in (a) were generated from this model. (c) The model reconstructed by 
EM from the data in (b). 

distribution is given by 

where x refers to the values of the attributes for a data point. For continuous data, a natural 
choice for the component distributions is the multivariate Gaussian, which gives the so-called 
mixture of Gaussians family of distributions. The parameters of a mixture of Gaussians are 
wi = P(C = i )  (the weight of each component), pi (the mean of each component), and Xi 
(the covariance of each component). Figure 20.8(b) shows a mixture of three Gaussians; this 
mixture is in fact the source of the data in (a). 

The unsupervised clustering problem, then, is to recover a mixture model like the one in 
Figure 20.8(b) from raw data like that in Figure 20.8(a). Clearly, if we knew which component 
generated each data point, then it would be easy to recover the component Gaussians: we 
could just select all the data points from a given component and then apply (a multivariate 
version of) Equation (20.4) for fitting the parameters of a Gaussian to a set of data. On 
the other hand, if we knew the parameters of each component, then we could, at least in a 
probabilistic sense, assign each data point to a component. The problem is that we know 
neither the assignments nor the parameters. 

The basic idea of EM in this context is topretend that we know the the parameters of the 
model and then to infer the probability that each data point belongs to each component. After 
that, we refit the components to the data, where each component is fitted to the entire data set 
with each point weighted by the probability that it belongs to that component. The process 
iterates until convergence. Essentially, we are "completing" the data by inferring probability 
distributions over the hidden variables-which component each data point belongs to-based 
on the current model. For the mixture of Gaussians, we initialize the mixture model parame- 
ters arbitrarily and then iterate the following two steps: 
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1. E-step: Compute the probabilities pij = P(C = i l x j ) ,  the probability that datum x j  was 
generated by component i.  By Bayes7 rule, we have pij = a P ( x j  IC = i )  P(C = i). The 
term P ( x j  IC = i )  is just the probability at x j  of thle ith Gaussian, and the term P(C = i) 
is just the weight parameter for the ith Gaussian. Define pi = C j  pij. 

2. M-step: Compute the new mean, covariance, and compone~nt weights as follows: 

xi + C pii ( x j  - pi) (x i  - P i )  /p i  
j 

W i  + p i .  

The E-step, or expectation step, can be viewed as computinl; the expected values p,:, of the 
INDICATOR VARIABLE hidden indicator variables Z,, , where Z,, is 1 if daturn x3 was generated by the ith compo- 

nent and 0 otherwise. The M-step, or maximization step, finds the new values of the param- 
eters that maximize the log likelihood of the data, given the expected values of the hidden 
indicator variables. 

The filial model that EM learns when it is applied to the data in Figure 20.8(a) is shown 
in Figure 20.8(c); it is virtually indistinguishable fronn the original model from which the 
data were generated. Figure 20.9(a) plots the log likelihood of the data according to the 
current model as EM progresses. There are two poinits to notice. First, the log likelihood 
for the final learned model slightly exceeds that of the original model, from which the data 
were generated. This might seem surprising, but it simply reflecls the fact that the data were 
generated randomly and might not provide an exact reflection of the underlying model. The 
second point is that EM increases the log likelihood of the d(zta at every iteration. This fact 
can be proved in general. Furthermore, under certain conditions, EM can be proven to reach 
a local maximum in likelihood. (In rare cases, it could reach a saddle point or even a local 
minimum.) In this sense, EM resembles a gradient-based hill-climbing algorithm, but notice 
that it has rlo "step size" parameter! 

Things do not always go as well as Figure 20.9(a) might suggest. It can happen, for 
example, that one Gaussian component shrinks so that it covers just a single data point. Then 
its variance will go to zero and its likelihood will go to infinity! Another problem is that 
two compon~ents can "merge," acquiring identical means and variances and sharing their data 
points. These kinds of degenerate local maxima are serions problems, especia1l:y in high 
dimensions. One solution is to place priors on the model parameters and to apply the MAP 
version of EM. Another is to restart a component with new random parameters if it gets 
too small or too close to another component. It also helps to initialize the parameters with 
reasonable values. 

Learning Bayesian networks with hidden varialbles 

To learn a Bayesian network with hidden variables, we apply the same insights that worked 
for mixtures of Gaussians. Figure 20.10 represents a situation in which there are two bags of 
candies that have been mixed together. Candies are described by three features: in addition 
to the Flavor and the Wrapper ,  some candies have a Hole in the middle and some do not. 



728 Chapter 20. Statistical Learning Methods 

700 

600 

500 
4 g 400 

4 300 
3 200 .- - 9 loo 

0 

-100 

-200 

0 5 10 15 20 

Iteration number 

(a) 
Iteration number 

(b) 

Figure 20.9 Graphs showing the log-likelihood of the data, L, as a function of the EM 
iteration. The horizontal line shows the log-likelihood according to the true model. (a) 
Graph for the Gaussian mixture model in Figure 20.8. (b) Graph for the Bayesian network in 
Figure 20.10(a). 

Figure 20.10 (a) A mixture model for candy. The proportions of different flavors, wrap- 
pers, and numbers of holes depend on the bag, which is not observed. (b) Bayesian network 
for a Gaussian mixture. The mean and covariance of the observable variables X depend on 
the component C. 

The distribution of candies in each bag is described by a naive Bayes model: the features 
are independent, given the bag, but the conditional probability distribution for each feature 
depends on the bag. The parameters are as follows: 8 is the prior probability that a candy 
comes from Bag 1; QF1 and QF2 are the probabilities that the flavor is cherry, given that the 
candy comes from Bag 1 and Bag 2 respectively; Owl and Qw2 give the probabilities that the 
wrapper is red; and QH1 and QH2 give the probabilities that the candy has a hole. Notice that 
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the overall rnodel is a mixture model. (In fact, we can also rnodel the mixture of Gaussians 
as a Bayesian network, as shown in Figure 20.10(b).) In the figure, the bag is is a hidden 
variable because, once the candies have been mixed together, we no longer know which bag 
each candy came from. In such a case, can we recover the descriptions of the two bags by 
observing candies from the mixture? 

Let us work through an iteration of EM for this problem. First, let's look at the data. 
We generated 1000 samples from a model whose true p~arameters are 

That is, the candies are equally likely to come from either bag; the first is mostly cherries 
with red wrappers and holes; the second is mostly limes with green wrappers and no holes. 
The counts for the eight possible kinds of candy are as follows: 

F = cherry 
F = lime j 79 j 100 j 94 1671 

We start by initializing the parameters. For numerical simplicity, we will choose7 

First, let us work on the 0 parameter. In the fully observable case, we would estimate this 
directly from the observed counts of candies from bags 1 ancl2. Because the bag is a hidden 
variable, we calculate the expected counts instead. The expected count 8 ( l ? a g  = 1) is the 
sum, over all candies, of the probability that the candy came fronn bag 1 : 

These probabilities can be computed by any inference algorithm for Bayesian networks. For 
a naive Bayes model such as the one in our example, we can do the inference "by hand," 
using Bayes' rule and applying conditional independence: 

(Notice that the normalizing constant also depends on the parameters.) Applying this formula 
to, say, the 273 red-wrapped cherry candies with holes, we get a contribution of 

Continuing with the other seven kinds of candy in the table of counts, we obtain I= 0.6124. 

It is better in practice to choose them randomly, to avoid local maxima due to symmetry. 
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Now let us consider the other parameters, such as OF1. In the fully observable case, we 
would estimate this directly from the observed counts of cherry and lime candies from bag 1. 
The expected count of cherry candies from bag 1 is given by 

P(Bag = 1 Flavorj = cherry, wrapperj, holesj) . 
j:Flavorj = cherry 

Again, these probabilities can be calculated by any Bayes net algorithm. Completing this 
process, we obtain the new values of all the parameters: 

The log likelihood of the data increases from about -2044 initially to about -2021 after the 
first iteration, as shown in Figure 20.9(b). That is, the update improves the likelihood itself 
by a factor of about e23 = 10lO. By the tenth iteration, the learned model is a better fit 
than the original model (L = - 1982.214). Thereafter, progress becomes very slow. This 
is not uncommon with EM, and many practical systems combine EM with a gradient-based 
algorithm such as Newton-Raphson (see Chapter 4) for the last phase of learning. 

The general lesson from this example is that the parameter updates for Bayesian net- 
work learning with hidden variables are directly available from the results of inference on 
each example. Moreove~ only local posterior probabilities are needed for each parameter: 
For the general case in which we are learning the conditional probability parameters for each 
variable X,, given its parents -that is, OZJk  = P ( X ,  = x ,  (Pa, = pazk)-the update is given 
by the normalized expected counts as follows: 

The expected counts are obtained by summing over the examples, computing the probabilities 
P ( X i  = xij ,  Pai = paik) for each by using any Bayes net inference algorithm. For the exact 
algorithms-including variable elimination-all these probabilities are obtainable directly as 
a by-product of standard inference, with no need for extra computations specific to learning. 
Moreover, the information needed for learning is available locally for each parameter. 

Learning hidden Markov models 

Our final application of EM involves learning the transition probabilities in hidden Markov 
models (HMMs). Recall from Chapter 15 that a hidden Markov model can be represented by 
a dynamic Bayes net with a single discrete state variable, as illustrated in Figure 20.11. Each 
data point consists of an observation sequence of finite length, so the problem is to learn the 
transition probabilities from a set of observation sequences (or possibly from just one long 
sequence). 

We have already worked out how to learn Bayes nets, but there is one complication: 
in Bayes nets, each parameter is distinct; in a hidden Markov model, on the other hand, the 
individual transition probabilities from state i to state j at time t ,  Oijt  = P(Xt+l = jlXt = i), 
are repeated across time-that is, Oijt = Oij  for all t. To estimate the transition probability 
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Figure 20.11 An unrolled dynamic Bayesian network that represents a hidden lvlarkov 
model (repeat of Figure 15.14). 

from state i to state j ,  we simply calculate the expected prolportion of times that the system 
undergoes a transition to state j when in state i: 

Again, the expected counts are computed by any HMM inferenlce algorithm. The forward- 
backward algorithm shown in Figure 15.4 can be modified very easily to compute the neces- 
sary probabilities. One important point is that the probabilities required are those obtained by 
smoothing rather than filtering; that is, we need to pay attention to subsequent evidence in 
estimating the probability that a particular transition occurred. As we said in Chapter 15, the 
evidence in a murder case is usually obtained after the crime (i.e., the transition from state i 
to state j )  occurs. 

The general form of the EM algorithm 

We have seen several instances of the EM algorithm. Each involves computing expected 
values of hidden variables for each example and then irecomputing the parameters, using the 
expected values as if they were observed values. Let x be all the observed values in all the 
examples, let Z  denote all the hidden variables for all the examples, and let 8 be all the 
parameters for the probability model. Then the EM algorithm is 

This equation is the EM algorithm in a nutshell. The E-step is the computation of the sum- 
mation, which is the expectation of the log likelihood of the "completed" data with respect 
to the distribution P ( Z  = zlx, dZ)), which is the post~erior over the hidden variables, given 
the data. The M-step is the maximization of this expe~cted log likelihood with respect to the 
parameters. For mixtures of Gaussians, the hidden variables are the Z,,s, where Z,, is 1 if 
example j was generated by component i. For Bayes nets, the hidden variables are the values 
of the unobserved variables for each example. For HMMs, the hidden variables are the i -+ j 
transitions. Starting from the general form, it is possible to derive an EM algorithm for a 
specific application once the appropriate hidden variables have been identified. 

As soon as we understand the general idea of EM, it becomes easy to derive all sorts 
of variants and improvements. For example, in many cases the E-step--the computation of 
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posteriors over the hidden variables-is intractable, as in large Bayes nets. It turns out that 
one can use an approximate E-step and still obtain an effective learning algorithm. With a 
sampling algorithm such as MCMC (see Section 14.5), the learning process is very intuitive: 
each state (configuration of hidden and observed variables) visited by MCMC is treated ex- 
actly as if it were a complete observation. Thus, the parameters can be updated directly after 
each MCMC transition. Other forms of approximate inference, such as variational and loopy 
methods, have also proven effective for learning very large networks. 

Learning Bayes net structures with hidden variables 

In Section 20.2, we discussed the problem of learning Bayes net structures with complete 
data. When hidden variables are taken into consideration, things get more difficult. In the 
simplest case, the hidden variables are listed along with the observed variables; although 
their values are not observed, the learning algorithm is told that they exist and must find 
a place for them in the network structure. For example, an algorithm might try to learn 
the structure shown in Figure 20.7(a), given the information that HeartDisease (a three- 
valued variable) should be included in the model. If the learning algorithm is not told this 
information, then there are two choices: either pretend that the data is really complete-which 
forces the algorithm to learn the parameter-intensive model in Figure 20.7(b)-or invent new 
hidden variables in order to simplify the model. The latter approach can be implemented by 
including new modification choices in the structure search: in addition to modifying links, 
the algorithm can add or delete a hidden variable or change its arity. Of course, the algorithm 
will not know that the new variable it has invented is called HeartDisease; nor will it have 
meaningful names for the values. Fortunately, newly invented hidden variables will usually be 
connected to pre-existing variables, so a human expert can often inspect the local conditional 
distributions involving the new variable and ascertain its meaning. 

As in the complete-data case, pure maximum-likelihood structure learning will result in 
a completely connected network (moreover, one with no hidden variables), so some form of 
complexity penalty is required. We can also apply MCMC to approximate Bayesian learning. 
For example, we can learn mixtures of Gaussians with an unknown number of components by 
sampling over the number; the approximate posterior distribution for the number of Gaussians 
is given by the sampling frequencies of the MCMC process. 

So far, the process we have discussed has an outer loop that is a structural search pro- 
cess and an inner loop that is a parametric optimization process. For the complete-data case, 
the inner loop is very fast-just a matter of extracting conditional frequencies from the data 
set. When there are hidden variables, the inner loop may involve many iterations of EM or a 
gradient-based algorithm, and each iteration involves the calculation of posteriors in a Bayes 
net, which is itself an NP-hard problem. To date, this approach has proved impractical for 

STRUCTURALEM learning complex models. One possible improvement is the so-called structural EM algo- 
rithm, which operates in much the same way as ordinary (parametric) EM except that the 
algorithm can update the structure as well as the parameters. Just as ordinary EM uses the 
current parameters to compute the expected counts in the E-step and then applies those counts 
in the M-step to choose new parameters, structural EM uses the current structure to compute 
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expected counts and then applies those counts in the M-step to evaluate the likelihood for 
potential new structures. (This contrasts with the outer-looplinner-loop method, which com- 
putes new expected counts for each potential structure.) In thns way, structural EM may make 
several structural alterations to the network without once recomputing the expected counts, 
and is capable of learning nontrivial Bayes net structures. Nonetheless, much work remains 
to be done before we can say that the structure learning problem is solved. 

So far, our discussion of statistical learning has focused primarily on fitting the parameters 
of a restricted family of probability models to an unrestricted data set. For example, unsu- 
pervised clustering using mixtures of Gaussians assumes that the data are explained by the 
sum of a@ed number of Gaussian distributions. We call such methods parametric learn- 

PARAMETRIC 
LEARNING ing. Parametric learning methods are often simple and effective, but assuming a particular 

restricted family of models often oversimplifies what's happening in the real world, from 
where the data come. Now, it is true when we have very little data, we cannot hope to learn a 
complex and detailed model, but it seems silly to keep the hypothesis complexity fixed even 
when the data set grows very large! 

NONPARAMETRIC 
LEARNING In contrast to parametric learning, nonparametric learning methods allow the hypoth- 

esis complexity to grow with the data. The more data we have, the wigglier the hypothesis 
INSTANCE-BASED LEARNING can be. We will look at two very simple families of nomnpararnetric instance-based learning 

(or memory-based learning) methods, so called because they construct hypotheses directly 
from the training instances themselves. 

Nearest-neighbor models 

NEAREST-NEIGHBOR The key idea of nearest-neighbor models is that the properties of any particular input point x 
are likely to be similar to those of points in the neighborhood (of x. For example, if we want to 
do density estimation-that is, estimate the value of an unluiown probability density at x- 
then we can simply measure the density with which points are scattered in the neighborhood 
of x. This sounds very simple, until we realize that we need to specify exactly what we mean 
by "neighborhood." If the neighborhood is too small, it wom't contain any data points; too 
large, and it may include all the data points, resulting in a density estimate that is the same 
everywhere. One solution is to define the neighborhood to be just big enough to include k 
points, where k is large enough to ensure a meaningful estimate. For fixed k ,  the size of 
the neighborhood varies-where data are sparse, the neighborhood is large, but where data 
are dense, the neighborhood is small. Figure 20.12(a) shows an example for data scattered 
in two dimensions. Figure 20.13 shows the results of k-nearest-neighbor density estimation 
from these data with k = 3, 10, and 40 respectively. For k == 3, the density estimate at any 
point is based on only 3 neighboring points and is highly variable. For k = 10, the estimate 
provides a good reconstruction of the true density shown in Figure 20.12(b). For k = 40, the 
neighborhood becomes too large and structure of the data is altogether lost. In practice, using 
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Figure 20.12 (a) A 128-point subsample of the data shown in Figure 20.8(a), together 
with two query points and their 10-nearest-neighborhoods. (b) A 3-D plot of the mixture of 
Gaussians from which the data were generated. 

(a> (b) (c) 

Figure 20.13 Density estimation using k-nearest-neighbors, applied to the data in Fig- 
ure 20.12(a), for k = 3, 10, and 40 respectively. 

a value of k somewhere between 5 and 10 gives good results for most low-dimensional data 
sets. A good value of k can also be chosen by using cross-validation. 

To identify the nearest neighbors of a query point, we need a distance metric, D(xl, xz). 
The two-dimensional example in Figure 20.12 uses Euclidean distance. This is inappropriate 
when each dimension of the space is measuring something different-for example, height 
and weight-because changing the scale of one dimension would change the set of nearest 
neighbors. One solution is to standardize the scale for each dimension. To do this, we measure 
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the standard deviation of each feature over the whole data set and express feature values as 
multiples of the standard deviation for that feature. (This is a special case of the Mahalanobis 

MAHALANOBIS 
DISTANCE distance, which takes into account the covariance of the feat~~res as well.) Finally, for discrete 
HAMMING DISTANCE features we can use the Hamming distance, which dlefines D(xl , x2) to be the number of 

features on which xl and x:! differ. 
Density estimates like those shown in Figure 20.13 define joint distributions over the 

input space. Unlike a Bayesian network, however, an instance-based representation cannot 
contain hidden variables, which means that we cannot perform unsupervised clustering as we 
did with the mixture-of-Gaussians model. We can still use the density estimate to predict a 
target value y given input feature values x by calculating P(y  (x) = P ( y  , x) /P(x) , provided 
that the training data include values for the target feature. 

It is also possible to use the nearest-neighbor idea for direct supervised learning. Given 
a test example with input x, the output y = h(x) is obtained from the y-values of the k nearest 
neighbors ad x. In the discrete case, we can obtain a single prediction by majority v~ote. In the 
continuous case, we can average the k values or do local linear regression, fitting a hyperplane 
to the k points and predicting the value at x according to the hyperplane. 

The k-nearest-neighbor learning algorithm is very simple to implement, requires little 
in the way of tuning, and often performs quite well. It is a good thing to try first on a 
new learning problem. For large data sets, however, we require an efficient mechanism for 
finding the nearest neighbors of a query point x-siniply calculating the distance to every 
point would take far too long. A variety of ingenious methods have been proposed to make 
this step efficient by preprocessing the training data. Unfortunately, most of these methods 
do not scale well with the dimension of the space (i.e., the number of features). 

High-dimensional spaces pose an additional problem, namely that nearest neighbors in 
such spaces are usually a long way away! Consider a dlata set of size N in the d-dimensional 
unit hypercube, and assume hypercubic neighborhoods of side b and volume bd. (The same 
argument works with hyperspheres, but the formula for the volume of a hypersphere is more 
complicated.) To contain k points, the average neighlborhood must occupy a fraction k / N  
of the entire volume, which is 1. Hence, bd = k/N,  or b = ( k / l \ ~ ) l / ~ .  SO far, SO good. Now 
let the number of features d be 100 and let k be 10 and N be 1,000,000. Then we have b = 
0.89-that is, the neighborhood has to span almost the entire input space! This suggests that 
nearest-neighbor methods cannot be trusted for high-dimensional data. In low dimensions 
there is no problem; with d = 2 we have b = 0.003. 

Kernel models 

KERNELMODEL In a kernel model, we view each training instance as generating a little density function-a 
KERNEL FUNCTION kernel function-of its own. The density estimate as a whole is just the normalized sum of 

all the little kernel functions. A training instance at xi will generate a kernel function K(x,  xi) 
that assigns a probability to each point x in the space. Thus, the density estimate is 

1 
p(x)  = N C ~ ( x ,  xi) . 

2 = 1  
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Figure 20.14 Kernel density estimation for the data in Figure 20.12(a), using Gaussian 
kernels with w = 0.02, 0.07, and 0.20 respectively. 

The kernel function normally depends only on the distance D(x, xi) from x to the instance xi. 
The most popular kernel function is (of course) the Gaussian. For simplicity, we will assume 
spherical Gaussians with standard deviation w along each axis, i.e., 

where d is the number of dimensions in x. We still have the problem of choosing a suitable 
value for w; as before, making the neighborhood too small gives a very spiky estimate-see 
Figure 20.14(a). In (b), a medium value of w gives a very good reconstruction. In (c), too 
large a neighborhood results in losing the structure altogether. A good value of w can be 
chosen by using cross-validation. 

Supervised learning with kernels is done by taking a weighted combination of all the 
predictions from the training instances. (Compare this with k-nearest-neighbor prediction, 
which takes an unweighted combination of the nearest k instances.) The weight of the ith 
instance for a query point x is given by the value of the kernel K(x, xi). For a discrete 
prediction, we can take a weighted vote; for a continuous prediction, we can take weighted 
average or a weighted linear regression. Notice that making predictions with kernels requires 
looking at every training instance. It is possible to combine kernels with nearest-neighbor 
indexing schemes to make weighted predictions from just the nearby instances. 

A neuron is a cell in the brain whose principal function is the collection, processing, and 
dissemination of electrical signals. Figure 1.2 on page 11 showed a schematic diagram of a 
typical neuron. The brain's information-processing capacity is thought to emerge primarily 
from networks of such neurons. For this reason, some of the earliest A1 work aimed to create 

NEURALNETWORKS artificial neural networks. (Other names for the field include connectionism, parallel dis- 
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tributed processing, and neural computation.) Figure 20.15 shows a simple mathematical 
model of the neuron devised by McCulloch and Pitts (1943). Roughly speaking, it "fires" 
when a linear combination of its inputs exceeds some threshold. Since 1943, much more 
detailed and realistic models have been developed, both for neurons and for larger systems 
in the brain, leading to the modern field of computational neuroscience. On the other hand, 
researchers in A1 and statistics became interested in the more abstract properties of neural 
networks, such as their ability to perform distributed computation, to tolerate noisy inputs, 
and to learn. Although we understand now that other lunds of systems-including Bayesian 
networks-have these properties, neural networks remain one of the most popular and effec- 
tive forms of learning system and are worthy of study in their own right. 

Units in neural networks 

UNITS Neural networks are composed of nodes or units (see Figure 2:0.15) connected by directed 
LINKS links. A link from unit j to unit i serves to propagate tlhe activation aj from j to i .  Each link 
ACTIVATION also has a numeric weight WjIi associated with it, which del.em~ines the strength and sign of 
WEIGHT the connection. Each unit i first computes a weighted sum of its inputs: 

n 

ACTIVATION 
FUNCTION Then it applies an activation function g to this sum to derive the output: 

BIAS WEIGHT Notice that we have included a bias weight Wo,i connected to a fixed input ao = - 1. We 
will explain its role in a moment. 

The activation function g is designed to meet two desiderata. First, we want the unit 
to be "active" (near +1) when the "right" inputs are given, and "inactive" (near 0) when the 
"wrong" inputs are given. Second, the activation needs to be nonlinear, otherwise the entire 
neural network collapses into a simple linear function (see Exercise 20.17). Two choices for g 

Bias Weight 

I Input Input Activation Output 
Links Function Function Output Links 

Figure 20.15 A simple mathematical model for a neuron. The unit's output activation is 
ai = g(Cy= Wj , ia j ) ,  where a, is the output activation of unit j and Wj,i is the weight on 
the link from unit j to this unit. 
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THRESHOLD are shown in Figure 20.16: the threshold function and the sigmoid function (also known as 
SIGMOIO FUNCTION the logistic function). The sigmoid function has the advantage of being differentiable, which 
LOGISTIC FUNCTION we will see later is important for the weight-learning algorithm. Notice that both functions 

have a threshold (either hard or soft) at zero; the bias weight sets the actual threshold 
for the unit, in the sense that the unit is activated when the weighted sum of "real" inputs 
Cy= Wj,iaj (i.e., excluding the bias input) exceeds WO,~ .  

( 4  (b) 
- 

Figure 20.16 (a) The threshold activation function, which outputs 1 when the input is 
positive and 0 otherwise. (Sometimes the sign function is used instead, which outputs il 
depending on the sign of the input.) (b) The sigmoid function 1/(1 + e-"). 

We can get a feel for the operation of individual units by comparing them with logic 
gates. One of the original motivations for the design of individual units (McCulloch and 
Pitts, 1943) was their ability to represent basic Boolean functions. Figure 20.17 shows how 
the Boolean functions AND, OR, and NOT can be represented by threshold units with suitable 
weights. This is important because it means we can use these units to build a network to 
compute any Boolean function of the inputs. 

AND OR NOT 

Figure 20.17 Units with a threshold activation function can act as logic gates, given ap- 
propriate input and bias weights. 

Network structures 

There are two main categories of neural network structures: acyclic or feed-forward net- 
FEED-F0RWARD works and cyclic or recurrent networks. A feed-forward network represents a function of NETWORKS 
RECURRENT 
NETWORKS its current input; thus, it has no internal state other than the weights themselves. A recurrent 
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network, on the other hand, feeds its outputs back into1 its own inputs. This means that the 
activation levels of the network form a dynamical system that may reach a stable state or ex- 
hibit oscillations or even chaotic behavior. Moreover, the response of the network to a given 
input depends on its initial state, which may depend on previous inputs. Hence, recurrent 
networks (unlike feed-forward networks) can support short-term memory. This makes them 
more interesting as models of the brain, but also more difficult to understand. This section 
will concentrate on feed-forward networks; some pointers for further reading on recurrent 
networks are given at the end of the chapter. 

Let us look more closely into the assertion that a feed-forward network represents a 
function of its inputs. Consider the simple network shown in Figure 20.18, which has two 

HIDDENUNITS input units, two hidden units, and an output unit. (To keep things simple, we have omitted 
the bias units in this example.) Given an input vector x == ( x l  , x2) ,  the activations of the input 
units are set to ( a l ,  a z )  = (21, x2)  and the network computes 

a5 = g(w3,5a3 + W4,5a4) 

= g(w3,5g(w1,3al + w2,3a2) + w4,5g(w1,4~1 $. w2,4a2)) . (20.1 1) 

That is, by expressing the output of each hidden unit as a function (of its inputs, we have shown 
that output of the network as a whole, as, is a function of the network's inputs. Furthermore, 
we see that the weights in the network act as parameters of this function; writing W for the 
parameters, the network computes a function hw(x).  ]By adjusting the weights, we change 
the function that the network represents. This is how learning occurs in neural networks. 

Figure 20.18 A very simple neural network with two inputs, one hidden layer of two units, 
and one output. 

A neural network can be used for classification or regression. For Boolean classification 
with continuous outputs (e.g., with sigmoid units), it is traditional to have a single output unit, 
with a value over 0.5 interpreted as one class and a value bellow 0.5 as the other. For k-way 
classificatior~, one could divide the single output unit's range intlo k portions, but itt is more 
common to have k separate output units, with the value of each one representing the relative 
likelihood of that class given the current input. 

LAYERS Feed-forward networks are usually arranged in layers, such that each unit receives input 
only from units in the immediately preceding layer. In the next two subsections, we will look 
at single layer networks, which have no hidden units, 2nd miultilayer networks, which have 
one or more layers of hidden units. 
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Input Output 
Units Ti Units 

(a> (b) 

Figure 20.19 (a) A perceptron network consisting of three perceptron output units that 
share five inputs. Looking at a particular output unit (say the second one, outlined in bold), 
we see that the weights on its incoming links have no effect on the other output units. (b) A 
graph of the output of a two-input perceptron unit with a sigmoid activation function. 

Single layer feed-forward neural networks (perceptrons) 

A network with all the inputs connected directly to the outputs is called a single-layer neural 
i O R  network, or a perceptron network. Since each output unit is independent of the others- 
PERCEPTRON each weight affects only one of the outputs-we can limit our study to perceptrons with a 

single output unit, as explained in Figure 20.19(a). 
Let us begin by examining the hypothesis space that a perceptron can represent. With a 

threshold activation function, we can view the perceptron as representing a Boolean function. 
In addition to the elementary Boolean functions AND, OR, and NOT (Figure 20.17), a percep- 
tron can represent some quite "complex" Boolean functions very compactly. For example, 
the majority function, which outputs a 1 only if more than half of its n inputs are 1, can 
be represented by a perceptron with each Wj = 1 and threshold Wo = n/2. A decision tree 
would need 0 ( 2 n )  nodes to represent this function. 

Unfortunately, there are many Boolean functions that the threshold perceptron cannot 
represent. Looking at Equation (20.10), we see that the threshold perceptron returns 1 if and 
only if the weighted sum of its inputs (including the bias) is positive: 

Now, the equation W . x = 0 defines a hyperplane in the input space, so the perceptron returns 
1 if and only if the input is on one side of that hyperplane. For this reason, the threshold 

LINEARSEPAF~ATOR perceptron is called a linear separator. Figure 20.20(a) and (b) show this hyperplane (a 
line, in two dimensions) for the perceptron representations of the AND and OR functions of 
two inputs. Black dots indicate a point in the input space where the value of the function 
is 1, and white dots indicate a point where the value is 0. The perceptron can represent 
these functions because there is some line that separates all the white dots from all the black 
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Figure 20.20 Linear separability in threshold perceptrons. Black dots indicate a point in 
the input space where the value of the function is 1, and white dots indicate a point where the 
value is 0. The perceptron returns 1 on the region on the non-shaded side of the line. In (c), 
no such line exists that correctly classifies the inputs. 

LINEARLY 
SEPARABLE dots. Such functions are called linearly separable. Figure 20.20(c) shows an example of 

a function that is not linearly separable-the XOR function. Clearly, there is no way for a 
threshold perceptron to learn this function. In general, threshold perceptrons can ,represent 
only linearly separable functions. These constitute just a small fraction of all functions; 
Exercise 20.14 asks you to quantify this fraction. Sigmoid perceptrons are similarly limited, 
in the sense that they represent only "soft" linear separators. (See Figure 20.19(b).) 

Despite their limited expressive power, threshold1 perceptrons have some advantages. 
In particular, there is a simple learning algorithm that will jit a threshold perceptron to any 
linearly separable training set. Rather than present this algorithm, we will derive a closely 
related algorithm for learning in sigmoid perceptrons. 

The idea behind this algorithm, and indeed behind most algorithms for neural network 
learning, is lo adjust the weights of the network to minimize: some measure of the error on 

WEIGHTSPACE the training set. Thus, learning is formulated as an optimization search in weight space.' 
The "classical" measure of error is the sum of squared errors, which we used for linear 
regression on page 720. The squared error for a single training example with input x and true 
output y is written as 

where hw(lr) is the output of the perceptron on the example. 
We can use gradient descent to reduce the squared error by calculating the partial deriva- 

tive of E with respect to each weight. We have 
aE - -  a Err 

- Err x - aw, a w, 

See Section 4.4 for general optimization techniques applicable to continuous spaces. 
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where g' is the derivative of the activation f ~ n c t i o n . ~  In the gradient descent algorithm, where 
we want to reduce E, we update the weight as follows: 

Wj t Wj + a x Err x g'(in) x xj , 
where a! is the learning rate. Intuitively, this makes a lot of sense. If the error Err = y - 
hw (x) is positive, then the network output is too small and so the weights are increased for 
the positive inputs and decreased for the negative inputs. The opposite happens when the 
error is negative.10 

The complete algorithm is shown in Figure 20.21. It runs the training examples through 
the net one at a time, adjusting the weights slightly after each example to reduce the error. 

EPOCH Each cycle through the examples is called an epoch. Epochs are repeated until some stop- 
ping criterion is reached-typically, that the weight changes have become very small. Other 
methods calculate the gradient for the whole training set by adding up all the gradient con- 

STOCHASTIC 
GRADIENT tributions in Equation (20.12) before updating the weights. The stochastic gradient method 

selects examples randomly from the training set rather than cycling through them. 

function PERCEPTRON-LEARNING(~X~~~~~~, network) returns a perceptron hypothesis 
inputs: examples, a set of examples, each with input x = X I ,  . . . , xn and output y 

network, a perceptron with weights W j ,  j = 0 . . . n, and activation function g 

I repeat 
for each e in examples do 

i n  +- C,"= Wj  xj [el 
Err +- y [el - g (in) 
Wj + Wj + a: x Err x g l ( in )  x x j [e]  

until some stopping criterion is satisfied 
return NEURAL-NET-HYP~THESIS(~~~~~~~) 

Figure 20.21 The gradient descent learning algorithm for perceptrons, assuming a differ- 
entiable activation function g. For threshold perceptrons, the factor g l ( in )  is omitted from the 
weight update. NEURAL-NET-HYPOTHESIS returns a hypothesis that computes the network 
output for any given example. 

Figure 20.22 shows the learning curve for a perceptron on two different problems. On 
the left, we show the curve for learning the majority function with 11 Boolean inputs (i.e., 
the function outputs a 1 if 6 or more inputs are 1). As we would expect, the perceptron learns 
the function quite quickly, because the majority function is linearly separable. On the other 
hand, the decision-tree learner makes no progress, because the majority function is very hard 
(although not impossible) to represent as a decision tree. On the right, we have the restaurant 

For the sigmoid, this derivative is given by g1 = g ( l  - g ) .  
For threshold perceptrons, where g l ( i n )  is undefined, the original perceptron learning rule developed by 

Rosenblatt (1957) is identical to Equation (20.12) except that g l ( i n )  is omitted. Since g l ( i n )  is the same for 
all weights, its oinission changes only the magnitude and not the direction of the overall weight update for each 
example. 
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(a) (b) 

Figure 20.22 Comparing the performance of perceptrons and decision trees. (a) Percep- 
trons are better at learning the majority function of 11 inputs. (b) Decision trees are better at 
learning the Will Wait predicate in the restaurant example. 

example. The solution problem is easily represented as a decision tree, but is not linearly 
separable. The best plane through the data correctly classifies only 65%. 

So far, we have treated perceptrons as deterministic functions with possibly erroneous 
outputs. It is also possible to interpret the output of a sigmo~d perceptron as a probability- 
specifically, the probability that the true output is 1 given the inputs. With this interpretation, 
one can use the sigmoid as a canonical representation for conciitional distributions in Bayesian 
networks (see Section 14.3). One can also derive a learning rule using the standard method 
of maximizing the (conditional) log likelihood of the data, as described earlier in this chapter. 
Let's see how this works. 

Consider a single training example with true output value T, and let p be the probability 
returned by the perceptron for this example. If T = 1, the conditional probability of the 
datum is p, and if T = 0, the conditional probability of the datum is (1 - p). Now we can use 
a simple trick to write the log likelihood in a form that is differentiable. The trick is that a 011 

INDICATORVARIABLE variable in the exponent of an expression acts as an indlicatoir variable: pT is p if T = 1 and 
1 otherwise; similarly (1 - p)(l-T) is (1 - p)  if T = 0 and 1 otherwise. Hence, we can write 
the log likelihood of the datum as 

L = log f l ( l  - p) ( l -T )  = T log p  + (1 - T) log(] - p)  . (20.13) 

Thanks to the properties of the sigmoid function, the gradient reduces to a very simple for- 
mula (Exercise 20.16): 

dL 
---- = Err X xj . 
dWi 

Notice that the weight-update vector for maximum likelihood learning in sigmoid perceptrons 
is essentially identical to the update vector for squared error minimization. Thus, we could 
say that perceptrons have a probabilistic interpretation even when the learning rule is derived 
from a deterministic viewpoint. 
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Multilayer feed-forward neural networks 

Now we will consider networks with hidden units. The most common case involves a single 
hidden layer,'' as in Figure 20.24. The advantage of adding hidden layers is that it enlarges 
the space of hypotheses that the network can represent. Think of each hidden unit as a percep- 
tron that represents a soft threshold function in the input space, as shown in Figure 20.19(b). 
Then, think of an output unit as as a soft-thresholded linear combination of several such func- 
tions. For example, by adding two opposite-facing soft threshold functions and thresholding 
the result, we can obtain a "ridge" function as shown in Figure 20.23(a). Combining two such 
ridges at right angles to each other (i.e., combining the outputs from four hidden units), we 
obtain a "bump" as shown in Figure 20.23(b). 

(a) (b) 

Figure 20.23 (a) The result of combining two opposite-facing soft threshold functions to 
produce a ridge. (b) The result of combining two ridges to produce a bump. 

With more hidden units, we can produce more bumps of different sizes in more places. 
In fact, with a single, sufficiently large hidden layer, it is possible to represent any continuous 
function of the inputs with arbitrary accuracy; with two layers, even discontinuous functions 
can be represented.12 Unfortunately, for any pavticular network structure, it is harder to 
characterize exactly which functions can be represented and which ones cannot. 

Suppose we want to construct a hidden layer network for the restaurant problem. We 
have 10 attributes describing each example, so we will need 10 input units. How many hidden 
units are needed? In Figure 20.24, we show a network with four hidden units. This turns out 
to be about right for this problem. The problem of choosing the right number of hidden units 
in advance is still not well understood. (See page 748.) 

Learning algorithms for multilayer networks are similar to the perceptron learning al- 
gorithm show in Figure 20.21. One minor difference is that we may have several outputs, so 

Some people call this a three-layer network, and some call it a two-layer network (because the inputs aren't 
"real" units). We will avoid confusion and call it a "single-hidden-layer network." 
l2 The proof is complex, but the main point is that the required number of hidden units grows exponentially with 
the number of inputs. For example, 2n/n hidden units are needed to encode all Boolean functions of n inputs. 
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aj 
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Input units ak 

Figure 20.24 A multilayer neural network with one hiddein layer and 10 inputs, suitable 
for the restaurant problem. 

we have an output vector hw (x) rather than a single value, and each example has an output 
vector y. The major difference is that, whereas the errair y - hw at the output layer is clear, 
the error at the hidden layers seems mysterious because the training data does not say what 

BACK-PROPAGATION value the hidden nodes should have. It turns out that we can lback-propagate the ell-or from 
the output layer to the hidden layers. The back-propagation process emerges directly from a 
derivation of the overall error gradient. First, we will describe the process with an intuitive 
justification; then, we will show the derivation. 

At the output layer, the weight-update rule is identical to Equation (20.12). We have 
multiple output units, so let Erri be ith component of the error vector y - hw. We will also 
find it convenient to define a modified error Ai = Erri x gf(ini),  so that the weiglit-update 
rule becomes 

To update the connections between the input units and Ithe hidden units, we need to define a 
quantity analogous to the error term for output nodes. Here is where we do the error back- 
propagation. The idea is that hidden node j is "responsible" for some fraction of the error Ai 
in each of the output nodes to which it connects. Thus, the i?ii values are divided according 
to the strength of the connection between the hidden node and the output node and are prop- 
agated back to provide the Aj values for the hidden layer. The propagation rule for the A 
values is the following: 

A j  = g'( inj)  Wj,,Ai . (20.15) 
i 

Now the weight-update rule for the weights between the inputs an'd the hidden layer :is almost 
identical to the update rule for the output layer: 

'The back-propagation process can be summarized as follows: 
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function BACK-PROP-LEARNING(~XU~~~~~, network) returns a neural network 
inputs: examples, a set of examples, each with input vector x and output vector y 

network, a multilayer network with L layers, weights W j , i ,  activation function g 

repeat 
for each e in examples do 

for each node j in the input layer do aj t xj [el 
forQ=2to  Ldo 

ini t C j  Wj , i  aj 
ai t g ( i n i )  

for each node i in the output layer do 
Ai + g' ( i n i )  x (yi [el - ai)  

fore=L-  l t o l d o  
for each node j in layer ! do 

Aj +- g' ( i n j )  xi Wj,i Ai 
for each node i in layer Q + 1 do 

Wj,i +- Wj,i + a X aj x ai 
until some stopping criterion is satisfied 
return NEURAL-NET-HYPOTHESIS(~~~WO~~) 

1 Figure 20.25 The back-propagation algorithm for learning in multilayer networks. 1 

Compute the A values for the output units, using the observed error. 

Starting with output layer, repeat the following for each layer in the network, until the 
earliest hidden layer is reached: 

- Propagate the A values back to the previous layer. 

- Update the weights between the two layers. 

The detailed algorithm is shown in Figure 20.25. 
For the mathematically inclined, we will now derive the back-propagation equations 

from first principles. The squared error on a single example is defined as 

where the sum is over the nodes in the output layer. To obtain the gradient with respect to a 
specific weight Wj,i in the output layer, we need only expand out the activation ai as all other 
terms in the summation are unaffected by Wj,i: 
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with Ai defined as before. To obtain the gradient with respect to the Wk weights connecting 
the input layer to the hidden layer, we have to keep the entire summation over i because 
each output value ai may be affected by changes in Wk,j. We also have to expand out the 
activations aj. We will show the derivation in gory detail because it is interesting to see how 
the derivative operator propagates back through the netTwork: 

= - AiWj,ig'(inj)ar = -akai , 
i 

where Aj is defined as before. Thus, we obtain the update rules obtained earlier from intuitive 
considerations. It is also clear that the process can be continued for networks with more than 
one hidden layer, which justifies the general algorithm given in Figure 20.25. 

Having made it through (or skipped over) all the mathematics, let's see how a single- 
hidden-layer network performs on the restaurant problem. In Figure 20.26, we show two 
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Figure 20.26 (a) Training curve showing the gradual reduction in error as weights are 
modified over several epochs, for a given set of examples in the restaurant domain. (b) 
Comparative learning curves showing that decision-tree learning does slightly better than 
back-propagation in a multilayer network. 
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TRAINING CURVE curves. The first is a training curve, which shows the mean squared error on a given training 
set of 100 restaurant examples during the weight-updating process. This demonstrates that 
the network does indeed converge to a perfect fit to the training data. The second curve is the 
standard learning curve for the restaurant data. The neural network does learn well, although 
not quite as fast as decision-tree learning; this is perhaps not surprising, because the data were 
generated from a simple decision tree in the first place. 

Neural networks are capable of far more complex learning tasks of course, although it 
must be said that a certain amount of twiddling is needed to get the network structure right 
and to achieve convergence to something close to the global optimum in weight space. There 
are literally tens of thousands of published applications of neural networks. Section 20.7 
looks at one such application in more depth. 

Learning neural network structures 

So far, we have considered the problem of learning weights, given a fixed network structure; 
just as with Bayesian networks, we also need to understand how to find the best network 
structure. If we choose a network that is too big, it will be able to memorize all the examples 
by forming a large lookup table, but will not necessarily generalize well to inputs that have 
not been seen before.13 In other words, like all statistical models, neural networks are subject 
to overfitting when there are too many parameters in the model. We saw this in Figure 18.1 
(page 652), where the high-parameter models in (b) and (c) fit all the data, but might not 
generalize as well as the low-parameter models in (a) and (d). 

If we stick to fully connected networks, the only choices to be made concern the number 
of hidden layers and their sizes. The usual approach is to try several and keep the best. The 
cross-validation techniques of Chapter 18 are needed if we are to avoid peeking at the test 
set. That is, we choose the network architecture that gives the highest prediction accuracy on 

,- 
the validation sets. 

If we want to consider networks that are not fully connected, then we need to find 
some effective search method through the very large space of possible connection topologies. 

OPTIMAL DAMAGE The optimal brain damage algorithm begins with a fully connected network and removes 
connections from it. After the network is trained for the first time, an information-theoretic 
approach identifies an optimal selection of connections that can be dropped. The network 
is then retrained, and if its performance has not decreased then the process is repeated. In 
addition to removing connections, it is also possible to remove units that are not contributing 
much to the result. 

Several algorithms have been proposed for growing a larger network from a smaller one. 
TILING One, the tiling algorithm, resembles decision-list learning. The idea is to start with a single 

unit that does its best to produce the correct output on as many of the training examples as 
possible. Subsequent units are added to take care of the examples that the first unit got wrong. 
The algorithm adds only as many units as are needed to cover all the examples. 

l3 It has been observed that very large networks do generalize well as long as the weights are kept small. This 
restriction keeps the activation values in the linear region of the sigmoid function g(x )  where x is close to zero. 
This, in turn, means that the network behaves like a linear function (Exercise 20.17) with far fewer parameters. 
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Our discussion of neural networks left us with a dilemma. S~~ngle-layer networks have a 
simple and efficient learning algorithm, but have very limited expressive power-they can 
learn only linear decision boundaries in the input space. Multillayer networks, on the other 
hand, are inuch more expressive-they can represent general nonlinear functions-but are 
very hard to train because of the abundance of local minima and the high dimensionality 
of the weight space. In this section, we will explore a relatively new family of learning 

sUppoRTVECTOR MACHINE methods called support vector machines (SVMs) or, more generally, kernel machines. To 
KERNELMACHINE some extent, kernel machines give us the best of both worlds. That is, these methods use an 

efficient training algorithm and can represent complex, nonlinear functions. 
The full treatment of kernel machines is beyond the scope of the book, but we can 

illustrate the main idea through an example. Figure 20.27(a) shows a two-dimensional input 
space defined by attributes x = (zl, xz), with positive examples (y = + 1) inside a circular 
region and negative examples (y = - 1) outside. Clearly, there is no linear separator for this 
problem. Now, suppose we re-express the input data using some computed features-i.e., we 
map each input vector x to a new vector of feature values, F1(x). In particular, let as use the 
three featur~es 

We will see shortly where these came from, but, for mow, just look at what happens. Fig- 
ure 20.27(b) shows the data in the new, three-dimensional space defined by the three features; 
the data are linearly separable in this space! This phenomeinon is actually fairly general: if 
data are mapped into a space of sufficiently high dimension, lhen they will always be linearly 
separable. Here, we used only three dimensions,14 but if we have N data points then, ex- 
cept in special cases, they will always be separable in a space of N - 1 dimensions or more 
(Exercise 20.21). 

So, is that it? Do we just produce loads of computed features and then find a linear 
separator in the corresponding high-dimensional space? Unfortunately, it's not that easy. 
Remember Ithat a linear separator in a space of d dimensions is defined by an equation with d 
parameters, so we are in serious danger of overfitting the data if d = N, the number of data 
points. (This is like overfitting data with a high-degree polynomial, which we discussed in 
Chapter 18.) For this reason, kernel machines usually find the optimal linear separator-the 

MARGIN one that has the largest margin between it and the positive examples on one side and the 
negative examples on the other. (See Figure 20.28.) It can be shown, using arguments from 
computational learning theory (Section 18.5), that this separator has desirable properties in 
terms of robust generalization to new examples. 

QUADRATIC 
PROGRAMMING Now, how do we find this separator? It turns out that thrs is a quadratic programming 

optimization problem. Suppose we have examples x, with classifications y, = f 1 and we 
want to find an optimal separator in the input space; thein the quadratic programming problem 

l4 The reader may notice that we could have used just f l  and fi, but the 3'D mapping illustrates the idea better. 
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Figure 20.27 (a) A two-dimensional training set with positive examples as black cir- 
cles and negative examples as white circles. The true decision boundary, xf + x; 5 1, 
is also shown. (b) The same data after mapping into a three-dimensional input space 
(rc:, 4, fix1 z2). The circular decision boundary in (a) becomes a linear decision boundary 
in three dimensions. 

1 

x: 

Figure 20.28 A close-up, projected onto the first two dimensions, of the optimal separator 
shown in Figure 20.27(b). The separator is shown as a heavy line, with the closest points-the 
support vectors-marked with circles. The margin is the separation between the positive 
and negative examples. 
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is to find values of the parameters ai that maximize the expression 

subject to the constraints a, 2 0 and C, a , y ,  = 0. Although the derivation of this expression 
is not crucial to the story, it does have two important properties. First, the expression has a 
single global maximum that can be found efficiently. Second, the data enter the eatpression 
only in the form of dot products of pairs of points. This second property is also true of the 
equation for the separator itself; once the optimal a , s  have been calculated, it is 

h ( x )  = sign a i y i ( x  x i )  
( i  i 

A final important property of the optimal separator defined by this equation is that the weights 
ai associated with each data point are zero except for those points closest to the separator- 

SUPPORT VECTOR the so-called support vectors. (They are called this blecause they "hold up" the separating 
plane.) Because there are usually many fewer support vectors than data points, the effective 
number of parameters defining the optimal separator is usually much less than N. 

Now, we would not usually expect to find a linear separator in the input space x,  but it 
is easy to see that we can find linear separators in the high-climensional feature space F ( x )  
simply by replacing xi . xj  in Equation (20.17) with F ( x i )  . F ( x j ) .  This by itself is not 
remarkable--replacing x  by F  ( x )  in any learning algorithm has the required effect--but the 
dot product has some special properties. It turns out that F ( x i )  . F ( x j )  can often be computed 
without first computing F  for each point. In our three- dimensional feature space defined by 
Equation (20.16), a little bit of algebra shows that 

The expression ( x ,  . x , ) ~  is called a kernel function, usually written as K ( x , ,  x, ). In the 
kernel machine context, this means a function that can be applied to pairs of input data to 
evaluate dot products in some corresponding feature space. So, we can restate the claim at the 
beginning of this paragraph as follows: we can find linear separators in the high-dimensional 
feature space F ( x )  simply by replacing x, . x, in Equation (20.17) with a kernel function 
K ( x , ,  x , ) .  Thus, we can learn in the high-dimensiona~l space but we compute only kernel 
functions rather than the full list of features for each data point. 

The next step, which should by now be obvious, is to see that there's nothing special 
about the kernel K ( x , ,  x , )  = ( x ,  . x , ) ~ .  It corresponds to a particular higher-dimensional 
feature space, but other kernel functions correspond to other feature spaces. A venerable 

MERCER'STHEOREM result in mathematics, Mercer's theorem (1909), tells us that any "reasonable" l5 kernel 
function corresponds to some feature space. These feature spaces can be very large, even for 

POLYNOMIAL 
KERNEL innocuous-looking kernels. For example, the polynomial kernel, K ( x , ,  x,)  = ( 1  f x,  . x , ) ~ ,  

corresponds to a feature space whose dimension is explonential in d. Using such kernels in 
Equation (20.17), then, optimal linear separators can be found eficiently in feature spaces 
with billions (or, in some cases, injinitely many) dimensions. The resulting linear separators, 

l5 Here, "reasonable" means that the matrix Ki, = K(xi, xj) is positive definite; see Appendix A. 
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when mapped back to the original input space, can correspond to arbitrarily wiggly, nonlinear 
boundaries between the positive and negative examples. 

We mentioned in the preceding section that kernel machines excel at handwritten digit 
recognition; they are rapidly being adopted for other applications-especially those with 
many input features. As part of this process, many new kernels have been designed that 
work with strings, trees, and other non-numerical data types. It has also been observed that 
the kernel method can be applied not only with learning algorithms that find optimal linear 
separators, but also with any other algorithm that can be reformulated to work only with dot 
products of pairs of data points, as in Equations 20.17 and 20.18. Once this is done, the dot 

KERNELIZATION product is replaced by a kernel function and we have a kernelized version of the algorithm. 
This can be done easily for k-nearest-neighbor and perceptron learning, among others. 

Recognizing handwritten digits is an important problem with many applications, including 
automated sorting of mail by postal code, automated reading of checks and tax returns, and 
data entry for hand-held computers. It is an area where rapid progress has been made, in part 
because of better learning algorithms and in part because of the availability of better training 
sets. The United States National Institute of Science and Technology (NIST) has archived a 
database of 60,000 labeled digits, each 20 x 20 = 400 pixels with 8-bit grayscale values. It 
has become one of the standard benchmark problems for comparing new learning algorithms. 
Some example digits are shown in Figure 20.29. 

Figure 20.29 Examples from the NIST database of handwritten digits. Top row: examples 
of digits 0-9 that are easy to identify. Bottom row: more difficult examples of the same digits. 

Many different learning approaches have been tried. One of the first, and probably the 
simplest, is the 3-nearest-neighbor classifier, which also has the advantage of requiring no 
training time. As a memory-based algorithm, however, it must store all 60,000 images, and 
its runtime performance is slow. It achieved a test error rate of 2.4%. 

A single-hidden-layer neural network was designed for this problem with 400 input - 

units (one per pixel) and 10 output units (one per class). Using cross-validation, it was found 
that roughly 300 hidden units gave the best performance. With full interconnections between 
layers, there were a total of 123,300 weights. This network achieved a 1.6% error rate. 
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A series of specialized neural networks called LeNel. were devised to take advantage 
of the structure of the problem-that the input consists of pixels in a two-dimensional array, 
and that small changes in the position or slant of an image are unimportant. Each network 
had an input layer of 32 x 32 units, onto which the 20 x 20 pixels were centered so that each 
input unit is presented with a local neighborhood of pixels. This was followed by three layers 
of hidden units. Each layer consisted of several planes of 71, x n arrays, where n is smaller 
than the previous layer so that the network is down-sampling the input, and where the weights 
of every unit in a plane are constrained to be identical, so that the plane is acting as a feature 
detector: it can pick out a feature such as a long vertical line or EL short semi-circular arc. The 
output layer had 10 units. Many versions of this architecture were tried; a representative one 
had hidden layers with 768, 192, and 30 units, respectively. The training set was augmented 
by applying affine transformations to the actual inputs: shifting, slightly rotating, and scaling 
the images. (Of course, the transformations have to be small, or else a 6 will be transformed 
into a 9!) The best error rate achieved by LeNet was 0.9%. 

A boosted neural network combined three copies of the LeNet architecture, with the 
second one trained on a mix of patterns that the first one got 50% wrong, and the third one 
trained on patterns for which the first two disagreed. During testing, the three nets voted with 
their weights for each of the ten digits, and the scores are added to determine the winner. The 
test error rate was 0.7%. 

A support vector machine (see Section 20.6) with 25,000 support vectors achieved an 
error rate of 1.1 %. This is remarkable because the ShTM technique, like the simplle nearest- 
neighbor approach, required almost no thought or iterated experimentation on the part of the 
developer, yet it still came close to the performance of LeN€t, which had had years of devel- 
opment. Indeed, the support vector machine makes no use of the structure of the. problem, 
and would perform just as well if the pixels were presented in a permuted order. 

VIRTUAL SUPPORT 
VECTOR MACHINE A virtual support vector machine starts with a regular SVM and then irnproves it 

with a technique that is designed to take advantage of the structure of the problem. Instead of 
allowing products of all pixel pairs, this approach concentra1.e~ on kernels formed from pairs 
of nearby pixels. It also augments the training set with1 transforrnation~ of the examples, just 
as LeNet did. A virtual SVM achieved the best error rate recorded to date, 0.56%. 

Shape matching is a technique from computer vision used to align corresponding parts 
of two different images of objects. (See Chapter 24.) The idea is to pick out a set of points in 
each of the two images, and then compute, for each point in tlhe first image, which point in the 
second image it corresponds to. From this alignment, we then compute a transforrnation be- 
tween the images. The transformation gives us a measure of ihe distance between the images. 
This distance measure is better motivated than just counting the number of differing pixels, 
and it turns out that a 3-nearest neighbor algorithm using this distance measure performs very 
well. Training on only 20,000 of the 60,000 digits, and using 100 sample points per image 
extracted from a Canny edge detector, a shape matching classifier achieved 0.63% test error. 

Humans are estimated to have an error rate of about 0.2% on this problem. This figure 
is somewhat suspect because humans have not been tested as extensively as have machine 
learning algorithms. On a similar data set of digits from the United States Postal Service, 
human errors were at 2.5%. 
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The following figure summarizes the error rates, runtime performance, memory require- 
ments, and amount of training time for the seven algorithms we have discussed. It also adds 
another measure, the percentage of digits that must be rejected to achieve 0.5% error. For ex- 
ample, if the SVM is allowed to reject 1.8% of the inputs-that is, pass them on for someone 
else to make the final judgment-then its error rate on the remaining 98.2% of the inputs is 
reduced from 1.1 % to 0.5%. 

The following table summarizes the error rate and some of the other characteristics of 
the seven techniques we have discussed. 
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Runtime (millisec/digit) 
Memory requirements (Mbyte) 
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Statistical learning methods range from simple calculation of averages to the construction 
of complex models such as Bayesian networks and neural networks. They have applica- 
tions throughout computer science, engineering, neurobiology, psychology, and physics. This 
chapter has presented some of the basic ideas and given a flavor of the mathematical under- 
pinnings. The main points are as follows: 
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a Bayesian learning methods formulate learning as a form of probabilistic inference, 
using the observations to update a prior distribution over hypotheses. This approach 
provides a good way to implement Ockham's razor, but quickly becomes intractable for 
complex hypothesis spaces. 

Maximum a posteriori (MAP) learning selects a single most likely hypothesis given 
the data. The hypothesis prior is still used and the method is often more tractable than 
full Bayesian learning. 

a Maximum likelihood learning simply selects the hypothesis that maximizes the likeli- 
hood of the data; it is equivalent to MAP learning with a uniform prior. In simple cases 
such as linear regression and fully observable Bayesian networks, maximum likelihood 
solutions can be found easily in closed form. Naive Bayes learning is a particularly 
effective technique that scales well. 

a When some variables are hidden, local maximum likelihood solutions can be found 
using the EM algorithm. Applications include clustering using mixtures of Gaussians, 
learning Bayesian networks, and learning hidden Markov models. 
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Learning the structure of Bayesian networks is an example of model selection. This 
usually involves a discrete search in the space of structures. Some method is required 
for trading off model complexity against degree of fit. 

Instance-based models represent a distribution using the collection of training in- 
stances. Thus, the number of parameters grows with the training set. Nearest-neighbor 
methods look at the instances nearest to the point in question, whereas kernel methods 
form a distance-weighted combination of all the instances. 

Neural networks are complex nonlinear functions wnth many parameters. Their pa- 
rameters can be learned from noisy data and they hive been used for thousands of 
applications. 

A perceptron is a feed-forward neural network with no hidden units that can represent 
only linearly separable functions. If the data are line,arly separable, a simplle weight- 
update rule can be used to fit the data exactly. 

Multilayer feed-forward neural networks can represent any function, given enough 
units. The back-propagation algorithm implements a gradient descent in parameter 
space to minimize the output error. 

Statistical learning continues to be a very active area of research. Enormous strides have been 
made in both theory and practice, to the point where it is possible to learn almost any model 
for which exact or approximate inference is feasible. 

The application of statistical learning techniques in .41 was am active area of research in 
the early years (see Duda and Hart, 1973) but became separated from mainstream A1 as the 
latter field concentrated on symbolic methods. It continued in various forms-some explicitly 
probabilistic, others not-in areas such as pattern recognition (Devroye et al., 1996) and 
information retrieval (Salton and McGill, 1983). A resurgence of interest occurred shortly 
after the introduction of Bayesian network models in the late 1980s; at roughly the same time, 
a statistical view of neural network learning began to emerge. In the late 1990s, there was 
a noticeable convergence of interests in machine learning, statistics, and neural networks, 
centered oil methods for creating large probabilistic models from data. 

The naive Bayes model is one of the oldest and simplest forms of Bayesian network, 
dating back to the 1950s. Its origins were mentioned in Chapter 13. Its surprising success is 
partially explained by Domingos and Pazzani (1997). A boolsted form of naive Bayes learn- 
ing won the first KDD Cup data mining competition (Elkan, 1997). Heckerman (1998) gives 
an excellent introduction to the general problem of Bayes net learning. Bayesian pararne- 
ter learning with Dirichlet priors for Bayesian networks was discussed by Spiegelhalter et al. 
(1993). The BUGS software package (Gilks et al., 1994) incorporates many of these ideas and 
provides a very powerful tool for formulating and learning complex probability mo~dels. The 
first algorithms for learning Bayes net structures used conditional independence tests (Pearl, 
1988; Pearl and Verma, 1991). Spirtes et al. (1993) develclped a comprehensive approach 
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and the TETRAD package for Bayes net learning using similar ideas. Algorithmic improve- 
ments since then led to a clear victory in the 2001 KDD Cup data mining competition for a 
Bayes net learning method (Cheng et al., 2002). (The specific task here was a bioinformatics 
problem with 139,351 features!) A structure-learning approach based on maximizing like- 
lihood was developed by Cooper and Herskovits (1992) and improved by Heckerman et al. 
(1994). Friedman and Goldszmidt (1996) pointed out the influence of the representation of 
local conditional distributions on the learned structure. 

The general problem of learning probability models with hidden variables and missing 
data was addressed by the EM algorithm (Dempster et al., 1977), which was abstracted from 
several existing methods including the Baum-Welch algorithm for HMM learning (Baum 
and Petrie, 1966). (Dempster himself views EM as a schema rather than an algorithm, since a 
good deal of mathematical work may be required before it can be applied to a new family of 
distributions.) EM is now one of the most widely used algorithms in science, and McLachlan 
and Krishnan (1997) devote an entire book to the algorithm and its properties. The specific 
problem of learning mixture models, including mixtures of Gaussians, is covered by Titter- 
ington et al. (1985). Within AI, the first successful system that used EM for mixture modeling 
was AUTOCLASS (Cheeseman et al., 1988; Cheeseman and Stutz, 1996). AUTOCLASS has 
been applied to a number of real-world scientific classification tasks, including the discovery 
of new types of stars from spectral data (Goebel et al., 1989) and new classes of proteins and 
introns in DNAJprotein sequence databases (Hunter and States, 1992). 

An EM algorithm for learning Bayes nets with hidden variables was developed by Lau- 
ritzen (1995). Gradient-based techniques have also proved effective for Bayes nets as well as 
dynamic Bayes nets (Russell et al., 1995; Binder et al., 1997a). The structural EM algorithm 
was developed by (Friedman, 1998). The ability to learn the structure of Bayesian networks is 
closely connected to the issue of recovering causal information from data. That is, is it possi- 
ble to learn Bayes nets in such a way that the recovered network structure indicates real causal 
influences? For many years, statisticians avoided this question, believing that observational 
data (as opposed to data generated from experimental trials) could yield only correlational 
information-after all, any two variables that appear related might in fact be influenced by 
third, unknown causal factor rather than influencing each other directly. Pearl (2000) has pre- 
sented convincing arguments to the contrary, showing that there are in fact many cases where 

CAUSAL NETWORK causality can be ascertained and developing the causal network formalism to express causes 
and the effects of intervention as well as ordinary conditional probabilities. 

Nearest-neighbor models date back at least to (Fix and Hodges, 1951) and have been a 
standard tool in statistics and pattern recognition ever since. Within AI, they were popularized 
by (Stanfill and Waltz, 1986), who investigated methods for adapting the distance metric to 
the data. Hastie and Tibshirani (1996) developed a way to localize the metric to each point 
in the space, depending on the distribution of data around that point. Efficient indexing 
schemes for finding nearest neighbors are studied within the algorithms community (see, 
e.g., Indyk, 2000). Kernel density estimation, also called Parzen window density estimation, 
was investigated initially by Rosenblatt (1956) and Parzen (1962). Since that time, a huge 
literature has developed investigating the properties of various estimators. Devroye (1987) 
gives a thorough introduction. 
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The literature on neural networks is rather too large (approximately 100,000 papers to 
date) to cover in detail. Cowan and Sharp (198813, 1988a) survey the early history, beginning 
with the work of McCulloch and Pitts (1943). Norbert Wiener, a pioneer of cybernetics and 
control theory (Wiener, 1948), worked with McCulloch and Pitts and influenced a number of 
young researchers including Marvin Minsky, who may have been the first to develop a work- 
ing neural network in hardware in 1951 (see Minsky and Papert, 1988, pp. ix-x). Meanwhile, 
in Britain, W. Ross Ashby (also a pioneer of cybernetics; see Ashby, 1940), Alan Turing, 
Grey Walter, and others formed the Ratio Club for "those who had Wiener's ideas before 
Wiener's book appeared." Ashby's Design for a Brazn (1948, 1952) put forth the idea that 
intelligence could be created by the use of homeostatic devices containing appropriate feed- 
back loops to achieve stable adaptive behavior. Turing (19443) wrote a research report titled 
Intelligent Machinery that begins with the sentence "I propose lo investigate the question as 
to whether it is possible for machinery to show intellig~snt behaviour" and goes on to describe 
a recurrent neural network architecture he called "B-type unorganized machines" and an ap- 
proach to training them. Unfortunately, the report went unpublished until 1969, and was all 
but ignored until recently. 

Frank. Rosenblatt (1957) invented the modern "perceptron" and proved the percep- 
tron convergence theorem (1960), although it had been foreshadowed by purely mathemat- 
ical work outside the context of neural networks (Agimon, 1954; Motzkin and Schoenberg, 
1954). Some early work was also done on multilayer networks, including Gamba percep- 
trons (Gamba et al., 1961) and madalines (Widrow, 1962). L,earning Machines (Nilsson, 
1965) covers much of this early work and more. The subsequent demise of early yerceptron 
research efforts was hastened (or, the authors later claimed, merely explained) by the book 
Perceptrons (Minsky and Papert, 1969), which lamented the field's lack of mathematical 
rigor. The book pointed out that single-layer perceptrons could represent only linearly sepa- 
rable concepts and noted the lack of effective learning algorithms for multilayer networks. 

The papers in (Hinton and Anderson, 1981), based on a conference in Sanl Diego in 
1979, can ble regarded as marking the renaissance of connectionism. The two-volume "PDP" 
(Parallel Distributed Processing) anthology (Rumelhart et al., 1986a) and a short article in 
Nature (Rumelhart et al., 1986b) attracted a great deal of attention-indeed, the number of 
papers on 'heural networks" multiplied by a factor of 200 ]between 1980-84 and 1990-94. 
The analysis of neural networks using the physical theory of magnetic spin glasses (Amit 
et al., 1985) tightened the links between statistical mechanics and neural network theory- 
providing not only useful mathematical insights but also respectability. The back-propagation 
technique had been invented quite early (Bryson and tIo,1969) but it was rediscovered several 
times (Werbos, 1974; Parker, 1985). 

Support vector rnachines were originated in the 1990s (Cortes and Vapnik, 1995) and 
are now the subject of a fast-growing literature, including textbooks such as Cristianini and 
Shawe-Tayllor (2000). They have proven to be very populair and effective for tasks such as 
text categorization (Joachims, 2001), bioinformatics research (Brown et al., 2000), and natu- 
ral language processing, such as the handwritten digit recognition of DeCoste and Scholkopf 
(2002). A related technique that also uses the "kernel t r ick  to implicitly represent an expo- 
nential feature space is the voted perceptron (Collins and Duffy, 2002). 
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The probabilistic interpretation of neural networks has several sources, including Baum 
and Wilczek (1988) and Bridle (1990). The role of the sigmoid function is discussed by 
Jordan (1995). Bayesian parameter learning for neural networks was proposed by MacKay 
(1992) and is explored further by Neal (1996). The capacity of neural networks to represent 
functions was investigated by Cybenko (1988, 1989), who showed that two hidden layers are 
enough to represent any function and a single layer is enough to represent any continuous 
function. The "optimal brain damage" method for removing useless connections is by LeCun 
et al. (1989), and Sietsma and Dow (1988) show how to remove useless units. The tiling 
algorithm for growing larger structures is due to Mkzard and Nadal (1989). LeCun et al. 
(1995) survey a number of algorithms for handwritten digit recognition. Improved error rates 
since then were reported by Belongie et al. (2002) for shape matching and DeCoste and 
Scholkopf (2002) for virtual support vectors. 

The complexity of neural network learning has been investigated by researchers in com- 
putational learning theory. Early computational results were obtained by Judd (1990), who 
showed that the general problem of finding a set of weights consistent with a set of examples 
is NP-complete, even under very restrictive assumptions. Some of the first sample complexity 
results were obtained by Baum and Haussler (1989), who showed that the number of exam- 
ples required for effective learning grows as roughly W log W, where W is the number of 
weights.16 Since then, a much more sophisticated theory has been developed (Anthony and 
Bartlett, 1999), including the important result that the representational capacity of a network 
depends on the size of the weights as well as on their number. 

The most popular kind of neural network that we did not cover is the radial basis 
RADIAL BASIS 
FUNCTION function, or RBF, network. A radial basis function combines a weighted collection of kernels 

(usually Gaussians, of course) to do function approximation. RBF networks can be trained in 
two phases: first, an unsupervised clustering approach is used to train the parameters of the 
Gaussians-the means and variances-are trained, as in Section 20.3. In the second phase, 
the relative weights of the Gaussians are determined. This is a system of linear equations, 
which we know how to solve directly. Thus, both phases of RBF training have a nice benefit: 
the first phase is unsupervised, and thus does not require labelled training data, and the second 
phase, although supervised, is efficient. See Bishop (1995) for more details. 

Recurrent networks, in which units are linked in cycles, were mentioned in the chap- 
HOPFIELD 
NETWORKS ter but not explored in depth. Hopfield networks (Hopfield, 1982) are probably the best- 

understood class of recurrent networks. They use bidirectional connections with symmetric 
weights (i.e., Wi,j = Wj,+), all of the units are both input and output units, the activation 
function g is the sign function, and the activation levels can only be &1. A Hopfield network 

ASSOCIATIVE 
MEMORY functions as an associative memory: after the network trains on a set of examples, a new 

stimulus will cause it to settle into an activation pattern corresponding to the example in the 
training set that most closely resembles the new stimulus. For example, if the training set con- 
sists of a set of photographs, and the new stimulus is a small piece of one of the photographs, 
then the network activation levels will reproduce the photograph from which the piece was 

l v h i s  approximately confirmed "Uncle Bernie's rule." The rule was named after Bernie Widrow, who recom- 
mended using roughly ten times as many examples as weights. 



Section 20.8. Summary 759 

taken. Notice that the original photographs are not stored separately in the network; each 
weight is a partial encoding of all the photographs. One of the most interesting theoretical 
results is that Hopfield networks can reliably store up to 0.138N training examples, where N 
is the number of units in the network. 

Boltzmann machines (Hinton and Sejnowski, 1983, 1986) also use symmetric weights, 
but include hidden units. In addition, they use a stochastic activation function, such that 
the probability of the output being 1 is some function of the total weighted input. Boltz- 
mann machines therefore undergo state transitions that resemble a simulated annealing search 
(see Chapter 4) for the configuration that best approxinlates 1.he training set. It turns out that 
Boltzmann machines are very closely related to a special case of Bayesian networks evaluated 
with a stochastic simulation algorithm. (See Section 14.5.) 

The first application of the ideas underlying kernel machines was by Aizernnan et al. 
(1964), but the full development of the theory, under the heading of support vector machines, 
is due to Vladimir Vapnik and colleagues (Boser et al., 1992; Vapnik, 1998). Cristianini 
and Shawe-Taylor (2000) and Scholkopf and Smola (2002) provide rigorous introductions; a 
friendlier exposition appears in the A1 Magazine article by Cristianini and Scholkopf (2002). 

The material in this chapter brings together work from the fields of statistics, pattern 
recognition, and neural networks, so the story has been told many times in many ways. Good 
texts on Bayesian statistics include those by DeGroot (1970), 13erger (1985), ancl Gelman 
et al. (1995). Hastie et al. (2001) provide an excellent introduction to statistical learning 
methods. For pattern classification, the classic text for many years has been Duda and Hart 
(1973), now updated (Duda et al., 2001). For neural nets, Bi~shop (1995) and Ripley (1996) 
are the leading texts. The field of computational neuro,science is covered by Dayan~ and Ab- 
bott (2001). The most important conference on neural networks and related topics is the 
annual NIPS (Neural information Processing Conference) conference, whose proceedings 
are published as the series Advances in Neural Information Processing Systems. Papers on 
learning Bayesian networks also appear in the Uncertainty in AI and Machine Learning con- 
ferences and in several statistics conferences. Journals specific to neural networks include 
Neural Computation, Neural Networks, and the IEEE Transactions on Neural Networks. 

20.6 The data used for Figure 20.1 can be viewed as being generated by h5. For each of the 
other four hypotheses, generate a data set of length 100 and plot the corresponding graphs for 
P(hi(dl,.  . . , d m )  and P(D,+l = limeldl,. . . , dm) .  Comment on your results. 

20.2 Repeat Exercise 20.1, this time plotting the values of P(Dm+l = lime1 hnlAp) and 
P(Dmtl = limeIhM~). 

20.3 Suppose that Ann's utilities for cherry and lime candies are c~ and QA, whereas Bob's 
utilities are cg and QB. (But once Ann has unwrappt:d a piece of candy, Bob won't buy 
it.) Presumably, if Bob likes lime candies much more than .4nn, it would be wise for Ann 
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to sell her bag of candies once she is sufficiently sure of its lime content. On the other hand, 
if Ann unwraps too many candies in the process, the bag will be worth less. Discuss the 
problem of determining the optimal point at which to sell the bag. Determine the expected 
utility of the optimal procedure, given the prior distribution from Section 20.1. 

20.4 Two statisticians go to the doctor and are both given the same prognosis: A 40% 
chance that the problem is the deadly disease A, and a 60% chance of the fatal disease B. 
Fortunately, there are anti-A and anti-B drugs that are inexpensive, 100% effective, and free 
of side-effects. The statisticians have the choice of taking one drug, both, or neither. What 
will the first statistician (an avid Bayesian) do? How about the second statistician, who always 
uses the maximum likelihood hypothesis? 

The doctor does some research and discovers that disease B actually comes in two 
versions, dextro-B and levo-B, which are equally likely and equally treatable by the anti-B 
drug. Now that there are three hypotheses, what will the two statisticians do? 

20.5 Explain how to apply the boosting method of Chapter 18 to naive Bayes learning. Test 
the performance of the resulting algorithm on the restaurant learning problem. 

20.6 Consider m data points ( x  j ,  yj ) , where the yj s are generated from the xj  s according to 
the linear Gaussian model in Equation (20.5). Find the values of 01, 02,  and CT that maximize 
the conditional log likelihood of the data. 

20.7 Consider the noisy-OR model for fever described in Section 14.3. Explain how to 
apply maximum-likelihood learning to fit the parameters of such a model to a set of complete 
data. (Hint: use the chain rule for partial derivatives.) 

20.8 This exercise investigates properties of the Beta distribution defined in Equation (20.6). 

a. By integrating over the range [0, 11, show that the normalization constant for the dis- 
tribution beta[a, b] is given by a = r ( a  + b ) / r ( a ) r ( b )  where r ( x )  is the Gamma 

GAMMA FUNCTION function, defined by r ( x  + 1) = x . r ( x )  and r(1) = 1. (For integer x ,  r ( x  + 1)  = x!.) 
b. Show that the mean is a / ( a  + b). 

c. Find the mode(s) (the most likely value(s) of 0). 
d. Describe the distribution beta[€,  €1 for very small E .  What happens as such a distribution 

is updated? 

20.9 Consider an arbitrary Bayesian network, a complete data set for that network, and the 
likelihood for the data set according to the network. Give a simple proof that the likelihood 
of the data cannot decrease if we add a new link to the network and recompute the maximum- 
likelihood parameter values. 

20.10 Consider the application of EM to learn the parameters for the network in Fig- 
ure 20.1 O(a), given the true parameters in Equation (20.7). 

a. Explain why the EM algorithm would not work if there were just two attributes in the 
model rather than three. 

b. Show the calculations for the first iteration of EM starting.from Equation (20.8). 
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c. What happens if we start with all the parameters set lo the same value p? (Hint: you 
may find it helpful to investigate this empirically before deriving the general result.) 

d. Write out an expression for the log likelihood of the tabulated candy data on page 729 in 
terms of the parameters, calculate the partial derivatives with respect to each parameter, 
and investigate the nature of the fixed point reached in part (c). 

20.11 Construct by hand a neural network that comj~utes the XOR function of two inputs. 
Make sure to specify what sort of units you are using. 

20.12 Construct a support vector machine that computes the XOR function. It will be con- 
venient to use values of 1 and -1 instead of 1 and 0 fair the inputs and for the outputs. So an 
example looks like ( [- 1, I], 1) or ( [- 1, - 11, - 1). It is typical to map an input x irrto a space 
consisting of five dimensions, the two original dimensions x 1 xld 22, and the three: combina- 
tion x:, xz and XI 2 2 .  But for this exercise we will coinsider only the two dimensions x l  and 
X I  2 2 .  Draw the four input points in this space, and the maximal margin separator. What is 
the margin? Now draw the separating line back in the original Eiuclidean input space. 

20.13 A simple perceptron cannot represent XOR (or, generally, the parity function of its 
inputs). Describe what happens to the weights of a four-input, step-function perceptron, 
beginning with all weights set to 0.1, as examples of the parity function arrive. 

20.14 Recall from Chapter 18 that there are 22n distinct Boolean functions of n inputs. How 
many of these are representable by a threshold perceptron? 

20.15 Consider the following set of examples, each with six inputs and one target output: 

1 2 0 0 0 1 1 0 0 1 1 0 1 0 1 1  
1 3 1 1 1 0 1 0 0 1 1 0 0 0 1 1  
1 4 0 1 0 0 1 0 0 1 0 1 1 1 0 1  
1 5 0 0 1 1 0 1 1 0 1 1 0 0 1 0  
I f j 0 0 0 1 0 l 0 1 1 ~ 3 1 1 1 0  

-- 

a. Run the perceptron learning rule on these data arid show the final weights. 
b. Run the decision tree learning rule, and show the resulting decision tree. 

c. Comment on your results. 

20.16 Starting from Equation (20.13), show that dL/aWj = Err x xj .  

20.17 Suppose you had a neural network with linear activation functions. That is, for each 
unit the output is some constant c times the weighted sum of'the inputs. 

a. Assume that the network has one hidden layer. For a given assignment to the weights 
W, write down equations for the value of the units in the output layer as a function of 
W and the input layer I, without any explicit mention to the output of the hidden layer. 
Show that there is a network with no hidden units that computes the same function. 
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b. Repeat the calculation in part (a), this time for a network with any number of hidden 
layers. What can you conclude about linear activation functions? 

\@EiiJG-F 20.18 Implement a data structure for layered, feed-forward neural networks, remembering 
to provide the information needed for both forward evaluation and backward propagation. 
Using this data structure, write a function NEURAL-NETWORK-OUTPUT that takes an exam- 
ple and a network and computes the appropriate output values. 

20.19 Suppose that a training set contains only a single example, repeated 100 times. In 
80 of the 100 cases, the single output value is 1; in the other 20, it is 0. What will a back- 
propagation network predict for this example, assuming that it has been trained and reaches 
a global optimum? (Hint: to find the global optimum, differentiate the error function and set 
to zero.) 

20.20 The network in Figure 20.24 has four hidden nodes. This number was chosen some- 
what arbitrarily. Run systematic experiments to measure the learning curves for networks 
with different numbers of hidden nodes. What is the optimal number? Would it be possible 
to use a cross-validation method to find the best network before the fact? 

20.21 Consider the problem of separating N data points into positive and negative examples 
using a linear separator. Clearly, this can always be done for N = 2 points on a line of 
dimension d = 1, regardless of how the points are labelled or where they are located (unless 
the points are in the same place). 

a. Show that it can always be done for N = 3 points on a plane of dimension d = 2, unless 
they are collinear. 

b. Show that it cannot always be done for N = 4 points on a plane of dimension d = 2. 

c. Show that it can always be done for N = 4 points in a space of dimension d = 3, unless 
they are coplanar. 

d. Show that it cannot always be done for N = 5 points in a space of dimension d = 3. 
e. The ambitious student may wish to prove that N points in general position (but not 

N + 1 are linearly separable in a space of dimension N - 1. From this it follows that 
the VC dimension (see Chapter 18) of linear halfspaces in dimension N - 1 is N. 



In which we examine how an agent can learn ffiom succe:i.s and failure, from re- 
ward and punishment. 

Chapters 18 and 20 covered learning methods that learn f~inctions and probability models 
from example. In this chapter, we will study how agents can learn what to do, particularly 
when there is no teacher telling the agent what action to take in each circumstance. 

For example, we know an agent can learn to pllay chess by supervised learning-by 
being given examples of game situations along with the best moves for those situations. But 
if there is no friendly teacher providing examples, what can the agent do? By trying random 
moves, the agent can eventually build a predictive model of its environment: what the board 
will be like after it makes a given move and even how the opponent is likely to reply in a 
given situation. The problem is this: without some feedback about what is good and what is 
bad, the agent will have no grounds for deciding which move to make. The agent needs to 
know that something good has happened when it wins and that something bad has happened 
when it loses. This kind of feedback is called a reward, or reinforcement. In games like 
chess, the reinforcement is received only at the end of the game. In other environments, the 
rewards come more frequently. In ping-pong, each point scored can be considered a reward; 
when learnnng to crawl, any forward motion is an achievement. Our framework for agents 
regards the reward as part of the input percept, but the agent must be "hardwired to recognize 
that part as a reward rather than as just another sensory input. Thus, animals seem to be 
hardwired to recognize pain and hunger as negative rewards and pleasure and food intake as 
positive rewards. Reinforcement has been carefully studied by animal psychologists for over 
60 years. 

Rewards were introduced in Chapter 17, where {.hey served to define optimal policies 
in Markov decision processes (MDPs). An optimal policy is a policy that maximizes the 
expected total reward. The task of reinforcement learning is to use observed rewards to learn 
an optimal (or nearly optimal) policy for the environment. Vu'hereas in Chapter 17 the agent 
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0-LEARNING 

ACTION-VALUE 

has a complete model of the environment and knows the reward function, here we assume no 
prior knowledge of either. Imagine playing a new game whose rules you don't know; after a 
hundred or so moves, your opponent announces, "You lose." This is reinforcement learning 
in a nutshell. 

In many complex domains, reinforcement learning is the only feasible way to train a 
program to perform at high levels. For example, in game playing, it is very hard for a human 
to provide accurate and consistent evaluations of large numbers of positions, which would be 
needed to train an evaluation function directly from examples. Instead, the program can be 
told when it has won or lost, and it can use this information to learn an evaluation function 
that gives reasonably accurate estimates of the probability of winning from any given position. 
Similarly, it is extremely difficult to program an agent to fly a helicopter; yet given appropriate 
negative rewards for crashing, wobbling, or deviating from a set course, an agent can learn to 
fly by itself. 

Reinforcement learning might be considered to encompass all of AI: an agent is placed 
in an environment and must learn to behave successfully therein. To keep the chapter man- 
ageable, we will concentrate on simple settings and simple agent designs. For the most part, 
we will assume a fully observable environment, so that the current state is supplied by each 
percept. On the other hand, we will assume that the agent does not know how the environ- 
ment works or what its actions do, and we will allow for probabilistic action outcomes. We 
will consider three of the agent designs first introduced in Chapter 2: 

a A utility-based agent learns a utility function on states and uses it to select actions that 
maximize the expected outcome utility. 

a A Q-learning agent learns an action-value function, or Q-function, giving the expected 
utility of taking a given action in a given state. 

a A reflex agent learns a policy that maps directly from states to actions. 

A utility-based agent must also have a model of the environment in order to make decisions, 
because it must know the states to which its actions will lead. For example, in order to make 
use of a backgammon evaluation function, a backgammon program must know what its legal 
moves are and how they affect the board position. Only in this way can it apply the utility 
function to the outcome states. A Q-learning agent, on the other hand, can compare the values 
of its available choices without needing to know their outcomes, so it does not need a model 
of the environment. On the other hand, because they do not know where their actions lead, 
Q-learning agents cannot look ahead; this can seriously restrict their ability to learn, as we 
shall see. 

PASSIVE LEARNING We begin in Section 21.2 with passive learning, where the agent's policy is fixed and 
the task is to learn the utilities of states (or state-action pairs); this could also involve learning 

ACTIVELEARNING a model of the environment. Section 21.3 covers active learning, where the agent must also 
EXPLORATION learn what to do. The principal issue is exploration: an agent must experience as much as 

possible of its environment in order to learn how to behave in it. Section 21.4 discusses how 
an agent can use inductive learning to learn much faster from its experiences. Section 21.5 
covers methods for learning direct policy representations in reflex agents. An understanding 
of Markov decision processes (Chapter 17) is essential for this chapter. 
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To keep things simple, we start with the case of a passive learning agent using a state-based 
representation in a fully observable environment. In passivle learning, the agent's policy T 

is fixed: in state s ,  it always executes the action ~ ( s ) .  Its goal is simply to learn how good 
the policy is-that is, to learn the utility function UT(s). We .will use as our example the 
4 x 3 world. introduced in Chapter 17. Figure 21.1 slhows a policy for that world and the 
corresponding utilities. Clearly, the passive learning ta.sk is similar to the policy evaluation 
task, part of the policy iteration algorithm described in Section 17.3. The main difference 
is that the passive learning agent does not know the transition model T(s, a, s ') ,  which 
specifies the probability of reaching state s' from state s after doing action a; nor does it 
know the reward function R ( s ) ,  which specifies the reward for each state. 

Figure 21.1 (a) A policy .s? for the 4 x 3 world; this policy happens to be optimal with 
rewards of R(s)  = - 0.04 in the nonterminal states and no discounting. (b) The utilities of 
the states in the 4 x 3 world, given policy .rr. 

TRIAL The agent executes a set of trials in the environment using its policy T. In each trial, the 
agent starts in state (1,l) and experiences a sequence olf state transitions until it reaches one 
of the terminal states, (4,2) or (4,3). Its percepts supply both the current state and the reward 
received in that state. Typical trials might look like this: 

(1, l)-.04+(1, 2)-.04-f(1,3)-.04-+(1, 2)-.04-+(l, 21)-.04-+(2,3)-.04~(3,  3)-.04c3(4, 3)+1 
( I ,  l)-.04+(1,2)-.04+(1,3)-.04+(2,3)-.04~(3,3)-.04-+(3~ 2)-.04-+(3,3)-.04-+(4,3)+1 
(1,1)-.04+(~,~)-.~+(~,~)-.04+(~,~)-.04-+(~,~)-i . 

Note that each state percept is subscripted with the reward received. The object is to use the 
information about rewards to learn the expected utility U T ( s )  associated with each nontermi- 
nal state s .  The utility is defined to be the expected surn of (discounted) rewards obtained if 
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policy .ir is followed. As in Equation (17.3) on page 619, this is written as 

We will include a discount factor y in all of our equations, but for the 4 x 3 world we will 
set y = 1. 

Direct utility estimation 

A simple method for direct utility estimation was invented in the late 1950s in the area ESTIMATION 
ADAPTIVECONTROL of adaptive control theory by Widrow and Hoff (1960). The idea is that the utility of a THEORY 

state is the expected total reward from that state onward, and each trial provides a sample of 
this value for each state visited. For example, the first trial in the set of three given earlier 
provides a sample total reward of 0.72 for state (1,1), two samples of 0.76 and 0.84 for 
(1,2), two samples of 0.80 and 0.88 for (1,3), and so on. Thus, at the end of each sequence, 
the algorithm calculates the observed reward-to-go for each state and updates the estimated 
utility for that state accordingly, just by keeping a running average for each state in a table. 
In the limit of infinitely many trials, the sample average will converge to the true expectation 
in Equation (21.1). 

It is clear that direct utility estimation is just an instance of supervised learning where 
each example has the state as input and the observed reward-to-go as output. This means 
that we have reduced reinforcement learning to a standard inductive learning problem, as 
discussed in Chapter 18. Section 21.4 discusses the use of more powerful kinds of repre- 
sentations for the utility function, such as neural networks. Learning techniques for those 
representations can be applied directly to the observed data. 

Direct utility estimation succeeds in reducing the reinforcement learning problem to 
an inductive learning problem, about which much is known. Unfortunately, it misses a very 
important source of information, namely, the fact that the utilities of states are not indepen- 
dent! The utility of each state equals its own reward plus the expected utility of its successor 
states. That is, the utility values obey the Bellman equations for a fixed policy (see also 
Equation (17.10)): 

u T ( s )  = ~ ( s )  + x ~ ( s ,  T ( s ) ,  s l ) ~ I T ( s f )  . (2 1.2) 
s' 

By ignoring the connections between states, direct utility estimation misses opportunities for 
learning. For example, the seconcl of the three trials given earlier reaches the state (3,2), 
which has not previously been visited. The next transition reaches (3,3), which is known 
from the first trial to have a high utility. The Bellman equation suggests immediately that 
(3,2) is also likely to have a high utility, because it leads to (3,3), but direct utility estimation 
learns nothing until the end of the trial. More broadly, we can view direct utility estimation 
as searching in a hypothesis space for U that is much larger than it needs to be, in that it 
includes many functions that violate the Bellman equations. For this reason, the algorithm 
often converges very slowly. 
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Adaptive dynamic programming 

In order to take advantage of the constraints between states, an agent must learn how states 

~ ~ ~ ~ ~ & ~ ~ ~ ~ M I C  are connected. An adaptive dynamic programming (or AIDP) agent works by learning the 
transition model of the environment as it goes along and solving the corresponding Markov 
decision process using a dynamic programming method. For a passive learning agent, this 
means plugging the learned transition model T ( s ,  .ir ( s )  , s

f

)  and the observed rewards R ( s )  
into the Bellman equations (21.2) to calculate the utilities of the states. As we remarked in 
our discussion of policy iteration in Chapter 17, these equations are linear (no maximization 
involved) so they can be solved using any linear algebra package. Alternatively, we can adopt 
the approach of modified policy iteration (see page 625), using a simplified value iteration 
process to update the utility estimates after each change to the learned model. Because the 
model usually changes only slightly with each observation, the value iteration process can 
use the previous utility estimates as initial values and should converge quite quickly. 

The process of learning the model itself is easy. because the environment is fully ob- 
servable. This means that we have a supervised learning task where the input is a state-action 
pair and the output is the resulting state. In the simplest case, we can represent the tran- 
sition model as a table of probabilities. We keep traick of how often each action outcome 
occurs and estimate the transition probability T ( s ,  a, s

f

)  from the frequency with which s' is 
reached when executing a in s.' For example, in the three traces given on page 765, Right 
is executed three times in (1,3) and two out of three: times the resulting state is (2,3), so 
T ( ( 1 , 3 ) ,  Right, ( 2 , 3 ) )  is estimated to be 213. 

The full agent program for a passive ADP agent is shown in Figure 21.2. Its perfor- 
mance on the 4 x 3  world is shown in Figure 21.3. In terms of how quickly its value estimates 
improve, the ADP agent does as well as possible, subject to its ability to learn the transition 
model. In this sense, it provides a standard against which to measure other reinforcement 
learning algorithms. It is, however, somewhat intractable for large state spaces. In backgam- 
mon, for example, it would involve solving roughly lo5' equations in lo5' unknowns. 

Temporal difference learning 

It is possible to have (almost) the best of both worlds; that is, one can approximate the con- 
straint equations shown earlier without solving them for all possible states. The key is to 
use the observed transitions to adjust the values of the observed states so that they agree 
with the corzstraint equations. Consider, for example, the transition from (1,3) to (2,3) in the 
second trial on page 765. Suppose that, as a result of the filrst trial, the utility estimates are 
Un(1 ,3 )  = 0.84 and U T( 2 ,  3 )  = 0.92. Now, if this transition occurred all the time, we would 
expect the utilities to obey 

so U n ( 1 , 3 )  would be 0.88. Thus, its current estimate of 0.84 might be a little low and should 
be increased. More generally, when a transition occurs from state s to state s', we apply the 

This is the maximum likelihood estimate, as discussed in Chapter 20. A. Bayesian update with a Dirichlet prior 
might work better. 
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function P A S S I V E - A D P - A G E N T ( ~ ~ ~ C ~ ~ ~ )  returns an action 
inputs: percept, a percept indicating the current state st and reward signal r' 
static: T ,  a fixed policy 

mdp, an MDP with model T, rewards R, discount y 
U ,  a table of utilities, initially empty 
N,,, a table of frequencies for state-action pairs, initially zero 
N,,,/, a table of frequencies for state-action-state triples, initially zero 
s, a, the previous state and action, initially null 

if s

f 

is new then do U [ s

f

]  t r f;  R [ s

f

]  c r' 
if s  is not null then do 

increment N,,[s, a] and N,,,, [ s ,  a, s

f

]  
for each t such that NSa,r[s, a, t ]  is nonzero do 

T [ s ,  a, tI + Nsas l [~ ,  a, tI I Nsa[s, a] 
U  c POLICY- EVALUATION(^, U ,  mdp) 
if TERMINAL?[S']  then s,  a t null else s,  a t s

f

,  ~ [ s ' ]  
return a 

Figure 21.2 A passive reinforcement learning agent based on adaptive dynamic program- 
ming. To simplify the code, we have assumed that each percept can be divided into a per- 
ceived state and a reward signal. 
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Figure 21.3 The passive ADP learning curves for the 4 x 3 world, given the optimal policy 
shown in Figure 21.1. (a) The utility estimates for a selected subset of states, as a function of 
the number of trials. Notice the large changes occurring around the 78th trial-this is the first 
time that the agent falls into the -1 terminal state at (4,2). (b) The root-mean-square error in 
the estimate for U(1, I), averaged over 20 runs of 100 trials each. 
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function PASSIVE-TD- A ~ ~ N ~ ( p e r c e p t )  returns an action 
inputs: percept, a percept indicating the current state s f  and reward signal r' 
static: n-, a fixed policy 

U ,  a table of utilities, initially empty 
l\i,, a table of frequencies for states, initially zero 
s ,  a, r ,  the previous state, action, and reward, initially null 

if S' is new then U[s1]  +- r' 
if s  is not null then do 

increment N ,  [ s ]  
U[sl+- U [ s ]  + a ( N s [ s ] ) ( r  + Y Ws'] - U [ s l )  

if TERMINAL?[S']  then s ,  a ,  r  +null else s,  a, r  t s f,  , ~ [ s ' ] ,  r f  
return a 

Figure 21.4 A passive reinforcement learning agent that learns utility estimates using tem- 
poral differences. 

following update to UX ( s )  : 

Here, a is the learning rate parameter. Because this update rule uses the difference in utilities 
TEMPORAL- 
DIFFERENCE between successive states, it is often called the temporal-difference, or TD, equation. 

The basic idea of all temporal-difference methods is, first to define the conditions that 
hold locally when the utility estimates are correct, and then, lo write an update equation that 
moves the estimates toward this ideal "equilibrium" equation. In   the case of passive learning, 
the equilibrium is given by Equation (21.2). Now Equation (21.3) does in fact cause the agent 
to reach the equilibrium given by Equation (21.2), but there is some subtlety involved. First, 
notice that the update involves only the observed successor st, whereas the actual equilibrium 
conditions involve all possible next states. One might think that this causes an improperly 
large change in U" (s) when a very rare transition occurs; but, in fact, because rare transitions 
occur only rarely, the average value of U T ( s )  will converge to the correct value. Furthermore, 
if we change a from a fixed parameter to a function that decreases as the number of times 
a state has been visited increases, then U ( s )  itself will converge to the correct value.2 This 
gives us the agent program shown in Figure 21.4. Figuire 21 .:i illustrates the performance of 
the passive TD agent on the 4 x 3 world. It does not learn quite as fast as the ADP agent and 
shows much higher variability, but it is much simpler and requires much less computation per 
observation. Notice that TD does not need a model to pe$orm its updates. The environment 
supplies the connection between neighboring states in the fonn of observed transitions. 

The ADP approach and the TD approach are actually closely related. Both try to make 
local adjustments to the utility estimates in order to make each state "agree" with its succes- 
sors. One difference is that TD adjusts a state to agree with its observed successor (Equa- 

Technically, we require that xr= , a(n) = cc and xr= l a2 (n) < m. The decay a(n) = 1/n satisfies 
these conditions. In Figure 21.5 we have used a(n) = 60/(59 + n) 
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Figure 21.5 The TD learning curves for the 4 x 3 world. (a) The utility estimates for a 
selected subset of states, as a function of the number of trials. (b) The root-mean-square error 
in the estimate for U(1,  I), averaged over 20 runs of 500 trials each. Only the first 100 trials 
are shown to enable comparison with Figure 21.3. 

tion (21.3)), whereas ADP adjusts the state to agree with all of the successors that might 
occur, weighted by their probabilities (Equation (21.2)). This difference disappears when 
the effects of TD adjustments are averaged over a large number of transitions, because the 
frequency of each successor in the set of transitions is approximately proportional to its prob- 
ability. A more important difference is that whereas TD makes a single adjustment per ob- 
served transition, ADP makes as many as it needs to restore consistency between the utility 
estimates U and the environment model T. Although the observed transition makes only a 
local change in T, its effects might need to be propagated throughout U .  Thus, TD can be 
viewed as a crude but efficient first approximation to ADP. 

Each adjustment made by ADP could be seen, from the TD point of view, as a re- 
sult of a "pseudo-experience" generated by simulating the current environment model. It 
is possible to extend the TD approach to use an environment model to generate several 
pseudo-experiences-transitions that the TD agent can imagine might happen, given its cur- 
rent model. For each observed transition, the TD agent can generate a large number of imag- 
inary transitions. In this way, the resulting utility estimates will approximate more and more 
closely those of ADP-of course, at the expense of increased computation time. 

In a similar vein, we can generate more efficient versions of ADP by directly approx- 
imating the algorithms for value iteration or policy iteration. Recall that full value iteration 
can be intractable when the number of states is large. Many of the adjustment steps, however, 
are extremely tiny. One possible approach to generating reasonably good answers quickly is 
to bound the number of adjustments made after each observed transition. One can also use 
a heuristic to rank the possible adjustments so as to carry out only the most significant ones. 
The prioritized sweeping heuristic prefers to make adjustments to states whose likely suc- 
cessors have just undergone a large adjustment in their own utility estimates. Using heuristics 
like this, approximate ADP algorithms usually can learn roughly as fast as full ADP, in terms 
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of the number of training sequences, but can be several orders of magnitude more efficient 
in terms of computation. (See Exercise 21.3.) This enables them to handle state spaces that 
are far too large for full ADP. Approximate ADP algorithms have an additional advantage: 
in the early stages of learning a new environment, the environment model T often will be far 
from correct, so there is little point in calculating an exact utility function to match it. An ap- 
proximation algorithm can use a minimum adjustment ;size th~at decreases as the environment 
model becomes more accurate. This eliminates the very long value iterations that can occur 
early in learning due to large changes in the model. 

A passive learning agent has a fixed policy that determines its behavior. An active agent must 
decide what actions to take. Let us begin with the adaptive d:ynamnic programming (agent and 
consider how it must be modified to handle this new freedom. 

First, the agent will need to learn a complete moldel wjth outcome probabilities for all 
actions, rather than just the model for the fixed policy. The simple learning mechanism used 
by PASSIVE-ADP-AGENT will do just fine for this. Next, vie need to take into account the 
fact that the agent has a choice of actions. The utiliti~es it needs to learn are those defined 
by the optimal policy; they obey the Bellman equations given on[ page 619, which we repeat 
here: 

U ( s )  = R ( s )  + y max T ( s ,  a ,  s l )U(s l )  . (21.4) 
S' 

These equations can be solved to obtain the utility fuinction U using the value iteration or 
policy iteration algorithms from Chapter 17. The final issue is what to do at each step. Having 
obtained a utility function U that is optimal for the learned ]model, the agent can extract an 
optimal action by one-step look-ahead to maximize the expected utility; alternatively, if it 
uses policy iteration, the optimal policy is already available, so it should simply execute the 
action the optimal policy recommends. Or should it? 

Exploration 

Figure 21.6 shows the results of one sequence of trials for an ADP agent that follows the 
recommendation of the optimal policy for the learned model at each step. The agent does not 
learn the true utilities or the true optimal policy! What happens instead is that, in the 39th 
trial, it finds a policy that reaches the +1 reward along  the lower route via (2,1), (3, I), (3,2), 
and (3,3). (S'ee Figure 21.6.) After experimenting with minor variations, from the 276th trial 
onward it sticks to that policy, never learning the utilities of th~e other states and never finding 

GREEDYAGENT the optimal route via (1,2), (1,3), and (2,3). We call this agent the greedy agent. Repeated 
experiments show that the greedy agent very seldom converges to the optimal policy for this 
environment and sometimes converges to really horrenclous policies. 

How can it be that choosing the optimal action leads to suboptimal results? The answer 
is that the learned model is not the same as the true environment; what is optim.al in the 
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Figure 21.6 Performance of a greedy ADP agent that executes the action recommended 
by the optimal policy for the learned model. (a) RMS error in the utility estimates averaged 
over the nine nonterminal squares. (b) The suboptimal policy to which the greedy agent 
converges in this particular sequence of trials. 

learned model can therefore be suboptimal in the true environment. Unfortunately, the agent 
does not know what the true environment is, so it cannot compute the optimal action for the 
true environment. What, then, is to be done? 

What the greedy agent has overlooked is that actions do more than provide rewards 
according to the current learned model; they also contribute to learning the true model by af- 
fecting the percepts that are received. By improving the model, the agent will receive greater 

EXPLOITATION rewards in the f ~ t u r e . ~  An agent therefore must make a trade-off between exploitation to 
EXPLORATION maximize its reward-as reflected in its current utility estimates-and exploration to maxi- 

mize its long-term well-being. Pure exploitation risks getting stuck in a rut. Pure exploration 
to improve one's knowledge is of no use if one never puts that knowledge into practice. In the 
real world, one constantly has to decide between continuing in a comfortable existence and 
striking out into the unknown in the hopes of discovering a new and better life. With greater 
understanding, less exploration is necessary. 

Can we be a little more precise than this? Is there an optimal exploration policy? It 
turns out that this question has been studied in depth in the subfield of statistical decision 

BANDIT PROBLEMS theory that deals with so-called bandit problems. (See sidebar.) 
Although bandit problems are extremely difficult to solve exactly to obtain an optimal 

exploration method, it is nonetheless possible to come up with a reasonable scheme that 
will eventually lead to optimal behavior by the agent. Technically, any such scheme needs 

GLIE to be greedy in the limit of infinite exploration, or GLIE. A GLIE scheme must try each 
action in each state an unbounded number of times to avoid having a finite probability that 
an optimal action is missed because of an unusually bad series of outcomes. An ADP agent 

Notice the direct analogy to the theory of information value in Chapter 16. 
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EXPLORATION AND BANDITS 

In Las Vegas, a one-armed bandit is a slot machine. A gambler can insert a coin, 
pull the lever, and collect the winnings (if any). An n-armed bandit has n levers. 
The gambler must choose which lever to play on each successive coin-the one 
that has paid off best, or maybe one that has not been tried? 

The n-armed bandit problem is a formal model for real problems in many vi- 
tally important areas, such as deciding on the annual budget for A1 research and 
development. Each arm corresponds to an action (such as allocating $20 million 
for the development of new A1 textbooks), and the ]payoff from pulling the arm cor- 
responds to the benefits obtained from taking the action (immense). Exploration, 
whetheir it is exploration of a new research field or exploration of a new shopping 
mall, is risky, is expensive, and has uncertain payoffs; on the other hand, failure to 
explore at all means that one never discovers any actions that are worthwhile. 

To formulate a bandit problem properly, one must define exactly what is meant 
by optiimal behavior. Most definitions in the literature assume that the aim is to 
maximize the expected total reward obtained over 'the agent's lifetime. These defi- 
nitions require that the expectation be taken over th~e possible worlds that the agent 
could be in, as well as over the possible results of each aclion sequence in any given 
world. Here, a "world is defined by the transition model T ( s ,  a, s'). Thus, in order 
to act optimally, the agent needs a prior distribution over the possible models. 'The 
resulting optimization problems are usually wildly intractable. 

In some cases-for example, when the payoff of each machine is independent 
and discounted rewards are used-it is possible to calculate a Gittins index for 
each slot machine (Gittins, 1989). The index is a function only of the numbeir of 
times the slot machine has been played and how much it has paid off. The index for 
each machine indicates how worthwhile it is to invest more, based on a combination 
of expected return and expected value of information. Cl~oosing the machine with 
the highest index value gives an optimal exploration policy. TJnfortunately, no way 
has been found to extend Gittins indices to sequential decision problems. 

One can use the theory of n-armed bandits to argue fior the reasonableness 
of the selection strategy in genetic algorithms. (See Chapter 4.) If you consider 
each arm in an n-armed bandit problem to be a possible string of genes, and the 
investment of a coin in one arm to be the reproduction of those genes, then ge- 
netic algorithms allocate coins optimally, given an appropriate set of independeince 
assumptions. 
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using such a scheme will eventually learn the true environment model. A GLIE scheme must 
also eventually become greedy, so that the agent's actions become optimal with respect to the 
learned (and hence the true) model. 

There are several GLIE schemes; one of the simplest is to have the agent choose a ran- 
dom action a fraction l / t  of the time and to follow the greedy policy otherwise. While this 
does eventually converge to an optimal policy, it can be extremely slow. A more sensible 
approach would give some weight to actions that the agent has not tried very often, while 
tending to avoid actions that are believed to be of low utility. This can be implemented by 
altering the constraint equation (21.4) so that it assigns a higher utility estimate to relatively 
unexplored state-action pairs. Essentially, this amounts to an optimistic prior over the possi- 
ble environments and causes the agent to behave initially as if there were wonderful rewards 
scattered all over the place. Let us use U+(s) to denote the optimistic estimate of the utility 
(i.e., the expected reward-to-go) of the state s, and let N(a ,  s) be the number of times action a 
has been tried in state s. Suppose we are using value iteration in an ADP learning agent; then 
we need to rewrite the update equation (i.e., Equation (17.6)) to incorporate the optimistic 
estimate. The following equation does this: 

EXPLORATION 
FUNCTION Here, f (u, n )  is called the exploration function. It determines how greed (preference for 

high values of u) is traded off against curiosity (preference for low values of n-actions that 
have not been tried often). The function f (u, n) should be increasing in u and decreasing in 
n. Obviously, there are many possible functions that fit these conditions. One particularly 
simple definition is 

R+ if n < Ne 
f (u, n) = u otherwise 

where R+ is an optimistic estimate of the best possible reward obtainable in any state and N, 
is a fixed parameter. This will have the effect of making the agent try each action-state pair 
at least Ne times. 

The fact that U+ rather than U appears on the right-hand side of Equation (21.5) is 
very important. As exploration proceeds, the states and actions near the start state might well 
be tried a large number of times. If we used U ,  the more pessimistic utility estimate, then 
the agent would soon become disinclined to explore further afield. The use of U+ means 
that the benefits of exploration are propagated back from the edges of unexplored regions, 
so that actions that lead toward unexplored regions are weighted more highly, rather than 
just actions that are themselves unfamiliar. The effect of this exploration policy can be seen 
clearly in Figure 21.7, which shows a rapid convergence toward optimal performance, unlike 
that of the greedy approach. A very nearly optimal policy is found after just 18 trials. Notice 
that the utility estimates themselves do not converge as quickly. This is because the agent 
stops exploring the unrewarding parts of the state space fairly soon, visiting them only "by 
accident" thereafter. However, it makes perfect sense for the agent not to care about the exact 
utilities of states that it knows are undesirable and can be avoided. 
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Figure 21.7 Performance of the exploratory ADP agent. using R+ = 2 and N, = 5. (a) 
Utility estimates for selected states over time. (b) The RMS error in utility values and the 
associated policy loss. 

Learning an Action-Value Function 

Now that we have an active ADP agent, let us considtx how to construct an active iemporal- 
difference learning agent. The most obvious change from the passive case is that the agent 
is no longer equipped with a fixed policy, so, if it learns a utility function U ,  it will need to 
learn a model in order to be able to choose an action based on U via one-step look-ahead. 
The model acquisition problem for the TD agent is idelltical to that for the ADP agent. What 
of the TD update rule itself? Perhaps surprisingly, the update rule (21.3) remains unchanged. 
This might seem odd, for the following reason: Suppose the (agent takes a step that normally 
leads to a gohod destination, but because of nondeterminism in the environment the agent ends 
up in a catastrophic state. The TD update rule will take  this as seriously as if the outcome had 
been the normal result of the action, whereas one might suppose that, because the outcome 
was a fluke, the agent should not worry about it too much. In fact, of course, the unlikely 
outcome wilil occur only infrequently in a large set of lrainin~g sequences; hence in the long 
run its effects will be weighted proportionally to its probability, as we would hope. Once 
again, it can be shown that the TD algorithm will converge to the same values as AIIP as the 
number of training sequences tends to infinity. 

There is an alternative TD method called Q-learn~ing that learns an action-value repre- 
sentation instead of learning utilities. We will use the n~otatiol~ Q ( a ,  s )  to denote the value of 
doing action a in state s. Q-values are directly related to utility values as follows: 

U ( s )  = max Q (a, s )  . (2 1.6) 
a 

Q-functions may seem like just another way of storing utility information, but they have 
a very important property: a TD agent that learns a Q-func,fion does not need a model for 
either learning or action selection. For this reason, Q-le,arning is called a model-free method. 

MODEL-FREE As with utilities, we can write a constraint equation that must hold at equilibrium -when the 
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function Q - L E A R N I N G - A G E N T ( ~ ~ ~ ~ ~ ~ ~ )  returns an action 
inputs: percept, a percept indicating the current state s' and reward signal r' 
static: Q ,  a table of action values index by state and action 

N,,, a table of frequencies for state-action pairs 
S ,  a ,  r ,  the previous state, action, and reward, initially null 

if s is not null then do 
increment Nsa [ s ,  a] 
& [ a ,  S ]  + & [ a ,  s] + ~ ( N s a j s ,  a l ) ( r  + 7 maxar &[a', s f ]  - QIa, sI) 

if TERMINAL?[S'] then s,  a,  r + null 
else s ,  a,  r t s', argmax,, f (&[a ' ,  s ' ] ,  NSa[s1 ,  a '] ) ,  r r  
return a 

Figure 21.8 An exploratory Q-learning agent. It is an active learner that learns the value 
Q ( a ,  s )  of each action in each situation. It uses the same exploration function f as the ex- 
ploratory ADP agent, but avoids having to learn the transition model because the Q-value of 
a state can be related directly to those of its neighbors. 

Q-values are correct: 

As in the ADP learning agent, we can use this equation directly as an update equation for 
an iteration process that calculates exact Q-values, given an estimated model. This does, 
however, require that a model also be learned because the equation uses T(s ,  a, s') .  The 
temporal-difference approach, on the other hand, requires no model. The update equation for 
TD Q-learning is 

which is calculated whenever action a is executed in state s leading to state s'. 
The complete agent design for an exploratory Q-learning agent using TD is shown in 

Figure 21.8. Notice that it uses exactly the same exploration function f as that used by the 
exploratory ADP agent-hence the need to keep statistics on actions taken (the table N). If 
a simpler exploration policy is used-say, acting randomly on some fraction of steps, where 
the fraction decreases over time-then we can dispense with the statistics. 

The Q-learning agent learns the optimal policy for the 4 x 3 world, but does so at a 
much slower rate than the ADP agent. This is because TD does not enforce consistency 
among values via the model. The comparison raises a general question: is it better to learn 
a model and a utility function or to learn an action-value function with no model? In other 
words, what is the best way to represent the agent function? This is an issue at the foundations 
of artificial intelligence. As we stated in Chapter 1, one of the key historical characteristics 
of much of A1 research is its (often unstated) adherence to the knowledge-based approach. 
This amounts to an assumption that the best way to represent the agent function is to build a 
representation of some aspects of the environment in which the agent is situated. 
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Some researchers, both inside and outside AI, have claimed that the availability of 
model-free methods such as Q-learning means that the knowledge-based approach is unnec- 
essary. There is, however, little to go on but intuition. Our intuition, for what it's worth, is that 
as the environment becomes more complex, the advantages of a knowledge-based approach 
become more apparent. This is borne out even in games such as chess, checkers (draughts), 
and backgammon (see next section), where efforts to learn an evaluation function by means 
of a model h~ave met with more success than Q-learning methods. 

So far, we have assumed that the utility functions and Q-functions learned by the agents are 
represented in tabular form with one output value for each input tuple. Such an ,approach 
works reasonably well for small state spaces, but the time to comvergence and (for ADP) the 
time per iteration increase rapidly as the space gets larger. With carefully controlled, approx- 
imate ADP methods, it might be possible to handle 10,000 states or more. This suffices for 
two-dimensional maze-like environments, but more realistic worlds are out of the question. 
Chess and backgammon are tiny subsets of the real world, yet their state spaces contain on 
the order of lo5' to states. It would be absurd to suppose that one must visit all these 
states in order to learn how to play the game! 

FUNCTION 
APPROXIMATION One way to handle such problems is to use function approximation, which simply 

means using any sort of representation for the function other than a table. The representation 
is viewed as approximate because it might not be the case that the true utility function or 
Q-function can be represented in the chosen form. For example, in Chapter 6 we described 
an evaluation function for chess that is represented as a weighted linear function of a set of 

BASIS FUNCTIONS features (or basis functions) f i ,  . . . , f,: 

A reinforcement learning algorithm can learn values for the parameters 8 = 01,  . . . , O n  such 
that the evaluation function U~ approximates the true utility function. Instead of, say, 
values in a table, this function approximator is characterized by, say, n = 20 parameters- 
an enormous compression. Although no one knows the true utility function for chess, no 
one believes that it can be represented exactly in 20 numbers. If the approximation is good 
enough, however, the agent might still play excellent chess.4 

Function approximation makes it practical to represent utility functions for very large 
state spaces, but that is not its principal benefit. The compression achieved by a function 
approximator allows the learning agent to generali~e~from states it has visited to states it 
has not visited. That is, the most important aspect of function approximation is not that it 

We do know that the exact utility function can be represented in a page or two of Lisp, Java, or C++. That is, 
it can be represented by a program that solves the game exactly eveiry time it is called. We are interested only in 
function approximators that use a reasonable amount of computation. It rnight in fact be better to learn a very 
simple function approximator and combine it with a certain amount of look-ahead search. The trade-offs involved 
are currently not well understood. 
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requires less space, but that it allows for inductive generalization over input states. To give 
you some idea of the power of this effect: by examining only one in every of the possible 
backgammon states, it is possible to learn a utility function that allows a program to play as 
well as any human (Tesauro, 1992). 

On the flip side, of course, there is the problem that there could fail to be any function 
in the chosen hypothesis space that approximates the true utility function sufficiently well. 
As in all inductive learning, there is a trade-off between the size of the hypothesis space and 
the time it takes to learn the function. A larger hypothesis space increases the likelihood that 
a good approximation can be found, but also means that convergence is likely to be delayed. 

Let us begin with the simplest case, which is direct utility estimation. (See Section 21.2.) 
With function approximation, this is an instance of supervised learning. For example, sup- 
pose we represent the utilities for the 4 x 3 world using a simple linear function. The features 
of the squares are just their x  and y  coordinates, so we have 

U O ( X ,  y )  = do + B I Z  + dzy . (21.9) 

Thus, if ( Q O ,  e l ,  d 2 )  = (0.5,0.2,0. I), then u0 ( 1 , l )  = 0.8. Given a collection of trials, we ob- 
tain a set of sample values of & ( r c ,  y ) ,  and we can find the best fit, in the sense of minimizing 
the squared error, using standard linear regression. (See Chapter 20.) 

For reinforcement learning, it makes more sense to use an online learning algorithm 
that updates the parameters after each trial. Suppose we run a trial and the total reward 
obtained starting at (1,l) is 0.4. This suggests that ~ ~ ( 1 ,  l ) ,  currently 0.8, is too large and 
must be reduced. How should the parameters be adjusted to achieve this? As with neural 
network learning, we write an error function and compute its gradient with respect to the 
parameters. If u j ( s )  is the observed total reward from state s  onward in the jth trial, then 
the error is defined as (half) the squared difference of the predicted total and the actual total: 
Ei ( s )  = (uQ ( s )  - u j  ( ~ ) ) ~ / 2 .  The rate of change of the error with respect to each parameter 
di is a E j / a Q i ,  so to move the parameter in the direction of decreasing the error, we want 

WIDROW-HOFFRULE This is called the Widrow-Hoff rule, or the delta rule, for online least-squares. For the 
DELTA RULE linear function approximator u@(s) in Equation (21.9), we get three simple update rules: 

00 + Qo + a (ui ( s )  - UO ( s ) )  , 
$1 + Ql t- ( ~ ~ ( 3 )  - U Q ( S ) ) X ,  

82 + Q2+01(uj(s)  - u @ ( s ) ) ~ .  

We can apply these rules to the example where u 0 ( l , 1 )  is 0.8 and u j ( l ,  1)  is 0.4. Oo, dl,  
and o2 are all decreased by 0.4a, which reduces the error for (1,l). Notice that changing the 
Bis also changes the values of U~ for every other state! This is what we mean by saying that 
function approximation allows a reinforcement learner to generalize from its experiences. 

We expect that the agent will learn faster if it uses a function approximator, provided 
that the hypothesis space is not too large, but includes some functions that are a reasonably 
good fit to the true utility function. Exercise 21.7 asks you to evaluate the performance of 
direct utility estimation, both with and without function approximation. The improvement 
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in the 4 x 3 world is noticeable but not dramatic, because  this is a very small state space 
to begin with. The improvement is much greater in a 10 x 10 world with a +1 reward at 
(10,lO). This world is well suited for a linear utility function because the true utility function 
is smooth and nearly linear. (See Exercise 21.10.) If we ]put the +1 reward at (5,5),  the 
true utility is more like a pyramid and the function aipproximator in Equation (21.9) will 
fail miserably. All is not lost, however! Remember that what matters for linear function 
approximation is that the function be linear in the parameters-the features themselves can 
be arbitrary nonlinear functions of the state variables. Hence, we can include a term such as 

83J(LLg)2 + (y - that measures the distance to the goal. 
We can apply these ideas equally well to temporal-difference learners. All we need do 

is adjust the parameters to try to reduce the temporal difference between successive states. 
The new versions of the TD and Q-learning equations (21.3 and 21.8) are 

for utilities and 

ago (a, S )  
Qi + Oi t a [ R ( s )  + 7 rnax ~ ~ ( a ' ,  s') - ~ ~ ( a ,  s)]----- 

a aOi 

for Q-values. These update rules can be shown to converge to the closest possible5 approxi- 
mation to the true function when the function approxinlator is linear in the parameters. Un- 
fortunately, all bets are off when nonlinear functions--such as neural networks-are used. 
There are some very simple cases in which the parameters can go off to infinity even though 
there are good solutions in the hypothesis space. There are mare sophisticated algorithms 
that can avoid these problems, but at present reinforce:ment learning with general function 
approximators remains a delicate art. 

Function approximation can also be very helpful for learning a model of the environ- 
ment. Remember that learning a model for an observable environment is a supervised learn- 
ing problem, because the next percept gives the outcome state. Any of the supervised learning 
methods in Chapter 18 can be used, with suitable adjustments for the fact that we need to pre- 
dict a complete state description rather than just a Boolean classification or a single real value. 
For example, if the state is defined by n Boolean variables, we will need to learn n Boolean 
functions to predict all the variables. For a partially observ(2ble environment, the learning 
problem is much more difficult. If we know what the hidden variables are and how they are 
causally related to each other and to the observable variables, th~en we can fix the structure 
of a dynamic Bayesian network and use the EM algorithm to learn the parameters, as was 
described in Chapter 20. Inventing the hidden variables and lleaming the model structure are 
still open problems. 

We now turn to examples of large-scale applications of reinforcement learning. We 
will see that, in cases where a utility function (and hence a model) is used, the model is 
usually taken as given. For example, in learning an eva~luation f~~nction for backgammon, it 
is normally assumed that the legal moves and their effects are known in advance. 

The defi nition of distance between utility functions is rather technical; see Tsitsiklis and Van Roy (1997). 
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Applications to game-playing 

The first significant application of reinforcement learning was also the first significant learn- 
ing program of any kind-the checker-playing program written by Arthur Samuel (1959, 
1967). Samuel first used a weighted linear function for the evaluation of positions, using up 
to 16 terms at any one time. He applied a version of Equation (21.1 1) to update the weights. 
There were some significant differences, however, between his program and current methods. 
First, he updated the weights using the difference between the current state and the backed-up 
value generated by full look-ahead in the search tree. This works fine, because it amounts to 
viewing the state space at a different granularity. A second difference was that the program 
did not use any observed rewards! That is, the values of terminal states were ignored. This 
means that it is quite possible for Samuel's program not to converge, or to converge on a 
strategy designed to lose rather than to win. He managed to avoid this fate by insisting that 
the weight for material advantage should always be positive. Remarkably, this was sufficient 
to direct the program into areas of weight space corresponding to good checker play. 

Gerry Tesauro's TD-Gammon system (1992) forcefully illustrates the potential of re- 
inforcement learning techniques. In earlier work (Tesauro and Sejnowski, 1989), Tesauro 
tried learning a neural network representation of Q(a ,  s )  directly from examples of moves 
labeled with relative values by a human expert. This approach proved extremely tedious for 
the expert. It resulted in a program, called NEUROGAMMON, that was strong by computer 
standards, but not competitive with human experts. The TD-Gammon project was an attempt 
to learn from self-play alone. The only reward signal was given at the end of each game. The 
evaluation function was represented by a fully connected neural network with a single hidden 
layer containing 40 nodes. Simply by repeated application of Equation (21.1 I), TD-Gammon 
learned to play considerably better than Neurogammon, even though the input representation 
contained just the raw board position with no computed features. This took about 200,000 
training games and two weeks of computer time. Although that may seem like a lot of games, 
it is only a vanishingly small fraction of the state space. When precomputed features were 
added to the input representation, a network with 80 hidden units was able, after 300,000 
training games, to reach a standard of play comparable to that of the top three human players 
worldwide. Kit Woolsey, a top player and analyst, said that "There is no question in my mind 
that its positional judgment is far better than mine." 

Application to robot control 

CART-POLE The setup for the famous cart-pole balancing problem, also known as the inverted pendu- 
INVERTED 
PENDULUM lum, is shown in Figure 21.9. The problem is to control the position x of the cart so that 

the pole stays roughly upright (0 x 7r/2), while staying within the limits of the cart track 
as shown. Over two thousand papers in reinforcement learning and control theory have been 
published on this seemingly simple problem. The cart-pole problem differs from the prob- 
lems described earlier in that the state variables z, 0, 2, and 0 are continuous. The actions are 

BANG-BANG 
CONTROL usually discrete: jerk left or jerk right, the so-called bang-bang control regime. 

The earliest work on learning for this problem was carried out by Michie and Cham- 
bers (1968). Their BOXES algorithm was able to balance the pole for over an hour after only 
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Figure 21.9 Setup for the problem of balancing a long pole on top of a moving cart. The 
cart can be jerked left or right by a controller that observes z, 0, i, and 0. L 

about 30 trials. Moreover, unlike many subsequent syst~ems, Box:~s was implemented with a 
real cart and pole, not a simulation. The algorithm first discretized the four-dimensional state 
space into boxes-hence the name. It then ran trials until the pole fell over or the cart hit the 
end of the track. Negative reinforcement was associated with the final action in the final box 
and then propagated back through the sequence. It was found that the discretization caused 
some problems when the apparatus was initialized in a position different from those used in 
training, suggesting that generalization was not perfect. Imr~rov~ed generalization and faster 
learning can be obtained using an algorithm that adaptively partitions the state space accord- 
ing to the observed variation in the reward. Nowadays, balancing a triple inverted pendulum 
is a common exercise-a feat far beyond the capabilities of most humans. 

The final approach we will consider for reinforcement learning problems is called policy 
POLICYSEARCH search. In some ways, policy search is the simplest sf all the methods in this chapter: the 

idea is to keep twiddling the policy as long as its performance improves, then stop. 
Let us begin with the policies themselves. Remember that a policy T is a function that 

maps states to actions. We are interested primarily in parameferized representations of .ir that 
have far fewer parameters than there are states in the state space (just as in the preceding 
section). For example, we could represent .ir by a collection of parameterized Q-functions, 
one for each action, and take the action with the highest predicted value: 

;. ( s )  = rnax QQ ( a ,  s) . (21.13) 

Each Q-function could be a linear function of the parameterls 6, as in Equation (211.9), or it 
could be a nonlinear function such as a neural network. Policy search will then adjust the 
parameters 6 to improve the policy. Notice that if the policy is represented by Q-functions, 
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then policy search results in a process that learns Q-functions. This process is not the same 
as Q-learning! In Q-learning with function approximation, the algorithm finds a value of Q 
such that is "close" to Q*, the optimal Q-function. Policy search, on the other hand, finds 
a value of Q that results in good performance; the values found may differ very s ~ b s t a n t i a l l ~ . ~  
Another clear example of the difference is the case where n ( s )  is calculated using, say, depth- 
10 look-ahead search with an approximate utility function u ~ .  The value of 0 that gives good 
play may be a long way from making & resemble the true utility function. 

One problem with policy representations of the kind given in Equation (21.13) is that 
the policy is a discontinuous function of the parameters when the actions are d i~cre te .~  That 
is, there will be values of I9 such that an infinitesimal change in 19 causes the policy to switch 
from one action to another. This means that the value of the policy may also change dis- 
continuously, which makes gradient-based search difficult. For this reason, policy search 

STOCHASTIC POLICY methods often use a stochastic policy representation T*(s,  a ) ,  which specifies the probability 
SOFTMAXFUNCTION of selecting action a in state s. One popular representation is the softmax function: 

Softmax becomes nearly deterministic if one action is much better than the others, but it 
always gives a differentiable function of 8; hence, the value of the policy (which depends in 
a continuous fashion on the action selection probabilities) is a differentiable function of 8. 

Now let us look at methods for improving the policy. We start with the simplest case: 
a deterministic policy and a deterministic environment. In this case, evaluating the policy is 
trivial: we simply execute it and observe the accumulated reward; this gives us the policy 

POLICYVALUE value p(Q). Improving the policy is just a standard optimization problem, as described in 
POLICY GRADIENT Chapter 4. We can follow the policy gradient vector Vep(19) provided p(Q) is differentiable. 

Alternatively, we can follow the empirical gradient by hillclimbing-i.e., evaluating the 
change in policy for small increments in each parameter value. With the usual caveats, this 
process will converge to a local optimum in policy space. 

When the environment (or the policy) is stochastic, things get more difficult. Suppose 
we are trying to do hillclimbing, which requires comparing p(8) and p(Q + AQ) for some 
small AQ. The problem is that the total reward on each trial may vary widely, so estimates 
of the policy value from a small number of trials will be quite unreliable; trying to compare 
two such estimates will be even more unreliable. One solution is simply to run lots of trials, 
measuring the sample variance and using it to determine that enough trials have been run 
to get a reliable indication of the direction of improvement for p(8). Unfortunately, this is 
impractical for many real problems where each trial may be expensive, time-consuming, and 
perhaps even dangerous. 

For the case of a stochastic policy .n;@(s, a ) ,  it is possible to obtain an unbiased estimate 
of the gradient at 8, V e p ( Q ) ,  directly from the results of trials executed at 8. For simplicity, 
we will derive this estimate for the simple case of a nonsequential environment in which the 

Trivially, the approximate Q-function defined by djs (a ,  s) = Q* (a, s)/10 gives optimal performance, even 
though it is not at all close to Q*. 

For a continuous action space, the policy can be a smooth function of the parameters. 
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reward is obtained immediately after acting in the start state .so. [n this case, the policy value 
is just the expected value of the reward, and we have 

Now we perform a simple trick so that this summation can be approximated by samples 
generated from the probability distribution defined by r s ( so ,  a) .  Suppose that we have N 
trials in all and the action taken on the jth trial is a j .  Then 

Thus, the true gradient of the policy value is approximated by a sum of terms involving 
the gradient of the action selection probability in each triall. For the sequential case, this 
generalizes to 

for each state s visited, where a3 is executed in s  on the jth trial and R, (s) is the total 
reward received from state s  onwards in the jth trial. The resulting algorithm is called 
REINFORCE (Williams, 1992); it is usually much more effective than hillclimbing using lots 
of trials at each value of 8. It is still much slower than necessary, however. 

Consider the following task: given two blackjack8 programs, determine which is best. 
One way to do this is to have each play against a standard "dealer" for a certain number of 
hands and then to measure their respective winnings. The problern with this, as we h~ave seen, 
is that the winnings of each program fluctuate widely depending on whether it recewes good 
or bad cards. An obvious solution is to generate a certain number of hands in advance and 
have each program play the same set of hands. In this way, we eliminate the measurement 
error due to differences in the cards received. This is the idea behind the PEGASUS algo- 
rithm (Ng and Jordan, 2000). The algorithm is applicable to domains for which a simulator 
is available so that the "random" outcomes of actions can be repeated. The algorithm works 
by generating in advance N sequences of random numbers. each of which can b~e used to 
run a trial of any policy. Policy search is carried out by evaluating each candidate policy 
using the same set of random sequences to determine the action outcomes. It can be shown 
that the number of random sequences required to ensure th~at the value of every policy is 
well-estimated depends only on the complexity of the policy space, and not at all on the com- 
plexity of the underlying domain. The PEGASUS algorithm has been used to develop effective 
policies for several domains, including autonomous helicopter flight (see Figure 21.10). 

Also known as twenty-one or pontoon. 
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Figure 21.10 Superimposed time-lapse images of an autonomous helicopter performing 
a very difficult "nose-in circle" maneuver. The helicopter is under the control of a policy 
developed by the PEGASUS policy search algorithm. A simulator model was developed by 
observing the effects of various control manipulations on the real helicopter; then the algo- 
rithm was run on the simulator model overnight. A variety of controllers were developed for 
different maneuvers. In all cases, performance far exceeded that of an expert human pilot 
using remote control. (Image courtesy of Andrew Ng.) 

This chapter has examined the reinforcement learning problem: how an agent can become 
proficient in an unknown environment, given only its percepts and occasional rewards. Rein- 
forcement learning can be viewed as a microcosm for the entire A1 problem, but it is studied 
in a number of simplified settings to facilitate progress. The major points are: 

The overall agent design dictates the kind of information that must be learned. The 
three main designs we covered were the model-based design, using a model T and a 
utility function U; the. model-free design, using an action-value function Q; and the 
reflex design, using a policy T. 
Utilities can be learned using three approaches: 

1. Direct utility estimation uses the total observed reward-to-go for a given state as 
direct evidence for learning its utility. 

2. Adaptive dynamic programming (ADP) learns a model and a reward function 
from observations and then uses value or policy iteration to obtain the utilities or 
an optimal policy. ADP makes optimal use of the local constraints on utilities of 
states imposed through the neighborhood structure of the environment. 

3. Temporal-difference (TD) methods update utility estimates to match those of suc- 
cessor states. They can be viewed as simple approximations to the ADP approach 
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that require no model for the learning process. Using a learned model to generate 
pseudoexperiences can, however, result in faster l~earning. 

Action-value functions, or Q-functions, can be learne~d by an ADP approach or a TD 
approach. With TD, Q-learning requires no model in either the learning or action- 
selection phase. This simplifies the learning probilem but potentially restricts the ability 
to learn in complex environments, because the agen1t cannot simulate the results of 
possible courses of action. 

When the learning agent is responsible for selecting actions while it learns, it must 
trade off the estimated value of those actions against the potential for learning useful 
new information. An exact solution of the exploration problem is infeasible. but some 
simple heuristics do a reasonable job. 

e In large state spaces, reinforcement learning alga~rithms must use an approximate func- 
tional representation in order to generalize over states. The temporal-difference signal 
can be used directly to update parameters in representations such as neural networks. 

Policy search methods operate directly on a representation of the policy, attempting 
to improve it based on observed performance. The variance in the performance in a 
stochastic domain is a serious problem; for simulated dlomains this can be overcome by 
fixing the randomness in advance. 

Because of its potential for eliminating hand coding of control strategies, reinforcement learn- 
ing continues to be one of the most active areas of machine learning research. Applications 
in robotics promise to be particularly valuable; these will require methods for handling con- 
tinuous, high-dimensional, partially observable enviro~nments in which successful behaviors 
may consist of thousands or even millions of primitive actions. 

BIBLIOGRAPHIGAL AND HISTORICAL NOTES 

Turing (1948,1950) proposed the reinforcement learniing approach, although he was not con- 
vinced of its effectiveness, writing, "the use of punishments ,and rewards can at best be a part 
of the teaching process." Arthur Samuel's work (19591) was probably the earliest successful 
machine learning research. Although this work was informal and had a number of flaws, 
it contained most of the modern ideas in reinforcement learning, including temporal differ- 
encing and function approximation. Around the same time., researchers in adaptive control 
theory (Widrow and Hoff, 1960), building on work bly Hebb (1949), were training simple 
networks using the delta rule. (This early connection between neural networks and rein- 
forcement learning may have led to the persistent misperception that the latter is a subfield 
of the former.) The cat-pole work of Michie and Chambers (1968) can also be seen as a 
reinforcement learning method with a function approximator. The psychological literature 
on reinforcement learning is much older; Hilgard and Bower (1975) provide a good survey. 
Direct evidence for the operation of reinforcement learning in animals has been provided by 
investigations into the foraging behavior of bees; therle is a clear neural correlate of the re- 
ward signal in the form of a large neuron mapping from the nectar intake sensors directly 



786 Chapter 21. Reinforcement Learning 

to the motor cortex (Montague et al., 1995). Research using single-cell recording suggests 
that the dopamine system in primate brains implements something resembling value function 
learning (Schultz et al., 1997). 

The connection between reinforcement learning and Markov decision processes was 
first made by Werbos (1977), but the development of reinforcement learning in A1 stems 
from work at the University of Massachusetts in the early 1980s (Barto et al., 1981). The 
paper by Sutton (1988) provides a good historical overview. Equation (21.3) in this chapter 
is a special case for X = 0 of Sutton's general TD(X) algorithm. TD(X) updates the values 
of all states in a sequence leading up to each transition by an amount that drops off as At for 
states t steps in the past. TD(1) is identical to the Widrow-Hoff or delta rule. Boyan (2002), 
building on work by Bradtke and Barto (1996), argues that TD(X) and related algorithms 
make inefficient use of experiences; essentially, they are online regression algorithms that 
converge much more slowly than offline regression. His LSTD(X) is an online algorithm 
that gives the same results as offline regression. 

The combination of temporal difference learning with the model-based generation of 
simulated experiences was proposed in Sutton's DYNA architecture (Sutton, 1990). The idea 
of prioritized sweeping was introduced independently by Moore and Atkeson (1993) and 
Peng and Williams (1993). Q-learning was developed in Watkins's Ph.D. thesis (1989). 

Bandit problems, which model the problem of exploration for nonsequential decisions, 
are analyzed in depth by Berry and Fristedt (1985). Optimal exploration strategies for several 
settings are obtainable using the technique called Gittins indices (Gittins, 1989). A vari- 
ety of exploration methods for sequential decision problems are discussed by Barto et al. 
(1995). Kearns and Singh (1998) and Brafman and Tennenholtz (2000) describe algorithms 
that explore unknown environments and are guaranteed to converge on near-optimal policies 
in polynomial time. 

Function approximation in reinforcement learning goes back to the work of Samuel, 
who used both linear and nonlinear evaluation functions and also used feature selection meth- 

CMAC ods to reduce the feature space. Later methods include the CMAC (Cerebellar Model Artic- 
ulation Controller) (Albus, 1975), which is essentially a sum of overlapping local kernel 
functions, and the associative neural networks of Barto et al. (1983). Neural networks are 
currently the most popular form of function approximator. The best known application is 
TD-Gammon (Tesauro, 1992, 1995), which was discussed in the chapter. One significant 
problem exhibited by neural-network-based TD learners is that they tend to forget earlier ex- 
periences, especially those in parts of the state space that are avoided once competence is 
achieved. This can result in catastrophic failure if such circumstances reappear. Function ap- 
proximation based on instance-based learning can avoid this problem (Ormoneit and Sen, 
2002; Forbes, 2002). 

The convergence of reinforcement learning algorithms using function approximation is 
an extremely technical subject. Results for TD learning have been progressively strength- 
ened for the case of linear function approximators (Sutton, 1988; Dayan, 1992; Tsitsiklis and 
Van Roy, 1997), but several examples of divergence have been presented for nonlinear func- 
tions (see Tsitsiklis and Van Roy, 1997, for a discussion). Papavassiliou and Russel1 (1999) 
describe a new type of reinforcement learning that converges with any form of function ap- 
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proximator, provided that a best-fit approximation can be found for the observed data. 
Policy search methods were brought to the fore by Williams (1992), who developed 

the REINFORCE family of algorithms. Later work by Marbach and Tsitsiklis (1998), Sutton 
et al. (2000), and Baxter and Bartlett (2000) strengthened and generalized the convergence 
results for policy search. The PEGASUS algorithm is due to Ng and Jordan (2000) although 
similar techniques appear in Van Roy's PhD thesis (1998). As we mentioned in the chapter, 
the performance of a stochastic policy is a continuous function of its parameters, which helps 
with gradient-based search methods. This is not the only benefit: Jaakkola et al. (1995) argue 
that stochastic policies actually work better than deterininistic policies in partially observable 
environments, if both are limited to acting based on thle curr~ent percept. (One reason is that 
the stochastic policy is less likely to get "stuck" became of some unseen hindrance.) Now, in 
Chapter 17 we pointed out that optimal policies in partially observable MDPs are determinis- 
tic functions of the belief state rather than the current p~ercept, so we would expect still better 
results by keeping track of the belief state using the filtering methods of Chapter 15. Unfor- 
tunately, belief state space is high-dimensional and conltinuous, and effective algorithms have 
not yet been developed for reinforcement learning with belief states. 

Real-world environments also exhibit enormous complexity in terms of the number of 
primitive actions required to achieve significant reward. For example, a robot playing soccer 
might make a hundred thousand individual leg motions befoire scoring a goal. One common 

REWARD SHAPING method, used originally in animal training, is called reward shaping. This involves supplying 
the agent with additional rewards for "making progress." For soccer, these might be given 
for making contact with the ball or for kicking it toward the: goal. Such rewards can speed 
up learning enormously, and are very simple to provide, but there is a risk that the agent will 
learn to maximize the pseudorewards rather than the true rewinds; for example, standing next 
to the ball and "vibrating" causes many contacts with the balll. Ng et al. (1999) show that the 
agent will still learn the optimal policy provided that the pseudoreward F ( s ,  a, s ' )  satisfies 
F ( s ,  a ,  s') =?@(st) - @ ( s ) ,  where Q, is an arbitrary f~lnctioii of state. @ can be constructed 
to reflect any desirable aspects of the state, such as achievem~ent of subgoals or distance to a 
goal state. 

The generation of complex behaviors can also be facilitated by hierarchical reinforce- 
HIERARCHICAL 
REINFORCEMENT ment learning methods, which attempt to solve problems at multiple levels of abstraction- 
LEARNING 

much like the HTN planning methods of Chapter 12. For example, "scoring a goal" can be 
broken down into "obtain possession," "dribble towards the goall," and "shoot;" and each of 
these can be broken down further into lower-level motor behaviors. The fundamental result 
in this area is due to Forestier and Varaiya (1978), who proved that lower-level behaviors 
of arbitrary complexity can be treated just like primitlive actions (albeit ones that can take 
varying amounts of time) from the point of view of the higher-level behavior that invokes 
them. Current approaches (Parr and Russell, 1998; Dietterich, 2000; Sutton et nl., 2000; 
Andre and Russell, 2002) build on this result to deve:lop methods for supplying an agent 

PARTIALPROGRAM with a partial program that constrains the agent's behavior 1.0 have a particular hierarchical 
structure. Reinforcement learning is then applied to learn the best behavior consistent with 
the partial program. The combination of function approximation, shaping, and hierarchical 
reinforcement learning may enable large-scale problems to be tackled successfully. 
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The survey by Kaelbling et al. (1996) provides a good entry point to the literature. The 
text by Sutton and Barto (1998), two of the field's pioneers, focuses on architectures and algo- 
rithms, showing how reinforcement learning weaves together the ideas of learning, planning, 
and acting. The somewhat more technical work by Bertsekas and Tsitsiklis (1996) gives a 
rigorous grounding in the theory of dynamic programming and stochastic convergence. Re- 
inforcement learning papers are published frequently in Machine Learning, in the Journal of 
Machine Learning Research, and in the International Conferences on Machine Learning and 
the Neural Information Processing Systems meetings. 

21.1 Implement a passive learning agent in a simple environment, such as the 4 x 3 world. 
For the case of an initially unknown environment model, compare the learning performance 
of the direct utility estimation, TD, and ADP algorithms. Do the comparison for the optimal 
policy and for several random policies. For which do the utility estimates converge faster? 
What happens when the size of the environment is increased? (Try environments with and 
without obstacles.) 

21.2 Chapter 17 defined a proper policy for an MDP as one that is guaranteed to reach a 
terminal state. Show that it is possible for a passive ADP agent to learn a transition model 
for which its policy n is improper even if n is proper for the true MDP; with such models, 
the value determination step may fail if y = 1. Show that this problem cannot arise if value 
determination is applied to the learned model only at the end of a trial. 

21.3 Starting with the passive ADP agent, modify it to use an approximate ADP algorithm 
as discussed in the text. Do this in two steps: 

a. Implement a priority queue for adjustments to the utility estimates. Whenever a state is 
adjusted, all of its predecessors also become candidates for adjustment and should be 
added to the queue. The queue is initialized with the state from which the most recent 
transition took place. Allow only a fixed number of adjustments. 

b. Experiment with various heuristics for ordering the priority queue, examining their ef- 
fect on learning rates and computation time. 

21.4 The direct utility estimation method in Section 21.2 uses distinguished terminal states 
to indicate the end of a trial. How could it be modified for environments with discounted 
rewards and no terminal states? 

21.5 How can the value determination algorithm be used to calculate the expected loss 
experienced by an agent using a given set of utility estimates U and an estimated model M, 
compared with an agent using correct values? 

21.6 Adapt the vacuum world (Chapter 2) for reinforcement learning by including rewards 
for picking up each piece of dirt and for getting home and switching off. Make the world ac- 
cessible by providing suitable percepts. Now experiment with different reinforcement learn- 
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ing agents. Is function approximation necessary for success? What sort of approximator 
works for this application? 

\ m p  21.7 Implement an exploring reinforcement learning agent that uses direct utility estima- 
tion. Make two versions-ne with a tabular representation and one using the function ap- 
proximator in Equation (21.9). Compare their performance in three environments: 

a. The 4 x 3 world described in the chapter. 

b. A 10 x 10 world with no obstacles and a +1 reward at (10,lO). 

c. A 10 x 10 world with no obstacles and a +1 reward at (5,5). 

21.8 Write out the parameter update equations for TI) learning with 

21.9 Devise suitable features for stochastic grid worlds (generalizations of the 4 x 3 world) 
that contain multiple obstacles and multiple terminal states with +1 or -1 rewards. 

21.10 Compute the true utility function and the best linear approximation in x and y (as in 
Equation (21.9)) for the following environments: 

a. A 10 x 10 world with a single $1 terminal state at (10,lO). 

b. As in (a), but add a -1 terminal state at (10,l). 

c. As in (b), but add obstacles in 10 randomly selected squares. 

d. As in (b), but place a wall stretching from (5,2) to (5,9). 

e. As in (a), but with the terminal state at (5,5). 

The actions are deterministic moves in the four directions. 111 each case, compare the results 
using three-dimensional plots. For each environment, propose additional features (besides x 
and y) that would improve the approximation and show the results. 

lgfsjizp 21.11 Extend the standard game-playing environment (Chapter 6) to incorporate a reward 
signal. Put two reinforcement learning agents into th~e environment (they may, of course, 
share the agent program) and have them play against each other. Apply the generalized TD 
update rule (Equation (21.11)) to update the evaluation function. You might wish to start with 
a simple linear weighted evaluation function and a simlple game, such as tic-tac-toe. 

1-p 21.12 Implement the REINFORCE and PEGASUS algorithms and apply them to the 4 x 3 
world, using a policy family of your own choosing. Comment on the results. 

21.13 Investigate the application of reinforcement learning ideas to the modeling of human 
and animal behavior. 

21.14 Is reinforcement learning an appropriate abstralct model for evolution? What connec- 
tion exists, if any, between hardwired reward signals and evolutionary fitness? 



In which we see why agents might want to exchange information-carrying mes- 
sages with each other and how they can do so. 

It is dusk in the savanna woodlands of Amboseli National Park near the base of Kilimanjaro. 
A group of vervet monkeys are foraging for food when one lets out a loud barking call. The 
others in the group recognize this as the leopard warning call (distinct from the short cough 
used to warn of eagles, or the chutter for snakes) and scramble for the trees. The vervet has 
successfully communicated with the group. 

COMMUNICATION Communication is the intentional exchange of information brought about by the pro- 
SIGNS duction and perception of signs drawn from a shared system of conventional signs. Most 

animals use signs to represent important messages: food here, predator nearby, approach, 
withdraw, let's mate. In a partially observable world, communication can help agents be 
successful because they can learn information that is observed or inferred by others. 

What sets humans apart from other animals is the complex system of structured mes- 
LANGUAGE sages known as language that enables us to communicate most of what we know about the 

world. Although chimpanzees, dolphins, and other mammals have shown vocabularies of 
hundreds of signs and some aptitude for stringing them together, only humans can reliably 
communicate an unbounded number of qualitatively different messages. 

Of course, there are other attributes that are uniquely human: no other species wears 
clothes, creates representational art, or watches three hours of television a day. But when 
Turing proposed his test (see Section 1.1), he based it on language, because language is 
intimately tied to thinking. In this chapter, we will both explain how a communicating agent 
works and describe a fragment of English. 

SPEECH ACT One of the actions available to an agent is to produce language. This is called a speech act. 
"Speech" is used in the same sense as in "free speech," not "talking," so e-mailing, skywriting, 
and using sign language all count as speech acts. English has no neutral word for an agent that 

SPEAKER produces language by any means, so we will use speaker, hearer, and utterance as generic 
HEARER 

UTTERANCE 790 
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WORD terms referring to any mode of communication. We will also use the term word to refer to 
any kind of conventional communicative sign. 

Why would an agent bother to perform a speech ,act when it could be doing a "regular" 
action? We saw in Chapter 12 that agents in a multiagen~t environment can use communication 
to help arrive at joint plans. For example, a group of agents exploring the wumpus world 
together gains an advantage (collectively and individually) by being able to do the following: 

Query other agents about particular aspects of the world. This is typically done by 
asking questions: Have you smelled the wumpus anywhere? 

Inform each other about the world. This is done by making representative statements: 
There's a breeze here in 3 4. Answering a question is another Pund of informing. 

Request other agents to perform actions: Please help me carry the gold. Sometimes 
INDIRECT SPEECH 
ACT an indirect speech act (a request in the form of a statement or question) is considered 

more polite: I could use some help carrying this. An agent with authority can give 
commands (Alpha go right; Bravo and Charlie go lejl), and an agent with power can 
make a threat (Give me the gold, or else). Together, these lunds of speech acts are called 
directives. 

Acknowledge requests: OK. 
Promise or commit to a plan: I'll shoot the wumpus; you grab the gold. 

All speech acts affect the world by making air molecules vibrate (or the equivalent effect in 
some other medium) and thereby changing the mental state and eventually the future actions 
of other agents. Some kinds of speech acts transfer inforimatzon to the hearer, assuming 
that the hearer's decision making will be suitably affected by that information. Others are 
aimed more directly at making the hearer take some action. Another class of speech act, the 

DECLARATIVE declarative, appears to have a more direct effect on the world, as in I now pronounce you man 
and wife or Strike three, you're out. Of course, the effect is achieved by creating or confirming 
a complex web of mental states among the agents involved: being married and being out are 
states characterized primarily by convention rather than by "physical" properties of the world. 

The communicating agent's task is to decide when a speech act of some kind is called 
for and which speech act, out of all the possibilities, is the right one. The problem of un- 

UNDERSTANDING derstanding speech acts is much like other understandfng problems, such as understanding 
images or diagnosing illnesses. We are given a set of ambiguous inputs, and from them we 
have to work backwards to decide what state of the world could have created these inputs. 
However, because speech is a planned action, understantding it also involves plan recognition. 

Fundamentals of language 

FORMALLANGUAGE A formal language is defined as a (possibly infinite) set of' strings. Each string is a con- 
STRINGS catenation sf  terminal symbols, sometimes called words. For example, in the language of 
TERMINALSYMBOLS first-order logic, the terminal symbols include A and P, and a typical string is "P A Q." The 

string "P Q A " is not a member of the language. Fornial languages such as first-order logic 
NATURAL 
LANGUAGES and Java have strict mathematical definitions. This is in contrast to natural languages, such 

as Chinese, Danish, and English, that have no strict definition but are used by a community 
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of speakers. For this chapter we will attempt to treat natural languages as if they were formal 
languages, although we recognize the match will not be perfect. 

A grammar is a finite set of rules that specifies a language. Formal languages always 
have an official grammar, specified in manuals or books. Natural languages have no official 
grammar, but linguists strive to discover properties of the language by a process of scientific 
inquiry and then to codify their discoveries in a grammar. To date, no linguist has succeeded 
completely. Note that linguists are scientists, attempting to define a language as it is. There 
are also prescriptive grammarians who try to dictate how a language should be. They create 
rules such as "Don't split infinitives" which are sometimes printed in style guides, but have 
little relevance to actual language usage. 

Both formal and natural languages associate a meaning or semantics to each valid 
string. For example, in the language of arithmetic, we would have a rule saying that if "X" 
and " Y" are expressions, then "X + Y" is also an expression, and its semantics is the sum of 
X and Y. In natural languages, it is also important to understand the pragmatics of a string: 
the actual meaning of the string as it is spoken in a given situation. The meaning is not just 
in the words themselves, but in the interpretation of the words in situ. 

-URE Most grammar rule formalisms are based on the idea of phrase structure-that strings 
are composed of substrings called phrases, which come in different categories. For example, 
the phrases "the wumpus," "the king," and "the agent in the corner" are all examples of the 
category noun phrase, or NP. There are two reasons for identifying phrases in this way. 
First, phrases usually correspond to natural semantic elements from which the meaning of an 
utterance can be constructed; for example, noun phrases refer to objects in the world. Second, 
categorizing phrases helps us to describe the allowable strings of the language. We can say 
that any of the noun phrases can combine with a verb phrase (or VP) such as "is dead" to 
form a phrase of category sentence (or S) .  Without the intermediate notions of noun phrase 
and verb phrase, it would be difficult to explain why "the wumpus is dead" is a sentence 
whereas "wumpus the dead is" is not. 

Category names such as NP, VP, and S are called nonterminal symbols. Grammars 
define nonterminals using rewrite rules. We will adopt the Backus-Naur form (BNF) nota- 
tion for rewrite rules, which is described in Appendix B on page 984. In this notation, the 
meaning of a rule such as 

S -t NP VP 

is that an S may consist of any NP followed by any VP. 

The component steps of communication 

A typical communication episode, in which speaker S wants to inform hearer H about propo- 
sition P using words W, is composed of seven processes: 

Intention. Somehow, speaker S decides that there is some proposition P that is worth 
saying to hearer H. For our example, the speaker has the intention of having the hearer know 
that the wumpus is no longer alive. 

Generation. The speaker plans how to turn the proposition P into an utterance that 
makes it likely that the hearer, upon perceiving the utterance in the current situation, can infer 
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GENERATIVE CAPACITY 

Grammatical formalisms can be classified by their generative capacity: the set of 
languages they can represent. Chomsky (1957) describes four classes of grammat- 
ical formalisms that differ only in the form of the rewrite rules. The classes can 
be arranged in a hierarchy, where each class can be uljed to describe all the lan- 
guages that can be described by a less powerful class, as well as some additional 
languages. Here we list the hierarchy, most powerful class first: 

Recursively enumerable grammars use unrestricted rules: both sides of the 
rewrite rules can have any number of terminal and nonitemiinal symbols, as in the 
rule A B + C. These grammars are equivalent to Turing machines in their 
expressive power. 

Context-sensitive grammars are restricted only in that the right-hand side 
must contain at least as many symbols as the left-hand side. The name "context- 
sensitive" comes from the fact that a rule such as A S B -+ A X B says that 
an S can be rewritten as an X in the context of a preceding A and a following B. 
Context-sensitive grammars can represent languages such as anbncn (a sequence 
of n copies of a followed by the same number of bs and then cs). 

In context-free grammars (or CFGs), the left-hand side consists of a sin- 
gle nonterminal symbol. Thus, each rule licenses rewriting the nonterminal as 
the right-hand side in any context. CFGs are populal- for natural language and 
programming language grammars, although it is riow widely accepted that at least 
some natural languages have constructions that are not context-free (Pullum, 199 1). 
Context-free grammars can represent anbn, but not anb'"cn. 

Regular grammars are the most restricted class. Every rule has a single non- 
terminal on the left-hand side and a terminal symbol oplionally followed by a non- 
terminal on the right-hand side. Regular grammars are equivalent in power to finite- 
state machines. They are poorly suited for programming languages, because they 
cannot represent constructs such as balanced opening and closing parentheses (a 
variation of the anbn language). The closest they can come is representing a*b*, a 
sequence of any number of as followed by any number of bs. 

The grammars higher up in the hierarchy have more expressive power, but the 
algorithms for dealing with them are less efficienl. Up to the mid 1980s, linguists 
focused on context-free and context-sensitive languages. Since then, there has been 
increased emphasis on regular grammars, brought about by the need to process 
megabytes and gigabytes of online text very quickly, even at the cost of a less 
complete analysis. As Fernando Pereira put it, "The older I get, the further down 
the Chomsky hierarchy I go." To see what he means, compare Pereira and Warren 
(1980) with Mohri, Pereira, and Riley (2002). 
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SYNTHESIS 

PERCEPTION 

ANALYSIS 

PARSING 

PARSE TREE 

SEMANTIC 
INTERPRETATION 

PRAGMATIC 
INTERPRETATION 

the meaning P (or something close to it). Assume that the speaker is able to come up with 
the words "The wumpus is dead," and call this W .  

Synthesis. The speaker produces the physical realization W' of the words W .  This 
can be via ink on paper, vibrations in air, or some other medium. In Figure 22.1, we show 
the agent synthesizing a string of sounds W' written in the phonetic alphabet defined on 
page 569: "[thaxwahmpaxsihzdehd]." The words are run together; this is typical of quickly 
spoken speech. 

Perception. H perceives the physical realization W' as Wi and decodes it as the words 
W2. When the medium is speech, the perception step is called speech recognition; when it is 
printing, it is called optical character recognition. Both moved from being esoteric to being 
commonplace in the 1990s, due largely to increased desktop computing power. 

Analysis. H infers that W2 has possible meanings PI,  . . . , P,. We divide analysis into 
three main parts: syntactic interpretation (or parsing), semantic interpretation, and pragmatic 
interpretation. Parsing is the process of building a parse tree for an input string, as shown in 
Figure 22.1. The interior nodes of the parse tree represent phrases and the leaf nodes represent 
words. Semantic interpretation is the process of extracting the meaning of an utterance as 
an expression in some representation language. Figure 22.1 shows two possible semantic 
interpretations: that the wumpus is not alive and that it is tired (a colloquial meaning of 
dead). Utterances with several possible interpretations are said to be ambiguous. Pragmatic 
interpretation takes into account the fact that the same words can have different meanings in 

I  I 
I I  !##%a$" 
I  I  

Intention: i Generation: I Synthesis: 
I  I  
I  I 

K n o w ( H , ~  Alive(Wumpus,S3)) I The wumpus is dead ! [thaxwahmpaxsihzdehd] 

I I  j@@#@ 
I  1 

I 
, i - i X i  

I 

Perception: ( Analysis: S ; Disambiguation: 
I (Parsing): A I I 

The wumpus is dead ! I l Alive(Wumpusl,Ss) 
I  
I  
I  I 
I  

Article Noun Verb Adjective ,----------------- 
I I I I 1 1  
I  
I The wumpus is dead I n ~ ~ r p ~ r a t i ~ n :  
I  I 

I (Semantic Alive(Wumpus,Now) I TELL(KB, 
Interpretation): Tired(Wumpus,Now) 1 l Alive(Wumpusl,S3)) I 

I  ! (Pragmatic Alive(Wumpusl,S3) I 

Interpretation): Tired( Wumpusl,S3) I 

Figure 22.1 Seven processes involved in communication, using the example sentence 
"The wumpus is dead." 



Section 22.2. A Formal Grammar for a Fragment of English 795 

different situations. Whereas syntactic interpretation is a function of one argument, the string, 
pragmatic interpretation is a function of the utterance and the context or situation in which 
it is uttered. In the example, pragmatics does two things: replace the constant Notv with the 
constant Sg, which stands for the current situation, and replace Wumpus with Wumpusl, 
which stands for the single Wumpus that is known to be in this cave. In general, pragmatics 
can contribute much more to the final interpretation of an utterance; consider "I'm looking at 
the diamond when spoken by a jeweler or by a baseball p1a:yer. In Section 22.7, we will see 
that pragmatics allows us to interpret "It is d e a d  as meaning that the wumpus is dead if we 
are in a situation where the wumpus is salient. 

DISAMBIGUATION Disambiguation. H infers that S intended to convey P, (where ideally P, = P) .  
Most speakers are not intentionally ambiguous, but most utterances have several feasible 
interpretations. Communication works because the hexer does the work of figuring out which 
interpretation is the one the speaker probably meant to convey. Notice that this is the first 
time we have used the word probably, and disambiguation is the first process that depends 
heavily on uncertain reasoning. Analysis generates possible ~nterpretations; if more than one 
interpretation is found, then disambiguation chooses the one that is best. 

INCORPORATION Incorporation. H decides to believe P, (or not). A totally naive agent might believe 
everything it hears, but a sophisticated agent treats the speech act as evidence for P,, not 
confirmation of it. 

Putting it all together, we get the agent program shown in Figure 22.2. Here the agent 
acts as a robot slave that can be commanded by a master. On each turn, the slave will answer 
a question or obey a command if the master has made one, and it will believe any statements 
made by the master. It will also comment (once) on the current situation if it has nothing 
more pressing to do, and it will plan its own action if left aloine. Here is a typical dialog: 

ROBOT SLAVE MASTER 

I feel a breeze. Go to 12 .  
Nothing is here. Go north. 
I feel a breeze and I smell a stench 
and I see a glitter. Grab the gold. 

22.2 A FORMAL GRAMMAR FOR A FRAGMENT O F  ENGLISH 

In this section, we define a formal grammar for a small1 fragment of English that is suitable 
for making statements about the wumpus world. We will call this language lo. Later sections 
will improve on lo to make it somewhat closer to real English. We are unlikely ever to devise 
a complete grammar for English, if only because no two p~ersons would agree entirely on 
what constitutes valid English. 

The Lexicon of lo 

LEXICON First we define the lexicon, or list of allowable words. The viords are grouped into the cate- 
gories or parts of speech familiar to dictionary users: nouns, pronouns, and names to denote 
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function NAIVE-COMMUNICATING-AGENT(~~~C~~~) returns action 
static: KB, a knowledge base 

state, the current state of the environment 
action, the most recent action, initially none 

state +- U P D A T E - ~ T A T E ( S ~ ~ ~ ~ ,  action, percept) 
words t S P E E C H - P A R T ( ~ ~ ~ ~ ~ ~ ~ )  
semantics +- DI~AMB~GUATE(PRAGMATICS(SEMANTICS(PARSE(~~~~~)))) 
if words = None and action is not a SAY then / * Describe the state * / 

return SAY(GENERATE-DESCRIPTION(S~~~~)) 
else if TY~~[semantzcs] = Command then / * Obey the command * / 

return CoN~~N~s[ seman t i c s ]  
else if TY~E[semantics] = Question then / * Answer the question * / 

answer t AsK(KB, semantics) 
return SAY(GENERATE-DESCRIPTION(~~SW~~)) 

else if TY~~[semantics]  = Statement then / * Believe the statement * / 
TELL(KB, CONTENTS [semantics]) 

/ * I f  we fall through to here, do a "regular" action * / 
return FIRST(PLANNER(KB, state)) 

Figure 22.2 A communicating agent that accepts commands, questions, and statements. 
The agent can also describe the current state or perform a "regular" non-speech-act action 
when there is nothing to say. 

things, verbs to denote events, adjectives to modify nouns, and adverbs to modify verbs. Cat- 
egories that are perhaps less familiar to some readers are articles (such as the), prepositions 
(in), and conjunctions (and). Figure 22.3 shows a small lexicon. 

Each of the categories ends in . . . to indicate that there are other words in the category. 
However, it should be noted that there are two distinct reasons for the missing words. For 
nouns, verbs, adjectives, and adverbs, it is in principle infeasible to list them all. Not only 
are there tens of thousands of members in each class, but new ones-like MP3 or anime-are 

OPEN CLASSES being added constantly. These four categories are called open classes. The other categories 
CLOSED CLASSES (pronoun, article, preposition, and conjunction) are called closed classes. They have a small 

number of words (a few to a few dozen) that can in principle be enumerated in full. Closed 
classes change over the course of centuries, not months. For example, "thee" and "thou" were 
commonly used pronouns in the 17th century, were on the decline in the 19th, and are seen 
today only in poetry and some regional dialects. 

The Grammar of lo 

The next step is to combine the words into phrases. We will use five nonterminal symbols 
to define the different kinds of phrases: sentence ( S ) ,  noun phrase (NP), verb phrase (VP), 
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Noun + stench 1 breeze 1 glitter I nothing I agent 

1 wumpus I pit I pits( gold 1 east I . . . 
Verb + is 1 see 1 smell 1 shoot 1 feel 1 stinks 

I 1 go 1 grab I carry 1 kill 1 turn ) . . . ~ 
I 

Adjective + right ( left ( east 1 dead ( back 1 smelly 1 . . 
Adverb 4 here 1 there ( nearby ( ahead 

I right I left I east I south I back I . . . 
Pronoun + me 1 you 1 I / it 1 . . . 

Name -+ John 1 Mary 1 Boston 1 Aristotle 1 . . . 
Article + the 1 a 1 an 1 . . . 

Preposition 4 to 1 in ) on ) near 1 . . . 
Conjunction -+ and 1 or / but / . . . 

Digit -+ 01 11 21 31 41 51 61 71 81 9 

Figure 22.3 The lexicon for Eo . -7 
I S -i NP VP I + feel a breeze I 

I S Conjunction S I feel a breeze + and + I smell a wumpus 

NP -+ Pronoun I 
I Name John 
I Noun pits 
I Article Noun the + wnmpus 
I Digit Digit 3 -4 
1 NP PP the wumpus + to the east 
( NP RelClause the wumpus + that is smelly 

VP -i Verb stinks 
1 VP NP feel + a breeze: 
I VP Adjective is + smellly 
I VP PP turn + to the east 
1 VP Adverb go + ahead 

PP -+ Preposition NP to + the east 
RelClause -> that VP that + is smelly 

Figure 22.4 The grammar for Eo, with example phrases folr each rule. 
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prepositional phrase (PP),  and relative clause  e el clause).' Figure 22.4 shows a grammar 
for l o ,  with an example for each rewrite rule. lo generates good English sentences such as 
the following: 

John is in the pit 
The wumpus that stinks is in 2 2 
Mary is in Boston and John stinks 

OVERGENERATION Unfortunately, the grammar overgenerates: that is, it generates sentences that are not grarn- 
matical, such as "Me go Boston" and "I smell pit gold wumpus nothing east." It also under- 

UNDERGENERATION generates: there are many sentences of English that it rejects, such as "I think the wumpus 
is smelly." (Another shortcoming is that the grammar does not capitalize the first word of a 
sentence, nor add punctuation at the end. That is because it is designed primarily for speech, 
not writing.) 

We have already defined parsing as the process of finding a parse tree for a given input string. 
That is, a call to the parsing function PARSE, such as 

 PARSE("^^^ wumpus is dead", l o ,  S )  

should return a parse tree with root S whose leaves are "the wumpus is dead" and whose 
internal nodes are nonterrninal symbols from the grammar lo. You can see such a tree in 
Figure 22.1. In linear text, we write the tree as 

[S: [NP: [Article: the] [Noun: wumpus]] 
[VP: [Verb: is] [Adjective: dead]]] . 

Parsing can be seen as a process of searching for a parse tree. There are two extreme ways 
of specifying the search space (and many variants in between). First, we can start with the S 

TOP-DOWN PARSING symbol and search for a tree that has the words as its leaves. This is called top-down parsing 
(because the S is drawn at the top of the tree). Second, we could start with the words and 

BOTTOM-UP PARSING search for a tree with root S .  This is called bottom-up parsing.2 Top-down parsing can be 
precisely defined as a search problem as follows: 

a The initial state is a parse tree consisting of the root S and unknown children: [S: ?I. 
In general, each state in the search space is a parse tree. 

a The successor function selects the leftmost node in the tree with unknown children. It 
then looks in the grammar for rules that have the root label of the node on the left-hand 
side. For each such rule, it creates a successor state where the ? is replaced by a list 
corresponding to the right-hand side of the rule. For example, in £0 there are two rules 
for 3, so the tree [S:  ?] would be replaced by the following two successors: 

A relative clause follows and modifies a noun phrase. It consists of a relative pronoun (such as "who" or 
"that") followed by a verb phrase. (Another kind of relative clause is discussed in exercise 22.12.) An example 
of a relative clause is that stinks in "The wumpus that stinks is in 2 2." 

The reader might notice that top-down and bottom-up parsing are analogous to backward and forward chaining, 
respectively, as described in Chapter 7. We will see shortly that the analogy is exact. 
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[S: [S: ?] [Conjunction: ?] [S: ?]I 
[S: [NP: ?] [ VP: ?I] 

The second of these has seven successors, one for each rewrite rule of NP. 

The goal test checks that the leaves of the parse tree comespond exactly to the input 
string, with no unknowns and no uncovered inputs. 

One big problem for top-down parsing is dealing with so-called left-recursive rules-that 
is, rules of the form X + X . . .. With a depth-first search, such a rule would lead us to 
keep replacing X with [X: X . . . ] in an infinite loop. With a breadth-first search we would 
successfully find parses for valid sentences, but when given1 an invalid sentence, we would 
get stuck in an infinite search space. 

The formulation of bottom-up parsing as a search is as follows: 

The initial state is a list of the words in the input string, each viewed as a parse tree 
that is just a single leaf node-for example; [the, wumlpus, is, dead]. In general, each 
state in the search space is a list of parse trees. 

The successor function looks at every position i in the list of trees and at every right- 
hand side of a rule in the grammar. If the subsequence of the list of trees starting at 
i matches the right-hand side, then the subsequence is replaced by a new tree whose 
category is the left-hand side of the rule and whose children are the subsequence. By 
"matches," we mean that the category of the node is the same as the element in the right- 
hand side. For example, the rule Article + the matches the subsequence consisting 
of the first node in the list [the, wumpus, is, clead], so a successor state would be 
[[Article: the], wumpus, is, dead]. 
The goal test checks for a state consisting of a single tree with root S .  

See Figure 22.5 for an example of bottom-up parsing. 

/ step list of nodes subsequence rule 1 
- -  

INIT the wumpus is dead the Article 4 the 
2 Article wumpus is dead wumpus Noun + wumpus 
3 Article Noun is dead Article Noun NP 4 Article Noun 
4 NP is dead is Verb -+ is 
5 NP Verb dead dead Adjective -+ dead 
6 NP Verb Adjective Verb VP 4 Verb 
7 NP VP Adjective VP Adjective VP 4 VP Adjective 
8 NP VP NP VP S -+ NP VP 
GOAL S 

Figure 22.5 Trace of a bottom up parse on the string "The wumpus is dead." We start with 
a list of nodes consisting of words. Then we replace subsequences that match the right-hand 
side of a rule with a new node whose root is the left-hand side. For example, in the third 
line the Article and Noun nodes are replaced by an N P  node that has those two nodes as 
children. The top-down parse would produce a similar trace, but in the opposite direction. 
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Both top-down and bottom-up parsing can be inefficient, because of the multiplicity of 
ways in which multiple parses for different phrases can be combined. Both can waste time 
searching irrelevant portions of the search space. Top-down parsing can generate intermediate 
nodes that could never be latched by the words, and bottom-up parsing can generate partial 
parses of the words that could not appear in an S. 

Even if we had a perfect heuristic function that allowed us to search without any irrel- 
evant digressions, these algorithms would still be inefficient, because some sentences have 
exponentially many parse trees. The next subsection shows what to do about that. 

Efficient parsing 

Consider the following two sentences: 

Have the students in section 2 of Computer Science 101 take the exam. 
Have the students in section 2 of Computer Science 101 taken the exam? 

Even though they share the first 10 words, these sentences have very different parses, because 
the first is a command and the second is a question. A left-to-right parsing algorithm would 
have to guess whether the first word is part of a command or a question and will not be able 
to tell if the guess is correct until at least the eleventh word, take or taken. If the algorithm 
guesses wrong, it will have to backtrack all the way to the first word. This kind of backtrack- 
ing is inevitable, but if our parsing algorithm is to be efficient, it must avoid reanalyzing "the 
students in section 2 of Computer Science 101" as an NP each time it backtracks. 

In this section, we will develop a parsing algorithm that avoids this source of ineffi- 
ciency. The basic idea is an example of dynamic programming: every time we analyze a 
substring, store the results so we won't have to re-analyze it later: For example, once we 
discover that "the students in section 2 of Computer Science 101" is an NP, we can record 

CHART that result in a data structure known as a chart. Algorithms that do this are called chart 
parsers. Because we are dealing with context-free grammars, any phrase that was found in 
the context of one branch of the search space can work just as well in any other branch of the 
search space. 

VERTICES The chart for an n-word sentence consists of n + 1 vertices and a number of edges that 
EDGES connect vertices. Figure 22.6 shows a chart with six vertices (circles) and three edges (lines). 

For example, the edge labeled 

means that an NP followed by a VP combine to make an S that spans the string from 0 to 
5. The symbol in an edge separates what has been found so far from what remains to be 
found.3 Edges with at the end are called complete edges. The edge 

[0,2, S -+ NP VP] 

says that an NP spans the string from 0 to 2 (the first two words) and that if we could find 
a VP to follow it, then we would have an S. Edges like this with the dot before the end are 
called incomplete edges, and we say that the edge is looking for a VP. 

It is because of the that edges are sometimes called dotted rules. 
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[O, 2 S + NP VP] [2,5 VF' --t Verb NP.] 

Figure 22.6 Part of the chart for the sentence "The agent feels a breeze." All six vertices 
are shown, but only three of the edges that would make up a complete parse. 

function C H A R T - P A R S E ( W O ~ ~ S ,  grammar) returns chart 

chart c arrayto. . . L E N G T H ( W O ~ ~ S ) ]  of empty lists 
ADD-EDGE([O, 0, S' + l S ] )  
for 2 + from 0 to L E N G T H ( W O ~ ~ S )  do 

SCANNER(Z ,  words[i]) 
return chart 

procedure A D D - E D G E ( ~ ~ ~ ~ )  
/ * Add edge to chart, and see if it extends or predicts another edge. * / 
if edge not in c h a r t [ E ~ ~ ( e d g e ) ]  then 

append edge to chart[E~D(edge)] 
if edge has nothing after the dot then  EXTENDER(^^^^) 
else  PREDICTOR(^^^^) 

procedure SCANNERG, word) 
/ * For each edge expecting a word of this category here, extend the edge. * / 
for each [i, j ,  A -, a l B P] in chartlj] do 

if word is of category B then 
ADD-EDGE([i,j+l, A + cy. B l P ] )  

procedure PREDICTOR([Z,  j ,  A + a l B P ] )  
/ * Add to chart any rules for B that could help extend this edge * / 
for each (B i y) in REWRITES-FoR(B, grammar) do 

ADD- EDGE([^,^, B -4 T]) 

procedure  EXTENDER([^, k ,  B + y el)  
/ * See what edges can be extended by this edge * / 
eB c the edge that is the input to this procedure 
for each [i, j, A + a l B' p] in chartlj] do 

if B = B' then 
ADD-EDGE@, k ,  A + a eg l PI) 

Figure 22.7 The chart-parsing algorithm. S is the start sym~bol and S' is a new nontenni- 
nal symbol. chart[j] is the list of edges that end at vertex j. The Greek letters match a string 
of zero or more symbols. -1 
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Figure 22.7 shows the chart-parsing algorithm. The main idea is to combine the best of 
top-down and bottom-up parsing. The procedure PREDICTOR is top-down: it makes entries 
into the chart that say what symbols are desired at what locations. SCANNER is the bottom-up 
procedure that starts from the words, but it will use a word only to extend an existing chart 
entry. Similarly, EXTENDER builds constituents bottom-up, but only to extend an existing 
chart entry. 

We use a trick to start the whole algorithm: we add the edge [0, 0, St -+ . S] to the 
chart, where S is the grammar's start symbol, and St is a new symbol that we just invented. 
The call to ADD-EDGE causes the PREDICTOR to add edges for the rules that can yield an 
S-that is, [S -+ NP VP] .  Then we look at the first constituent of that rule, NP, and add 
rules for every way to yield an NP. Eventually, the predictor adds, in a top-down fashion, all 
possible edges that could be used in the service of creating the final S .  

When the predictor for St is finished, we enter a loop that calls SCANNER for each 
word in the sentence. If the word at position j is a member of a category B that some edge is 
looking for at j ,  then we extend that edge, noting the word as an instance of B. Notice that 
each call to SCANNER can end up calling PREDICTOR and EXTENDER recursively, thereby 
interleaving the top-down and bottom-up processing. 

The other bottom-up component,  EXTENDER,^ takes a complete edge with left hand 
side B and uses it to extend any incomplete rule in the chart that ends where the complete 
edge starts if the incomplete rule is looking for a B. 

Figures 22.8 and 22.9 show a chart and trace of the algorithm parsing the sentence "I 
feel it" (which is an answer to the question "Do you feel a breeze?'). Thirteen edges (labeled 
a-m) are recorded in the chart, including five complete edges (shown above the vertices of the 
chart) and eight incomplete ones (below the vertices). Note the cycle of predictor, scanner, 
and extender actions. For example, the predictor uses the fact that edge (a) is looking for an 
S to license the prediction of an NP (edge b) and then a Pronoun (edge c). Then the scanner 
recognizes that there is a Pronoun in the right place (edge d), and the extender combines the 
incomplete edge b with the complete edge d to yield a new edge, e. 

The chart-parsing algorithm avoids building a large class of edges that would have been 
examined by the simple bottom-up procedure. Consider the sentence "The ride the horse gave 
was wild." A bottom-up parse would label "ride the horse" as a V P  and then discard the parse 
tree when it is found not to fit into a larger S .  But Eo does not allow a VP to follow "the," so 
the chart-parsing algorithm will never predict a V P  at that point and thus will avoid wasting 
time building the VP constituent there. Algorithms that work from left to right and avoid 

LEFT-CORNER building these impossible constituents are called left-corner parsers, because they build up a 
parse tree that starts with the grammar's start symbol and extends down to the leftmost word 
in the sentence (the left corner). An edge is added to the chart only if it can serve to extend 
this parse tree. (See Figure 22.10 for an example.) 

The chart parser uses only polynomial time and space. It requires 0 ( k n 2 )  space to store 
the edges, where n is the number of words in the sentence and k is a constant that depends 

Traditionally, our EXTENDER procedure has been called COMPLETER. This name is misleading, because the 
procedure does not complete edges: it takes a complete edge as input and extends incomplete edges. 
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a : S'/S f VPNerb j:AIP/P'ronoun 
b:S/NP VP g: VPNP NP 
c:NP/Pronoun 

Figure 22.8 Chart for a parse of I 1 feel 2 it 3.'' The notation m:S means that edge m 
has an S on the left-hand side, while the notation)VP~,'Verb rearis that edge f has a VP on 
the left-hand side, but is looking for a Verb. There are five complete edges above the vertices 
and eight incomplete edges below. 

/ Edge I Procedure 1 
a 
b 
c 
d 
e 
f 

g 
h 
i 

j 
k 
1 
m 

Figure 22.9 Trace of a parse of I 1 feel 2 it 3.'' For each edge a-m, we show the 
procedure used to derive the edge from other edges already in the chart. Some edges were 
omitted for brevity. 

~NITIALIZER 

 PREDICTOR(^) 
 PREDICTOR(^) 
SCANNER(C) 
 EXTENDER(^,^) 
 PREDICTOR(^) 
 PREDICTOR(^) 
 SCANNER(^) 
 EXTENDER(^,^) 
PREDICTOR&) 
SCANNERQ) 
 EXTENDER(^,^) 
 EXTENDER(^,^) 

- 

[ O , O ,  S' -4 a s ]  
[o,o, s -+ * N P  VP]  
[O, 0,  NP -+ *Pronoun] 
[O, 1, NP -+ Pronoun*] 
[0,1, S -+ NP* VP]  
[I, 1, v?' -+ a Verb] 
[I, 1 ,  vP -+ . I/P NP] 
[I, 2, V,P -+ Verb*] 
[ l , 2 ,  VJP -+ VPaNP] 
[2,2,  NP -+ *Pronoun] 
[2.3, NP -+ Pronouns] 
[1,3, Vl' -+ VP NP*] 
[0,3, S -+ NP VP*]  
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NP RelClause 

The ride the horse gave was wild 

Figure 22.10 A left-corner parsing algorithm avoids predicting a VP starting with "ride," 
but does predict a VP starting with "was:' because the grammar expects a VP following an 
NP. The triangle over "the horse gave" means that the words have a parse as a RelClause, 
but with additional intermediate constituents that are not shown. 

on the grammar. When it can build no more edges it stops, so we know that the algorithm 
terminates (even when there are left-recursive rules). In fact, it takes time 0(n3) in the 
worst case, which is the best that can be achieved for context-free grammars. The bottleneck 
for CHART-PARSE is EXTENDER, which must try to extend each of O ( n )  incomplete edges 
ending at position j with each of O ( n )  complete edges starting at j ,  for each of n+ 1 different 
values of j .  Multiplying these together, we get O(n 3) .  This gives us something of a paradox: 
how can an O(n 3)  algorithm return an answer that might contain an exponential number of 
parse trees? Consider an example: the sentence 

"Fall leaves fall and spring leaves spring" 

is ambiguous because each word (except "and") can be either a noun or a verb, and "fall" and 
"spring" can be adjectives as well. Altogether, the sentence has four parses:5 

[S: [S: [NP: Fall leaves] fall] and [S: [NP: spring leaves] spring] ; 
[S: [S: [NP: Fall leaves] fall] and [S: spring [VP: leaves spring]] ; 
[S: [S: Fall [ VP: leaves fall]] and [S: [NP: spring leaves] spring] ; 
[S: [S: Fall [VP: leaves fall]] and [S: spring [VP: leaves spring]] . 

If we had n ambiguous conjoined subsentences, we would have 2n ways of choosing parses 
for the sub sentence^.^ How does the chart parser avoid exponential processing time? There 
are actually two answers. First, the CHART-PARSE algorithm itself is actually a recognizer, 
not a parser. If there is a complete edge of the form [0, n, S -+ a .] in the chart, then 
we have recognized an S. Recovering the parse tree from this edge is not considered part of 

The parse [S: Fall [VP: leaves fall]] is equivalent to "Autumn abandons autumn." 
There also would be O(n!) ambiguity in the way the components conjoin with each other-for example, ( X  

and (Y and 2)) versus ( ( X  and Y) and 2). But that is another story, one that is told quite well by Church and 
Patil (1982). 
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CHART-PARSE'S job, but it can be done. Note, in the last line of EXTENDER, that we build 
up a as a list of edges, e ~ ,  not just a list of category names. So to convert an edge into a parse 
tree, simply look recursively at the component edges, converting each [i, j, X + a 0 1  into 
the tree [X : a]. This is straightforward, but it gives us only one parse tree. 

The second answer is that if you want all possible parses, you'll have to dig deeper into 
the chart. While we're converting the edge [i, j ,  X i a 0 1  into the tree [X : a],  we'll also 
look to see whether there are any other edges of the form [a,  j ,  X 7- P 0 1 .  If there are, 
these edges will generate additional parses. Now we have a choice of what to do with them. 
We could enumerate all the possibilities, and that means that the paradox would be resolved 
and we would require an exponential amount of time to list the parses. Or we could prolong 

PACKED FOREST the mystery a little longer and represent the parses with a structure called a packed forest, 
which looks like this: 

IS: [S :  { [NP:  Fall leaves] [ VP:  fall] [NP , spring leaves] [ VP:  spring] 
[NP:  Fall] [ VP:  leaves fall] [NP spring] [ VP:  leaves spring] 

The idea is that each node can be either a regular pa.rse tree node or a set of tree nodes. 
This enables us to return a representation of an exponer~tial number of parses in a polynomial 
amount of space and time. Of course, when n = 2, there is not much difference between 2" 
and 2n, but for large n ,  such a representation offers coinsiderable saving. Unfortunately, this 
simple packed forest approach won't handle all the O(nY) ambiguity in how the conjunctions 
associate. Maxwell and Kaplan (1995) show how a more complex representation based on 
the principles of truth maintenance systems can pack th~e trees even tighter. 

S -t NPs V P  ( . . .  
NPs + Pronouns 1 Name 1 Noun 1 . . . 
NPo -+ Pronouno 1 Name 1 Noun 1 . . . 

V P  -+ V P  NPo / . . .  
PP + Preposition NPo 

Pronouns + I 1 you 1 he 1 she 1 it / . . . 
Pronouno t me ( you ( him ( her 1 it 1 . . . 

S 7- NP(Subjective) 1 P  I .. . . 
NP(case) 7- Pronoun(case) ( Name ( Noun ( . . . 

V P  -+ V P  NP(Objectivle) I . . . 
PP + Preposition NP ( (Objec tive) 

Pronoun(Subjective) 7- I ( you ( he ( she 1 it 1 . . . 

Pronoun(0bjective) + me 1 you 1 him 1 her 1 it 1 

Figure 22.11 Top: A BNF grammar for the language E l ,  which handles subjective and 
objective cases in noun phrases and thus does not over-generate quite so badly. The portions 
that are identical to Eo have been omitted. Bottom: A definite clause grammar (DCG) of E l .  



806 Chapter 22. Communication 

We saw in Section 22.2 that the simple grammar for £0 generates "I smell a stench and 
many other sentences of English. Unfortunately, it also generates many non-sentences such 
as "Me smell a stench." To avoid this problem, our grammar would have to know that "me" 
is not a valid NP when it is the subject of a sentence. Linguists say that the pronoun "I" is 
in the subjective case, and "me" is in the objective case.7 When we take case into account, 
we realize that the £0 grammar is not context-free: it is not true that any NP is equal to any 
other regardless of context. We can fix the problem by introducing new categories such as 
NPs and NPo, to stand for noun phrases in the subjective and objective case, respectively. 
We would also need to split the category Pronoun into the two categories Pronouns (which 
includes "I") and Pronouno (which includes "me"). The top part of Figure 22.1 1 shows the 
complete BNF grammar for case agreement; we call the resulting language El. Notice that 
all the NP rules must be duplicated, once for NPs and once for NPo. 

Unfortunately, El still overgenerates. English and many other languages require agree- 
AGREEMENT ment between the subject and main verb of a sentence. For example, if "I" is the subject, then 

"I smell" is grammatical, but "I smells" is not. If "it" is the subject, we get the reverse. In 
English, the agreement distinctions are minimal: most verbs have one form for third-person 
singular subjects (he, she, or it), and a second form for all other combinations of person and 
number. There is one exception: "I am / you are / he is" has three forms. If we multiply these 
three distinctions by the two distinctions of NPs and NPo, we end up with six forms of NP. 
As we discover more distinctions, we end up with an exponential number. 

AUGMENT The alternative is to augment the existing rules of the grammar instead of introducing 
new rules. We will first give an example of what we would like an augmented rule to look 
like (see the bottom half of Figure 22.11) and then formally define how to interpret the rules. 
Augmented rules allow for parameters on nonterminal categories. Figure 22.11 shows how 
to describe El using augmented rules. The categories NP and Pronoun have a parameter 
indicating their case. (Nouns do not have case in English, although they do in many other 
languages.) In the rule for S ,  the NP must be in the subjective case, whereas in the rules for 
VP and PP, the NP must be in the objective case. The rule for NP takes a variable, case, 
as its argument. The intent is that the NP can have any case, but if the NP is rewritten as 
a Pronoun, then it must have the same case. This use of a variable-avoiding a decision 
where the distinction is not important-is what keeps the size of the rule set from growing 
exponentially with the number of features. 

DEFINITE CLAUSE 
GRAMMAR This formalism for augmentations is called definite clause grammar or DCG, because 

each grammar rule can be interpreted as a definite clause in Horn logic.8 First we will show 
how a normal, unaugmented rule can be interpreted as a definite clause. We consider each 

The subjective case is also sometimes called the nominative case and the objective case is sometimes called 
the accusative case. Many languages also have a dative case for words in the indirect object position. 

Recall that a definite clause, when written as an implication, has exactly one atom in its consequent, and a 
conjunction of zero or more atoms in its antecedent. Two examples are A A B + C and just C. 
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category symbol to be a predicate on strings, so that .IVP(s) is true if the string s forms an 
NP. The CFG rule 

S + NP V P  

is shorthand for the definite clause 

N P ( s l )  A VP(s2)  + S ( s l  + s2) 

Here sl +s2 denotes the concatenation of two strings, so this lule says that if the string sl is an 
NP and the string s2 is a V P ,  then their concatenation is an :5', which is exactly how we were 
already interpreting the CFG rule. It is important to note that DCGs allow us to falk about 
parsing as logical inference. This makes it possible to reason about languages and strings 
in many different ways. For example, it means we can do bottom-up parsing using forward 
chaining or top-down parsing using backward chaining. We will see that it also means that 
we can use the same grammar for both parsing and generation. 

The real benefit of the DCG approach is that we can augment the category symbols with 
additional arguments other than the string argument. For example, the rule 

NP(case) --t Pronoun(case) 

is shorthand for the definite clause 

This says that if the string sl is a Pronoun with case specified by the variable case, then sl 
is also an IVP with the same case. In general, we can augment a category symbol with any 
number of arguments, and the arguments are parameters that are subject to unification as in 
regular Horn clause inference. 

There is a price to pay for this convenience: vve are providing the grammar writer 
with the full power of a theorem-prover, so we give up the guarantees of O(n3) syntactic 
parsing; parsing with augmentations can be NP-complete or (even undecidable, depending on 
the augmentations. 

A few more tricks are necessary to make DCG work; for example, we need a way to 
specify terminal symbols, and it is convenient to have a way not to add the automatic string 
argument. Putting everything together, we define definite clause grammar as follows: 

The notation X + Y Z . . . translates as Y ( s l )  A Z(:i2) A . . . * X ( s l  + s2 + . . .). 
The notation X -4 Y 1 Z ( . . . translates as Y ( s )  V Z ( s )  V . . . + X ( s ) .  
In either of the preceding rules, any nonterminal symbol Y can be augmented with 
one or more arguments. Each argument can be a variable, a constant, or a function 
of arguments. In the translation, these arguments precede the string argument (e.g., 
NP (case) translates as NP(case, s l ) ) .  

e The notation {P( .  . .)} can appear on the right-hand slide of a rule and translates ver- 
batim into P(. . .). This allows the grammar writer to insert a test for P(. . .) without 
having the automatic string argument added. 

e The notation X + word translates as X([word]) .  

The problem of subject-verb agreement could also be handled with augmentations, but we 
defer that to Exercise 22.2. Instead, we address a harder problem: verb subcategorization. 
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( Verb 1 Subcats I Example Verb Phrase I 
give 

smell [NPI 
[Adjective] 

[PPI 

give the gold in 3 3 to me 
give me the gold 

smell a wumpus 
smell awful 
smell like a wumpus 

[Adjective] 

[PPI 
[NPI 

is smelly 
is in 2 2 
is a pit 

1 I 

died 1 1 1  died 

[ believe 1 [sl 1 believe the wumpus is dead I 
I I 

Figure 22.12 Examples of verbs with their subcategorization lists. 

Verb subcategorization 

El is an improvement over Eo, but the El grammar still overgenerates. One problem is in the 
way verb phrases are put together. We want to accept verb phrases like "give me the gold" 
and "go to 1 2.'' All these are in El ,  but unfortunately so are "go me the g o l d  and "give to 
1 2." The language I2 eliminates these VPs by stating explicitly which phrases can follow 

~UBCATEGORIZATION which verbs. We call this list the subcategorization list for the verb. The idea is that the 
category Verb is broken into subcategories---one for verbs that have no object, one for verbs 
that take a single object, and so on. 

SUBCATEGORIZATION 
LIST To implement this idea, we give each verb a subcategorization list that lists the verb's 
COMPLEMENTS complements. A complement is an obligatory phrase that follows the verb within the verb 

phrase. So in "Give the gold to me," the NP "the gold" and the PP "to me" are complements 
of " g i ~ e . " ~  We would write this as 

Verb([NP, PP] )  -+ give 1 hand 1 . . . 
It is possible for a verb to have several different subcategorizations, just as it is possible 

for a word to belong to several different categories. In fact, "give" also has the subcatego- 
rization list [NP,  NP],  as in "Give me the gold." We can treat this like any other kind of 
ambiguity. Figure 22.12 gives some examples of verbs and their subcategorization lists (or 
subcats for short). 

To integrate verb subcategorization into the grammar, we take three steps. The first 
step is to augment the category VP to take a subcategorization argument, VP(subcat), that 
indicates the list of complements that are needed to form a complete VP.  For example, 
"give" can be made into a complete V P  by adding [NP,  PP],  "give the gold" can be made 
complete by adding [PP], and "give the gold to me" is already a complete VP;  therefore its 

This is one definition of complenzent, but other authors have different terminology. Some say that the subject 
of the verb is also a complement. Others say that only the prepositional phrase is a complement and that the noun 
phrase should be called an argument. 
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subcategorization list is the empty list, [ I .  That gives us these: rules for VP:  

VP(subcat) + Verb (subcat) 

I VP(subcat + [NP])  NP(0bjective) 

I VP(subcat + [Adjective]) Adjectiue 

1 VP(subcat + [PP])  PP . 

The last line can be read as "A VP with a given subcat list, subcat, can be formed by an 
embedded VP followed by a PP, as long as the embedded VP has a subcat list that starts 
with the elements of the list subcat and ends with the symbol PP." For example, a V P ( [ ] )  is 
formed by a V P ( [ P P ] )  followed by a PP. The first line says that a V P  with subcategoriza- 
tion list subcat can be formed by a Verb with the same subcategorization list. For example, a 
V P ( [ N P ] )  can be fomied by a Verb([NP]). One example of such a verb is "grab," so "grab 
the gold" is a V P ( [ ] ) .  

The second step is to change the rule for S to say that it requires a verb phrase that has 
all its complements and thus has the subcat list [ I .  This means that "I grab the g o l d  is a legal 
sentence, but "You give" is not. The new rule, 

can be read as "A sentence can be composed of a NP in the subjective case, followed by a 
VP that has a null subcat list." Figure 22.13 shows a parse tree using this grammar. 

The third step is to remember that, in addition to complements, verb phrases (and other 
ADJUNCTS phrases) can also take adjuncts, which are phrases that are not licensed by the individual verb 

but rather may appear in any verb phrase. Phrases representing time and place are adjuncts, 
because almost any action or event can have a time or place. For example, the adverb "now" 
in "I smell a wumpus now" and the PP "on Tuesday" in "give me the gold on Tuesday" are 
adjuncts. Here are two rules that allow propositional and adverbial adjuncts on any VP:  

VP(subcat) -i VP(subcat) PP 
I VP(subcat) Adverb 

Generative capacity of augmented grammars 

RULESCHEMA Each augmented rule is a rule schema, that stands for a set of rules, one for each. possible 
combination of values for the augmented constituents. The generative capacity of augmented 
grammars depends on the number of combinations. If there is a finite number, then the 
augmented grammar is equivalent to a context-free grammar: the rule schema could be re- 
placed with individual context-free rules. But if there are an infinite number of values, then 
augmented grammars can represent non-context-free limguages. For example, the context- 
sensitive language anbncn can be represented as: 

S(n> + C ( n )  
A(l)  -+ a A ( n  + 1) + a A(n)  
B ( l )  + b B(n+ 1) + b B(n )  
C(1) -+ c C ( n  + 1) + c C ( n )  
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I Pronoun Verb([NP,NP]) Pronoun Article Noun I 

You give me the gold 

Figure 22.13 Parse tree for "You give me the gold" showing subcategorization of the verb 
and verb phrase. 

So far, we have only looked at the syntactic analysis of language. In this section, we turn to 
the semantics-the extraction of the meaning of utterances. For this chapter we are using 
first-order logic as our representation language, so semantic interpretation is the process of 
associating an FOL expression with a phrase. Intuitively, the meaning of the phrase "the 
wumpus" is the big, hairy beast that we represent in logic as the logical term Wumpusl, and 
the meaning of "the wumpus is dead" is the logical sentence Dead ( Wumpusl). This section 
will make that intuition more precise. We'll start with a simple example: a rule for describing 
grid locations: 

NP 4 Digit Digit . 

We will augment the rule by adding to each constituent an argument representing the seman- 
tics of the constituent. We get 

NP([x,  y]) + Digit(x) Digit(y) . 

This says that a string consisting of a digit with semantics x followed by another digit with 
semantics y forms an NP with semantics [x,  y], which is our notation for a square in the grid. 

Notice that the semantics of the whole NP is composed largely of the semantics of the 
constituent parts. We have seen this idea of compositional semantics before: in logic, the 
meaning of P A  Q is determined by the meaning of P, Q, and A; in arithmetic, the meaning of 
x+ y is determined by the meaning of x, y,  and +. Figure 22.14 shows how DCG notation can 
be used to augment a grammar for arithmetic expressions with semantics and Figure 22.15 
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Exp(x) -+ Exp(x1) Operator(op) Exp(x2) { x  .= Apply  (op,  X I ,  22))  
EXP(X)  -+ ( E X P ( X )  
Exp ( x )  -+ Number(x) 
Number ( x )  + Digit ( x )  
Number(x) -4 Number(xl) Digit ( x z )  { x  = 10 x X I  + xz}  
Digit(%) + x {O 5 x 5 9 )  
Operator(x) -+ x { x E { + , - , + ,  x } )  

Figure 22.14 A grammar for arithmetic expressions, augmented with semantics. Each 
variable xi represents the semantics of a constituent. Note the use of the { t e s t }  notation to 
define logical predicates that must be satisfied, but that are not constituents. 

3 + 4  - 2 1 

Figure 22.15 Parse tree with semantic interpretations for the string "3 + (4 t 2)". 

shows the parse tree for 3 + (4 t 2) according to this grammar. The root of the parse tree is 
Exp(5), an expression whose semantic interpretation is 5. 

The semantics of an English fragment 

We are now ready to write the semantic augmentations for a fragment of English. We start 
by determining what semantic representations we want to associate with what phrases. We 
will use the simple example sentence "John loves Mary." The NP "John" should have as 
its semantic interpretation the logical term John, and the sentence as a whole should have 
as its interpretation the logical sentence Loves(John, Mary:). That much seems clear. The 
complicated part is the VP "loves Mary." The semantic interpretation of this phrase is neither 
a logical term nor a complete logical sentence. Intuitively, "loves Mary" is a description that 
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might or might not apply to a particular person. (In this case, it applies to John.) This means 
that "loves Mary" is a predicate that, when combined with a term that represents a person 
(the person doing the loving), yields a complete logical sentence. Using the A-notation (see 
page 248), we can represent "loves Mary" as the predicate 

Ax Loves(x, Mary) . 
Now we need a rule that says "an NP with semantics obj followed by a V P  with semantics 
re1 yields a sentence whose semantics is the result of applying re1 to obj:" 

The rule tells us that the semantic interpretation of "John loves Mary" is 

(Ax Loves(x, Mary)) (John) , 
which is equivalent to Loves (John, Mary). 

The rest of the semantics follows in a straightforward way from the choices we have 
made so far. Because VPs are represented as predicates, it is a good idea to be consistent and 
represent verbs as predicates as well. The verb "loves" is represented as Ay Ax Loves(x, y ) ,  
the predicate that, when given the argument Mary, returns the predicate Ax Loves ( x ,  Mary). 

The V P  -+ Verb NP rule applies the predicate that is the semantic interpretation 
of the verb to the object that is the semantic interpretation of the NP to get the semantic 
interpretation of the whole VP.  We end up with the grammar shown in Figure 22.16 and the 
parse tree shown in Figure 22.17. 

S(rel(obj))  -+ NP(obj)  VP(re1) 
VP(re1 (obj) )  t Verb(re1) NP(obj)  
NP(obj)  -+ Name(obj) 

Name(John) t John 
Name(Mary) + Mary 
Verb(Ay Ax Loves ( x ,  y ) )  -+ loves 

Figure 22.16 A grammar that can derive a parse tree and semantic interpretation for 'Yohn 
loves MaryW(and three other sentences). Each category is augmented with a single argument 
representing the semantics. 

Time and tense 

Now suppose we want to represent the difference between "John loves Mary" and "John 
loved Mary." English uses verb tenses (past, present, and future) to indicate the relative time 
of an event. One good choice to represent the time of events is the event calculus notation of 
Section 10.3. In event calculus, our two sentences have the following interpretations: 

e E Loves (John, Mary) A During (Now, e )  ; 
e E Loves( John, Mary) A After (Now , e )  . 
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S(Loves(John,Mary)) 

NP (John) NP(Mary) 

I 
Name(John) Verb(hy hx Loves(x,y)) Na!me(Mary) 

I 
John 

I 
loves 

I 
Mary 

I Figure 22.17 A parse tree with semantic interpretati~ons for the string "John loves Mary". 
-- 

This suggests that our two lexical rules for the words "l~oves" and "loved" should be these: 

Verb(Ay Ax e E Loves(John, Mary) A During(Now, e ) )  -+ loves ; 
Verb(Ay Ax e E Loves(x, y)  A After(Now, e ) )  4 loved . 

Other than this change, everything else about the grammar remains the same, which is en- 
couraging news; it suggests we are on the right track if we can so easily add a complication 
like the tense of verbs (although we have just scratched the surface of a complete grammar for 
time and tense). With this success as a warm-up, we are now ready to tackle a much harder 
representation problem. 

Quantification 

Consider the sentence "Every agent smells a wumpus." The sentence is actually ambiguous; 
the preferred meaning is that the agents might be smelling different wumpuses, but an alterna- 
tive meaning is that there is a single wumpus that everyone snnells. lo The two interpretations 
can be represented as follows: 

V a  a €  Agents + 
3 w w E Wumpuses A 3 e e E Smell ( a ,  w) A Durzng(Now, e )  ; 

3 w w E Wumpuses V a a E Agents =+ 
3 e e E Smell (a ,  w) A Durzng(Now, e )  . 

We will defer the problem of ambiguity and for now look only at tlie first interpretation. We'll 
try to analyze it compositionally, breaking it into the NIP and VF components: 

Every agent NP(V a a E Agents =+ P )  
smells a wumpus V P ( 3  w w E Wumpuses A 

3 e (e  E Smell(a, w) A During(Now, e ) )  . 
Right away, there are two difficulties. First, the  semantic:^ of the entire sentence appears to be 
the semantics of the NP,  with the semantics of the V P  filling in the P part. That means that 
we cannot form the semantics of the sentence with rel(obj). We could do it with obj (rel), 
which seems a little odd (at least at first glance). The second problem is that we need to get 

lo If this interpretation seems unlikely, consider 'Every Protestant believes in a just God." 
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the variable a as an argument of the relation Smell. In other words, the semantics of the 
sentence is formed by plugging the semantics of the VP into the correct argument slot of the 
NP, while also plugging the variable a from the NP into the correct argument slot of the 
semantics of the VP. It looks as if we need two functional compositions and promises to 
be rather confusing. The complexity stems from the fact that the semantic structure is very 
different from the syntactic structure. 

To avoid this confusion, many modern grammars take a different tack. They define an 
INTERMEDIATE FORM intermediate form to mediate between syntax and semantics. The intermediate form has 

two key properties. First, it is structurally similar to the syntax of the sentence and thus can 
be easily constructed through compositional means. Second, it contains enough information 
that it can be translated into a regular first-order logical sentence. Because it sits between 

QuAsl-LOGcAL FORM the syntactic and logical forms, it is called a quasi-logical form." In this section, we will 
use a quasi-logical form that includes all of first-order logic and is augmented by lambda 

QUANTIFIEDTERM expressions and one new construction, which we will call a quantified term. The quantified 
term that is the semantic interpretation of "every agent" is written 

[V a a E Agents] . 

This looks like a logical sentence, but it is used in the same way that a logical term is used. 
The interpretation of "Every agent smells a wumpus" in quasi-logical form is 

3 e ( e  E Smell([V a a E Agents], [3 w w E Wumpuses]) A During(Now, e ) )  

To generate quasi-logical form, many of our rules remain unchanged. The rule for S still 
creates the semantics of the S with re1 (obj) . Some rules do change; the lexical rule for "a" is 

and the rule for combining an article with a noun is 

This says that the semantics of the NP is a quantified term, with a quantifier specified by the 
article, with a new variable x, and with a proposition formed by applying the semantics of the 
noun to the variable x. The other rules for NP are similar. Figure 22.18 shows the semantic 
types and example forms for each syntactic category under the quasi-logical form approach. 
Figure 22.19 shows the parse of "every agent smells a wumpus" using this approach, and 
Figure 22.20 shows the complete grammar. 

Now we need to convert the quasi-logical form into real first-order logic by turning 
quantified terms into real terms. This is done by a simple rule: For each quantified term 
[q x P ( x ) ]  within a quasi-logical form QLF, replace the quantified term with x ,  and replace 
QLF with q x  P ( x )  op QLF, where op is + when q is 'd and is A when q is 3 or 3!. For 
example, the sentence "Every dog has a day" has the quasi-logical form: 

3 e ( e  E Has([Vd d E Dogs], [3 a a E Days], Now)) . 

l1 Some quasi-logical forms have the third property that they can succinctly represent ambiguities that could be 
represented in logical form only by a long disjunction. 
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Category Semantic Type ( Example T u a s i - ~ o ~ i c a l  Form 

sentence 

object 
object2 + sentence 
object -+ sentence 

objectn -+ sentence 

I sleep. 

a dog 
in [2,2] 
that sees nne 

sees me 

3 e e E Sleep(Speaker) 
A During ( N o w ,  e )  

13 d Dog(d)l 
Xx W x ,  12,211 
,Ax 3 e e E Sees ( x ,  Speaker) 

A During ( N o w ,  e )  
,Ax 3 e e E Sees(x,  Speaker) 

A During ( N o w ,  e )  

Adjective 
Adverb 
Article 
Conjunction 
Digit 
Noun 
Preposition 
Pronoun 
Verb 

object -+ sentence 
event -+ sentence 
quantifier 
sentence2 

-+ sentence 
object 
object -+ sentence 
object2 + sentence 
object 
objectn + sentence 

smelly 
today 
the 
and 
7 
wumpus 
in 
I 
eats 

Xx Smelly ( x )  
.Ae During ( e ,  Today) 
3 ! 

,AP, ( P  A 4) 
'7 
.Ax IL: E Wumpuses 
.Ax Xy In(%,  y )  
Speaker 
, A y X x S e  e € E a t s ( x , y )  

A During ( N o w ,  e )  

Figure 22.18 Table showing the type of quasi-logical form expression for each syntactic 
category. The notation t t r denotes a function that takes an argument of type t and returns 
a result of type I-. For example, the semantic type for Preposition is object2 

-+ sentence, 
which means that the semantics of a preposition is a function thlt, when applied to two logical 
objects, will yield a logical sentence. 

We did not specify which of the two quantified terms gets pulled out first, so there are actually 
two possible logical interpretations: 

b'd d ~ D o g s  + 3 a  a E D a y s A 3 e  e € H a s ( d , a , J J o w ) ;  
3 a  a E D a y s  Ab'd d ~ D o g s  + 3 e  e € H a s ( d , a , J J o w ) .  

The first one says that each dog has his own day, while the second says that there is a special 
day that all dogs share. Choosing between them is a job for disambiguation. Often, the 
left-to-right order of the quantified terms matches the left-to-right order of the quantifiers, 
but other factors come into play. The advantage of quasi-logical form is that it succinctly 
represents all the possibilities. The disadvantage is that it do~esn't help you choose between 
them; for that we need the full power of disambiguation using all sources of evidence. 

Pragmatic Interpretation 

We have shown how an agent can perceive a string of words arid use a grammar to derive 
a set of possible semantic interpretations. Now we address the problem of completing the 
interpretation by adding context-dependent information about the current situation to each 
candidate interpretation. 
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Every agent smells a wumpus 

Figure 22.19 Parse tree for the sentence "Every agent smells a wumpus," showing both 
syntactic structure and semantic interpretations. 

NP(sem) -+ Pronoun(sem) 
NP(sem) -t Name(sem) 
NP([q x sem(x)] )  t Article(q) Noun(sem) 
NP([qx  obj A rel(x)])  + NP([qx  obj]) PP(re1) 
NP([q x obj A re1 ( x ) ] )  -+ NP([q x obj]) RelClause(re1) 
NP([seml,  semz]) -+ Digit(sem1) Digit(sem2) 

RelClause(sem) -t that VP(sem) 

PP(Xx re1 (x, obj)) -+ Preposition(rel) NP(obj) I 
Figure 22.20 A grammar with semantics in quasi-logical form. 
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The most obvious need for pragmatic information is in resolving the meaning of in- 
INDEXICALS dexicals, which are phrases that refer directly to the current situation. For example, in the 

sentence "I am in Boston today," the interpretations of the indexicals "I" and "today" depend 
on who uttered the sentence when. We represent indexicals by "constants" (such as Speaker) 
which actually are fluents-that is, they depend on th~e situation. The hearer who perceives 
a speech act should also perceive who the speaker is and use this information to resolve the 
indexical. For example, the hearer might know T((Speaker = AgentB) ,  Now) .  

A command such as "go to 2 2" implicitly refers to the hearer. So far, our grammar for 
S covers only declarative sentences. We can easily extend it to cover commands.12 

A command can be formed from a VP, where the subject is implicitly the hearer. We 
need to distinguish commands from statements, so we alter the nlles for S to include the type 
of speech act as part of the quasi-logical form: 

S(Statement(Speaker,  re l (obj ) ) )  i NP(ob j )  VP(re1) 
S (  Command (Speaker, re1 (Hearer)))  -+ VP(re1) . 

So the quasi-logical form for "Go to 2 2" is13 

Command ( 3  e e E Go(Hearer, [ 2 , 2 ] ) )  . 

Language generation with DCGs 

So far, we have concentrated on parsing language, not on geinerating it. Generation is a topic 
of similar richness. Choosing the right utterance to express a proposition involves many of 
the same choices that parsing the utterance does. 

Remember that a DCG is a logical programming system that specifies constraints be- 
tween a string and the parse of a string. We know that a logic programming definition 
of the Append predicate can be used both to tell us that in Append( [ l ,  21, [3], x )  we have 
x = [1,  2 ,3]  and to enumerate the values of x and y that make Append(z ,  y, [I, 2 , 3 ] )  true. 
In the same way, we can write a definition of S that can be used in two ways: to parse, we 
ask S ( s e m ,  [John,  Loves, Mary])  and get back sem, = Loves(John, Mary) ;  to generate, 
we ask S(Loves(John,  Mary) ,  words) and get back words = [John,  Loves, Mary].  We 
can also test a grammar by asking S ( s e m ,  words) and getting back as an answer a stream of 
[sem,  words] pairs that are generated by the grammar. 

This approach works for the simple grammars in this chapter, but there can be difficul- 
ties in scaling up to larger grammars. The search strategy used by the logical inference engine 
is important; depth-first strategies can lead to infinite loops. Some care must be taken in the 

l2 To implement a complete communicating agent we would also need a grammar of questions. Questions are 
beyond the scope of this book because they impose long-distance dependencies between constituents. For 
example, in "Whom did the agent tell you to give the gold to?'the final word "to" should be parsed as a PP 
with a missing NP;  the missing N P  is licensed by the first word of the sentence, "who." A complex system of 
augmentations is used to make sure that the missing NPs match up with the licensing words. 
l3 Note that the quasi-logical form for a command does not include the time of the event (e.g.; During (Now, e)). 
That is because the "go" is actually the untensed version of the word, not the present tense version. You can't tell 
the difference with "go," but observe that the correct form of a command is "Be good!" (using the untensed form 
"be"), not "Are good!" To ensure the correct tense is used, we could augment VPs with a tense argument and 
write VP(rel; untensed) on the right-hand side of the command rule. 
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exact details of the semantic form. It could be that a given grammar has no way to express the 
logical form X A Y for some values of X and Y, but can express Y A X; this suggests that 
we need a way to canonicalize semantic forms, or we need to extend the unification routine 
so that X A Y can unify with Y A X. 

Serious work in generation tends to use more complex generation models that are dis- 
tinct from the parsing grammar and offer more control over exactly how components of the 
semantics are expressed. Systemic grammar is one approach that makes it easy to put empha- 
sis on the most important parts of the semantic form. 

22.6 AMBIGUITY AND DISAMBIGUATION 

In some cases, hearers are consciously aware of ambiguity in an utterance. Here are some 
examples taken from newspaper headlines: 

Squad helps dog bite victim. 
Helicopter powered by human flies. 
Once-sagging cloth diaper industry saved by full dumps. 
Portable toilet bombed; police have nothing to go on. 
British left waffles on Falkland Islands. 
Teacher strikes idle kids. 
Milk drinkers are turning to powder. 
Drunk gets nine months in violin case. 

But most of the time the language we hear seems unambiguous. Thus, when researchers first 
began to use computers to analyze language in the 1960s they were quite surprised to learn 
that almost every utterance is highly ambiguous, even though the alternative interpretations 
might not be apparent to a native speaker: A system with a large grammar and lexicon might 
find thousands of interpretations for a perfectly ordinary sentence. Consider "The batter hit 
the ball," which seems to have an unambiguous interpretation in which a baseball player 
strikes a baseball. But we get a different interpretation if the previous sentence is "The mad 
scientist unleashed a tidal wave of cake mix towards the ballroom." This example relies on 

LEXICALAMBIGUITY lexical ambiguity, in which a word has more than one meaning. Lexical ambiguity is quite 
common; "back" can be an adverb (go back), an adjective (back door), a noun (the back of 
the room) or a verb (back up your files). "Jack" can be a name, a noun (a playing card, a 
six-pointed metal game piece, a nautical flag, a fish, a male donkey, a socket, or a device for 
raising heavy objects), or a verb (to jack up a car, to hunt with a light, or to hit a baseball 
hard). 

SYNTACTIC 
AMBIGUITY Syntactic ambiguity (also known as structural ambiguity) can occur with or without 

lexical ambiguity. For example, the string "I smelled a wumpus in 2,2" has two parses: one 
where the prepositional phrase "in 2,2" modifies the noun and one where it modifies the verb. 

SEMANTIC 
AMBIGUITY The syntactic ambiguity leads to a semantic ambiguity, because one parse means that the 

wumpus is in 2,2 and the other means that a stench is in 2,2. In this case, getting the wrong 
interpretation could be a deadly mistake. 
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Semantic ambiguity can occur even in phrases with ncl lexical or syntactic ambiguity. 
For example, the noun phrase "cat person" can be someone who likes felines or the lead of 
the movie Attack of the Cat People. A "coast road" can be a road that follows the coast or one 
that leads to it. 

Finally, there can be ambiguity between literal and figurative meanings. Figures of 
speech are important in poetry, but are surprisingly co~mmon in everyday speech as well. A 

METONYMY metonymy is a figure of speech in which one object is used to stand for another. When 
we hear "Chrysler announced a new model," we do not interpret it as saying that compa- 
nies can talk; rather we understand that a spokesperson representing the company made the 
announcement. Metonymy is common and is often interpreted unconsciously by human hear- 
ers. Unfortunately, our grammar as it is written is not so facile. To handle the semantics of 
metonymy properly, we need to introduce a whole new level of ambiguity. We do this by pro- 
viding two objects for the semantic interpretation of evely phrase in the sentence: one for the 
object that the phrase literally refers to (Chrysler) and one for th~e metonymic reference (the 
spokesperson). We then have to say that there is a relation between the two. In our current 
grammar, "Chrysler announced" gets interpreted as 

3 x ,  e x = Chrysler A e E Announce(x) A Agcter(Now, e )  . 

We need to change that to 

3 m, x ,  e x = Chrysler A e E Announce(m) A After(Now, e) 
A Metonymy(m, x )  . 

This says that there is one entity x that is equal to Ch~rysler, and another entity m that did 
the annollncing, and that the two are in a metonymy relation. The next step is to define what 
kinds of metonymy relations can occur. The simplest case is when there is no metonymy at 
all-the literal object J: and the metonymic object m are identical: 

For the Chrysler example, a reasonable generalization is that an organization can be used to 
stand for a spokesperson of that organization: 

V m, x x E Organizations A Spokesperson(m, x) Metonymy (m, x) . 

Other metonymies include the author for the works (I read Shakespeare) or more generally 
the produces for the product (I drive a Honda) and the part for the whole (The Red Sox need 
a strong arnz). Some examples of metonymy, such as "The ham sandwich on Table 4 wants 
another beer," are more novel and are interpreted with respect to a situation. 

The rules we have outlined here allow us to construct an explanation for "Chrysler 
announced a new model," but the explanation doesn't follow by logical deduction. We need 
to use probabilistic or nonmonotonic reasoning to come up with candidate explanations. 

METAPHOR A metaphor is a figure of speech in which a phrase with one literal meaning is used to 
suggest a different meaning by way of an analogy. Mast people think of metaphor as a tool 
used by poets that does not play a large role in everyday text. However, a number of basic 
metaphors are so common that we do not even recognize them as such. One such metaphor 
is the idea that more is up. This metaphor allows us to say that piices have risen, climbed, or 
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skyrocketed, that the temperature has dipped or fallen, that one's confidence has plummeted, 
or that a celebrity's popularity has jumped or soared. 

There are two ways to approach metaphors like ths .  One is to compile all knowledge 
of the metaphor into the lexicon-to add new senses of the words "rise," "fall," "climb," and 
so on, that describe them as dealing with quantities on any scale rather than just altitude. 
This approach suffices for many applications, but it does not capture the generative character 
of the metaphor that allows humans to use new instances such as "nosedive" or "blasting 
through the roof" without fear of misunderstanding. The second approach is to include ex- 
plicit knowledge of common metaphors and use them to interpret new uses as they are read. 
For example, suppose the system knows the "more is up" metaphor. That is, it knows that 
logical expressions that refer to a point on a vertical scale can be inteipreted as being about 
corresponding points on a quantity scale. Then the expression "sales are h i g h  would get 
a literal interpretation along the lines of Altitude(Sales, High), which could be interpreted 
metaphorically as Quantity (Sales,  Much).  

Disambiguation 

As we said before, disambiguation is a question of diagnosis. The speaker's intent to com- 
municate is an unobserved cause of the words in the utterance, and the hearer's job is to work 
backwards from the words and from knowledge of the situation to recover the most likely 
intent of the speaker. In other words, the hearer is solving for 

argmax Likelihood ( intent  I words, situation) , 
intent 

where Likelihood can either be probability or any numeric measure of preference. Some sort 
of preference is needed because syntactic and semantic interpretation rules alone cannot iden- 
tify a unique correct interpretation of a phrase or sentence. So we divide the work: syntactic 
and semantic interpretation is responsible for enumerating a set of candidate interpretations, 
and the disambiguation process chooses the best one. 

Note that we talk about the intent of the speech act, not just the actual proposition that 
the speaker is proclaiming. For example, after hearing a politician say, "I am not a crook," we 
might assign a probability of only 50% to the proposition that the politician is not a criminal, 
and 99.999% to the proposition that the speaker is not a hooked shepherd's staff. Still, we 
assign a higher probability to the interpretation 

Assert(Speaker,  speaker E Criminals))  

because this is a more likely thing to say. 
Consider again the ambiguous example "I smelled a wumpus in 2,2." One preference 

RIGHTASSOCIATION heuristic is the rule of right association, which says that when it is time to decide where in 
the parse tree to place the PP "in 2,2," we should prefer to attach it to the rightmost existing 
constituent, which in this case is the NP "a wumpus." Of course, this is only a heuristic; for 
the sentence "I smelled a wumpus with my nose," the heuristic would be outweighed by the 
fact that the NP "a wumpus with my nose" is unlikely. 

Disambiguation is made possible by combining evidence, using all the techniques for 
knowledge representation and uncertain reasoning that we have seen throughout this book. 
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We can break the knowledge down into four models: 

1. The world model: the likelihood that a proposititon occurs in the world. 
2. The mental model: the likelihood that the speaker forms the intention of communicat- 

ing a certain fact to the hearer, given that it occurs. This approach combines models of 
what the speaker believes, what the speaker believes the hearer believes, anci so on. 

3. The language model: the likelihood that a certain string of words will be chosen, given 
that the speaker has the intention of communicating a certain fact. The CFG and DCG 
models presented in this chapter have a Boolean model of likelihood: either a string can 
have a certain interpretation or it cannot. In the next chapter, we will see a probabilistic 
version of CFG that makes for a more informed language model for disambiguation. 

4. The acoustic model: the likelihood that a particular sequence of sounds will be gener- 
ated, given that the speaker has chosen a given string of words. Section 15.6 covered 
speech recognition. 

DISCOURSE A discourse is any string of language-usually one that is more than one sentence long. Text- 
books, novels, weather reports and conversations are all discourses. So far we have largely 
ignored the problems of discourse, preferring to dissect language into individual sentences 
that can be studied in vitro. This section studies sentences in their native habitat. We will 
look at two particular subproblems: reference resolution and coherence. 

Reference resolution 
REFERENCE 
RESOLUTION Reference resolution is the interpretation of a pronoun or a definite noun phrase that refers 

to an object in the world.14 The resolution is based cln knctwledge of the world and of the 
previous parts of the discourse. Consider the passage 

"John flagged down the waiter. He ordered a hani sandwich." 

To understand that "he" in the second sentence refers to John, we need to have understood 
that the first sentence rnentions two people and that John is playing the role of a customer and 
hence is likely to order, whereas the waiter is not. Usually, reference resolution is a matter 
of selecting a referent from a list of candidates, but sometimes it involves the creation of new 
candidates. Consider the following sentence: 

"After John proposed to Marsha, they found a preacher and got married. For the 
honeymoon, they went to Hawaii." 

Here, the definite noun phrase "the honeymoon" refers to something that was only implicitly 
alluded to by the verb "married." The pronoun "they" rtefers to a group that was not explicitly 
mentioned before: John and Marsha (but not the preacher). 

l4 In linguistics, reference to something that has already been introduced is called anaphoric reference. Refer- 
ence to something yet to be introduced is called cataphoric reference, as with the pronoun "he" in "When he won 
his first tournament, Tiger was 20." 
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Choosing the best referent is a process of disambiguation that relies on combining a 
variety of syntactic, semantic, and pragmatic information. Some clues are in the form of 
constraints. For example, pronouns must agree in gender and number with their antecedents: 
"he" can refer to John, but not Marsha; "they" can refer to a group, but not a single person. 
Pronouns must also obey syntactic constraints for reflexivity. For example, in "He saw him 
in the mirror" the two pronouns must refer to different people, whereas in "He saw himself," 
they must refer to the same person. There are also constraints for semantic consistency. In 
"He ate it," the pronoun "he" must refer to something that eats and "it" to something that can 
be eaten. 

Some clues are preferences that do not always hold. For example, when adjacent sen- 
tences have a parallel structure, it is preferable for pronominal reference to follow that struc- 
ture. So in 

Marsha flew to San Francisco from New York. John flew there from Boston. 

we prefer for "there" to refer to San Francisco because it plays the same syntactic role. Absent 
a parallel structure, there is a preference for subjects over objects as antecedents. Thus, in 

Marsha gave Sally the homework assignment. Then she left. 

"Marsha," the subject of the first sentence, is the preferred antecedent for "she." Another 
preference is for the entity that has been discussed most prominently. Considered in isolation, 
the pair of sentences 

Dana dropped the cup on the plate. It broke. 

poses a problem: it is not clear whether the cup or the plate is the referent of "it." But in a 
larger context the ambiguity is resolved: 

Dana was quite fond of the blue cup. The cup had been a present from a close 
friend. Unfortunately, one day while setting the table. Dana dropped the cup on 
the plate. It broke. 

Here, the cup is the focus of attention and hence is the preferred referent. 
A variety of reference resolution algorithms have been devised. One of the first (Hobbs, 

1978) is remarkable because it underwent a degree of statistical verification that was unusual 
for the time. Using three different genres of text, Hobbs reports an accuracy of 92%. This 
assumed that a correct parse was generated by a parser; not having one available, Hobbs 
constructed the parses by hand. The Hobbs algorithm works as a search: it searches sentences 
starting from the current sentence and going backwards. This technique ensures that more 
recent candidates will be considered first. Within a sentence it searches breadth first, from 
left to right. This ensures that subjects will be considered before objects. The algorithm 
chooses the first candidate that satisfies the constraints just outlined. 

The structure of coherent discourse 

Open up this book to 10 random pages, and copy down the first sentence from each page. The 
result is bound to be incoherent. Similarly, if you take a coherent 10-sentence passage and 
permute the sentences, the result is incoherent. This demonstrates that sentences in natural 
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Enable or cause: S1 brings about a change of state (which may be 
causes or enables S2. Example: "I went outside. I drove to school." (Going outside 
enables the implicit getting into a car.) I 
Explanation: The reverse of enablement: S2 causes or enables Sl and thus is an 
explanation for it. Example: "I was late for school. I overslept." 

Ground-Figure: S1 describes a setting or back:ground for S2. Example: "It was a 
dark and stormy night. Rest of story." 

a Evaluation: From S2 infer that S1 is part of the speaker's plan for executing the 
segment as a speech act. Example: "A funny thing happened. Rest of story." 

Exemplification: S2 is an example of the general principle in S1. Example: "This 
algorithm reverses a list. The input [A, B, C] is ]mapped to [C, B ,  A] ." 
Generalization: S1 is an example of the general principle in S2. Example: 
"[A,  B,  C] is mapped to [C, B ,  A]. In general, the algorithm reverses a list." 

Violated Expectation: Infer 1 P  from S2, negating the nlormal inference of P from 
S1. Example: "This paper is weak. On the other hand:, it is interesting." 

Figure 22.21 A list of coherence relations, taken from Hobbs (1990). Each relation holds 
between two adjacent text segments, Sl and S2. 

language discourse are quite different from sentences in logic. In logic, if we TELL sentences 
A, B and C to a knowledge base, in any order, we endl up with Ithe conjunction A A B A C. 
In natural language, sentence order matters; consider th~e difference between "Go two blocks. 
Turn right." and "Turn right. Go two blocks." 

A discourse has structure above the level of a sentence. We can examine this structure 
with the help of a grammar of discourse: 

Segment(x) -+ S(x )  
Segment(CoherenceRelation(x, y ) )  -+ Segmlent(x) Segment(y) . 

This grammar says that a discourse is composed of segments, where each segment is either a 
COHERENCE 
RELATIONS sentence or a group of sentences and where segments are joined by coherence relations. In 

the text "Go two blocks. Turn right," the coherence relation is that the first sentence enables 
the second: the listener should turn right only after traveling two blocks. Different researchers 
have proposed different inventories of coherence relations; Figure 22.21 lists a representative 
set. Now consider the :following story: 

(1) A funny thing happened yesterday. 
(2) John went to a fancy restaurant. 
(3) He ordered the duck. 
(4) The bill came to $50. 
(5) John got a shock when he realized he had no money. 
(6) He had left his wallet at home. 
(7) The waiter said it was all right to pay later. 
(8) He was very embarrassed by his forgetfulness. 
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Here, sentence (1) stands in the Evaluation relation to the rest of the discourse; (1) is the 
speaker's metacomment on the discourse. Sentence (2) enables (3), and together the (2-3) 
pair cause (4), with the implicit intermediate state that John ate the duck. Now (2-4) serve 
as the ground for the rest of the discourse. Sentence (6) is an explanation of (5), and (5-6) 
enable (7). Note that this is an Enable and not a Cause, because the waiter might have had a 
different reaction. Together, (5-7) cause (8). Exercise 22.13 asks you to draw the parse tree 
for this discourse. 

Coherence relations serve to bind a discourse together. They guide the speaker in de- 
ciding what to say and what to leave implicit, and they guide the hearer in recovering the 
speaker's intent. Coherence relations can serve as a filter on the ambiguity of sentences: indi- 
vidually, the sentences might be ambiguous, but most of these ambiguous interpretations do 
not fit together into a coherent discourse. 

So far we have looked at reference resolution and discourse structure separately. But the 
two are actually intertwined. The theory of Grosz and Sidner (1986), for example, accounts 
for where the speaker's and hearer's attention is focused during the discourse. Their theory 

FOCUSSPACES includes a pushdown stack of focus spaces. Certain utterances cause the focus to shift by 
pushing or popping elements off the stack. For example, in the restaurant story, the sentence 
"John went to a fancy restaurant" pushes a new focus onto the stack. Within that focus, the 
speaker can use a definite NP to refer to "the waiter" (rather than "a waiter"). If the story 
continued with "John went home," then the focus space would be popped from the stack and 
the discourse could no longer refer to the waiter with "the waiter" or "he." 

Grammar induction is the task of learning a grammar from data. It is an obvious task 
to attempt, given that it has proven to be so difficult to construct a grammar by hand and 
that billions of example utterances are available for free on the Internet. It is a difficult task 
because the space of possible grammars is infinite and because verifying that a given grammar 
generates a set of sentences is computationally expensive. 

One interesting model is the SEQUITUR system (Nevill-Manning and Witten, 1997). It 
requires no input except a single text (which does not need to be predivided into sentences). 
It produces a grammar of a very specialized form: a grammar that generates only a single 
string, namely, the original text. Another way to look at this is that SEQUITUR learns just 
enough grammar to parse the text. Here is the bracketing it discovers for one sentence within 
a larger text of news stories: 

[Most Labour] [sentiment [[would still] [favor the] abolition]] [[of [the House]] [of Lords]] 

It has correctly picked out constituents such as the PP "of the House of Lords," although it 
also goes against traditional analysis in, for example, grouping "the" with the preceding verb 
rather than the following noun. 

SEQUITUR is based on the idea that a good grammar is a compact grammar. In particu- 
lar, it enforces the following two constraints: (1) No pair of adjacent symbols should appear 
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more than once in the grammar. If the symbol pair A B appears on the right-hand side of 
several rules, then we should replace the pair with a new nonterminal that we will call C and 
add the rule C + A B. (2) Every rule should be used at least twice. If a nonterminal C 
appears only once in the grammar, then we should eliminzte the rule for C and replace its 
single use with the rule's right-hand side. These two constraiints are applied in a greedy search 
that scans the input text from left to right, incrementally building a grammar as it goes, and 
imposing the constraints as soon as possible. Figure 22.22 shows the algorithm in operation 
on the input text "abcdbcabcd." The algorithm recovers an optimally compact grammar for 
the text. 

I n ~ u t  Grammar Comments 

4 abed S -t abed 
5 abcdb S -+ abcdb 
6 abcdbc S -t abcdbc bc twice 

S -+ aAdA;A t bc 
7 abcdbca S -t aAdAa; A -+ bc -- 
8 abcdbcab S -t aAdAab; A -+ bc 
9 abcdbcabc S -+ aAdAabc;A + bc bc twice 

S -+ aAdAaA; A + bc aA twice 
S -+ BdAB; A -+ bc; B -+ aA 

10 abcdbcabcd S 4 BdABd; A -+ bc; B 4 aA Bd twice 
S -+ CAC; A -t bc; B + aA; C + Bd B only once 
S -+ CAC;A -+ bc; C + aAd 

Figure 22.22 A trace of SEQUITUR inducing a gra~mmar for the input text "abcdbcabcd." 
We start with a rule for S and add each symbol to the end of this rule in turn. After adding 
the sixth symbol, we have the first occurrence of a repeated pair: bc. So we replace both 
occurrences of bc with the new nonterminal A and add the rule A + bc. After three more 
symbols are added, the ninth causes another repetition of bc, so again we replace it with A .  
This leads to two occurrences of a A ,  so we replace them with a new nonterminal, B. After 
adding the tenth and last terminal symbol we get two occurrences of Bd, so we replace them 
with the new nonterminal C. But now B appears only once, in the right-hand side of the C 
rule, so we replace B by its expansion, aA.  

I 

In the next chapter, we will see other grammar induction algorithms that work with 
probabilistic context-free grammars. But now we turn to the problem of learning a gram- 
mar that is augmented with semantics. Since an augmented grammar is a Horn clause logic 
program, the techniques of inductive logic programming are appropriate. CHILL (Zelle and 
Mooney, 1996) is an inductive logic programming (ILP) program that learns a grammar and 
a specialized parser for that grammar from examples. The target domain is natural language 

3 abc S -t abc 
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database queries. The training examples consist of pairs of word strings and corresponding 
queries-for example; 

What is the capital of the state with the largest population? 
Answer(c, Capital ( s ,  c )  A Largest ( p ,  State ( s )  A Population(s, p ) ) )  

CHILL'S task is to learn a predicate Parse(words, query) that is consistent with the exam- 
ples and, hopefully, generalizes well to other examples. Applying ILP directly to learn this 
predicate results in poor performance: the induced parser has only about 20% accuracy. For- 
tunately, ILP learners can improve by adding knowledge. In this case, most of the Parse 
predicate was defined as a logic program, and CHILL'S task was reduced to inducing the 
control rules that guide the parser to select one parse over another. With this additional back- 
ground knowledge, CHILL achieves 70% to 85% accuracy on various database query tasks. 

Natural language understanding is one of the most important subfields of AI. It draws on 
ideas from philosophy and linguistics, as well as on techniques of logical and probabilistic 
knowledge representation and reasoning. Unlike other areas of AI, natural language under- 
standing requires an empirical investigation of actual human behavior-which turns out to be 
complex and interesting. 

Agents send signals to each other to achieve certain purposes: to inform, to warn, to 
elicit help, to share knowledge, or to promise something. Sending a signal in this way 
is called a speech act. Ultimately, all speech acts are an attempt to get another agent to 
believe something or do something. 

Language consists of conventional signs that convey meaning. Many animals use signs 
in this sense. Humans appear to be the only animals that use grammar to produce an 
unbounded variety of structured messages. 
Communication involves three steps by the speaker: the intention to convey an idea, the 
mental generation of words, and their physical synthesis. The hearer then has four steps: 
perception, analysis, disambiguation, and incorporation of the meaning. All language 
use is situated, in the sense that the meaning of an utterance can depend on the situation 
in which it is produced. 
Formal language theory and phrase structure grammars (and in particular, context- 
free grammar) are useful tools for dealing with some aspects of natural language. 
Sentences in a context-free language can be parsed in 0(n3)  time by a chart parser. 
It is convenient to augment a grammar to handle such problems as subject-verb agree- 
ment and pronoun case. Definite clause grammar (DCG) is a formalism that allows for 
augmentations. With DCG, parsing and semantic interpretation (and even generation) 
can be done using logical inference. 
Semantic interpretation can also be handled by an augmented grammar. A quasi- 
logical form can be a useful intermediate between syntactic trees and semantics. 
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Ambiguity is a very important problem in natural language understanding; most sen- 
tences have many possible interpretations, but usually only one is appropriate. Disam- 
biguation relies on knowledge about the world, about the current situation, and about 
language use. 

Most language exists in the context of multiple sentences, not just a single one. Dis- 
course is the study of connected texts. We saw how to resolve pronominal references 
across sentences and how sentences are joined into coherent segments. 

Grammar induction can learn a grammar from examples, although there are limita- 
tions on how well the grammar will generalize. 

BIBLIOGRAPHICAL AND HISTORICAL NOTES 

SEMIOTICS The study of signs and symbols as elements of language was named semiotics by John 
Locke (1690), although it was not developed until the 20th century (Peirce, 1902; de Saus- 
sure, 1993). Recent overview texts include Eco's (1979) and Cobley 's (1997). 

The idea of language as action stems from 20th-century linguistically oriented philoso- 
phy (Wittgenstein, 1953; Grice, 1957; Austin, 1962) and particularly from the book Speech 
Acts (Searle, 1969). A precursor to the idea of speeclh acts was Protagoras's (c. 430 B.c.) 
identification of four types of sentence: prayer, question, answer, and injunction. A plan- 
based model of speech acts was suggested first by Cohen and Penault (1979). Connecting 
language to action by using plan recognition to understand stories was studied by Wilensky 
(1983). Cohen, Morgan, and Pollack (1990) collect more recent work in this area. 

Like semantic networks, context-free grammars (also known as phrase structure gram- 
mars) are a reinvention of a technique first used by ancient Indian grammarians (especially 
Panini, c. 350 B.C.) studying Shastric Sanskrit (Ingerman, 1967). They were reinvented 
by Noam Chomsky (1956) for the analysis of English syntax and independently by John 
Backus for the analysis of Algol-58 syntax. Naur (1963) extended Backus's notation and 
is now credited (Backus, 1996) with the "N" in BNF, which originally stood for "Backus 
Normal Form." Knuth (1968) defined a kind of augmented grammar called attribute gram- 

ATTRIBUTE 
GRAMMAR mar that is useful for programming languages. Definite clause grammars were introduced by 

Colmerauer (1975) and developed and popularized by Pereira and Warren (1980). The Pro- 
log programming language was invented by Alain CoArnerauer specifically for the problem of 
parsing the French language. Colmerauer actually int1roducr:d a formalism called metamor- 
phosis grammar that went beyond definite clauses, but DCG followed soon after. 

There have been many attempts to write formal grammars of natural languages, both 
in "pure" linguistics and in computational linguistics. Maclhine-oriented grammars include 
those developed in the Linguistic String Project at New Yoi-k University (Sager, 1981) and 
the XTAG project at the University of Pennsylvania (Doran et al., 1994). A good example 
of a modern DCG system is the Core Language Engine (Alshawi, 1992). There are several 
comprehensive but: informal grammars of English (Jespersen, 1965; Quirk et al., 1985; Mc- 
Cawley, 1988; Huddleston and Pullum, 2002). Good textboolts on linguistics include Sag and 
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Wasow's (1999) introduction to syntax and the semantics texts by Chierchia and McConnell- 
Ginet (1990) and by Heim and Kratzer (1998). McCawley's (1993) text concentrates on 
logic for linguists. 

Since the mid-1980s, there has been a trend toward putting more information in the 
lexicon and less in the grammar. Lexical-functional grammar, or LFG, (Bresnan, 1982) was 
the first major grammar formalism to be highly lexicalized. If we carry lexicalization to an 
extreme, we end up with categorial grammar, in which there can be as few as two grammar 
rules, or dependency grammar (MelCuk and Polguere, 1988), in which there are no phrases, 
only words. Sleator and Temperley (1993) describe a popular parser that uses dependency 
grammar. Tree-Adjoining Grammar, or TAG, (Joshi, 1985) is not strictly lexical, but it is 
gaining popularity in its lexicalized form (Schabes et al., 1988). Wordnet (Fellbaum, 2001) 
is a publicly-available dictionary of about 100,000 words and phrases, categorized into parts 
of speech and linked by semantic relations such as synonym, antonym, and part-of. 

The first computerized parsing algorithms were demonstrated by Yngve (1955). Effi- 
cient algorithms were developed in the late 1960s, with a few twists since then (Kasarni, 1965; 
Younger, 1967; Graham et al., 1980). Our chart parser is closest to Earley's (1970). A good 
summary appears in the text on parsing and compiling by Aho and Ullman (1972). Maxwell 
and Kaplan (1993) show how chart parsing with augmentations can be made efficient in the 
average case. Church and Patil(1982) address the resolution of syntactic ambiguity. 

Formal semantic interpretation of natural languages originates within philosophy and 
formal logic and is especially closely related to Alfred Tarski's (1935) work on the semantics 
of formal languages. Bar-Hillel was the first to consider the problems of pragmatics and 
propose that they could be handled by formal logic. For example, he introduced C. S. Peirce's 
(1902) term indexical into linguistics (Bar-Hillel, 1954). Richard Montague's essay "English 
as a formal language" (1970) is a kind of manifesto for the logical analysis of language, 
but the book by Dowty et al. (1991) and the article by Lewis (1972) are more readable. A 
complete collection of Montague's contributions has been edited by Thomason (1974). In 
artificial intelligence, the work of McAllester and Givan (1992) continues the Montagovian 
tradition, adding many new technical insights. 

The idea of an intermediate or quasi-logical form to handle problems such as quantifier 
scoping goes back to Woods (1978) and is present in many recent systems (Alshawi, 1992; 
Hwang and Schubert, 1993). 

The first NLP system to solve an actual task was probably the BASEBALL question an- 
swering system (Green et al., 1961), which handled questions about a database of baseball 
statistics. Close after that was Woods's (1973) LUNAR, which answered questions about the 
rocks brought back by the Apollo program. Roger Schank and his students built a series of 
programs (Schank and Abelson, 1977; Wilensky, 1978; Schank and Riesbeck, 1981; Dyer, 
1983) that all had the task of understanding language. The emphasis, however, was less on 
language per se and more on representation and reasoning. The problems included repre- 
senting stereotypical situations (Cullingford, 198 I), describing human memory organization 
(Rieger, 1976; Kolodner, 1983), and understanding plans and goals (Wilensky, 1983). 

Natural language generation was considered from the earliest days of machine transla- 
tion in the 1950s, but it didn't appear as a monolingual concern until the 1970s. The work 
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by Simmons and Slocum (1972) and Goldman (1975) are representative. PENMAN (Bateman 
et al., 1989) was one of the first full-scale generation syslems, based on Systemic Grarn- 
mar (Kasper, 1988). In the 1990s, two important public-dornain generation systems, KPML 
(Bateman, 1997) and FUF (Elhadad, 1993), became availalble. Important books on genera- 
tion include McKeown (1985), Hovy (1988), Patten (1988) and Reiter and Dale (2000). 

Some of the earliest work on disambiguation was Willts's (1975) theory of preference 
semantics, which tried to find interpretations that minimize the number of semantic anoma- 
lies. Hirst (1987) describes a system with similar aiims that is closer to the compositional 
semantics described in this chapter. Hobbs et al. (1993) describes a quantitative framework 
for measuring the quality of a syntactic and semantic ir1terprc:tation. Since then, it has become 
more common to use an explicitly Bayesian framework (Charniak and Goldman, 1992; Wu, 
1993). In linguistics, optimality theory (Linguistics) (Kager, 1999) is based on the idea of 
building soft constraints into the grammar, giving a natural ranking to interpretations, rather 
than having the grammar generate all possibilities with equiil rank. Norvig (1988) discusses 
the problems of considering multiple simultaneous interpretations, rather than settling for 
a single maximum likelihood interpretation. Literary critics (E,mpson, 1953; Hobbs, 1990) 
have been ambiguous about whether ambiguity is something to be resolved or cherished. 

Nunberg (1979) outlines a formal model of metonymy. Lakoff and Johnson (1980) 
give an engaging analysis and catalog of common rnetaphors in English. Ortony (1979) 
presents a collection of articles on metaphor; Martin (1990) offers a computational approach 
to metaphor interpretation. 

Our treatment of reference resolution follows Hobbs (1978). A more complex model 
by Lappin and Leass (1994) is based on a quantitative scoring mechanism. More recent 
work (Kehler, 1997; Ge et al., 1998) has used machine learning to tune the quantitative 
parameters. Two excellent surveys of reference resolution are the books by Hirst (1981) and 
Mitkov (2002). 

In 1758, David Hume's Enquiry Concerning the Human Understanding argued that 
discourse is connected by "three principles of connexion among ideas, namely Resemblance, 
Contiguity in time or place, and Cause or Effect." So began a long history of trying to define 
coherence relations. Hobbs (1990) gives us the set used in this chapter; Mann and Thomp- 
son (1983) provide a more elaborate set that includes solutionhood, evidence, justification, 
motivation, reason, sequence, enablement, elaboration, restatement, condition, circumstance, 
cause, concession, background, and thesis-antithesis. Thai model evolved into rhetorical 
structure theory (RST), which is perhaps the most prominent theory today (Mann and Thomp- 
son, 1988). This chapter borrows some of the examl~les from the chapter in Jurafsky and 
Martin (2000) written by Andrew Kehler. 

Grosz and Sidner (1986) present a theory of discourse coherence based on shifting 
one's focus of attention, and Grosz et al. (1995) offer a related theory based on the notion of 
centering. Joshi, Webber, and Sag (1981) collect impoirtant early work on discourse. Webber 
presents a model of the interacting constraints of syntax and discourse on what can be said at 
any point in the discourse (1983) and of the way verb tense interacts with discourse (1988). 

The first important result on grammar induction was a negative one: Gold (1967) 
showed that it is not possible to reliably learn a correct context-free grammar, given a set of 
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strings from that grammar. Essentially, the idea is that, given a set of strings sl, sz . . . s,, 
the correct grammar could be all-inclusive ( S  --t word*), or it could be a copy of the input 

( S  -t sl I s2 I . . . I s,), or anywhere in between. Prominent linguists, such as Chom- 
sky (1957, 1980) and Pinker (1989, 2000), have used Gold's result to argue that there must 

UNIVERSAL 
GRAMMAR be an innate universal grammar that all children have from birth. The so-called Poverty 

of the Stimulus argument is that children have no language inputs other than positive exam- 
ples: their parents and peers produce mostly accurate examples of their language, and very 
rarely correct mistakes. Therefore, because Gold proved that learning a CFG from positive 
examples is impossible, the children must already "know7' the grammar and be merely tuning 
some of its parameters of this innate grammar and learning vocabulary. While this argument 
continues to hold sway throughout much of Chomskian linguistics, it has been dismissed by 
some other linguists (Pullum, 1996; Elman et al., 1997) and most computer scientists. As 
early as 1969, Horning showed that it is possible to learn, in the sense of PAC learning, a 
probabilistic context-free grammar. Since then there have been many convincing empirical 
demonstrations of learning from positive examples alone, such as the ILP work of Mooney 
(1999) and Muggleton and De Raedt (1994) and the remarkable Ph.D. theses of Schiitze 
(1995) and de Marcken (1996). It is possible to learn other grammar formalisms, such as reg- 
ular languages (Oncina and Garcia, 1992; Denis, 2001), and regular tree languages (Carrasco 
et al., 1998), and finite state automata (Parekh and Honavar, 2001). 

The SEQUITUR system is due to Nevill-Manning and Witten (1997). Interestingly, 
they, as well as de Marcken, remark that their grammar induction schemes are also good 
compression schemes. This is in accordance with the principle of minimal description length 
encoding: a good grammar is a grammar that minimizes the sum of two lengths: the length 
of the grammar and the length of the parse tree of the text. 

Inductive Logic Programming work for language learning includes the CHILL system 
by Zelle and Mooney (1996) and a program by Mooney and Califf (1995) that learned rules 
for the past tense of verbs better than past neural net or decision tree systems. Cussens and 
Dzeroski (2000) edited a collection of papers on learning language in logic. 

The Association for Computational Linguistics (ACL) holds regular conferences and 
publishes the journal Computational Linguistics. There is also an International Conference 
on Computational Linguistics (COLING). Readings in Natural Language Processing (Grosz 
et al., 1986) is an anthology containing many important early papers. Dale et al. (2000) 
emphasize practical tools for building NLP systems. The textbook by Jurafsky and Mar- 
tin (2000) gives a comprehensive introduction to the field. Allen (1995) is a slightly older 
treatment. Pereira and Sheiber (1987) and Covington (1994) offer concise overviews of syn- 
tactic processing based on implementations in Prolog. The Encyclopedia of A I  has many 
useful articles on the field; see especially the entries "Computational Linguistics7' and "Nat- 
ural Language Understanding." 
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22.1 Read the following text once for understanding, and remember as much of it as you 
can. There will be a test later. 

The procedure is actually quite simple. First you arrange things into different groups. Of 
course, one pile may be sufficient depending on how nnuch there is to do. If you have to go 
somewhere else due to lack of facilities that is the next step, otherwise you are pretty well 
set. It is important not to overdo things. That is, it is better to do too few things at once 
than too many. In the short run this may not seem importani but complications can easily 
arise. A mistake is expensive as well. At first the whole procedure will seem complicated. 
Soon, however, it will become just another facet of liife. It is difficult to foresee any end 
to the necessity for this task in the immediate future, but thein one can never tell. After the 
procedure is coml~leted one arranges the material into different groups again. Then they 
can be put into their appropriate places. Eventually they will be used once more and the 
whole cycle will have to be repeated. However, this is part of life. 

22.2 Using DCG notation, write a grammar for a language that is just like El ,  except that it 
enforces agreement between the subject and verb of a sentence and thus does not generate "I 
smells the wumpus." 

22.3 Augment the El grammar so that it handles article-noun agreement. That is, make 
sure that "agents" is an NP, but "agent" and "an agents7' are not. 

22.4 Outline the major differences between Java (or any other computer language with 
which you are familiar) and English, commenting on the "understanding7' problem in each 
case. Think about such things as grammar, syntax, semantics, pragmatics, compositional- 
ity, context-dependence, lexical ambiguity, syntactic ambiguity, reference finding (including 
pronouns), background knowledge, and what it means t:o "~n~derstand" in the first place. 

22.5 Which of the following are reasons for introducing a quasi-logical form? 

a. To make it easier to write simple compositional grammar rules. 
b. To extend the expressiveness of the semantic representation language. 
c. To be able to represent quantifier scoping ambiguities (a~mong others) in a succinct form. 
d. To make it easier to do semantic disambiguation. 

22.6 Determine what semantic interpretation would be given to the following sentences by 
the grammar in this chapter: 

a. It is a wumpus. 
b. The wumpus is dead. 
c. The wumpus is in 2,2. 

Would it be a good idea to have the semantic interpretation for "It is a wumpus" be simply 
3 x x E Wumpuses? Consider alternative sentences such as "It was a wumpus." 
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22.7 Without looking back at Exercise 22.1, answer the following questioAs: 

a. What are the four steps that are mentioned? 
b. What step is left out? 
c. What is "the material" that is mentioned in the text? 
d. What kind of mistake would be expensive? 
e. Is it better to do too few or too many? Why? 

22.8 This exercise concerns grammars for very simple languages. 

a. Write a context-free grammar for the language anbn. 
b. Write a context-free grammar for the palindrome language: the set of all strings whose 

second half is the reverse of the first half. 
c. Write a context-sensitive grammar for the duplicate language: the set of all strings 

whose second half is the same as the first half. 

22.9 Consider the sentence "Someone walked slowly to the supermarket" and the following 
lexicon: 

Pronoun -+ someone V -+ walked 
Adv -+ slowly Prep + to 
Det -+ the Noun -t supermarket 

Which of the following three grammars, combined with the lexicon, generates the given sen- 
tence? Show the corresponding parse tree(s). 

(A): (B): (C>: 
S -t NP VP S -+ NP VP S -+ NP VP 
NP -+ Pronoun NP -+ Pronoun NP -+ Pronoun 
NP -+ Article Noun NP -+ Noun NP -+ Article NP 
VP -+ VP PP NP -+ Article NP VP -+ Verb Adv 
VP -+ VP Adv Adv VP t Verb Vmod Adv -+ Adv Adv 
VP -+ Verb Vmod + Adv Vmod Adv -+ PP 
PP -t Prep NP Vmod i Adv PP -+ Prep NP 
NP -+ Noun Adv -t PP NP + Noun 

PP -+ Prep NP 
For each of the preceding three grammars, write down three sentences of English and three 
sentences of non-English generated by the grammar. Each sentence should be significantly 
different, should be at least six words long, and should be based on an entirely new set of 
lexical entries (which you should define). Suggest ways to improve each grammar to avoid 
generating the non-English sentences. 

22.10 Implement a version of the chart-parsing algorithm that returns a packed tree of all 
edges that span the entire input. 

22.11 Implement a version of the chart-parsing algorithm that returns a packed tree for the 
longest leftmost edge, and then if that edge does not span the whole input, continues the parse 
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from the end of that edge. Show why you will need to call PREDICT before continuing. The 
final result is a list of packed trees such that the list as a whole spans the input. 

22.12 (Derived from Barton et ul. (1987).) This exerci:;e concerns a language we call 
Buffalon, which is very much like English (or at least Eo), except that the only word in its 
lexicon is buflulo. Here are two sentences from the language: 

Buffalo buffalo buffalo Buffalo buffalo. 
Buffalo Buffalo buffalo buffalo buffalo Buffalo buffalo. 

In ease you don't believe these are sentences, here are two English sentences with corre- 
sponding syntactic structure: 

Dallas cattle bewilder Denver cattle. 
Chefs London critics admire cook French food. 

Write a grammar for Buffalon. The lexical categories are cilty, plural noun, and (transitive) 
verb, and there should be one grammar rule for sentence, one for verb phrase, and three for 
noun phrase: plural noun, noun phrase preceded by a city as a modifier, and noun phrase 
followed by a reduced relative clause. A reduced relative clause is a clause that is missing 
the relative pronoun. In addition, the clause consists of a subject noun phrase followed by 
a verb without an object. An example reduced relative clause is "London critics admire" 
in the example above. Tabulate the number of possible parses for Bu#alon for n up to 10. 
Extra credit: Carl de Marcken calculated that there are 121,030,872,213,055,159,68 1,184,485 
Buffalon sentences of length 200 (for the grammar he used). How did he do that? 

22.13 Draw a discourse parse tree for the story on page 823 about John going to a fancy 
restaurant. Use to the two grammar rules for Segment, giving the proper CoherenceRelation 
for each node. (You needn't show the parse for individual sentences.) Now do the same for a 
5 to 10-sentence discourse of your choosing. 

22.14 We forgot to mention that the text in Exercise 22.1 is entitled "Washing Clothes." 
Reread the text and answer the questions in Exercise 22.7. Did you do better this time? 
Bransford and Johnson (1973) used this text in a better contr~olled experiment and found that 
the title helped significantly. What does this tell you absout discourse comprehension? 
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In which we see how simple, statistically trained language models can be used to 
process collections of millions of words, rather than just single sentences. 

In Chapter 22, we saw how an agent could communicate with another agent (human or 
software), using utterances in a common language. Complete syntactic and semantic analysis 
of the utterances is necessary to extract the full meaning of the utterances, and is possible 
because the utterances are short and restricted to a limited domain. 

CORPUS-BASED In this chapter, we consider the corpus-based approach to language understanding. A 
corpus (plural corpora) is a large collection of text, such as the billions of pages that make 
up the World Wide Web. The text is written by and for humans, and the task of the software 
is to make it easier for the human to find the right information. This approach implies the use 
of statistics and learning to take advantage of the corpus, and it usually entails probabilistic 
language models that can be learned from data and that are simpler than the augmented DCGs 
of Chapter 22. For most tasks, the volume of data more than makes up for the simpler 
language model. We will look at three specific tasks: information retrieval (Section 23.2), 
information extraction (Section 23.3), and machine translation (Section 23.4). But first we 
present an overview of probabilistic language models. 

Chapter 22 gave us a logical model of language: we used CFGs and DCGs to characterize 
a string as either a member or a nonmember of a language. In this section, we will intro- 
duce several probabilistic models. Probabilistic models have several advantages. They can 
conveniently be trained from data: learning is just a matter of counting occurrences (with 
some allowances for the errors of relying on a small sample size). Also, they are more robust 
(because they can accept any string, albeit with a low probability), they reflect the fact that 
not 100% of speakers agree on which sentences are actually part of a language, and they can 
be used for disambiguation: probability can be used to choose the most likely interpretation. 

PROBABILISTIC 
LANGUAGE MODEL A probabilistic language model defines a probability distribution over a (possibly in- 

finite) set of strings. Example models that we have already seen are the bigram and trigram 
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language models used in speech recognition (Section 15.6). A unigram model assigns a prob- 
ability P(w) to each word in the lexicon. The model assumes that words are chosen indepen- 
dently, so the probability of a string is just the product of the probability of its words, given by 
ni P(wi). The following 20-word sequence was generated at random from a unigram model 
of the words in this book: 

logical are as are confusion a may right tries agent goal the was diesel more object 
then information-gathering search is 

A bigram model assigns a probability P(W~(W~-~) to each word, given the previous word. 
Figure 15.21 listed some of these bigram probabilities. A bigram model of this book generates 
the following random sequence: 

planning purely diagnostic expert systems are very similar computational ap- 
proach would be represented compactly using tjic tac toe a predicate 

In general, an n-gram model conditions on the previous n - 1 words, assigning a probability 
for P(W~JW~-(,_~) . . . wiP1). A trigram model of this book generates this random sequence: 

planning and scheduling are integrated the success of naive bayes model is just a 
possible prior source by that time 

Even with this small sample, it should be clear that the tsigracn model is better than the bigram 
model (which is better than the unigram model), both for approximating the English language 
and for approximating the subject matter of an A1 textbook. The models themselves agree: 
the trigram model assigns its random string a probability of lo-'', the bigram 10-", and the 
unigram 

At half a million words, this book does not contain enlough data to produce a good bi- 
gram model, let alone a trigram model. There are about 15,0(30 different words in the lexicon 
of this book, so the bigram model includes 15, 0002 := 225 million word pairs. Clearly, at 
least 99.8% of these pairs will have a count of zero, but we don't want our model to say 

SMOOTHING that all these pairs are impossible. We need some way of smoothing over the zero counts. 
ADD-ONE 
SMOOTHING The simplest way to do this is called add-one smoothing: vte add one to the count of every 

possible bigram. So if there are N words in the corpus and. B possible bigrams, then each 
bigram with an actual count of c is assigned a probability estimate of ( c  + l)/(N + B). This 
method eliminates the problem of zero-probability n-grams, but the assumption that every 
count should be incrernented by exactly one is dubious and can lead to poor estimates. 

LINEAR 
INTERPOLATION 
SMOOTHING 

Another approach is linear interpolation smoothing, which combines trigram, bigram, 
and unigrani models by linear interpolation. We define our probability estimate as 

P(W~IW~-2Wi-1) = C~P(Wi.~Wi-~Wi-~) + ~2P(l'liiIw~--l) + c$(w,) ; 
where c3 + c2 + c1= 1. The parameters ci can be fixed, or they can be trained with an EM 
algorithm. It is possible to have values of ci that are dependent on the n-gram counts, so that 
we place a higher weight on the probability estimates tlhat are derived from higher counts. 

One method for evaluating a language model is as follows: First, split your corpus into 
a training corpus and a test corpus. Determine the parameters of the model from the training 
data. Then calculate the probability assigned to the tes,t corplus by the model; the higher the 
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probability the better. One problem with this approach is that P(words) is quite small for 
long strings; the numbers could cause floating point underflow, or could just be hard to read. 

PERPLEXITY So instead of probability we can compute the perplexity of a model on a test string of words: 

where N is the number of words. The lower the perplexity, the better the model. An n-gram 
model that assigns every word a probability of I l k  will have perplexity k; you can think of 
perplexity as the average branching factor. 

SEGMENTATION As an example of what n-gram models can do, consider the task of segmentation: 
finding the words boundaries in a text with no spaces. This task is necessary in Japanese and 
Chinese, languages that are written with no spaces between words, but we assume that most 
readers will be more comfortable with English. The sentence 

Itiseasytoreadwordswithoutspaces 

is in fact easy for us to read. You might think that is because we have our full knowledge of 
English syntax, semantics, and pragmatics. We will show that the sentence can be decoded 
easily by a simple unigram word model. 

Earlier we saw how the Viterbi equation (15.9), can be used to solve the problem of 
finding the most probable sequence through a lattice of word possibilities. Figure 23.1 shows 
a version of the Viterbi algorithm specifically designed for the segmentation problem. It 
takes as input a unigram word probability distribution, P(word), and a string. Then, for each 
position i in the string, it stores in best[i] the probability of the most probable string spanning 
from the start up to i. It also stores in words[i] the word ending at position i that yielded the 
best probability. Once it has built up the best and words arrays in a dynamic programming 
fashion, it then works backwards through words to find the best path. In this case, with the 
unigram model from the book, the best sequence of words is indeed "It is easy to read words 
without spaces," with probability Comparing subparts of the sequence, we see for 
example that "easy" has unigram probability 2.6 x lop4, whereas the alternative "e as y" 
has a much lower probability, 9.8 x lo-'', despite the fact that the words e and y are fairly 
common in equations in the book. Similarly, we have 

P("without") = 0.0004 ; 
P("with") = 0.005; P("outfl) = 0.0008 ; 
P("with out") = 0.005 x 0.0008 = 0.000004 . 

Hence, "without" is 100 times more likely than "with out,'' according to the unigram model. 
In this section we have discussed n-gram models over words, but there are also many 

uses of n-gram models over other units, such as characters or parts of speech. 

Probabilistic context-free grammars 

n-gram models take advantage of co-occurrence statistics in the corpora, but they have no 
notion of grammar at distances greater than n. An alternative language model is the prob- 

PROBABILISTIC 
CONTEXT-FREE abilistic context-free grammar, or PCFG,' which consists of a CFG wherein each rewrite 
GRAMMAR 

PCFGs are also known as stochastic context-free grammars or SCFGs. 
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function VITERBI-SEGMENTATION(~~X~, P )  returns best words and their probabilities 
inputs: text, a string of characters with spaces removed 

P, a unigram probability distribution over worals 

n +- LENGTH( text) 
words + empty vector of length n + 1 
best t vector of length n + 1, initially all 0.0 
best [ O ]  t 1.0 
/ * Fill in the vectors best, words via dynamic program~ning * / 
for i = 0 to n do 

f o r j = O t o i - 1 d o  
word t text[j:i] 
w + L E N G T H ( W O ~ ~ )  
i f  P[word] x best [i - w] 2 best [i] then 

best[i] + P[word] x best[i - w] 
words[i] +- word 

/ * Now recover the sequence of best words * / 
sequence t the empty list 
i t n  
while i > 0 do 

push words[i] onto front of sequence 
z +- i - L E N G T H ( w ~ ~ ~ s [ ~ ] )  

/ * Return sequence of best words and overall probability of sequence * / 
return sequence, best[i] 

Figure 23.1 A Viterbi-based word segmentation algorithm. Given a string of words with 
spaces removed, it recovers the most probable segmentation into words. 

rule has an associated probability. The sum of the probalbilities across all rules with the same 
left-hand side is 1. Figure 23.2 shows a PCFG for a portion of the Eo grammar. 

In the PCFG model, the probability of a string, P(words), is just the sum of the proba- 
bilities of its parse trees. The probability of a given tree is the product of the probabilities of 
all the rules that make up the nodes of the tree. Figure ;!3.3 shows how to compute the prob- 
ability of a sentence. It is possible to compute this probability by using a CFG chart parser 
to enumerate the possible parses and then simply adding up the probabilities. However, if we 
are interested only in the most probable parse then enumerating the unlikely ones is wasteful. 
We can use a variation (of the Viterbi algorithm to find tlhe most probable parse efficiently, or 
we can use a best-first search technique (such as A*). 

The problem with PCFGs is that they are context-free. That means that the difference 
between PC6eat a banana") and P("eat a bandanna") dlepencls only on P("banana") versus 
P("bandanna3') and not on the relation between "eat" and the respective objects. To get 
at that kind of relationship, we will need some kind of context-sensitive model, such as a 
lexicalized PCFG, in which the head of a phrase2 can play a role in the probability of a 

The head of a phrase is the most important word, e.g., the noun of a noun phrase. 
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NP --i Pronoun [O.lO] 
1 Name[0.10] 
1 Noun [0.20] 
( Article Noun [0.50] 
1 NPPP[O.lO] 

VP -t Verb [0.60] 
I VPNP[O.20]  
I V P P P [ 0 . 2 0 ]  

PP -t Preposition NP [1.00] 

Noun --+ breeze [0.10] 1 wumpus [0.15] 1 agent [0.05] 1 . . . 
Verb -t sees [0.15] 1 smells [0.10] 1 goes [0.25] 1 . . .  

Pronoun -t me [0.05] 1 you [ O . l O ]  1 I [0.25] 1 it [0.20] 1 . . . 
Article -t the [0.30] 1 a [0.35] 1 every [0.05] 1 . . .  

Preposition -t to [0.30] ( in [0.25] ( on [0.05] / . . . 

Figure 23.2 A probabilistic context-free grammar (PCFG) and lexicon for a portion of 
the Eo grammar. The numbers in square brackets indicate the probability that a left-hand-side 
symbol will be rewritten with the corresponding rule. 

NP VP 
,,A+, 1 0.60 

Article Noun Verb 
1 0.05 10.15 1 0.10 

Every wumpus smells 
- -  - - 

23.3 Parse tree for the sentence "Every wumpus smells," showing 
the probabilities of each subtree. The probability of the tree as a whole is 
1.0 x 0.5 x 0.05 x 0.15 x 0.60 x 0.10 =0.000225. Since this tree is the only parse of 
the sentence, that number is also the probability of the sentence. 

containing phrase. With enough training data, we could have the rule for V P  + VP NP 
be conditioned on the head of the embedded V P  (eat) and on the head of the NP (banana). 
Lexicalized PCFGs thus capture some of the co-occurrence restrictions of n-gram models, 
along with the grammatical restrictions of CFG models. 

One more problem is that PCFGs tend to have too strong a preference for shorter sen- 
tences. In a corpus such as the Wall Street Journal, the average length of a sentence is about 
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25 words. But a PCFG will usually end up assigning a fairly high probability to rules such 
as S + NP V P  and NP -+ Pronoun and V P  -+ Verb. This means that the PCFG 
will assign fairly high probability to many short sentences, such as "He slept," whereas in 
the Journal we're more likely to see something like "It has been reported by a reliable gov- 
ernment source that the allegation that he slept is credrble." It seems that the phrases in the 
Journal really are not context-free; instead the writers lrlave an idea of the expected sentence 
length and use that length as a soft global constraint on their sent~ences. This is hard to reflect 
in a PCFG. 

Learning probabilities for PCFGs 

To create a PCFG, we have all the difficulty of constructing a CFG, combined with the prob- 
lem of setting the probabilities for each rule. This suggests that learning the grammar from 
data might be better than a knowledge engineering approach. Just as with speech recognition, 
there are two types of data we might be given: parsed aind unparsed. The task is considerably 
easier if we have data that have been parsed into trees by linguists (or at least by trained na- 
tive speakers). Creating such a corpus is a big investment, ancl the largest ones contain "only" 
about a million words. Given a corpus of trees, we can create a PCFG just by counting (and 
smoothing): For each nonterminal symbol, just look at all the nodes with that symbol as root, 
and create rules for each different combination of children in those nodes. For example, if 
the symbol NP appears 100,000 times, and there are 20,000 instances of NP with the list of 
children [ N P ,  PP] ,  then create the rule 

The task is much harder if all we have is unparsed text. First of all, we actually have two 
problems: learning the structure of the grammar rules and learning the probabilities associ- 
ated with each rule. (We have the same distinction in learning neural nets or Bayes nets.) 

For the moment we will assume that the structure of the rules is given and that we 
are just trying to learn the probabilities. We can use an expectation-maximizatjon (EM) 
approach, just as we did in learning HMMs. The parameters we are trying to learn are the 
rule probabilities. The hidden variables are the parse trees: we don't know whether a string 
of words w, . . . wJ is or is not generated by a rule X + a The E step estimates the 
probability that each subsequence is generated by each rule. The M step then estimates the 
probability of each rule. The whole computation can be done in a dynamic programming 

'NS'DE-OUTS'DE fashion with an algorithm called the inside-outside allgoritlhm in analogy to the forward- ALGORITHM 

backward algorithm for HMMs. 
The inside-outside algorithm seems magical in that it induces a grammar from unparsed 

text. But it has several drawbacks. First, it is slow: O(n3t3) ,  where n is the number of words 
in a sentence and t is tlie number of nonterminal symbols. Second, the space of probability 
assignments is very large, and empirically it seems that getting stuck in local maxima is a 
severe problem. Alternatives such as simulated annealing can be tried, at a cost of even more 
computation. Third, the parses that are assigned by the resulting grammars are often diffi- 
cult to understand and unsatisfying to linguists. This niakes it hard to combine handcrafted 
knowledge with automated induction. 
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Learning rule structure for PCFGs 

Now suppose the structure of the grammar rules is not known. Our first problem is that the 
space of possible rule sets is infinite, so we don't know how many rules to consider nor how 
long each rule can be. One way to sidestep this problem is to learn a grammar in Chomsky 

CHOMsKy FORM normal form, which means that every rule is in one of the two forms 

X 4 Y Z  
X 4 t ,  

where X, Y and Z .are nonterminals and t is a terminal. Any context-free grammar can 
be rewritten as a Chomsky normal form grammar that recognizes the exact same language. 
We can then arbitrarily restrict ourself to n non-terminal symbols, thus yielding n3 + nu 
rules, where v is the number of terminal symbols. In practice, this approach has proven 
effective only for small grammars. An alternative approach called Bayesian model merging MERGING 

is similar to the SEQUITUR model (Section 22.8). The approach starts by building local 
models (grammars) of each sentence and then uses minimum description length to merge 
models. 

RESULT SET 

RELEVANT 

PRESENTATION 

INFORMATION 
RETRIEVAL Information retrieval is the task of finding documents that are relevant to a user's need for 

information. The best-known examples of information retrieval systems are search engines 
on the World Wide Web. A Web user can type a query such as [A1 book] into a search engine 
and see a list of relevant pages. In this section, we will see how such systems are built. An 
information retrieval (henceforth IR) system can be characterized by: 

1. A document collection. Each system must decide what it wants to treat as a document: 
a paragraph, a page, or a multi-page text. 

QUERY 2. A query posed in a query language. The query specifies what the user wants to know. 
QUERY LANGUAGE The query language can be just a list of words, such as [A1 book]; or it can specify 

a phrase of words that must be adjacent, as in ["A1 book"]; it can contain Boolean 
operators as in [A1 AND book]; it can include non-Boolean operators such as [A1 NEAR 
book] or [A1 book SZTE:www.aaai.org]. 

3. A result set. This is the subset of documents that the IR system judges to be relevant to 
the query. By relevant, we mean likely to be of use to the person who asked the query, 
for the particular information need expressed in the query. 

4. A presentation of the result set. This can be as simple as a ranked list of document 
titles or as complex as a rotating color map of the result set projected onto a three- 
dimensional space. 

After reading the previous chapter, one might suppose that an information retrieval system 
could be built by parsing the document collection into a knowledge base of logical sentences 
and then parsing each query and AsKing the knowledge base for answers. Unfortunately, no 
one has ever succeeded in building a large-scale IR system that way. It is just too difficult 
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to build a lexicon and grammar that cover a large document collection, so all IR systems use 
simpler language models. 

BOOLEAN KEYWORD 
MODEL The earliest IR systems worked on a Boolean keyword model. Each word in the docu- 

ment collection is treated as a Boolean feature that is tnxe of ah document if the word occurs in 
the document and false if it does not. So the feature "retrieval" is true for the current chapter 
but false for Chapter 15. The query language is the language of Boolean expressions over 
features. A document is relevant only if the expression evaluates to true. For example, the 
query [information AND retrieval] is true for the current chapter and false for Chapter 15. 

This model has the advantage of being simple to explain and implement. However, 
it has some disadvantages. First, the degree of relevance of a document is a single bit, so 
there is no guidance as to how to order the relevant documents for presentation. Second, 
Boolean expressions might be unfamiliar to users who are not programmers or Logicians. 
Third, it can be hard to formulate an appropriate querq: even for a skilled user. Suppose we 
try [information AND retrieval AND models AND optimization] and get an empty result set. 
We could try [information OR retrieval OR models OR optimization], but if that returns too 
many results, it is difficult to know what to try next. 

Most IR systems use models based on the statistics of word counts (and sometimes 
other low-level features). We will explain a probabilistjic framework that fits in well with the 
language models we have covered. The key idea is that, given a query, we want to find the 
documents that are most likely to be relevant. In other words, we want to compute 

where D is a document, Q is a query, and R is a Boolean random variable indicating rele- 
vance. Once we have this, we can apply the probability ranking principle, which says that if 
we have to present the result set as an ordered list, we should do it in decreasing probability 
of relevance. 

There are several ways to decompose the joint distribution P(R = true ID, Q) .  We will 
LANGUAGE 
MODELING show the one known as the language modeling approach, which estimates a language model 

for each document and then, for each query, computes the probability of the query, given 
the document's language model. Using r  to denote the value R = true, we can rewrite the 
probability as follows: 

P ( r ( D ,  Q )  = P ( D ,  QIr )P( r ) /P (D,  Q )  (by B a ~ e s '  rule) 
= P(QID,r)P(Dlr)P(r)/P(D,Q) (bychainrule) 
= a P ( Q I D , r ) P ( r J D ) / P ( D , Q )  (byBayes7mle,forfixedD). 

We said we were trying to maximize P(r  I D,  Q ) ,  but, equivalently, we can maximize the odds 
ratio P(r  1 D,  Q ) / P ( l r  I D,  Q) .  That is, we can rank documents based on the score: 

P(rID,Q) = P(QID,r)P(rlD) 
P(-rID,Q) P (QID, - - )P ( i r lD)  ' 

This has the advantage of canceling out the P ( D ,  Q )  term. Now we will make the assumption 
that for irrelevant documents, the document is independent of the query. In other words, if a 
document is irrelevant to a query, then knowing the doc~ument won't help you figure out what 
the query is. This assumption can be expressed by 
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With the assumption, we get 

The factor P(r  ( D)  / P ( l r  1 D )  is the query-independent odds that the document is relevant. 
This is a measure of document quality; some documents are more likely to be relevant to any 
query, because the document is just inherently of high quality. For academic journal articles 
we can estimate the quality by the number of citations, and for web pages we can use the 
number of hyperlinks to the page. In either case, we might give more weight to high-quality 
referrers. The age of a document might also be a factor in estimating its query-independent 
relevance. 

The first factor, P(QID, r ) ,  is the probability of a query given a relevant document. 
To estimate this probability we must choose a language model of how queries are related 
to relevant documents. One popular choice is to represent documents with a unigram word 

BAGOFWORDS model. This is also known as the bag of words model in IR, because what matters is the 
frequency of each word in the document, not their order. In this model the (very short) 
documents "man bites dog" and "dog bites man" will behave identically. Clearly, they mean 
different things, but it is true that they are both relevant to queries about dogs and biting. 
Now to calculate the probability of a query given a relevant document, we just multiply the 
probabilities of the words in the query, according to the document unigram model. This is a 
naive Bayes model of the query. Using Q j  to indicate the jth word in the query, we have 

P(QlD, = n P ( Q ~ I D ,  . 
j 

This allows us to make the simplification 

At last, we are ready to apply these mathematical models to an example. Figure 23.4 shows 
unigram statistics for the words in the query [Bayes information retrieval model] over a docu- 
ment collection consisting of five selected chapters from this book. We assume that the chap- 
ters are of uniform quality, so we are interested only in computing the probability of the query 
given the document, for each document. We do this two times, once using an unsmoothed 
maximum likelihood estimator Di and once using a model Da with add-one-smoothing. One 
would expect that the current chapter should be ranked highest for this query, and in fact in 
either model it is. 

The smoothed model has the advantage that it is less susceptible to noise and that it can 
assign a nonzero probability of relevance to a document that doesn't contain all the words. 
The unsmoothed model has the advantage that it is easier to compute for collections with 
many documents: if we create an index that lists which documents mention each word, then 
we can quickly generate a result set by intersecting these lists, and we need to compute 
P(QIDi) only for those documents in the intersection, rather than for every document. 

Evaluating IR systems 

How do we know whether an IR system is performing well? We undertake an experiment in 
which the system is given a set of queries and the result sets are scored with respect to human 



Section 23.2. Information Retrieval 843 

1 Figure 23.4 A probabilistic IR model for the query [Bayes information retrieval model] I 
I over a document collection consisting of five chapters from this book. We give the word I 

Chapter 23 
Current 

7 
3 9 
17 
63 

12574 
1.2 x 10-11 
1.5 x lo-'' 

1 counts for each document-word pair and the total word count N for each document. We use I 

Chapter 22 
NLP 

0 
12 
0 
9 

16397 
0 

1.7 x 10-l5 

Words 

Bayes 
information 
retrieval 
model 
N 
P ( Q P i ,  r )  

1 P(QIDI, r )  

two document models-Di is an unsmoothed unigram word tnodel of the ith document, and 
D: is the same model with add-one smoothing-and compute the probability of the query 

I given each document for both models. The current chapter (2.3) is the clear winner, over 200 1 

Query 

1 
1 
1 
1 
4 

( times more likely than any other chapter under either model. 1 

relevance judgments. Traditionally there have been two measures used in the scoring: recall 
and precision. We will explain them with the help of an example. Imagine that an IR system 
has returned a result set for a single query, for which we know which documents are and are 
not relevant, out of a corpus of 100 documents. The d.ocument counts in each category are 
given in the following table: 

Chapter 1 
Intro 

5 
15 

1 
9 

14680 
1.5 x lo-14 
4.1 x 

In result set Not in result set 

Not relevant 

PRECISION Precision measures the proportion of documents in th~e result set that are actually relevant. 
In our example, the precision is 30/(30 + 10) = .75. The false positive rate is 1 - .75 = .25. 

RECALL Recall measures the proportion of all the relevant documerits in the collection that are in 
the result set. In our example, recall is 30/(30 + 20) = .60. The false negative rate is 1 - 
.60 = .40. In a very large document collection, such as the World Wide Web, recall is difficult 
to compute, because there is no easy way to examine every page on the web for relevance. 
The best we can do is either to estimate recall by sampling or to ignore recall completely and 
just judge precision. 

Chapter 13 
Uncertainty 

32 
18 

1 
7 

10941 
2.8 x 
7.0 x 

A system can trade off precision against recall. [n the extreme, a system that returns 
every document in the document collection as its result set is guaranteed a recall of loo%, 
but will have low precision. Alternately, a system could return a single document and have 
low recall, but a decent chance at 100% precision. One wa,y to summarize this tradeoff is 

ROC CURVE with an ROC curve. "ROC" stands for "receiver operating characteristic" (which is not very 
enlightening). It is a graph measuring the false negative rate on the y axis and false positive 
rate on the x axis, for various tradeoff points. The area under the curve is a summary of the 
effectiveness of an IR system. 

Chapter 15 
Time 

3 8 
8 
0 

1 t10 
181~16 

0 
5.2 x 10-IL3 
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RECIPROCAL RANK 

TIME TO ANSWER 

CASE FOLDING 

STEMMING 

SYNONYMS 

SPELLING 
CORRECTION 

METADATA 

Recall and precision were defined when IR searches were done primarily by librarians 
who were interested in thorough, scholarly results. Today, most queries (hundreds of millions 
per day) are done by Internet users who are less interested in thoroughness and more inter- 
ested in finding an immediate answer. For them, one good measure is the average reciprocal 
rank of the first relevant result. That is, if a system's first result is relevant, it gets a score of 
1 on the query, and if the first two are not relevant, but the third is, it gets a score of 113. An 
alternative measure is time to answer, which measures how long it takes a user to find the 
desired answer to a problem. This gets closest to what we really want to measure, but it has 
the disadvantage that each experiment requires a fresh batch of human test subjects. 

IR refinements 

The unigram word model treats all words as completely independent, but we know that some 
words are correlated: "couch" is closely related to both "couches" and "sofa." Many IR 
systems attempt to account for these correlations. 

For example, if the query is [couch], it would be a shame to exclude from the result set 
those documents that mention "COUCH" or "couches" but not "couch." Most IR systems 
do case folding of "COUCH to "couch," and many use a stemming algorithm to reduce 
"couches" to the stem form "couch." This typically yields a small increase in recall (on the 
order of 2% for English). However, it can harm precision. For example, stemming "stocking" 
to "stock" will tend to decrease precision for queries about either foot coverings or financial 
instruments, although it could improve recall for queries about warehousing. Stemming algo- 
rithms based on rules (e.g. remove "-ing") cannot avoid this problem, but newer algorithms 
based on dictionaries (don't remove "-ing" if the word is already listed in the dictionary) can. 
While stemming has a small effect in English, it is more important in other languages. In Ger- 
man, for example, it is not uncommon to see words like "Lebensversicherungsgesellschaft- 
sangestellter" (life insurance company employee). Languages such as Finnish, Turkish, Inuit, 
and Yupik have recursive morphological rules that in principle generate words of unbounded 
length. 

The next step is to recognize synonyms, such as "sofa" for "couch." As with stemming, 
this has the potential for small gains in recall, but with a danger of decreasing precision if 
applied too aggressively. Those interested in football player Tim Couch would not want to 
wade through results about sofas. The problem is that "languages abhor absolute synonymy 
just as nature abhors a vacuum" (Cruse, 1986). That is, anytime there are two words that 
mean the same thing, speakers of the language conspire to modify the meanings to remove 
the confusion. 

Many IR systems use word bigrams to some extent, although few implement a com- 
plete probabilistic bigram model. Spelling correction routines can be used to correct for 
errors in both documents and queries. 

As a final refinement, IR can be improved by considering metadata-data outside of 
the text of the document. Examples include human-supplied keywords and hypertext links 
between documents. 
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Presentation of result sets 

The probability ranking principle says to take a result set and present it to the user as a list 
ordered by probability of relevance. This makes sense if a user is interested in finding all the 
relevant documents as quickly as possible. But it runs into trouble because it doesn't consider 
utility. For example, if there are two copies of the most relevant document in the collection, 
then once you have seen the first, the second has equal relevance, but zero utility. Many IR 
systems have mechanisms for eliminating results that are too similar to previous results. 

One of the most powerful ways to improve the performance of an IR system is to allow 
RELEVANCE 
FEEDBACK for relevance feedback-feedback from the user saying which documents from an initial 

result set are relevant. The system can then present a second result set of documents that are 
similar to those. 

An alternative approach is to present the result stet as a labeled tree rather than an or- 
DOCUMENT 
ClnsslFICAT,oN dered list. With document classification, the results are classified into a preexisting taxon- 

omy of topics. For example, a collection of news stories might be classified into World News, 
DOCUMENT 
CLUSTERING Local news, Business, Entertainment, and Sports. With docuiment clustering, the tree of cat- 

egories is created from scratch for each result set. Classificatilon is appropriate when there are 
a small number of topics in a collection, and clustering is appropriate for broader collections 
such as the World Wide Web. In either case, when the user issues a query, the result set is 
shown organized into folders based on the categories. 

Classification is a supervised learning problem, arid as such, it can be attacked with any 
of the methods from Chapter 18. One popular approach is decision trees. Given a training set 
of documents labeled with the correct categories, we could build a single decision tree whose 
leaves assign the document to the proper category. This wolrks well when there are only a 
few categories, but for larger category sets we will build one decision tree for each category, 
with the leaves labeling the document as either a member 01- a nonmember of the category. 
Usually, the features tested at each node are individual words. For example, a node in the 
decision tree for the "Sports" category might test for the presence of the word "basketball." 
Boosted decision trees, naive Bayes models, and support vector machines have all been used 
to classify text; in many cases accuracy is in the 90-98% range for Boolean classification. 

Clustering is an unsupervised learning problem. In Section 20.3 we saw how the EM 
algorithm can be used to improve an initial estimate of a clustering, based on a mixture of 
Gaussians model. The task of clustering documents is harder because we don't know that 
the data were generated by a nice Gaussian model and because we are dealing with a much 
higher dimensional space. A number of approaches have been developed. 

AGGLOMERATIVE 
CLUSTERING Agglomerative clustering creates a tree of clusters going all the way down to individual 

documents. The tree can be pruned at any level to yield a smaller number of categories, 
but that is considered outside the algorithm. We begin by considering each docurnent as a 
separate cluster. Then we find the two clusters that are closest to each other according to 
some distance measure and merge these two clusters into one. We repeat the process until 
one cluster remains. The distance measure between two documents is some measure of the 
overlap between the words in the documents. For example, we could represent a document 
by a vector of word counts, and define the distance as the Euclidean distance between two 
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K-MEANS 
CLUSTERING 

vectors. The distance measure between two clusters can be the distance to the median of 
the cluster, or it can take into account the average distance between members of the clusters. 
Agglomerative clustering takes time O(n 2) ,  where n is the number of documents. 

K-means clustering creates a flat set of exactly k categories. It works as follows: 

1. Pick k documents at random to represent the k categories. 
2. Assign every document to the closest category. 
3. Compute the mean of each cluster and use the k means to represent the new values of 

the k categories. 
4. Repeat steps (2) and (3) until convergence. 

K-means takes time O(n) ,  giving it one advantage over agglomerative clustering. It is often 
reported to be less accurate than agglomerative clustering, although some have reported that 
it can do almost as well (Steinbach et al., 2000). 

Regardless of the clustering algorithm used, there is one more task before a clustering 
can be used to present a result set: finding a good way of describing the cluster. In classifi- 
cation, the category names are already defined (e.g. "Earnings"), but in clustering we need to 
invent the category names. One way to do that is to choose a list of words that are represen- 
tative of the cluster. Another option is to choose the title of one or more documents near the 
center of the cluster. 

Implementing IR systems 

So far, we have defined how IR systems work in the abstract, but we haven't explained how 
to make them efficient so that a Web search engine can return the top results from a multi- 
billion-page collection in a tenth of a second. The two key data structures for any IR system 
are the lexicon, which lists all the words in the document collection, and the inverted index, 
which lists all the places where each word appears in the document collection. 

The lexicon is a data structure that supports one operation: given a word, it returns the 
location in the inverted index that stores the occurrences of the word. In some implementa- 
tions it also returns the total number of documents that contain the word. The lexicon should 
be implemented with a hash table or similar data structure that allows this lookup to be fast. 
Sometimes a set of common words with little information content will be omitted from the 

STOP WORDS lexicon. These stop words ("the," "of," "to," "be," "a," etc.) take up space in the index and 
don't improve the scoring of results. The only good reason for keeping them in the lexicon 
is for systems that support phrase queries: an index of stop words is necessary to efficiently 
retrieve hits for queries such as "to be or not to be." 

INVERTED INDEX The inverted index,3 like the index in the back of this book, consists of a set of hit 
HIT LISTS lists: places where each word occurs. For the Boolean keyword model, a hit list is just a 

list of documents. For the unigram model, it is a list of (document, count) pairs. To support 
phrase search, the hit list must also include the positions within each document where the 
word occurs. 

The term "inverted index" is redundant; a better term would be just "index." It is inverted in the sense that it 
is in a different order than the words in the text, but that is what all indices are like. But "inverted index" is the 
traditional term in IR. 
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VECTOR SPACE 
MODEL 

When the query is a single word (26% of the time, according to Silverstein et al. (1998)), 
processing is very fast. We make a single lookup in th~e lexicon to get the address of the hit 
list, and then we create an empty priority queue. After that, we go through the hit list one 
document at a time and check the count for the document. If the priority queue has fewer than 
R elements (where R is the size of the desired result set), we add the (document, count) pair to 
the queue. Otherwise, if the count is larger than that of the lo'west entry in the priority queue, 
we delete the lowest entry and add the new (document, count) pair. Thus, answering the query 
takes time O ( H  + Rlog R), where H is the number of documents in the hit list. When the 
query has n words, we have to merge n hit lists, which can be done in time O(nH + R log R). 

We have presented our theoretical overview of IR using the probabilistic model because 
that model makes use of the ideas we have already covered for other topics. But actual IR 
systems in practice are more likely to use a different approach called the vector space model. 
This model uses the same bag-of-words approach as the probability model. Each document 
is represented as a vector of unigram word frequencies. The query too is represented in the 
exact same way; the query [Bayes information retrieval model] is represented as the vector 

[O , . . . ,  1 , o  , . . . ,  1 , o  , . . . ,  1 , o  , . . . ,  1 , o  , . . .  ] 
where the idea is that there is one dimension for every word in the document collection and 
the query gets a score of 0 on every dimension except the four that actually appear in the 
query. Relevant documents are selected by finding the document vectors that are nearest 
neighbors to the query vector in vector space. One measure of similarity is the dot product 
between query vector and document vector; the larger this is, the closer the two vectors. 
Algebraically, this gives high scores for words that appear frceq~~ently in both document and 
query. Geometrically, the dot product between two vectors is equal to the cosine of the angle 
between the vectors; maximizing the cosine of two such vectors (in the same quadrant) means 
that the angle between them is close to 0. 

There is much more to the vector space model than this. In practice, it has grown to 
accommodate a wide variety of extra features, refinements, corrections, and additions. The 
basic idea of ranking documents by their similarity in a vector space makes it possible to fold 
in new ideas into the numeric ranking system. Some argue that a probabilistic model would 
allow these same manipulations to be done in a more principled way, but IR researchers are 
unlikely to change unless they can see a clear performance advantage to another model. 

To get an idea of the magnitude of the indexing ptroblem for a typical IR task, consider 
a standard document collection from the TREC (Text IiEtrieval Conference) collection con- 
sisting of 750,000 documents totaling 2 GB (gigabytes) of text. The lexicon contains roughly 
500,000 words after stemming and case folding; these: wordls can be stored in 7 to 10 MB. 
The inverted index with (document, count) pairs takes 324 MB, although one can use com- 
pression techniques to get it down to 83 MB. Compression sa.ves space, at the cost of slightly 
increased processing requirements. However, if compression allows you to keep the whole 
index in memory rather than storing it on disk, then it will yield a substantial net increase in 
performance. Support for phrase queries increases the size to about 1,200 MB uncompressed 
or 600 MB with compression. Web search engines work on a scale about 3000 times larger 
than this. Many of the issues are the same, but because it is irnpractical to deal with terabytes 
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of data on a single computer, the index is divided into k segments, with each segment stored 
on a different computer. A query is sent to all of the computers in parallel, and then the k re- 
sult sets are merged into a single result set that is shown to the user. Web search engines also 
have to deal with thousands of queries per second, so they need n copies of the k computers. 
Values of k and n continue to grow over time. 

INFORMATION 
EXTRACTION Information extraction is the process of creating database entries by skimming a text and 

looking for occurrences of a particular class of object or event and for relationships among 
those objects and events. We could be trying to extract instances of addresses from web pages, 
with database fields for street, city, state, and zip code; or instances of storms from weather 
reports, with fields for temperature, wind speed, and precipitation. Information extraction 
systems are mid-way between information retrieval systems and full-text parsers, in that they 
need to do more than consider a document as a bag of words, but less than completely analyze 
every sentence. 

The simplest type of information extraction system is called an attribute-based system 
because it assumes that the entire text refers to a single object and the task is to extract 
attributes of that object. For example, we mentioned in Section 10.5 the problem of extracting 
from the text "17in SXGA Monitor for only $249.99" the database relations given by 

3 m m E ComputerMonitors A S i ze (m ,  Inches( l7) )  A Price(m,  $(249.99)) 
A Resolution(m, 1280 x 1024) . 

REGULAR EXPREssloNs Some of this information can be handled with the help of regular expressions, which define a 
regular grammar in a single text string. Regular expressions are used in Unix commands such 
as grep, in programming languages such as Perl, and in word processors such as Microsoft 
Word. The details vary slightly from one tool to another and so are best learned from the 
appropriate manual, but here we show how to build up a regular expression for prices in 
dollars, demonstrating common subexpressions: 

[O-91 matches any digit from 0 to 9 
[O-91+ matches one or more digits 
. [O-91 [O- 91  matches a period followed by two digits 
( .  [O-91 [O-91 ) ?  matches a period followed by two digits, or nothing 
$ [ o - 9 ] + ( .  [ o - 9 1  1 0 - 9 ] ) ?  matches$249.99or$1.23or$1000000or ... 

Attribute-based extraction systems can be built as a series of regular expressions, one for 
each attribute. If a regular expression matches the text exactly once, then we can pull out 
the portion of the text that is the value of the attribute. If there is no match there's nothing 
more we can do, but if there are several matches, we need a process to choose among them. 
One strategy is to have several regular expressions for each attribute, ordered by priority. 
So, for example, the top priority regular expression for price might look for the string "our 
price:" immediately preceding the dollar sign; if that is not found, we fall back on a less 
reliable regular expression. Another strategy is to take all the matches and find some way 
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to choose between them. For example, we could take the lowest price that is within 50% of 
the highest price. This will handle texts like "List price $99.00, special sale price $78.00, 
shipping $3.00." 

One step up from attribute-based extraction systems are relational-based extraction sys- 
tems, which have to worry about more than one object and the relations between them. Thus, 
when these systems see the text "$249.99," they need to determine not just that it is a price, 
but also which object has that price. A typical relational-based extraction system is FASTUS, 
which handles news stories about corporate mergers and acquisitions. It can read the story: 

Bridgestone Sports Co. said Friday it has set up a joint venture in Taiwan with a local 
concern and a Japanese trading house to produce golf clubs .to be shipped to Japan. 

and generate a database record like 

e E Joint Ventul-es A Product(e, "go1 f clubs") A Date(e, "Friday") 
A Entity ( e ,  "Bridgestone Sports Con) Entity(e, "a local concern") 
A Entity (e ,  "a Japanese trading house") . 

CASCADED 
FINITE-STATE 
TRANSDUCERS 

Relational extraction systems often are built by using cascaded finite-state transducers. 
That is, they consist of a series of finite-state automata (FSAs), where each automaton re- 
ceives text as input, transduces the text into a different format, and passes it along to the next 
automaton. This is appropriate because each FSA can be effi~cient and because together they 
can extract the necessary information. A typical system is FASTUS, which consists of the 
following five stages: 

1. Tokenization 
2. Complex word handling 
3; Basic group handling 
4. Complex phrase handling 
5. Structure merging 

FASTUS's first stage is tokenization, which segments the stream of characters into tokens 
(words, numbers, and punctuation). For English, tokenization can be fairly simple; just sepa- 
rating characters at white space or punctuation does a fairly good job. For Japanese, tokeniza- 
tion would need to do segmentation, using something like the Viterbi segmentation algorithm. 
(See Figure 23.1 .) Some tokenizers also deal with markup languages such as HTML, SGML, 
and XML. 

The second stage handles complex words, including collocations such as "set up" and 
"joint venture," as well as proper names such as "Prime Minister Tony Blair" and "Bridge- 
stone Sports Co." These are recognized by a combination olf lexical entries and finite-state 
grammar rules. For example, a company name might b~e recognized by the rule 

CapitalizedWordi ("Company" ( "Co" ( "Inc" ( "Ltd) 

These rules should be constructed with care and tested for recall and precision. One commer- 
cial system recognized "Intel Chairman Andy Grove" as a place rather than a person because 
of a rule of the form 

CapitalizedWord+ ("Grove" 1 "Forest" 1 "Village" I . . . ) 
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The third stage handles basic groups, meaning noun groups and verb groups. The idea 
is to chunk these into units that will be managed by the later stages. A noun group consists 
of a head noun, optionally preceded by determiners and other modifiers. Because the noun 
group does not include the full complexity of the NP in &I we do not need recursive context- 
free grammar rules: the regular grammar rules allowed in finite state automata suffice. The 
verb group consists of a verb and its attached auxiliaries and adverbs, but without the direct 
and indirect object and prepositional phrases. The example sentence would emerge from this 
stage as follows: 

1 NG: 
2 VG: 
3 NG: 
4 NG: 
5 VG: 
6 NG: 
7 PR: 
8 NG: 
9 PR: 

Bridgestone Sports Co.) 10 NG: 
said / 11 CJ: 
Friday 1 12 NG: 
it ) 13 VG: 
had set up 1 14 NG: 
a joint venture 1 15 VG: 
in ) 16 PR: 
Taiwan 1 17 NG: 
with 

a local concern 
and 
a Japanese trading house 
to produce 
golf clubs 
to be shipped 
to 
Japan 

Here NG means noun group, VG is verb group, PR is preposition, and CJ is conjunction. 
The fourth stage combines the basic groups into complex phrases. Again, the aim 

is to have rules that are finite-state and thus can be processed quickly, and that result in 
unambiguous (or nearly unambiguous) output phrases. One type of combination rule deals 
with domain-specific events. For example, the rule 

Company+ Setup Jointventure ("with" Company+)? 

captures one way to describe the formation of a joint venture. This stage is the first one in 
the cascade where the output is placed into a database template as well as being placed in the 
output stream. 

The final stage merges structures that were built up in the previous step. If the next 
sentence says "The joint venture will start production in January," then this step will notice 
that there are two reference to a joint venture, and that they should be merged into one. 

In general, information extraction works well for a restricted domain in which it is 
possible to predetermine what subjects will be discussed, and how they will be mentioned. 
It has proven useful in a number of domains, but is not a substitute for full-scale natural 
language processing. 

Machine translation is the automatic translation of text from one natural language (the source) 
to another (the target). This process has proven to be useful for a number of tasks, including 
the following: 

1.  Rough translation, in which the goal is just to get the gist of a passage. Ungrammatical 
and inelegant sentences are tolerated as long as the meaning is clear. For example, in 
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Web surfing, a user is often happy with a rough tran~slation of a foreign web page. 
Sometimes a monolingual human can post-edit the output without having to read the 
source. This type of machine-assisted translation saves money because such editors can 
be paid less than bilingual translators. 

2. Restricted-source translation, in which the subject rnatter and format of the source 
text are severely limited. One of the most successful examples is the TAUM-METEO 

system, which translates weather reports from English to French. It works because the 
language used in weather reports is highly stylized and regular. 

3. Preedited translation, in which a human preedits the source document to make it con- 
form to a restricted subset of English (or whatever tlhe original language is) before 
machine translation. This approach is particularly cost-'effective when there is a need to 
translate one document into many languages, as is the case for legal documents in the 
European Community or for companies that sell the same product in many countries. 
Restricted languages are sometimes called "Caterpillar English," because Caterpillar 
Corp. was the first firm to try writing its manuals in this form. Xerox defined a lan- 
guage for its maintenance manuals which was simple einough that it could be translated 
by machine into all the languages Xerox deals with. AS an added benefit, the original 
English manuals became clearer as well. 

4. Literary translation, in which all the nuances of the source text are preserved. This is 
currently beyond the state of the art for machine translation. 

As an example of rough translation, the SY STRAN trandation service translated the first para- 
graph of this chapter into Italian and back to English as follows: 

Italian: In capitol0 22 abbiamo visto 
come un agente potrebbe comunicare con 
un altro agente (essere umano o soft- 
ware) che usando le espressioni in un lin- 
guaggio reciprocamente accordato. Com- 
pletare sintattico e l'analisi semantica 
delle espressionii. necessaria da estrarre 
il significato cornpleto del utterances ed i. 
possibile perch6 le espressioni sono corte 
e limitate ad un settore limitato. 

English: In chapter 22 we have seen 
as an agent could communicate with an 
other agent (to be human or software) that 
using the er~pressions in a language mu- 
tual come 1.0 an agreement. Complete 
syntactic and the semantic analysis of the 
expressions is necessary to extract the 
complete meant one of the utterances and 
is pos,sible because the expressions short 
and are limited to a dominion. 

Translation is difficult because, in the general case, it requires in-depth understanding of the 
text, and that in turn requires in-depth understanding of the situation that is being commu- 
nicated. This is true even for very simple texts-even "texts" of one word. Consider the 
word "Open" on the door of a sto~-e.4 It communicates the idea that the store is accepting 
customers at the moment. Now consider the same world "Open" on a large banner outside a 
newly constructed store. It means that the store is now in daily operation, but readers of this 
sign would not feel misled if the store closed at night without removing the banner. The two 

This example is due to Martin Kay. 
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signs use the identical word to convey different meanings. In German, on the other hand, the 
sign on the door would be "Offen" while the banner would read "Neu Eroffnet." 

The problem is that different languages categorize the world differently. For example, 
the French word "doux" covers a wide range of meanings corresponding approximately to 
the English words "soft," "sweet," and "gentle." Similarly, the English word "hard covers 
virtually all uses of the German word "hart" (physically recalcitrant, cruel) and some uses 
of the word "schwierig" (difficult). The German verb "heilen" covers the medical uses of 
the English word "cure," as well as the transitive and intransitive uses of "heal." There- 
fore, representing the meaning of a sentence is more difficult for translation than it is for 
single-language understanding. A single-language parsing system could use predicates like 
Open(x),  but for translation, the representation language would have to make more distinc- 
tions, perhaps with Openl (x) representing the "Offen" sense and Opena (x) representing the 
"Neu Eroffnet" sense. A representation language that makes all the distinctions necessary for 

INTERLINGUA a set of languages is called an interlingua. 
To do fluent translation, a translator (human or machine) must read the original text, 

understand the situation to which it is referring, and find a corresponding text in the target 
language that does a good job of describing the same or a similar situation. Often, this 
involves a choice. For example, the English word "you," when referring to a single person, 
can be translated into French as either the formal "vous" or the informal "tu." There is just 
no way that one can refer to the concept of "you" in French without also making a choice of 
formal or informal. Translators (both machine and human) sometimes find it difficult to make 
this choice. 

Machine translation systems 

Machine translation systems vary in the level to which they analyze the text. Some systems 
attempt to analyze the input text all the way into an interlingua representation (as we did in 
Chapter 22) and then generate sentences in the target language from that representation. This 
is difficult because it includes the complete language understanding problem as a subproblem, 
to which is added the difficulty of dealing with an interlingua. It is brittle because if the 
analysis fails, there is no output. It does have the advantage that there is no part of the 
system that relies on knowledge of two languages at once. That means that one can build an 
interlingua system to translate among n languages with 0 (n) work instead of O(n2). 

TRANSFER Other systems are based on a transfer. They keep a data base of translation rules (or 
examples), and whenever the rule (or example) matches, they translate directly. Transfer can 
occur at the lexical, syntactic, or semantic level. For example, a strictly syntactic rule maps 
English [Adjective Noun] to French [Noun Adjective]. A mixed syntactic and lexical rule 
maps French [S1 "et puis" Sz] to English [S1 "and then" S2]. A transfer that goes directly 
from one sentence to another is called a memory-based translation method, because it relies TRANSLATION 

on memorizing a large set of (English, French) pairs. The transfer method is robust in that 
it will always generate some output, and at least some of the words are bound to be right. 
Figure 23.5 diagrams the various transfer points. 
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Interlingua Semantics 
Attraction(NarnedJohn, NarnedMary, ~Y igh)  1 

English Semantics - - - - - -- - - - - -- 
Loves(John, Mary) 

English Syntax 
S(NP(John), VP(loves, NP(Mary))) S'(NP(Jean), VP(airne, NP(Marie))) 

/ 

1 Figure 23.5 A schematic diagram of the choices for a machine translation system. We I 
start with English text at the top. An interlingua-based system follows the solid lines, parsing 
English first into a syntactic form, then into a sema~~t ic  representation and an interlingua 

/ representation, and then through generation to a semantic, syntactic, and lexical form in I 
/ French. A transfer-based system uses the dashed lines as a shortcut. Different systems make 1 
I the transfer at different points; some make it at multiple points. I 

Statistical machine translation 

In the early 1960s, there was great hope that computers would be able to translate from one 
natural language to another, just as Turing's project "translated coded German messages into 
intelligible German. By 1966, it became clear that fluent translation requires an understanding 
of the meaning of the message, whereas code breaking does not. 

In the last decade, there has been a move towar~ds stattistically based machine transla- 
tion systems. Of course, any of the steps in Figure 23.5 could benefit from the application 
of statistical data and from a clear probabilistic model of wh~at constitutes a good analysis or 
transfer. But "statistical machine translation" has come to denote an approach to the whole 
translation problem that is based on finding the most probable translation of a sentence, using 

HANSARD data gathered from a bilingual corpus. As an example of a bilingual corpus, ~ a n s a r d ~  is 
a record of parliamentary debate. Canada, Hong Kong, an'd other countries produce bilin- 
gual Hansards, the European Union publishes its official d.ocuments in  11 languages, and 
the United Nations publishes multilingual documents. These have proven to be invaluable 
resources for statistical machine translation. 

We can express the problem of translating an English sentence E into, say, a ~ r e n c h ~  
sentence F by the following application of Bayes' rule:: 

Warned after William Hansard, who first published the British parliamentary debates in 181 1. 
Throughout this section we consider the problem of translating from English to French. Do not be confused 

by the fact that Bayes' rule leads us to consider P ( E F )  rather than P ( F J E ) ,  making it seem as if we were 
translating French to English. 
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This rule says we should consider all possible French sentences F and choose the one that 
maximizes the product P ( E  I F )  P ( F ) .  The factor P ( E )  can be ignored because it is the same 

LANGUAGE MODEL for every F .  The factor P ( F )  is the language model for French; it says how probable a given 
TRANSLATION 
MODEL sentence is in French. P(E1F)  is the translation model; it says how probable an English 

sentence is as a translation, given a French sentence. 
The astute reader will wonder what we have gained from defining P ( F I  E) in terms of 

P ( E  I F). In other applications of Bayes' rule, we made this reversal because we wanted to use 
a causal model. For example, we use the causal model P(Symptoms(Disease) to compute 
P(Disease I Symptoms). With translation, however, neither direction is more causal than the 
other. The reason for applying Bayes' rule in this case is that we believe we will be able to 
learn a language model P ( F )  that is more accurate than the translation model P(EI F )  (and 
more accurate than estimating P ( F  I E )  directly). Essentially, we have divided the problem 
into two parts: first we use the translation model P(F I E) to find candidate French sentences 
that mention the right concepts from the English sentence, but that might not be fluent French; 
then we use the language model P ( F )  (for which we have much better probability estimates) 
to pick out the best candidate. 

The language model P ( F )  can be any model that gives a probability to a sentence. 
With a very large corpus, we could estimate P ( F )  directly by counting how many times each 
sentence appears in the corpus. For example, we use the Web to collect 100 million French 
sentences, and if the sentence "Clique ici" appears 50,000 times, then P(C1ique ici) is .0005. 
But even with 100 million examples, most sentence counts will be zero.7 Therefore, we 
will use the familiar bigram language model, in which the probability of a French sentence 
consisting of the words f l  . . . f ,  is 

We will need to know bigram probabilities such as P(Eiffel1tour) = .02. This captures only 
a very local notion of syntax, where a word depends on just the previous word. However, for 
rough translation that is often sufficient.' 

The translation model, P(EIF) ,  is more difficult to come by. For one thing, we don't 
have a ready collection of (English, French) sentence pairs from which to train. For another, 
the complexity of the model is greater, because it considers the cross product of sentences 
rather than just individual sentences. We will start with an overly simplistic translation model 
and build up to something approximating the "IBM Model 3" (Brown et al., 1993) which 
might still seem overly simplistic, but has proven to generate acceptable translations roughly 
half the time. 

The overly simplistic model is "to translate a sentence, just translate each word indi- 
vidually and independently, in left-to-right order." This is a unigram word choice model. It 

If there are just 100,000 words in the lexicon, then 99.99999% of the three-word sentences have a count of 
zero in the 100 million sentence corpus. It gets worse for longer sentences. 

For the finer points of translation, P(fi1 fi-l) is clearly not enough. As a famous example, Marcel Proust's 
3500 page novel A la rkcherclte du temps perdu begins and ends with the same word, so some translators have 
decided to do the same, thus basing the translation of a word on one that appeared roughly 2 million words earlier. 
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makes it easy to compute the probability of a translation: 

P ( E ( F )  = P(EilFi) . 

In a few cases this model works fine. For example, consider 

P(the doglle chien) = P(the1le) x P(dog1chien) . 

Under any reasonable set of probability values, "the dog" would be the maximum likelihood 
translation of "le chien." In most cases, however, the model fails. One problem is word order. 
In French, "dog" is "chien" and "brown" is "brun," but "brovdn dog" is "chien brun." Another 
problem is that word choice is not a one-to-one mapping. The English word "home" is often 
translated as "a la maison," a one-to-three mapping (or three-to-one in the other direction). 
Despite these problems, IBM Model 3 stubbornly sticks to a basically unigram model, but 
adds a few complications to patch it up. 

To handle the fact that words are not translated one for one, the model introduces the 
FERTILITY notion of the fertility of a word. A word with fertility n, gets copied over n times, and 

then each of those n copies gets translated independently. The model contains parameters 
for P(Fertility = n J  word) for each French word. To translate "a la maison" to "home," the 
model would choose fertility 0 for "a" and "la" and fertility 1 for "maison" and then use the 
unigram translation model to translate "maison" to "home." This seems reasonable enough: 
''2' and "la" are low-content words that could reasonably trzmslate to nothing. Translating in 
the other direction is inore dubious. The word "home" would be assigned fertility 3, giving 
us "home home home." The first "home7' would translate to "8," the second to "la" and the 
third to "maison." In terms of the translation model, "a la maison" would get the exact same 
probability as "maison la a." (That's the dubious part.) It would be up to the language model 
to decide which is better. It might seem to make more sense tcs make "home" translate directly 
to "8 la maison," rather than indirectly via "home h0m.e home," but that would require many 
more parameters, and they would be hard to obtain from the available corpus. 

The final part of the translation model is to permute th~e words into the right positions. 
This is done by a model of the offsets by which a word moves from its original position to 
its final position. For example, in translating "chien brim" to "brown dog," the word "brown" 
gets an offset of +1 (it is moved one position to the right) and "dog" gets an offset of -1. 
You might imagine that the offset should be dependent on the word: adjectives like "brown" 
would tend to have a positive offset because French tentds to put the adjectives after the noun. 
But IBM Model 3 decided that making offsets dependant on the word would require too many 
parameters, so the offset is independent of the word and dependent only on the position within 
the sentence, and the length of the sentences in both languages. That is, the model estimates 
the parameters 

P(0ffset  = 0 1  Position = p, EngLen = m, FrLen = n) . 

So to determine the offset for "brown" in "brown dog," we consult P(0flset J1,2,2) ,  which 
might give us, say, +1 with probability .3 and 0 with probability .7. The offset model seems 
even more dubious, as if it had been concocted by someone more familiar with moving mag- 
netic words around on a refrigerator than with actually speaking a natural language. We will 
see shortly that it was designed that way not because it is a good model of language, but be- 
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cause it makes reasonable use of the available data. In any case, it serves to remind us vividly 
that a mediocre translation model can be saved by a good French language model. Here is an 
example showing all the steps in translating a sentence: 

Source French: Le chien brun n' est pas all6 B la maison 
Fertility model: 1 1  1 . I  1 0  1 0 0 1  
Transformed French: Le chien brun n' est all6 maison 
Word choice model: The dog brown not did go home 
Offset model: 0 +1 -1 +1 -1 0 0 
Target English: The brown dog did not go home 

Now, we know how to compute the probability P(F1E) for any pair of (French, English) 
sentences. But what we really want to do is, given an English sentence, find the French 
sentence which maximizes that probability. We can't just enumerate sentences; with lo5 
words in French, there are sentences of length n, and many alignments for each one. 
Even if we consider only the 10 most frequent word-to-word translations for each word, and 
only consider offsets of 0 or hl, we still get about 2n/210n sentences, which means that we 
could enumerate them all for n = 5, but not for n = 10. Instead, we need to search for the 
best solution. A version of A* search has proven effective; see Gel-mann et al. (2001). 

Learning probabilities for machine translation 

We have outlined a model for P(F I E) that involves four sets of parameters: 

Language model: P(wordi I wordipl) 
Fertility model: P(Ferti1ity = n(wordF) 
Word choice model: P(wordE I wordF) 
Offset model: P(O8set = olpos, lenE, lenF) 

Even with a modest vocabulary of 1,000 words, this model requires millions of parameters. 
Obviously, we will have to learn them from data. We will assume that the only data available 
to us is a bilingual corpus. Here is how to use it: 

Segment into sentences: The unit of translation is a sentence, so we will have to break 
the corpus into sentences. Periods are strong indicators of the end of a sentence, but consider 
"Dr. J. R. Smith of Rodeo Dr. arrived."; only the final period ends a sentence. Sentence 
segmentation can be done with about 98% accuracy. 

Estimate the French language model P( wordi ( wordi- 1) : Considering just the French 
half of the corpus, count the frequencies of word pairs and do smoothing to give an estimate 
of P(wordil wordipl). For example we might have P(Eiffel1tour) = .02. 

Align sentences: For each sentence in the English version, determine what sentence(s) 
it corresponds to in the French version. Usually, the next sentence of English corresponds to 
the next sentence of French in a 1 : 1 match, but sometimes there is variation: one sentence in 
one language will be split into a 2:l match, or the order of two sentences will be swapped, 
resulting in a 2:2 match. By looking at the sentence lengths alone, it is possible to align 
them (1:1, 1:2, or 2:2, etc.) with accuracy in the 90% to 99% range using a variation on 
the Viterbi segmentation algorithm (Figure 23.1). Even better alignment can be achieved by 
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WORD ALIGNMENT 
VECTOR 

using landmarks that are common to both languages, such as numbers or proper names, or 
words that we know have an unambiguous translation from a bilingual dictionary. 

Now we are ready to estimate the parameters of the translation model. We will do that 
by first making a poor initial guess and then improving it. 

Estimate the initial fertility model P(Ferti1ity = nluiordF): Given a French sentence 
of length m that is aligned to an English sentence of length n, consider this as evidence that 
each French word has fertility n/m. Consider all the evidence over all sentences to get a 
fertility probability distribution for each word. 

Estimate the initial word choice model P(word 1 wordF): Look at all the French 
sentences that contain, say, "brun." The words that appear most frequently in the English 
sentences aligned with these sentences are the likely word-to-word translations of "brun." 

Estimate the initial offset model P(O#set = olpos, lenE, lenF): Now that we have 
the word choice model, use it to estimate the offset moldel. For an English sentence of length 
n that is aligned to a French sentence of length m, look at each French word in the sentence 
(at position i) and at each English word in the sentence (at position j )  that is a likely word 
choice for the French word, and consider that as evidence for PI Ofset = i - j li, n, m). 

Improve all the estimates: Use EM (expectation-maximization) to improve the es- 
timates. The hidden variable will be a word alignmlent vector between sentence-aligned 
sentence pairs. The vector gives, for each English word, the position in the French sentence 
of the corresponding French word. For example, we might have the following: 

Source French: Le chien brun n' est pas all6 a la maison 
Target English: The brown dog did not go home 
Word alignment: 1 3 2 5 4  7 10 

First, using the current estimates of the parameters, cr~eate a word alignment vector for each 
sentence pair. This will allow us to make better estirniates. The fertility model is estimated 
by counting how many times a member of the word alignment vector goes to multiple words 
or to zero words. The word choice model now can llook only at words that are aligned to 
each other, rather than at all words in the sentence, and the offset model can look at each 
position in the sentence to see how often it moves according to the word alignment vector. 
Unfortunately, we don't know for sure what the correct alignment is, and there are too many 
of them to enumerate. So we are forced to search for a few .high-probability alignments and 
weight them by their probabilities when we collect evidence :for the new parameter estimates. 
That is all we need for the EM algorithm. From the initial parameters we compute alignments 
and from the alignments we improve the parameter estimates. Repeat until convergence. 

The main points of this chapter are: 

1. Probabilistic language models based on n-grams recover a surprising amount of infor- 
mation about a language. 
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2. CFGs can be extended to probabilistic CFGs, making it easier to learn them from data 
and easier to do disambiguation. 

3. Information retrieval systems use a very simple language model based on bags of 
words, yet still manage to perform well in terms of recall and precision on very large 
corpora of text. 

4. Information extraction systems use a more complex model that includes limited no- 
tions of syntax and semantics. They are often implemented using a cascade of finite 
state automata. 

5. Machine translation systems have been implemented using a range of techniques, 
from full syntactic and semantic analysis to statistical techniques based on word fre- 
quencies. 

6. In building a statistical language system, it is best to devise a model that can make good 
use of available data, even if the model seems overly simplistic. 

BIBLIOGRAPHICAL AND HISTORICAL NOTES 

n-gram letter models for language modeling were proposed by Markov (1913). Claude 
Shannon (Shannon and Weaver, 1949) was the first to generate n-gram word models of En- 
glish. Chomsky (1956, 1957) pointed out the limitations of finite-state models compared with 
context-free models, concluding "Probabilistic models give no particular insight into some of 
the basic problems of syntactic structure." This is true, but it ignores the fact that probabilis- 
tic models do provide insight into some other basic problems-problems that CFGs do not 
address. Chomsky's remarks had the unfortunate effect of scaring many people away from 
statistical model for two decades, until these models reemerged for use in speech recognition 
(Jelinek, 1976). 

Add-one smoothing is due to Jeffreys (1948)' and deleted interpolation smoothing is due 
to Jelinek and Mercer (1980), who used it for speech recognition. Other techniques include 
Witten-Bell smoothing (1991) and Good-Turing smoothing (Church and Gale, 1991). The 
later also arises frequently in bioinformatics problems. Biostatistics and probabilistic NLP 
are coming closer together, as each deals with long, structured sequences chosen from an 
alphabet of constituents. 

Simple n-gram letter and word models are not the only possible probabilistic models. 
Blei et al. (2001) describe a probabilistic text model called latent Dirichlet allocation that 
views a document as a mixture of topics, each with its own distribution of words. This model 
can be seen as an extension and rationalization of the latent semantic indexing model of 
(Deerwester et al., 1990) (see also Papadimitriou et al. (1998)) and is also related to the 
multiple cause mixture model of (Sahami et al., 1996). 

Probabilistic context-free grammars (PCFGs) answer all of Chomsky's objections 
about probabilistic models, and have advantages over CFGs. PCFGs were investigated by 
Booth (1969) and Salomaa (1969). Jelinek (1969) presents the stack decoding algorithm, a 
variation of Viterbi search that can be used to find the most probable parse with a PCFG. 
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Baker (1979) introduced the inside-outside algorithm, and 1,ari and Young (1990) described 
its uses and limitations. Charniak (1996) and Klein and Manning (2001) discuss parsing with 
treebank grammars. Stolcke and Omohundro (1994) show lhow to learn grammar rules with 
Bayesian model merging. Other algorithms for PCFGs are presented by Charniak (1993) and 
by Manning and Schiitze (1999). Collins (1999) offers a survey of the field and an explanation 
of one of the most successful programs for statistical p~arsing. 

Unfortunately, PCFGs perform worse than simple n-gram models on a variety of tasks, 
because PCFGs cannot represent information associated w ~ t h  individual words. To correct 
for that deficiency, several authors (Collins, 1996; Charniak, 1997; Hwa, 1998) have in- 
troduced versions of lexicalized probabilistic gramn~ars, ,which combine context-free and 
word-based statistics. 

The Brown Corpus (Francis and Kucera, 1967) was the first effort to collect a balanced 
corpus of text for empirical linguistics. It contained about a million words, tagged with part 
of speech. It was originally stored on 100,000 punched cards. The Penn treebank (Marcus 
et al., 1993) is a collection of about 1.6 million words. hand-parsed into trees. It is stored on 
a CD. The British National Corpus (Leech et al., 2001) extends that to 100 million words. 
The World Wide Web has over a trillion words. It is stored on over 10 million servers. 

The field of information retrieval is experiencing a regrowth in interest, sparked by the 
wide usage of Internet searching. Robertson (1977) gives an early overview, and introduces 
the probability ranking principle. Manning and Schiitze (1999) give a short introduction to 
IR in the context of statistical approaches to NLP. Baeza-Yates and Ribeiro-Neto (1999) is 
a general-purpose overview, replacing older classics by Salton and McGill (1983) and by 
Frakes and Baeza-Yates (1992). The book Managing Gigabytes (Witten et al., 1999) does 
just what the title says: explains how to efficiently index, compress, and make queries on 
corpora in the gigabyte range. The TREC conference, organized by the U.S. government's 
National Institute of Standards and Technology (NIST), hosts an annual competition for IR 
systems and publishes proceedings with results. In the first seven years of the competition 
performance roughly doubled. 

The most popular model for IR is the vector space model (Salton et al., 1975). Salton's 
work dominated the early years of the field. There are two alternative probabilistic models. 
The one we presented is based on the work of Ponte and Croft (1998). It models the joint 
probability distribution P ( D ,  Q) in terms of P(Q1D). An alternative model (Maron and 
Kuhns, 1960; Robertson and Sparck Jones, 1976) uses P ( D ( Q ) .  Lafferty and Zhai (2001) 
show that the models are based on the same joint probability distribution, but that the choice 
of model has implications for training the parameters. Our presentation is derived from theirs. 
Turtle and Croft (1992) compare the various IR models. 

Brin and Page (1998) describe the implementation of a search engine for the World 
Wide Web, including the PAGERANK algorithm, a query-independent measure of document 
quality based on an analysis of Web links. Kleinberg (1999) describes how to find au- 
thoritative sources on the Web using link analysis. Silverstein et al. (1998) investigate a 
log of a billion Web searches. Kukich (1992) surveys the literature on spelling correction. 
Porter (1980) describes the classic rule-based stemming algorithm, and Krovetz (1993) de- 
scribes a dictionary-based version. 
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Manning and Schiitze (1999) provide a good overview of document classification and 
clustering. Joachims (2001) uses statistical learning theory and support vector machines to 
give a theoretical analysis of when classification will be successful. Apt6 et al. (1994) report 
an accuracy of 96% in classifying Reuters news articles into the "Earnings" category. Koller 
and Sahami (1997) report accuracy up to 95% using a naive Bayes classifier, and up to 98.6% 
using a Bayes classifier that accounts for some dependencies among features. Lewis (1998) 
surveys forty years of application of naive Bayes techniques to text classification and retrieval. 

The journal Information Retrieval and the proceedings of the annual SIGIR conference 
cover recent developments in the field. 

Early information extraction programs include GUS (Bobrow et al., 1977) and FRUMP 

(DeJong, 1982). Some of the design of modern information extraction systems can be traced 
to work on semantic grammars in the 1970s and 1980s. For example, an interface to an 
airline reservation system with a semantic grammar would have categories like Location and 
Fly To instead of NP and VP. See Birnbaum and Selfridge (1981) for an implementation of 
a system based on semantic grammars. 

Recent information extraction has been pushed forward by the annual Message Un- 
derstand Conferences (MUC), sponsored by the U.S. government. The FASTUS system was 
done by Hobbs et al. (1997); the collection of papers in which it appears (Roche and Schabes, 
1997) lists other systems using finite state models. 

In the 1930s Petr Troyanskii applied for a patent for a "translating machine," but there 
were no computers available to implement his ideas. In March 1947, the Rockefeller Foun- 
dation's Warren Weaver wrote to Norbert Weiner, suggesting machine translation might be 
possible. Drawing on work in cryptography and information theory, Weaver wrote, "When I 
look at an article in Russian, I say: 'This is really written in English, but it has been coded 
in strange symbols. I will now proceed to decode."' For the next decade, the community 
tried to decode in this way. IBM exhibited a rudimentary system in 1954. Bar-Hillel (1960) 
and Locke and Booth (1955) describe the enthusiasm of this period. Later disillusionment 
with machine translation is described by Lindsay (1963), who also points out some of the 
obstacles to machine translation having to do with the interaction between syntax and se- 
mantics and with the need for world knowledge. The U.S. government became disappointed 
in the lack of progress, and a report (ALPAC, 1966) concluded "there is no immediate or 
predictable prospect of useful machine translation." However, limited work continued, and 
the SYSTRAN system was deployed by the U.S. Air Force in 1970 and by the European 
Community in 1976. the TAUM-METEO weather translation system was also deployed in 
1976 (Quinlan and O'Brien, 1992). Starting in the 1980s, computer power had increased 
to the point where the ALPAC findings were no longer correct. Voorhees (1993) reports 
some recent translation applications based on Wordnet. A textbook introduction is given by 
Hutchins and Somers (1992). 

Statistical machine translation harkens back to Weaver's 1947 note, but it was only in 
the 1980s that it became practical. Our presentation was based on the work of Brown and his 
colleagues at IBM (Brown et al., 1988, 1993). It is very mathematical, so the accompany- 
ing tutorial by Kevin Knight (1999) is a breath of fresh air. More recent work on statistical 
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machine translation goes beyond the bigram model to models that include some syntax (Ya- 
mada and Knight, 2001). Early work on sentence segmentation was done by Palmer and 
Hearst (1994). Michel and Plamondon (1996) cover bilingual sentence alignment. 

There are two excellent books on probabilistic language processing: Charniak (1993) 
is brief and to the point while Manning and Schiitze (1999) 1s comprehensive and up to date. 
Work on practical language processing is presented at the biennial Applied Natural Language 
Processing conference (ANLP), the conference on Empirical Methods in Natural Language 
Processing (EMNLP), and the journal Natural Language Engineering. SIGIR sponsors a 
newsletter and an annual conference on information retrieval. 

1pfjSJqp 23.1 (Adapted from Jurafsky and Martin (2000).) In this exercise we will develop a classi- 
fier for authorship: given a text, it will try to determine whiclh of two candidate authors wrote 
the text. Obtain samples of text from two different authors. Separate them into training and 
test sets. Now train a unigram word model for each author on the training set. Finally, for 
each test set, calculate its probability according to each unigram model and assign it to the 
most probable model. Assess the accuracy of this technique. Can you improve its accuracy 

STYLOMETRY with additional features? This subfield of linguistics is called stylometry; its successes in- 
clude the identification of the author of the Federalist Papers (Mosteller and Wallace, 1964) 
and some disputed works of Shakespeare (Foster, 1989). 

1-F 23.2 This exercise explores the quality of the n-gram model of language. Find or create 
a monolingual corpus of about 100,000 words. Segment it into words, and compute the fre- 
quency of each word. How many distinct words are there? Plot the frequency of words versus 
their rank (first, second, third, . . . ) on a log-log scale. Also, count frequencies of bigrams 
(two consecutive words) and trigrams (three consecuti.ve words). Now use those frequencies 
to generate language: Erom the unigram, bigram, and trigram models, in turn, generate a 100- 
word text by making random choices according to the frequency counts. Compare the three 
generated texts with actual language. Finally, calculate the p~erplexity of each model. 

1-la 23.3 This exercise concerns the detection of spam email. Spam is defined as unsolicited 
bulk commercial email messages. Dealing with spam is an annoying problem for many email 
users, so a reliable way of eliminating it would be a boon. Create a corpus of spam email and 
one of non-spam mail. Examine each corpus and decide what features appear to be useful 
for classification: unigram words? bigrams? message lengtlh, sender, time of arrival? Then 
train a classification algorithm (decision tree, naive Bayes, or some other algorithm of your 
choosing) on a training set and report its accuracy on a test set. 

23.4 Create a test set of five queries, and pose them to three major Web search engines. 
Evaluate each one for precision at 1, 3, and 10 documents returned and for mean reciprocal 
rank. Try to explain the differences. 
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23.5 Try to ascertain which of the search engines from the previous exercise are using case 
folding, stemming, synonyms, and spelling correction. 

23.6 Estimate how much storage space is necessary for the index to a billion-page corpus 
of Web pages. Show the assumptions you made. 

23.7 Write a regular expression or a short program to extract company names. Test it on a 
corpus of business news articles. Report your recall and precision. 

23.8 Select five sentences and submit them to an online translation service. Translate them 
from English to another language and back to English. Rate the resulting sentences for gram- 
maticality and preservation of meaning. Repeat the process; does the second round of itera- 
tion give worse results or the same results? Does the choice of intermediate language make a 
difference to the quality of the results? 

23.9 Collect some examples of time expressions, such as "two o'clock," "midnight," and 
"12:46." Also think up some examples that are ungrammatical, such as "thirteen o'clock or 
"half past two fifteen." Write a grammar for the time language. 

23.10 (Adapted from Knight (1999).) The IBM Model 3 machine translation model as- 
sumes that, after the word choice model proposes a list of words and the offset proposes 
possible permutations of the words, the language model can choose the best permutation. 
This exercise investigates how sensible that assumption is. Try to unscramble these proposed 
sentences into the correct order: 

have programming a seen never I language better 

loves john mary 

is the communication exchange of intentional information brought by about the produc- 
tion perception of and signs from drawn a of system signs conventional shared 

Which ones could you do? What type of knowledge did you draw upon? Train a bigram 
model from a training corpus, and use it to find the highest-probability permutation of some 
sentences from a test corpus. Report on the accuracy of this model. 

23.11 If you look in an English-French dictionary, the translation for "hear" is the verb 
"entendre." But if you train the IBM Model 3 on the Canadian Hansard, the most probable 
translation for "hear" is "Bravo." Explain why that is, and estimate what the fertility distri- 
bution for "hear" might be. (Hint: you might want to look at some Hansard text. Try a web 
search for [Hansard hear].) 



In which we connect the computer to the raw, uni/vashed world. 

PERCEPTION Perception provides agents with information about the world they inhabit. Perception 
SENSORS is initiated by sensors. A sensor is anything that can record some aspect of the environment 

and pass it as input to an agent program. The sensor could be as simple as a one-bit sensor 
that detects whether a switch is on or off or as complex as the retina of the human eye, which 
contains more than a hundred million photosensitive elements. In this chapter, our focus will 
be on vision, because that is by far the most useful sense for dealing with the physical world. 

There are a variety of sensory modalities that are available to artificial agents. Those they 
share with humans include vision, hearing, and touclh. Hearing, at least for speech, was 
covered in Section 15.6. Touch, or tactile sensing, is discussed in Chapter 25, where we 
examine its use in dexterous manipulation by robots, and the rest of this chapter will cover 
vision. Some robots can perceive modalities that are not available to the unaided human, such 
as radio, infrared, GPS, and wireless signals. Some robots do active sensing, meaning they 
send out a signal, such as radar or ultrasound, and sense the reflection of this signal off of the 
environment. 

There are two ways that an agent can use its percepts. In the feature extraction ap- 
proach, agents detect some small number of features in their sensory input and pass them 
directly to their agent program, which can act reactively to the features, or can combine them 
with other information. The wumpus agent worked in this mode, with five sensors each ex- 
tracting a one-bit feature. It is now known that a fly extracts features from the optical flow 
and feeds them directly to muscles that help it steer, alll~owing it to react and change direction 
within 30 milliseconds. 

The alternative is a model-based approach, wherein the sensory stimulus is used to 
reconstruct a model of the world. In this approach we start with a function f that maps from 
the state of the world, W, to the stimulus, S,  that the wlorld will produce: 

s = f (W) . 
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The function f is defined by physics and optics, and is fairly well understood. Generating S 
COMPUTER 
GRAPHICS from f and a real or imaginary world W is the problem addressed by computer graphics. 

Computer vision is in some sense the inverse of computer graphics: given f and S, we try to 
compute W with 

W = f - y s ) .  

Unfortunately, f does not have a proper inverse. For one thing, we cannot see around corners, 
so we cannot recover all aspects of the world from the stimulus. Moreover, even the part we 
can see is enormously ambiguous: without additional information we can not tell if S is an 
image of a toy Godzilla destroying a two-foot tall model building, or a real monster destroying 
a two-hundred foot building. We can address some of these issues by building a probability 
distribution over worlds, rather than trying to find a unique world: 

P(W) = P(WIS)P(S) . 
A more important drawback with this type of modeling is that it is solving too difficult a prob- 
lem. Consider that in computer graphics it can take several hours of computation to render 
a single frame of a movie, that 24 frames are needed per second, and that computing f is 
more difficult than computing f .  Clearly this is too much computation for a supercomputer, 
let alone a fly, to react in real time. Fortunately, the agent does not need a model of the level 
of detail used in photorealistic computer graphics. The agent need only know whether there 
is a tiger hiding in the brush, not the precise location and orientation of every hair on the 
tiger's back. 

For most of this chapter, we will see how to recognize objects, such as tigers, and we 
will see ways to do this without representing every last detail of the tiger. In Section 24.2 we 
study the process of image formation, defining some aspects of the f (W) function. First we 
look at the geometry of the process. We will see that light reflects off objects in the world, 
and onto points in the image plane in the sensor of an agent. The geometry explains why a 
large Godzilla far away looks like a small Godzilla up close. Then we look at the photometry 
of the process, which describes how light in the scene determines the brightness of points in 
the image. Together, geometry and photometry give us a model of how objects in the world 
will map into a two-dimensional array of pixels. 

With an understanding of how images are formed, we then turn to how they are pro- 
cessed. The flow of information in visual processing in both humans and computers can 
be divided into three phases. In early or low-level vision (Section 24.3) the raw image is 
smoothed to eliminate noise, and features of the two-dimensional image are extracted, partic- 
ularly edges between regions. In mid-level vision these edges are grouped together to form 
two-dimensional regions. In high-level vision (Section 24.4), the two-dimensional regions are 
recognized as actual objects in the world (Section 24.5). We study various cues in the image 
that can be harnessed to this end, including motion, stereopsis, texture, shading, and contour. 
Object recognition is important to an agent in the wild to detect tigers, and it is important 
for industrial robots to distinguish nuts from bolts. Finally, Section 24.6 describes how the 
recognition of objects can help us perform useful tasks, such as manipulation and navigation. 
Manipulation means being able to grab and use tools and other objects, and navigation means 
being able to move from place to place without bumping into anything. By keeping these 
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tasks in mind we can make sure that an agent builds only as much of a model as it needs to 
achieve its goals. 

SCENE Vision gathers light scattered from objects in a scene and creates a two-dimensional image 
IMAGE on an image plane. The image plane is coated with photosensitive material: Rhodopsin 

molecules in the retina, silver halides on photographic film, and a charge-coupled device 
(CCD) array in a digital camera. Each site in a CCD integrates the electrons released by 
photon absorption for a fixed time period. In a digital camera the image plane is subdivided 

PIXELS into a rectangular grid of a few million pixels. The eye has a similar array of pixels consisting 
of about 100 million rods and 5 million cones, arranged in a hexagonal array. 

The scene is very large and the image plane is quite small, so there needs to be some 
way of focusing the light onto the image plane. This can lbe done with or without a lens. 
Either way, the key is to define the geometry so that we can tell where each point in the scene 
will end up in the image plane. 

Images without lenses: the pinhole camera 

PINHOLECAMEM The simplest way to form an image is with a pinhole camr:ra, which consists of a pinhole 
opening, 0: at the front of a box, and an image plane at the back of the box (Figure 24.1). We 
will use a three-dimensional coordinate system with the origin at 0, and will consider a point 
P in the scene, with coordinates (X, Y, 2). P gets projected to the point P' in the image 
plane with coordinates (x, y, 2).  If f is the distance fro:m the pinhole to the image plane, then 
by similar triangles, we can derive the following equations: 

These equations define an image formation process known as perspective projection. Note 
that the Z in the denominator means that the farther away arl object is, the smaller its image 
will be. Also, note that the minus signs mean that the image is inverted, both left-right and 
uppdown, compared with the scene. 

Under perspective projection, parallel lines converge to a point on the horizon. (Think 
of railway tracks.) Let us see why this must be so. A line in the scene passing through the 
point (Xo, YO, 20)  in the direction (U, V, W )  can be described as the set of points (Xo t 
XU, Yo + XV, Zo + XW), with X varying between -oo and +m. The projection of a point 
PA from this line onto the image plane is given by 

As X + oo or X + -m, this becomes p,  = (f U/W, f V / W )  if W  # 0. We call p,  the 
VANISHING POINT vanishing point associated with the family of straight lines with direction (U, V, W). Lines 

with the same direction share the same vanishing point. 
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Figure 24.1 Geometry of image formation in the pinhole camera. 

If the object is relatively shallow compared with its distance from the camera, we can 
approximate perspective projection by scaled orthographic projection. The idea is as fol- 
lows: If the depth Z of points on the object varies within some range Zo f LIZ, with 
AZ << Zo, then the perspective scaling factor f /Z can be approximated by a constant 
s = f /Zo. The equations for projection from the scene coordinates (X, Y, Z) to the im- 
age plane become x = sX and y = sY .  Note that scaled orthographic projection is an 
approximation that is valid only for those parts of the scene with not much internal depth 
variation; it should not be used to study properties "in the large." An example to convince 
you of the need for caution: under orthographic projection, parallel lines stay parallel instead 
of converging to a vanishing point! 

Lens systems 

LENS Vertebrate eyes and modern cameras use a lens. A lens is much wider than a pinhole, enabling 
it to let in more light. This is paid for by the fact that not all the scene can be in sharp focus 
at the same time. The image of an object at distance Z in the scene is produced at a fixed 
distance from the lens Z', where the relation between Z and Z' is given by the lens equation 

1 1 1  - + - = -  
z zr f '  

in which f is the focal length of the lens. Given a certain choice of image distance Z,!, between 
the nodal point of the lens and the image plane, scene points with depths in a range around 
Zo, where Zo is the corresponding object distance, will be imaged in reasonably sharp focus. 

DEPTH OF FIELD This range of d.epths in the scene is referred to as the depth of field. 
Note that, because the object distance Z is typically much greater than the image dis- 

tance 2' or f ,  we often make the following approximation: 
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Iris 
Cornea 

Figure 24.2 Horizontal cross-section of the human 1 eye. 

Thus, the image distance 2' FZ f .  We can therefore continue to use the pinhole camera per- 
spective projection equations to describe the geometry of image formation in a lens system. 

In order to focus objects that are at different distances 2, the lens in the eye (see Fig- 
ure 24.2) changes shape, whereas the lens in a camera moves in the 2-direction. 

Light: the photometry of image formation 

Light is a crucial prerequisite for vision; without light, all irnages would be uniformly dark, 
PHOTOMETRY no matter how interesting the scene. Photometry is the study of light. For our purposes, we 

will model how the light in the scene maps into the int~ensity of light in the image plane over 
time, which we denote as I ( z ,  y).l A vision system uses this model backwards, going from 
the intensity of images to properties of the world. Figure 24.3 shows a digitized image of 
a stapler on a desk, and a close-up of a 12 x 12 block of pixels extracted from the stapler 
image. A computer program trying to interpret the image would have to start from a matrix 
of intensity values like this. 

The brightness of a pixel in the image is proportional to the amount of light directed 
toward the camera by the surface patch in the scene that projects to the pixel. This in turn 
depends on the reflectance properties of the surface patch and on the position and distribution 
of the light sources in the scene. There is also a dependence on the reflectance properties 
of the rest of the scene, because other scene surfaces  can se:rve as indirect light sources by 
reflecting light. 

SPECULAR 
REFLECTION We can model two different kinds of reflection. Specular reflection means that light 

is reflected from the outer surface of the object, and obeys the constraint that the angle of 
reflection is equal to the angle of incidence. This is the behavior of a perfect mirror. Diffuse 

DIFFUSE 
REFLECTION reflection means that the light penetrates the surface of the object, is absorbed by the object, 

When we are concerned with changes over time we will use I(x, y, t ) .  
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and is then re-emitted. For a perfectly diffusing (or Lambertian) surface the light scatters 
with equal intensity in all directions. The intensity depends only on the angle of incidence 
of the light source: a light source directly overhead will reflect the most light, and a light 
source that is almost parallel to the surface will reflect almost no light. In between those two 
extremes the reflected intensity, I ,  obeys Lambert's cosine law, 

I = k r o c o s e ,  

where I. is the intensity of the light source, B is the angle between the light source and 
the surface normal, and k  is a constant called the albedo, which depends on the reflective 
properties of the surface. It varies from 0 (for perfectly black surfaces) to 1 (for pure white 
surfaces). 

In real life, surfaces exhibit a combination of diffuse and specular properties. Modeling 
this combination on the computer is the bread and butter of computer graphics. Rendering 
realistic images is usually done by ray tracing, which aims to simulate the physical process 
of light originating from light sources and being reflected and re-reflected multiple times. 

Color: the spectrophotometry of image formation 

In Figure 24.3 we showed a black-and-white picture, merrily ignoring the fact that visible 
light comes in a range of wavelengths-ranging from 400 nm on the violet end of the spec- 
trum to 700 nm on the red end. Some light consists of a single wavelength, corresponding to 
a color of the rainbow. But other light is a mixture of different wavelengths. Does that mean 
we need a mixture of values for our I(%, y) measure, rather than a single value? If we wanted 
to represent the physics of light exactly, we would indeed. But if we want only to duplicate 
the perception of light by humans (and many other vertebrates) we can compromise. Exper- 
iments (going back to Thomas Young in 1801) have shown that any mixture of wavelengths, 
no matter how complex, can be duplicated by a mixture of just three primary colors. That is, if 
you have a light generator that can linearly combine three wavelengths (typically, we choose 
red (700 nm), green (546 nrn) and blue (436 nm)), then by adjusting knobs to give more of 

(a> (b) (c) 

Figure 24.3 (a) A photograph of a stapler on a desk. (b) Magnified view of a 12 x 12 
block of pixels from (a). (c) The associated image brightness values on a scale of 0 to 255. 
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one color and less of another you can match any combination of wavelengths, as far as human 
visual perception is concerned. This experimental fact imeans that images can be represented 
with a vector of just three intensity numbers per pixel: one for each of the three primary wave- 
lengths. In practice, one byte each results in a high-fid'elity reproduction of the image. This 
trichromatic perception of color is related to the fact th~at the retina has three types of cones 
with receptivity peaks at 650 nm, 530 nm, and 430 nm, respectively, but the exact details of 
the relationship is more complex than a one-to-one mapping. 

We have seen how light reflects off objects in the scene to form an image consisting of, say, 
five million three-byte pixels. As with all sensors there will be noise in the image, and in any 
case there is a lot of data to deal with. In this section we see what can be done to the image 
data to make it easier to deal with. We will first look at tlhe operations of smoothing the image 
to reduce noise, and of detecting edges in the image. These are called "early" or "low-level" 
operations because they are the first in a pipeline of operations. Early vision operations are 
characterized by their local nature (they can be carried out in one part of the image without 
regard for anything more than a few pixels away) and by their lack of knowledge: we can 
smooth images and detect edges without having any idea what objects are in the images. This 
makes the low-level operations good candidates for implenlentation in parallel hardware, 
either in vivo or in silicon. We will then look at one mid-level operation, segmenting the 
image into regions. This phase of operations is still operating on the image, not the scene, but 
it includes non-local processing. 

In Section 15.2, smoothing meant predicting the value of a state variable at some time 
t in the past, given evidence froin t and from other times up to the present. Now we apply 
the same idea to the spatial domain rather than the temporal: smoothing means predicting 
the value of a pixel given the surrounding pixels. Notice t,hat we must keep straight the 
difference between the observed value measured at a pixel, and the true value that should 
have been measured at that pixel. These can be different because of random measurement 
terrors or because of a systematic failure-the receptor in the CCD may have gone dead. 

One way to smooth an image is to assign to each pixel the average of its neighbors. This 
will tend to cancel out extreme values. But how many neighbors should we consider--one 
pixel away, or two, or more? One answer that works well for canceling out Gaussian noise is 

GAUSSIAN FILTER a weighted average using a Gaussian filter. Recall that the Gaussian function with standard 
deviation a is 

e-x2/202 in one dimension, or G d x )  = 

1 e - ( x 2 + ~ 2 ) / 2 u 2  in two dimensions. Gu(x, y) = 

Applying a Gaussian filter means replacing the intensity I (xO,  yo) with the sum, over all 
(x, y) pixels, of I ( z ,  y) G, (d), where d is the distance from (zo, yo) to (x, y). This kind of 
weighted sum is so common that there is a special name and notation for it. We say that the 

CONVOLUTION function h is the convolution of two functions f and g (denoted as h = f * g) if we have 
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+ oo 

h(x) = f (u) g (x - U )  in one dimension, or 
u=-00 

+m +00 

h(x, y) = x x f (u, v) g(x - u, y - v) in two dimensions. 
u=-m 01-00 

So the smoothing function is achieved by convolving the image with the Gaussian, I * G,. A 
o of 1 pixel is enough to smooth over a small amount of noise, whereas 2 pixels will smooth 
a larger amount, but at the loss of some detail. Because the Gaussian's influence fades at a 
distance, in practice we can replace the f oo in the sums with something like f 30.  

Edge detection 

EDGES The next step in early vision is to detect edges in the image plane. Edges are straight lines or 
curves in the image plane across which there is a "significant" change in image brightness. 
The goal of edge detection is to abstract away from the messy, multi-megabyte image and 
towards a more compact, abstract representation, as in Figure 24.4. The motivation is that 
edge contours in the image correspond to important scene contours. In the figure we have 
three examples of depth discontinuity, labelled 1; two surface-orientation discontinuities, 
labelled 2; a reflectance discontinuity, labelled 3; and an illumination discontinuity (shadow), 
labelled 4. Edge detection is concerned only with the image, and thus does not distinguish 
between these different types of discontinuities in the scene, but later processing will. 

Figure 24.5(a) shows an image of a scene containing a stapler resting on a desk, and 
(b) shows the output of an edge detection algorithm on this image. As you can see, there is a 
difference between the output and an ideal line drawing. The small components edges do not 
all align with each other, there are gaps where no edge appears, and there are "noise" edges 

Figure 24.4 Different kinds of edges: (1) depth discontinuities; (2) surface orientation 
discontinuities; (3) reflectance discontinuities; (4) illumination discontinuities (shadows). 
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I Figure 24.5 (a) Photograph of a stapler (b) Edges computed from (a). 1 

that do not correspond to anything of significance in the scene. Later stages of processing will 
have to correct for these errors. How do we detect edges in an image? Consider the profile 
of image brightness along a one-dimensional cross-section perpendicular to an edge-for 
example, the one between the left edge of the desk and  the wall. It looks something like what 
is shown in Figure 24.6(a). The location of the edge coirresponds to x = 50. 

Because edges correspond to locations in images where the brightness undergoes a 
sharp change, a naive idea would be to differentiate the image and look for places where the 
magnitude of the derivative If(x)  is large. Well, that allrnost works. In Figure 24.6(b), we see 
that, although there is a peak at x = 50, there are also subsidiary peaks at other locations (e.g., 
x = 75) that could be mistaken for true edges. These arise because of the presence of noise in 
the image. If we smooth the image first, the spurious peaks are diminished, as we see in (c). 

We have a chance to make an optimization here: we can combine the smoothing and 
the edge finding into a single operation. It is a theorem that Eor any functions f and g, 
the derivative of the convolution, ( f  * g)' ,  is equal to the convolution with the derivative, 
f * (g)'. So rather than smoothing the image and then differ~entiating, we can just convolve 
the image with the derivative of the Gaussian smoothing function, G&. So in one dimension 
the algorithm for edge finding is: 

1, Convolve the image 1 with GI, to obtain R. 

2. Mark as edges those peaks in I I R(x) I I that are above some prespecified threshold T. 
The threshold is chosen to eliminate spurious peaks due to noise. 

In two dimensions edges may be at any angle 0. To detect vertical edges, we have an obvious 
strategy: convolve with GL(x)G,(y). In the y direction, the effect is just to smooth (be- 
cause of the Gaussian convolution), and in the x direction, the effect is that of differentiation 
accompanied with smoothing. The algorithm for detecting vertical edges then is as follows: 

1. Convolve the image I ( x ,  y) with fv (x, y) = GL (x)G, (y) to obtain Rv (x, y) . 

2. Mark those peaks in 1 (Rv (x, y ) ( ( that are above some prespecified threshold T. 
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Figure 24.6 Top: Intensity profile I ( z )  along a one-dimensional section across a step 
edge. Middle: The derivative of intensity, It(x). Large values of this function correspond 
to edges, but the function is noisy. Bottom: The derivative of a smoothed version of the 
intensity, ( I  * G,)', which can be computed in one step as the convolution I * Gk. The noisy 
candidate edge at z = 75 has disappeared. 

In order to detect an edge at an arbitrary orientation, we need to convolve the image with two 
filters: fv = GL (x)G,(y) and fH = G; (y)G,(x), which is just fv rotated by 90'. The 
algorithm for detecting edges at arbitrary orientations is then as follows: 

1. Convolve the image I ( x ,  y) with fv (x, y) and f ~ ( x ,  y) to get Rv ( x ,  y) and RH ( x ,  y), 
respectively. Define R ( x ,  y) = R$ ( x ,  y )  + R& ( x ,  y) 

2. Mark those peaks in ( IR(x ,  y) I ( that are above some prespecified threshold T. 

Once we have marked edge pixels by this algorithm, the next stage is to link those pixels that 
belong to the same edge curves. This can be done by assuming that any two neighboring 
pixels that are both edge pixels with consistent orientations must belong to the same edge 

CANNY EDGE 
DETECTION curve. This process is called Canny edge detection after the inventor, John Canny. 

Once detected, edges form the basis for much subsequent processing: we can use them 
to do stereoptic processing, detect motion, or recognize objects. 

Image segmentation 

Humans organize their perceptual input; instead of a collection of brightness values associ- 
ated with individual photoreceptors, we perceive a number of visual groups, usually associ- 
ated with objects or parts of objects. This ability is equally important for computer vision. 
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SEGMENTATION Segmentation is the process of breaking an image into groups, based on similarities of 
the pixels. The basic adea is the following: Each image pixel can be associated with certain 
visual properties, such as brightness, color, and texturc2 Within an object, or a single part of 
an object, these attributes vary relatively little, whereas across an inter-object boundary there 
is typically a large change in one or the other of these attributes. We need to find a partition 
of the image into sets of pixels such that these constraints are satisfied as well as possible. 

There are a number of different ways in which this intuition can be formalized mathe- 
matically. For instance, Shi and Malik (2000) set this up as a graph partitioning problem. The 
nodes of the graph correspond to pixels, and edges to connections between pixels. The weight 
W,, on the edge connecting a pair of pixels i and j is based on how similar the two pixels 
are in brightness, color, texture etc. They then find par~titions that minimize a normalized cut 
criterion. Roughly speaking, the criterion for partitioning the g.raph is to minimize the sum 
of weights of connections across the groups and maximize the sum of weights of connections 
within the groups. 

Segmentation based purely on low-level, local attributes, such as brightness and color is 
an error-prone process. To reliably find boundaries associated with objects, one should also 
incorporate high-level knowledge of the kinds of objects one may expect to encounter in a 
scene. The Hidden Markov model formalism makes this possible for speech recognition; in 
the context of images such a unified framework remains a topic of active research. In any 
case, high-level knowledge of objects is the subject of the next section. 

In this section we show how to go from the two-dimensional image to a three-dimensional 
representation of the scene. It is important to reason about the scene, because, after all, the 
agent lives in the world, not in the image plane, and the goal of vision is to be able to interact 
with objects in the world. However, most agents need only a limited abstract representation 
of certain aspects of the scene, not of every detail. The algorithms we have seen in the rest 
of the book for dealing with the world depend on having concise descriptions of objects, not 
exhaustive enumerations of every three-dimensional surface patch. 

OBJECT 
RECOGNITION First we will cover object recognition, the process of converting features of the image 

(such as edges) into model of known objects (such as staplers). Object recognition consists 
of three steps: Segmenting the scene into distinct objects, determining the position and ori- 
entation of each object relative to the observer, and determining the shape of each object. 

Discovering the position and orientation of an object relative to the observer (the so- 
POSE called pose of the object) is most important for manipulation and navigation tasks. To move 

around in a crowded factory floor, one needs to know the locations of the obstacles, so that 
one can plan a path that avoids them. If one wants to pick up and grasp an object, one needs 
to know its position relative to the hand, so that an appropriate trajectory of moves can be 
generated. Manipulation and navigation actions typically are done in a control loop setting: 

Texture properties are based on statistics measured in a small patch centered at the pixel. 
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SLANT 

TILT 

the sensory information provides feedback to modify the motion of the robot, or the motion 
of the robot's arm. 

Let us specify position and orientation in mathematical terms. The position of a point P 
in the scene is characterized by three numbers, the (X, Y, Z )  coordinates of P in a coordinate 
frame with its origin at the pinhole and the Z-axis along the optical axis (Figure 24.1). What 
we have available is the perspective projection of the point in the image (x, y) . This specifies 
the ray from the pinhole along which P lies; what we do not know is the distance. The term 
"orientation" could be used in two senses: 

1.  The orientation of the object as a whole. This can be specified in terms of a three- 
dimensional rotation relating its coordinate frame to that of the camera. 

2. The orientation of the surface of the object at P. This can be specified by a normal 
vector, n-that is a vector specifying the direction that is perpendicular to the surface. 
Often we express the surface orientation using the variables slant and tilt. Slant is the 
angle between the Z-axis and n. Tilt is the angle between the X-axis and the projection 
of n on the image plane. 

When the camera moves relative to an object, both the object's distance and its orientation 
SHAPE change. What is preserved is the shape of the object. If the object is a cube, that fact is 

not changed when the object moves. Geometers have been attempting to formalize shape for 
centuries, the basic concept being that shape is what remains unchanged under some group of 
transformations, for example, combinations of rotations and translations. The difficulty lies in 
finding a representation of global shape that is general enough to deal with the wide variety of 
objects in the real world-not just simple forms like cylinders, cones, and spheres-and yet 
can be recovered easily from the visual input. The problem of characterizing the local shape 
of a surface is much better understood. Essentially, this can be done in terms of curvature: 
how does the surface normal change as one moves in different directions on the surface. For 
a plane, there is no change at all. For a cylinder, if one moves parallel to the axis, there is 
no change, but in the perpendicular direction, the surface normal rotates at a rate inversely 
proportional to the radius of the cylinder, and so on. All this is studied in the subject called 
differential geometry. 

The shape of an object is relevant for some manipulation tasks (e.g., deciding where to 
grasp an object), but its most significant role is in object recognition, where geometric shape 
along with color and texture provide the most significant cues to enable us to identify objects, 
classify what is in the image as an example of some class one has seen before, and so on. 

The fundamental question is the following: Given the fact that, during perspective pro- 
jection, all points in the three-dimensional world along a ray from the pinhole have been 
projected to the same point in the image, how do we recover three-dimensional information? 
There are a number of cues available in the visual stimulus for this, including motion, binoc- 
ular stereopsis, texture, shading, and contour. Each of these cues relies on background 
assumptions about physical scenes in order to provide (nearly) unambiguous interpretations. 
We discuss each of these cues in the five subsections that follow. 
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Motion 

So far we have considered only a single image at a time.. But video cameras capture 30 frames 
per second, and the differences between frames can be an important source of information. 
If the camera moves relative to the three-dimensional scene, the resulting apparent motion 

OPTICALFLOW in the image is called optical flow. This describes the direction and speed of motion of 
features in the image as a result of relative motion between the viewer and the scene. In 
Figure 24.7(a) and (b), we show two frames from a video of' a rotating Rubik's cube. In (c) 
we display the optical flow vectors computed from these images. The optical flow encodes 
useful information about scene structure. For examplle, wh~en viewed from a moving car, 
distant objects have much slower apparent motion than close objects; thus, the rate of apparent 
motion can tell us something about distance. 

Figure 24.7 (a) A Rubik's cube on a rotating turntable. (b) The same cube, shown 19/30 
seconds later. (Courtesy of Richard Szeliski.) (c) Flow vectors calculated by comparing the 
two images in (a) and (b). (Courtesy of Joe Weber and Jitendra Malik.) <- 
The optical flow vector field can be represented by its components v,(x, y)  in the x di- 

rection and v, (z, y) in the y  direction. To measure optical flow, we need to find corresponding 
points between one time frame and the next. We exploit the fact that image patches around 
corresponding points have similar intensity patterns. Consider a block of pixels centered at 
pixel p, ( x o ,  yo) at time to. This block of pixels is to be compared with pixel blocks centered 
at various candidate pix.els qi at ( xo  + D,, yo + D y )  at time to + Dt. One possible measure 

SUMOFSQUARED DIFFERENCES of similarity is the sum of squared differences (SSD): 

Here, ( x ,  y) ranges over pixels in the block centered at ( z o ,  yo). We find the (D,, Dy )  that 
]minimizes the SSD. The optical flow at ( xo ,  yo) is then (v,, uqr) = ( D z / D t ,  Dy /Dt ) .  Alter- 

CROSS- 
CORRELATION natively, one can maximize the cross-correlation: 
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Cross-correlation works best when there is texture in the scene, resulting in windows con- 
taining a significant variation in brightness among the pixels. If one is looking at a uniform 
white wall, then the cross-correlation is going to be nearly the same for the different candidate 
matches q, and the algorithm is reduced to malung a blind guess. 

Suppose that the viewer has translational velocity T and angular velocity w (which thus 
EGOMOTION describe the egomotion). One can derive an equation relating the viewer's velocities, the 

optical flow, and the positions of objects in the scene. Assuming that f = 1, it follows that 

TY Tz 
vr(x>~) = [Ym - wzx + w,] - 3 [----- Z(X, Y) - wxy + wvx] , 

where Z(x, y) gives the z-coordinate of the point in the scene corresponding to the point in 
the image at (x, y) . 

One can get a good intuition by considering the case of pure translation. In that case, 
the flow field becomes 

Now some interesting properties come to light. Both components of the optical flow, v,(x, y) 
and v,(x, y), are zero at the point x = T,/T,, y = T,/Tz. This point is called the focus of 

FOCUS OF 
EXPANSION expansion of the flow field. Suppose we change the origin in the x-y plane to lie at the focus 

of expansion; then the expressions for optical flow take on a particularly simple form. Let 
(XI, y') be the new coordinates defined by x' = x - Tz/Tz, y' = y - Ty/Tz. Then 

This equation has some interesting applications. Suppose you are a fly trying to land on a wall 
and you want to know the time to contact at the current velocity. This time is given by ZIT,. 
Note that although the instantaneous optical flow field cannot provide either the distance Z 
or the velocity component T,, it can provide the ratio of the two and can therefore be used 
to control the landing approach. Experiments with real flies show that this is exactly what 
they use. Flies are the most dexterous fliers of any animal or machine, and it is interesting 
that they do it with a vision system that has terrible spatial resolution (having only about 600 
receptors compared to a human's 100 million) but spectacular temporal resolution. 

To recover depth, one should make use of multiple frames. If the camera is looking at 
a rigid body, the shape does not change from frame to frame, and thus we are able to better 
deal with the inherently noisy optical flow measurements. Results from one such approach 
due to Tomasi and Kanade (1992) are shown in Figures 24.8 and 24.9. 

Binocular stereopsis 

Most vertebrates have two eyes. This is useful for redundancy in case of a lost eye, but it 
helps in other ways too. Most prey have eyes on the side of the head to enable a wider field 

BINOCUIAR 
STEREOPSIS of vision. Predators have the eyes in the front, enabling them to use binocular stereopsis. 
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Figure 24.8 (a) Four frames from a video sequenc~e in which the camera is moved and 
rotated relative to the object. (b) The first frame of the sequence, annotated with small boxes 
highlighting the features found by the feature detector. (Courtesy of Carlo Tomasi.) 

Figure 24.9 (a) three-dimensional reconstruction of the locations of the image features in 
Figure 24.8, shown from above. (b) The real house, taken from the same position. 

'The idea is similar to motion parallax, except that instead of using images over time, we use 
two (or more) images separated in space, such as are provided by the forward-facing eyes of 
humans. Because a given feature in the scene will be in a different place relative to the z-axis 

DISPARIN of each image plane, if we superpose the two images, there will be a disparity in the location 
of the image feature in the two images. You can see this in Figure 24.10, where the nearest 
point of the pyramid is shifted to the left in the right image and to the right in the left image. 
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Figure 24.10 The idea of stereopsis: different camera positions result in slightly different 
two-dimensional views of the same three-dimensional scene. 

Let us work out the geometrical relationship between disparity and depth. First, we 
will consider the case when both the eyes (or cameras) are looking forward with their optical 
axes parallel. The relationship of the right camera to the left camera is then just translation 
along the x-axis by an amount b, the baseline. We can use the optical flow equations from the 
previous section to compute the horizontal and vertical disparity as H = v, At, V = v, At, 
given that T, = b/At and T, = T,  = 0. The rotational parameters w,, w,, and w, are zero. 
One obtains H = b/Z, V = 0. In words, the horizontal disparity is equal to the ratio of the 
baseline to the depth, and the vertical disparity is zero. 

FIXATE Under normal viewing conditions, humans fixate; that is, there is some point in the 
scene at which the optical axes of the two eyes intersect. Figure 24.11 shows two eyes fixated 
at a point Po, which is at a distance Z from the midpoint of the eyes. For convenience, we will 
compute the angular disparity, measured in radians. The disparity at the point of fixation Po is 
zero. For some other point P in the scene that is 6 Z  further away, we can compute the angular 
displacements of the left and right images of P, which we will call PL and PR, respectively. 
If each of these is displaced by an angle 60/2 relative to Po, then the displacement between 
PL and PR, which is the disparity of P, is just 60. From simple geometry, we have 

68 -b - ---  
6Z Z2' 

BASELINE In humans, b (the baseline) is about 6 cm. Suppose that Z is about 100 cm. Then the smallest 
detectable 68 (corresponding to the pixel size) is about 5 seconds of arc, giving a 62 of 0.4 
mm. For Z = 30 cm, we get the impressively small value 6Z = 0.036 mm. That is, at 
a distance of 30 cm, humans can discriminate depths that differ by as little as 0.036 mm, 
enabling us to thread needles and the like. 
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Figure 24.11 The relation between disparity and depth in stereopsis. 

Texture gradients 

TEXTURE Texture, in everyday language, is a property of surfaces associated with the tactile quality 
they suggest ("texture" has the same root as "textile"). In computational vision, it refers to 
a closely related concept, that of a spatially repeating pattern on a surface that can be sensed 
visually. Examples include the pattern of windows on a building, the stitches on a sweater, 
the spots on a leopard's skin, blades of grass on a lawn, pebbles on a beach and a crowd of 
people in a stadium. Sometimes the arrangement is quite periodic, as in the stitches on a 
sweater; in other instances, such as pebbles on a beach, the regularity is only in a statistical 
sense: the density of pebbles is roughly the same on different parts of the beach. 

What we just said is true in the scene. In the image, the apparent size, shape, spacing, 
TEXELS and so on of the texture elements (the texels) do indeed vary, as illustrated in Figure 24.12. 

The tiles are identical in the scene. There are two main causes for the variation in the projected 
size and shape of the tiles in the image: 

1.  Dijherences in the distances of the texels from the camera. Recall that under perspective 
projection, distant objects appear smaller. The scaling factor is 1/Z. 

2. Differences in the foreshortening of the texels. This is related to the orientation of each 
texel relative to the line of sight from the camera. If the texel is perpendicular to the 
line of sight, there is no foreshortening. The magnitude of the foreshortening effect is 
proportional to cos a ,  where a is the slant of the plane of the texel. 

Through some mathematical analysis, one can compu1.e expressions for the rate of change 
of various image texel features, such as area, foreshortening, and density. These texture 

TEXTURE 
GRADIENTS gradients are functions of the surface shape, as well as its slant and tilt with respect to the 

viewer's location. 
To recover shape from texture, one can use a two-step process: (a) measure the texture 

gradients; (b) estimate the surface shape, slant, and tilt that would give rise to the measured 
texture gradients. We show the results of this process in Figure 24.12. 



Chapter 24. Perception 

(a) (b) 

Figure 24.12 (a) A scene illustrating texture gradient. Assuming that the real texture 
is uniform allows recovery of the surface orientation. The computed surface orientation is 
indicated by overlaying a white circle and pointer, transformed as if the circle were painted 
on the surface at that point. (b) Recovery of shape from texture for a curved surface. (Images 
courtesy of Jitendra Malik and Ruth Rosenholtz (1994).) 

Shading 

Shading-variation in the intensity of light received from different portions of a surface in a 
scene-is determined by the geometry of the scene and by the reflectance properties of the 
surfaces. In computer graphics, the objective is to compute the image brightness I ( x ,  y ) ,  
given the scene geometry and reflectance properties of the objects in the scene. computer 
vision aims to invert the process-that is, to recover the geometry and reflectance properties, 
given the image brightness I ( x ,  y ) .  This has proved to be difficult to do in anything but the 
simplest cases. 

Let us start with a situation in which we can, in fact, solve for shape from shading. 
Consider a Lambertian surface illuminated by a distant point light source. We will assume 
that the surface is distant enough from the camera so that we can use orthographic projection 
as an approximation to perspective projection. The image brightness is 

I(x, Y) = kn(x ,  9) . s , 
where k is a scaling constant, n is the unit vector normal to the surface, and s is the unit vector 
in the direction of the light source. Because n and s are unit vectors, their dot product is just 
the cosine of the angle between them. The shape of the surface is captured in the variation of 
the normal vector n along the surface. Let us assume that k and s are known. Our problem 
then is to recover the surface normal vector n ( x ,  y )  given the image intensity I ( x ,  y). 

The first observation to make is that the problem of determining n, given the brightness 
I at a given pixel (z, y), is underdetermined locally. We can compute the angle that n makes 
with the light source vector, but that only constrains it to lie on a certain cone of directions 
with axis s and apex angle 19 = cos-l(11k). To proceed further, note that n cannot vary 
arbitrarily from pixel to pixel. It corresponds to the normal vector of a smooth surface patch 
and consequently must also vary in a smooth fashion-the technical term for the constraint is 
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INTEGRABILITY integrability. Several different techniques have been developed to exploit this insight. One 
is simply to rewrite n in terms of the partial derivatives; Z, and Z, of the depth Z(x, y). This 
results in a partial differential equation for Z that can be sc~lved to yield the depth Z(x, y), 
given appropriate boundary conditions. 

One can generalize the approach somewhat. It is not necessary for the surface to be 
Lambertian nor for the light source to be a point source. As long as one is able to compute 

REFLECTANCEMAP the reflectance map R(n), which specifies the brightness of' a surface patch as a function of 
its surface normal n, essentially the same kind of techniques can be used. 

The real difficulty comes in dealing with interreflections. If we consider a typical in- 
door scene, such as the objects inside an office, surfaces are illuminated not only by the 
light sources, but also by the light reflected from othcr surfaces in the scene that effectively 
serve as secondary light sources. These mutual illumination effects are quite significant. The 
reflectance map formalism completely fails in this situation: image brightness depends not 
just on the surface normal, but also on the complex spatial relationships among the different 
surfaces in the scene. 

Humans clearly do get some perception of shape from, shading, so this remains an in- 
teresting problem in spite of all these difficulties. 

Contour 

When we look at a line drawing, such as Figure 24.13, we get a vivid perception of three- 
dimensional shape and layout. How? After all, we saw earlier that there is an infinity of scene 
configurations that can give rise to the same line drawing. Note that we get even a perception 
of surface slant and tilt. It could be due to a combination of high-level knowledge (about 
typical shapes) with low-level constraints. 

We will consider the qualitative knowledge available from a line drawing. As discussed 
earlier, lines in a drawing can have multiple significance. (See Figure 24.4 and the accompa- 

Figure 24.13 An evocative line drawing. (Courtesy of Isha Malik.) - 
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nying text.) The task of evaluating the actual significance of each line in an image is called 
LINE LABELING line labeling and was one of the first tasks studied in computer vision. For now, let us deal 

with a simplified model of the world wherein the objects have no surface marks and the lines 
due to illumination discontinuities, such as shadow edges and specularities, have been re- 
moved in some preprocessing step, enabling us to limit our attention to line drawings where 
each line corresponds to either a depth or an orientation discontinuity. 

LIMB Each line then can be classified either as the projection of a limb (the locus of points on 
the surface where the line of sight is tangent to the surface) or as an edge (a surface normal 
discontinuity). In addition, each edge can be classified as convex, concave, or occluding. For 
occluding edges and limbs, we would like to figure out which of the two surfaces bordering 
the curve in the line drawing is nearer in the scene. These inferences can be represented by 

LINE LABELS giving each line one of six possible line labels as illustrated in Figure 24.14: 

1. "+" and "-" labels represent convex and concave edges, respectively. These are as- 
sociated with surface normal discontinuities wherein both surfaces that meet along the 
edge are visible. 

2. A "t" or a "-+" represents an occluding convex edge. When viewed from the camera, 
both surface patches that meet along the edge lie on the same side, one occluding the 
other. As one moves in the direction of the arrow, the surfaces are to the right. 

3. A "tt" or a "+in represents a limb. Here, the surface curves smoothly around to 
occlude itself. As one moves in the direction of the twin arrows, the surface lies to the 
right. The line of sight is tangential to the surface for all points on the limb. Limbs 
move on the surface of the object as the viewpoint changes. 

Of the 6n combinatorially possible label assignments to the n lines in a drawing, only a small 
number are physically possible. The determination of these label assignments is the line 
labeling problem. Note that the problem makes sense only if the label is the same all the way 
along a line. This is not always true, because the label can change along a line for images of 
curved objects. We will deal solely with polyhedral objects, to avoid this concern. 

Huffman (1971) and Clowes (1971) independently attempted the first systematic ap- 
proach to polyhedral scene analysis. Huffman and Clowes limited their analysis to scenes 

TRIHEDRAL with opaque trihedral solids--objects in which exactly three plane surfaces come together 
at each vertex. For scenes with multiple objects, they also ruled out object alignments that 

Figure 24.14 Different kinds of line labels. 
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Figure 24.15 The four kinds of trihedral vertices. 

would result in a violation of the trihedral assumption, such as two cubes sharing a common 
CRACKS edge. Cracks (i.e., "edges" across which the tangent planes are continuous) were also not 

permitted. For the trihedral world, Huffman and Clowes made an exhaustive listing of all 
the different types of vertices and the different ways in which they could be viewed under 
general viewpoint. The general viewpoint condition essentially ensures that if there is a small 
movement of the eye, none of the junctions changes character. For example, this condition 
implies that if three lines intersect in the image, the corresplsnding edges in the scene must 
also intersect. 

The four ways in which three plane surfaces can come together at a vertex are shown 
in Figure 24.15. These cases have been constructed by taking a cube and dividing it into 

OCTANTS eight octants. We want to generate the different possible trihedral vertices at the center of 
the cube by filling in various octants. The vertex labeled 1 corresponds to one filled octant, 3 
to three filled octants, and so on. Readers should convince themselves that these are indeed 
all the possibilities. For example, if one fills two octants in a cube, one cannot construct a 
valid trihedral vertex at the center. Note also that these four cases correspond to different 
combinations of convex and concave edges that meet at the vertex. 

The three edges meeting at the vertex partition the surrounding space into eight octants. 
A vertex can be viewed from any of the octants not occupiecl by solid material. Moving the 
viewpoint within a single octant does not result in a picture with different types of junctions. 
The vertex labeled 1 in Figure 24.15 can be viewed from any of the remaining seven octants 
to give the junction labels in Figure 24.16. 

An exhaustive listing of the different ways each vertex can be viewed results in the pos- 
sibilities shown in Figure 24.17. We get four different junction types that can be distinguished 
in the image: L-, Y-, arrow, and T-junctions. L-junctions correspond to two visible edges. Y- 
and arrow junctions correspond to a triple of edges-in a Y-junction, none of the three an- 
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I Figure 24.16 The different appearances of the vertex labeled 1 in Figure 24.15. 1 

Figure 24.17 The Huffman-Clowes label set. 

gles is greater than 180". T-junctions are associated with occlusion. When a nearer, opaque 
surface blocks the view of a more distant edge, one obtains a continuous edge meeting a half 
edge. The four T-junction labels correspond to the occlusion of four different types of edges. 

In using this junction dictionary to find a labeling for the line drawing, the problem is 
to discover which junction interpretations are globally consistent. Consistency is forced by 
the rule that each line in the picture must be assigned one and only one label along its entire 
length. Waltz (1975) proposed an algorithm for this problem (actually for an augmented ver- 
sion with shadows, cracks, and separably concave edges) that was one of the first applications 
of constraint satisfaction in A1 (see Chapter 5). In the terminology of CSPs, the variables are 
the junctions, the values are labelings for the junctions, and the constraints are that each line 
has a single label. Although the line-labeling problem for trihedral scenes is NP-complete, 
standard CSP algorithms perform well in practice. 



Section 24.5. Object Recognition 885 

Vision enables us to recognize people, animals, and inanimate objects reliably. In AI or 
computer vision, it is customary to use the term object recognition to refer to all of these 
abilities. This includes determining the class of particular objects that have been imaged- 
e.g, a face-as well as recognizing specific objects--e.g., Bill Clinton's face. Motivating 
applications include the following: 

BlOMETRlC 
IDENTIFICATION 0 Biometric identification: Criminal investigatioiis ancl access control for restricted fa- 

cilities require the ability to identify unique individuals. Fingerprints, iris scans, and 
facial photographs result in images that must be matched to specific individuals. 

CONTENT-BASED 
IMAGE RETRIEVAL 0 Content-based image retrieval: It is easy to find a location in a document, if one 

exists, for the string "cat'-any text editor provides this capability. Now consider the 
problem of finding the subset of pixels in an image which correspond to a the image of 
a cat. If one had this capability, one could answer imalge queries such as "Bill Clinton 
and Nelson Mandela together," "a skater in mid-air," "the Eiffel Tower at night," and so 
on, without having had to type in caption keywords for each photograph in a collection. 
As image and video collections grow, manual annotation cannot scale. 

0 Handwriting recognition: Examples include signaturles, address blocks on envelopes, 
amounts on checks, and pen-based input on PDA,s. 

HANDWRITING 
RECOGNITION 

Vision is used to recognize not only objects, but also activities. We can identify gaits (a 
friend's walk), expressions (a smile, a grimace), gestures (aperson waving), actions (jumping, 
dancing) and so on. Research on activity recognition is still in its infancy, so in this section 
we will concentrate on object recognition. 

The problem of visual object recognition is generally easy for people, but has proved 
to be very difficult for computers. One wants to be able to identify a person's face in spite 
of variations in illumination, pose with respect to the camera, and facial expression. Any of 
these changes causes widespread differences in pixel brightness values, so a straightforward 
comparison of pixels is unlikely to work. When one wants to recognize examples of a cat- 
egory such as "car7', one must cope also with the within-category variation. Even the very 
restricted problem of recognition of handwritten digits in postal zip codes proved to be quite 
a challenge. 

Supervised learning or pattern classification provides a natural framework for study- 
ing object recognition. Given images of positive examiples ("faces") and negative examples 
("nonfaces"), the objective is to learn a function that can map novel images to one of the 
labels face, nonface. All of the techniques from Chapters 18 and 20 are plausible candidates: 
multilayer perceptrons, decision trees, nearest-neighbor classifiers, and kernel machines have 
all been applied to object recognition problems. We should note, however, that the application 
of these techniques to object recognition is far from straightforward. 

The first challenge is image segmentation. Any image will typically contain multiple 
objects, so we need first to partition it into subsets of pixels that correspond to single ob- 
jects. Once the image has been partitioned into regions, one can then input these regions or 
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assemblies of regions into a classifier to determine object labels. Unfortunately, bottom-up 
segmentation is an error-prone process, so alternatively one might seek to find object groups 
top-down. That is, search for a subset of pixels that you can classify as a face, and if you 
succeed, you have found a group! Purely top-down approaches have high computational 
complexity, because one needs to examine image windows of different sizes, and at different 
locations, as well as compare them to all the different object hypotheses. At present, most 
practical object recognition systems use such a top-down strategy, though this might change 
as bottom-up techniques improve. 

The second challenge is to ensure that the recognition process is robust against varia- 
tions in illumination and pose. Humans can recognize objects in spite of considerable vari- 
ation in precise appearance as measured by pixel brightness values. For example, we can 
recognize a friend's face under different illumination conditions, or at different angles of 
view. As an even simpler example, consider recognizing the handwritten digit 6. One should 
be able to do this at different sizes and at different positions in the image, and in spite of small 
rotations of the figure.3 

The key point to note here is that geometrical transformations such as translation, scal- 
ing and rotation, or transformations of image brightness caused by moving light sources phys- 
ically, have a different character than the intra-category variation such as exists between dif- 
ferent human faces. Obviously, learning is the only way to learn about the different kinds of 
human faces, or the different ways of writing the digit 4. On the other hand, the effects of 
geometric and physical transformations are systematic and one should be able to factor them 
out by a proper design of the features used to represent the training instances. 

To provide invariance under geometrical transformations, one technique that has proved 
quite effective is to preprocess the image region into a standard position, scale, and orienta- 
tion. Alternatively, we can merrily ignore the causal nature of the geometrical and physical 
transformations and think of them as just other sources of variability for the classifier. In the 
training set, examples need to be provided corresponding to all these variations, and the hope 
is that the classifier will induce an appropriate set of transformations of the input so that the 
variations are factored out. 

Let us now turn to specific algorithms for object recognition. For simplicity, we focus 
on the problem in a two-dimensional setting, with both training and test examples given in 
the form of two-dimensional brightness images. In domains such as handwriting recognition, 
this is clearly sufficient. Even in the case of three-dimensional objects, an effective strategy 
is to represent them by multiple two-dimensional views (see Figure 24.18) and classify new 
objects by comparing them to (some representation of) the stored views. 

The previous section showed there are multiple cues for extracting three-dimensional 
information about a scene. Object recognition is also based on multiple cues-we identify a 
tiger by its mixture of orange and black colors, by its striped texture, and by its body shape. 

Color and texture can be represented using histograms or empirical frequency distribu- 
tions. Given an example image of a tiger, we can measure the percentage of pixels in the 
different color bins. Then, when an unknown example is presented, we can compare its color 

Complete rotation invariance is neither necessary nor desirable-one might then confuse a 6 with a 9! 
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Figure 24.18 Multiple views of two three-dimensional objects. 

histogram with that of previously seen tiger examples. To analyze textures, we consider his- 
tograms of the responses of an image to convolution with filters of various orientations and 
scales, searching for a match. 

The use of shape for object recognition has proved to be much more difficult. Broadly 
speaking, there are two main approaches: brightness-based recognition, in which pixel 
brightness values are used directly, and feature-based recognition, which involves the use of 
spatial arrangements of extracted features such as edges or key points. After discussing each 
of these two approaches in more detail, we will also address the problem of pose estimation, 
i.e., determining the location and orientation of objects in the scene. 

Brightness-based recognition 

Given the subset of image pixels that corresponds to a candidate object, define the features to 
be the raw pixel brightness values themselves. Or, in a variant, one might first convolve the 
image with various linear filters and treat the pixel vahies in the resulting images as the fea- 
tures. This approach has been very successful at tasks such as handwritten digit recognition, 
as we saw in Section 20.7. 

A variety of statistical methods have been used to develop face detectors from image 
databases, including neural networks with raw pixel inputs, decision trees with features de- 
fined by various bar and edge filters, and naive Bayes models with wavelet features. Some 
results from the latter approach are shown in Figure 24.19. 

One negative aspect of using raw pixels as feature vectors is the great redundancy inher- 
ent nn this representation. Consider two nearby pixels an  the cheek of a face; they are llkely 
to be very highly correlated because of similar geometry, illumination, etc. Data reduction 
techniques, such as principal component analysis, can be used successfully to reduce the di- 
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-19 Output of a face-finding algorithm. (Courtesy of Henry Schnei, 
lade.) 

mensionality of the feature vector, enabling recognition of such things as faces with greater 
speed than one would get in a higher-dimensional space. 

Feature-based recognition 

Instead of using raw pixel brightnesses as features, we can detect and mark spatially localized 
features such as regions and edges (Section 24.3). There are two motivations for using edges. 
One is data reduction-there are far fewer edges than image pixels. The other is illumination 
invariance-within a suitable range of contrasts, the edges will be detected at roughly the 
same locations, independent of precise lighting configuration. Edges are one-dimensional 
features; two-dimensional features (regions) and zero-dimensional features (points) have also 
been used. Note the difference in the treatment of spatial location in brightness-based and 
feature-based approaches. In brightness based approaches, this is coded implicitly as the 
index to a component of a feature vector. In feature-based approaches, the (x, y) location is 
the feature. 

The arrangement of edges is characteristic of an object-this is one reason why we can 
interpret line drawings (Figure 24.13) easily, even though such images do not occur in nature! 
The easiest way to use this knowledge is with a nearest-neighbor classifier. We pre-compute 
and store the configurations of edges corresponding to views of known objects. Given the 
configuration of edges corresponding to the unknown object in the query image, we can 
determine the "distance" to each member of a library of stored views. A nearest-neighbor 
classifier chooses the closest match. 

Many different definitions have been proposed for distances between images. One of 
the more interesting approaches is based on the idea of deformable matching. In his classic 
work On Growth and Form, D' Arcy Thompson (1917) observed that related but not identical 
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shapes can often be deformed into alignment using simple coordinate  transformation^.^ In 
this paradigm, we operationalize a notion of shape similarity as a three stage process: (1) 
solve the correspondence problem between the two slhapes, (2) use the correspondences to 
estimate an aligning transform, and (3) compute the 'distance between the two shapes as a 
sum of matching errors between corresponding points, together with a term measuring the 
magnitude of the aligning transformation. 

We represent a shape by a discrete set of points sampled from the internal or external 
contours on the shape. These can be obtained as locations of edge pixels as found by an edge 
detector, giving us a set { p l , .  . . , p N )  of N points. Figure 24.20(a) and (b) show sample 
points for two shapes. 

Now consider a particular sample point pi, together with the set of vectors originating 
from that point to all other sample points on a shape. These vectors express the configuration 
of the entire shape relative to the reference point. This leads to the following idea: associate 

SHAPECONTEXT with each sample point a descriptor, the shape context, whilch describes the coarse arrange- 
ment of the rest of the shape with respect to the point. More precisely, the shape context of pi 
is a coarse spatial histogram hi of the relative coordinates pk-pi of the remaining N- 1 points 
pk. A log-polar coordinate system is used for defining  the bins ensuring that the descriptor is 
more sensitive to differences in nearby pixels. An example is shown in Figure 24.20(c). 

Note that invariance to translation is intrinsic to the shape context definition since all 
measurements are taken with respect to points on the olbject. To achieve scale invariance, all 
radial distances are noirmalized by the mean distance betweein pairs of points. 

Shape contexts enable one to solve the correspondence problem between two similar 
but not identical shapes, such as seen in Figure 24.20(a) aind (b). Shape contexts will be 
different for different points on a single shape S,  whereas corresponding (homologous) points 
on similar shapes S and S' will tend to have similar shape contexts. We can then set up the 
problem of finding corresponding points between the two shapes as that of finding partners 
which have similar shape contexts. 

More precisely, consider a point pi on the first shape: and a point qj on the second 
shape. Let Cij = C(pi7 q j )  denote the cost of matching thesr: two points. As shape contexts 
are distributions represented as histograms, it is natural to use the X 2  distance: 

where h i ( k )  and hj (Ic) denote the Icth bin of the normalized histograms at pi and gj  . Given 
the set of costs Cij between all pairs of points i on the first shape and j on the second shape 
we want to minimize the total cost of matching subject to the constraint that the matching be 
one-to-one. This is an instance of the weighted bipartite matching problem, which can be 
solved in o ( N ~ )  time using the Hungarian algorithm. 

Given the correspondences at sample points, the corre.spondence can be extended to 
the complete shape by estimating an aligning transformatior~ that maps one shape onto the 
other. Regularized thin plate splines are particularly efl'ective. Once the shapes are aligned, 

* In modem computer graphics, this idea is referred to as morphin~g. 
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Figure 24.20 Shape context computation and matching. (a,b) Sampled edge points of two 
shapes. (c) Diagram of the log-polar histogram bins used in computing the shape contexts. 
We use 5 bins for log r and 12 bins for 8. (d-f) Example shape contexts for reference samples 
marked by the points o, o, a in (a,b). Each shape context is a log-polar histogram of the 
coordinates of the rest of the point set measured using the reference point as the origin. 
(Dark cells mean more points in the bin.) Note the visual similarity of the shape contexts for 
o and o, which were computed for relatively similar points on the two shapes. By contrast, 
the shape context for a is quite different. (g) Correspondences between (a) and (b) found 
using bipartite matching, with costs defined by the X 2  distance between histograms. 

computing similarity scores is relatively straightforward. The distance between two shapes 
can be defined as a weighted sum of the shape context distances between corresponding points 
and the bending energy associated with the thin plate spline. Given this distance measure, one 
can use a simple nearest-neighbor classifier to solve the recognition problem. The excellent 
performance of this approach on handwritten digit classification was described in Chapter 20. 

Pose Estimation 

In addition to determining what an object is, we are also interested in determining its pose, 
i.e., its position and orientation with respect to the viewer. For instance, in an industrial 
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manipulation task, the robot arm cannot pick up an object until the pose is known. In the case 
of rigid objects, whether three-dimensional or two-dimensional, this problem has a simple 

ALIGNMENTMETHOD and well defined solution based on the alignment method, which we will now develop. 
The object is represented by M features or distinguished points ml, mz, . . . , mM in 

three-dimensional space-perhaps the vertices of a polyhedral object. These are measured 
in some coordinate system that is natural for the object. The points are then subjected to 
an unknown three-dimensional rotation R, followed by translation by an unknown amount t 
and then projection to give rise to image feature points pl , pz,  . . . , p ~  on the image plane. 
In general, N # M ,  because some model points may be occluded, and the feature detector 
could nliss some features (or invent false ones due to noise). We can express this as 

p, = II(Rm, + t) == Q(m,) 

for a three-dimensional model point mi and the conresponding image point pi. Here, R 
is a rotation matrix, t is a translation, and I3 denotes perspective projection or one of its 
approximations, such as scaled orthographic projection. The net result is a transformation Q 
that will bring the the model point mi into alignment with the image point pi. Although we 
do not know Q initially, we do know (for rigid objectis) that Q must be the same for all the 
model points. 

One can solve for Q, given the three-dimensional coordlinates of three model points and 
their two-dimensional projections. The intuition is as follows: one can write down equations 
relating the coordinates of pi to those of mi. In these equations, the unknown quantities 
correspond to the parameters of the rotation matrix R and the translation vector t. If we have 
enough equations, we ought to be able to solve for Q. We will not give a proof here; we 
merely state the following result: 

Given three noncollinear points ml, m2, and m3 in the model, and their scaled 
orthographic projections pl, p2, and p3 on the image plane, there exist exactly 
two transformations from the three-dimensional model coordinate frame to a two- 
dimensional image coordinate frame. 

These transformations are related by a reflection around the image plane and can be computed 
by a simple closed-form solution. If we could identify the corresponding model features for 
three features in the image, we could compute Q, the pose of the object. In the previous 
subsection, we discussed a technique for determining correspondences using shape context 
matching. If the object has well defined corners or other interest points, then an even simpler 
technique becomes available. The idea is to generate an~d test. We have to guess an initial cor- 
respondence of an image triplet with a model triplet and use the function FIND-TRANSFORM 

to hypothesize Q. If the guessed correspondence was correct, then Q will be correct and, 
when applied to the remaining model points, will result in the prediction of the image points. 
If the guessed correspondence was incorrect, then Q will be incorrect and, when applied to 
the remaining model points, would not predict the image points. 

This is the basis of the ALIGN algorithm shown in Figure 24.21. The algorithm finds 
the pose for a given model, or returns with failure. The lworst-case time complexity of 
the algorithm is proportional to the number of combinations of model triplets and image 

N M triplets, or ( 3 )  ( ), times the cost of verifying each combination. The cost of verification 
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function A~1~N(zmage, model) returns a solution or failure 
inputs: image, a list of image feature points 

model, a list of model feature points 

for each pl , pz , p3 in T R I P L E T S ( Z ~ ~ ~ ~ )  do 
for each ml , m2, ms in T R I P L E T S ( ~ O ~ ~ ~ )  do 

Q +- FIND-TRANSFORM(PI, 132, p3, m l ,  ma, m3) 
if projection according to Q explains image then 

return Q 
return failure 

Figure 24.21 An informal description of the alignment algorithm. 

(a) (b) 

Figure 24.22 (a) Corners found in the stapler image. (b) Hypothesized reconstruction 
overlaid on the original image. (Courtesy of Clark Olson.) 

is M log N, as we must predict the image position of each of M model points, and find the 
distance to the nearest image point, a log N operation if the image points are arranged in 
an appropriate data structure. Thus, the worst-case complexity of the alignment algorithm is 
0 ( M 4 N 3  log N ) ,  where M and N are the number of model and image points, respectively. 
Techniques based on pose clustering in combination with randomization bring the complexity 
down to O(A4JV3). Results from the application of this algorithm to the stapler image are 
shown in Figure 24.22. 

24.6 USING VISION FOR MANIPULATION AND NAVIGATION 

One of the principal uses of vision is to provide information both for manipulating objects- 
picking them up, grasping them, twirling them, and so on-and for navigating while avoiding 
obstacles. The ability to use vision for these purposes is present in the most primitive of 
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animal visual systems. In many cases, the visual system is minimal, in the sense that it 
extracts from the available light field just the information the animal needs to inform its 
behavior. Quite probably, modern vision systems evolved from early, primitive organisms 
that used a photosensitive spot at one end in order to orient themselves toward (or away from) 
the light. We saw in Section 24.4 that flies use a very simple optical flow detection system 
to land on walls. A classic study, What the Frog's Eye Tells the Frog's Brain (Lettvin et al., 
1959), observes of a frog that, "He will starve to death surrounded by food if it is not moving. 
His choice of food is determined only by size and movemenl.." 

Figure 24.23 Image of a road taken from a camera inside the car. The horizontal white 
I bars indicate the search windows within which the controller searches for the lane markers. 
I The poor quality of the image is not untypical of low-resolution grayscale video. 

Computer vision systems are used in "organism~s" called robots. Let us consider a 
particular type of robot: an automated vehicle driving on a freeway. (See Figure 24.23.) First, 
we analyze the task; then, we identify the vision algorithms that will supply the information 
needed to perform those tasks well. The tasks faced by the driver include the following: 

1. Lateral control--ensure that the vehicle remains securely within its lane or changes lane 
smoothly when required. 

2. Longitudinal control-ensure that there is a safe distance to the vehicle in front. 
3. Obstacle avoidance-monitor vehicles in neighboring lanes and be prepared for evasive 

maneuvers if one of them decides to change lanes, 

The problem for the driver is to generate appropriate steering, acceleration, and braking ac- 
tions to best accomplish these tasks. 

For lateral control, one needs to maintain a representation of the position and orientation 
of the car relative to the lane. In the image shown in Figure 24.23, we can use edge detection 
algorithms to find edges corresponding to the lane marker segments. We can then fit smooth 
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curves to these edge elements. The parameters of these curves carry information about the 
lateral position of the car, the direction it is pointing relative to the lane, and the curvature of 
the lane. This information, along with information about the dynamics of the car, is all that is 
needed by the steering control system. Note also that because, from every frame to the next 
frame, there is only a small change in the position of the projection of the lane in the image, 
one knows where to look for the lane markers in the image-in the figure, we need to look 
only in the areas marked by parallel white bars. 

For longitudinal control, one needs to know distances to the vehicles in front. This can 
be accomplished with binocular stereopsis or optical flow. Both approaches can be simplified 
by exploiting the domain constraints derived from the fact that one is driving on a planar 
surface. Using these techniques, vision-controlled cars can now drive at highway speeds for 
long periods. 

The driving example makes one point very clear: for a spec& task, one does not need 
to recover all the information that, in principle, can be recovered from an image. One does 
not need to recover the exact shape of every vehicle, solve for shape-from-texture on the grass 
surface adjacent to the freeway, and so on. The needs of the task require only certain kinds of 
information and one can gain considerable computational speed and robustness by recovering 
only that information and fully exploiting the domain constraints. Our purpose in discussing 
the general approaches in the previous section was that they form the basic theory, which one 
can specialize for the needs of particular tasks. 

Although perception appears to be an effortless activity for humans, it requires a significant 
amount of sophisticated computation. The goal of vision is to extract information needed for 
tasks such as manipulation, navigation, and object recognition. 

The process of image formation is well-understood in its geometric and physical as- 
pects. Given a description of a three-dimensional scene, we can easily produce a picture 
of it from some arbitrary camera position (the graphics problem). Inverting the process 
by going from an image to a description of the scene is more difficult. 
To extract the visual information necessary for the tasks of manipulation, navigation, 
and recognition, intermediate representations have to be constructed. Early vision 
image-processing algorithms extract primitive features from the image, such as edges 
and regions. 
There are several cues in the image that enable one to obtain three-dimensional informa- 
tion about the scene: motion, stereopsis, texture, shading, and contour analysis. Each of 
these cues relies on background assumptions about physical scenes in order to provide 
nearly unambiguous interpretations. 
Object recognition in its full generality is a very hard problem. We discussed brightness- 
based and feature-based approaches. We also presented a simple algorithm for pose 
estimation. Other possibilities exist. 
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BIBLIOGRAPHICAL AND HISTORICAL NOTES 

Systematic attempts to understand human vision can be traced back to ancient times. Eu- 
clid (ca. 300 B.c.) wrote about natural perspective-the mapping that associates, with each 
point P in the three-dimensional world, the direction of the ray OP  joining the center of 
projection 0 to the point P. He was well aware of the notion of motion parallax. The math- 
ematical understanding of perspective projection, this time in the context of projection onto 
planar surfaces, had its next significant advance in the 15th century in Renaissance Italy. 
Brunelleschi (1413) is usually credited with creating the first paintings based on geometri- 
cally correct projection of a three-dimensional scene. In 1435, Alberti codified the rules and 
inspired generations of artists whose artistic achievements amaze us to this day. Particularly 
notable in their development of the science of perspective, as it was called in those days, were 
Leonardo da Vinci and Albrecht Diirer. Leonardo's late 15th century descriptions of the in- 
terplay of light and shade (chiaroscuro), umbra and penumbra regions of shadows, and aerial 
perspective are still worth reading in translation (Kemp, 1989). 

Although perspective was known to the Greeks, they were curiously confused by the 
role of the eyes in vision. Aristotle thought of the eyes as devices emitting rays, rather in 
the manner of modern laser range finders. This mistaken view was laid to rest by the work 
of Arab scientists, such as Alhazen, in the 10th century. The development of various kinds 
of cameras followed. These consisted of rooms (camera is L,atin for "chamber") where light 
would be let in through a small hole in one wall to cast an image of the scene outside on the 
opposite wall. Of course, in all these cameras, the image was inverted, which caused no end 
of confusion. If the eye was to be thought of as such an imagl~ng device, how do we see right 
side up? This enigma exercised the greatest minds of the era (including Leonardo). It took 
the work of Kepler and Descartes to settle the question. Descartes placed an eye from which 
the opaque cuticle had been removed in a hole in a window shutter. The result was an inverted 
image formed on a piece of paper laid out on the retina. While the retinal image is indeed 
inverted, this does cause a problem because the brain interprets the image the right way. In 
modern jargon, one just has to access the data structure appropriately. 

The next major advances in the understanding of vision took place in the 19th century. 
The work of Helmholtz and Wundt, described in Chapi-er 1, established psychophysical ex- 
perimentation as a rigorous scientific discipline. Through the work of Young, Maxwell, and 
Helmholtz, a trichromatic theory of color vision was established. That humans can see depth 
if the images presented to the left and right eyes are slightly different was demonstrated by 
Wheatstone's (1838) invention of the stereoscope. The device immediately became popular 
in parlors and salons throughout Europe. The essential concept of binocular stereopsis-that 
two images of a scene taken from slightly different viewpoir~ts carry information sufficient 
to obtain a three-dimensional reconstruction of the scene, was exploited in the field of pho- 
togrammetry. Key mathematical results were obtained; for example, Kruppa (1913) proved 
that, given two views of five distinct points, one could reconstruct the rotation and translation 
between the two camera positions as well as the depth of the scene (up to a scale factor). Al- 
though the geometry of stereopsis had been understood for a long time, the correspondence 
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problem in photogrammetry used to be solved by humans trying to match up corresponding 
points. The amazing ability of humans in solving the correspondence problem was illustrated 
by Julesz's (1971) invention of the random dot stereogram. Both in computer vision and 
in photogrammetry, much effort was devoted to solving the correspondence problem in the 
1970s and 1980s. 

The second half of the 19th century was a major foundational period for the psy- 
chophysical study of human vision. In the first half of the 20th century, the most significant 
research results in vision were obtained by the Gestalt school of psychology, led by Max 
Wertheimer. With the slogan "The whole is different from the sum of the parts," they pro- 
moted the view that complete forms, rather than components such as edges, should be the 
primary units of perception. 

The period after World War I1 was marked by renewed activity. Most significant was 
the work of J. J. Gibson (1950, 1979), who pointed out the importance of optical flow, as 
well as texture gradients in the estimation of environmental variables such as surface slant 
and tilt. He reemphasized the importance of the stimulus and how rich it was. Gibson, Olum, 
and Rosenblatt (1955) pointed out that the optical flow field contained enough information 
to determine the egomotion of the observer relative to the environment. In the computational 
vision community, work in that area and in the (mathematically equivalent) area of glean- 
ing structure from motion developed mainly in the 1980s and 1990s. The seminal work of 
Koenderink and van Doorn (1975), Ullman (1979), and Longuet-Higgins (1981) sparked this 
activity. Early concerns about the stability of structure from motion were allayed by the work 
of Tomasi and Kanade (1992) who showed that with the use of multiple frames, and the 
resulting wide base line, shape could be recovered quite accurately. 

Chan et al. (1998) describe the astounding visual apparatus of the fly, which has tempo- 
ral visual acuity ten times greater than humans. That is, a fly could watch a movie projected 
at up to 300 frames per second and recognize individual frames. 

A conceptual innovation introduced in the 1990s was the study of projective struc- 
ture from motion. In this setting camera calibration is not necessary, as was shown by 
Faugeras (1992). This discovery is related to the introduction of the use of geometrical 
invariants in object recognition, as surveyed by Mundy and Zisserman (1992), and the de- 
velopment of affine structure from motion by Koenderink and Van Doorn (1991). In the 
1990s, with great increase in computer speed and storage, and the widespread availability 
of digital video, motion analysis found many new applications. Building geometrical mod- 
els of real world scenes for rendering by computer graphics techniques proved particularly 
popular, led by reconstruction algorithms such as the one developed by Debevec, Taylor and 
Malik (1996). The books by Hartley and Zisserman (2000) and Faugeras et al. (2001) provide 
a comprehensive treatment of the geometry of multiple views. 

In computational vision, major early works in inferring shape from texture are due 
to Bajscy and Liebermann (1976) and Stevens (1981). Whereas this work was for planar 
surfaces, a comprehensive analysis for curved surfaces is due to Garding (1992) and Malik 
and Rosenholtz (1997). 

In the computational vision community, inferring shape from shading was first studied 
by Berthold Horn (1970). Horn and Brooks (1989) present an extensive survey of the main 
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papers in the area. This framework made a number sf  simplifying assumptions, the most 
critical of which was ignoring the effect of mutual illiumination. The importance of mutual 
illumination has been well appreciated in the computeir graphics community, where ray trac- 
ing and radiosity have been developed precisely to take mutual illumination into account. A 
theoretical and empirical critique may be found in Forsyth and Zisserman (1991). 

In the area of inferring shape from contour, after the key initial contributions of Huff- 
man (1971) and Clowes (1971), Mackworth (1973) and Sugihara (1984) completed the anal- 
ysis for polyhedral objects. Malik (1987) developed a labeling scheme for piecewise smooth 
curved objects. Kirousis and Papadimitriou (1988) showed that line-labeling for trihedral 
scenes is NP-complete. 

Understanding the visual events in the projection of smooth curved objects requires 
an interplay between differential geometry and singularity theory. The best study is Koen- 
derink's (1990) Solid Shape. 

The seminal work in three-dimensional object re~cognilion was Roberts's (1963) thesis 
at MIT. It is often considered to be the first PhD thesis in computer vision and it introduced 
several key ideas, including edge detection and model-based matching. Canny edge detec- 
tion was introduced in Canny (1986). The idea of alignment, also first introduced by Roberts, 
resurfaced in the 1980s in the work of Lowe (1987) and Huttenlocher and Ullman (1990). 
Significant improvements in the efficiency of pose esitimation by alignment were obtained 
by Olson (1994). Another major strand in research on 3D object recognition has been the 
approach based on the idea of describing shapes in terms of volumetric primitives, with gen- 
eralized cylinders, introduced by Tom Binford (197 11, proving particularly popular. CYLINDER 

While computer vision research on object recognition largely focused on issues arising 
from the projection of three-dimensional objects onto two-dimensional images, there was a 
parallel tradition in the pattern recognition community that viewed the problem as one of 
pattern classification. The motivating examples were in domains such as optical character 
recognition and handwritten zip code recognition where the primary concern is that of learn- 
ing the typical variations characteristic of a class of objects and separating them from other 
classes. See LeCun et al. (1995) for a comparison of approaches. Other work on object 
recognition includes that of Sirovitch and Kirby (1987) and of Viola and Jones (2002) for 
face recognition. Belongie et al. (2002) describe the shape context approach. Dickrnanns and 
Zapp (1987) first demonstrated visually controlled car driving on freeways at high speeds; 
Pomerleau (1993) achieved similar performance using a neural network approach. 

Vision Science: Photons to Phenomenology by Stephen Palmer (1999) provides the 
best comprehensive treatment of human vision; the books Eye, Brain and Vision by David 
Hubel (1988) and Perception by Irvin Rock (1984) are short introductions centered on neu- 
rophysiology and perception respectively. 

For the field of computer vision, the most comprehensive textbook available today is 
Computer Vision: A Modern Approach by David Forsyth and Jean Ponce. Considerably 
shorter accounts can be found in the books by Nalwa (1993) and by Trucco and Verri (1998). 
Robot Vision (Horn, 1986) and Three-Dimensional Computer Vision (Faugeras, 1993) are 
two older and still useful textbooks, each with its specialized set of topics. David Marr's 
book Vision (Marr, 1982) played a major role in connectnng computer vision to the traditional 
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areas of biological vision-psychophysics and neurobiology. Two of the main journals for 
computer vision are the IEEE Transactions on Pattern Analysis and Machine Intelligence 
and the International Journal of Computer Vision. Computer vision conferences include 
ICCV (International Conference on Computer Vision), CVPR (Computer Vision and Pattern 
Recognition), and ECCV (European Conference on Computer Vision). 

24.1 In the shadow of a tree with a dense, leafy canopy, one sees a number of light spots. 
Surprisingly, they all appear to be circular. Why? After all, the gaps between the leaves 
through which the sun shines are not likely to be circular. 

24.2 Label the line drawing in Figure 24.24, assuming that the outside edges have been la- 
beled as occluding and that all vertices are trihedral. Do this by a backtracking algorithm that 
examines the vertices in the order A, B, C, and D, picking at each stage a choice consistent 
with previously labeled junctions and edges. Now try the order B, D, A, and C. 

Figure 24.24 A drawing to be labeled, in which all vertices are trihedral. 

24.3 Consider an infinitely long cylinder of radius r oriented with its axis along the y-axis. 
The cylinder has a Lambertian surface and is viewed by a camera along the positive x-axis. 
What will you expect to see in the image if the cylinder is illuminated by a point source 
at infinity located on the positive x-axis? Explain your answer by drawing the isobrightness 
contours in the projected image. Are the contours of equal brightness uniformly spaced? 

24.4 Edges in an image can correspond to a variety of events in a scene. Consider the 
cover of this book, and assume that it is a picture of a real three-dimensional scene. Identify 
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Figure 24.25 Top view of a two-camera vision system observing a bottle with a wall I behind. 

ten different brightness edges in the image, and for each, state whether it corresponds to a 
discontinuity in (a) depth, (b) surface normal, (c) reflectance:, or (d) illumination. 

24.5 Show that convolution with a given function f c;ommutes with differentiation; that is, 
show that (f * g)' = f * g' . 

24.6 A stereoscopic system is being contemplated for terrain mapping. It will consist of two 
CCD cameras, each having 512 x 512 pixels on a 10 cn? x 10 cm square sensor. The lenses 
to be used have a focal length of 16 cm, with the focus fixed at infinity. For corresponding 
points (ul, vl) in the left image and (u2, v2) in the right image, vl = v2 because the x-axes 
in the two image planes are parallel to the epipolar lines. The optical axes of the two cameras 
are parallel. The baseline between the cameras is 1 meter. 

a. If the nearest range to be measured is 16 meters, what is the largest disparity that will 
occur (in pixels)? 

b. What is the range resolution at 16 meters, due to the pixel spacing? 
c. What range corresponds to a disparity of one pixel? 

24.7 Suppose we wish to use the alignment algorithim in an industrial situation in which 
flat parts move along a conveyor belt and are photographed by a camera vertically above 
the conveyor belt. The pose of the part is specified by three variables--one for the rota- 
tion and two for the two-dimensional position. This sinnplifies the problem and the function 
FIND-TRANSFORM needs only two pairs of corresponding irnage and model features to de- 
termine the pose. Determine the worst-case complexity of the alignment procedure. 

24.8 (Courtesy of Pietro Perona.) Figure 24.25 shows two cameras at X and Y observing a 
scene. Draw the image seen at each camera, assuming that all named points are in the same 
horizontal plane. What can be concluded from these tw'o images about the relative distances 
of points A, B, C, D, and E from the camera baseline, and on what basis? 

24.9 Which of the following are true, and which are fallse? 

a. Finding corresponding points in stereo images is the easiest phase of the stereo depth- 
finding process. 
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b. Shape-from-texture can be done by projecting a grid of light-stripes onto the scene. 

c. The Huffman-Clowes labelling scheme can deal with all polyhedral objects. 

d. In line drawings of curved objects, the line label can change from one end of the line to 
the other. 

e. In stereo views of the same scene, greater accuracy is obtained in the depth calculations 
if the two camera positions are further apart. 

f. Lines with equal lengths in the scene always project to equal lengths in the image. 

g. Straight lines in the image necessarily correspond to straight lines in the scene. 

24.10 Figure 24.23 is taken from the point of view of a car in the exit lane of a freeway. 
Two cars are visible in the lane immediately to the left. What reasons does the viewer have 
to conclude that one is closer than the other? 
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Robots are physical agents that perform tasks by manipulating the physical world. 'To do so, 
they are equipped with effectors such as legs, wheels, joints, artd grippers. Effectors have 
a single purpose: to assert physical forces on the environment.' Robots are also equipped 
with sensors, which allow them to perceive their enviromment. Present day robotics employs 
a diverse set of sensors, including cameras and ultraso~~nd to measure the environment, and 
gyroscopes and accelerometers to measure the robot's own motion. 

Most of today's robots fall into one of three primary categories. Manipulators, or robot 
arms, are physically anchored to their workplace, for examlple in a factory assembly line 
or on the International Space Station. Manipulator motion usually involves an entire chain 
d controllable joints, enabling such robots to place their effectors in any position within 
the workplace. Manipulators are by far the most common iype of industrial robots, with 
over a million units installed worldwide. Some mobile manipulators are used in hospitals to 
assist surgeons. Few car manufacturers could survxve without robotic manipulators, and some 
manipulators have even been used to generate original artwork. 

The second category is the mobile robot. Mobile robots move about their environment 
using wheels, legs, or similar mechanisms. They have been put to use delivering food in 
hospitals, moving containers at loading docks, and similar tasks. Earlier we encountered an 
example of a mobile robot: the NAVLAB unmanned lalnd velhicle (ULV) capable of driver- 
less autonomous highway navigation. Other types of mobile robots include unmanned air 
vehicles (UAV), commonly used for surveillance, crop-spraying, and military operations, au- 
tonomous underwater vehicles (AUV), used in deep sea exploration, and planetary rovers, 
such as the Sojourner robot shown in Figure 25.l(a). 

In Chapter 2 we talked about actuators, not effectors. An actuator is a control line that communicates a 
command to an effector; the effector is the physical device itself. 
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Figure 25.1 (a) NASA's Sojourner, a mobile robot that explored the surface of Mars in 
July 1997. (b) Honda's P3 and Asimo humanoid robots. 

The third type is a hybrid: a mobile robot equipped with manipulators. These include 
HUMANOID ROBOT the humanoid robot, whose physical design mimics the human torso. Figure 25.l(b) shows 

two such humanoid robots, both manufactured by Honda Corp. in Japan. Hybrids can apply 
their effectors further afield than anchored manipulators can, but their task is made harder 
because they don't have the rigidity that the anchor provides. 

The field of robotics also includes prosthetic devices (artificial limbs, ears, and eyes 
for humans), intelligent environments (such as an entire house that is equipped with sensors 
and effectors), and multibody systems, wherein robotic action is achieved through swarms of 
small cooperating robots. 

Real robots usually must cope with environments that are partially observable, stochas- 
tic, dynamic, and continuous. Some, but not all, robot environments are sequential and mul- 
tiagent as well. Partial observability and stochasticity are the result of dealing with a large, 
complex world. The robot cannot see around corners, and motion commands are subject to 
uncertainty due to gears slipping, friction, etc. Also, the real world stubbornly refuses to op- 
erate faster than real time. In a simulated environment, it is possible to use simple algorithms 
(such as the Q-learning algorithm described in Chapter 21) to learn in a few CPU hours from 
millions of trials. In a real environment, it might take years to run these trials. Furthermore, 
real crashes really hurt, unlike simulated ones. Practical robotic systems need to embody 
prior knowledge about the robot, its physical environment, and the tasks that the robot will 
perform so that the robot can learn quickly and perform safely. 
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So far in this book, we have taken the agent architecture-senlsors, effectors, and processors- 
as given, and we have concentrated on the agent program. The success of real robots depends 
at least as much on the design of sensors and effectors  that are appropriate for the task. 

Sensors 

PASSIVE SENSOR Sensors are the perceptual interface between robots and their environments. Passive sensors, 
such as cameras, are true observers of the environment: they capture signals that are generated 

ACTIVESENSOR by (other sources in the environment. Active sensors, such as sonar, send energy into the 
environment. They rely on the fact that this energy is reflected back to the sensor. Active 
sensors tend to provide more information than passive sensors, but at the expense of increased 
power consumption and with a danger of interference wlhen multiple active sensors are used at 
the same time. Whether active or passive, sensors can be divided into three types, depending 
on whether they record distances to objects, entire images of the environment, or properties 
of the robot itself. 

RANGE FINDER Many mobile robots make use of range finders, which are sensors that measure the 
SONAR SENSOR distance to nearby objects. One common type is the sonar sensor, also known as an ultrasonic 

transducer. Sonar sensors emit directional sound waves, which are reflected by objects, with 
some of the sound making it back into the sensor. The time: and intensity of this returning 
signal thus carry information about the distance to nearlby objects. Underwater sonar sensors 
are the technology of choice for AUVs. On land, sonar sensor;; are mainly used for near-range 

(a> (b) 
- 

Figure 25.2 (a) The SICK LMS laser range scanner; a popular range sensor for mobile 
robots. (b) Range scan obtained with a horizontally mounted sensor, projected onto a two- 
dimensional environment map. 
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collision avoidance, due to their limited angular resolution. Alternatives to sonar include 
radar (used primarily by aircraft) and laser. A laser range finder is shown in Figure 25.2. 

Some range sensors measure very short or very long distances. Close-range sensors 
include tactile sensors such as whiskers, bump panels, and touch-sensitive skin. At the other 
end of the spectrum is the Global Positioning System (GPS), which measures the distance 
to satellites that emit pulsed signals. At present, there are two dozen satellites in orbit, each 
transmitting signals on two different frequencies. GPS receivers can recover the distance to 
these satellites by analyzing phase shifts. By triangulating signals from multiple satellites, 
GPS receivers can determine their absolute location on Earth to within a few meters. Dif- 
ferential GPS involves a second ground receiver with known location, providing millimeter 
accuracy under ideal conditions. Unfortunately, GPS does not work indoors or underwater. 

The second important class of sensors is imaging sensors-the cameras that provide 
us with images of the environment and, using the computer vision techniques of Chapter 24, 
models and features of the environment. Stereo vision is particularly important in robotics, 
because it can capture depth information; although its future is somewhat uncertain as new 
active technologies for range imaging are being developed successfully. 

The third important class is proprioceptive sensors, which inform the robot of its own 
state. To measure the exact configuration of a robotic joint, motors are often equipped with 
shaft decoders that count the revolution of motors in small increments. On robot arms, 
shaft decoders can provide accurate information over any period of time. On mobile robots, 
shaft decoders that report wheel revolutions can be used for odometry-the measurement of 
distance travelled. Unfortunately, wheels tend to drift and slip, so odometry is accurate only 
over short distances. External forces, such as the current for AUVs and the wind for UAVs, 
increase positional uncertainty. Inertial sensors, such as gyroscopes, can help but cannot by 
themselves prevent the inevitable accumulation of position uncertainty. 

Other important aspects of robot state are measured by force and torque sensors. These 
are indispensable when robots handle fragile objects or objects whose exact shape and loca- 
tion is unknown. Imagine a one ton robotic manipulator screwing in a light bulb. It would be 
all too easy to apply too much force and break the bulb. Force sensors allow the robot to sense 
how hard it is gripping the bulb, and torque sensors allow it to sense how hard it is turning. 
Good sensors can measure forces in three translational and three rotational directions. 

Effectors 

Effectors are the means by which robots move and change the shape of their bodies. To 
understand the design of effectors, it will help first to talk about motion and shape in the ab- 
stract, using the concept of a degree of freedom (DOF). We count one degree of freedom for 
each independent direction in which a robot, or one of its effectors, can move. For example, 
a rigid free-moving robot such as an AUV has six degrees of freedom, three for its (x, y,  z )  
location in space and three for its angular orientation, known as yaw, roll, and pitch. These 
six degrees define the kinematic state2 or pose of the robot. The dynamic state of a robot 
includes one additional dimension for the rate of change of each kinematic dimension. 

"Kinematic" is from the Greek word for motion, as is "cinema." 



Section 25.2. Robot Hardware 905 

For nonrigid bodies, there are additional degrees of freedom within the robot itself. For 
example, in a human arm, the elbow has one degree of freedom-it can flex in one direction- 
and the wrist has three degrees of freedom-it can move up and down, side to side, and can 
also rotate. Robot joints also have 1,2, or 3 degrees of freedom each. Six degrees of freedom 
are required to place an object, such as a hand, at a particular point in a particular orientation. 

REVOLUTEJOINT The arm in Figure 25.3(a) has exactly six degrees of freedom, created by five revoliute joints 
PRISMATICJOINT that generate rotational motion and one prismatic joint that generates sliding motion. You 

can verify that the human arm as a whole has more than six degrees of freedom by a simple 
experiment: put your hand on the table, and notice that you still have the freedom to rotate 
your elbow without changing the configuration of your hand. Manipulators that have more 
degrees of freedom than required to place an end effector at a target location are easier to 
control than robots with only the minimum number of DOFs. 

(a) (b) 

Figure 25.3 (a) The Stanford Manipulator, an early robot arm with five revolute joiints (R) 
and one prismatic joint (P), for a total of six degrees of freedom. (b) Motion of a nonholo- 
nomic four-wheeled vehicle with front-wheel steering. 

For mobile robots, the DOFs are not necessarily the same as the number of actiuated ele- 
ments. Consider, for example, your average car: it can move forward or backward, ,and it can 
turn, giving it two DOFs. In contrast, a car's kinematic configuration is three-dimensional: 
on an open flat surface, one can easily maneuver a car to any (x, y) point, in any orientation. 

EFFECTIVEDOF (See Figure 25.3(b).) Thus, the car has 3 effective degrees of freedom but 2 controllable 
CONTROLLABLEDOF degrees of freedom. We say a robot is nonholonomic if it has more effective DOFs than 
NONHOLONOMIC controllable DOFs and holonomic if the two numbers are the same. Holonomic robots are 

easier to control-it would be much easier to park a car that could move sideways as well 
as forward and backward-but holonomic robots are als~o mechanically more complex. Most 
robot arms are holonomic, and most mobile robots are nonholonomic. 

For mobile robots, there exists a range of mechanisms for locomotion, including wheels, 
DIFFERENTIALDRIVE tracks, and legs. Differential drive robots possess two independently actuated wheels (or 

tracks), one on each side, as on a military tank. If both wheels move at the same velocity, 
the robot moves on a straight line. If they move in opposite directions, the robot turns on the 

SYNCHRODRIVE spot. An alternative is the synchro drive, in which each wheel can move and turn around 
its own axis. This could easily lead to chaos, if not for the constraint that all wheels always 
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(a) (b) 

Figure 25.4 (a) One of Marc Raibert's legged robots in motion. (b) Sony AIBO robots 
playing soccer. (@ 2001, The RoboCup Federation.) 

point in the same direction and move at the same speed. Both differential and synchro drives 
are nonholonomic. Some more expensive robots use holonomic drives, which usually involve 
three or more wheels that can be oriented and moved independently. 

Legs, unlike wheels, can handle very rough terrain. However, legs are notoriously 
slow on flat surfaces, and they are mechanically difficult to build. Robotics researchers have 
tried designs ranging from one leg up to dozens of legs. Legged robots have been made to 
walk, run, and even hop-as we see with the legged robot in Figure 25.4(a). This robot is 

DYNAMICALLY 
STABLE dynamically stable, meaning that it can remain upright while hopping around. A robot that 
STATICALLY STABLE can remain upright without moving its legs is called statically stable. A robot is statically 

stable if its center of gravity is above the polygon spanned by its legs. 
Other types of mobile robot use vastly different mechanisms for moving about. Air- 

borne vehicles usually use propellers or turbines. Robotic blimps rely on thermal effects to 
keep themselves aloft. Autonomous underwater vehicles often use thrusters, similar to those 
used on submarines. 

Sensors and effectors alone do not make a robot. A complete robot also needs a source 
ELECTRICMOTOR of power to drive its effectors. The electric motor is the most popular mechanism for both 
PNEUMATIC 
ACTUATION manipulator actuation and locomotion, but pneumatic actuation using compressed gas and 
HYDRAULIC 
ACTUATION hydraulic actuation using pressurized fluids also have their application niches. Most robots 

also have some means of digital communication such as a wireless network. Finally, there 
has to be a body frame to hang all the bits and pieces on and a soldering iron for emergencies. 
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Perception is the process by which robots map sensor rneasurements into internal represen- 
tations of the environment. Perception is difficult because in general the sensors ,are noisy, 
and the environment is partially observable, unpredictable, and often dynamic. As a rule of 
thumb, good internal representations have three properties: they contain enough information 
for the robot to make the right decisions, they are structured so that they can be updated ef- 
ficiently, and they are natural in the sense that internal variables correspond to natural state 
variables in the physical world. 

In Chapter 15, we saw that Kalman filters, HMMs, and dynamic Bayes nets can repre- 
sent the transition and sensor models of a partially observable environment, and we described 
both exact and approximate algorithms for updating the belief state-the posterior probabil- 
ity distribution over the environment state variables. Several dynamic Bayes net rr~odels for 
this process were shown in Chapter 15. For robotics problems, we usually include the robot's 
own past actions as observed variables in the model, as in the network shown in Figure 17.9. 
Figure 25.5 shows the notation used in this chapter: Xt is the state of the environment (in- 
cluding the robot) at time t ,  Zt is the observation received at time t ,  and At is the action taken 
after the observation is received. 

Figure 25.5 Robot perception can be viewed as temporal inference from sequences of 
actions and measurements, as illustrated by this dynamic Bayes network. 

The task of filtering, or updating the belief state, is essentially the same as in Chap- 
ter 15. The task is to compute the new belief state, P(Xt+l I zl,t+l, al,t), from the current 
belief state P(Xt ( zl,t, apt-1) and the new observation zt+l. The principal differences are 
that (1) we condition explicitly on the actions as well as the observations, and (2) we must 
now deal with continuous rather than discrete variables. 'Thus, we modify the recursive filter- 
ing equation (15.3) to use integration rather than summation: 



908 Chapter 25. Robotics 

The equation states that the posterior over the state variables X at time t + 1 is calculated 
recursively from the corresponding estimate one time step earlier. This calculation involves 
the previous action at and the current sensor measurement zt+l. For example, if our goal is 
to develop a soccer-playing robot, Xt+l might be the location of the soccer ball relative to 
the robot. The posterior P(Xt I zpt, al,t-l) is a probability distribution over all states that 
captures what we know from past sensor measurements and controls. Equation (25.1) tells us 
how to recursively estimate this location, by incrementally folding in sensor measurements 
(e.g., camera images) and robot motion commands. The probability P(Xt+l I xt, at) is called 

MOTION MODEL the transition model or motion model, and P(zt+l ( Xt+l) is the sensor model. 

LOCALIZATION Localization is a generic example of robot perception. It is the problem of determining where 
things are. Localization is one of the most pervasive perception problems in robotics, because 
knowledge about where things are is at the core of any successful physical interaction. For 
example, robot manipulators must know the location of objects they manipulate. Navigating 
robots must know where they are in order to find their way to goal locations. 

The localization problem comes in three flavors of increasing difficulty. If the initial 
TRACKING pose of the object to be localized is known, localization is a tracking problem. Traclung 
GLOBAL 
LOCALIZATION problems are characterized by bounded uncertainty. More difficult is the global localization 

problem, in which the initial location of the object is entirely unknown. Global localization 
problems turn into tracking problems once the object of interest has been localized, but they 
also involve phases where the robot has to manage very broad uncertainties. Finally, we can 
be mean to our robot and "kidnap" the object it is attempting to localize. Localization under 

KIDNAPPING 
PROBLEM such devious conditions is known as the kidnapping problem. Kidnapping is often used to 

test the robustness of a localization technique under extreme conditions. 
To keep things simple, let us assume that the robot moves slowly in a plane and that it is 

given an exact map of the environment. (An example of such a map appears in Figure 25.8.) 
The pose of such a mobile robot is defined by its two Cartesian coordinates with values J: and 
y and its heading with value 6, as illustrated in Figure 25.6(a). (Notice that we exclude the 
corresponding velocities, so this is a kinematic rather than a dynamic model.) If we arrange 
those three values in a vector, then any particular state is given by Xt = (xt, yt, ~ t ) ~ .  

In the kinematic approximation, each action consists of the "instantaneous" specifica- 
tion of two velocities-a translational velocity vt and a rotational velocity wt. For small time 
intervals At,  a crude deterministic model of the motion of such robots is given by 

f vt At  cos Bt \ 

The notation x refers to a deterministic state prediction. Of course, physical robots are 
somewhat unpredictable. This is commonly modeled by a Gaussian distribution with mean 
f (Xt, vt, wt) and covariance C,. (See Appendix A for a mathematical definition.) 
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( 4  (b) 

Figure 25.6 (a) A simplified kinematic model of a mobile robot. The robot is shovvn as a 
circle with a mark showing the forward direction. Positions and orientations at t and t + 1 
are shown, with the updates given by v tA t  and wtAt respectively. Also shown is a landmark 
at (xi, yi) observed at time t. (b) The range-sca

n 

sensor model. Two possible robot poses are 
shown for a given range scan ( z l ,  zz ,  z3, 24). It is much more likely that the pose on the left 
generated the range scan than the pose on the right. 

Next, we need a sensor model. We will consider two kinds of sensor model. The first as- 
sumes that the sensors detect stable, recognizable features of the environment called land- 

LANDMARKS marks. For each landmark, the range and bearing are reported. Suppose the robot's state is 
xt = ( x t ,  y t ,  1 9 ~ ) ~  and it senses a landmark whose location is known to be ( x i ,  y i ) T .  Without 
noise, the range and bearing can be calculated by simple geometry. (See Figure 25.6(a).) The 
exact prediction of the observed range and bearing would be 

z = h )  = ( ' (xt - x i ) 2  + ( y t  - 
arc tan  - Ot 

Again, noise distorts our measurements. To keep things simple, one might assume Gaussian 
noise with covariance 'C, 

A somewhat different sensor model is often appropriate for range scanners of the kind shown 
in Figure 25.2. Such sensors produce a vector of range values zt = (zl, . . . , z M ) T ,  each of 
whose bearings is fixed relative to the robot. Given a pose x t ,  let Z j  be the exact range along 
the jth beam direction from xt to the nearest obstacle. As before, this will be corrupted by 
Gaussian noise. Typically, we assume that the errors for the different beam directions are 
independent and identically distributed, so we have 

M 
p(zt 1 .,) = , n .-(.-2j)/2u2. 

j=1  

Figure 25.6(b) shows an example of a four-beam range scan and two possible robot poses, 
one of which is reasonably likely to have produced the observed scan and one of which is not. 
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function MONTE-CARLO- LOCALIZATION(^, z, N, model, map) returns a set of samples 
inputs: a ,  the previous robot motion command 

z, a range scan with M readings zl, . . . , z~ 
N, the number of samples to be maintained 
model, a probabilistic environment model with pose prior P(Xo), 

motion model P(X1 1x0, Ao), and range sensor noise model P ( Z ~  2) 
map, a 2D map of the environment 

static: S,  a vector of samples of size N, initially generated from P(Xo) 
local variables: W, a vector of weights of size N 

for i  = 1 to N do 
S[i]  + sample from P(X1 1x0 = S[i]  , A. = a) 
W [ i ]  +- 1 
forj =1 to Mdo 

2 +- EXACT-RANGE(J', S[ i ] ,  map) 
W [ i ] +  W [ i ]  . P ( Z =  zj12= 5) 

S c- WEIGHTED-SAMPLE-WITH-REPLACEMENT(N, S ,  W )  
return S  

Figure 25.7 A Monte Carlo localization algorithm using a range scan sensor model with 
independent noise. 

Comparing the range scan model to the landmark model, we see that the range scan model 
has the advantage that there is no need to identify a landmark before the range scan can be 
interpreted; indeed, in Figure 25.6(b), the robot faces a featureless wall. On the other hand, 
if there is a visible, identifiable landmark, it can provide immediate localization. 

Chapter 15 described the Kalman filter, which represents the belief state as a single 
multivariate Gaussian, and the particle filter, which represents the belief state by a collection 
of particles that correspond to states. Most modern localization algorithms use one of two 
representations of the robot's belief P(Xt I zpt, 

MONTE CARL0 
LOCALIZATION 

Localization using particle filtering is called Monte Carlo localization, or MCL. The 

MCL algorithm is essentially identical to the particle-filtering algorithm of Figure 15.15. All 
we need to do is supply the appropriate motion model and sensor model. Figure 25.7 shows 
one version using the range scan model. The operation of the algorithm is illustrated in 
Figure 25.8 as the robot finds out where it is inside an office building. In the first image, the 
particles are uniformly distributed based on the prior, indicating global uncertainty about the 
robot's position. In the second image, the first set of measurements arrives and the particles 
form clusters in the areas of high posterior belief. In the third, enough measurements are 
available to push all the particles to a single location. 

The Kalman filter is the other major way to localize. A Kalman filter represents the 
posterior P(Xt I zpt, al:tpl) by a Gaussian. The mean of this Gaussian will be denoted p, and 
its covariance X t .  The main problem with Gaussian beliefs is that they are only closed under 
linear motion models f and linear measurement models h. For nonlinear f or h, the result of 
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(c) 

Figure 25.8 Monte Carlo localization, a particle-filter algorithm for mobile robot local- 
ization. Top: initial, global uncertainty. Middle: approximately bimodal uncertainty after 
navigating in the (symmetric) corridor. Bottom: unimodal uncertainty after entering a dis- 
tinctive office. 
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(a) (b) 

Figure 25.9 One-dimensional illustration of a linearized motion model: (a) The function 
f ,  and the projection of a mean p, and a covariance interval (based on ICt) into time t + 1. 
(b) The linearized version is the tangent of f at p,. The projection of the mean p, is correct. 
However, the projected covariance gt+l differs from 

robot 

landmark 
- 

Figure 25.10 Example of localization using the extended Kalman filter. The robot moves 
on a straight line. As it progresses, its uncertainty increases gradually, as illustrated by the 
error ellipses. When it observes a landmark with known position, the uncertainty is reduced. 

updating a filter is usually not Gaussian. Thus, localization algorithms using the Kalman filter 
LINEARIZATION linearize the motion and sensor models. Linearization is a local approximation of a nonlinear 

function by a linear function. Figure 25.9 illustrates the concept of linearization for a (one- 
dimensional) robot motion model. On the left, it depicts a nonlinear motion model f (xt, at)  
(the control at is omitted in this graph since it plays no role in the linearization). On the right, 
this function is approximated by a linear function f"(xt, at ) .  This linear function is tangent to 
f at the point p,, the mean of our state estimate at time t. Such a linearization is called (first 

TAYLOREXPANSION degree) Taylor expansion. A Kalman Filter that linearizes f and h via Taylor expansion 
is called extended Kalman filter (or EKF). Figure 25.10 shows a sequence of estimates 
of a robot running an extended Kalman filter localization algorithm. As the robot moves, 
the uncertainty in its location estimate increases, as shown by the error ellipses. Its error 
decreases as it senses the range and bearing to a landmark with known location. The error 
finally increases again as the robot loses sight of the landmark. EKF algorithms work well if 
landmarks are easily identified. Otherwise, the posterior distribution may be multimodal, as 
in Figure 25.8(b). The problem of needing to know the identity of landmarks is an instance 
of the data association problem discussed at the end of Chapter 15. 
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Mapping 

So far, we discussed the problem of localizing a single object. In robotics, one often seeks to 
localize many objects. The classical example of such a problem is that of robotic mapping. 
Imagine a robot that is not given a map of its environment. Rather, it has to construct such a 
map by itself. Clearly, humankind has developed amazing skills in mapping places as big as 
our entire planet. So a natural problem in robotics is to devise algorithms that enable robots 
to do the same. 

In the literature, the robot mapping problem is often referred to as simultaneous local- 
SIMULTANEOUS 
LOCALIZATIONAND ization and mapping, abbreviated as SLAM.  Not only must the robot construct a map, it 
MAPPING 

must do so without knowing where it is. SLAM is one of the core problems in robotics. We 
will consider the version in which the environment is fixed. This is quite difficult enough; it 
gets much worse when the environment is allowed to change while the robot moves around. 

From a statistical perspective, mapping is a Bayesian inference problem, just like lo- 
calization. If we denote the map by M and the robot pose at time t by Xt as before, we can 
rewrite Equation (25.1) to include the entire map in the posterior: 

P(Xt+l,  M 1 Zl:t+l, a1:t) 

= ~ P ( z t + ~  1 &+I ,  M )  / P(Xt+l 1 x t ,  a t )  P ( x t ,  M 1 z ~ t ,  a~:t-I)  dxt . 

This equation actually conveys some good news: the conditional distributions needed for 
incorporating actions and measurements are essentially the same as in the robot localization 
problem. The main caveat is that the new state space-the space of all robot poses and all 
maps-has many more dimensions. Just imagine you want to represent an entire building 
in a photo-realistic way. This will probably require hundreds of millions of numbers. Each 
number will be a random variable and contributes to the enormously high dimension of the 
state space. What makes this problem even harder is that fact that the robot may not even 
know in advance how large its environment is. Thus, the dimensionality of M lhas to be 
adjusted dynamically during mapping. 

Probably the most widely used method for the SLAM problem is the EKE It is usually 
combined with a landmark sensing model and requires that the landmarks are all distinguish- 
able. In the previous section, the posterior estimate was represented by a Gaussian with mean 
p, and covariance Xt .  In the EKF approach to the SLAM problem, the posterior is again 
Gaussian, but now the mean pt is a much larger .vector. It comprises not only the robot pose 
but also the location of all features (or landmarks) in the map. If there are n such features, 
this vector will be of dimension 2n  + 3 (it takes two values to specify a landmark location 
and three to specify the robot pose). Consequently, the matrix Xt  is of dimension (2n + 3 )  
by ( 2 n  + 3) .  It possesses the following structure: 

Here Xxx is the robot pose covariance, which we already encountered in the context of lo- 
calization. CxM is a matrix of size 3 by 2n that expresses the correlation between features 
in the map and robot coordinates. Finally, X M M  is a matrix of size 2n by 2n  that specifies 



the covariance of features in the map, including all pairwise correlations. The memory re- 
quirements for EKFs are therefore quadratic in n, the number of features in the map, and the 
updating time is also quadratic in n. 

Before delving into mathematical detail, let us study the EKF solution graphically. Fig- 
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Figure 25.11 EKF applied to the robot mapping problem. The robot's path is a dotted line, 
and its estimations of its own position are shaded ellipses. Eight distinguishable landmarks of 
unknown location are shown as small dots, and their location estimations are shown as white 
ellipses. In (a)-(c) the robot's positional uncertainty is increasing, as is its uncertainty about 
the landmarks it encounters. stages during which the robot encounters new landmarks, which 
are mapped with increasing uncertainty. In (d) the robot senses the first landmark again, and 
the uncertainty of all landmarks decreases, thanks to the fact that the estimates are correlated. 
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ure 25.1 1 shows a robot in an environment with eight landmarks, arranged in two rows of 
four landmarks each. Initially, the robot has no idea where the landmarks are located. We 
will suppose that each landmark is a different color, and the robot can reliably det~ect which 
is which. The robot starts at a well-defined location towards the left, but it gradually loses 
certainty as to where it is. This is indicated by the error ellipses in Figure 25.1 l(a), whose 
width increases as the robot moves forward. As the robot moves, it senses the range and 
bearing to nearby landmarks, and these observations lead to estimates of the location of these 
landmarks. Naturally, the uncertainty in these landmark estimation is closely tied ]to the un- 
certainty in the robot's localization. Figures 25.1 1(b) and (c) illustrate the robot's belief as it 
moves further and further through its environment. 

An important detail of all these estimates-which is not at all obvious from cur graph- 
ical depiction-is the fact that we are maintaining a single Gaussian over all estimates. The 
error ellipses in Figure 25.11 are merely projections of this Gaussian into the subspaces of 
robot and landmark coordinates. This multivariate Gaussian posterior maintains correlations 
between all estimates. This observation becomes important for understanding what happens 
in Figure 25.1 l(d). Here the robot observes a previously mapped landmark. As a result, its 
own uncertainty shrinks tremendously. So does the uncertainty of all other landms~rks. This 
is a consequence of the fact that the robot estimate and the landmark estimates are highly cor- 
related in the posterior Gaussian. Finding out knowledge about one variable (here the robot 
pose) automatically reduces the uncertainty in all others. 

The EKF algorithm for mapping resembles the EKF localization algorithm in the previ- 
ous section. The key difference here arises from the added landmark variables in the posterior. 
The motion model for landmarks is trivial: they don't move. The function f ,  therefore, is the 
identity function for those variables. The measurement function is essentially the same as 
before. The only difference is that the Jacobian Ht in the EKF update equation is taken not 
only with respect to the robot pose, but also with respect to the landmark location1 that was 
observed at time t. The resulting EKF equations are even1 more horrifying than the ones stated 
before, for which reason we will simply omit them here. 

However, there is another difficulty that we have silently ignored so far: the fact that 
the size of the map M is not known in advance. Hence, the number of elements in the final 
estimate pt and Ct is unknown as well. It has to be determined dynamically as the robot 
discovers new landmarks. The solution to this problem is quite straightforward: as the robot 
discovers a new landmark, it simply adds a new element to the posterior. By initializing the 
variance of this new element to a very large value, the resulting posterior is the same as if the 
robot had known of the existence of the landmark in advance. 

Other types of perception 

Not all of robot perception is about localization and mapping. Robots also perceive the tem- 
perature, odors, acoustic signals, and so on. Many of these quantities can be estimated prob- 
abilistically, just as in localization and mapping. All that is required for such estimators 
are conditional probability distributions that characterize the evolution of state variables over 
time, and other distributions that describe the relation of measurements to state variables. 
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However, not all working perception systems in robotics rely on probabilistic represen- 
tations. In fact, while the internal state in all our examples had a clear physical interpretation, 
this does not necessarily have to be the case. For example, picture a legged robot that at- 
tempts to lift a leg over an obstacle. Suppose this robot uses a rule by which it initially moves 
the leg at a low height, but then lifts it higher and higher if the previous height resulted in a 
collision with this obstacle. Would we say that the commanded leg height is a representation 
of some physical quantity in the world? Maybe, in that it relates to the height and steepness 
of an obstacle. However, we can also think of the leg height as an auxiliary variable of the 
robot controller, devoid of direct physical meaning. Such representations are not uncommon 
in robotics, and for certain problems they work well. 

The trend in robotics is clearly towards representations with well-defined semantics. 
Probabilistic techniques outperform other approaches in many hard perceptual problems such 
as localization and mapping. However, statistical techniques are sometimes too cumbersome, 
and simpler solutions may be just as effective in practice. To help decide which approach to 
take, experience working with real physical robots is the best teacher. 

PO'NTTO-POINT MOTION In robotics, decisions ultimately involve motion of effectors. The point-to-point motion 
problem is to deliver the robot or its end-effector to a designated target location. A greater 

COMPLIANTMOTION challenge is the compliant motion problem, in which a robot moves while being in physical 
contact with an obstacle. An example of compliant motion is a robot manipulator that screws 
in a light bulb, or a robot that pushes a box across a table top. 

We begin by finding a suitable representation in which motion planning problems can 
be described and solved. It turns out that the configuration space-the space of robot states 
defined by location, orientation, and joint angles-is a better place to work than the original 

PATHPLANNING 3D space. The path planning problem is to find a path from one configuration to another 
in configuration space. We have already encountered various versions of the path planning 
problem throughout this book; in robotics, the primary characteristic of path planning is that 
it involves continuous spaces. The literature on robot path planning distinguishes a range 
of different techniques specifically aimed at finding paths in high-dimensional continuous 
spaces. The major families of approaches are known as cell decomposition and skeletoniza- 
tion. Each reduces the continuous path-planning problem to a discrete graph search problem 
by identifying some canonical states and paths within the free space. Throughout this section, 
we assume that motion is deterministic and that localization of the robot is exact. Subsequent 
sections will relax these assumptions. 

Configuration space 

The first step towards a solution to the robot motion problem is to devise an appropriate 
problem representation. We will start with a simple representation for a simple problem. 
Consider the robot arm shown in Figure 25.12(a). It has two joints that move independently. 
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Moving the joints alters the (x, y) coordinates of the elbow and the gripper. (The ann cannot 
move in the x direction.) This suggests that the robot's configuration can be described by a 
four-dimensional coordinate: (x,, ye) for the location of the elbow relative to the environment 
and (x,, y,) for the location of the gripper. Clearly, these four coordinates characterize the 

WORKSPACE full state of the robot. They constitute what is known as workspace representation, since the 
coordinates of the robot are specified in the same coordinate system as the objects it seeks to 
manipulate (or to avoid). Workspace representations are well-suited for collision checking, 
especially if the robot and all objects are represented by simple polygonal models. 

The problem with the workspace representation is that not all workspace coordinates 
are actually attainable, even in the absence of obstacles. This is because of the linkage con- 

LINKAGE straints on the space of attainable workspace coordinates. For example, the elbow position 
(x,, ye) and the gripper position (x,, y,) are always a fixed distance apart, because they are 
joined by a rigid forearm. A robot motion planner defined over workspace coordinates faces 
the challenge of generating paths that adhere to these constraints. This is particularly tricky 
because the state space is continuous and the constraints are nonlinear. 

CONFIGURATION 
SPACE It turns out to be easier to plan with a configuration space representation. Instead of 

representing the state of the robot by the Cartesian coordinates of its elements, we represent 
the state by a configuration of the robot's joints. Our example robot possesses two joints. 
Hence, we can represent its state with the two angles cp, and cpe for the shoulder joint and 
elbow joint, respectively. In the absence of any obstacles, a robot could freely take on any 
value in configuration space. In particular, when planning a path one could simply connect 
the present and the target configuration by a straight line. In following this path, the robot 
would then change its joints at a constant velocity, until a target location is reached. 

Unfortunately, configuration spaces have their own problems. The task of a robot is 
usually expressed in workspace coordinates, not in configuration space coordinates. For ex- 
ample, we might want a robot to move its end-effector to a certain coordinate in workspace, 
possibly with a specification of its orientation as well. This raises the question as to how 
to map such workspace coordinates into configuration space. In general the inverse of this 
problem, transforming configuration space coordinates into workspace coordinates, is sim- 
ple: it involves a series of quite obvious coordinate transformations. These transformations 
are linear for prismatic joints and trigonometric for revolute joints. This chain of coordi- 
nate transformation is known as kinematics, a term we already encountered when dliscussion 
mobile robots. 

The inverse problem of calculating the configuration of a robot whose effector location 
INVERSE 
KINEMATICS is specified in workspace coordinates is known as inverse kinematics. Calculating the inverse 

kinematics is generally hard, especially for robots with many DOFs. In particular, the solution 
is seldom unique. For our example robot arm, there are 1.wo distinct configurations for which 
the gripper takes on the same workspace coordinates as in the figure. 

In general, this two-link robot arm has between zero and two inverse kinematic solutions 
for any set of workspace coordinates. Most industrial robots have infinitely many solutions. 
To see how this is possible, simply imagine we added a third revolute joint to our example 
robot, one whose rotational axis is parallel to the {ones of the existing joint. In such a case, we 
can keep the location (but not the orientation!) of the gripper fixed and still freely rotate its 
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(a) (b) 

Figure 25.12 (a) Workspace representation of a robot arm with 2 DOFs. The workspace 
is a box with a flat obstacle hanging from the ceiling. (b) Configuration space of the same 
robot. Only white regions in the space are configurations that are free of collisions. The dot 
in this diagram corresponds to the configuration of the robot shown on the left. 

internal joints, for most configurations of the robot. With a few more joints (how many?) we 
can achieve the same effect while keeping the orientation constant as well. We have already 
seen an example of this in the "experiment" of placing your hand on the desk and moving 
your elbow. The kinematic constraint of your hand position is insufficient to determine the 
configuration of your elbow. In other words, the inverse kinematics of your shoulder-arm 
assembly possesses an infinite number of solutions. 

The second problem with configuration space representations arises from the obsta- 
cles that may exist in the robot's workspace. Our example in Figure 25.12(a) shows several 
such obstacles, including a free hanging obstacle that protrudes into the center of the robot's 
workspace. In workspace, such obstacles take on simple geometric forms-especially in 
most robotics textbooks, which tend to focus on polygonal obstacles. But how do they look 
in configuration space? 

Figure 25.12(b) shows the configuration space for our example robot, under the specific 
obstacle configuration shown in Figure 25.12(a). The configuration space can be decomposed 
into two subspaces: the space of all configurations that a robot may attain, commonly called 

FREE SPACE free space, and the space of unattainable configurations, called occupied space. The white 
OCCUPIEDSPACE area in Figure 25.12(b) corresponds to the free space. All other regions correspond to occu- 

pied space. The different shading of the occupied space corresponds to the different objects 
in the robot's workspace; the black region surrounding the entire free space corresponds to 
configurations in which the robot collides with itself. It is easy to see that extreme values of 
the shoulder or elbow angles cause such a violation. The two oval-shaped regions on both 
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CELL 
DECOMPOSITION 

Figure 25.13 Three robot configurations, shown in workspace and configuration space 1 
sides of the robot correspond to the table on which the robot is mounted. Similarly, the third 
oval region corresponds to the left wall. Finally, the matst interesting object in configuration 
space is the simple vertical obstacle impeding the robot's workspace. This object has a funny 
shape: it is highly nonlinear and at places even concave. With a little bit of imagination the 
reader will recognize the shape of the gripper at the upper left end. We encourage the reader 
to pause for a moment and study this important diagram. The shape of this obstacle is not at 
all obvious! The dot inside Figure 25.12(b) marks the configuration of the robot, as shown in 
Figure 25.12(a). Figure 25.13 depicts three additional configurations, both in workspace and 
in configuration space. In configuration "conf-1," the gripper encloses the vertical obstacle. 

In general, even if the robot's workspace is represented by flat polygons, the shape of 
the free space can be very complicated. In practice, therefore, one usually probes a configu- 
ration space instead of constructing it explicitly. A planner may generate a configuration and 
then test to see if it is in free space by applying the robot kinematics and then checking for 
collisions in workspace coordinates. 

Cell decomposition methods 

Our first approach to path planning uses cell decomposition-that is, it decomposes the 
free space into a finite number of contiguous regions, called cells. These regions have the 
important property that the path planning problem within a single region can be solved by 
simple means (e.g., moving along a straight line). The path planning problem then becomes a 
discrete graph search problem, very much like the search problems introduced in Chapter 3. 

The simplest cell decomposition consists of a regularly spaced grid. Figure 25.14(a) 
shows a square grid decomposition of the space and a solution path that is optimal for this 
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(a> (b) 

Figure 25.14 (a) Value function and path found for a discrete grid cell approximation of 
the configuration space. (b) The same path visualized in workspace coordinates. Notice how 
the robot bends its elbow to avoid a collision with the vertical obstacle. 

grid size. We have also used grayscale shading to indicate the value of each free-space grid 
cell-i.e., the cost of the shortest path from that cell to the goal. (These values can be com- 
puted by a deterministic form of the VALUE-ITERATION algorithm given in Figure 17.4.) 
Figure 25.14(b) shows the corresponding work space trajectory for the arm. 

Such a decomposition has the advantage that it is extremely simple to implement, but it 
also suffers from two limitations. First, it is only workable for low-dimensional configuration 
spaces, as the number of grid cells increases exponentially with d, the number of dimensions. 
Second, there is the problem of what to do with cells that are "mixed-that is, neither entirely 
within free space nor entirely within occupied space. A solution path that includes such a cell 
may not be a real solution, because there may be no way to cross the cell in the desired 
direction in a straight line. This would make the path planner unsound. On the other hand, if 
we insist that only completely free cells may be used, the planner will be incomplete, because 
it might be the case that the only paths to the goal may go through mixed cells-especially if 
the cell size is comparable to that of the passageways and clearances in the space. 

There are two ways to fix the cell decomposition method to avoid these problems. The 
first is to allow further subdivision of the mixed cells-perhaps using cells of half the original 
size. This can be continued recursively until a path is found that lies entirely within free cells. 
(Of course, the method only works if there is a way to decide if a given cell is a mixed cell, 
which is easy only if the configuration space boundaries have relatively simple mathematical 
descriptions.) This method is complete provided there is a bound on the smallest passageway 
through which a solution must pass. Although it focuses most of the computational effort on 
the tricky areas within the configuration space, it still fails to scale well to high-dimensional 
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(a> (b) 

Figure 25.15 (a) A repelling potential field pushes the robot away from obstacles. (b) 
Path found by simultaneously minimizing path length arid the potential. 

problems because each recursive splitting of a cell creates 2d smaller cells. A second way 

EXACT DECoMPoslTloN CELL to obtain a complete algorithm is to insist on an exact cell decomposition of the free space. 
This method must allow cells to be irregularly shaped where they meet the boundaries of free 
space, but the shapes must still be "simple" in the sense that it should be easy to compute a 
traversal of any free cell. This technique requires some quite advanced geometric ideas, so 
we shall not pursue it further here. 

Examining the solution path shown in Figure 25.14(a), we can see additional difficulties 
that will have to be resolved. First, notice that the path contains arbitrarily sharp comers; a 
robot moving at any finite speed could not execute such a path. Second, notice that the path 
goes very close to the obstacle. Anyone who has driven a car knows that a parking lot stall 
with one millimeter of clearance on either side is not really a parking space at all; for the same 
reason, we would prefer solution paths that are robust with respect to small motion errors. 

We would like to maximize the clearance from obstacles while minimizing the path 
POTENTIALFIELD length. This can be achieved by introducing a potential field. A potential field is a function 

defined over state space, whose value grows with the distance to the closest obstacle. Fig- 
ure 25.15(a) shows such a potential field-the darker a configuration state, the closer it is to 
an obstacle. When used in path planning, this potential field becomes an additional cost term 
in the optimization. This induces an interesting trade-off. On the one hand, the robot seeks to 
minimize path length to the goal. On the other, it tries to stay away from obstacles by virtue 
of minimizing the potential function. With the appropriate weight between both objectives, a 
resulting path may look like the one shown in Figure 25.15(b). This figure also displays the 
value function derived from the combined cost function, again calculated by value iteration. 
Clearly, the resulting path is longer, but it is also safer. 
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Skeletonization methods 

SKELETONIZATION The second major family of path-planning algorithms is based on the idea of skeletonization. 
These algorithms reduce the robot's free space to a one-dimensional representation, for which 
the planning problem is easier. This lower-dimensional representation is called a skeleton of 
the configuration space. 

VORONOI GRAPH Figure 25.16 shows an example skeletonization: it is a Voronoi graph of the free 
space-the set of all points that are equidistant to two or more obstacles. To do path plan- 
ning with a Voronoi graph, the robot first changes its present configuration to a point on the 
Voronoi graph. It is easy to show that this can always be achieved by a straight-line motion 
in configuration space. Second, the robot follows the Voronoi graph until it reaches the point 
nearest to the target configuration. Finally, the robot leaves the Voronoi graph and moves to 
the target. Again, this final step involves straight-line motion in configuration space. 

In this way, the original path-planning problem is reduced to finding a path on the 
Voronoi diagram, which is generally one-dimensional (except in certain non-generic cases) 
and has finitely many points where three or more one-dimensional curves intersect. Thus, 
finding the shortest path along the Voronoi graph is a discrete graph search problem of the 
kind discussed in Chapters 3 and 4. Following the Voronoi graph may not give us the shortest 
path, but the resulting paths tend to maximize clearance. Disadvantages of Voronoi graph 
techniques are that they are difficult to apply to higher dimensional configuration spaces, and 
that they tend to induce unnecessarily large detours when the configuration space is wide 
open. Furthermore, computing the Voronoi diagram can be difficult, specifically in configu- 
ration space, where the shape of obstacles can be complex. 

(a> (b) 

Figure 25.16 (a) The Voronoi diagram is the set of points equidistant to two or more 
obstacles in configuration space. (b) A probabilistic roadmap, composed of 400 randomly 
chosen points in free space. 
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PROBABILISTIC 
ROADMAP An alternative to the Voronoi diagrams is the probabilistic roadmap, a skeletoniza- 

tion approach that offers more possible routes, and thus deals better with wide open spaces. 
Figure 25.16(b) shows an example of a probabilistic roadmap. The graph is created by ran- 
domly generating a large number of configurations, and discarding those that do not fall into 
free space. Then, we join any two nodes by an arc if it is "easy" to reach one node from the 
other-for example, by a straight line in free space. The riesult of all this is a randomized graph 
in the robot's free space. If we add the robot's start and target configurations to this graph, 
path planning amounts to a discrete graph search. Theoretically, this approach is incomplete, 
because a bad choice of random points may leave us without any paths from start to target. 
It is possible to bound the probability of failure in terms of the number of points generated 
and certain geometric properties of the configuration space. It is also possibly to direct the 
generation of sample points towards the areas where a partial search suggests that a good 
path may be found, working bidirectionally from both the start and the goal positions. With 
these improvements, probabilistic roadmap planning tends to scale better to high-dimensional 
configuration spaces than most alternative path planning techniques. 

25.5 PLANNING UNCERTAIN MOVEMENTS 

None of the robot motion planning algorithms discussed thus far addresses a key characteris- 
tic of robotics problems:  uncertain^. In robotics, uncertainty arises from partial observability 
of the environment and from the stochastic (or unmodeled) effects of the robot's actions. Er- 
rors can also arise from the use of approximation algorithms such as particle filtering, which 
does not provide the robot with an exact belief state even if the stochastic nature of the envi- 
ronment is modeled perfectly. 

Most of today's robots use deterministic algorithms for decision malung, such as the 
various path planning algorithms discussed thus far. To do so, it is common practice to ex- 

MOSTLIKELY STATE tract the most likely state from the state distribution produced by the localization algorithm. 
The advantage of this approach is purely computational. Planning paths through configu- 
ration space is already a challenging problem; it would be worse if we had to work with 
a full probability distribution over states. Ignoring uncertainty in this way works when the 
uncertainty is small. 

Unfortunately, ignoring the uncertainty does not always work. In some problems the 
robot's uncertainty is simply too large. For example, how can we use a deterministic path 
planner to control a mobile robot that has no clue where it is? In general, if the robot's true 
state is not the one identified by the maximum likelihood rule, the resulting control will be 
suboptimal. Depending on the magnitude of the error this can lead to all sorts of unwanted 
effects, such as collisions with obstacles. 

The field of robotics has adopted a range of techniques for accommodating uncertainty. 
Some are derived from the algorithms given in Chapter 17 for decision making under uncer- 
tainty. If the robot only faces uncertainty in its state transition, but its state is fully observable, 
the problem is best modeled as a Markov Decision process, or MDP. The solution of an MDP 
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is an optimal policy, which tells the robot what to do in every possible state. In this way, 
it can handle all sorts of motion errors, whereas a single-path solution from a deterministic 
planner would be much less robust. In robotics, policies are usually called navigation func- 

NAVIGATION 
FUNCTIONS tions. The value function shown in Figure 25.14(a) can be converted into such a navigation 

function simply by following the gradient. 
Just as in Chapter 17, partial observability makes the problem much harder. The result- 

ing robot control problem is a partially observable MDP, or POMDP. In such situations, 
the robot usually maintains an internal belief state, like the ones discussed in Section 25.3. 
The solution to a POMDP is a policy defined over the robot's belief state. Put differently, 
the input to the policy is an entire probability distribution. This enables the robot to base its 
decision not only on what it knows, but also on what it does not know. For example, if it 
is uncertain about a critical state variable, it can rationally invoke an information gathering 

INFORMATION action. This is impossible in the MDP framework, since MDPs assume full observability. 
Unfortunately, techniques that solve POMDPs exactly are inapplicable to robotics-there are 
no known techniques for continuous spaces. Discretization usually produces POMDPs that 
are far too large for known techniques to handle. All we can do at present is to try to keep the 

COASTAL 
NAVIGATION pose uncertainty to a minimum; for example, the coastal navigation heuristic requires the 

robot to stay near known landmarks to decrease its pose uncertainty. This, in turn, gradually 
decreases the uncertainty in the mapping of new landmarks that are nearby, which then allows 
the robot to explore more territory. 

Robust methods 

ROBUST Uncertainty can also be handled using so-called robust methods rather than probabilistic 
methods. A robust method is one that assumes a bounded amount of uncertainty in each 
aspect of a problem, but does not assign probabilities to values within the allowed interval. 
A robust solution is one that works no matter what actual values occur, provided they are 
within the assumed interval. An extreme form of robust method is the conformant planning 
approach given in Chapter 12-it produces plans that work with no state information at all. 

FINE-MOTION 
PLANNING Here, we look at a robust method that is used for fine-motion planning (or FMP) in 

robotic assembly tasks. Fine motion planning involves moving a robot arm in very close 
proximity to a static environment object. The main difficulty with fine-motion planning is 
that the required motions and the relevant features of the environment are very small. At such 
small scales, the robot is unable to measure or control its position accurately and may also be 
uncertain of the shape of the environment itself; we will assume that these uncertainties are 
all bounded. The solutions to FMP problems will typically be conditional plans or policies 
that make use of sensor feedback during execution and are guaranteed to work in all situations 
consistent with the assumed uncertainty bounds. 

A fine-motion plan consists of a series of guarded motions. Each guarded motion con- 
sists of (1) a motion command and (2) a termination condition, which is a predicate on the 
robot's sensor values, and returns true to indicate the end of the guarded move. The mo- 
tion commands are typically compliant motions that allow the robot to slide if the motion 
command would cause collision with an obstacle. As an example, Figure 25.17 shows a 
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Figure 25.17 A two-dimensional environment, velocity uncertainty cone, and envelope of 
possible robot motions. The intended velocity is v, but with uncertainty the actual velocity 
could be anywhere in C,, resulting in a final configuration somewhere in the motion envelope, 
which means we wouldn't know if we hit the hole or not. 

two-dimensional configuration space with a narrow vertical hole. It could be the configura- 
tion space for insertion of a rectangular peg into a hole that is slightly larger. Th~e motion 
commands are constant velocities. The termination conditions are contact with a surface. To 
model uncertainty in control, we assume that instead of moving in the commanded direction, 
the robot's actual motion lies in the cone C, about it. The figure shows what would happen if 
we commanded a velocity straight down from the start region s. Because of the uncertainty 
in velocity, the robot could move anywhere in the conical envelope, possibly going into the 
hole, but more likely landing to one side of it. Because the robot would not then know which 
side of the hole it was on, it would not know which way to move. 

A more sensible strategy is shown in Figures 25.18 and 25.19. In Figure 25.18, the 
robot deliberately moves to one side of the hole. The motion command is shown in the figure, 
and the termination test is contact with any surface. In Figure 25.19, a motion command is 
given that causes the robot to slide along the surface and into the hole. This assumes we 
use a compliant motion command. Because all possible velocities in the motion envelope 
are to the right, the robot will slide to the right whenever it is in contact with a horizontal 
surface. It will slide down the right-hand vertical edge of the hole when it touches it, because 
all possible velocities are down relative to a vertical surface. It will keep moving until it 
reaches the bottom of the hole, because that is its termination condition. In spite of the 
control uncertainty, all possible trajectories of the robot terminate in contact with the bottom 
of the hole-that is, unless surface irregularities cause the robot to stick in one place. 

As one might imagine, the problem of constructing fine-motion plans is not trivial; in 
fact, it is a good deal harder than planning with exact motions. One can either choose a 
fixed number of discrete values for each motion or use the environment geometry to choose 
directions that give qualitatively different behavior. A fine-motion planner takes as input the 
configuration-space description, the angle of the velocity uncertainty cone, and a specification 
of what sensing is possible for termination (surface contact in this case). It should produce a 
multistep conditional plan or policy that is guaranteed to succeed, if such a plan exists. 

Our example assumes that the planner has an exact model of the environment, but it is 
possible to allow for bounded error in this model as follows. If the error can be described in 
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Figure 25.18 The first motion command and the resulting envelope of possible robot mo- 
tions. No matter what the error, we know the final configuration will be to the left of the 
hole. 

( Figure 25.19 The second motion command and the envelope of possible motions. Even 
with error, we will eventually get into the hole. 

terms of parameters, those parameters can be added as degrees of freedom to the configuration 
space. In the last example, if the depth and width of the hole were uncertain, we could add 
them as two degrees of freedom to the configuration space. It is impossible to move the 
robot in these directions in the configuration space or to sense its position directly. But 
both those restrictions can be incorporated when describing this problem as an FMP problem 
by appropriately specifying control and sensor uncertainties. This gives a complex, four- 
dimensional planning problem, but exactly the same planning techniques can be applied. 
Notice that unlike the decision-theoretic methods in Chapter 17, this kind of robust approach 
results in plans designed for the worst-case outcome, rather than maximizing the expected 
quality of the plan. Worst-case plans are only optimal in the decision-theoretic sense if failure 
during execution is much worse than any of the other costs involved in execution. 

So far, we have talked about how to plan motions, but not about how to move. Our plans- 
particularly those produced by deterministic path planners-assume that the robot can simply 
follow any path that the algorithm produces. In the real world, of course, this is not the case. 
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(a) (b) (c) 

Figure 25.20 Robot arm control using (a) proportional control with gain factor 1.0, (b) 
proportional control with gain factor 0.1, and (c) PD control with gain factors 0.3 for the 
proportional and 0.8 for the differential component. In all cases the robot arm tries to follow 
the path shown in gray. 1 

Robots have inertia and cannot execute arbitrary paths except at arbitrarily slow speeds. In 
most cases, the robot gets to exert forces rather than specify positions. This section discusses 
methods for calculating these forces. 

Dynamics and control 

Section 25.2 introduced the notion of dynamic state, which extends the kinematic state of a 
robot by modeling a robot's velocities. For example, in addition to the angle of a robot joint, 
the dynamic state also captures the rate of change of the angle. The transition model for a 
dynamic state representation includes the effect sf  forces on this rate of change. Such models 

DIFFERENTIAL 
EQUATIONS are typically expressed via differential equations, which are equations that relate a quantity 

(e.g., a kinematic state) to the change of the quantity over time (e.g., velocity). In principle, 
we could have chosen to plan robot motion using dynamic models, instead of our kinematic 
models. Such a methodology would lead to superior robot performance, if we could generate 
the plans. However, the dynamic state is more complex than the kinematic space, and the 
curse of dimensionality would render motion planning problems intractable for all but the 
most simple robots. For this reason, practical robot system often rely on simpler kinematic 
path planners. 

A common technique to compensate for the limitations of kinematic plans is to use a 
CONTROLLER separate mechanism, a controller, for keeping the robot on track. Controllers are techniques 

for generating robot controls in real time using feedback from the environment, so as to 
achieve a control objective. If the objective is to keep the robot on a preplanned path, it is 

REFERENCE 
CONTROLLER often referred to as a reference controller and the path is called a reference path. Controllers 
REFERENCE PATH that optimize a global cost function are known as optimal controllers. Optimal policies for 
OPTIMAL MDPs are, in effect, optimal controllers. 

On the surface, the problem of keeping a robot on a pre-specified path appears to be 
relatively straightforward. In practice, however, even this seemingly simple problem has its 
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pitfalls. Figure 25.20(a) illustrates what can go wrong. Shown there is the path of a robot that 
attempts to follow a kinematic path. Whenever a deviation occurs-whether due to noise or 
to constraints on the forces the robot can apply-the robot provides an opposing force whose 
magnitude is proportional to this deviation. Intuitively, this might appear plausible, since 
deviations should be compensated by a counter-force to keep the robot on track. However, 
as Figure 25.20(a) illustrates, our controller causes the robot to vibrate rather violently. The 
vibration is the result of a natural inertia of the robot arm: once driven back to its reference 
position the robot then overshoots, which induces a symmetric error with opposite sign. As 
Figure 25.20(a) illustrates, such overshooting may continue along an entire trajectory, and the 
resulting robot motion is far from desirable. Clearly, there is a need for better control. 

To arrive at a better controller, let us formally describe the type of controller that pro- 
duced the overshooting. Controllers that provide force in negative proportion to the observed 

PCONTROLLER error are known as P controllers. The letter P stands for proportional, indicating that the 
actual control is proportional to the error of the robot manipulator. More formally, let y ( t )  be 
the reference path, parameterized by time index t. The control at generated by a P controller 
has the following form: 

GAIN PARAMETER Here xt is the state of the robot at time t. Kp  is a so-called gain parameter of the controller 
that regulates how strongly the controller corrects for deviations between the actual state xt 
and the desired one y ( t ) .  In our example, Kp = 1. At first glance, one might think that 
choosing a smaller value for K p  remedies the problem. Unfortunately, this is not the case. 
Figure 25.20(b) shows a trajectory for K p  = .I, still exhibiting oscillatory behavior. Lower 
values of the gain parameter may simply slow down the oscillation, but do not solve the 
problem. In fact, in the absence of friction, the P controller is essentially a spring law; so it 
will oscillate indefinitely around a fixed target location. 

Traditionally, problems of this type fall into the realm of control theory, a field of 
increasing importance to researchers in AI. Decades of research in this field have led to a large 
number of controllers that are superior to the simple control law given above. In particular, a 

STABLE reference controller is said to be stable if small perturbations lead to a bounded error between 
STRICTLY STABLE the robot and the reference signal. It is said to be strictly stable if it is able to return to its 

reference path upon such perturbations. Clearly, our P controller appears to be stable but not 
strictly stable, since it fails to return to its reference trajectory. 

The simplest controller that achieves strict stability in our domain is known as a PD 
PDCONTROLLER controller. The letter 'P' stands again for proportional, and 'D' stands for derivative. PD 

controllers are described by the following equation: 

As this equation suggests, PD controllers extend P controllers by a differential component, 
which adds to the value of at a term that is proportional to the first derivative of the error 
y ( t )  - xt over time. What is the effect of such a term? In general, a derivative term dampens 
the system that is being controlled. To see, consider a situation where the error ( y ( t )  - x t )  
is changing rapidly over time, as is the case for our P controller above. The derivative of this 



Section 25.6. Moving 929 

error will then counteract the proportional term, which \will reduce the overall response to the 
perturbation. However, if same error persists and does not change, the derivative will vanish 
and the proportional term dominates the choice of control. 

Figure 25.20(c) shows the result of applying this PD controller to our robot arm, using 
as gain parameters K p  = .3  and KD = .8. Clearly, the resulting path is much smoother, and 
does not exhibit any obvious oscillations. As this example suggests, a differential term can 
make a controller stable that otherwise is not. 

In practice, PD controllers also possess failure modes. In particular, PD controllers may 
fail to regulate an error down to zero, even in the absence of external perturbatior~s. This is 
not obvious from our robot example, but sometimes an over-proportional feedback is required 
to drive an error down to zero. The solution to this problem lies in adding a third term to the 
control law, based on the integrated error over time: 

Here KI is yet another gain parameter. The term J ( y ( t )  - x t ) d t  calculates the integral of the 
error over time. The effect of this term is that long-lasting deviations between the reference 
signal and the actual state are corrected. If, for example, x-b is smaller than y ( t )  for a long 
period of time, this integral will grow until the resulting control at forces this error to shrink. 
Integral terms, then, ensure that a controller does not exhibit systematic error, at the expenses 
of increased danger of oscillatory behavior. A controller with all three terms is called a PID 

PIDCONTROLLER controller. PID controllers are widely used in industry, for a variety of control problems. 

Potential field control 

We introduced potential fields as an additional cost f~~nction in robot motion planning, but 
they can also be used for generating robot motion directly, dispensing with the path planning 
phase altogether. To achieve this, we have to define an attractive force that pulls the robot 
towards its goal configuration and a repellent potential field that pushes the robot away from 
obstacles. Such a potential field is shown in Figure 25.21. Its single global minimum is 
the target configuration, and the value is the sum of the distance to this target configuration 
and the proximity to obstacles. No planning was involved in generating the potential field 
shown in the figure. Because of this, potential fields are well-suited to real-time control. Fig- 
ure 25.21 shows two trajectories of a robot that performs hill climbing in the potential field, 
under two different initial configurations. In many applications, the potential field can be cal- 
culated efficiently for any given configuration. Moreover, optimizing the potential amounts 
to calculating the gradient of the potential for the present robot configuration. These calcula- 
tions are usually extremely efficient, especially when compared to path planning algorithms, 
all of which are exponential in the dimensionality of the configuration space (the DOFs). 

The fact that the potential field approach manages to find a path to the goal in such 
an efficient manner, even over long distances in configuration space, raises the question as to 
whether there is a need for planning in robotics at all. Are potential field techniques sufficient, 
or were we just lucky in our example? The answer is that we were indeed lucky. Potential 
fields have many local minima that can trap the robot. In this example, the robot approaches 
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Figure 25.21 Potential field control. The robot ascends a potential field composed of 
repelling forces asserted from the obstacles, and an attracting force that corresponds to the 
target configuration. (a) Successful path. (b) Local optimum. 

the obstacle by simply rotating its shoulder joint, until it gets stuck on the wrong side of the 
obstacle. The potential field is not rich enough to make the robot bend its elbow so that the 
arm fits under the obstacle. In other words, potential field techniques are great for local robot 
control but they still require global planning. Another important drawback with potential 
fields is that the forces they generate depend only on the obstacle and robot positions, not on 
the robot's velocity. Thus, potential field control is really a kinematic method and may fail if 
the robot is moving quickly. 

Reactive control 

So far we have consider control decisions that require some model of the environment for 
constructing either a reference path or a potential field. There are some difficulties with this 
approach. First, models that are sufficiently accurate are often difficult to obtain, especially in 
complex or remote environments, such as the surface of Mars. Second, even in cases where 
we can devise a model with sufficient accuracy, computational difficulties and localization 
error might render these techniques impractical. In some cases, a reflex agent design-so- 

REACTIVE CONTROL called reactive control-is more appropriate. 
HEXAPOD One such example is the six-legged robot, or hexapod shown in Figure 25.22(a), with 

the task of walking through rough terrain. The robot's sensors are grossly inadequate to obtain 
models of the terrain at sufficient accuracy for any of the path planning techniques described 
in the previous section to work. Moreover, even if we added sufficiently accurate sensors, 
the twelve degrees of freedom (two for each leg) would render the resulting path planning 
problem computationally intractable. 
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retract, lift higher 

set down 

(a> (b) 

Figure 25.22 (a) A hexapod robot (b) An augmented finite state machine (AFSM) for the 
control of a single leg. Notice that this AFSM reacts to sensor feedback: if a leg is stuck 
during the forward swinging phase, it will be lifted increasingly higher. 

EMERGENT 
BEHAVIOR 

It is possible, nonetheless, to specify a controller directly without an explicit environ- 
mental model. (We have already seen this with the PD controller, which was able to keep a 
complex robot arm on target without an explicit model of the robot dynamics; it did, how- 
ever, require a reference path generated from a kinematic model.) For the example of our 
legged robot, specifying a control law turns out to be surprisingly simple at the right level of 
abstraction. A viable control law might make each leg move in cycles, so that for some of the 
time it touches the ground, and for the remaining time it moves in the air. All six legs should 
be coordinated so that three of them (on opposite ends) are always on the ground to provide 
physical support. Such a control pattern is easily programmed and works great on flat terrain. 
On rugged terrain, obstacles may prevent legs from swinging forward. This problem can be 
overcome by a remarkably simple control rule: when a leg's forward motion is blocked, sim- 
ply retract it, lift it higher; and try again. The resulting controller is shown in Figure 25.22(b) 
as a finite state machine; it constitutes a reflex agent with state, where the internal state is 
represented by the index of the current machine state (sl through s4). 

Variants of this simple feedback-driven controller has been found to generate a remark- 
ably robust walking pattern, capable of maneuvering the robot over rugged terrain. Clearly, 
such a controller is model-free, and it does not deliberate or use search for generating con- 
trols. When executing such a controller, environment feedback plays a crucial role in the 
behavior generated by the robot. The software alone does not specify what will actually hap- 
pen when the robot is placed in an environment. Behavior that emerges through the interplay 
of a (simple) controller and a (complex) environment is often referred to as emergent be- 
havior. Strictly speaking, all robots discussed in this chapter exhibit emergent behavior, due 
to the fact that no model is perfect. Historically, however, the term has been reserved for 
control techniques that do not utilize explicit environmental models. Emergent behavior is 
also characteristic of a great number of biological organisms. 

Technically, reactive controllers are just one implerncntation of a policy for an MDP 
(or, if they have internal state, for a POMDP). In Chapter 17, we encountered several tech- 
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niques for generating policies from models of the robot and its environment. In robotics, 
crafting such policies by hand is of great practical importance, due to our inability to formu- 
late accurate models. Chapter 21 described reinforcement learning methods for constructing 
policies from experience. Some of those methods-such as Q-learning and the policy search 
methods-require no model of the environment and are capable of generating high-quality 
controllers for robots, but instead the rely on vast amounts of training data. 

SOFTWARE 
ARCHlTECTURE A methodology for structuring algorithms is called a software architecture. An architecture 

usually includes languages and tools for writing programs, as well as an overall philosophy 
for how programs can be brought together. 

Modern-day software architectures for robotics must decide how to combine reactive 
control and model-based deliberative control. In many ways, reactive and deliberate control 
have orthogonal strengths and weaknesses. Reactive control is sensor-driven and appropriate 
for making low-level decisions in real time. However, reactive control rarely yields a plausi- 
ble solution at the global level, because global control decisions depend on information that 
cannot be sensed at the time of decision making. For such problems, deliberate control is 
more appropriate. 

Consequently, most robot architectures use reactive techniques at the lower levels of 
control with deliberate techniques at the higher levels. We encountered such a combination 
in our discussion of PD controllers, where we combined a (reactive) PD controller with a 
(deliberate) path planner. Architectures that combine reactive and deliberate techniques are 

HYBRID usually called hybrid architectures. 

Subsumption architecture 

The subsumption architecture (Brooks, 1986) is a framework for assembling reactive con- 
trollers out of finite state machines. Nodes in these machines may contain tests for certain 
sensor variables, in which case the execution trace of a finite state machine is conditioned on 
the outcome of such a test. Arcs can be tagged with messages that will be generated when 
traversing them, and that are sent to the robot's motors or to other finite state machines. Ad- 
ditionally, finite state machines possess internal timers (clocks) that control the time it takes 
to traverse an arc. The resulting machines are usually refereed to as augmented finite state 

$ ~ $ ~ ~ ~ ~ , ~ ~ N I T E  machines, or AFSMs, where the augmentation refers to the use of clocks. 
An example of a simple AFSM is the four-state machine shown in Figure 25.22(b), 

which generates cyclic leg motion for a hexapod walker. This AFSM implements a cyclic 
controller, whose execution mostly does not rely on environmental feedback. The forward 
swing phase, however, relies on sensor feedback. If the leg is stuck, meaning that it has failed 
to execute the forward swing, the robot retracts the leg, lifts up a little higher, and attempts to 
execute the forward swing once again. Thus, the controller is able to react to contingencies 
arising from the interplay of the robot and its environment. 
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The subsumption architecture offers additional primitives for synchronizing AFSMs, 
and for combining output values of multiple, possibly conflicting AFSMs. In this way, it 
enables the programmer to compose increasingly complex controllers in a bottom-up fashion. 
In our example, we might begin with AFSMs for individual legs, followed by an AFSM for 
coordinating multiple legs. On top of this, we might implement higher-level behaviors such 
as collision avoidance, which might involve backing up and turning. 

The idea of composing robot controllers from AFSMs is quite intriguing. Imagine 
how difficult it would be to generate the same behavior with any of the configuration space 
path planning algorithms described in the previous section. First, we would need an accu- 
rate model of the terrain. The configuration space of a robot with six legs, each of which 
is driven by two independent motors, totals eighteen dimensions (twelve dimensions for the 
configuration of the legs, and six for the location and orientation of the robot relative to its 
environment). Even if our computers were fast enough to find paths in such high-dimensional 
spaces, we would have to worry about nasty effects such as the robot sliding down a slope. 
Because of such stochastic effects, a single path through configuration space would almost 
certainly be too brittle, and even a PID controller might not be able to cope with such con- 
tingencies. In other words, generating motion behavior deliberately is simply too complex a 
problem for present-day robot motion planning algorithms. 

Unfortunately, the subsumption architecture has problems of its own. First, the AFSMs 
are usually driven by raw sensor input, an arrangement that works if the sensor data is reli- 
able and contains all necessary information for decision making, but fails if sensor data has 
to be integrated in nontrivial ways over time. Subsumption-style controllers have therefore 
mostly been applied to local tasks, such as wall following or moving towards visible light 
sources. Second, the lack of deliberation makes it difficult to change the task of the robot. A 
subsumption-style robot usually does just one task, and it has no notion of how to modify its 
controls to accommodate different control objectives (just like the dung beetle on page 37). 
Finally, subsumption-style controllers tend to be difficult to understand. In practice, the intri- 
cate interplay between dozens of interacting AFSMs (and the environment) is beyond what 
most human programmers can comprehend. For all these reasons, the subsumption architec- 
ture is rarely used in commercial robotics, despite its great historical importance. However, 
some its descendants are. 

Three-layer architecture 

Hybrid architectures combine reaction with deliberation. By far the most popular hybrid 
architecture is the three-layer architecture, which consists of a reactive layer, an executive 
layer, and a deliberate layer. 

REACTIVE LAYER The reactive layer provides low-level control to the robot. It is characterized by a tight 
sensor-action loop. Its decision cycle is often on the order of milliseconds. 

EXECUTIVE LAYER The executive layer (or sequencing layer) serves as the glue between the reactive and 
the deliberate layer. It accepts directives by the deliberate layer, and sequences them for the 
reactive layer. For example, the executive layer might handle a set of via-points generated 
by a deliberate path planner, and make decisions as to which reactive behavior to invoke. 
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Decision cycles at the executive layer are usually in the order of a second. The executive layer 
is also responsible for integrating sensor information into an internal state representation. For 
example, it may host the robot's localization and online mapping routines. 

DELIBERATE LAYER The deliberate layer generates global solutions to complex tasks using planning. Be- 
cause of the computational complexity involved in generating such solutions, its decision 
cycle is often in the order of minutes. The deliberate layer (or planning layer) uses models 
for decision making. Those models might be pre-supplied or learned from data, and they 
usually utilize state information gathered at the executive layer. 

Variants of the three-layer architecture can be found in most modern-day robot software 
systems. The decomposition into three layers is not very strict. Some robot software systems 
possess additional layers, such as user interface layers that control the interaction with people, 
or layers responsible for coordinating a robot's actions with that of other robots operating in 
the same environment. 

Robotic programming languages 

Many robotic controllers have been implemented with special purpose programming lan- 
guages. For example, many programs for the subsumption architecture have been imple- 

BEHAVIOR 
LANGUAGE mented in the behavior language defined by Brooks (1990). This language is a rule-based 

real-time control language that compiles into AFSM controllers. Individual rules in a Lisp- 
like syntax are compiled into AFSMs, and multiple AFSMs are integrated through a collec- 
tion of local and global message-passing mechanisms. 

Just like the subsumption architecture, the behavior language is limited in its focus on 
simple AFSMs with a relatively narrow definition of the communication flow between mod- 
ules. Recent research has built on this idea, leading to a range of programming languages 
similar in spirit to the behavior language, but more powerful and faster when executed. One 
such language is the generic robot language, or GRL (Horswill, 2000). GRL is a functional LANGUAGE 

programming language for programming large modular control systems. Just as in the behav- 
ior language, GRL uses finite state machines as its basic building blocks. On top of this, it 
provides a much broader range of constructs for defining communication flow and synchro- 
nization constraints between different modules than the behavior language. Programs in GRL 
are compiled into efficient imperative languages, such as C. 

Another important programming language (and associated architecture) for concurrent 
robot software is the reactive action plan system, or RAPS (Firby, 1994). RAPS enables 
programmers to specify goals, plans (or partial policies) associated with these goals, and 
conditions under which those plans will likely succeed. Crucially, RAPS also provides facili- 
ties for handling the inevitable failures that occur with real robotic systems. The programmer 
can specify detection routines for various lunds of failure and supply an exception-handling 
routine for each kind. In three-layer architectures, RAPS is often used in the executive layer, 
to handle contingencies that do not require replanning. 

There are several other languages that allow for reasoning and learning to take place 
in the robot. For example, GOLOG (Levesque et al., 199713) is a programming language that 
seamlessly blends deliberate problem solving (planning) and direct specification of reactive 
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CES 

control. Programs in GOLOG are formulated in situation calculus (Section 10.3), with the 
additional option of nondeterministic action operators. In addition to the specification of a 
control program with possible nondeterministic actions, the programmer also has to provide 
a complete model of the robot and its environment. Whenever the control program reaches a 
nondeterministic choice point, a planner (in the form of a theorem prover) is invoked to deter- 
mine what to do next. In this way, the programmer can specify partial controllers and rely on 
built-in planners to make the final control choice. The beauty of GOLOG lies in its seamless 
integration of reactivity and deliberation. Despite the strong requirements of GOLOG (full 
observability, discrete states, full model), GOLOG has provided high-level control for a series 
of indoor mobile robots. 

CES, short for C++ for embedded systems, is a language extension of C++ that in- 
tegrates probabilities and learning (Thrun, 2000). CES's data types are probability distri- 
but~ons, allowing the programmer to calculate with uncertain information without the effort 
usually required to implement probabilistic techniques. More importantly, CES makes it pos- 
sible to train robot software with examples, very much like the learning algorithms discussed 
in Chapter 20. CES enables programmers to leave "gaps" in the code that are filled by learn- 
able functions-typically differentiable parametric representations such as neural networks. 
These functions are then learned inductively in explicit training phases, where the trainer has 
to specify the desired output behavior. CES has been demonstrated to work well in partially 
observable and continuous domains. 

ALISP ALisp (Andre and Russell, 2002) is an extension of Lisp. ALisp allows programmers 
to specify nondeterministic choice points, similar to the choice points in GOLOG. However, 
instead of relying on a theorem prover to make decisions, ALisp inductively learns the right 
action via reinforcement learning. Thus ALisp can be seen as a flexible means to incorporate 
domain knowledge-especially knowledge about the hierarchical "subroutine" structure of 
desired behaviors-into a reinforcement learner. As yet, ALisp has been applied to robotics 
problems only in simulation, but it provides a promising methodology for building robots that 
learn through interaction with the environment. 

We will now list some of the prime application domains for robotic technology. 
Industry and Agriculture. Traditionally, robots have been fielded in areas that require 

difficult human labor, yet are structured enough to be arnenable to robotic automation. The 
best example is the assembly line, where manipulators routinely perform tasks such as assem- 
bly, part placement, material handling, welding, and painting. In many of these tasks, robots 
have become more cost-effective than human workers. 

Outdoors, many of the heavy machines that we use to harvest, mine, or excavate earth 
have been turned into robots. For example, a recent project at Carnegie Mellon has demon- 
strated that robots can strip paint off large ships about 50 times faster than people 'can, and 
with a much reduced environmental impact. Prototypes of autonomous mining robots have 
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Figure 25.23 (a) The Helpmate robot transports food and other medical items in dozens 
of hospitals world-wide. (b) Surgical robots in the operating room (by da Vinci Surgical 
Systems). 

been found to be faster and more precise than people in transporting ore in underground 
mines. Robots have been used to generate high-precision maps of abandoned mines and 
sewer systems. While many of these systems are still in their prototype stages, it is only a 
matter of time until robots will take over much of the semi-mechanical work that is presently 
performed by people. 

Transportation. Robotic transportation has many facets: from autonomous helicopters 
that deliver objects to locations that would be hard to access by other means, to automatic 
wheelchairs that transport people who are unable to control wheelchairs by themselves, to 
autonomous straddle carriers that outperform slulled human drivers when transporting con- 
tainers from ships to trucks on loading docks. A prime example of indoor transportation 
robots, or gofers, is the Helpmate robot shown in Figure 25.23(a). This robot has been de- 
ployed in dozens of hospitals to transport food and other items. Researchers have developed 
car-like robotic systems that can navigate autonomously on highways or across off-road ter- 
rain. In factory settings, autonomous vehicles are now routinely deployed to transport goods 
in warehouses and between production lines. 

Many of these robots require environmental modifications for their operation. The most 
common modifications are localization aids such as inductive loops in the floor, active bea- 
cons, bar-code tags, and GPS satellites. An open challenge in robotics is the design of robots 
that can use natural cues, instead of artificial devices, to navigate, particularly in environments 
such as the deep ocean where GPS is unavailable. 

Hazardous environments. Robots have assisted people in cleaning up nuclear waste, 
most notably in Chernobyl and Three Mile Island. Robots were present after the collapse 
of the World Trade Center, where they entered structures deemed too dangerous for human 
search and rescue crews. 
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/ Figure 25.24 (a) A robot mapping an abandoned coal mine. (b) A 3-D map of the mine 1 
acquired by the robot. 

Some countries have used robots to transport ammunition and to defuse bombs-a no- 
toriously dangerous task. A number of research projects are presently developing prototype 
robots for clearing minefields, on land and at sea. Most existing robots for these tasks are 
teleoperated-a human operates them by remote controll. Providing such robots with auton- 
omy is an important next step. 

Exploration. Robots have gone where no-one has gone before, including the surface 
of Mars. (See Figure 25.l(a).) Robotic arms assist astronauts in deploying and retrieving 
satellites and in building the International Space Station. Robots also help explore under the 
sea. They are routinely used to acquire maps of sunken ships. Figure 25.24 shows a robot 
mapping an abandoned coal mine, along with a 3-D model of the mine acquired using range 
sensors. In 1996, a team of researches released a legged robot into the crater of an active 
volcano to acquire data important for climate research. Unmanned air vehicles known as 

DRONES drones are used in military operations. Robots are becoming very effective tools for gathering 
information in domains that are difficult (or dangerous) to access for people. 

Health care. Robots are increasingly used to assist surgeons with instrument placement 
when operating on organs as intricate as brains, eyes, and hearts. Figure 25.23(b) shows such 
a system. Robots have become indispensable tools in certain types of hip replacements, 
thanks to their high precision. In pilot studies, robotic devices have been found to reduce the 
danger of lesions when performing colonoscopies. Outside the operating room, researchers 
have begun to develop robotic aides for elderly and handicapped people, such as intelligent 
robotic walkers and intelligent toys that provide reminders to take medication. 

Personal Services. Service is an up-and-coming application domain of robotics. Ser- 
vice robot assist individuals in performing daily tasks. Commercially available domestic ser- 
vice robots include autonomous vacuum cleaners, lawn mowers, and golf caddies. All these 
robots can navigate autonomously and perform their tasks without human help. Some service 
robots operate in public places, such as robotic information luosks that have been deployed 
in shopping malls and trade fairs, or in museums as tour-guides. Service tasks require human 
interaction, and the ability to cope robustly with unpredictable and dynamic environments. 
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Entertainment. Robots have begun to conquer the entertainment and toy industry. We 
saw the Sony AIBO in Figure 25.4(b); this dog-like robot toy is being used as a research 
platform in A1 labs around the world. One of the challenging A1 tasks studied with this plat- 

ROBOTIC~OCCER form is robotic soccer, a competitive game very much like human soccer, but played with 
autonomous mobile robots. Robot soccer provides great opportunities for research in AI, 
since it raises a range of problems prototypical for many other, more serious robot applica- 
tions. Annual robotic soccer competitions have attracted large numbers of A1 researchers and 
added a lot of excitement to the field of robotics. 

Human augmentation. A final application domain of robotic technology is that of 
human augmentation. Researchers have developed legged walking machines that can carry 
people around, very much like a wheelchair. Several research efforts presently focus on the 
development devices that make it easier for people to walk or move their arms, by providing 
additional forces through extra-skeletal attachments. If such devices are attached perma- 
nently, they can be thought of as artificial robotic limbs. Robotic teleoperation, or telepres- 
ence, is another form of human augmentation. Teleoperation involves carrying out tasks over 
long distances, with the aid of robotic devices. A popular configuration for robotic teleop- 
eration is the master-slave configuration, where a robot manipulator emulates the motion of 
a remote human operator, measured through a haptic interface. All these systems augment 
people's ability to interact with their environments. Some projects go as far as replicating 
humans, at least at a very superficial level. Humanoid robots are now available commercially 
through several companies in Japan. 

Robotics concerns itself with intelligent agents that manipulate the physical world. In this 
chapter, we have learned the following basics of robot hardware and software. 

Robots are equipped with sensors for perceiving their environment and effectors with 
which they can assert physical forces on their environment. Most robots are either 
manipulators anchored at fixed locations or mobile robots that can move. 

Robotic perception concerns itself with estimating decision-relevant quantities from 
sensor data. To do so, we need an internal representation and a method for updating 
this internal representation over time. Common examples of hard perceptual problems 
include localization and mapping. 

Probabilistic filtering algorithms such as Kalman filters and particle filters are useful for 
robot perception. These techniques maintain the belief state, i.e., a posterior distribution 
over state variables. 

The planning of robot motion is usually done in configuration space, where each point 
specifies the location and orientation of the robot and its joint angles. 

Configuration spaces search algorithms include cell decomposition techniques, which 
decompose the space of all configurations into finitely many cells, and skeletonization 
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techniques, which project configuration spaces onto lower-dimensional manifolds. The 
motion planning problem is then solved using search in these simpler structures. 

A path found by a search algorithm can be executed by using the path as the reference 
trajectory for a PID controllers. 

Potential field techniques navigate robots by potential functions, defined over the dis- 
tance to obstacles and the target location. Potential field techniques may get stuck in 
local minima, but they can generate motion directly without the need for path planning. 

Sometimes, it is easier to specify a robot controller directly, rather than deriving a path 
from an explicit model of the environment. Such controllers can often be written as 
simple finite state machines. 

The subsumption architecture enables programmers to compose robot controllers from 
interconnected finite state machines, augmented by built-in timers. 

Three-layer architectures are common frameworks for developing robot software that 
integrate deliberation, sequencing of subgoals, and control. 

Special purpose programming languages exist that facilitate robot software develop- 
ment. These languages offer constructs for developing multithreaded software, for in- 
tegrating control directives into planning, and for learning from experience. 

BIBLIOGRAPHICAL AND HISTORICAL NOTES 

The word robot was popularized by Czech playwright Karel Capek in his 1921 play R. U.R. 
(Rossum's Universal Robots). The robots, which were grown chemically rather than con- 
structed mechanically, end up resenting their masters and decide to take over. It appears 
(Glanc, 1978) that it was actually Capek's brother, Josef, who first combined the Czech 
words "robota" (obligatory work) and "robotnik," (serf) to yield "robot" in his 1917 short 
story Opilec. 

The term robotics was first used by (Asimov, 1950). Robotics (under other names) has 
a much longer history, however. In ancient Greek mythology, a mechanical man named Talos 
was supposedly designed and built by Hephaistos, the Greek god of metallurgy. Wonderful 
automata were built in the 18th century-Jacques Vaucanson's mechanical duck from 1738 
being one early example-but the complex behaviors they exhibited were entirely fixed in 
advance. Possibly the earliest example of a programmable robot-like device was the Jacquard 
loom (1 805), described in Chapter 1. 

UNIMATE The first commercial robot was a robot arm called Unimate, short for universal au- 
tomation. Unimate was developed by Joseph Engelberger and George Devol. In 1961, the 
first Unimate robot was sold to General Motors, where it was used for manufacturing TV 
picture tubes. 1961 was also the year when Devol obtained the first U.S. patent on a robot. 
Eleven years later, in 1972, Nissan Corp. was among the first to automate an entire assembly 
line with robots, developed by Kawasaki with robots supplied by Engelberger and Devol's 
company Unimation. This development initiated a major revolution that took place mostly in 
Japan and the U.S., and that is still ongoing. Unimation followed up in 1978 with the devel- 
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PUMA opment of the PUMA robot, short for Programmable Universal Machine for Assembly. The 
PUMA robot, initially developed for General Motors, was the de facto standard for robotic 
manipulation for the two decades that followed. At present, the number of operating robots 
is estimated at one million world-wide, more than half of which are installed in Japan. 

The literature on robotics research can be divided roughly into two parts: mobile robots 
and stationary manipulators. Grey Walter's "turtle," built in 1948, could be considered the 
first autonomous mobile robot, although its control system was not programmable. The "Hop- 
kins Beast," built in the early 1960s at Johns Hopluns University, was much more sophisti- 
cated; it had pattern-recognition hardware and could recognize the cover plate of a standard 
AC power outlet. It was capable of searching for outlets, plugging itself in, and then recharg- 
ing its batteries! Still, the Beast had a limited repertoire of skills. The first general-purpose 
mobile robot was "Shakey," developed at what was then the Stanford Research Institute (now 
SRI) in the late 1960s (Fikes and Nilsson, 1971; Nilsson, 1984). Shakey was the first robot 
to integrate perception, planning, and execution, and much subsequent research in A1 was 
influenced by this remarkable achievement. Other influential projects include the Stanford 
Cart and the CMU Rover (Moravec, 1983). Cox and Wilfong (1990) describes classic work 
on autonomous vehicles. 

The field of robotic mapping has evolved from two distinct origins. The first thread 
began with work by Smith and Cheeseman (1986), who applied Kalman filters to the si- 
multaneous localization and mapping problem. This algorithm was first implemented by 
Moutarlier and Chatila (1989), and later extended to by Leonard and Durrant-Whyte (1992). 
Dissanayake et al. (2001) describes the state of the art. The second thread began with the de- 

OCCUPANCY GRID velopment of the occupancy grid representation for probabilistic mapping, which specifies 
the probability that each (x, y) location is occupied by an obstacle (Moravec and Elfes, 1985). 
An overview of the state of the art in robotic mapping can be found in (Thrun, 2002). Kuipers 
and Levitt (1988) were among the first to propose topological rather than metric mapping, 
motivated by models of human spatial cognition. 

Early mobile robot localization techniques are surveyed by Borenstein et al. (1996). 
Although Kalman filtering was well-known as a localization method in control theory for 
decades, the general probabilistic formulation of the localization problem did not appear in 
the A1 literature until much later, through the work of Tom Dean and colleagues (1990, 1990) 

MARKOV and Simmons and Koenig (1995). The latter work introduced the term Markov localization. 
The first real-world application of this technique was by Burgard et al. (1999), through a 
series of robots that were deployed in museums. Monte Carlo localization based on particle 
filters was developed by Fox et al. (1999) and is now widely used. The Rao-Blackwellized 

RAO- 
BLACKWELLIZED particle filter combines particle filtering for robot localization with exact filtering for map 
PARTICLE FILTER 

building (Murphy and Russell, 2001; Montemerlo et al., 2002). 
Research on mobile robotics has been stimulated over the last decade by two important 

competitions. AAAI's annual mobile robot competition began in 1992. The first competition 
winner was CARMEL (Congdon et al., 1992). Progress has been steady and impressive: in 
the most recent competition (2002), the robots had to enter the conference complex, find 

ROBOCUP their way to the registration desk, register for the conference, and give a talk. The Robocup 
competition, launched in 1995 by Kitano and colleagues (1997), aims by 2050 to "develop a 
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team of fully autonomous humanoid robots that can win against the human world champion 
team in soccer." Play occurs in leagues for simulated robots, wheeled robots of different sizes, 
and four-legged Sony Aibo robots. In 2002, the competition event drew teams from almost 
30 different countries and over 100,000 spectators. 

The study of manipulator robots, called originally called hand-eye machines, has 
evolved along quite different lines. The first major effort at creating a hand-eye machine 
was Heinrich Ernst's MH- 1, described in his MIT Ph.D. thesis (Ernst, 1961). The Machine 
Intelligence project at Edinburgh also demonstrated an impressive early system for vision- 
based assembly called FREDDY (Michie, 1972). After these pioneering efforts, a great deal 
of work focused on geometric algorithms for deterministic and fully observable motion plan- 
ning problems. The PSPACE-hardness of robot motion planning was shown in a seminal 
paper by Reif (1979). The configuration space representation is due to Lozano-Perez (1983). 
Highly influential was a series of papers by Schwartz and Sharir on what they called piano 
movers problems (Scbwartz et al., 1987). 

Recursive cell decomposition for configuration space planning was originated by Brooks 
and Lozano-Perez (1985) and improved significantly bly Zhu and Latombe (1991). The ear- 
liest skeletonization algorithms were based on Voronoi diagrams (Rowat, 1979) and visi- 
bility graphs (Wesley and Lozano-Perez, 1979). Guibas et al. (1992) developed efficient 
techniques for calculating Voronoi diagrams incrementally, and Choset (1996) generalized 
Voronoi diagrams to much broader motion planning problems. John Canny's Ph.D. the- 
sis (1988) established the first singly exponential algorithm for motion planning using a 
different skeletonization method called the silhouette algorithm. The text by Jean-Claude 
Latombe (1991) covers a variety of approaches to the imotion planning problem. (Kavraki 
et al., 1996) developed probabilistic roadmaps, which are currently the most effective method. 
Fine motion planning with limited sensing was investigated by (Lozano-Perez et al., 1984) 
and Canny and Reif (1987) using the idea of interval uncertainty rather than probabilistic un- 
certainty. Landmark-based navigation (Lazanas and Latombe, 1992) uses many of the same 
ideas in the mobile robot arena. 

The control of robots as dynamical systems-whether for manipulation or navigation- 
has generated a huge literature on which the material in this chapter barely touches. Important 
works include a trilogy on impedance control by Hogan (1985) and a general study of robot 
dynamics by Featherstone (1987). Dean and Wellman (1 991) were among the first to try to tie 
together control theory and AI planning systems. Three classical textbook on the mathematics 
of robot manipulation are due to Paul (1981), Craig (1989). and Yoshikawa (1990). The area 
of grasping is also important in robotics-the problem of determining a stable grasp is quite 
difficult (Mason and Salisbury, 1985). Competent grasping requires touch sensing, or haptic 
feedback, to determine contact forces and detect slip (Fearing and Hollerbach, 1985). 

Potential field control, which attempts to solve the motion planning and control prob- 
lems simultaneously, was introduced into the robotics litierature by Khatib (1986). In mobile 
robotics, this idea was viewed as a practical solution to the collision avoidance problem, and 
was later extended into an algorithm called vector field histograms by Borenstein (1991). 
Navigation functions, the robotics version of a control policy for deterministic MDPs, were 
introduced by Koditschek (1987). 
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The topic of software architectures for robots engenders much religious debate. The 
good old-fashioned A1 candidate-the three-layer architecture-dates back to the design 
of Shakey and is reviewed by Gat (1998). The subsumption architecture is due to Rodney 
Brooks (1986), although similar ideas were developed independently by Braitenberg (1984), 
whose book, Vehicles, describes a series of simple robots based on the behavioral approach. 
The success of Brooks's six-legged walking robot was followed by many other projects. Con- 
nell, in his Ph.D. thesis (1989), developed a mobile robot capable of retrieving objects that 
was entirely reactive. Extensions of the behavior-based paradigm to multirobot systems can 
be found in (Mataric, 1997) and (Parker, 1996). GRL (Horswill, 2000) and COLBERT (Kono- 
lige, 1997) abstract the ideas of concurrent behavior-based robotics into general robot control 
languages. Arkin (1998) surveys the state of the art. 

Situated automata (Rosenschein, 1985; Kaelbling and Rosenschein, 1990), described 
in Chapter 7, have also been used to control mobile robots for exploration and delivery tasks. 
Situated automata are closely related to behavior-based designs in that they consist of finite- 
state machines that track aspects of the environment state using simple combinatorial cir- 
cuitry. Whereas the behavior-based approach stresses the absence of explicit representation, 
situated automata are constructed algorithmically from declarative environment models so 
that the representational content of each state register is well-defined. 

There exist several good recent textbooks on mobile robotics. in addition to the text- 
books referenced above, the collection by Kortenkamp et al. (1998) provides a comprehensive 
overview of contemporary mobile robot architectures and systems. Two recent textbooks by 
Dudek and Jenkin (2000) and Murphy (2000) cover- robotics more generally. A recent book 
on robot manipulation addresses advanced topics such as compliant motion (Mason, 2001). 
The major conference for robotics is the IEEE International Conference on Robotics and 
Automation. Robotics journals include IEEE Robotics and Automation, the International 
Journal of Robotics Research, and Robotics and Autonomous Systems. 

25.1 Monte Carlo localization is biased for any finite sample size--i.e., the expected value 
of the location computed by the algorithm differs from the true expected value-because of 
the way particle filtering works. In this question, you are asked to quantify this bias. 

To simplify, consider a world with four possible robot locations: X = ( x l ,  x2,x3, a}. 
Initially, we draw N 2 1 samples uniformly from among those locations. As usual, it is 
perfectly acceptable if more than one sample is generated for any of the locations X. Let Z 
be a Boolean sensor variable characterized by the following conditional probabilities: 
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MCL uses these probabilities to generate particle weights, which are subsequently normalized 
and used in the resampling process. For simplicity, let us assume we only generate one new 
sample in the resampling process, regardless of N. This sample might correspond to any of 
the four locations in X. Thus, the sampling process defines a probability distribution over X. 

a. What is the resulting probability distribution over X for this new sample? Answer this 
question separately for N = 1, . . . , l o ,  and for N = oo. 

b. The difference between two probability distributi~ons P and Q can be measured by the 
KL divergence, which is defined as 

What are the KL divergences between the distributions in (a) and the true posterior? 
c.  What modification of the problem formulation (not the algorithm!) would guarantee 

that the specific estimator above is unbiased even for finite values of N? Provide at 
least two such modifications (each of which should be sufficient). 

\pijiijzp 25.2 Implement Monte Carlo localization for a simulated robot with range sensors. A grid 
map and range data are available from the code repository at aima.cs.berkeley.edu. Your 
exercise is complete if you can demonstrate successful global localization of the robot. 

25.3 Consider the robot arm shown in Figure 25.12. Assume that the robot's base element 
is 60cm long and that its upper arm and forearm are each 40cm long. As argued on page 917, 
the inverse kinematics of a robot is often not unique. State an explicit closed-form solution of 
the inverse kinematics for this arm. Under what exact conditions is the solution unique? 

\-@iiEmp 25.4 Implement an algorithm for calculating the Voronoi diagram of an arbitrary 2-D en- 
vironment, described by an n x n Boolean array. Illustrate your algorithm by plotting the 
Voronoi diagram for 10 interesting maps. What is the complexity of your algorithm? 

25.5 This exercise explores the relationship between wofkspace and configuration space 
using the examples shown in Figure 25.25. 

a. Consider the robot configurations shown in Figure 25.25(a) through (c), ignoring the 
obstacle shown in each of the diagrams. Draw the corresponding arm configurations in 
configuration space. (Hint: Each arm configuration maps to a single point in configura- 
tion space, as illustrated in Figure 25.12(b).) 

b. Draw the configuration space for each of the workspace diagrams in Figure 25.25(a)- 
(c). (Hint: The configuration spaces share with the one shown in Figure 25.25(a) the 
region that corresponds to self-collision, but differences arise from the lack of enclosing 
obstacles and the different locations of the obstacles in these individual figures.) 

c.  For each of the black dots in Figure 25.25(e)-(f), draw the corresponding configurations 
of the robot arm in workspace. Please ignore the shaded regions in this exercise. 

d. The configuration spaces shown in Figure 25.25(e)-(f) have all been generated by a 
single workspace obstacle (dark shading), plus the constraints arising from the self- 
collision constraint (light shading). Draw, for each diagram, the workspace obstacle 
that corresponds to the darkly shaded area. 
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Figure 25.25 Diagrams for Exercise 25.5. 

e. Figure 25.25(d) illustrates that a single planar obstacle can decompose the workspace 
into two disconnected regions. What is the maximum number of disconnected re- 
gions that can be created by inserting a planar obstacle into an obstacle-free, connected 
workspace, for a 2DOF robot? Give an example, and argue why no larger number of 
disconnected regions can be created. How about a non-planar obstacle? 

25.6 Consider the simplified robot shown in Figure 25.26. Suppose the robot's Cartesian 
coordinates are known at all times, as are those of its target location. However, the locations 
of the obstacles are unknown. The robot can sense obstacles in its immediate proximity, as 
illustrated in this figure. For simplicity, let us assume the robot's motion is noise-free, and 
the state space is discrete. Figure 25.26 is only one example; in this exercise you are required 
to address all possible grid worlds with a valid path from the start to the goal location. 

a. Design a deliberate controller that guarantees that the robot always reaches its target 
location if at all possible. The deliberate controller can memorize measurements in 
form of a map that is being acquired as the robot moves. Between individual moves, it 
may spend arbitrary time deliberating. 

b. Now design a reactive controller for the same task. This controller may not memorize 
past sensor measurements. (It may not build a map!) Instead, it has to make all decisions 
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Figure 25.26 Simplified robot in a maze. See Exercise 25.6. 

based on the current measurement, which includes knowledge of its own location and 
that of the goal. The time to make a decision must be independent of the environment 
size or the number of past time steps. What is the maximum number of steps that it may 
take for your robot to arrive at the goal? 

c. How will your controllers from (a) and (b) perforrn if any of the following six conditions 
apply: continuous state space, noise in perception, noise in motion, noise in both per- 
ception and motion, unknown location of the goal (the goal can be detected only when 
within sensor range), or moving obstacles. For each condition and each controller, give 
an example of a situation where the robot fails (or explain why it cannot). 

25.7 In Figure 25.22(b), we encountered an augmented finite state machine for the control 
of a single leg of a hexapod robot. In this exercise, the aim is to design an AFSM that, 
when combined with six copies of the individual leg contrallers, results in efficient, stable 
locomotion. For this purpose, you have to augment the individual leg controller to pass 
messages to your new AFSM, and to wait until other messages arrive. Argue why your 
controller is efficient, in that it does not unnecessarily waste energy (e.g., by sliding legs), 
and in that it propels the robot at reasonably high speeds. Prove that your controller satisfies 
the stability condition given on page 906. 

25.8 (This exercise was first devised by Michael Genesereth and Nils Nilsson. It works 
for first graders through graduate students.) Humans are so adept at basic tasks such as 
picking up cups or stacking blocks that they often forget how complex these tasks are. In this 
exercise you will discover the complexity and recapitulate the last 30 years of developments 
in robotics. First, pick a task, such as building an arch out of three blocks. Then, build a robot 
out of four humans as follows: 

Brain. The job of the Brain is to come up with a plan to achieve the goal, and to direct 
the hands in the execution of the plan. The Brain receives input from the Eyes, but carznot see 
the scene directly. The brain is the only one who knows what the goal is. 

Eyes. The Eyes' job is to report a brief description of the scene to the Brain. The Eyes 
should stand a few feet away from the working environment, and can provide qualitative 
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descriptions (such as "There is a red box standing on top of a green box, whch is on its 
side") or quantitative descriptions ("The green box is about two feet to the left of the blue 
cylinder7'). Eyes can also answer questions from the Brain such as, "Is there a gap between 
the Left Hand and the red box?" If you have a video camera, point it at the scene and allow 
the eyes to look at the viewfinder of the video camera, but not directly at the scene. 

Left hand and right hand. One person plays each Hand. The two Hands stand next to 
each other; the Left Hand uses only his or her left hand, and the Right Hand only his or her 
right hand. The Hands execute only simple commands from the Brain-for example, "Left 
Hand, move two inches forward." They cannot execute commands other than motions; for 
example, "Pick up the box" is not something a Hand can do. To discourage cheating, you 
might want to have the hands wear gloves, or have them operate tongs. The Hands must be 
blindfolded. The only sensory capability they have is the ability to tell when their path is 
blocked by an immovable obstacle such as a table or the other Hand. In such cases, they can 
beep to inform the Brain of the difficulty. 



PHILOSOPHICAL 

In which we consider what it means to think and whether artifacts could and 
should ever do so. 

As we mentioned in Chapter 1, philosophers have been around for much longer than 
computers and have been trying to resolve some questions that relate to AT: How do minds 
work? Is it possible for machines to act intelligently in the waly that people do, and if they did, 
would they have minds? What are the ethical implications of intelligent machines? For the 
first 25 chapters of this book, we have considered questions from A1 itself; now we consider 
the philosopher's agenda for one chapter. 

First, some terminology: the assertion that machines could possibly act intelligently (or, 
WEAK AI perhaps better, act as i f  they were intelligent) is called the weak A1 hypothesis by philoso- 

phers, and the assertion that machines that do so are actually thinking (as opposed to simu- 
STRONG AI lating thinking) is called the strong A1 hypothesis. 

Most A1 researchers take the weak A1 hypothesis for granted, and don't care about the 
strong A1 hypothesis-as long as their program works, they don't care whether you call it a 
simulation of intelligence or real intelligence. All A1 researchers should be concerned with 
the ethical implications of their work. 

26.1 WEAK AI: CAN MACHINES ACT INTELLIGENTLY? 

Some philosophers have tried to prove that A1 is impossible; that machines cannot possibly 
act intelligently. Some have used their arguments to call for a stop to A1 research: 

Artificial intelligence pursued within the cult of cornputationalism stands not even a 
ghost of a chance of producing durable results . . . it is time to divert the efforts of A1 
researchers-and the considerable monies made available for their support-into avenues 
other than the computational approach. (Sayre, 1993) 

Clearly, whether A1 is impossible depends on how it is defined. In essence, A1 is the quest 
for the best agent program on a given architecture. With this formulation, A1 is by definition 
possible: for any digital architecture consisting of k bits of storage there are exactly 2 h g e n t  



948 Chapter 26. Philosophical Foundations 

programs, and all we have to do to find the best one is enumerate and test them all. This 
might not be feasible for large k ,  but philosophers deal with the theoretical, not the practical. 

Our definition of A1 works well for the engineering problem of finding a good agent, 
given an architecture. Therefore, we're tempted to end this section right now, answering the 
title question in the affirmative. But philosophers are interested in the problem of compar- 
ing two architectures-human and machine. Furthermore, they have traditionally posed the 

INES question as, "Can machines think?" Unfortunately, this question is ill-defined. To see why, 
consider the following questions: 

Can machines fly? 

Can machines swim? 

Most people agree that the answer to the first question is yes, airplanes can fly, but the answer 
to the second is no; boats and submarines do move through the water, but we do not call 
that swimming. However, neither the questions nor the answers have any impact at all on 
the working lives of aeronautic and naval engineers or on the users of their products. The 
answers have very little to do with the design or capabilities of airplanes and submarines, and 
much more to do with the way we have chosen to use words. The word "swim" in English 
has come to mean "to move along in the water by movement of body parts," whereas the 
word "fly" has no such limitation on the means of locomotion.' The practical possibility of 
"thinking machines" has been with us for only 50 years or so, not long enough for speakers 
of English to settle on a meaning for the word "think." 

Alan Turing, in his famous paper "Computing Machinery and Intelligence" (Turing, 
1950), suggested that instead of asking whether machines can think, we should ask whether 
machines can pass a behavioral intelligence test, which has come to be called the Turing 
Test. The test is for a program to have a conversation (via online typed messages) with an 
interrogator for 5 minutes. The interrogator then has to guess if the conversation is with a 
program or a person; the program passes the test if it fools the interrogator 30% of the time. 
Turing conjectured that, by the year 2000, a computer with a storage of 10' units could be 
programmed well enough to pass the test, but he was wrong. Some people have been fooled 
for 5 minutes; for example, the ELIZA program and the Internet chatbot called MGONZ have 
fooled humans who didn't realize they might be talking to a program, and the program ALICE 

fooled one judge in the 2001 Loebner Prize competition. But no program has come close to 
the 30% criterion against trained judges, and the field of A1 as a whole has paid little attention 
to Turing tests. 

Turing also examined a wide variety of possible objections to the possibility of intelli- 
gent machines, including virtually all of those that have been raised in the half century since 
his paper appeared. We will look at some of them. 

The argument from disability 

The "argument from disability" makes the claim that "a machine can never do X." As exam- 
ples of X, Turing lists the following: 

In Russian, the equivalent of "swim" does apply to ships. 
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Be kind, resourceful, beautiful, friendly, have initiative, have a sense of humor, tell right 
from wrong, make mistakes, fall in love, enjoy strawberries and cream, make someone 
fall in love with it, learn from experience, use words properly, be the subject of its own 
thought, have as much diversity of behavior as man, do something really new. 

Turing had to use his intuition to guess what would be possible in the future, but we have the 
luxury of looking back at what computers have already done. It is undeniable that computers 
now do many things that previously were the domain of humans alone. Programs play chess, 
checkers and other games, inspect parts on assembly lines, check the spelling of word pro- 
cessing documents, steer cars and helicopters, diagnose diseases, and do hundreds of other 
tasks as well as or better than humans. Computers have made small but significant discover- 
ies in astronomy, mathematics, chemistry, mineralogy, biology, computer science, and other 
fields. Each of these required performance at the level of a human expert. 

Given what we now know about computers, it is not surprising that they do well at 
combinatorial problems such as playing chess. But algorithms also perform at human levels 
on tasks that seemingly involve human judgment, or as Turing put it, "learning from experi- 
ence" and the ability to "tell right from wrong." As far back as 1955, Paul Meehl (see also 
Grove and Meehl, 1996) studied the decision-making processes of trained experts at subjec- 
tive tasks such as predicting the success of a student in a training program, or the recidivism 
of a criminal. In 19 out of the 20 studies he looked at, Meehl found that simple statistical 
learning algorithms (such as linear regression or naive Bayes) predict better than the experts. 
The Educational Testing Service has used an automated program to grade millions of essay 
questions on the GMAT exam since 1999. The program agrees with human graders 97% of 
the time, about the same level that two human graders agree (Burstein et al., 2001). 

It is clear that computers can do many things as well as or better than humans, including 
things that people believe require great human insight and understanding. This does not mean, 
of course, that computers use insight and understanding in performing these tasks-those are 
not part of behavior, and we address such questions elsewhere-but the point is that one's 
first guess about the mental processes required to produce a given behavior is often wrong. It 
is also true, of course, that there are many tasks at whlch computers do not yet excel (to put 
it mildly), including Turing's task of carrying on an open-ended conversation. 

The mathematical objection 

It is well known, through the work of Turing (1936) and Godel (1931), that certain math- 
ematical questions are in principle unanswerable by particular formal systems. Gijdel's in- 
completeness theorem (see Section 9.5) is the most famous example of this. Briefly, for any 
formal axiomatic system F powerful enough to do arithmetic, it is possible to construct a 
so-called "Godel sentence" G ( F )  with the following properties: 

G ( F )  is a sentence of F, but cannot be proved within F. 
If F is consistent, then G ( F )  is true. 

Philosophers such as J. R. Lucas (1961) have claimed that this theorem shows that machines 
are mentally inferior to humans, because machines are formal systems that are limited by the 
incompleteness theorem-they cannot establish the truth of their own Godel sentence-while 
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humans have no such limitation. This claim has caused decades of controversy, spawning a 
vast literature including two books by the mathematician Sir Roger Penrose (1989, 1994) 
that repeat the claim with some fresh twists (such as the hypothesis that humans are different 
because their brains operate by quantum gravity). We will examine only three of the problems 
with the claim. 

First, Godel7s incompleteness theorem applies only to formal systems that are powerful 
enough to do arithmetic. This includes Turing machines, and Lucas's claim is in part based 
on the assertion that computers are Turing machines. This is a good approximation, but is not 
quite true. Turing machines are infinite, whereas computers are finite, and any computer can 
therefore be described as a (very large) system in propositional logic, which is not subject to 
Godel's incompleteness theorem. 

Second, an agent should not be too ashamed that it cannot establish the truth of some 
sentence while other agents can. Consider the sentence 

J. R. Lucas cannot consistently assert that this sentence is true. 

If Lucas asserted this sentence then he would be contradicting himself, so therefore Lucas 
cannot consistently assert it, and hence it must be true. (The sentence cannot be false, because 
if it were then Lucas could not consistently assert it, so it would be true.) We have thus 
demonstrated that there is a sentence that Lucas cannot consistently assert while other people 
(and machines) can. But that does not make us think less of Lucas. To take another example, 
no human could compute the sum of 10 billion 10 digit numbers in his or her lifetime, but a 
computer could do it in seconds. Still, we do not see this as a fundamental limitation in the 
human's ability to think. Humans were behaving intelligently for thousands of years before 
they invented mathematics, so it is unlikely that mathematical reasoning plays more than a 
peripheral role in what it means to be intelligent. 

Third, and most importantly, even if we grant that computers have limitations on what 
they can prove, there is no evidence that humans are immune from those limitations. It is all 
too easy to show rigorously that a formal system cannot do X, and then claim that humans can 
do X using their own informal method, without giving any evidence for this claim. Indeed, 
it is impossible to prove that humans are not subject to Godel7s incompleteness theorem, 
because any rigorous proof would itself contain a formalization of the claimed unformalizable 
human talent, and hence refute itself. So we are left with an appeal to intuition that humans 
can somehow perform superhuman feats of mathematical insight. This appeal is expressed 
with arguments such as "we must assume our own consistency, if thought is to be possible at 
all" (Lucas, 1976). But if anything, humans are known to be inconsistent. This is certainly 
true for everyday reasoning, but it is also true for careful mathematical thought. A famous 
example is the four-color map problem. Alfred Kempe published a proof in 1879 that was 
widely accepted and contributed to his election as a Fellow of the Royal Society. In 1890, 
however, Percy Heawood pointed out a flaw and the theorem remained unproved until 1977. 

The argument from informality 

One of the most influential and persistent criticisms of A1 as an enterprise was raised by Tur- 
ing as the "argument from informality of behavior." Essentially, this is the claim that human 
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behavior is far too complex to be captured by any simple set of rules and that because com- 
puters can do no more than follow a set of rules, they cannot generate behavior as intelligent 
as that of humans. The inability to capture everything in a set of logical rules is called the 
qualification problem in AI. (See Chapter 10.) 

The principal proponent of this view has been the philosopher Hubert Dreyfus, who 
has produced a series of influential critiques of artificial intelligence: What Computers Can't 
Do (19721, What Computers Still Can't Do (19921, and, with his brother Stuart, Mind Over 
Machine (1 986). 

The position they criticize came to be called "Good (Old-Fashioned AI," or GOFAI, a 
term coined by Haugeland (1985). GOFAI is supposed to claim that all intelligent behavior 
can be captured by a system that reasons logically from a set of facts and rules describing the 
domain. It therefore corresponds to the simplest logical agent described in Chapter 7. Dreyfus 
is correct in saying that logical agents are vulnerable to the qualification problem. As we saw 
in Chapter 13, probabilistic reasoning systems are more appropriate for open-ended domains. 
The Dreyfus critique therefore is not addressed against computers per se, but rather against 
one particular way of programming them. It is reasonable to suppose, however, that a book 
called What First-Order Logical Rule-Based Systems Without Learning Can't Do might have 
had less impact. 

Under Dreyfus's view, human expertise does include knowledge of some rules, but only 
as a "holistic context" or "background" within which humans operate. He gives the example 
of appropriate social behavior in giving and receiving gifts: "Normally one simply responds 
in the appropriate circumstances by giving an approprialte gift." One apparently has "a direct 
sense of how things are done and what to expect." The same claim is made in the context of 
chess playing: "A mere chess master might need to figure out what to do, but a grandmaster 
just sees the board as demanding a certain move . . .the right response just pops into his or her 
head." It is certainly true that much of the thought processes of a present-giver or grandmaster 
is done at a level that is not open to introspection by the conscious mind. But that does not 
mean that the thought processes do not exist. The important question that Dreyfus does not 
answer is how the right move gets into the grandmaster's head. One is reminded of Daniel 
Dennett's (1 984) comment, 

It is rather as if philosophers were to proclaim themselves expert explainers of the meth- 
ods of stage magicians, and then, when we ask how the magician does the sawing-the- 
lady-in-half trick. they explain that it is really quite obvious: the magician doesn't really 
saw her in half; he simply makes it appear that he does. "But how does he do that?' we 
ask. "Not our department," say the philosophers. 

Dreyfus and Dreyfus (1986) propose a five-stage process of acquiring expertise, beginning 
with rule-based processing (of the sort proposed in GOFAI) and ending with the ability to 
select correct responses instantaneously. In making this proposal, Dreyfus and Dreyfus in 
effect move from being A1 critics to A1 theorists-they propose a neural network architecture 
organized into a vast "case library," but point out severall problems. Fortunately, all of their 
problems have been addressed, some with partial success and some with total success. Their 
problems include: 
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1. Good generalization from examples cannot be achieved without background knowl- 
edge. They claim no one has any idea how to incorporate background knowledge into 
the neural network learning process. In fact, we saw in Chapter 19 that there are tech- 
niques for using prior knowledge in learning algorithms. Those techniques, however, 
rely on the availability of knowledge in explicit form, something that Dreyfus and Drey- 
fus strenuously deny. In our view, this is a good reason for a serious redesign of cur- 
rent models of neural processing so that they can take advantage of previously learned 
knowledge in the way that other learning algorithms do. 

2. Neural network learning is a form of supervised learning (see Chapter 18), requiring 
the prior identification of relevant inputs and correct outputs. Therefore, they claim, 
it cannot operate autonomously without the help of a human trainer. In fact, learning 
without a teacher can be accomplished by unsupervised learning (Chapter 20) and 
reinforcement learning (Chapter 21). 

3. Learning algorithms do not perform well with many features, and if we pick a subset 
of features, "there is no known way of adding new features should the current set prove 
inadequate to account for the learned facts." In fact, new methods such as support vector 
machines handle large feature sets very well. As we saw in Chapter 19, there are also 
principled ways to generate new features, although much more work is needed. 

4. The brain is able to direct its sensors to seek relevant information and to process it to 
extract aspects relevant to the current situation. But, they claim, "Currently, no details 
of this mechanism are understood or even hypothesized in a way that could guide A1 
research." In fact, the field of active vision, underpinned by the theory of information 
value (Chapter 16), is concerned with exactly the problem of directing sensors, and 
already some robots have incorporated the theoretical results obtained. 

In sum, many of the issues Dreyfus has focused on-background commonsense knowledge, 
the qualification problem, uncertainty, learning, compiled forms of decision making, the im- 
portance of considering situated agents rather than disembodied inference engines-have by 
now been incorporated into standard intelligent agent design. In our view, this is evidence of 
AI's progress, not of its impossibility. 

26.2 STRONG AI: CAN MACHINES REALLY THINK? 

Many philosophers have claimed that a machine that passes the Turing Test would still not 
be actually thinking, but would be only a simulation of thinking. Again, the objection was 
foreseen by Turing. He cites a speech by Professor Geoffrey Jefferson (1949): 

Not until a machine could write a sonnet or compose a concerto because of thoughts and 
emotions felt, and not by the chance fall of symbols, could we agree that machine equals 
brain-that is, not only write it but know that it had written it. 

Turing calls this the argument from consciousness-the machine has to be aware of its own 
mental states and actions. While consciousness is an important subject, Jefferson's key point 
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actually relates to phenomenology, or the study of direct experience-the machine has to 
actually feel emotions. Others focus on intentionality-that is, the question of whether the 
machine's purported beliefs, desires, and other representations are actually "about" some- 
thing in the real world. 

Turing's response to the objection is interesting. He could have presented reasons that 
machines can in fact be conscious (or have phenomenallogy, or have intentions). Instead, he 
maintains that the question is just as ill-defined as asking, "Can machines think?" Besides, 
why should we insist on a higher standard for machines than we do for humans? After all, 
in ordinary life we never have any direct evidence about the internal mental states of other 
humans. Nevertheless, Turing says, "Instead of arguing continually over this point, it is usual 

POLITECONVENTION to have the polite convention that everyone thinks." 
Turing argues that Jefferson would be willing to extend the polite convention to ma- 

chines if only he had experience with ones that act intelligently. He cites the following dialog, 
which has become such a part of AI's oral tradition that we simply have to include it: 

HUMAN: In the first line of your sonnet which reads "shall I compare thee to a summer's 
day," would not a "spring day" do as well or better? 

MACHINE: It wouldn't Scan. 
HUMAN: How about "a winter's day." That would scan all right. 
MACHINE: Yes, but nobody wants to be compared to a winter's day. 
HUMAN: Would you say Mr. Pickwick reminded you of Christmas? 
MACHINE: In a way. 
HUMAN: Yet Christmas is a winter's day, and I do not think Mr. Pickwick would mind 

the comparison. 
MACHINE: I don't think you're serious. By a winter's day one means a typical winter's 

day, rather than a special one like Christmas. 

Turing concedes that the question of consciousness is a difficult one, but denies that it has 
much relevance to the practice of AI: "I do not wish to give the impression that I think there 
is no mystery about consciousness . . . But I do not think these mysteries necessarily need 
to be solved before we can answer the question with which we axe concerned in this paper." 
We agree with Turing-we are interested in creating programs that behave intelligently, not 
in whether someone else pronounces them to be real or simulated. On the other hand, many 
philosophers are keenly interested in the question. To help understand it, we will consider the 
question of whether other artifacts are considered real. 

In 1848, artificial urea was synthesized for the first time, by Frederick Wohler. This was 
important because it proved that organic and inorganic chemistry could be united, a question 
that had been hotly debated. Once the synthesis was accomnplished, chemists agreed that 
artificial urea was urea, because it had all the right physical properties. Similarly, artificial 
sweeteners are undeniably sweeteners, and artificial insernination (the other AI) is undeniably 
insemination. On the other hand, artificial Aowers are not flowers, and Daniel Dennett points 
out that artificial Chateau Latour wine would not be Chateau Latour wine, even if it was 
chemically indistinguishable, simply because it was not made in the right place in the right 
way. Nor is an artificial Picasso painting a Picasso painting, no matter what it looks like. 
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We can conclude that in some cases, the behavior of an artifact is important, while in 
others it is the artifact's pedigree that matters. Which one is important in which case seems 
to be a matter of convention. But for artificial minds, there is no convention, and we are left 
to rely on intuitions. The philosopher John Searle (1980) has a strong one: 

No one supposes that a computer simulation of a storm will leave us all wet . . . Why on 
earth would anyone in his right mind suppose a computer simulation of mental processes 
actually had mental processes? (pp. 37-38) 

While it is easy to agree that computer simulations of storms do not make us wet, it is not 
clear how to carry this analogy over to computer simulations of mental processes. After all, 
a Hollywood simulation of a storm using sprinklers and wind machines does make the actors 
wet. Most people are comfortable saying that a computer simulation of addition is addition, 
and a computer simulation of a chess game is a chess game. Are mental processes more like 
storms, or more like addition or chess? Like Chateau Latour and Picasso, or like urea? That 
all depends on your theory of mental states and processes. 

FUNCTIONALISM The theory of functionalism says that a mental state is any intermediate causal condi- 
tion between input and output. Under functionalist theory, any two systems with isomorphic 
causal processes would have the same mental states. Therefore, a computer program could 
have the same mental states as a person. Of course, we have not yet said what "isomorphic" 
really means, but the assumption is that there is some level of abstraction below which the 
specific implementation does not matter; as long as the processes are isomorphic down to the 
this level, the same mental states will occur. 

BIOLOGICAL 
NATURALISM In contrast, the biological naturalism theory says that mental states are high-level 

emergent features that are caused by low-level neurological processes in the neurons, and 
it is the (unspecified) properties of the neurons that matter. Thus, mental states cannot be 
duplicated just on the basis of some program having the same functional structure with the 
same input-output behavior; we would require that the program be running on an architecture 
with the same causal power as neurons. The theory does not say why neurons have this causal 
power, nor what other physical instantiations might or might not have it. 

To investigate these two viewpoints we will first look at one of the oldest problems in 
the philosophy of mind, and then turn to three thought experiments. 

The mind-body problem 
MIND-BODY 
PROBLEM The mind-body problem asks how mental states and processes are related to bodily (specif- 

ically, brain) states and processes. As if that wasn't hard enough, we will generalize the 
problem to the "mind-architecture" problem, to allow us to talk about the possibility of ma- 
chines having minds. 

Why is the mind-body problem a problem? The first difficulty goes back to RenC 
Descartes, who considered how an immortal soul interacts with a mortal body and concluded 

DUALISM that the soul and body are two distinct types of things-a dualist theory. The monist theory, 
MONISM often called materialism, holds that there are no such things as immaterial souls; only mate- 
MATERIALISM rial objects. Consequently, mental states-such as being in pain, knowing that one is riding a 

horse, or believing that Vienna is the capital of Austria-are brain states. John Searle pithily 
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sums up the idea with the slogan, "Brains cause minds." 
The materialist must face at least two serious obstacles. The first is the problem of 

FREE WILL free will: how can it be that a purely physical mind, whose every transformation is governed 
strictly by the laws of physics, still retains any freedom of choice? Most philosophers regard 
this problem as requiring a careful reconstitution of our naive notion of free will, rather than 
presenting any threat to materialism. The second problem concerns the general issue of con- 

CONSCIOUSNE~S sciousness (and related, but not identical, questions of understanding and self-awareness). 
Put simply, why is it that it feels like something to have certain brain states, whereas it pre- 
sumably does not feel like anything to have other physical states (e.g., being a rock). 

To begin to answer such questions, we need ways to talk about brain states at levels 
more abstract than specific configurations of all the atoms of the brain of a particular person 
at a particular time. For example, as I think about the capital of Austria, my brain undergoes 
myriad tiny changes from one picosecond to the next, but these do not constitute a qualitative 
change in brain state. To account for this, we need a notion of brain state types, under which 
we can judge whether two brain states belong to the same or different types. Various authors 
have various positions on what one means by type in this case. Almost everyone believes that 
if one takes a brain and replaces some of the carbon atoms by a new set of carbon atoms,2 
the mental state will not be affected. This is a good thing because real brains are continually 
replacing their atoms through metabolic processes, and yet this in itself does not seem to 
cause major mental upheavals. 

Now let's consider a particular kind of mental state: the propositional attitudes (first 
INTENTIONALSTATE discussed in Chapter lo), which are also known as intentional states. These are states, such 

as believing, knowing, desiring, fearing, and so on, that refer to some aspect of the external 
world. For example, the belief that Vienna is the capital of Austria is a belief about a particular 
city and its status. We will be aslung whether it is possible for computers to have intentional 
states, so it helps to understand how to characterize such stales. For example, one might say 
that the mental state in which I desire a hamburger differs from the state in which I desire 
a pizza because hamburger and pizza are different things in the real world. That is to say, 
intentional states have a necessary connection to their objects in the external world. On the 
other hand, we argued just a few paragraphs back that mental states are brain states; hence the 
identity or non-identity of mental states should be determined by staying completely "inside 
the head," without reference to the real world. To examine this dilemma we turn to a thought 
experiment that attempts to separate intentional states from their external objects. 

The "brain in a vat" experiment 

Imagine, if you will, that your brain was removed from your body at birth and placed in 
a marvelously engineered vat. The vat sustains your brain, allowing it to grow and de- 
velop. At the same time, electronic signals are fed to your brain from a computer simula- 
tion of an entirely fictitious world, and motor signals from your brain are intercepted and 
used to modify the simulation as appropriate.3 Then the brain could have the mental state 

Perhaps even atoms of a different isotope of carbon, as is sometim~es done in brain-scanning experiments. 
This situation may be familiar to those who have seen the 1999 film, The Matrix. 
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DyingFor(Me, Hamburger) even though it has no body to feel hunger and no taste buds to 
experience taste, and there may be no hamburger in the real world. In that case, would this 
be the same mental state as one held by a brain in a body? 

One way to resolve the dilemma is to say that the content of mental states can be inter- 
WIDE CONTENT preted from two different points of view. The "wide content" view interprets it from the point 

of view of an omniscient outside observer with access to the whole situation, who can distin- 
guish differences in the world. So under wide content the brain-in-a-vat beliefs are different 

NARROWCONTENT from those of a "normal" person. Narrow content considers only the internal subjective 
point of view, and under this view the beliefs would all be the same. 

The belief that a hamburger is delicious has a certain intrinsic nature-there is some- 
QUALIA thing that it is like to have this belief. Now we get into the realm of qualia, or intrinsic 

experiences (from the Latin word meaning, roughly, "such things"). Suppose, through some 
accident of retinal and neural wiring, that person X experiences as red the color that person 
Y perceives as green, and vice-versa. Then when both see the same traffic light they will act 
the same way, but the experience they have will be in some way different. Both may agree 
that the name for their experience is "the light is red," but the experiences feel different. It is 
not clear whether that means they are the same or different mental states. 

We now turn to another thought experiment that gets at the question of whether physical 
objects other than human neurons can have mental states. 

The brain prosthesis experiment 

The brain prosthesis experiment was introduced in the mid-1970s by Clark Glymour and 
was touched on by John Searle (1980), but is most commonly associated with the work of 
Hans Moravec (1988). It goes like this: Suppose neurophysiology has developed to the point 
where the input-output behavior and connectivity of all the neurons in the human brain are 
perfectly understood. Suppose further that we can build microscopic electronic devices that 
mimic this behavior and can be smoothly interfaced to neural tissue. Lastly, suppose that 
some miraculous surgical technique can replace individual neurons with the corresponding 
electronic devices without interrupting the operation of the brain as a whole. The experiment 
consists of gradually replacing all the neurons in someone's head with electronic devices and 
then reversing the process to return the subject to his or her normal biological state. 

We are concerned with both the external behavior and the internal experience of the 
subject, during and after the operation. By the definition of the experiment, the subject's 
external behavior must remain unchanged compared with what would be observed if the 
operation were not carried Now although the presence or absence of consciousness 
cannot easily be ascertained by a third party, the subject of the experiment ought at least to 
be able to record any changes in his or her own conscious experience. Apparently, there is 
a direct clash of intuitions as to what would happen. Moravec, a robotics researcher and 
functionalist, is convinced his consciousness would remain unaffected. Searle, a philosopher 
and biological naturalist, is equally convinced his consciousness would vanish: 

One can imagine using an identical "control" subject who is given a placebo operation, so that the two behav- 
iors can be compared. 
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You find, to your total amazement, that you are indeed losing control of your external 
behavior. You find, for example, that when doctors test your vision, you hear them say 
"We are holding up a red object in front of you; please tell us what you see." You want 
to cry out "I can't see anything. I'm going totally blind." But you hear your voice saying 
in a way that is completely out of your control, "I see a red object in front of me." . . . 
[Ylour conscious experience slowly shnnks to nothing, while your externally observable 
behavior remains the same. (Searle, 1992) 

But one can do more than argue from intuition. First, note that, in order for the external 
behavior to remain the same while the subject gradually becomes unconscious, it must be the 
case that the subject's volition is removed instantaneously and totally; otherwise the shrinking 
of awareness would be reflected in external behavior-"Help, I'm shrinking!" or words to 
that effect. This instantaneous removal of volition as a result of gradual neuron-at-a-time 
replacement seems an unlikely claim to have to make. 

Second, consider what happens if we do ask the subject questions concerning his or 
her conscious experience during the period when no real neurons remain. By the conditions 
of the experiment, we will get responses such as "1 feel fine. 1 must say I'm a bit surprised 
because I believed Searle's argument." Or we might poke the subject with a pointed stick and 
observe the response, "Ouch, that hurt." Now, in the normal course of affairs, the skeptic can 
dismiss such outputs from A1 programs as mere contrivances. Certainly, it is easy enough to 
use a rule such as "If sensor 12 reads 'High' then output 'Ouch.' " But the point here is that, 
because we have replicated the functional properties of a normal human brain, we assume 
that the electronic brain contains no such contrivances. Then we must have an explanation of 
the manifestations of consciousness produced by the electronic brain that appeals only to the 
functional properties of the neurons. And this explanation must also apply to the real brain, 
which has the sarne&nctional properties. There are, it seems, only two possible conclusions: 

I!. The causal mechanisms of consciousness that generate these kinds of outputs in normal 
brains are still operating in the electronic version, which is therefore conscious. 

2. The conscious mental events in the normal brain have no causal connection to behavior, 
and are missing from the electronic brain, which is therefore not conscious. 

Although we cannot rule out the second possibility, it reduces consciousness to what philoso- 
EPIPHENOMENON phers call an epiphenomenal role-something that happens, but casts no shadow, as it were, 

on the observable world. Furthermore, if consciousness is indeed epiphenomenal, then the 
brain must contain a second, unconscious mechanism that is responsible for the "Ouch." 

Third, consider the situation after the operation has been reversed and the subject has a 
normal brain. Once again, the subject's external behavior must, by definition, be as if the op- 
eration had not occurred. In particular, we should be able to ask, "What was it like during the 
operation? Do you remember the pointed stick?The subject must have accurate memories 
of the actual nature of his or her conscious experiences, including the qualia, despite the fact 
that, according to Searle there were no such experiences. 

Searle might reply that we have not defined the experiment properly. If the real neurons 
are, say, put into suspended animation between the time they are extracted and the time they 
are replaced in the brain, then of course they will not "remember" the experiences during 
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the operation. To deal with this eventuality, we need to make sure that the neurons' state is 
updated to reflect the internal state of the artificial neurons they are replacing. If the supposed 
"nonfunctional" aspects of the real neurons then result in functionally different behavior from 
that observed with artificial neurons still in place, then we have a simple reductio ad absur- 
durn, because that would mean that the artificial neurons are not functionally equivalent to the 
real neurons. (See Exercise 26.3 for one possible rebuttal to this argument.) 

Patricia Churchland (1986) points out that the functionalist arguments that operate at 
the level of the neuron can also operate at the level of any larger functional unit-a clump 
of neurons, a mental module, a lobe, a hemisphere, or the whole brain. That means that if 
you accept the notion that the brain prosthesis experiment shows that the replacement brain 
is conscious, then you should also believe that consciousness is maintained when the entire 
brain is replaced by a circuit that maps from inputs to outputs via a huge lookup table. This is 
disconcerting to many people (including Turing himself), who have the intuition that lookup 
tables are not conscious-or at least, that the conscious experiences generated during table 
lookup are not the same as those generated during the operation of a system that might be de- 
scribed (even in a simple-minded, computational sense) as accessing and generating beliefs, 
introspections, goals, and so on. This would suggest that the brain prosthesis experiment 
cannot use whole-brain-at-once replacement if it is to be effective in guiding intuitions, but it 
does not mean that it must use one-atom-at-a-time replacement as Searle have us believe. 

The Chinese room 

Our final thought experiment is perhaps the most famous of all. It is due to John Searle (1980), 
who describes a hypothetical system that is clearly running a program and passes the Turing 
Test, but that equally clearly (according to Searle) does not understand anything of its inputs 
and outputs. His conclusion is that running the appropriate program (i.e., having the right 
outputs) is not a suficient condition for being a mind. 

The system consists of a human, who understands only English, equipped with a rule 
book, written in English, and various stacks of paper, some blank, some with indecipherable 
inscriptions. (The human therefore plays the role of the CPU, the rule book is the program, 
and the stacks of paper are the storage device.) The system is inside a room with a small 
opening to the outside. Through the opening appear slips of paper with indecipherable sym- 
bols. The human finds matching symbols in the rule book, and follows the instructions. The 
instructions may include writing symbols on new slips of paper, finding symbols in the stacks, 
rearranging the stacks, and so on. Eventually, the instructions will cause one or more symbols 
to be transcribed onto a piece of paper that is passed back to the outside world. 

So far, so good. But from the outside, we see a system that is taking input in the form 
of Chinese sentences and generating answers in Chinese that are as obviously "intelligent" as 
those in the conversation imagined by ~ u r i n ~ . ~  Searle then argues as follows: the person in 
the room does not understand Chinese (given). The rule book and the stacks of paper, being 
- 

The fact that the stacks of paper might well be larger than the entire planet and the generation of answers 
would take millions of years has no bearing on the logical structure of the argument. One aim of philosophical 
training is to develop a finely honed sense of which objections are germane and which are not. 
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just pieces of paper, do not understand Chinese. Therefore, there is no understanding of Chi- 
nese going on. Hence, according to Searle, running the right program does not necessarily 
generate understanding. 

Like Turing, Searle considered and attempted to rebuff a number of replies to his argu- 
ment. Several commentators, including John McCarthy and Robert Wilensky, proposed what 
Searle calls the systems reply. The objection is that, although one can ask if the human in 
the room understands Chinese, this is analogous to asking if the CPU can take cube roots. 
In both cases, the answer is no, and in both cases, according to the systems reply, the entire 
system does have the capacity in question. Certainly, if one asks the Chinese room whether it 
understands Chinese, the answer would be affirmative (in fluent Chinese). By Turing's polite 
convention, this should be enough. Searle's response is to reiterate the point that the under- 
standing is not in the human and cannot be in the paper, so there cannot be any understanding. 
He further suggests that one could imagine the human memorizing the rule book and the con- 
tents of all the stacks of paper, so that there would be nothing to have understanding except 
the human; and again, when one asks the human (in English), the reply will be in the negative. 

Now we are down to the real issues. The shift from paper to memorization is a red 
herring, because both forms are simply physical instantiations of a running program. The 
real claim made by Searle rests upon the following four axioms (Searle, 1990): 

1. Computer programs are formal, syntactic entities. 

2. Minds have mental contents, or semantics. 
3. Syntax by itself is not sufficient for semantics. 

4. Brains cause minds. 

From the first three axioms he concludes that programs are not sufficient for minds. In other 
words, an agent running a program might be a mind, but it is not necessarily a mind just 
by virtue of running the program. From the fourth axiom he concludes "Any other system 
capable of causing minds would have to have causal powers (at least) equivalent to those 
of brains." From there he infers that any artificial brain would have to duplicate the causal 
powers of brains, not just run a particular program, and that human brains do not produce 
mental phenomena solely by virtue of running a prograim. 

The conclusions that programs are not sufficient folr minds does follow from the axioms, 
if you are generous in interpreting them. But the conclusion is unsatisfactory-all Searle has 
shown is that if you explicitly deny functionalism (that is what his axiom (3) does) then you 
can't necessarily conclude that non-brains are minds. This is reasonable enough, so the whole 
argument comes down to whether axiom (3) can be accepted. According to Searle, the point 
of the Chinese room argument is to provide intuitions for axiom (3). But the reaction to his 
argument shows that it provides intuitions only to those who were already inclined to accept 
the idea that mere programs cannot generate true understanding. 

To reiterate, the aim of the Chinese Room argument is to refute strong AI-the claim 
that running the right sort of program necessarily results in a mind. It does this by exhibiting 
an apparently intelligent system running the right sort of program that is, according to Searle, 
demonstrably not a mind. Searle appeals to intuition, not proof, for this part: just look at the 
room; what's there to be a mind? But one could make the same argument about the brain: 
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just look at this collection of cells (or of atoms), blindly operating according to the laws of 
biochemistry (or of physics)-what's there to be a mind? Why can a hunk of brain be a mind 
while a hunk of liver cannot? 

Furthermore, when Searle admits that materials other than neurons could in principle 
be a mind, he weakens his argument even further, for two reasons: first, one has only Searle7s 
intuitions (or one's own) to say that the Chinese room is not a mind, and second, even if we 
decide the room is not a mind, that tells us nothing about whether a program running on some 
other physical medium (including a computer) might be a mind. 

Searle allows the logical possibility that the brain is actually implementing an A1 pro- 
gram of the traditional sort-but the same program running on the wrong kind of machine 
would not be a mind. Searle has denied that he believes that "machines cannot have minds," 
rather, he asserts that some machines do have minds-humans are biological machines with 
minds. We are left without much guidance as to what types of machines do or do not qualify. 

26.3 THE ETHICS AND RISKS O F  DEVELOPING ARTIFICIAL INTELLIGENCE 

So far, we have concentrated on whether we can develop AI, but we must also consider 
whether we should. If the effects of A1 technology are more likely to be negative than posi- 
tive, then it would be the moral responsibility of workers in the field to redirect their research. 
Many new technologies have had unintended negative side-effects: the internal combustion 
engine brought air pollution and the paving-over of paradise; nuclear fission brought Cher- 
nobyl, Three Mile Island, and the threat of global destruction. All scientists and engineers 
face ethical considerations of how they should act on the job, what projects should or should 
not be done, and how they should be handled. There is even a handbook on the Ethics of 
Computing (Berleur and Brunnstein, 2001). AI, however, seems to pose some fresh problems 
beyond that of, say, building bridges that don't fall down: 

People might lose their jobs to automation. 

People might have too much (or too little) leisure time. 

People might lose their sense of being unique. 

People might lose some of their privacy rights. 

The use of A1 systems might result in a loss of accountability. 

The success of A1 might mean the end of the human race. 

We will look at each issue in turn. 
People might lose their jobs to automation. The modern industrial economy has be- 

come dependent on computers in general, and select A1 programs in particular. For example, 
much of the economy, especially in the United States, depends on the availability of con- 
sumer credit. Credit card applications, charge approvals, and fraud detection are now done 
by A1 programs. One could say that thousands of workers have been displaced by these A1 
programs, but in fact if you took away the A1 programs these jobs would not exist, because 
human labor would add an unacceptable cost to the transactions. So far, automation via A1 
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technology has created more jobs than it has eliminated, and has created more interesting, 
higher-paying jobs. Now that the canonical A1 program is an "intelligent agent" designed 
to assist a human, loss of jobs is less of a concern than it was when A1 focused on "expert 
systems" designed to replace humans. 

People might have too much (or too little) leisure time. Alvin Toffler wrote in Future 
Shock (1970), "The work week has been cut by 50 percent since the turn of the century. It 
is not out of the way to predict that it will be slashed in half again by 2000." Arthur C. 
Clarke (1968b) wrote that people in 2001 might be "faced with a future of utter boredom, 
where the main problem in life is deciding which of several hundred TV channels to se- 
lect." The only one of these predictions that has come close to panning out is the number of 
TV channels (Springsteen, 1992). Instead, people working in knowledge-intensive industries 
have found themselves part of an integrated computerized system that operates 24 hours a 
day; to keep up, they have been forced to work longer hours. In an industrial economy, re- 
wards are roughly proportional to the time invested; working 10% more would tend to mean 
a 10% increase in income. In an information economy marked by high-bandwidth commu- 
nication and easy replication of intellectual property (what Frank and Cook (1996) call the 
"Winner-Take-All Society7'), there is a large reward for being slightly better than the com- 
petition; working 10% more could mean a 100% increase in income. So there is increasing 
pressure on everyone to work harder. A1 increases the pace of technological innovation and 
thus contributes to this overall trend, but A1 also holds the promise of allowing ns to take 
some time off and let our automated agents handle things for a while. 

People might lose their sense of being unique. In Computer Power and Human Reason, 
Weizenbaum (1976), the author of the ELIZA program, points out some of the potential threats 
that A1 poses to society. One of Weizenbaum's principal arguments is that A1 research makes 
possible the idea that humans are automata-an idea that results in a Ross of autonomy or even 
of h~~manity. We note that the idea has been around much longer than AI, going back at least 
to L'Homme Machine (La Mettrie, 1748). We also note that humanity has survived other 
setbacks to our sense of uniqueness: De Revolutionibus Orbiunz Coelestium (Copernicus, 
1543) moved the Earth away from the center of the solar system and Descent of Man (Darwin, 
187 1) put Homo sapiens at the same level as other species. AI, if widely successful, may be 
at least as threatening to the moral assumptions of 21st-centmy society as Darwin's theory of 
evolution was to those of the 19th century. 

People might lose some of their privacy rights. Weizenbaum also pointed out that 
speech recognition technology could lead to widespread wiretapping, and hence to a loss of 
civil liberties. He didn't foresee a world with terrorist threats that would change the balance 
of how much surveillance people are willing to accept, but he did correctly recognize that A1 
has the potential to mass-produce surveillance. His prediction may have come true: the U.S. 
government's classified Echelon system "consists of a network of listening posts, antenna 
fields, and radar stations; the system is backed by computers that use language translation, 
speech recognition, and keyword searching to automatically sift through telephone, email, 
fax, and telex traffi~."~ some accept that computerization leads to a loss of privacy-Sun 

See "Eavesdropping on Europe," Wired news, 913011998, and cited EU reports. 



962 Chapter 26. Philosophical Foundations 

Microsystems CEO Scott McNealy has said "You have zero privacy anyway. Get over it." 
Others disagree: Judge Louis Brandeis wrote in 1890, "Privacy is the most comprehensive of 
all rights . . . the right to one's personality." 

The use ofAI systems might result in a loss of accountability. In the litigious atmosphere 
that prevails in the United States, legal liability becomes an important issue. When a physi- 
cian relies on the judgment of a medical expert system for a diagnosis, who is at fault if the 
diagnosis is wrong? Fortunately, due in part to the growing influence of decision-theoretic 
methods in medicine, it is now accepted that negligence cannot be shown if the physician 
performs medical procedures that have high expected utility, even if the actual result is catas- 
trophic for the patient. The question should therefore be "Who is at fault if the diagnosis is 
unreasonable?" So far, courts have held that medical expert systems play the same role as 
medical textbooks and reference books; physicians are responsible for understanding the rea- 
soning behind any decision and for using their own judgment in deciding whether to accept 
the system's recommendations. In designing medical expert systems as agents, therefore, 
the actions should be thought of not as directly affecting the patient but as influencing the 
physician's behavior. If expert systems become reliably more accurate than human diagnosti- 
cians, doctors might become legally liable if they don't use the recommendations of an expert 
system. Gawande (2002) explores this premise. 

Similar issues are beginning to arise regarding the use of intelligent agents on the Inter- 
net. Some progress has been made in incorporating constraints into intelligent agents so that 
they cannot, for example, damage the files of other users (Weld and Etzioni, 1994). The prob- 
lem is magnified when money changes hands. If monetary transactions are made "on one's 
behalf" by an intelligent agent, is one liable for the debts incurred? Would it be possible for 
an intelligent agent to have assets itself and to perform electronic trades on its own behalf? 
So far, these questions do not seem to be well understood. To our knowledge, no program 
has been granted legal status as an individual for the purposes of financial transactions; at 
present, it seems unreasonable to do so. Programs are also not considered to be "drivers" 
for the purposes of enforcing traffic regulations on real highways. In California law, at least, 
there do not seem to be any legal sanctions to prevent an automated vehicle from exceeding 
the speed limits, although the designer of the vehicle's control mechanism would be liable in 
the case of an accident. As with human reproductive technology, the law has yet to catch up 
with the new developments. 

The success of AI might mean the end of the human race. Almost any technology has 
the potential to cause harm in the wrong hands, but with A1 and robotics, we have the new 
problem that the wrong hands might belong to the technology itself. Countless science fiction 
stories have warned about robots or robot-human cyborgs running amok. Early examples 
include Mary Shelley's Frankenstein, or the Modern Prometheus (1 8 1817 and Karel Capek's 
play R. U.R (1921), in which robots conquer the world. In movies, we have The Terminator 
(1984), which combines the cliches of robots-conquer-the-world with time travel, and The 
Matrix (1999), which combines robots-conquer-the-world with brain-in-a-vat. 

As a young man, Charles Babbage was influenced by reading Frankenstein. 
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For the most past, it seems that robots are the protagonists of so many conquer-the- 
warld stories because they represent the unknown, just like the witches and ghosts of tales 
from earlier eras. Do they pose a more credible threat than witches and ghosts? If robots are 
properly designed as agents that adopt their owner's goals, then they probably do not: robots 
that derive from incremental advances over current designs will serve, not conquer. Humans 
use their intelligence in aggressive ways because humans have some innately aggressive ten- 
dencies, due to natural selection. But the machines we build need not be innately aggressive, 
unless we decide to build them that way. On the other hand, it is possible that computers will 
achieve a sort of conquest by serving and becoming irtdispensable, just as automobiles have 
in a sense conquered the industrialized world. One scenario deserves further consideration. 
I. J. Good wrote (1965), 

Let an ultraintelligent machine be defined as a machine that can far surpass all the in- 
tellectual activities of any man however clever. Since the design of machines is one of 
these intellectual activities, an ultraintelligent machine could design even better machines; 
there would then unquestionably be an "intelligence explosion," and the intelligence of 
man would be left far behind. Thus the first ultraintelligent machine is the last invention 
that man need ever make, provided that the machine is docile enough to tell us how to 
keep it under control. 

The "intelligence explosion" has also been called the technological singularity by mathe- SINGULARITY 

ma1:ics professor and science fiction author Vernor Vinge, who writes (1993), "Within thirty 
years, we will have the technological means to create superhuman intelligence. Shortly after, 
the human era will be ended." Good and Vinge (and many others) correctly note that the 
curve of technological progress is growing exponentially at present (consider Moore's Law). 
However, it is quite a step to extrapolate that the curve will continue on to a singularity of 
near-infinite growth. So far, every other technology has followed an S-shaped curve, where 
the exponential growth eventually tapers off. 

Vinge is concerned and scared about the coming singularity, but other computer sci- 
entists and futurists relish it. Hans Moravec's Robot: Mere Machine to Transcendent Mind 
predicts that robots will match human intelligence in 50 years and then exceed it. He writes, 

Rather quickly, they could displace us from existence. I'm not as alarmed as many by 
the latter possibility, since I consider these future machines our progeny, "mind children" 
built in our image and likeness, ourselves in more potent form. Like biological children 
of previous generations, they will embody humanity's best hope for a long-term future. 
It behooves us to give them every advantage, and to bow out when we can no longer 
contribute. (Moravec, 2000) 

Ray Kurzweil, in The Age of Spiritual Machines (2000), predicts that by the year 2099 there 
will be "a strong trend toward a merger of human thinking with the world of machine in- 
telligence that the human species initially created. There is no longer any clear distinction 

TRANSHUMANISM between humans and computers." There is even a new word--transhumanism-for the ac- 
tive social movement that looks forward to this future. Suffice it to say that such issues present 
a challenge for most moral theorists, who take the preservation of human life and the human 
species to be a good thing. 
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Finally, let us consider the robot's point of view. If robots become conscious, then to 
treat them as mere "machines" (e.g,, to take them apart) might be immoral. Robots also must 
themselves act morally-we would need to program them with a theory of what is right and 
wrong. Science fiction writers have addressed the issue of robot rights and responsibilities, 
starting with Isaac Asimov (1942). The well-known movie A.I. (Spielberg, 2001) was based 
on a story by Brian Aldiss about an intelligent robot who was programmed to believe that 
he was human and fails to understand his eventual abandonment by his owner-mother. The 
story (and the movie) convince one of the need for a civil rights movement for robots. 

This chapter has addressed the following issues: 

Philosophers use the term weak A1 for the hypothesis that machines could possibly 
behave intelligently, and strong A1 for the hypothesis that such machines would count 
as having actual minds (as opposed to simulated minds). 

Alan Turing rejected the question "Can machines think?'and replaced it with a behav- 
ioral test. He anticipated many objections to to the possibility of thinlung machines. 
Few A1 researchers pay attention to the Turing test, preferring to concentrate on their 
systems' performance on practical tasks, rather than the ability to imitate humans. 

There is general agreement in modern times that mental states are brain states. 

Arguments for and against strong A1 are inconclusive. Few mainstream A1 researchers 
believe that anything significant hinges on the outcome of the debate. 

Consciousness remains a mystery. 

We identified six potential threats to society posed by A1 and related technology. We 
concluded that some of the threats are either unlikely or differ little from threats posed 
by other, "unintelligent" technologies. One threat in particular is worthy of further 
consideration: that ultraintelligent machines might lead to a future that is very different 
from today-we may not like it, and at that point we may not have a choice. Such 
considerations lead inevitably to the conclusion that we must weigh carefully, and soon, 
the possible consequences of A1 research for the future of the human race. 

BIBLIOGRAPHICAL AND HISTORICAL NOTES 

The nature of the mind has been a standard topic of philosophical theorizing from ancient 
times to the present. In the Phaedo, Plato specifically considered and rejected the idea that 
the mind could be an "attunement" or pattern of organization of the parts of the body, a 
viewpoint that approximates the functionalist viewpoint in modern philosophy of mind. He 
decided instead that the mind had to be an immortal, immaterial soul, separable from the 
body and different in substance-the viewpoint of dualism. Aristotle distinguished a variety 
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of souls (Greek $uxq) in living things, some of which, at least, he described in a functionalist 
manner. (See Nussbaum (1978) for more on Aristotle's functionalism.) 

Descartes is notorious for his dualistic view of the human mind, but ironically his his- 
torical influence was toward mechanism and materialism. He explicitly conceived of animals 
as automata, and he anticipated the Turing test, writing "it is not conceivable [that a machine] 
should produce different arrangements of words so as to give an appropriately meaningful 
answer to whatever is said in its presence, as even the dullest of men can do" (Descartes, 
1637). Descartes's spirited defense of the animals-as-automata viewpoint actually had the 
effect of making it easier to conceive of humans as automata as well, even though he himself 
did not take this step. The book L'Homme Machine or Adan n Machine (La Mettrie, 1748) did 
explicitly argue that humans are automata. 

Modern analytic philosophy has typically accepted materialism (often in the form of 
the brain-state identity theory (Place, 1956; Armstrong, 1968), which asserts that mental 
states are identical with brain states), but has been much more divided on functionalism, the 
machine analogy for the human mind, and the question of whether machines can literally 
think. A number of early philosophical responses to Turing's (1950) "Computing Machinery 
and Intelligence," for example, Scriven (1953), attempted to deny that it was even meaningful 
to say that machines could think, on the ground that such an assertion violated the meaning 
of the word. Scriven, at least, had retracted this view by 1963; see his addendum to a reprint 
of his article (Anderson, 1964). The computer scientist Edsger Dijkstra said that "The ques- 
tion of whether a computer can think is no more interesting than the question of whether a 
submarine can swim." Ford and Hayes (1995) argue that the Turing Test is not helpful for AI. 

Functionalism is the philosophy of mind most nalurally suggested by Al, and critiques 
of functionalism often take the form of critiques of A1 (as in the case of Searle). Following 
the classification used by Block (1980), we can distinguish varieties of functionalism. Func- 
tional specification theory (Lewis, 1966, 1980) is a variant of brain-state identity theory that 
selects the brain states that are to be identified with mental states on the basis of their func- 
tional role. Functional state identity theory (Putnam, 19610, 1967) is more closely based 
on a machine analogy. It identifies mental states not with physical brain states but with ab- 
stract computational states of the brain conceived expressly as a computing device. These 
abstract states are supposed to be independent of the specific physical composition of the 
brain, leading some to charge that functional state identity theory is a form of dualism! 

Both the brain-state identity theory and the various forms of functionalism have come 
under attack from authors who claim that they do not account for the qualia or "what it's like" 
aspect of mental states (Nagel, 1974). Searle has focused instead on the alleged inability 
of functionalism to account for intentionality (Searle, 1980, 1984, 1992). Churchland and 
Churchland (1982) rebut both these types of criticism. 

ELIMINATIVE 
MATERIALISM Eliminative materialism (Rorty, 1965; Churchlancl, 1979) differs from all other promi- 

nent theories in the philosophy of mind, in that it ldoes not attempt to give an account of why 
our "folk psychology" or commonsense ideas about the mind are true, but instead rejects 
them as false and attempts to replace them with a purely scientific theory of the mind. In 
principle, this scientific theory could be given by classical AI, but in practice, eliminative 
imaterialists tend to lean on neuroscience and neural network research instead (Churchland, 
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1986), on the grounds that classical AI, especially "knowledge representation" research of 
the kind described in Chapter 10, tends to rely on the truth of folk psychology. Although the 
"intentional stance" viewpoint (Dennett, 1971) could be interpreted as functionalist, it should 
probably instead be regarded as a form of eliminative materialism, in that taking the "inten- 
tional stance" is not supposed to reflect any objective property of the agent toward whom 
the stance is taken. It should also be noted that it is possible to be an eliminative materialist 
about some aspects of mentality while analyzing others in some other way. For instance, 
Dennett (1978) is much more strongly eliminativist about qualia than about intentionality. 

Sources for the main critics of weak A1 were given in the chapter. Although it became 
fashionable in the post-neural-network era to deride symbolic approaches, not all philoso- 
phers are critical of GOFAI. Some are, in fact, ardent advocates and even practitioners. Zenon 
Pylyshyn (1984) has argued that cognition can best be understood through a computational 
model, not only in principle but also as a way of conducting research at present, and has 
specifically rebutted Dreyfus's criticisms of the computational model of human cognition 
(Pylyshyn, 1974). Gilbert Harman (1983), in analyzing belief revision, makes connections 
with A1 research on truth maintenance systems. Michael Bratman has applied his "belief- 
desire-intention" model of human psychology (Bratman, 1987) to A1 research on planning 
(Bratman, 1992). At the extreme end of strong AI, Aaron Sloman (1978, p. xiii) has even 
described as "racialist" Joseph Weizenbaum's view (Weizenbaum, 1976) that hypothetical 
intelligent machines should not be regarded as persons. 

The philosophical literature on minds, brains, and related topics is large and sometimes 
difficult to read without proper training in the terminology and methods of argument em- 
ployed. The Encyclopedia of Philosophy (Edwards, 1967) is an impressively authoritative 
and very useful aide in this process. The Cambridge Dictionary of Philosophy (Audi, 1999) 
is a shorter and more accessible work, but main entries (such as "philosophy of mind)  still 
span 10 pages or more. The MITEncyclopedia of Cognitive Science (Wilson and Keil, 1999) 
covers the philosophy of mind as well as the biology and psychology of mind. General collec- 
tions of articles on philosophy of mind, including functionalism and other viewpoints related 
to AI, are Materialism and the Mind-Body Problem (Rosenthal, 1971) and Readings in the 
Philosophy of Psychology, volume 1 (Block, 1980). Biro and Shahan (1982) present a col- 
lection devoted to the pros and cons of functionalism. Anthologies of articles dealing more 
specifically with the relation between philosophy and A1 include Minds and Machines (An- 
derson, 1964), Philosophical Perspectives in ArtiJicial Intelligence (Ringle, 1979), Mind De- 
sign (Haugeland, 1981), and The Philosophy of ArtiJicial Intelligence (Boden, 1990). There 
are several general introductions to the philosophical "A1 question" (Boden, 1977, 1990; 
Haugeland, 1985; Copeland, 1993). The Behavioral and Brain Sciences, abbreviated BBS, 
is a major journal devoted to philosophical and scientific debates about A1 and neuroscience. 
Topics of ethics and responsibility in A1 are covered in journals such as A1 and Society, Law, 
Conzputers and Artijicial Intelligence, and Artijicial Intelligence and Law. 
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26.1 Go through Turing's list of alleged "disabilities" of machines, identifying which have 
been achieved, which are achievable in principle by a program, and which are still problem- 
atic because they require conscious mental states. 

26.2 Does a refutation of the Chinese room argument necessarily prove that appropriately 
programmed computers have mental states? Does an acceptance of the argument necessarily 
mean that computers cannot have mental states? 

26.3 In the brain prosthesis argument, it is important to be able to restore the subject's 
brain to normal, such that its external behavior is as it would have been if the operation had 
not taken place. Can the skeptic reasonably object that this would require updating those 
neurophysiological properties of the neurons relating to conscious experience, as distinct 
from those involved in the functional behavior of the neurons? 

26.4 Find and analyze an account in the popular media of one or more of the arguments to 
the effect that A1 is impossible. 

26.5 Attempt to write definitions of the terms "intelligence," "thinking," and "conscious- 
ness." Suggest some possible objections to your definitions. 

26.6 Analyze the potential threats from A1 technology to society. What threats are most se- 
rious, and how might they be combated? How do they compare to the potential benefits? 

26.7 How do the potential threats from A1 technology compare with those from other com- 
puter science technologies, and to bio-, nano-, and nuclear technologies? 

26.8 Some critics object that A1 is impossible, while others object that it is too possible, 
and that ultraintelligent machines pose a threat. Which of these objections do you think is 
more likely? Would it be a contradiction for someone to holcl both positions? 



AI: PRESENT AND 27 FUTURE 

In which we take stock of where we are and where we are going, this being a good 
thing to do before continuing. 

In Part I, we proposed a unified view of A1 as rational agent design. We showed that 
the design problem depends on the percepts and actions available to the agent, the goals that 
the agent's behavior should satisfy, and the nature of the environment. A variety of differ- 
ent agent designs are possible, ranging from reflex agents to fully deliberative, knowledge- 
based agents. Moreover, the components of these designs can have a number of different 
instantiations-for example, logical, probabilistic, or "neural." The intervening chapters pre- 
sented the principles by which these components operate. 

For all the agent designs and components, there has been tremendous progress both in 
our scientific understanding and in our technological capabilities. In this chapter, we stand 
back from the details and ask, "Will all this progress lead to a general-purpose intelligent 
agent that can pe$orm well in a wide variety of environments? Section 27.1 looks at the 
components of an intelligent agent to assess what's known and what's missing. Section 27.2 
does the same for the overall agent architecture. Section 27.3 asks whether "rational agent 
design" is the right goal in the first place. (The answer is, "Not really, but it's OK for now.") 
Finally, Section 27.4 examines the consequences of success in our endeavors. 

Chapter 2 presented several agent designs and their components. To focus our discussion 
here, we will look at the utility-based agent, which we show again in Figure 27.1. This 
is the most general of our agent designs; we will also consider its extension with learning 
capabilities, as depicted in Figure 2.15. 

Interaction with the environment through sensors and actuators: For much of the his- 
tory of AI, this has been a glaring weak point. With a few honorable exceptions, A1 systems 
were built in such a way that humans had to supply the inputs and interpret the outputs, while 
robotic systems focused on low-level tasks in which high-level reasoning and planning were 
largely absent. This was due in part to the great expense and engineering effort required 
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Figure 27.1 A model-based, utility-based agent, as first presented in Figure 2.14. 

IDENTITY 
UNCERTAINTY 

to get real robots to work at all. The situation has changed rapidly in recent years with the 
availability of ready-made programmable robots, such as the four-legged robots shown in Fig- 
ure 25.4(b). These, in turn, have benefited from small, cheap, high-resolution CCD cameras 
and compact, reliable motor drives. MEMS (micro-electromechanical systems) technology 
has supplied miniaturized accelerometers and gyroscopes and is now producing actuators 
that will, for example, power an artificial flying insect. (It may also be possible to combine 
millions of MEMS actuators to produce very powerful macroscopic actuators.) For physical 
environments, then, A1 systems no longer have a real excuse. Furthermore, an entirely new 
environment-the Internet-has become available. 

Keeping track of the state of the world: This is one of the core capabilities required 
for an intelligent agent. It requires both perception and updating of internal representations. 
Chapter 7 described methods for keeping track of worlds described by propositional logic; 
Chapter 10 extended this to first-order logic; and Chapter 15 described filtering algorithms 
for tracking uncertain environments. These filtering tools are: required when real (and there- 
fore imperfect) perception is involved. Current filtering and perception algorithms can be 
combined to do a reasonable job of reporting low-level predicates such as "the cup is on the 
table" but we have some way to go before they can report that "Dr. Russell is having a cup 
of tea with Dr. Norvig." Another problem is that, although approximate filtering algorithms 
can handle quite large environments, they are still essentially propositional-like proposi- 
tional logic, they do not represent objects and relations explicitly. Chapter 14 explained how 
probability and first-order logic can be combined to solve this problem; we expect that the 
application of these ideas for tracking complex environments will yield huge benefits. Inci- 
dentally, as soon as we start talking about objects in an uncertain environment, we encounter 
identity uncertainty-we don't know which object is which. This problem has been largely 
ignored in logic-based AI, where it has generally been assumed that percepts incorporate 
constant symbols that identify the objects. 
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Projecting, evaluating, and selecting jitture courses of action: The basic knowledge 
representation requirements here are the same as for keeping track of the world; the primary 
difficulty is coping with courses of action-such as having a conversation or a cup of tea- 
that consist eventually of thousands or millions of primitive steps for a real agent. It is only 
by imposing hierarchical structure on behavior that we humans cope at all. Some of the 
planning algorithms in Chapter 12 use hierarchical representations and first-order representa- 
tions to handle problems of this scale; on the other hand, the algorithms given in Chapter 17 
for decision making under uncertainty are essentially using the same ideas as the state-based 
search algorithms of Chapter 3. There is clearly a great deal of work to do here, perhaps 
along the lines of recent developments in hierarchical reinforcement learning. 

Utility as an expression of preferences: In principle, basing rational decisions on the 
maximization of expected utility is completely general and avoids many of the problems of 
purely goal-based approaches, such as conflicting goals and uncertain attainment. As yet, 
however, there has been very little work on constructing realistic utility functions-imagine, 
for example, the complex web of interacting preferences that must be understood by an agent 
operating as an office assistant for a human being. It has proven very difficult to decompose 
preferences over complex states in the same way that Bayes nets decompose beliefs over 
complex states. One reason may be that preferences over states are really compiled from 
preferences over state histories, which are described by reward functions (see Chapter 17). 
Even if the reward function is simple, the corresponding utility function may be very complex. 
This suggests that we take seriously the task of knowledge engineering for reward functions 
as a way of conveying to our agents what it is that we want them to do. 

Learning: Chapters 18 to 20 described how learning in an agent can be formulated 
as inductive learning (supervised, unsupervised, or reinforcement-based) of the functions 
that constitute the various components of the agent. Very powerful logical and statistical 
techniques have been developed that can cope with quite large problems, often reaching or 
exceeding human capabilities in the identification of predictive patterns defined on a given 
vocabulary. On the other hand, machine learning has made very little progress on the im- 
portant problem of constructing new representations at levels of abstraction higher than the 
input vocabulary. For example, how can an autonomous robot generate useful predicates such 
as Ofice  and Cafe if they are not supplied to it by humans? Similar considerations apply 
to learning behavior-HavingACupOfTea is an important high-level action, but how does 
it get into an action library that initially contains much simpler actions such as RaiseArm 
and Swallow? Unless we understand such issues, we are faced with the daunting task of 
constructing large commonsense knowledge bases by hand. 

It is natural to ask, "Which of the agent architectures in Chapter 2 should an agent use?" 
The answer is, "All of them!" We have seen that reflex responses are needed for situations 
in which time is of the essence, whereas knowledge-based deliberation allows the agent to 
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HYBRID 
ARCHITECTURE plan ahead. A complete agent must be able to do both, using a hybrid architecture. One 

important property of hybrid architectures is that the boundaries between different decision 
components are not fixed. For example, compilation continually converts declarative in- 
formation at the deliberative level into more efficient representations, eventually reaching the 
reflex level-see Figure 27.2. (This is the purpose of explanation-based learning, as discussed 
in Chapter 19.) Agent architectures such as SOAR (Laird et al., 1987) and THEO (Mitchell, 
1990) have exactly this structure. Every time they solve a problem by explicit deliberation, 
they save away a generalized version of the solution for use by the reflex component. A 
less studied problem is the reversal of this process: when the environment changes, learned 
reflexes may no longer be appropriate and the agent must return to the deliberative level to 
produce new behaviors. 

Knowledge-based 

Actions 

Figure 27.2 Compilation serves to convert deliberative decision making into more effi- I 
cient, reflexive mechanisms. 1 

Agents also need ways to control their own deliberations. They must be able to cease 
deliberating when action is demanded, and they must be able to use the time available for 
deliberation to execute the most profitable computations. For example, a taxi-driving agent 
that sees an accident ahead must decide in a split second either to brake or to take evasive 
action. It should also spend that split second thinlung about the most important questions, 
such as whether the lanes to the left and right are clear and whether there is a large truck 
close behind, rather than worrying about wear and tear on the tires or where to pick up the 

REAL-TIME AI next passenger. These issues are usually studied under the heading of real-time AI. As A1 
systems move into more complex domains, all problems will become real-time, because the 
agent will never have long enough to solve the decision problem exactly. 

Clearly, there is a pressing need for methods that work in more general decision-making 
situations. Two promising techniques have emerged in recent years. The first involves the use 

ANUlME 
ALGORITHMS of anytime algorithms (Dean and Boddy, 1988; Horvitz, 1'987). An anytime algorithm is 

an algorithm whose output quality improves gradually over time, so that it has a reasonable 
decision ready whenever it is interrupted. Such algorithms are controlled by a metalevel deci- 
sion procedure that assesses whether further computation is worthwhile. Iterative deepening 
search in game playing provides a simple example of ari anytime algorithm. More complex 
systems, composed of many such algorithms working together, can also be constructed (Zil- 

DECISION- 
THEORETIC 
METAREASONING 

berstein and Russell, 1996). The second technique is decision-theoretic metareasoning 
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REFLECTIVE 
ARCHITECTURE 

(Horvitz, 1989; Russell and Wefald, 1991 ; Horvitz and Breese, 1996). This method applies 
the theory of information value (Chapter 16) to the selection of computations. The value of a 
computation depends on both its cost (in terms of delaying action) and its benefits (in terms 
of improved decision quality). Metareasoning techniques can be used to design better search 
algorithms and to guarantee that the algorithms have the anytime property. Metareasoning is 
expensive, of course, and compilation methods can be applied so that the overhead is small 
compared to the costs of the computations being controlled. 

Metareasoning is but one aspect of a general reflective architecture-that is, an archi- 
tecture that enables deliberation about the computational entities and actions occurring within 
the architecture itself. A theoretical foundation for reflective architectures can be built by 
defining a joint state space composed from the environment state and the computational state 
of the agent itself. Decision-making and learning algorithms can be designed that operate 
over this joint state space and thereby serve to implement and improve the agent's compu- 
tational activities. Eventually, we expect task-specific algorithms such as alpha-beta search 
and backward chaining to disappear from A1 systems, to be replaced by general methods that 
direct the agent's computations toward the efficient generation of high-quality decisions. 

27.3 ARE WE GOING IN THE RIGHT DIRECTION? 

The preceding section listed many advances and many opportunities for further progress. But 
where is this all leading? Dreyfus (1992) gives the analogy of trying to get to the moon by 
climbing a tree; one can report steady progress, all the way to the top of the tree. In this 
section, we consider whether AI's current path is more like a tree climb or a rocket trip. 

In Chapter 1, we said that our goal was to build agents that act rationally. However, we 
also said that 

. . . achieving perfect rationality-always doing the right thing-is not feasible in compli- 
cated environments. The computational demands are just too high. For most of the book, 
however, we will adopt the working hypothesis that perfect rationality is a good starting 
point for analysis. 

Now it is time to consider again what exactly the goal of A1 is. We want to build agents, but 
with what specification in mind? Here are four possibilities: 

PERFECT 
RATIONALITY Perfect rationality. A perfectly rational agent acts at every instant in such a way as to 

maximize its expected utility, given the information it has acquired from the environment. We 
have seen that the calculations necessary to achieve perfect rationality in most environments 
are too time-consuming, so perfect rationality is not a realistic goal. 

CALCULATIVE 
RATIONALITY Calculative rationality. This is the notion of rationality that we have used implicitly 

in designing logical and decision-theoretic agents. A calculatively rational agent eventually 
returns what would have been the rational choice at the beginning of its deliberation. This is 
an interesting property for a system to exhibit, but in most environments, the right answer at 
the wrong time is of no value. In practice, A1 system designers are forced to compromise on 
decision quality to obtain reasonable overall performance; unfortunately, the theoretical basis 



Section 27.3. Are We Going in the Right Direction? 973 

of calculative rationality does not provide a well-founded way to make such compromises. 
BOUNDED 
RATIONALITY Bounded rationality. Herbert Simon (1957) rejected the notion of perfect (or even ap- 

proximately perfect) rationality and replaced it with bounded rationality, a descriptive theory 
of decision making by real agents. He wrote, 

The capacity of the human mind for formulating and solving complex problems is very 
small compared with the size of the problems whose solution is required for objectively 
rational behavior in the real world-or even for a reasonabte approximation to such ob- 
jective rationality. 

He suggested that bounded rationality works primarily by satisficing-that is, deliberating 
only long enough to come up with an answer that is "good enough." Simon won the Nobel 
prize in economics for this work and has written about it in depth (Simon, 1982). It appears 
to be a useful model of human behaviors in many cases. It is not a formal specification 
for intelligent agents, however, because the definition of "good enough" is not given by the 
theory. Furthermore, satisficing seems to be just one of a large range of methods used to cope 
with bounded resources. 

BOUNDED 
OPTIMAUTY Bounded optimality (BO). A bounded optimal agent behaves as well as possible, given 

its computational resources. That is, the expected utility of the agent program for a bounded 
optimal agent is at least as high as the expected utility of any other agent program running on 
the same machine. 

Of these four possibilities, bounded optimality seems to offer the best hope for a strong 
theoretical foundation for AI. It has the advantage of being possible to achieve: there is always 
at least one best program-something that perfect rationality lacks. Bounded optimal agents 
are actually useful in the real world, whereas calculatively rational agents usually are not, and 
satisficing agents might or might not be, depending on their own whims. 

The traditional approach in A1 has been to start with calculative rationality and then 
make compromises to meet resource constraints. If the problems imposed by the constraints 
are minor, one would expect the final design to be similar to a BO agent design. But as the re- 
source constraints become more critical--e.g., as the environment becomes more complex- 
one would expect the two designs to diverge. In the theory of bounded optimality, these 
constraints can be handled in a principled fashion. 

As yet, little is known about bounded optimality. It is possible to construct bounded 
optimal programs for very simple machines and for somewhat restricted kinds of environ- 
ments (Etzioni, 1989; Russell et al., 1993), but as yet we have no idea what BO programs 
are like for large, general-purpose computers in complex environments. If there is to be a 
constructive theory of bounded optimality, we have to hope that the design of bounded op- 
timal programs does not depend too strongly on the details of the computer being used. It 
would make scientific research very difficult if adding a few kilobytes of memory to a giga- 
byte machine made a significant difference to the design of the BO program. One way to 
make sure this cannot happen is to be slightly more relaxed about the criteria for bounded 
optimality. By analogy with the notion of asymptotic complexity (Appendix A), we can de- 

ASYMPTOTIC 
BOUNDED 
OPTlMALlTY 

fine asymptotic bounded optimality (ABO) as follows (Russell and Subramanian, 1995). 
Suppose a program P is bounded optimal for a machine M in a class of environments E, 
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where the complexity of environments in E is unbounded. Then program P' is ABO for M 
in E if it can outperform P by running on a machine kM that is k times faster (or larger) 
than M. Unless k were enormous, we would be happy with a program that was ABO for 
a nontrivial environment on a nontrivial architecture. There would be little point in putting 
enormous effort into finding BO rather than ABO programs, because the size and speed of 
available machines tends to increase by a constant factor in a fixed amount of time anyway. 

We can hazard a guess that BO or ABO programs for powerful computers in complex 
environments will not necessarily have a simple, elegant structure. We have already seen that 
general-purpose intelligence requires some reflex capability and some deliberative capability, 
a variety of forms of knowledge and decision making, learning and compilation mechanisms 
for all of those forms, methods for controlling reasoning, and a large store of domain-specific 
knowledge. A bounded optimal agent must adapt to the environment in which it finds itself, 
so that eventually its internal organization will reflect optimizations that are specific to the 
particular environment. This is only to be expected, and it is similar to the way in which 
racing cars restricted by engine capacity have evolved into extremely complex designs. We 
suspect that a science of artificial intelligence based on bounded optimality will involve a 
good deal of study of the processes that allow an agent program to converge to bounded 
optimality and perhaps less concentration on the details of the messy programs that result. 

In sum, the concept of bounded optimality is proposed as a formal task for A1 research 
that is both well defined and feasible. Bounded optimality specifies optimal programs rather 
than optimal actions. Actions are, after all, generated by programs, and it is over programs 
that designers have control. 

In David Lodge's Small World (1984), a novel about the academic world of literary criticism, 
the protagonist causes consternation by asking a panel of eminent but contradictory literary 
theorists the following question: "What ifyou were right?" None of the theorists seems to 
have considered this question before, perhaps because debating unfalsifiable theories is an 
end in itself. Similar confusion can sometimes be evoked by asking A1 researchers, "What 
if you succeed?'AI is fascinating, and intelligent computers are clearly more useful than 
unintelligent computers, so why worry? 

As Section 26.3 relates, there are ethical issues to consider. Intelligent computers are 
more powerful, but will that power be used for good or ill? Those who strive to develop 
A1 have a responsibility to see that the impact of their work is a positive one. The scope of 
the impact will depend on the degree of success of AI. Even modest successes in A1 have 
already changed the ways in which computer science is taught (Stein, 2002) and software 
development is practiced. A1 has made possible new applications such as speech recognition 
systems, inventory control systems, surveillance systems, robots, and search engines. 

We can expect that medium-level successes in A1 would affect all kinds of people in 
their daily lives. So far, computerized communication networks, such as cell phones and the 
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Internet, have had this kind of pervasive effect on society, but A1 has not. We can imagine that 
truly useful personal assistants for the office or the home would have a large positive impact 
on people's lives, although they might cause some economic dislocation in the short term. A 
technological capability at this level might also be applied to .the development of autonomous 
weapons, which many view as an undesirable development. 

Finally, it seems likely that a large-scale success in AI--the creation of human-level in- 
telligence and beyond-would change the lives of a majority of humankind. The very nature 
of our work and play would be altered, as would our view of intelligence, consciousness, and 
the future destiny of the human race. At this level, A1 systems could pose a more direct threat 
to human autonomy, freedom, and even survival. For these reasons, we cannot divorce A1 
research from its ethical consequences. 

Which way will the future go? Science fiction authors seem to favor dystopian futures 
over utopian ones, probably because they make for more interesting plots. But so far, A1 
seems to fit in with other revolutionary technologies (printing, plumbing, air travel, telephony) 
whose negative repercussions are outweighed by their positive aspects. 

In conclusion, we see that A1 has made great progress in its short history, but the final 
sentence of Alan Turing's essay on Computing Machinery and Intelligence is still valid today: 

We can see only a short distance ahead, but we can see that much remains to be done. 





MATHEMATICAL A BACKGROUND 

A. 1 COMPLEXITY ANALYSIS AND O() NOTATION 

Computer scientists are often faced with the task of comparing algorithms to see how fast 
they run or how much memory they require. There are two approaches to this task. The first 

BENCHMARKING is benchmarking-running the algorithms on a computer and measuring speed in seconds 
and memory consumption in bytes. Ultimately, this is what really matters, but a benchmark 
can be unsatisfactory because it is so specific: it measures the performance of a particular 
program written in a particular language, running on a particular computer, with a particular 
compiler and particular input data. From the single result that the benchmark provides, it can 
be difficult to predict how well the algorithm would do on a different compiler, computer, or 
data set. 

Asymptotic analysis 
ANALYSIS OF 
ALGORITHMS The second approach relies on a mathematical analysis of algorithms, independently of the 

particular implementation and input. We will examine the approach via the following exam- 
ple, a program to compute the sum of a sequence of numbers: 

function S u ~ ~ ~ ~ ~ o ~ ( s e q u e n c e )  returns a number 
sum + 0 
for i +- 1 to L ~ ~ ~ T ~ ( s e q u e n c e )  

sum t sum + sequence[i] 
return sum 

The first step in the analysis is to abstract over tlie input, in order to find some parameter or 
parameters that characterize the size of the input. In this example, the input can be character- 
ized by the length of the sequence, which we will call n. The second step is to abstract over 
the implementation, to find some measure that reflects the running time of the algorithm, but 
is not tied to a particular compiler or computer. For the SUMMATION program, this could 
be just the number of lines of code executed, or it could be more detailed, measuring the 
number of additions, assignments, array references, and branches executed by the algorithm. 
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Either way gives us a characterization of the total number of steps taken by the algorithm as 
a function of the size of the input. We will call this characterization T(n).  If we count lines 
of code, we have T(n)  = 2n + 2 for our example. 

If all programs were as simple as SUMMATION, the analysis of algorithms would be a 
trivial field. But two problems make it more complicated. First, it is rare to find a parameter 
like n that completely characterizes the number of steps taken by an algorithm. Instead, the 
best we can usually do is compute the worst case T.,,,,,,,t(n) or the average case T,,,(n). 
Computing an average means that the analyst must assume some distribution of inputs. 

The second problem is that algorithms tend to resist exact analysis. In that case, it is 
necessary to fall back on an approximation. We say that the SUMMATION algorithm is O(n), 
meaning that its measure is at most a constant times n, with the possible exception of a few 
small values of n. More formally, 

T(n)  is O(f (n ) )  if T(n)  < k f (n)  for some k, for all n > no . 
The O() notation gives us what is called an asymptotic analysis. We can say without ques- 
tion that, as n asymptotically approaches infinity, an O(n) algorithm is better than an 0(n 2)  
algorithm. A single benchmark figure could not substantiate such a claim. 

The O ( )  notation abstracts over constant factors, which makes it easier to use, but less 
precise, than the T ( )  notation. For example, an O(n2) algorithm will always be worse than 
an O(n) in the long run, but if the two algorithms are ~ ( n ~  + 1) and T(100n + 1000), then 
the 0 (n2)  algorithm is actually better for n 5 110. 

Despite this drawback, asymptotic analysis is the most widely used tool for analyzing 
algorithms. It is precisely because the analysis abstracts over both the exact number of oper- 
ations (by ignoring the constant factor k) and the exact content of the input (by considering 
only its size n) that the analysis becomes mathematically feasible. The O() notation is a good 
compromise between precision and ease of analysis. 

NP and inherently hard problems 

The analysis of algorithms and the 00 notation allow us to talk about the efficiency of a 
particular algorithm. However, they have nothing to say about whether there could be a better 

COMPLEXITY 
ANALYSIS algorithm for the problem at hand. The field of complexity analysis analyzes problems rather 

than algorithms. The first gross division is between problems that can be solved in polynomial 
time and problems that cannot be solved in polynomial time, no matter what algorithm is 
used. The class of polynomial problems-those which can be solved in time O(nk) for some 
k-is called P. These are sometimes called "easy" problems, because the class contains those 
problems with running times like O(1og n)  and O(n). But it also contains those with time 
~ ( n ' ~ ~ ~ ) ,  so the name "easy" should not be taken too literally. 

Another important class of problems is NP, the class of nondeterministic polynomial 
problems. A problem is in this class if there is some algorithm that can guess a solution 
and then verify whether the guess is correct in polynomial time. The idea is that if you 
have an arbitrarily large number of processors, so that you can try all the guesses at once, 
or you are very lucky and always guess right the first time, then the NP problems become 
P problems. One of the biggest open questions in computer science is whether the class 
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NP is equivalent to the class P when one does not have the luxury of an infinite number of 
processors or omniscient guessing. Most computer scientists are convinced that P # NP- 
that NP problems are inherently hard and have no p01:ynomial time algorithms. But this has 
never been proven. 

Those who are interested in deciding whether P = 1VP look at a subclass of NP called the 
NP-COMPLETE NP-complete problems. The word "complete" is used here in the sense of "most extreme" 

and thus refers to the hardest problems in the class NP. It has been proven that either all 
the NP-complete problems are in P or none of them is. This makes the class theoretically 
interesting, but the class is also of practical interest because many important problems are 
known to be NP-complete. An example is the satisfiabi1it.y problem: given a sentence of 
propositional logic, is there an assignment of truth values to the proposition symbols of the 
sentence that make it true? Unless a miracle occurs and P = NP, there can be no algorithm 
that solves all satisfiability problems in polynomial time. However, A1 is more interested in 
whether there are algorithms that perform efficiently on typical problems drawn from a pre- 
determined distribution; as we saw in Chapter 7, there are algorithms such as WALKSAT that 
do quite well on many problems. 

CO-NP The class co-NP is the complement of NP, in the sense that, for every decision problem 
in NP, there is a corresponding problem in co-NP with the "yes7' and "no7' answers reversed. 
We know that P is a subset of both NP and co-NP, and it is believed that there are problems 

CO-NP-COMPLETE in co-NP that are not in P. The co-NP-complete problems are the hardest problems in co-NP. 
The class #P (pronounced "sharp P )  is the set of counting problems corresponding to 

the decision problems in NP. Decision problems have a yes-or-no answer: is there a solution 
to this 3-SAT formula? Counting problems have an integer answer: how many solutions are 
there to this 3-SAT formula? In some cases, the counting problem is much harder than the 
decision problem. For example, deciding whether a bipartite graph has a perfect matching 
can be done in time O(VE) (where the graph has V  vertices and E  edges), but the counting 
problem "how many perfect matches does this bipartite graph have" is #P-complete, meaning 
that it is hard as any problem in #P and thus at least as hard as any NP problem. 

Also studied is the class of PSPACE problems-those that require a polynomial amount 
of space, even on a nondeterministic machine. It is believed that PSPACE-hard problems are 
worse than NP-complete problems, although it could turn olut that NP = PSPACE, just as it 
could turn out that P = NP. 

A.2 VECTORS, MATRICES, A N D  LINEAR ALGEBRA 

VECTOR Mathematicians define a vector as a member of a vectlor space, but we will use a more con- 
crete definition: a vector is an ordered sequence of values. For example, in two-dimensional 
space, we have vectors such as x = (3,4) and y = (0,2). We follow the usual conven- 
tion of using bold face characters for vector names, althou,gh some authors use arrows or 
bars over the names: 2 or y. The elements of a vector can be accessed using subscripts: 
Z = (zl, z2,. . . , Zn) .  
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The two fundamental operations on vectors are vector addition and scalar multiplica- 
tion. The vector addition x + y is the elementwise sum: x + y = (3 + 0 , 4  + 2) = (3,6). 
Scalar multiplication multiplies each element by a constant: 5x = (5 x 3 ,5  x 4) = (15,20). 

The length of a vector is denoted 1x1 and is computed by talung the square root of the 
sum of the squares of the elements: 1x1 = = 5 .  The dot product (also called 
scalar product) of two vectors x . y is the sum of the products of corresponding elements, that 
is, x . y = Ci xiyi, or in our particular case, x . y = 3 x 0 + 4 x 2 = 8. 

Vectors are often interpreted as directed line segments (arrows) in an n-dimensional 
Euclidean space. Vector addition is then equivalent to placing the tail of one vector at the 
head of the other, and the dot product x . y is equal to 1x1 lyl cos 0, where 0 is the angle 
between x and y. 

MATRIX A matrix is a rectangular array of values arranged into rows and columns. Here is a 
matrix m of size 3 x 4: 

The first index of mi,j specifies the row and the second the column. In programming lan- 
guages, mi,j is often written m [i , j I or m [ i I [ j I . 

The sum of two matrices is defined by adding corresponding elements; thus, (m + 
n)i,j = mij  + nijj. (The sum is undefined if m and n have different sizes.) We can also 
define the multiplication of a matrix by a scalar: = cmij. Matrix multiplication (the 
product of two matrices) is more complicated. The product mn is defined only if m is of size 
a x b and n is of size b x c (i.e., the second matrix has the same number of rows as the first 
has columns); the result is a matrix of size a x c. This means that matrix multiplication is not 
commutative: mn # nm in general. If the matrices are of appropriate size, then the result is 

(mn)i,k = xmi,jnj ,b . 
j 

The identity matrix I has elements Ii equal to 1 when i = j and equal to 0 otherwise. It has 
the property that mI = m for all m. The transpose of m, written mT is formed by turning 
rows into columns and vice versa, or, more formally, by mri = m,,i. 

Matrices are used to solve systems of linear equations via a process called Gauss- 
Jordan elimination, an 0 (n3)  algorithm. Consider the following set of equations, for which 
we want a solution in x, y, and z: 

We can represent this system as a matrix: 

x y z  c 
2 1 -1 

(1: -; ; -!:) 
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Here, the x y z c is not part of the matrix; it is just there as a reminder to the viewer. We know 
that if we multiply both sides of an equation by a constant or add two equations, we get an 
equally valid equation. Gauss-Jordan elimination works by repeatedly doing these operations 
in such a way that we start by eliminating the first variable (x) from all but the first equation 
and then continue on, eliminating the ith variable from all but the ith equation, for all i. We 
eliminate x from the second equation by multiplying Ithe first equation by 3/2 and adding it 
to the second. This gives us the following matrix: 

x y z  c 

( .i 1 ;) 
-2 1 2 -3 

We continue in this fashion, eliminating x, y, and z until we get 

x y x  c 
1 0 0  ( :) 
0 0 1 - 1  

indicating that x = 2, y = 3, z = -1 is a solution. (Try it!) 

A probability is a measure over a set of events that satisfies three axioms: 

1. The measure of each event is between 0 and 1. We write this as 0 5 P(E = ei) 5 1, 
where E is a random variable representing an event and ei are the possible values of 
E. In general, random variables are denoted by uppercase letters and their values by 
lowercase letters. 

2. The measure of the whole set is 1; that is, C7=1 P(E = ei) = 1. 

3. The probability of a union of disjoint events is the sum of the probabilities of the indi- 
vidual events; that is, P(E  = el V E = e2)  = P(E = e l )  + P ( E  = e2), where el and 
e:! are disjoint. 

A probabilistic model consists of a sample space of mutually exclusive possible outcomes, 
together with a probability measure for each outcome. For example, in a model of the 
weather tomorrow, the outcomes might be sunny, cloudy, rainy, and snowy. A subset of 
these outcomes constitutes an event. For example, the event of precipitation is the subset 
{rainy, snowy}. 

We use P(E)  to denote the vector of values (P (E  = e l ) ,  . . . , P(E  = e,)). We also 
use P(ei) as an abbreviation for P(E  = ei) and C, P(e) for Cr=2=1 P(E = ei). 

The conditional probability P(B \A)  is defined as P(B  fl A)/P(A) .  A and B are 
conditionally independent if P(B1A) = P ( B )  (or equivalently, P(A1B) = P(A)) .  For 
continuous variables, there are an infinite number of values, and unless there are point spikes, 
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the probability of any one value is 0. Therefore, we define a probability density function, 
which we also denote as P ( X ) ,  but which has a slightly different meaning from the discrete 
probability function P(A).  The density function P ( X  = c) is defined as the ratio of the 
probability that X falls into an interval around c, divided by the width of the interval, as the 
interval width goes to zero: 

P ( X  = c) = lim P ( c  5 X 5 c + d x ) / d x .  
dx+O 

The density function must be nonnegative for all x and must have 

We can also define a cumulative probability density function F (X), which is the probabil- 
ity of a random variable being less than x: 

Note that the probability density function has units, whereas the discrete probability function 
is unitless. For example, if X is measured in seconds, then the density is measured in Hz 
(i.e., l/sec). If X is a point in three-dimensional space measured in meters, then density is 
measured in 1/m3. 

One of the most important probability distributions is the Gaussian distribution, also 
known as the normal distribution. A Gaussian distribution with mean p and standard devi- 
ation a (and therefore variance a2)  is defined as 

where x is a continuous variable ranging from -oo to +oo. With mean p = 0 and variance 
a2 = 1, we get the special case of the standard normal distribution. For a distribution over 
a vector x in n dimensions, there is the multivariate Gaussian distribution: 

where p is the mean vector and Z is the covariance matrix of the distribution. 
In one dimension, we can also define the cumulative distribution function F ( x )  as the 

probability that a random variable will be less than x. For the standard normal distribution, 
this is given by 

where erf(x) is the so-called error function, which has no closed form representation. 
The central limit theorem states that the mean of n random variables tends to a normal 

distribution as n tends to infinity. This holds for almost any collection of random variables, 
unless the variance of any finite subset of variables dominates the others. 
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- -  - 

BIBLIOGRAPHICAL AND HISTORICAL NOTES 

The O ( )  notation so widely used in computer science today was first introduced in the context 
of number theory by the German mathematician P. G. H. Ba.chmann (1894). The concept of 
NP-completeness was invented by Cook (1971), and  the modern method for establishing a 
reduction from one problem to another is due to Karp (1972). Cook and Karp have both won 
the Turing award, the highest honor in computer science, for their work. 

Classic works on the analysis and design of algorithms include those by Knuth (1973) 
and Aho, Hopcroft, and Ullman (1974); more recent contributions are by Tarjan (1983) and 
Cormen, Leiserson, and Rivest (1990). These books place an emphasis on designing and an- 
alyzing algorithms to solve tractable problems. For the theory of NP-completeness and other 
forms of intractability, see Garey and Johnson (1979) or Papadimitriou (1994). In addition to 
the underlying theory, Garey and Johnson provide examples that convey very forcefully why 
computer scientists are unanimous in drawing the line between tractable and intractable prob- 
lems at the border between polynomial and exponential .time complexity. They also provide a 
voluminous catalog of problems that are known to be NP-complete or otherwise intractable. 

Good texts on probability include Chung (1979), Ross (1988), Bertsekas and Tsitsiklis 
(2002), and Feller (197 1). 



NOTES ON LANGUAGES B AND ALGORITHMS 

B. 1 DEFINING LANGUAGES WITH BACKUS-NAUR FORM (BNF) 

In this book, we define several languages, including the languages of propositional logic 
(page 204), first-order logic (page 247), and a subset of English (page 805). A formal lan- 
guage is defined as a set of strings where each string is a sequence of symbols. All the 
languages we are interested in consist of an infinite set of stings, so we need a concise way 
to characterize the set. We do that with a grammar. We write our grammars in a formalism 

BACKUS-NAUR called Backus-Naur form (BNF). There are four components to a BNF grammar: FORM (BNF) 

TERMINALSYMBOLS A set of terminal symbols. These are the symbols or words that make up the strings of 
the language. They could be letters (A, B, C, . . .) or words (a, aardvark, abacus, . . .). 

NONTERMINAL 
SYMBOLS A set of nonterminal symbols that categorize subphrases of the language. For exam- 

ple, the nonterminal symbol NounPhrase in English denotes an infinite set of strings 
including "you" and "the big slobbery dog." 

START SYMBOL A start symbol, which is the nonterminal symbol that denotes the complete strings of 
the language. In English, this is Sentence; for arithmetic, it might be Expr. 
A set of rewrite rules, of the form LHS 4 RHS, where LHS is a nonterminal and 
RHS is a sequence of zero or more symbols (either terminal or nonterminal). 

A rewrite rule of the form 

Sentence --+ NounPhrase VerbPhrase 

means that whenever we have two strings categorized as a NounPhrase and a VerbPhrase, 
we can append them together and categorize the result as a Sentence. As an abbreviation, 
the symbol ( can be used to separate alternative right-hand sides. Here is a BNF grammar for 
simple arithmetic expressions: 

Expr + Expr Operator Expr 1 ( Expr ) 1 Number 

Number + Digit [ Number Digit 

Digit -t 0 1 1 1 2 ( 3 1 4 ( 5 1 6 / 7 1 8 1 9  
Operator -3 + I - I + 1 x 
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We cover languages and grammars in more detail in Chapter 22. Be aware that other books 
use slightly different notations for BNF; for example, you might see (Digit) instead of Digit 
for a nonterrninal, 'word' instead of word for a terminal, or : : = instead of -+ in a rule. 

B .2 DESCRIBING ALGORITHMS W I T H  PSEUDOCODE 

In this book, we define over 80 algorithms in detail. Rather than picking a programming 
language (and risking the possibility that readers who are unfamiliar with the language will 
be lost), we have chosen to describe the algorithms in pseudocode. Most of the pseudocode 
should be familiar to users of languages like Java, C-t-+, or Lisp. In some places we use 
mathematical formulas or ordinary English to describe parts that would otherwise be more 
cumbersome. A few idiosyncrasies should be noted. 

Static variables. We use the keyword static to say that a variable is given an initial 
value the first time a function is called and retains that value (or the value given to it by a 
subsequent assignment statement) on all subsequent calls to the function. Thus, static vari- 
ables are like global variables in that they outlive a single call to their function, but they are 
accessible only within the function. The agent programs in the book use static variables for 
"memory." Programs with static variables can be implemented as "objects" in object-oriented 
languages such as Java and Smalltalk. In functional languages, they can be implemented by 
functional closures in an environment in which the required variables are defined. 

Functions as values. Functions and procedures have capitalized names, and variables 
have lowercase italic names. So most of the time, a function call looks like FN(x). However, 
we allow the value of a variable to be a function; for example, if the value of the variable f is 
the square root function, then f (9) returns 3. 

Arrays start at 1. Unless stated otherwise, the first index of an array is 1 as in usual 
mathematical notation, not 0, as in Java and C. 

Indentation is significant. Indentation is used lo mark the scope of a loop or condi- 
tional, as in the language Python, and unlike Java and C++ (which use braces) or Pascal and 
Visual Basic (which use end). 

Most of the algorithms in the book have been implemented at our online code repository: 

aima.cs.berkeley.edu 
If you have any comments, corrections, or suggestions for improving the book, we would 
like to hear from you. Please visit the Web site for instructions on discussion lists, or send an 
email message to: 

aima @ cs.berkeley.edu 
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A Modern  roach 
Stuart Russell Peter Norvig 

SECOND EDITION 

The Brst edition of Arripcinl InteUigence: A Modent Appmach has become a classic in the A1 literature. It has 
been adopted by over 600 universities in 60 countries, and h& been praised as the definitive synthesis of the 
field. Here's what people had to say: 

"The publication of this textbook was a m j o r  step forward, not only for the teaching ofAl, butfor the:un$ied 
view of thefield that this book introduces. Even for experts in thefield, there are important insights in almost 
every chapter" -Prof. Thomas Dietterich (Oregon State) 

"Just terrific. The book I've alwaysbeen waiting for. ..the A1 bible for the next decade." 
-Prof. Gerd Brewka (Vienna) 

"A marvelous achievement, a truly,beautiful book!" -Prof. Selnier Bringsjord (RPI) 

"It's a great.book, with incredible breadth anddepth,,.rand very well-written. Everyone I know who has used it 
in their class has lovedit." -Prof. Haym ffirsk(Rutgers) 

, . 
"I am deeply impressed by its unprecedented qitaliiy in presenting a coherent, balanced, bmad and deep, 
enjoyable picture of the field of AI. It will become the standard text for the years to come." 
-Prof. Wolfgang Bibel (Darmstadt) 

"Terrific! Well-written and well-organized, with comprehensive coverage of the material that every A1 student 
should know." -Prof. Martha Pollack (Michigan) '. 

"Outstanding ... Its descriptions are extremely clear and readable; its organization is excellent: its examples are 
motivating: and its coverage is scholarly and thorough! ... will deservedly dominate thefield for some time." 
-Prof. Nils Nilsson (Stanford) 

"The best book available now ... It's almost as good as the book Charniak and I wmte, but more up to date. 
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