Artificial Inteligence
A Modern Approach

SECOND EDITION

Stuart Russell o Peter Norvig

PrenticeHall Seriesin Artificial Intelligence

Artificia Intelligence
A Modern Approach

Second Elition

FORSYTH & PONCE
GRAHAM

JURAFSKY & MARTIN
NEAPOLITAN
RUSSELL & NORVIG

PRENTICEHALL SERIES
INARTIFICIALINTELLIGENCE
Stuart Russell and Peter Norvig, Editors

Computer Vision: A Modern Approach
ANSI Common Lisp

Speech and Language Processing
Learning Bayesian Networks
Artificial Intelligence: A Modern Approach

Artificial Intelligence
A Modern Approach

Second Edition

Stuart J. Russell and Peter Norvig

Contributing writers.
John F. Canny
Douglas D. Edwards
Jitendra M. Malik
Sebastian Thrun

Pearson Education, Inc., Upper Saddle River; New Jersey 07458

Libraryd Congress Cataloging-in-Publication Data

CIP Dataonfile.

Vice President and Editorial Director, ECS: Marcia J. Horton

Publisher: Alan R. Apt

Associate Editor: Toni Dianne Holm

Editorial Assistant: Patrick Lindner

VicePresident and Director of Production and Manufacturing, ESM: David W. Riccardi
Executive Managing Editor: Vince O’Brien

Assistant Managing Editor: Camille Trentacoste

Production Editor: Irwin Zucker

Manufacturing Manager: Trudy Pisciotti

Manufacturing Buyer: Lisa McDowell

Director, Creative Services: Paul Belfanti

Creative Director: Carole Anson

Art Editor: Greg Dulles

Art Director: Heather Scott

Assistant to Art Director: Geoffrey Cassar

Cover Designers: Stuart Russell and Peter Norvig

Cover Image Creation: Stuart Russell and Peter Norvig; Tamara Newnam and Patrice Van Acker
Interior Designer: Stuart Russell and Peter Norvig

Marketing Manager: Pamela Shaffer

Marketing Assistant: Barrie Reinhold

© 2003, 1995 by Pearson Education, Inc.
Pearson Education, Inc.,
Upper Saddle River, New Jersey 07458

All rights reserved. No part of this book may he reproduced, in any form or by any means,
without permission in writing from the publisher.

Theauthor and publisher of this hook have used their best efforts in preparing this hook. These efforts
include the development, research, and testing of the theories and programs to determine their effectiveness.
The author and publisher make no warranty of any kind, express or implied, with regard to these programs
or the documentation contained in this hook. The author and publisher shall not beliablein any event for
incidental or consequential damages in connection with, or arising out of, the furnishing, performance,

or use of these programs.

Printed in the United States of America

ISBN 0-13-790395-2

Pearson Education Ltd., London

Pearson Education Australia Pty. Ltd., Sydney

Pearson Education Singapore, Pte. Ltd.

Pearson Education North Asia Ltd., Hong Kong
Pearson Education Canada, Inc., Toronto

Pearson Educaciéon de Mexico. S.A.de C.V.

Pearson Education— Japan, Tokyo

Pearson Education Malaysia, Pte. Ltd.

Pearson Education, Inc., Upper Saddle River, New Jersey

For Loy, Gordon, and Lucy — SJ.R.

For Kris, Isabella, and Juliet — P.N.

Preface

Artificial Inteligence (Al) is a big field, and thisis a big book. We have tried to explore the full
breadth of the field, which encompasseslogic, probability, and continuous mathematics; perception,
reasoning, learning, and action; and everything from microelectronic devices to robotic planetary
explorers. The book is also big because we go into some depth in presenting results, although we
strive to cover only the most central ideas in the main part of each chapter. Pointers are given to
further resultsin the bibliographical notes at the end of each chapter.

The subtitle of thisbook is"A Modern Approach." The intended meaning of this rather empty
phraseis that we have tried to synthesize what is now known into a common framework, rather than
trying to explain each subfield of Al in its own historical context. We apologize to those whose
subfields are, as aresult, less recognizablethan they might otherwise have been.

The main unifying theme is the idea of an intelligent agent. We define Al as the study of
agentsthat receiveperceptsfrom the environment and performactions. Each such agentimplementsa
function that maps percept sequencesto actions, and we cover different ways to represent thesefunc-
tions, such as production systems, reactive agents, real-time cortditional planners, neural networks,
and decision-theoreticsystems. We explain therole of learning as extending the reach of the designer
into unknown environments, and we show how that role constrains agent design, favoring explicit
knowledge representation and reasoning. We treat robotics and vision not as independently defined
problems, but as occurring in the service of achieving goals. We stress the importance of the task
environmentin determining the appropriate agent design.

Our primary aimisto convey the ideas that have emerged over the past fifty yearsof Al research
and the past two milleniaof related work. We have tried to avoid excessiveformality in the presen-
tation of these ideas while retaining precision. Wherever appropriate, we have included pseudocode
agorithmsto make theideas concrete; our pseudocodeis described briefly in Appendix B. Implemen-
tationsin several programming languagesare availableon the book's Web site, aima.cs.berkeley.edu.

This book is primarily intended for use in an undergraduatecourse or course sequence. It can
also be used in a graduate-level course (perhaps with the addition of some of the primary sources
suggested in the bibliographical notes). Because of its comprehensivecoverage and large number of
detailed algorithms, it is useful as a primary reference volume for Al graduate students and profes-
sionals wishing to branch out beyond their own subfield. The only prerequisiteis familiarity with
basic concepts of computer science (algorithms, data structures, complexity) a a sophomore level.
Freshman calculusis useful for understanding neural networksand statistical learningin detail. Some
of the required mathematical background is supplied in Appendix A.

Overview of the book

The book is divided into eight parts. Part I, Artificial I ntelligence, offersa view of the Al enterprise
based around theidea of intelligent agents—systems that can decide what to do and then do it. Part
11, Problem Solving, concentrateson methods for deciding what to do when one needs to think ahead
severa steps—for examplein navigatingacrossa country or playing chess. Part I1T, Knowledge and
Reasoning, discussesways to represent knowl edgeabout the world—how it works, what it is currently
like, and what one's actions might do—and how to reason logically with that knowledge. Part 1V,
Planning, then discusses how to use these reasoning methods to decide what to do, particularly by
constructing plans. Part V, Uncertain Knowledge and Reasoning, is analogousto Parts IIT and 1V,
but it concentrates on reasoning and decision making in the presence of uncertainty about the world,
as might befaced, for example, by a system for medical diagnosisand treatment.

Together, PartsII-V describethat part of theintelligentagent responsiblefor reachingdecisions.
Part VI, L ear ning, describesmethodsfor generatingtheknowledgerequired by thesedecision-making

viii

Preface

components. Part VII, Communicating, Per celving, and Acting, describes waysin which an intel-
ligent agent can perceive its environment so as to know what is going on, whether by vision, touch,
hearing, or understanding language, and ways in which it can turn its plansinto real actions, either as
robot motion or as natural language utterances. Finally, Part V111, Conclusions, analyzes the past and
future of Al and the philosophical and ethical implications of artificia intelligence.

Changesfrom thefirst edition

Much has changed in Al since the publication of thefirst edition in 1995, and much has changed in this
book. Every chapter has been significantly rewritten to reflect thelatest work in thefield, toreinterpret
old work in a way that is more cohesive with new findings, and to improve the pedagogical flow of
ideas. Followers of AI should be encouraged that current techniques are much more practical than
those of 1995; for example the planning algorithms in the first edition could generate plans of only
dozens of steps, while the algorithms in this edition scale up to tens of thousands of steps. Similar
orders-of-magnitude improvements are seen in probabilistic inference, language processing, and other
subfields. Thefollowing are the most notable changes in the book:

¢ InPartl, weacknowledgethehistorical contributions of control theory, gametheory, economics,
and neuroscience. This helps set the tone for a more integrated coverage of these ideas in
subsequent chapters.

e InPart II, online search algorithms are covered and a new chapter on constraint satisfaction has
been added. The latter provides a natural connection to the material on logic.

o In Pat III, propositional logic, which was presented as a stepping-stone to first-order logic in
the first edition, is now presented as a useful representation language in its own right, with fast
inference algorithms and circuit-based agent designs. The chapters on first-order logic have
been reorganized to present the material more clearly and we have added the Internet shopping
domain as an example.

e |n Part IV, we include newer planning methods such as GRAPHPLAN and satisfiability-based
planning, and we increase coverage of scheduling, conditional planning, hierarchical planning,
and multiagent planning.

e In Part V, we have augmented the material on Bayesian networks with new algorithms, such
as variable elimination and Markov Chain Monte Carlo, and we have created a new chapter on
uncertain temporal reasoning, covering hidden Markov models, Kalman filters, and dynamic
Bayesian networks. The coverage of Markov decision processes is deepened, and we add sec-
tions on game theory and mechanism design.

e In Pat VI, wetie together work in statistical, symbolic, and neural learning and add sectionson
boosting algorithms, the EM algorithm, instance-based learning, and kernel methods (support
vector machines).

e In Part VII, coverage of language processing adds sections on discourse processing and gram-
mar induction, as well as a chapter on probabilistic language models, with applications to in-
formation retrieval and machine translation. The coverage of robotics stresses the integration of
uncertain sensor data, and the chapter on vision has updated material on object recognition.

e In Part VIII, weintroduce a section on the ethical implications of Al.

Using thisbook

The book has 27 chapters, each requiring about a week's worth of lectures, so working through the
whole book requires atwo-semester sequence. Alternatively, a course can betailored to suit theinter-
ests of theinstructor and student. Through its broad coverage, the book can be used to support such

Preface

1X

NEW TERM

courses, whether they are short, introductory undergraduatecourses or specialized graduatecourseson
advanced topics. Sample syllabi from the more than 600 universitiesand collegesthat have adopted
thefirst edition are shown on the Web at aima.cs.berkel ey.edu,along with suggestionsto help you find
asequence appropriateto your needs.

The book includes 385 exercises. Exercisesrequiring significant programming are marked with
a keyboard icon. These exercises can best be solved by taking advantage of the code repository at
aima.cs.berkeley.edu. Some of them are large enough to be considered term projects. A. number of
exercisesrequire someinvestigationof the literature; these are marked with a book icon.

Throughout the book, important points are marked with a pointing icon. We have included an
extensive index of around 10,000 items to make it easy to ffind things in the book. Wherever a new
term isfirst defined, it is also marked in the margin.

Using the Web site

At theaima.cs.berkeley.eduWeb site you will find:

e implementationsof thealgorithmsin the book in severa programming languages,

¢ alist of over 600 schoolsthat have used the book, many with linksto online course materials,
e an annotated list of over 800 links to sites around the web with useful AT content,

achapter by chapter list of supplementary material and links,

instructionson how to join adiscussiongroup for the book,

instructionson how to contact the authors with questionsor comments,

instructionson how to report errorsin the book, in thelikely event that some exist, and
copiesdf the figuresin the book, along with didesand other material for instructors.

e O o

Acknowledgments

Jitendra Malik wrote most of Chapter 24 (on vision). Most of Chapter 25 (on robotics) was written
by Sebastian Thrun in this edition and by John Canny in the first edition. Doug Edwards researched
the historical notes for the first edition. Tim Huang, Mark Paskin, and Cynthia Bruyns helped with
formatting of the diagramsand algorithms. Alan Apt, Sondra Chavez, Toni Holm, Jake Warde, Irwin
Zucker, and Camille Trentacoste at Prentice Hall tried their best to keep us on schedule and made
many helpful suggestionson the book's design and content.

Stuart would like to thank his parents for their continued support and encouragement and his
wife, Loy Sheflott, for her endless patience and boundlesswisdom. He hopes that Gordon and Lucy
will soon be reading this. RUGS (Russell's Unusual Group of Students) have been unusually helpful.

Peter would like to thank his parents (Torsten and Gerda) for getting him started, and his wife
(Kris), children, and friendsfor encouraging and tolerating him through thelong hours of writing and
longer hours of rewriting.

We are indebted to the librarians at Berkeley, Stanford, M17?, and NASA, and to the developers
of CiteSeer and Google, who have revolutionized the way we do research.

We can't thank all the people who have used the book and made suggestions, but we would
like to acknowledgethe especially helpful commentsof Eyal Amnr, Krzysztof Apt, Ellery Aziel, Jeff
Van Baalen, Brian Baker, Don Barker, Tony Barrett, James Newton Bass, Don Beal, Howard Beck,
Wolfgang Bibel, John Binder, Larry Bookman, David R. Boxall, Gerhard Brewka, Selmer Bringsjord,
CarlaBrodley, Chris Brown, Wilhelm Burger, Lauren Burka, Joao Cachopo, Murray Campbell, Nor-
man Carver, Emmanuel Castro, Anil Chakravarthy, Dan Chisarick, Roberto Cipolla, David Cohen,
James Coleman, Julie Ann Comparini, Gary Cottrell, Ernest Davis, Rina Dechter, Tom Dietterich,
Chuck Dyer, Barbara Engelhardt, Doug Edwards, Kutluhan Erol, Oren Etzioni, Hana Filip, Douglas

Preface

Fisher, Jeffrey Forbes, Ken Ford, John Fodler, Alex Franz, Bob Futrelle, Marek Galecki, Stefan Ger-
berding, Stuart Gill, Sabine Glesner, Seth Golub, GostaGrahne, Russ Greiner, Eric Grimson, Barbara
Grosz, Larry Hall, Steve Hanks, Othar Hansson, Ernst Heinz, Jim Hendler, Christoph Herrmann, Vas-
ant Honavar, Tim Huang, Seth Hutchinson, Joost Jacob, Magnus Johansson, Dan Jurafsky, Leslie
Kaelbling, Keiji Kanazawa, Surekha Kasibhatla, Simon Kasif, Henry Kautz, Gernot Kerschbaumer,
Richard Kirby, Kevin Knight, Sven Koenig, Daphne Koller, Rich Korf, James Kurien, John Lafferty,
Gus Larsson, John Lazzaro, Jon LeBlanc. Jason Leatherman, Frank Lee, Edward Lim, Pierre Lou-
veaux, Don Loveland, Sridhar Mahadevan, Jim Martin, Andy Mayer, David McGrane, Jay Mendel-
sohn, Brian Milch, Steve Minton, Vibhu Mittal, L eora Morgenstern, Stephen Muggleton, Kevin Mur-
phy, Ron Musick, Sung Myaeng, L ee Naish, Pandu Nayak, Bernhard Nebel, Stuart Nelson, XuanLong
Nguyen, Iliah Nourbakhsh, Steve Omohundro, David Page, David Pamer, David Parkes, Ron Parr,
Mark Paskin, Tony Passera, Michael Pazzani, Wim Pijls, IraPohl, MarthaPollack, David Poole, Bruce
Porter, Mal colm Pradhan, Bill Pringle, Lorraine Prior, Greg Provan, William Rapaport, Philip Resnik,
Francesca Rossi, Jonathan Schaeffer, Richard Scherl, Lars Schuster, Soheil Shams, Stuart Shapiro,
Jude Shavlik, Satinder Singh, Daniel Sleator, David Smith, Bryan So, Robert Sproull, Lynn Stein,
Larry Stephens, Andreas Stolcke, Paul Stradling, Devika Subramanian, Rich Sutton, Jonathan Tash,
Austin Tate, Michael Thielscher, William Thompson, Sebastian Thrun, Eric Tiedemann, Mark Tor-
rance, Randall Upham, Paul Utgoff, Peter van Beek, Hal Varian, Sunil Vemuri, Jim Waldo, Bonnie
Webber, Dan Weld, Michagl Wellman, Michael Dean White, Kamin Whitehouse, Brian Williams,
David Wolfe, Bill Woods, Alden Wright, Richard Yen, Weixiong Zhang, Shlomo Zilberstein, and the
anonymousreviewers provided by Prentice Hall.

About the Cover

The cover image was designed by the authors and executed by Lisa Marie Sardegna and Maryann
Simmons using SGI Inventor™ and Adobe Photoshop™., The cover depicts the following items
from the history of Al:

. Aristotle's planning algorithm from De Motu Animalium(c. 400 B.C.).

. Ramon Lull's concept generator from Ars Magna (c. 1300 A.D.).

. CharlesBabbage's Difference Engine, a prototypefor the first universal computer (1848).

. Gottlob Frege's notationfor first-order logic (1789).

Lewis Carroll's diagramsfor logical reasoning (1886).

. Sewall Wright's probabilistic network notation (1921).

. Alan Turing (1912-1954).

Shakey the Robot (1969-1973).

. A modern diagnostic expert system (1993).

[

© O N YA WN

About the Authors

Stuart Russell was born in 1962 in Portsmouth, England. He received his B.A. with first-classhon-
oursin physicsfrom Oxford University in 1982, and his Ph.D. in computer science from Stanford in
1986. He then joined the faculty of the University of Californiaat Berkeley, where he is a professor
of computer science, director of the Center for Intelligent Systems, and holder of the Smith-Zadeh
Chair in Engineering. In 1990, he received the Presidential Y oung Investigator Award of the National
Science Foundation, and in 1995 he was cowinner of the Computersand Thought Award. He was a
1996 Miller Professor of the University of Californiaand was appointed to a Chancellor's Professor-
shipin 2000. In 1998, he gave the ForsytheMemorial Lecturesat Stanford University. Heisa Fellow
and former ExecutiveCouncil member of the American Associationfor Artificial Intelligence. He has
published over 100 paperson awiderange of topicsin artificial intelligence. His other booksinclude

The Use of Knowledge in Analogy and Induction and (with Eric Wefald) Do the Right Thing: Studies
in Limited Rationality.

Peter Norvig is director of Search Quality at Google, Inc. He s a Fellow and Executive Council
member of the American Associationfor Artificia Intelligence. Previoudly, he was head of the Com-
putational Sciences Division at NASA Ames Research Center, where he oversaw NASA's research
and developmentin artificial intelligence and robotics. Before that. he served as chief scientist at Jun-
glee, where he hel ped devel op one of thefirst Internet information extraction services, and as a senior
scientist at Sun MicrosystemsL aboratoriesworking on intelligent information retrieval. He received
aB.S. in applied mathematicsfrom Brown University and aPh.D. in computer sciencefrom the Uni-
versity of Californiaat Berkeley. He has been a professor at the University of Southern Californiaand
a research faculty member at Berkeley. He has over 50 publicationsin computer science including
the books Paradigmsof AI Programming: Case Studiesin Common Lisp, Verbmobil: A Trandation
Systemfor Faceto-FaceDialog, and Intelligent Help Systemsfor UNIX.

Summary of Contents

I Artificia Intelligence

I 101 o [To2 o T 1
2 INtElligent AQENtS. cvorenreieiieri i ieiiieiearianiestesetisesnresnssssnansns 32
I Problem-solving
3 Solving Problems by Searching.-sssesevsisissssrasarasssassisssisisasasasasnsnns 59
4 Informed Search and EXPIOration vussssssssssssssssssssssnsnsnsnsnsnnnnnnnnnnnnns A
5 Constraint Satisfaction Problems....oveviviiiiiiiirssiiiii s sisiss e 137
6 Adversarial Search vvvvvsvrisisisisisisisisisisinnnuss M n e ra e 161
m Knowledgeand reasoning
A oo o A = 5| £ 14
8 First-Order LOQIC. s veeeeesaetirietitiineneuseonnesrnisnesssesrssassasssnseonses 240
9 Inferencein First-Order LOgIiC . eeeesreeiriiererseieiieenareeecasnsssnannnnsns 272
10 Knowledge REPreSENtation o« eveeeesrtrrieeerreensinesstasensersaniasessssenens 320
IV Planning
11 Planning eeeeeeeesesseeesoresneeesetseessaseesssasenssasassssssseesnessnsenns 375
12 Planning and Actinginthe Real World vv.vevsesaveisaransnsanusnsnsnisnsnnnnss 417
V Uncertain knowledge and reasoning
13 UNCEMaAiNtY s eveeenresanenrasosusretinasasisnssessesssiaseensesnssacnsanessnnas 462
14 Probabilistic REASONING.«eeveertnetitiintiseeeseneersnsesreessarasssrssasans 492
15 Probabilistic Reasoningover TiMe. . uu s ssssssesasasassssssssnsnsasarasnsnsnnns a3/
16 Making SIMpPIEDECISIONS <« veevtreranenearinieatesaaissesesassanssarsssnseasaas 584
17 Making Complex DECISIONS cevetetieneeneeeiiiensineresensseesonssrncssesesnnns 613
VI Learning
18 Learning from ODSErValiONS c« s e e ervatasenieisietieureeierssronesrissssasnsss 649
19 KNowledgein Learning «oeeeeereseeeseratieeeearonserensenssnessrneenesesnsenss 678
20 Statistical LearningMethodS: e+ e veeeeentaiiiiiiiiiiniieiereniieiiieersraannss 712
21 ReiNfOrCeMENt LEAINING « o« erererernieraieitnirientsseneasssessssessnnceensans 763
VIl Communicating, perceiving, and acting
22 COMMUNICALION »+veseveneranassosesosesatosurssnssencsnsssssnsansonnsensannsns 790
23 Probabilistic Language ProCESSING- «« v vateriessrisstenseensseetanesancsanncans 834
R e (o< o 1 0] T 863
2 T (0] 010 107 901
VIl Conclusions
26 Philosophical FOUNationS -+« s veereeereneeistaiinisseneiiesensaeearansnnennns A7
27 Al Present and FULUME « v et etvteiriinteiiiiiineseetnenranenseaseeasenssosanasnes 968
A Mathematical background «««.veveevuieennness D 977
B Noteson Languagesand Algorithms. .« v eiiiiiiiiiiiiiiiiinienenvnreennns 984
Bibliography 987

I ndex 1045

Contents

| Artificial Intelligence

1 Introduction
11 Whatis AI?7 . . . o e
Actinghumanly: TheTuring Testapproach.
Thinking humanly: Thecognitivemodelingapproach
Thinking rationally: The"lawsof thought* approach.
Actingrationally: Therational agentapproach
1.2 TheFoundationsdf Artificial Intelligence.
Philosophy (428 B.C.—present) oo i
M athematics (c. 800—present)
Economics(1776-present) o o v v e e e
Neuroscience(1861-present) v v v v o e e
Psychology (1879—present) o vt i i
Computerengineering (1940-present) o
Control theory and Cybernetics (1948-present)o oL .
Linguistics(1957—present) o o o e
1.3 TheHigtory of Artificial Intelligence
The gestation of artificial intelligence(1943-1955).
The birth of artificial intelligence(1956)
Early enthusiasm, great expectations (1952—-1969)
Adosedf reality (1966-1973)
Knowledge-basedsystems: Thekey to power? (1969- 1979)
Al becomesanindustry (1980-present) L
The return of neural networks (1986—present)
Al becomesascience(1987-present)
The emergenceof intelligent agents (1995—present)
14 The State of the Art
15 Summary. e
Bibliographical and Historical Notes
Exercises

Intelligent Agents
21 AgentsandEnvironments - - . -o
2.2 GoodBehavior: The Conceptof Rationality
Performancemeasures. - - o e e e e
Rationality
Omniscience.learning. andautonomy oL L
23 The Natureof Environments- - - - « v o v v o v o i v o e e e e e,
Specifyingthetask environment - . - o000
Propertiesof task environments - - - - - -o L.
24 The Structure of Agents
AGENtPrOgramS | i e e e e e e e e e
Simplereflexagents - - - - - - - . oL
M odel-based reflex agents

XVi

Contents

Goad-basedagents e e 49
Utility-basedagents e 51
Learningagents i e e e e e 51
25 Summa ... e 54
Bibliographicaland HistoricalNotes 55
EXErCISES . . o i e e e e e e 56
Solving Problemsby Sear ching 59
3.1 Problem-SolvingAgents. 59
Wedll-definedproblemsand solutions o e 62
Formulatingproblems e 62
3.2 ExampleProblems. e e 64
Toyproblems e e 64
Read-worldproblems 67
3.3 SearchingforSolutions e 69
Measuringproblem-solvingperformance o 0oL 71
34 UninformedSearchStrategies. o o v vt i e 73
Breadth-firstsearch 73
Depth-firstsearch e 75
Depth-limitedsearch. e 77
Iterativedeepening depth-firstsearch 78
Bidirectionalsearch e 79
Comparing uninformedsearch strategies 81
35 AvoidingRepeatedStateso e e e 81
3.6 Searchingwith Partial Information 83
Sensorlessproblems L e 84
Contingencyproblems o e 86
37 SUMMAIY e e e e e e 87
Bibliographicaland HistoricalNotes i i e 88
EXEICISES . . o i e e e e e 89
I nformed Sear ch and Exploration
4.1 Informed (Heuristic) Search Strategies
Greedy best-firstsearch
A* search: Minimizingthetotal estimated solutioncost
Memory-boundedheuristicsearch o oo oL
Learningtosearchbetter e
42 HeuristicFunctions e e
Theeffect of heuristicaccuracy onperformance
Inventing admissibleheuristicfunctions
Learning heuristicsfromexperience o
4.3 Locd Search Algorithmsand OptimizationProblems
Hill-climbingsearch e e
Simulatedannealingsearch e
Localbeamsearch
Geneticalgorithms. e e e

44 Loca SearchinContinuousSpaces+« v v v v it e e e e

Contents

XVvii
4.5 Online Search Agents and Unknown Environmernts 122
Onlinesearchproblems 123
Onlinesearchagents. - o 125
Onlinelocal search« o o i e e 126
Learninginonlinesearch 127
46 SUMIALY - -+ » + + ¢ o v e e e e e e e e 129
Bibliographical and Historical Notes 130
EXEICISES - - -« ¢ v o e e e e e e e e e 134
5 Congtraint Satisfaction Problems 137
5.1 Constraint SatisfactionProblems . . - e 137
5.2 BacktrackingSearchforCSPs 141
Varigbleand valueordering - . - - . - . .o 143
Propagatinginformationthrough constraints 144
Intelligent backtracking: lookingbackward 148
5.3 Locd Searchfor Constraint SatisfactionProblems 150
5.4 TheStructureof Problems . - . - « -« o o 0 e 151
55 Summary - - - - oo 155
Bibliographical and Historical Notes . - . . . - o 156
EXEICISES + - « = « « + o« o e 158
6 Adversarial Search 161
6.1 Games | 161
6.2 Optimal DeciSionsin Games + « -+ - v« « v v e v 162
Optimal Strategies - - -+ -« « =« v o e 163
Theminimax algorithm - . - .+ -« . oo oo 165
Optimal decisionsin multiplayergames. - - - « -« « v o o oo oo oo 165
6.3 Alpha-BetaPruning - - - - -+« -« - oo 167
6.4 Imperfect. Rea-TimeDecisions- - - - - - - -« o oo oo 171
Evaluationfunctions - - - « « « « « « o v e e e e e e e e e e e e 171
Cuttingoffsearch - - -« - - <« - v o c oo oo 173
6.5 GamesThat IncludeanElementofChance 175
Position evaluation in gameswith chancenodes e e e 177
Complexity of expectiminimax - - - -« « .« . o 177
Cardgames - - - -« v o s e 179
6.6 State-of-the-ArtGamePrograms - - - - -« « -« ..o oL 180
67 DISCUSSION . 183
68 SUMMAY 185
Bibliographical and HistoricalNotes - - - - - - -« <« « oo oo oL 186
Exerci% ... 189
I Knowledgeand reasoning
7 Logical Agents 194
71 Knowledge-Based Agents - -+ - - -+ -« o o oo 195
7.2 The Wumpus World - - - -+ v - - e s e e e 197
13 LOgIC i 200
7.4 Propositional Logic: A Vay SimpleLogic - - - . - oo 204

SYNEAX . . . e e e e 204

xviii Contents

SEMANtiCsS e e e e e e
Asmpleknowledgebase e
Inference L e e
Equivalence, vdidity, and satisfiability
75 ReasoningPatternsin PropositionalLogic
Resolution e e e
Forward and backwardchaining. 0.
7.6 Effectivepropositionalinference o e
A complete backtraclungalgorithm oL
Local-searchalgorithms
Hard setisfiabilityproblems
7.7 AgentsBased on PropositionalLogic oo
Finding pitsand wumpusesusing logical inference.
Keepingtrack of locationand orientation
Circuit-basedagents i e
ACOMPANiSON & & v v e e e e e e e e e e e e
7.8 SUMMAY e e e e e
Bibliographicaland HistoricalNotes i i i
EXErCises o e e e e

8 First-Order Logic
8.1 RepresentationRevisited e
8.2 Syntax and Semanticsof First-OrderLogic oo v i i i vt
Modelsfor first-orderlogic e
Symbolsandinterpretations e
TEMS . L e e e e
AOMICSENENCES v o i e e e e e e e e e e
Complexsentences v v o i e e e e e e e e e
Quantifiers e e e
Equality e e e e
83 UsngFirgt-OrderLogic o o o i e
Assertionsand queriesinfirst-orderlogico oo L.
Thekinshipdomain e
Numbers, sets,andlistso e
Thewumpusworld e
8.4 Knowledge Engineeringin First-OrderLogic.
TheknowledgeengineeringproCesS. . . . v v v v v v v i i e e e
Theelectroniccircuitsdomain. o
85 Summary.
Bibliographicaland HistoricalNotes i
EXErCiSES . . o . o e

9 Inferencein First-Order Logic

9.1 Propositional vs. First-Orderinference
Inferencerulesfor quantifiers o e
Reductionto propositionalinference

9.2 UnificationandLifting e
Afirs-orderinferencerule e

Unification o e e e e e e e e e e e e e e

Contents XiX

Storage and retrieval
9.3 ForwardChaining v i e e e e e
First-order definiteclauses. . . - - -« o o v i i oo
A simpleforward-chainingalgorithm
Efficientforwardchaining
94 BackwardChaining . .« « v v v v v
A backward chaining agorithm
LOGICProgramming v v v o e e e e e e e e e e e e
Efficientimplementationof logic programs
Redundant inference and infiniteloops
Constraintlogic programming. . - - . . v . v oo o
05 RESOIULON -« « v o o v e e e e e e e e e e e e e e e
Conjunctivenormal formfor first-order logic
Theresolutioninferencerule
Exampleproofs e e
Completenessd resolution
Dealing with equality
Resolution strategies
TheorempProvErS e e e e e e e e e e e
96 SUMMAIY - - - - o v o oo e e e e e
Bibliographicaland Historical Notes
EXEICISES - v & v v o o e

10 Knowledge Representation
10.1 Ontological Engineering - - - + « - v+« v o v o
10.2 Categoriesand Objects - - -+ v - v - oo oo
Physical composition - - - -« « .o
MEASUIEMENES « - « » = = + « ¢ ¢ = o o v o e e e e e e e e e e e e e e
Substancesand objects - - - - o - - oL e e e e e e e e
10.3 Actions, Situations. and EVents - - -« « « « v o e e e
Theontology of situationcalculus- « - - - - -« v o v o
Describingactionsin situationcalculus - - - -+« . - oo oo oL
Solving therepresentational frameproblemo oo
Solvingtheinferential frameproblem.o oL
Timeand event CalCUIUS - - + + = « « « « v o o vt e e e e e e e e e e e
Generalized eVENtS - « + « « « v+ - e e e e e e e e e e e e e e e e e

INMENVAIS .
Fluentsandobjects - - - = -« -+ - - v oo

104 Mental Eventsand Mental Objects - -« - - - -« - o o oo
Aformal theory of beliefs - - -« - -« oo oo
Knowledgeandbelief - - - -« -« - oo oo
Knowledge. time. andaction - - - - - -« . o o oo oL

105 Thelnternet ShoppingWorld - - - - -« - o oo oo
Compari ng offers - « - - o e e e L s e e e e e e

10.6 ReasoningSystemsfor Categories - - « - - - - v . oo oo
Semanticnetworks: - - - - - - o o o oo oo e e e e e e e e e e e
Description|ogics « » « « -« s e e e e

10.7 Reasoning with Default Information

XX

Contents

Openandclosedworlds

Negationasfailureand stable model semantics

Circumscriptionand defaultlogic
10.8 TruthMaintenanceSystems« v v v v v v i e e
109 SUMMAY - « v v v e e e e e
Bibliographical and HistoricalNotes
EXErCiSeS - -« v e e e e e e e e e e e e e e

IV Planning

11 Planning

111

11.2

11.3

114

115

11.6
11.7

Exercises

ThePlanningProblem - - - .« oo
Thelanguageof planningproblems - -« « « . . . o oo
Expressivenessand eXtensions - - - - - v s v e e e e e e e e e
Example: Aircargotransport - -« - - - oo e
Example: Thesparetireproblem
Example: Theblocksworld - - -+« o v o o oo oo oo
Planning with State-SpaceSearch - - - - - -« . . . o .o
Forward state-spacesearch - -+« « « o v oo oo
Backward state-spacesearch - - - -+« o o oo
Heuristicsfor state-spacesearch - - - -+ -« « v v o o oo oo
Partia-Order Planning - « =+« « v« v o oo oo
A partial-order planningexample - - -« . o Lo Lo
Partial-order planning with unbound variables
Heuristicsfor partia-order planning -+ - -+« v oo oL
Planni ng Graphs
Planning graphsfor heuristicestimation
The GRAPHPLAN algorithm - -« « « o v oo
Terminationof GRAPHPLAN = « « «+ v ¢t v 6 v v v 0 v v vt v e v a
Planning with PropositionalLogic - - « « - =« v v o o oo
Describingplanning problemsin propositionallogic - - -
Complexity of propositional encodings - - - - -+« « o o oL
Analysisof Planning Approaches - -« « « « « « v o oo oo
Summary_
Bibliographical and Historical Notes

12 Planning and Actingin the Real World

121

12.2

12.3
124

125

Time Schedules. and ReSOUrCeS: « + + = + = = + =+ =« « o+« &« &
Scheduling with resourceconstraints - - - = =« « « - o 0 e
Hierarchical Task Network Planning » = = =+« v o o v v v e v v e
Representing action decompositions =+« = =« v e e e
Modifying the planner for decompositions - - -« « =« o v o v

D|U ON * = = * * * = = =« « = & &+ x4 4 & 0w a e e
Planning and Actingin NondeterministicDomains - - - - - - - - - -
Conditional P|ann| ng
Conditional planningin fully observableenvironments-

Conditional planningin partially observable environments

Execution Monitoring and Replanning + -+ = = =« « o oo e e e

Contents XXi
126 ContinuousPlanning. o o o e 445
127 MultiAgentPlanning L 449

Cooperation: Jointgoalsandplans 450
Multibody planning L 451
Coordinationmechanisms L L Lo o 452
Competition e e e e e 454
128 SUMMANY .« - o v o o e e e e e 454
Bibliographical and HistoricalNotes 455
EXErcises oo 459
V Uncertain knowledgeand reasoning
13 Uncertainty 462
131 ActingunderUncertainty - - - - - - . - oo 462
Handlinguncertainknowledge - - - -« - - . . oo oo Lo 463
Uncertainty and rational decisions. « - -o oo 465
Designfor adecision-theoreticagent - - - oL 466
13.2 BasicProbabilityNotation. - - - - - .« -« . oo 466
Propositions - - - « -« o oo e 467
AOMICEVENES - - -« o o o e e e e e e e e 468
Prior probability « - - - -« - o o 468
Conditional probability - . - 470
13.3 TheAxiomsaf Probability - - - - - - . -« .o .o oo 471
Usingtheaxiomsof probability - - - oo oo 473
Why the axioms of probability arereasonable e 473
13.4 InferenceUsing Full Joint Distributions. 475
135 Independence - - - - - - - oo 477
13.6 Bayes RuleandItsUse - - - -« - . o o o ool 479
Applying Bayes rule: Thesimplecase o L. 480
Using Bayes rule: Combiningevidence 481
137 TheWumpusWorldRevisited - - - o0 o 433
13.8 Summary .. 486
Bibliographicaland Historical Notes - . - L 487
EXEICISES « + = ¢ v = o o v e e e e e e e e e e e e e e e 489
14 Probabilistic Reasoning 492
14.1 RepresentingKnowledgein an Uncertain Domain - - 492
14.2 TheSemanticsof BayesanNetworks - « - « « « v v v v v v v i L 495
Representingthefull joint digtribution - oL 495
Conditiona independencerelationsin Bayesiannetworks 499
14.3 Efficient Representation of Conditional Distributions - « + - 500
14.4 Exact Inferencein BayesianNetworks - - - -« - v o oo 504
|nferenceby GNUMENALION - « - « + v v v v e e e e e e e e e e e e e 504
The variabledimination a|gorithm 507
The Comp|ex|ty of exactinference- - - - - « « « o o oo e e 509
Clusteri ng a|gorithms 510
145 Approximatelnferencein BayesianNetworks - - . -o oo L. 511
Direct Samp] i ng methods - - - - - - - - . o e . 511
Inferenceby Markovchainsmulation - - - - L oL oL 516

XXii

Contents

15

14.6 Extending Probability to First-Order Representations 519
14.7 Other Approachesto UncertainReasoning - - -+« « v v v v v v v v v e v v u 523
Rule-based methodsfor uncertainreasoning « .« -+« . v o oo oo 524
Representingignorance: Dempster—-Shafertheory oL 525
Representing vagueness: Fuzzy setsandfuzzylogic 526
14.8 Summary .. 528
Bibliographicaland Historical Notes - - - - - - -« o o oo oo 528
EXErCISES + = + » =+« & ¢+ o o i e s 533

Probabilistic Reasoning over Time
15.1 Timeand Uncertai nty
Statesand obServations « + = = ¢ ¢ s s s s e e e e e e e e e e e e e
Stationary processesand the Markov assumptiono
15.2 Inferencein Ternporal Models: - - « « « « v e e s e e
Filteri ng and prediction
Smoothing
Findi ng the most |ike|y SEOUENCE - « « « « « + ot f e e
15.3 Hidden Markov Models - = =« « = =« ¢ o e e e e e e e e e e e e e e e s
S|mp||f|aj matrix dgorithms
154 Kalman Fllters
Updati ng Gaussiandistributions: + =+ « =+ ¢ v e e e e e e e e e e e e e s
A s mp|e one-dimensional examp| L T T T R T T T T T
The gmera' CASE * * * = * * = * s+ et et et e e e e e e e e e e
App||cab|||tyof Kaman f||ter|ng
155 Dyna’nic Bayegan Networks « - « « =« ¢ o v o e e e e e e e e e e e e e e
Constructi ng DBNS = & * =+« = s o o v e i e e s e e e e e e e e e e e e s
Exmt |nference|n DBNS
Approxi mateinferencein DBNS - + -« « =« ¢ & v i i i s s e e e e e e
156 Sp%ch Recognltlon
Sp%Ch munds
Words
%ﬁltmcm ---------------------------------------
Buildi ng aspeech recognizer
15.7 Summary ..
B|b||ograph|ca| and Historical NOtES = + + = + « =« v & v v b v v b e e e e e e
EXEI’CISGS ...

16 Making Simple Decisions 584

16.1 Combining Beliefsand Desiresunder Uncertainty = - = - = = = =« o o v v e v e 584
16.2 TheBasisof Util |ty Theory 586
Constraintson rational preferences 586
And then therewas Ut”ity 588
163 Utlllty FunCtionS 589
Theutility of money = = =« = = x fr s s 589
Ut|||ty scalesand Ut”ity ASSESSMENt * * * & * * r ot or o r e e e e e 501
16.4 MultiattributeUtility Functions = = =« = = x o r s s s s e 593
DOI’T'II nance 594
Preferencestructureand multiattributeutility - - - - - = = = = o v o 596
165 DeciSONNEWOIKS:® * = * * = * * = =t r v s ot e 597

Contents

xxiil

Representing adecision problem with adecisonnetwork 598
Evaluating decisonnetworks 599

16.6 TheVdueof Information 600
Asmpleexample 600
Agenera formula 601
Properties of thevalueof information 602
Implementing an information-gatheringagent 603

16.7 Decision-Theoretic Expert Systems 604
16.8 SUMMENY o o e 607
Bibliographical and Historical Notes 607
EXEICISES . . . o e e e 609

17 Making Complex Decisions

VI
18

17.1 Sequentia Decision Problems
Anexample e
Optimality in sequential decision problems

17.2 Vduelteration o e e
Utilitiesof states o e
The vaueiteration algorithm
Convergence of valueiteration

17.3 Policylteration. e

17.4 Partidly observable MDPs

175 Decison-TheoreticAgents

17.6 Decisions with Multiple Agents: Game Theory

17.7 Mechanism Design

17.8 SUMMANY o o e e e e e e

Bibliographical and Historical Notes

Exercises

Learning

L ear ningfrom Observations
18.1 Formsof Learning
18.2 InductivelLearning . - - . - . .« .
18.3 LearningDeciSioNTrees . - oo ol
Decision trees as performance elements
Expressivenessof decisiontrees.
Inducing decision trees from examples
Choosing attributetests - - . - -o Lo
Assessing the performance of the learning algorithm
Noiseand overfitting- - - - - - . .« . . . Lo
Broadening the applicability of decision trees
184 EnsembleLearning - - - - - - . . o .
18.5 Why Learning Works. Computational Learning Theory
How many examples are needed?
Learning decision lists
Discussion
186 SumMmMary e
Bibliographical and Historical Notes

XXiV

Contents

19

EXErCISES + + « = v v v v o i i i e e e e e e e e e e e e e e 676
Knowledgein Learning 678
19.1 AlLogica Formulationof Learning o o oo oo 678
Examplesandhypotheses - - - -« - - -« o oo 678
Current-best-hypothesissearch oo oo oL 680
Least-commitmentsearch - - -« - ¢ v v o i e e e e e e e e e e e e e e e e e 683
19.2 KnowledgeinLearning - - - -« « « o o o 686
Somesimpleexamples - - - - - o 687
Somegeneralschemes. - - -« . - o 688
19.3 Explanation-BasedLearning . . -o 690
Extractinggeneral rulesfromexamples o oL 691
Improvingefficiency - - - -« - o oo 693
19.4 LearningUsingRelevancelnformation oo L 694
Determiningthehypothesisspace - -« oo oo oo 695
Learningand using relevanceinformation oL 695
195 InductiveLogicProgramming - « - - « « ¢« v o e e e 697
An examp|e 699
Top-downinductivelearningmethods.o oo 701
Inductivelearningwithinversededuction oL 703
Making discoverieswithinductivelogicprogramming 705
19.6 Summary .. 707
Bibliographical and Historical Notes - - - -« « v« o o oo oo 708
EXEICISES « + =+ + = =« ot v o e e e e e e e e e e e e e e e e e e e s 710
Statigtical L earning M ethods 712
20.1 Statistical Learning = -+« x s v s e e e e e 712
20.2 Learni ng with Comp| aeData - - - v s s e e e e e e e e e e e e e e 716
Maximum-likelihoodparameter learning: Discretemodels - -+ - -« -+« . o o o 716
Naive Bay%models 718
Maximum-likelihoodparameter learning: Continuousmodels - « - 719
Bayegan parameter learni ng 720
Learni ng Bayes NELSITUCLUNES + = + = » = » = * =+ & v o v e e e e e e e e e e e 722
20.3 Learningwith Hidden Variables: The EM Algorithm- - - - - . o o o o oo o 724
Unsupervised clustering: Learning mixturesof Gaussians - - -« -+« - « « « o o 725
Learning Bayesian networkswith hiddenvariables - - - - - - -o o o0 727
Learni ng hiddenMarkovmodels - «+ - -+ « = « « « o o e e e e e 731
The genera form of theEM agorithm - -« « v v oo o oo 731
Learning Bayes net structureswith hidden variables - - - -+ - -« . . o oo 732
20.4 |nstance-BasedL earni ng 733
Nearest-nei ghbormodel R T T T T T T 733
Kend modas « « « « « =« ¢« v v e e e e e e e e e e e e e e e s 735
20.5 Neural NEWOIKS = « = = = = = = =+ o o o e e e e e e e e e e e e e e 736
Unitsin neural networks - = = =« =« = o v e e e e e e e e e e e e e 737
NEtWOrKSITUCIUrES = = + * = * = * = = = * & &+« s 0+ v vt o v wt e a et e 738
Singlelayer feed-forward neural networks(perceptrons) - - -« . . . o oL 740
Multilayer feed-forward neural networks - -+« « - - o oo 744
Learni ng neural NEtWOrK SIrUCEUrES « + + = = = » + ¢ =« t 6 o o v e e e e e 748

20.6

Kend Machines: « « + =« =« ¢« v v v v v v i v i s s s s s e e e e 749

Contents XXV

20.7 CaseStudy: HandwrittenDigit Recognition
208 SUMMAIY - - - -« o v v vt e e e
Bibliographical and Historical Notes - -« oo oo
EXQICISES » » - v ¢ v v v e e e e e e e e e e e e e e e e e e s

21 Reinforcement Learning
21.1 INtroduCtion - - « - v o e e e e e e e e e e e e e
21.2 PassiveReinforcementlLearning -o
Direct utility estimation . . -« L o
Adaptivedynamicprogramming -o
Tempord differencelearning - - - - - - - - o .o oo
21.3 ActiveReinforcementLearning . . . -o
Exploration - - -« - . oo
Learningan Action-ValueFunction Lo
21.4 Generdizationin ReinforcementLearningo
Applicationstogame-playing - . - - -« -« ..o
Applicationtorobotcontrol - - - - - . .o
21.5 Pol icy Search - - - - e e e e e e e e e
216 SUMMEIY - -« « - = o v v e e e e e
Bibliographical and Historical Notes - .+ -« - -+ - . o oo
EXQICISES « « « « ¢+ ¢ v v e e e e e e e e e e e e e e e e e

VII Communicating. perceiving. and acting

22 Communication
221 COmMMUNICALIONASACHON « - « - « =+ ¢ v e o o i e e e e e e e
Fundamentalsof language - + - -+ -« « -« c oo

The component stepsof communication - - . . - -« .« oo

22.2 A Forma Grammar for aFragmentof English
ThelLexiconof £ « - - « -« o v v v v i
TheGrammarof £ - -+« - -+« v v

22.3 Syntactic Analysis(Parsing) - - -+ < ¢« - s e s e e
Efficient parg NG © v ¢ r s e

22.4 Augmented GrammarS: « » « = = = = ¢ o o o v e e e e e e e e e e e e e e e
Veab subcategorization- « - -« - - - - - e e
Generativecapacity of augmented grammars - - - - . . - . .. oL

225 SemanticlInterpretation - - - - - - - oo
The semanticsof an Englishfragment- - . . - . e e
Timeandtense - - « - - ¢« ¢t s e e e e e e e e e e e e e e e e e e e
Quantification
PragmaticInterpretation - - « - -« - . - o oo
LanguagegenerationwithDCGs - -« - - - - . oo oo

22.6 Ambiguity and Disambiguation - - - - - .« - oo oo
D|Samb|guat|0n

22.7 DiscourseUnderstanding - - - - - -« - oo
Referenceresolution - + « = -+« =« ¢ v v m e e e e e e e e e e e

The structureof coherent discourse - - - - « v« v v v i o v i i e e

22.8 GrammarlnducCtion - - « = + =« v e
229 Summary

XXVi Contents

Bibliographical and HistoricalNotes
=, (03 1= =<

23 Probabiligtic L anguageProcessing

23.1 ProbabilisticLanguageModels
Probabilisticcontext-freegrammars. Lo o
Learning probabilitiesfor PCFGs oo
Learningrulestructurefor PCEGs « « « v« v v v v i v e e e e e e e

232 InformationRetrieval
EvauatingIRsystems o
IRrefinements

ImplementinglRsystems -o
23.3 InformationExtraction.
234 MachineTrandation - . -« -« & v v o i e e e e e e e e e e e
Machinetrandationsystems. o o e
Statistical machinetrandation. L o
Learning probabilitiesfor machinetrandation
235 Summary. e e
Bibliographical and Historical Notes o
Exercises ...

24 Perception
24.1 IntroduCtion = + = =+ + ¢ ¢ s e
242 | mage Formation: = + = = « = = « & & v vt v e e e e e e e e e
Imageswithout lenses: the pinholecamera - - - -« « - - -« o o o oo
LENSSYSIEMS - = =+« = v v v oo v e
Light: the photometry of imageformation - - - - - - - - . o oo ool
Color: the spectrophotometry of imageformation - - - - -« .« . o oo
24.3 Early ImageProcessingOperations - - « « « - <« « o o oo
Edge detection » » =+ + = f v e s e e e e e e e e e e e e e e e e e
| mage mgmentanon
244 Extracting Three-Dimensional Information - - - « = -+« - oo oo
MOLioN e
Binocular Stermpss
Texture grad| ENES: * &+ = = ¢ r e e e e e e e e e e e e e s
Shading
Contour e e
245 Obj ect Recognition
Bri ghtn%.based recognition
Feature-based rmognition
PoseEStimation = « + = + + = =« s s s e e e e e e e e e e e e
24.6 UsingVisonfor Manipulationand Navigation - - - - -+« « « o o oo
247 SUMMEIY .« v v v e e e e e e e e e e e e e
Bibliographical and Historical Notes « « « =+« =« « « oo v v e v v
EXGI’CI [e o R R R R R T T BT

25 Robotics
251 | ntroductl ON * & * = * = = * = + & &+ ot et e e e e e e e e s

Contents

25.2 RObOtHardware « - - « « « « v v v e e e e e e e e e e e e e

253 RoboticPerception. - - - -« - . oo
Localization

MaPPING - .« o o o e e e e
Othertypesof perception it i e e e
254 PlanningtoMOVe - - -« -+ o v e
Configuration space - - - - « -« - v e e
Cell decompositionmethods. - - . - oo
Skeletonizationmethods . .« - - - . - oo
25.5 Planning uncertain movements
Robustmethods
256 MOVING.
Dynamicsandcontrol - - - - . - .o
Potential fildcontrol - - . - « « .« . o o e
Reactivecontrol - - - -« « « v o i o e e e e e e e e
25.7 Robotic Software Architectures
Subsumptionarchitecture . - - - .« . . oo
Three-layerarchitecture
Robotic programminglanguages - - - - - -« . . oo e o
25.8 ApplicationDomains - -« -« v o e
259 Summary ..
Bibliographicaland Historical Notes - . . - . . - oo
EXQICISES © « - = = = ¢ v v et e e e e e e e e e e e e e e e

VIIl Conclusons

26 Philosophical Foundations
26.1 Weak Al: Can MachinesAct Intelligently? - - . . .« . .« oo v oo
The argumentfrom disabil |ty
The mathematical Obj ECHION » « » = = + = e e e e e e e e e e e
The argumentfrom informal |ty e e e e e e e
26.2 Strong Al: Can MachinesReally Think? - -« - - . . o o v oo oo -
The mi nd_body prob|em
The"brainin ava" expen ment - - « « -« o e e e e e e e e e e e
The brain prosthesi sexperi ment- « - « - - o e e e e e
ThEe ChINESEIOOM - « « + « « + + & o e e e e e e e e e e e e
26.3 TheEthicsand Risksof Developing Artificia Intelligence
264 SUMMAIY . . . o o oot e e e

Bibliographical and Historical Notes - - - - - - - -« . - o .o
Exercises

27 Al: Present and Future
27.1 AgentComponents L

27.2 Agent Archltectures
27.3 AreWeGoingintheRight Direction? - « - -« -+« « . oo

XXVIii

Contents

274 Whatif ATDoesSucceed?. Lo

A Mathematical background
Al Complexity Analysisand O() Notation
Asymptoticanalysis - « - - . .o o oo
NPandinherently hard problems -
A.2 Vectors Matrices. and Linear Algebra.
A.3 Probability Digtributions. oo 0oL
Bibliographical and HistoricalNotes

B Noteson Languagesand Algorithms
B.l Defining Languageswith Backus—Naur Form (BNF)

B.2 Describing Algorithmswith Pseudocode
B.3 OnlineHelp - - -+« oo v v v

Bibliography

Index

.......... 974

ARTIFICIAL
INTELLIGENCE

In which we try to explain why we consider artificial intelligence to be a subject
most worthy of study, and inwhich we try to decide what exactly it is, thisbeing a
good thing to decide before embarking.

We call ourselves Homo sapiens—man the wise—because our mental capacities are so im-
portant to us. For thousands of years, we have tried to understand how we think; that is, how
amere handful of stuff can perceive, understand, predict, arid manipulate a world far larger
and more complicated thanitself. The field of artificial intelligence, or Al, goesfurther still:
it attempts not just to understand but also to build intelligent entities.

Al isone of the newest sciences. Work started in earnest soon after World War 11, and
the name itself was coined in 1956. Along with molecular biology, AT is regularly cited as
the "field | would most like to be in" by scientists in other disciplines. A student in physics
might reasonably feel that all the good ideas have aready been taken by Galileo, Newton,
Einstein, and therest. Al, on theother hand, still has openingsfor several full-time Einsteins.

Al currently encompasses a huge variety of subfields, ranging from genera-purpose
areas, such as learning and perception to such specific tasks as playing chess, proving math-
ematical theorems, writing poetry, and diagnosing diseases. Al systematizes and automates
intellectual tasks and is therefore potentialy relevant to any sphere of human intellectual
activity. In thissense, itistruly a universal field.

1.1 WHAT 1S Al?

RATIONALITY

We have claimed that Al is exciting, but we have not said what it is. Definitionsof artificial
intelligence according to eight textbooks are shown in Figure 1.1. These definitions vary
along two main dimensions. Roughly, the ones on top are concerned with thought processes
and reasoning, whereas the ones on the bottom address behavior. The definitionson the left
measure success in terms of fidelity to human performance, whereas the ones on the right

measure against an ideal concept of intelligence, which we will call rationality. A systemis
rational if it does the "right thing," given what it knows.

Chapter 1. I ntroduction

TURING TEST

NATURAL LANGUAGE
PROCESSING

Systemsthat think like humans

Systemsthat think rationally

"The exciting new effort to make comput-
ers think . .. machines with minds, in the
full and literal sense.” (Haugeland, 1985)

"[The automation of] activities that we
associate with human thinking, activities
such as decision-making, problem solv-

ing, learning . ..” (Bellman, 1978)

"Thestudy of mental facultiesthrough the
use of computational models.”
(Chamiak and McDermott, 1985)

"The study of the computations that make
it possible to perceive, reason, and act.”
(Winston, 1992)

Systemsthat act like humans

Systemsthat act rationally

"The art of creating machines that per-
form functions that require intelligence
when performed by people” (Kurzwelil,
1990)

"The study of how to make computers do
things at which, at the moment, peopleare

"*Computational Intelligence is the study
of thedesign of intelligent agents.” (Poole
et al., 1998)

“Al ...is concerned with intelligent be-
havior in artifacts.” (Nilsson, 1998)

better.” (Rich and Knight, 1991)

Figurell Someddfinitionsd artificid intelligence, organized into four categories.

Historically, al four approaches to AT have been followed. As one might expect, a
tension exists between approaches centered around humans and approaches centered around
rationality.! A human-centered approach must be an empirical science, involving hypothesis
and experimental confirmation. A rationalist approach involvesa combination of mathemat-
ics and engineering. Each group has both disparaged and helped the other. Let uslook at the
four approaches in more detail.

Actinghumanly: The Turing Test approach

The Turing Test, proposed by Alan Turing (1950), was designed to provide a satisfactory
operational definitionof intelligence. Rather than proposing along and perhaps controversia
list of qualificationsrequired for intelligence, he suggested atest based on indistinguishability
from undeniably intelligent entities— humanbeings. The computer passesthe test if ahuman
interrogator, after posing some written questions, cannot tell whether the written responses
comefrom aperson or not. Chapter 26 discusses thedetails of thetest and whether acomputer
isrealy intelligentif it passes. For now, we note that programming a computer to pass the test
provides plenty to work on. The computer would need to possess the following capabilities:

¢ natural language processing to enableit to communicate successfully in English.

I We should point out that, by distinguishing between suman and rational behavior, we are not suggesting that
humans are necessarily "irrational" in the sense of "'emotionally unstable™ or "'insane." One merely need note
that we are not perfect: we are not all chess grandmasters, even those of us who know al the rules of chess; and,
unfortunately, not everyone gets an A on the exam. Some systematic errors in human reasoning are cataloged by
Kahneman et al. (1982).

Section 1.1.

What is Al? 3

KNOWLEDGE
REPRESENTATION

AUTOMATED
REASONING

MACHINE LEARNING

TOTAL TURING TEST

COMPUTER VISION

ROBOTICS

COGNITIVE SCIENCE

¢ knowledger epresentation to store what it knows or hears;

¢ automated reasoning to use the stored inforrnation to answer questions and to draw
new conclusions;

¢ machinelearningto adapt to new circumstances and to detect and extrapol ate patterns.

Turing's test deliberately avoided direct physical interaction between the interrogator and the
computer, because physical simulation of a person is unnecessary for intelligence. However,
the so-called total Turing Tes includes a video signal so that the interrogator can test the
subject's perceptua abilities, as well as the opportunity for the interrogator to pass physical
objects "through the hatch.” To pass the total Turing Test, the computer will need

¢ computer vison to perceiveobjects, and
¢ roboticsto manipulate objects and move about.

These six disciplines compose most of Al, and Turing deserves credit for designing a test
that remains relevant 50 years later. Yet Al researchers have devoted little effort to passing
the Turing test, believing that it is more important to study the underlying principles of in-
telligence than to duplicate an exemplar. The quest for “artificial flight" succeeded when the
Wright brothers and others stopped imitating birds and learned about aerodynamics. Aero-
nautical engineering texts do not define the goal of their field as making " machines that fly
so exactly like pigeons that they can fool even other pigeons.”

Thinking humanly: The cognitivemodeling approach

If we are going to say that a given program thinks like @ human, we must have some way of
determining how humans think. We need to get i nsi de the actual workings of human minds.
There are two ways to do this: through introspection—trying to catch our own thoughts as
they go by—and through psychological experiments. Once we have a sufficiently precise
theory of the mind, it becomes possible to express the theory as a computer program. If the
program's input/output and timing behaviors match corresponding human behaviors, that is
evidence that some of the program's mechanisms could also be operating in humans. For ex-
ample, Allen Newell and Herbert Simon, who developed GPS, the " General Problem Solver"
(Newell and Simon, 1961), were not content to have their program solve problems correctly.
They were more concerned with comparing the trace of its reasoning stepsto tracesof human
subjects solving the same problems. The interdisciplinary field of cognitive science brings
together computer models from AT and experimental techniques from psychology to try to
construct precise and testable theories of the workings of the human mind.

Cognitive science is a fascinating field, worthy of an encyclopedia in itself (Wilson
and Keil, 1999). We will not attempt to describe what is known of human cognition in this
book. We will occasionally comment on similarities or differences between Al techniques
and human cognition. Real cognitive science, however, is necessarily based on experimental
investigation of actual humans or animals, and we assume that the reader has access only to
acomputer for experimentation.

In the early days of Al there was often confusion between the approaches: an author
would argue that an algorithm performs well on a task and that it is therefore a good model

Chapter 1. Introduction

SYLLOGISMS

LOGIC

LOGICIST

AGENT

RATIONAL AGENT

of human performance, or vice versa. Modern authors separate the two kinds of claims;
this distinction has allowed both AT and cognitive science to develop more rapidly. The two
fields continue to fertilize each other, especialy in the areas of vision and natural language.
Vision in particular has recently made advances via an integrated approach that considers
neurophysiological evidence and computational models.

Thinking rationally: The" lawsof thought" approach

The Greek philosopher Aristotlewasone of thefirst to attempt to codify "right thinking," that
is, irrefutable reasoning processes. His syllogismsprovided patterns for argument structures
that alwaysyielded correct conclusions when given correct premises—for example, ** Socrates
is aman; al men are mortal; therefore, Socrates is morta.” These laws of thought were
supposed to govern the operation of the mind; their study initiated thefield called logic.

Logiciansin the 19th century developed a precise notation for statements about all kinds
of thingsin the world and about the relations among them. (Contrast this with ordinary arith-
metic notation, which provides mainly for equality and inequality statements about numbers.)
By 1965, programs existed that could, in principle, solve any solvable problem described in
logical notation.?> The so-called logicist tradition within artificial intelligence hopes to build
on such programs to create intelligent systems.

There are two main obstacles to this approach. First, it is not easy to take informal
knowledgeand stateitin theformal terms required by logical notation, particularly when the
knowledge isless than 100% certain. Second, thereis a big difference between being able to
solve aproblem "in principle™ and doing so in practice. Even problems with just afew dozen
facts can exhaust the computational resources of any computer unless it has some guidance
as to which reasoning stepsto try first. Although both of these obstacles apply to any attempt
to build computational reasoning systems, they appeared firstin the logicist tradition.

Actingrationally: Therational agent approach

An agent isjust something that acts (agent comesfrom the Latin agere, to do). But computer
agents are expected to have other attributes that distinguish them from mere " programs,”
such as operating under autonomous control, perceiving their environment, persisting over a
prolonged time period, adapting to change, and being capable of taking on another's goals. A
rational agent isone that acts so as to achieve the best outcome or, when thereis uncertainty,
the best expected outcome.

In the*laws of thought™ approachto Al, the emphasis was on correct inferences. Mak-
ing correct inferences is sometimes part of being a rationa agent, because one way to act
rationally isto reason logically to the conclusion that a given action will achieve one's goals
and then to act on that conclusion. On the other hand, correct inferenceis not all of ratio-
nality, because there are often situations where there is no provably correct thing to do, yet
something must still be done. There are also ways of acting rationally that cannot be said to
involveinference. For example, recoiling from a hot stove is a reflex action that is usualy
more successful than a slower action taken after careful deliberation.

2 If thereisno solution, the program might never stop looking for one.

Section 1.2.

The Foundations of Artificial Intelligence 5

LIMITED
RATIONALITY

All the skills needed for the Turing Test are there to alow rational actions. Thus, we
need the ability to represent knowledge and reason with it because this enables us to reach
good decisionsin awide variety of situations. We need to be able to generate comprehensible
sentences in natural language because saying those sentences helps us get by in a complex
society. We need learning not just for erudition, but because having a better idea of how the
world works enables us to generate more effective strategies for dealing with it. We need
visua perception not just because seeing is fun, but to get a better idea of what an action
might achieve—for example, being able to see atasty morsel helps one to move towardit.

For these reasons, the study of Al as rational-agent design has at least two advantages.
Firgt, itis more general than the " laws of thought™ approach, because correct inferenceis just
one of several possible mechanisms for achieving rationality. Second, it is more amenable to
scientific development than are approaches based on human behavior or human thought be-
cause the standard of rationality is clearly defined and completely general. Human behavior,
on the other hand, is well-adapted for one specific environment and is the product, in part,
of acomplicated and largely unknown evolutionary process that till is far from producing
perfection. This book will therefore concentrate on general principlesd rational agents and
on components for constructing them. We will see that despite the apparent simplicity with
which the problem can be stated, an enormous variety of issues come up when wetry to solve
it. Chapter 2 outlines some of theseissuesin more detail.

Oneimportant point to keep in mind: We will see before too long that achieving perfect
rationality — alwaysdoing the right thing—is not feasible in complicated environments. The
computational demands are just too high. For most of the book, however, we will adopt the
working hypothesis that perfect rationality is a good starting point for analysis. It simplifies
the problem and provides the appropriate setting for most of the foundational material in
the field. Chapters 6 and 17 dea explicitly with the issue of limited rationality — acting
appropriately when there is not enough time to do all the computations one might like.

In thissection, we provide a brief history of the disciplines that contributed ideas, viewpoints,
and techniques to Al. Like any history, this one is forced to (concentrateon a small number
of people, events, and ideas and to ignore others that also were important. We organize the
history around a series of questions. We certainly would not wish to give the impression that
these questions are the only ones the disciplines address or that the disciplines have all been
working toward Al as their ultimate fruition.

Philosophy (428 B.C.-present)

Can formal rules be used to draw valid conclusions?
How does the mental mind arise from a physical brain?
Where does knowledge come from?

How does knowledge lead to action?

Chapter |I. Introduction

DUALISM

MATERIALISM

EMPIRICISM

INDUCTION

LOGICAL POSITIVISM

OBSERVATION
SENTENCES

CONFIRMATION
THEORY

Aristotle (384-322 B.C.) was the first to formulate a precise set of laws governing the ratio-
nal part of the mind. He developed an informal system of syllogisms for proper reasoning,
which in principle allowed one to generate conclusions mechanically, given initial premises.
Much later, Ramon Lull (d. 1315) had theidea that useful reasoning could actually be carried
out by a mechanical artifact. His " concept wheels" are on the cover of this book. Thomas
Hobbes (1588-1679) proposed that reasoning was like numerical computation, that *'we add
and subtract in our silent thoughts.” The automation of computation itself was already well
under way; around 1500, Leonardo da Vinci (1452-1519) designed but did not build a me-
chanical calculator; recent reconstructions have shown the design to be functional. The first
known calculating machine was constructed around 1623 by the German scientist Wilhelm
Schickard (1592-1635), although the Pascaline, built in 1642 by Blaise Pascal (1623-1662),
is more famous. Pascal wrote that "the arithmetical machine produces effects which appear
nearer to thought than all the actions of animals." Gottfried Wilhelm Leibniz (1646-1716)
built a mechanical device intended to carry out operations on concepts rather than numbers,
but its scope was rather limited.

Now that we have the idea of a set of rules that can describe the formal, rational part
of the mind, the next step is to consider the mind as a physical system. René Descartes
(1596-1650) gave thefirst clear discussion of the distinction between mind and matter and of
the problems that arise. One problem with a purely physical conception of the mind is that it
seemsto leavelittle roomfor free will: if themind is governed entirely by physical laws, then
it has no morefreewill than arock "' deciding™ tofall toward the center of the earth. Although
astrong advocate of the power of reasoning, Descartes was also a proponent of dualism. He
held that there is a part of the human mind (or soul or spirit) that is outside of nature, exempt
from physical laws. Animals, on the other hand, did not possess this dual quality; they could
be treated as machines. An aternativeto dualism ismaterialism,which holdsthat the brain's
operation according to the laws of physics constitutes the mind. Free will is simply the way
that the perception of available choices appears to the choice process.

Given a physical mind that manipul ates knowledge, the next problem is to establish the
source of knowledge. Theempiricism movement, starting with FrancisBacon's (1561-1626)
Novum Organum,’ is characterized by adictum of John Locke (1632-1704): " Nothingisin
the understanding, which was not first in the senses.” David Hume's (1711-1776) A Treatise
of Human Nature (Hume, 1739) proposed what is now known as the principle of induction:
that general rules are acquired by exposure to repeated associations between their elements.
Building on the work of Ludwig Wittgenstein (1889-1951) and Bertrand Russell (1872-
1970), thefamous ViennaCircle, led by Rudolf Carnap (1891-1970), devel oped the doctrine
of logical positivism. This doctrine holdsthat all knowledge can be characterized by logical
theories connected, ultimately, to obser vation sentencesthat correspond to sensory inputs.*
The confirmation theory of Carnap and Carl Hempel (1905-1997) attempted to understand
how knowledge can be acquired from experience. Carnap’s book The Logical Srructure of

3 An update of Aristotle's Organon, or instrument of thought.

4 In this picture, all meaningful statements can be verified or falsified either by analyzing the meaning of the
words or by carrying out experiments. Because this rules out most of metaphysics, as was theintention, logical
positivism was unpopular in some circles.

Section 1.2.

‘The Foundations of Artificial Intelligence 7

the World (1928) defined an explicit computational procedure for extracting knowledge from
elementary experiences. It was probably thefirst theory of mind asa computational process.

The final element in the philosophical picture of the mind is the connection between
knowledge and action. Thisquestionisvital to Al, becauseintelligence requires action aswell
as reasoning. Moreover, only by understanding how actions are justified can we understand
how to build an agent whose actions are justifiable (or rational). Aristotle argued that actions
are justified by alogical connection between goals and knowledge of the action's outcome
(thelast part of thisextract also appears on the front cover of this book):

But how doesit happen that thinkingis sometimesaccompaniedby action and sometimes

not, sometimes by motion, and sometimes not? It looks as if ailmost the same thing

happens asin the case of reasoning and making inferences about unchangingobjects. But

in that case the end is a speculative proposition . .. whereas here the conclusion which

results from the two premisesis an action. . .. | need covering; a cloak is a covering. |

need acloak. What | need, | have to make; | need a cloak. | have to make a cloak. And

the conclusion, the"'l haveto makeadogk:' isan action. (Nussbaum, 1978, p. 40)

In the Nicomachean Ethics (Book III. 3, 1112b), Aristotle further elaborates on this topic,
suggesting an algorithm:
We deliberate not about ends, but about means. For a doctor does not deliberate whether
he shall heal, nor an orator whether he shall persuade, ... They assume the end and
consider how and by what meansit is attained, and if it seems easily and best produced
thereby; whileif it is achieved by one means only they consider how it will be achieved
by thisand by what meansthis will be achieved, till they come to thefirst cause, .. . and
what islast in the order of analysisseems to be firstin the order of becoming. And if we
come on an impossibility, we give up the search, e.g. if we need money and this cannot
be got; but if athing appearspossiblewetry to doit.

Aristotle's algorithm was implemented 2300 years later by Newell and Simon in their GPS
program. We would now call it a regression planning system. (See Chapter 11.)

Goal-based analysis is useful, but does not say what to do when several actions will
achievethe goal, or when no action will achieveit completely. Antoine Arnauld (1612-1694)
correctly described a quantitative formula for deciding what action to take in cases like this
(see Chapter 16). John Stuart Mill's (1806—1873) book Utilitarianism (Mill, 1863) promoted
theideaof rational decision criteriain all spheres of human activity. The more formal theory
of decisionsis discussed in thefollowing section.

Mathematics (c. 800-present)

o What are theformal rulesto draw valid conclusions?

e What can be computed?

e How do we reason with uncertain information?
Philosophers staked out most of theimportant ideas of AT, but theleap to aformal sciencere-
quired alevel of mathematical formalization in three fundamental areas. logic, computation,
and probability.

The idea of formal logic can be traced back to the philosophers of ancient Greece (see

Chapter 7), but its mathematical development really began with the work of George Boole

Chapter 1. Introduction

ALGORITHM

INCOMPLETENESS
THEOREM

INTRACTABILITY

(1815-1864), who worked out the details of propositional, or Boolean, logic (Boole, 1847).
In 1879, Gottlob Frege (1848-1925) extended Bool€e's logic to include objects and relations,
creating the first-order logic that is used today as the most basic knowledge representation
system.”> Alfred Tarski (1902-1983) introduced a theory of reference that shows how to
relate the objects in alogic to objects in the real world. The next step was to determine the
limits of what could be done with logic and computation.

Thefirst nontrivial algorithm is thought to be Euclid’s agorithm for computing great-
est common denominators. The study of agorithms as objects in themselves goes back to
al-Khowarazmi, a Persian mathematician of the 9th century, whose writings a so introduced
Arabic numerals and algebra to Europe. Boole and others discussed algorithms for logical
deduction, and, by the late 19th century, efforts were under way to formalize general math-
ematical reasoning as logical deduction. In 1900, David Hilbert (1862—-1943) presented a
list of 23 problems that he correctly predicted would occupy mathematiciansfor the bulk of
the century. The final problem asks whether there is an algorithm for deciding the truth of
any logical proposition involving the natural numbers—the famous Entscheidungsproblem,
or decision problem. Essentially, Hilbert was asking whether there were fundamental limits
to the power of effective proof procedures. In 1930, Kurt Godel (1906-1978) showed that
there exists an effective procedure to prove any true statement in thefirst-order logic of Frege
and Russell, but that first-order logic could not capture the principle of mathematical induc-
tion needed to characterize the natural numbers. In 1931, he showed that real limits do exist.
Hisincompletenesstheor em showed that in any language expressive enough to describe the
properties of the natural numbers, there are true statements that are undecidable in the sense
that their truth cannot be established by any a gorithm.

Thisfundamental result can also beinterpreted as showing that there are some functions
on theintegers that cannot be represented by an algorithm —thatis, they cannot be computed.
This motivated Alan Turing (1912-1954) to try to characterize exactly which functions are
capable of being computed. This notion is actually slightly problematic, because the notion
of acomputation or effective procedure really cannot be given aformal definition. However,
the Church—-Turing thesis, which states that the Turing machine (Turing, 1936) is capable of
computing any computable function, is generally accepted as providing asufficientdefinition.
Turing also showed that there were some functions that no Turing machine can compute. For
example, no machine can tell in general whether a given program will return an answer on a
giveninput or run forever.

Although undecidability and noncomputability are important to an understanding of
computation, the notion of intractability has had a much greater impact. Roughly speak-
ing, a problem is called intractable if the time required to solve instances of the problem
grows exponentially with the size of theinstances. The distinction between polynomial and
exponential growthin complexity was first emphasized in the mid-1960s (Cobham, 1964; Ed-
monds, 1965). It isimportant because exponential growth means that even moderately large
instances cannot be solved in any reasonable time. Therefore, one should strive to divide

5 Frege's proposed notation for first-order logic never became popular, for reasonsthat are apparent immediately
from the example on the front cover.

Section 1.2.

The Foundations of Artificial Intelligence 9

NP-COMPLETENESS

PROBABILITY

DECISION THEORY

the overall problem of generating intelligent behavior into tractable subproblems rather than
intractable ones.

How can one recognize an intractable problem? The theory of NP-completeness, pio-
neered by Steven Cook (1971) and Richard Karp (1972), provides a method. Cook and Karp
showed the existence of large classes of canonical combinatorial search and reasoning prob-
lems that are NP-complete. Any problem class to which the: class of NP-complete problems
can be reduced islikely to beintractable. (Althoughit has not been proved that NP-complete
problems are necessarily intractable, most theoreticians believeit.) These results contrast
with the optimism with which the popular press greeted the first computers— " Electronic
Super-Brains” that were "' Faster than Einstein!"" Despite the increasing speed of computers,
careful use of resources will characterize intelligent systems. Put crudely, the world is an
extremely large problem instance! In recent years, Al has helped explain why some instances
of NP-complete problems are hard, yet others are easy (Cheeseman et al., 1991).

Besides logic and computation, the third great contribution of mathematics to Al is
the theory of probability. The Italian Gerolamo Cardano (1501-1576) first framed the idea
of probability, describing it in terms of the possible outcomes of gambling events. Prob-
ability quickly became an invaluable part of al the quantitative sciences, helping to deal
with uncertain measurements and incomplete theories. Pierre Fermat (1601-1665), Blaise
Pascal (1623-1662), James Bernoulli (1654-1705), Pierre Laplace (1749-1827), and oth-
ers advanced the theory and introduced new statistical methods. Thomas Bayes (1702-1761)
proposed arulefor updating probabilitiesin thelight of new evidence. Bayes ruleand there-
sulting field called Bayesian analysisform the basis of most modern approaches to uncertain
reasoning in Al systems.

Economics(1776-present)

» How should we make decisions so as to maximize payoff?
o How should we do this when others may not go along?
a How should we do this when the payoff may be far in thefuture?

The science of economics got its start in 1776, when Scottish philosopher Adam Smith
(1723-1790) published An Inquiry into the Nature and Causes of the Wealth of Nations.
While the ancient Greeks and others had made contributions to economic thought, Smith was
the first to treat it as a science, using the idea that economies can be thought of as consist-
ing of individual agents maximizing their own economic well-being. Most people think of
economics as being about money, but economists will say that they are really studying how
people make choices that lead to preferred outcomes. The mathematical treatment of " pre-
ferred outcomes’ or utility was first formalized by Léon Walras (pronounced "Varasse'™)
(1834-1910) and wasimproved by Frank Ramsey (1931) and later by John von Neumann and
Oskar Morgenstern in their book The Theory of Games and Economic Behavior (1944).
Decision theory, which combines probability theory with utility theory, providesa for-
mal and completeframework for decisions (economic or otherwise) made under uncertainty—
that is, in cases where probabilistic descriptions appropriately capture the decision-maker's
environment. Thisis suitable for "'large’ economies where each agent need pay no attention

10

Chapter 1. Introduction

GAMETHEORY

OPERATIONS
RESEARCH

SATISFICING

NEUROSCIENCE

NEURONS

to the actions of other agents as individuals. For *'small™ economies, the situation is much
more like a game: the actions of one player can significantly affect the utility of another
(either positively or negatively). Von Neumann and Morgenstern's development of game
theory (see also Luce and Raiffa, 1957) included the surprising result that, for some games,
arationa agent should act in a random fashion, or at least in a way that appears random to
the adversaries.

For the most part, economists did not address the third question listed above, namely,
how to make rational decisions when payoffs from actions are not immediate but instead re-
sult from several actions taken in sequence. This topic was pursued in thefield of operations
research, which emerged in World War II from effortsin Britain to optimize radar installa-
tions, and later found civilian applications in complex management decisions. The work of
Richard Bellman (1957) formalized a class of sequential decision problems called Markov
decision processes, which we study in Chapters 17 and 21.

Work in economics and operations research has contributed much to our notion of ra-
tional agents, yet for many years Al research developed along entirely separate paths. One
reason was the apparent complexity of making rational decisions. Herbert Simon (1916~
2001), the pioneering Al researcher, won the Nobel prize in economicsin 1978 for his early
work showing that models based on satisficing—making decisions that are "*good enough,”
rather than laboriously calculating an optimal decision—gave a better description of actual
human behavior (Simon, 1947). In the 1990s, there has been a resurgence of interest in
decision-theoretic techniquesfor agent systems (Wellman, 1995).

Neur oscience (1861-pr esent)
e How do brains processinformation?

Neuroscience is the study of the nervous system, particularly the brain. The exact way in
which the brain enables thought is one of the great mysteries of science. It has been appre-
ciated for thousands of years that the brain is somehow involved in thought, because of the
evidence that strong blows to the head can lead to mental incapacitation. It has also long been
known that human brains are somehow different; in about 335 B.C. Aristotle wrote, "Of all
the animals, man has the largest brain in proportion to his size™ © Still, it was not until the
middle of the 18th century that the brain was widely recognized as the seat of consciousness.
Before then, candidate locations included the heart, the spleen, and the pineal gland.

Paul Broca's (1824-1880) study of aphasia (speech deficit) in brain-damaged patients
in 1861 reinvigorated the field and persuaded the medical establishment of the existence of
localized areas of the brain responsible for specific cognitive functions. In particular, he
showed that speech production was localized to a portion of the left hemisphere now called
Broca's area.” By that time, it was known that the brain consisted of nerve cells or neurons,
but it was not until 1873 that Camillo Golgi (1843-1926) developed a staining technique
allowing the observation of individual neuronsin the brain (see Figure 1.2). This technique

& Since then, it has been discovered that some species of dolphins and whales have relatively larger brains. The
large size of human brains is now thought to be enabled in part by recent improvementsin its cooling system.
7 Many cite Alexander Hood (1824) as a possible prior source.

Section 1.2.

The Foundations of Artificia Intelligence 11

a—

Axon from another cell

- i / W Synapses

Cell body or Soma

Figure 1.2 The parts of a nerve cell or neuron. Each neuron consists of a cell body,
or soma, that contains a cell nucleus. Branching out from the cell body are a number of
fibers called dendrites and a single long fiber called the axon. The axon stretches out for
along distance, much longer than the scale in this diagram indicates. Typically they are 1
cm long (100 times the diameter of the cell body), but can reach up to 1 meter. A neuron
makes connectionswith 10 to 100,000 other neurons at junctionscalled synapses. Signalsare
propagated from neuron to neuron by a complicated electrochemical reaction. The signals
control brain activity in the short term, and also enable long-term changes in the position
and connectivity of neurons. These mechanismsare thought to form the basis for learning
in the brain. Most information processing goes on in the cerebral cortex, the outer layer of
the brain. The basic organizational unit appears to be a column of tissue about 0.5 mm in
diameter, extending the full depth of the cortex, which is about 4 mmin humans. A column
contains about 20,000 neurons.

was used by Santiago Ramon y Cajal (1852-1934) in his pioneering studies of the brain's
neuronal structures.’

We now have some data on the mapping between areas of the brain and the parts of the
body that they control or from which they receive sensory input. Such mappings are able to
change radically over the course of afew weeks, and some animals seem to have multiple
maps. Moreover, we do not fully understand how other areas can take over functions when
one areaisdamaged. Thereisamost no theory on how an individual memory is stored.

The measurement of intact brain activity began in 1929 with the invention by Hans
Berger of the electroencephalograph (EEG). The recent development of functional magnetic
resonance imaging (fMR1) (Ogawa et al., 1990) is giving neuroscientists unprecedentedly
detailed images of brain activity, enabling measurements that correspond in interesting ways
to ongoing cognitive processes. These are augmented by advancesin single-cell recording of

8 Golgi persisted in his belief that the brain's functions were carried out primarily in a continuous medium in
which neurons were embedded, whereas Cajal propounded the " neuronal doctrine." The two shared the Nobel
prizein 1906 but gave rather antagonistic acceptance speeches.

12

Chapter 1. Introduction

‘ ” Computer J Human Brain
Computational units 1 CPU, 108 gates 10! neurons
Storage units 100 bits RAM 10 neurons

10! bits disk 101 synapses
Cycletime 1077 sec 1073 sec
Bandwidth 100 bits/sec 10 bits/sec
Memory updates/sec 10° 104

Figurel.3 A crudecomparisonaf the raw computational resourcesavailableto computers
(circa2003) and brains. The computer's numbers have all increased by at least afactor of 10
sincethefirst edition of this book, and are expected to do so again this decade. The brain's
numbers have not changed in thelast 10,000 years.

neuron activity. Despite these advances, we are still along way from understanding how any
of these cognitive processes actually work.

The truly amazing conclusion is that a collection of simple cells can lead to thought,
action, and consciousness or, in other words, that brains cause minds (Searle, 1992). The
only real aternative theory is mysticism: that there is some mystical realm in which minds
operate that is beyond physical science.

Brainsand digital computers perform quite different tasks and have different properties.
Figure 1.3 showsthat there are 1000 times more neuronsin the typical human brain than there
are gatesin the CPU of atypical high-end computer. Moore's Law® predicts that the CPU’s
gate count will equal the brain's neuron count around 2020. Of course, little can beinferred
from such predictions; moreover, the difference in storage capacity is minor compared to the
difference in switching speed and in parallelism. Computer chips can execute an instruction
in a nanosecond, whereas neurons are millions of times slower. Brains more than make up
for this, however, because all the neurons and synapses are active simultaneously, whereas
most current computers have only one or at most afew CPUs. Thus, even though a computer
isa million times faster in raw switching speed, the brain ends up being 100,000 times faster
at what it does.

Psychology (1879-present)
e How do humans and animals think and act?

The origins of scientific psychology are usually traced to the work of the German physi-
cist Hermann von Helmholtz (1821-1894) and his student Wilhelm Wundt (1832-1920).
Helmholtz applied the scientific method to the study of human vision, and his Handbook
of Physiological Optics is even now described as "*the single most important treatise on the
physics and physiology of human vision™ (Nalwa, 1993, p.15). In 1879, Wundt opened the
first laboratory of experimental psychology at the University of Leipzig. Wundt insisted on
carefully controlled experimentsin which his workerswould perform aperceptual or associa-

9 Moore's Law says that the number of transistors per square inch doubles every 1 to 1.5 years. Human brain
capacity doubles roughly every 2 to 4 million years.

Section 1.2.

The Foundations of Artificial Intelligence 13

BEHAVIORISM

COGNITIVE
PSYCHOLOGY

COGNITIVE SCIENCE

tivetask whileintrospecting on their thought processes. The careful controls went along way
toward making psychology a science, but the subjective nature of the data made it unlikely
that an experimenter would ever disconfirm his or her own theories. Biologists studying
animal behavior, on the other hand, lacked introspective data and developed an objective
methodology, as described by H. S. Jennings (1906) in his influential work Behavior of the
Lower Organisms. Applying this viewpoint to humans, the behaviorism movement, led by
John Watson (1878-1958), rejected any theory involving mental processes on the grounds
that introspection could not provide reliable evidence. Behaviorists insisted on studying only
objective measures of the percepts (or szimulus) given to an animal and its resulting actions
(or response). Mental constructs such as knowledge, beliefs, goals, and reasoning steps were
dismissed as unscientific ™ folk psychology." Behaviorism discovered alot about rats and pi-
geons, but had less success at understanding humans. Nevertheless, it exerted a strong hold
on psychology (especially in the United States) from about 1920 to 1960.

The view of the brain as an information-processing device, which isa principal charac-
teristic of cognitivepsychology,can be traced back at least to the works of William James'?
(1842-1910). Helmholtz also insisted that perception involved a form of unconscious log-
ical inference. The cognitive viewpoint was largely eclipsed by behaviorism in the United
States, but at Cambridge's Applied Psychology Unit, directed by Frederic Bartlett (1886
1969), cognitive modeling was able to flourish. The Nature of Explanation, by Bartlett's
student and successor Kenneth Craik (1943), forcefully reestablished the legitimacy of such
"mental" terms as beliefs and goals, arguing that they are just as scientific as, say, using
pressure and temperature to talk about gases, despite their being made of molecules that have
neither. Craik specified the three key steps of a knowledge-based agent: (1) the stimulus must
be trandlated into an internal representation, (2) the representation is manipulated by cogni-
tive processes to derive new internal representations, and (3) these are in turn retranslated
back into action. He clearly explained why this was a good design for an agent:

If the organism carries a' small-scalemode™ of external reality and of its own possible
actionswithinitshead, it is ableto try out variousalternatives, conclude which is the best
of them, react to future situations before they arise, utilize the knowledge of past events
in dealing with the present and future, and in every way to react in amuch fuller, safer,
and more competent manner to the emergencieswhichfaceit. (Craik, 1943)

After Craik's death in a bicycle accident in 1945, his work was continued by Don-
ad Broadbent, whose book Perception and Communication (1958) included some of the
first information-processing models of psychological phenomena. Meanwhile, in the United
States, the development of computer modeling led to the creation of the field of cognitive
science. The field can be said to have started at a workshop in September 1956 a MIT. (We
shall see that thisis just two months after the conference at which Al itself was "born.”) At
the workshop, George Miller presented The Magic Number Seven, Noam Chomsky presented
Three Models of Language, and Allen Newell and Herbert Simon presented The Logic The-
ory Machine. These three influential papers showed how coniputer models could be used to

10 william James was the brother of novelist Henry James. It is said that Henry wrote fiction as if it were
psychology and William wrote psychology asif it werefiction.

14

Chapter 1. Introduction

address the psychology of memory, language, and logical thinlung, respectively. It is now a
common view among psychologists that *a cognitive theory should be like a computer pro-
gram” (Anderson, 1980), that is, it should describe a detailed information-processing mecha-
nism whereby some cognitive function might be implemented.

Computer engineering (1940-present)
e How can we build an efficient computer?

For artificial intelligence to succeed, we need two things: intelligence and an artifact. The
computer has been the artifact of choice. The modern digital electronic computer was in-
vented independently and almost simultaneously by scientists in three countries embattled in
World War I1. The first operational computer was the electromechanical Heath Robinson, !
built in 1940 by Alan Turing's team for a single purpose: deciphering German messages. In
1943, the same group developed the Colossus, a powerful general-purpose machine based
on vacuum tubes.!? The first operational programmable computer was the Z-3, the inven-
tion of Konrad Zuse in Germany in 1941. Zuse also invented floating-point numbers and the
first high-level programming language, Plankalkiil. The first electronic computer, the ABC,
was assembled by John Atanasoff and his student Clifford Berry between 1940 and 1942
at lowa State University. Atanasoff's research received little support or recognition; it was
the ENIAC, developed as part of a secret military project at the University of Pennsylvania
by ateam including John Mauchly and John Eckert, that proved to be the most influential
forerunner of modern computers.

In the half-century since then, each generation of computer hardware has brought an
increasein speed and capacity and adecrease in price. Performance doubles every 18 months
or so, with a decade or two to go at this rate of increase. After that, we will need molecular
engineering or some other new technology.

Of course, there were calculating devices before the electronic computer. The earliest
automated machines, dating from the 17th century, were discussed on page 6. Thefirst pro-
grammable machine was aloom devised in 1805 by Joseph Marie Jacquard (1752-1834) that
used punched cards to store instructions for the pattern to be woven. In the mid-19th century,
Charles Babbage (1792-1871) designed two machines, neither of which he completed. The
""DifferenceEngine," which appears on the cover of this book, wasintended to compute math-
ematical tablesfor engineering and scientific projects. It wasfinally built and shown to work
in 1991 at the Science Museum in London (Swade, 1993). Babbage's " Anaytical Engine"
was far more ambitious: it included addressable memory, stored programs, and conditional
jumps and was the first artifact capable of universal computation. Babbage's colleague Ada
Lovelace, daughter of the poet Lord Byron, was perhaps the world's first programmer. (The
programming language Adais named after her.) She wrote programsfor the unfinished Ana-
lytical Engine and even speculated that the machine could play chess or compose music.

11 Heath Robinson was a cartoonist famous for his depictions of whimsical and absurdly complicated contrap-
tionsfor everyday tasks such as buttering toast.

12 In the postwar period, Turing wanted to use these computers for Al research—for example, one of the first
chess programs (Turing et al., 1953). His efforts were blocked by the British government.

Section 1.2. The Foundations of Artificial Intelligence 15

Al also owes a debt to the software side of computer science, which has supplied the
operating systems, programming languages, and tools needed to write modern programs (and
papers about them). But thisis one area where the debt has been repaid: work in Al has pio-
neered many ideas that have made their way back to mainstream computer science, including
time sharing, interactive interpreters, personal computers with windows and mice, rapid de-
velopment environments, the linked list data type, automatic storage management, and key
concepts of symbolic, functional, dynamic, and object-oriented programming.

Control theory and Cyber netics (1948-pr esent)
¢ How can artifacts operate under their own control ?

Ktesibios of Alexandria (c. 250 B.c.) built the first self-controlling machine: a water clock
with aregulator that kept the flow of water running through it at a constant, predictable pace.
This invention changed the definition of what an artifact could do. Previously, only living
things could modify their behavior in responseto changesin theenvironment. Other examples
of self-regulating feedback control systems include the steam engine governor, created by
James Watt (1736-1819), and the thermostat, invented by Cornelis Drebbel (1572-1633),
who also invented the submarine. The mathematical theory of stable feedback systems was
developed in the 19th century.

CONTROL THEORY The centrd figure in the creation of what is now called control theory was Norbert
Wiener (1894-1964). Wiener was a brilliant mathematician who worked with Bertrand Rus-
sell, among others, beforedevel oping aninterest in biological and mechanical control systems
and their connection to cognition. Like Craik (who also used control systems as psycholog-
ical models), Wiener and his colleagues Arturo Rosenblueth and Julian Bigelow challenged
the behaviorist orthodoxy (Rosenblueth et al., 1943). They viewed purposive behavior as
arising from a regulatory mechanism trying to minimize "error' —the difference between
current state and goal state. In thelate 1940s, Wiener, along with Warren McCulloch, Walter
Pitts, and John von Neumann, organized a series of conferences that explored the newv mathe-
matical and computational models of cognition and influenced many other researchersin the

CYBERNETICS behavioral sciences. Wiener's book Cybernetics (1948) became a bestseller and awoke the
public to the possibility of artificially intelligent machines.

Modern control theory, especially the branch known as stochastic optimal control, has

e asitsgoal thedesign of systemsthat maximize an objectivefunctionover time. Thisroughly
matches our view of AH designing systemsthat behave optimally. Why, then, are AT and con-
trol theory two different fields, especially given the close connections among their founders?
The answer liesin the close coupling between the mathematical techniques that werefamiliar
to the participants and the corresponding sets of problems that were encompassed in each
world view. Calculus and matrix algebra, the tools of control theory, lend themselvesto sys-
temsthat are describable by fixed sets of continuous variables; furthermore, exact analysis iS
typically feasible only for linear systems. AT wasfounded in part asaway to escapefrom the
limitations of the mathematics of control theory in the 1950s. The tools of logical inference
and computation allowed Al researchersto consider some problems such aslanguage, vision,
and planning, that fell completely outside the control theorist's purview.

16

Chapter 1. Introduction

Linguistics (1957-present)
e How doeslanguage relate to thought?

In 1957, B. F. Skinner published Verbal Behavior. This was a comprehensive, detailed ac-
count of the behaviorist approach to language learning, written by the foremost expert in the
field. But curiously, areview of the book became as well known as the book itself, and served
to almost kill off interest in behaviorism. The author of the review was Noam Chomsky, who
had just published a book on his own theory, Syntactic Structures. Chomsky showed how
the behaviorist theory did not address the notion of creativity in language—it did not explain
how a child could understand and make up sentences that he or she had never heard before.
Chomsky’s theory —based on syntactic models going back to the Indian linguist Panini (c.
350 B.C.)—could explain this, and unlike previous theories, it was formal enough that it
couldin principle be programmed.

Modem linguistics and Al, then, were "born™ at about the same time, and grew up
together, intersecting in a hybrid field called computational linguisticsor natural language
processing. The problem of understanding language soon turned out to be considerably more
complex than it seemed in 1957. Understanding language requires an understanding of the
subject matter and context, not just an understanding of the structure of sentences. Thismight
seem obvious, but it was not widely appreciated until the 1960s. Much of the early work in
knowledger epresentation (the study of how to put knowledge into aform that a computer
can reason with) was tied to language and informed by research in Linguigtics, which was
connected in turn to decades of work on the philosophical analysis of language.

With the background material behind us, we are ready to cover the development of Al itself.

The gedtation of artificial intelligence (1943-1955)

The first work that is now generally recognized as Al was done by Warren McCulloch and
Walter Pitts (1943). They drew on three sources: knowledge of the basic physiology and
function of neuronsin the brain; aformal analysis of propositional logic due to Russell and
Whitehead; and Turing's theory of computation. They proposed amodel of artificial neurons
in which each neuron is characterized as being *on™ or " off,” with aswitch to "on" occurring
in response to stimulation by a sufficient number of neighboring neurons. The state of a
neuron was conceived of as'* factually equivalent to a proposition which proposed its adequate
stimulus.” They showed, for example, that any computable function could be computed by
some network of connected neurons, and that all the logical connectives (and, or, not, etc.)
could be implemented by simple net structures. McCulloch and Pitts also suggested that
suitably defined networks could learn. Donald Hebb (1949) demonstrated a simple updating
rule for modifying the connection strengths between neurons. Hisrule, now called Hebbian
lear ning, remains an influential model to this day.

Section 1.3.

The History of Artificial Intelligence 17

Two undergraduate students at Harvard, Marvin Minsky and Dean Edmonds, built the
first neural network computer in 1950. The SNARC, as it was called, used 3000 vacuum
tubes and a surplus automatic pilot mechanism from a B-24 bomber to simulate a network of
40 neurons. Later, at Princeton, Minsky studied universal computation in neural networks.
His Ph.D. committee was skeptical about whether this kind of work should be considered
mathematics, but von Neumann reportedly said, "If itisn't now, it will be someday.” Minsky
was later to proveinfluential theorems showing the limitations of neural network research.

There were anumber of early examples of work that can be characterized as Al, but it
was Alan Turing who first articulated a complete vision of Al in his 1950 article " Comput-
ing Machinery and Intelligence.” Therein, he introduced the Turing test, machine learning,
genetic algorithms, and reinforcement learning.

Thebirth of artificial intelligence (1956)

Princeton was home to another influential figurein Al, John McCarthy. After graduation,
McCarthy moved to Dartmouth College, which was to become the official birthplace of the
field. McCarthy convinced Minsky, Claude Shannon, and Nathaniel Rochester to help him
bring together U.S. researchers interested in automata theory, neural nets, and the study of
intelligence. They organized a two-month workshop at Dartmouth in the summer of 1956.
There were 10 attendees in all, including Trenchard More from Princeton, Arthur Samuel
from IBM, and Ray Solomonoff and Oliver Selfridge from MIT.

Two researchers from Carnegie Tech,'> Allen Newell and Herbert Simon, rather stole
the show. Although the others had ideas and in some cases programs for particular appli-
cations such as checkers, Newell and Simon aready had a reasoning program, the Logic
Theorist (LT), about which Simon claimed, **"We have invented a computer program capable
of thinking non-numerically, and thereby solved the venerable mind—body problem.”'* Soon
after the workshop, the program was able to prove most of the theoremsin Chapter 2 of Rus-
sell and Whitehead's Principia Mathematica. Russell was reportedly delighted when Simon
showed him that the program had come up with aproof for one theorem that was shorter than
theonein Principia. The editors of theJournal d SymbolicLogic were lessimpressed; they
rejected apaper coauthored by Newell, Simon, and Logic Theorist.

The Dartmouth workshop did not lead to any new breakthroughs, but it did introduce
all the major figures to each other. For the next 20 years, the field would be dominated by
these people and their students and colleagues at MIT, CMU, Stanford, and IBM. Perhaps
the longest-lasting thing to come out of the workshop was an agreement to adopt McCarthy’s
new name for the field: artificial intelligence. Perhaps " computational rationality" would
have been better, but "Al" has stuck.

Looking at the proposal for the Dartmouth workshop (McCarthy et al., 1955), we can
see why it was necessary for Al to become a separate field. Why couldn't al the work done

13 Now Carnegie Mellon University (CMU).

14 Newell and Simon also invented a list-processing language, |PL, to write LT. They had no compiler, and
trandated it into machine code by hand. To avoid errors, they worked in parallel, calling out binary numbers to
each other as they wrote each instruction to make surethey agreed.

18 Chawter 1. I ntroduction

in Al have taken place under the name of control theory, or operations research, or decision
theory, which, after all, have objectives similar to those of Al? Or why isn't Al a branch
of mathematics? The first answer is that Al from the start embraced the idea of duplicating
human faculties like creativity, self-improvement, and language use. None of the other fields
were addressing theseissues. The second answer i s methodology. Al istheonly one of these
fields that is clearly a branch of computer science (although operations research does share
an emphasis on computer simulations), and Al is the only field to attempt to build machines
that will function autonomously in complex, changing environments.

Early enthusasm, great expectations (1952-1969)

Theearly years of Al werefull of successes—in alimited way. Given the primitive computers
and programming tools of the time, and the fact that only a few years earlier computers
were seen as things that could do arithmetic and no more, it was astonishing whenever a
computer did anything remotely clever. Theintellectual establishment, by andlarge, preferred
to believe that "'a machine can never do X." (See Chapter 26 for along list of X's gathered
by Turing.) Al researchers naturally responded by demonstrating one X after another. John
McCarthy referred to this period as the ™ Look, Ma, no hands!™ era.

Newell and Simon's early success was followed up with the General Problem Solver,
or GPS. Unlike Logic Theorist, this program was designed from the start to imitate human
problem-solving protocols. Within thelimited class of puzzlesit could handle, it turned out
that the order in which the program considered subgoals and possible actions was similar to
that in which humans approached the same problems. Thus, GPS was probably the first pro-
gram to embody the " thinking humanly™ approach. The successof GPS and subsequent pro-
grams as models of cognition led Newell and Simon (1976) to formulate thefamous physical

PASCALSMECL symbol system hypothesis, which states that *'aphysical symbol system hasthe necessary and
sufficient means for general intelligent action.” What they meant is that any system (human
or machine) exhibiting intelligence must operate by manipulating data structures composed
of symbols. We will seelater that this hypothesis has been challenged from many directions.

At IBM, Nathaniel Rochester and his colleagues produced some of the first Al pro-
grams. Herbert Gelernter (1959) constructed the Geometry Theorem Prover, which was
able to prove theorems that many students of mathematics would find quite tricky. Starting
in 1952, Arthur Samuel wrote a series of programs for checkers (draughts) that eventually
learned to play at a strong amateur level. Along the way, he disproved the idea that comput-
ers can do only what they aretold to: his program quickly learned to play a better game than
its creator. The program was demonstrated on television in February 1956, creating a very
strong impression. Like Turing, Samuel had trouble finding computer time. Working at night,
he used machines that were still on the testing floor at IBM’s manufacturing plant. Chapter 6
covers game playing, and Chapter 21 describes and expands on the learning techniques used
by Samuel.

John McCarthy moved from Dartmouth to MIT and there made three crucial contribu-
tionsin onehistoric year: 1958. InMIT Al LabMemo No. 1, McCarthy defined the high-level
language L isp, which was to become the dominant AI programming language. Lispis the

Section 1.3.

The History of Artificial Intelligence 19

MICROWORLDS

second-oldest major high-level language in current use, one year younger than FORTRAN.
With Lisp, McCarthy had the tool he needed, but access to scarce and expensive computing
resources was also a serious problem. In response, he and others at MIT invented time shar-
ing. Alsoin 1958, McCarthy published a paper entitled Programswith Common Sense, in
which he described the Advice Taker, a hypothetical program that can be seen as the first
complete AT system. Like the Logic Theorist and Geometry Theorem Prover, McCarthy’s
program was designed to use knowledge to search for solutions to problems. But unlike the
others, it was to embody general knowledge of the world. For example, he showed how some
simple axioms would enable the program to generate a plan to drive to the airport to catch
a plane. The program was aso designed so that it could accept new axioms in the normal
course of operation, thereby alowing it to achieve competence in new areas without being
reprogrammed. The Advice Taker thus embodied the central principles of knowledge repre-
sentation and reasoning: that it isuseful to have aformal, explicit representation of the world
and of the way an agent's actions affect the world and to be able to manipulate these repre-
sentations with deductive processes. It is remarkable how much of the 1958 paper remains
relevant even today.

1958 also marked the year that Marvin Minsky moved to MIT. His initia collabora-
tion with McCarthy did not last, however. McCarthy stressed representation and reasoning
in formal logic, whereas Minsky was more interested in getting programs to work and even-
tually developed an anti-logical outlook. In 1963, McCarthy started the AT lab at Stanford.
His plan to use logic to build the ultimate Advice Taker was advanced by J. A. Robinson's
discovery of the resolution method (a complete theorem-proving algorithm for first-order
logic; see Chapter 9). Work at Stanford emphasized general-purpose methods for logical
reasoning. Applications of logic included Cordell Green's question-answering and planning
systems (Green, 1969b) and the Shakey robotics project at the new Stanford Research Insti-
tute (SRI). Thelatter project, discussed further in Chapter 25, was thefirst to demonstrate the
complete integration of logical reasoning and physical activity.

Minsky supervised a series of students who chose limited problems that appeared to
require intelligence to solve. These limited domains became known as micr oworlds. James
Slagle's SAINT program (1963a) was ableto solve closed-form cal culusintegration problems
typical of first-year college courses. Tom Evanss ANALOGY program (1968) solved geomet-
ric analogy problems that appear in | Q tests, such as the one in Figure 1.4. Daniel Bobrow’s
STUDENT program (1967) solved algebra story problems, such as the following:

If the number of customers Tom gets is twice the square d 20 percent of the number
d advertisements he runs, and the number of advertisements he runs is 45, wha is the
number o customers Tam gets?

The most famous microvvorld was the blocks world, which consists of a set of solid blocks
placed on a tabletop (or more often, a simulation of a tabletop), as shown in Figure 1.5.
A typical task in this world is to rearrange the blocks in a certain way, using a robot hand
that can pick up one block at atime. The blocks world was home to the vision project of
David Huffman (1971), the vision and constraint-propagation work of David Wtz (1975),
the learning theory of Patrick Winston (1970), the natural language understanding program

20

Chapter 1. Introduction

Figurel.4 Anexampleproblem solved by Evanss ANALOGY program.

Figurel5 A scenefromtheblocksworld. SHRDLU (Winograd, 1972) hasjust completed
thecommand,” Find ablock whichistdler than the oneyou are holding and put it in the box.™

of Terry Winograd (1972), and the planner of Scott Fahlman (1974).

Early work building on the neural networks of McCulloch and Pitts also flourished.
The work of Winograd and Cowan (1963) showed how a large number of elements could
collectively represent an individual concept, with a corresponding increase in robustness and
parallelism. Hebb's learning methods were enhanced by Bernie Widrow (Widrow and Hoff,

Section 1.3.

The History of Artificia Intelligence 21

1960; Widrow, 1962), who called his networks adalines, and by Frank Rosenblatt (1962)
with his perceptrons. Rosenblatt proved the perceptron convergence theorem, showing
that hislearning algorithm could adjust the connection strengths of a perceptron to match any
input data, provided such a match existed. These topics are covered in Chapter 20.

A doseof reality (1966-1973)

From the beginning, Al researchers were not shy about making predictions of their coming
successes. The following statement by Herbert Simon in 1957 is often quoted:

Itisnot my aim to surprise or shock you—but the simplest way 1 can summarizeisto say
that there are now in the world machinesthat think, that learn and that create. Moreover,
their ability to do these things is going to increase rapidly until —in a visiblefuture—the
range of problemsthey can handlewill be coextensivewith the range to which the human
mind has been applied.

Terms such as *'visible future™ can be interpreted in various ways, but Simon also made a
more concrete prediction: that within 10 years a computer would be chess champion, and a
significant mathematical theorem would be proved by machine. These predictions came true
(or approximately true) within 40 years rather than 10. Simon's over-confidence was due
to the promising performance of early Al systems on simple examples. In amost all cases.
however, these early systems turned out to fail miserably when tried out on wider selections
of problems and on more difficult problems.

The first kind of difficulty arose because most early programs contained little or no
knowledge of their subject matter; they succeeded by means of simple syntactic manipula
tions. A typical story occurred in early machine trandation efforts, which were generously
funded by the U.S. National Research Council in an attempt to speed up the trandlation of
Russian scientific papers in the wake of the Sputnik launch in 1957. It was thought ini-
tially that simple syntactic transformations based on the grammars of Russian and English,
and word replacement using an electronic dictionary, would suffice to preserve the exact
meanings of sentences. Thefact is that trandlation requires general knowledge of the subject
matter in order to resolve ambiguity and establish the content of the sentence. The famous
re-trandation of "the spirit is willing but the flesh is weak” as "the vodkais good but the
meat is rotten” illustrates the difficultiesencountered. In 1966, areport by an advisory com-
mittee found that *'there has been no machine tranglation of general scientific text, and none
is in immediate prospect.” All U.S. government funding for academic translation projects
was canceled. Today, machine trandation is an imperfect but widely used tool for technical,
commercial, government, and Internet documents.

The second kind of difficulty was theintractability of many of the problemsthat AT was
attempting to solve. Most of the early Al programs solved problems by trying out different
combinations of steps until the solution was found. This strategy worked initially because
microworlds contained very few objects and hence very few possible actions and very short
solution sequences. Before the theory of computational complexity was developed, it was
widely thought that **scaling up” to larger problems was ssimply a matter of faster hardware
and larger memories. The optimism that accompanied the development of resolution theorem

22

Chapter 1. Introduction

MACHINE EVOLUTION

WEAK METHODS

proving, for example, was soon dampened when researchers failed to prove theoremsinvolv-
ing more than afew dozen facts. The fact that a programcan find a solution in principledoes
not mean that the program contains any of the mechanisms needed o find it in practice.

The illusion of unlimited computational power was not confined to problem-solving
programs. Early experimentsin machine evolution (now called genetic algorithms) (Fried-
berg, 1958; Friedberg et al., 1959) were based on the undoubtedly correct belief that by
making an appropriate series of small mutations to a machine code program, one can gener-
ate a program with good performance for any particular smple task. The idea, then, was to
try random mutations with a selection process to preserve mutations that seemed useful. De-
spite thousands of hours of CPU time, almost no progress was demonstrated. Modern genetic
algorithms use better representations and have shown more success.

Failure to come to grips with the " combinatorial explosion™ was one of the main criti-
cismsof Al contained in the Lighthill report (Lighthill, 1973), which formed the basisfor the
decision by the British government to end support for Al research in all but two universities.
(Oral tradition paints asomewhat different and more colorful picture, with political ambitions
and personal animosities whose description is beside the point.)

A third difficulty arose because of some fundamental limitations on the basic structures
being used to generate intelligent behavior. For example, Minsky and Papert’s book Percep-
trons (1969) proved that, although perceptrons (a simple form of neural network) could be
shown to learn anything they were capable of representing, they could represent very little.
In particular, a two-input perceptron could not be trained to recognize when its two inputs
were different. Although their results did not apply to more complex, multilayer networks,
research funding for neural-net research soon dwindled to almost nothing. Ironically, the new
back-propagation learning algorithms for multilayer networks that were to cause an enor-
mous resurgence in neural-net research in the late 1980s were actually discovered first in
1969 (Bryson and Ho, 1969).

Knowledge-based systems: Thekey to power? (1969-1979)

The picture of problem solving that had arisen during the first decade of Al research was of
a general-purpose search mechanism trying to string together elementary reasoning steps to
find complete solutions. Such approaches have been called weak methods, because, although
general, they do not scale up to large or difficult problem instances. The aternative to weak
methods is to use more powerful, domain-specific knowledge that allows larger reasoning
steps and can more easily handle typically occurring cases in narrow areas of expertise. One
might say that to solve a hard problem, you have to ailmost know the answer aready.

The DENDRAL program (Buchanan et al., 1969) was an early example of this approach.
It was developed at Stanford, where Ed Feigenbaum (a former student of Herbert Simon),
Bruce Buchanan (a philosopher turned computer scientist), and Joshua Lederberg (a Nobel
laureate geneticist) teamed up to solve the problem of inferring molecular structure from the
information provided by a mass spectrometer. The input to the program consists of the ele-
mentary formulaof the molecule (e.g., CeH13NO2) and the mass spectrum giving the masses
of the variousfragments of the molecule generated whenitisbombarded by an electron beam.

Section 1.3.

TheHistory of Artificial Intelligence 23

EXPERTSYSTEMS

For example, the mass spectrum might contain a peak at m = 15, corresponding to the mass
of amethyl (CHs) fragment.

The naive version of the program generated all possible structures consistent with the
formula, and then predicted what mass spectrum would be observed for each, comparing this
with the actual spectrum. Asone might expect, thisisintractable for decent-sized molecules.
The DENDRAL researchers consulted analytical chemists and found that they worked by [ook-
ing for well-known patterns of peaksin the spectrum that suggested common substructuresin

the molecule. For example, the following rule is used to recognize a ketone (C=0) subgroup
(which weighs 28):

if thereare two pegks a z; and 2 such that

(@a1 + 72 = M T 28(Misthemessd thewholemolecule);
(b) z; — 28isahigh pesk;

(€) z2 — 28isahigh pesk;

(d) Atleast oned z; and x5 ishigh.

t hen thereis a ketone subgroup

Recognizing that the molecule contains a particular substructure reduces the number of pos-
sible candidates enormously. DENDRAL was powerful because

All the relevant theoreti cal knowledge to solve these problemshas been mapped over from
its generd form in the [spectrum prediction component] (“first principles™) to efficient
gpecid forms ("cookbook recipes*). (Feigenbaumet al., 1971)

The significance of DENDRAL was that it was the first successful knowledge-intensive sys-
tem: its expertise derived from large numbers of special-purpose rules. Later systems also
incorporated the main theme of McCarthy’s Advice Taker gpproach—the clean separation of
the knowledge (in theform of rules) from the reasoning component.

With this lesson in mind, Feigenbaum and others at Stanford began the Heuristic Pro-
gramming Project (HPP), to investigate the extent to which the new methodology of expert
systems could be applied to other areas of human expertise. The next major effort was in
the area of medical diagnosis. Feigenbaum, Buchanan, and Dr. Edward Shortliffe devel oped
MYCIN to diagnose blood infections. With about 450 rules, MYCIN was able to perform
as well as some experts, and considerably better than junior doctors. It also contained two
major differencesfrom DENDRAL. First, unlike the DENDRAL rules, no general theoretical
model existed from which the MycIN rules could be deduced. They had to be acquired from
extensive interviewing of experts, who in turn acquired them from textbooks, other experts,
and direct experience of cases. Second, the rules had to reflect the uncertainty associated with
medical knowledge. MY CIN incorporated a calculus of uncertainty called certainty factors
(see Chapter 14), which seemed (at the time) to fit well with how doctors assessed the impact
of evidence on the diagnosis.

The importance of domain knowledge was aso apparent in the area of understanding
natural language. Although Winograd's SHRDLU system for understanding natural language
had engendered a good deal of excitement, its dependence on syntactic analysis caused some
of the same problems as occurred in the early machine trandation work. It was able to
overcome ambiguity and understand pronoun references, but this was mainly because it was

24

Chapter 1. Introduction

FRAMES

designed specifically for one area—the blocks world. Several researchers, including Eugene
Charniak, a fellow graduate student of Winograd's at MIT, suggested that robust language
understanding would require general knowledge about the world and a general method for
using that knowledge.

At Yale, the linguist-turned-Al-researcher Roger Schank emphasized this point, claim-
ing, " Thereis no such thing as syntax,” which upset alot of linguists, but did serveto start a
useful discussion. Schank and his students built a series of programs (Schank and Abelson,
1977; Wilensky, 1978; Schank and Riesbeck, 1981; Dyer, 1983) that al had thetask of under-
standing natural language. The emphasis, however, was less on language per se and more on
the problems of representing and reasoning with the knowledge required for language under-
standing. The problems included representing stereotypical situations (Cullingford, 1981),
describing human memory organization (Rieger, 1976; Kolodner, 1983), and understanding
plans and goals (Wilensky, 1983).

The widespread growth of applications to real-world problems caused a concurrent in-
crease in the demands for workable knowledge representation schemes. A large number
of different representation and reasoning languages were developed. Some were based on
logic—for example, the Prolog language became popular in Europe, and the PLANNER fam-
ily in the United States. Others, following Minsky's idea of frames(1975), adopted a more
structured approach, assembling facts about particular object and event types and arranging
the typesinto alarge taxonomic hierarchy analogous to abiological taxonomy.

AT becomesan industry (1980—pr esent)

Thefirst successful commercial expert system, R1, began operation at the Digital Equipment
Corporation (McDermott, 1982). The program helped configure orders for new computer
systems; by 1986, it was saving the company an estimated $40 million a year. By 1988,
DEC's Al group had 40 expert systems deployed, with more on the way. Du Pont had 100
in use and 500 in development, saving an estimated $10 million a year. Nearly every major
U.S. corporation had its own Al group and was either using or investigating expert systems.

In 1981, the Japanese announced the ™ Fifth Generation™ project, a 10-year plan to build
intelligent computers running Prolog. In response the United States formed the Microelec-
tronics and Computer Technology Corporation (MCC) as a research consortium designed to
assure national competitiveness. In both cases, Al was part of a broad effort, including chip
design and human-interface research. However, the AT components of MCC and the Fifth
Generation projects never met their ambitious goals. In Britain, the Alvey report reinstated
the funding that was cut by the Lighthill report.!3

Overall, the AT industry boomed from afew million dollarsin 1980 to billions of dollars
in 1988. Soon after that came a period called the “Al Winter," in which many companies
suffered as they failed to deliver on extravagant promises.

15 To saveembarrassment, anew field called IKBS (Intelligent Knowledge-Based Systems) wasinvented because
Artificial Intelligence had been officially canceled.

Section 1.3.

CONNECTIONIST

The History of Artificia Intelligence 25

Thereturn of neural networ ks (1986-present)

Although computer science had largely abandoned the field of neural networks in the late
1970s, work continued in other fields. Physicists such as John Hopfield (1982) used tech-
niques from statistical mechanicsto analyze the storage and optimization propertiesof net-
works, treating collectionsdf nodeslike collectionsof atoms. Psychologistsincluding David
Rumelhart and Geoff Hinton continued the study of neural-net models of memory. As we
discussin Chapter 20, the real impetus came in the mid-1980s when at least four different
groups reinvented the back-propagationlearning algorithmfirst found in 1969 by Bryson and
Ho. The algorithm was applied to many learning problemsin computer science and psychol-
ogy, and the widespread dissemination of the resultsin the collection Paralle Distributed
Processing (Rumelhart and McClelland, 1986) caused great excitement.

These so-called connectionist models of intelligent systems were seen by some as di-
rect competitors both to the symbolic models promoted by Newell and Simon and to the
logicist approach of McCarthy and others (Smolensky, 1988). It might seem obvious that
at some level humans manipulate symbols—in fact, Terrence Deacon's book The Symbolic
Species (1997) suggeststhat thisis the dejining characteristic of humans, but the most ardent
connectionistsquestioned whether symbol manipulationhad any real explanatory rolein de-
tailed models of cognition. This question remains unanswered, but the current view is that
connectionist and symbolic approachesare complementary, not competing.

AT becomesa science (1987-present)

Recent years have seen a revolution in both the content and the methodology of work in
artificial intelligence.!% It is now more common to build on existing theoriesthan to propose
brand new ones, to base claims on rigorous theorems or hard experimental evidence rather
than on intuition, and to show relevance to real-world applicationsrather than toy examples.
Al'wasfoundedin part asarebellionagainst thelimitationsof existingfieldslikecontrol
theory and statistics, but now it isembracing thosefields. As David McAllester (1998) put it,

In the early period of Al it seemed plausible that new forms of symbolic computation,
e.g., frames and semantic networks, made much of classical theory obsolete. Thisled to
aform of isolationismin which Al became largely separated from the rest of computer
science. This isolationism is currently being abandoned. There is a recognition that
machinelearning should not beisolated from informationtheory, that uncertainreasoning
should not be isolated from stochastic modeling, that search should not be isolated from
classical optimization and control, and that automated reasoning should not be isolated
from forma methodsand static analysis.

In terms of methodology, Al has finally come firmly under the scientific method. To be ac-
cepted, hypothesesmust be subjected to rigorousempirical experiments, and the results must

16 Some have characterized this change as a victory of the neats—those who think that Al theories should be
grounded in mathematical rigor—over the scruffies—those who would rather try out lots of ideas, write some
programs, and then assess what seems to be working. Both approaches are important. A shift toward neatness
implies that the field has reached alevel of stability and maturity. Whether that stability will be disrupted by a
new scruffy ideais another question.

26

Chapter 1. I ntroduction

DATAMINING

be analyzed statistically for their importance (Cohen, 1995). Through the use of the Internet
and shared repositories of test data and code, it is now possible to replicate experiments.

The field of speech recognition illustrates the pattern. In the 1970s, a wide variety of
different architectures and approaches were tried. Many of these were rather ad %oc and
fragile, and were demonstrated on only a few specialy selected examples. In recent years,
approaches based on hidden Mar kov models (HMMs) have come to dominate the area. Two
aspects of HMMs are relevant. First, they are based on arigorous mathematical theory. This
has allowed speech researchersto build on several decades of mathematical results devel oped
in other fields. Second, they are generated by a process of training on a large corpus of
real speech data. Thisensures that the performance is robust, and in rigorous blind tests the
HMMs have been improving their scores steadily. Speech technology and the related field of
handwritten character recognition are already making the transition to widespread industrial
and consumer applications.

Neural networks aso fit this trend. Much of the work on neural netsin the 1980s was
done in an attempt to scope out what could be done and to learn how neura nets differ from
"traditional " techniques. Using improved methodology and theoretical frameworks, the field
arrived at an understanding in which neural nets can now be compared with corresponding
techniquesfrom statistics, pattern recognition, and machine learning, and the most promising
technique can be applied to each application. As a result of these developments, so-called
data mining technology has spawned a vigorous new industry.

Judea Pearl's (1988) Probabilistic Reasoning in Intelligent Systemsled to a new accep-
tance of probability and decision theory in Al, following a resurgence of interest epitomized
by Peter Cheeseman's (1985) article "'In Defense of Probability.” The Bayesian network
formalism was invented to alow efficient representation of, and rigorous reasoning with,
uncertain knowledge. This approach largely overcomes many problems of the probabilistic
reasoning systems of the 1960sand 1970s; it now dominates Al research on uncertain reason-
ing and expert systems. The approach allowsfor learning from experience, and it combines
the best of classical Al and neural nets. Work by Judea Pearl (1982a) and by Eric Horvitz and
David Heckerman (Horvitz and Heckerman, 1986; Horvitz et al., 1986) promoted theidea of
normative expert systems. ones that act rationally according to the laws of decision theory
and do not try toimitate the thought steps of human experts. The windows™ operating sys-
tem includes several normative diagnostic expert systems for correcting problems. Chapters
13 to 16 cover this area.

Similar gentle revolutions have occurred in robotics, computer vision, and knowledge
representation. A better understanding of the problems and their complexity properties, com-
bined with increased mathematical sophistication, has led to workable research agendas and
robust methods. In many cases, formalization and specialization have also led to fragmenta-
tion: topicssuch asvision and robotics are increasingly isolated from " mainstream' Al work.
The unifying view of Al as rational agent design is one that can bring unity back to these
disparate fields.

Section 1.4.

The State of the Art 27

Theemergence of intelligent agents (1995-pr esent)

Perhaps encouraged by the progress in solving the subproblems of Al, researchers have also
started to look at the "whole agent™ problem again. The work of Allen Newell, John Laird,
and Paul Rosenbloom on SOAR (Newell, 1990; Laird et al., 1987) isthe best-known example
of a complete agent architecture. The so-called situated movement aims to understand the
workings of agents embedded in real environments with continuous sensory inputs. One
of the most important environments for intelligent agents is the Internet. Al systems have
become so common in web-based applications that the “-bot” suffix has entered everyday
language. Moreover, Al technologies underlie many Internet tools, such as search engines,
recommender systems, and Web site construction systems.

Besides thefirst edition of thistext (Russell and Norvig, 1995), other recent texts have
also adopted the agent perspective (Poole et al., 1998; Nilsson, 1998). One consequence of
trying to build complete agents is the realization that the previously isolated subfields of Al
might need to be reorganized somewhat when their resultsare to be tied together. In particular,
it is now widely appreciated that sensory systems (vision, sonar, speech recognition, etc.)
cannot deliver perfectly reliable information about the environment. Hence, reasoning and
planning systems must be able to handle uncertainty. A second major conseguence of the
agent perspective isthat Al has been drawn into much closer contact with other fields, such
as control theory and economics, that also deal with agents.

1.4 THE STATE OF THE ART

What can Al do today? A concise answer is difficult, because there are so many activitiesin
so many subfields. Here we sample afew applications; others appear throughout the book.

Autonomous planning and scheduling: A hundred million milesfrom Earth, NASA's
Remote Agent program became the first on-board autonomous planning program to control
the scheduling of operations for a spacecraft (Jonsson et al., 2000). Remote Agent generated
plans from high-level goals specified from the ground, and it monitored the operation of the
spacecraft as the plans were executed — detecting, diagnosing, and recovering from problems
as they occurred.

Game playing: IBM’s Deep Blue became the first computer program to defeat the
world champion in a chess match when it bested Garry Kasparov by a score of 3.5t0 2.51in
an exhibition match (Goodman and Keene, 1997). Kasparov said that hefelt a**new kind of
intelligence™ across the board from him. Newsweek magazine described the match as** The
brain's last stand.” The value of IBM’s stock increased by $18 billion.

Autonomous control: The ALVINN computer vision system was trained to steer a car
to keep it following alane. 8 was placed in CMU’s NAVL AB computer-controlled minivan
and used to navigate across the United States—for 2850 milesit wasin control of steering the
vehicle98% of thetime. A human took over the other 2%, mostly at exit ramps. NavLAB has
video cameras that transmit road images to ALVINN, which then computes the best direction
to steer, based on experience from previous training runs.

28

Chapter 1. Introduction

Diagnosis: Medical diagnosis programs based on probabilistic analysis have been able
to perform at the level of an expert physician in several areas of medicine. Heckerman (1991)
describes a case where aleading expert on lymph-node pathology scoffsat aprogram's diag-
nosisof an especially difficult case. The creators of the program suggest he ask the computer
for an explanation of the diagnosis. The machine points out the major factors influencing its
decision and explains the subtle interaction of several of the symptomsin this case. Eventu-
aly, theexpert agrees with the program.

Logistics Planning: During the Persian Gulf crisis of 1991, U.S. forces deployed a
Dynamic Analysis and Replanning Tool, DART (Cross and Walker, 1994), to do automated
logistics planning and scheduling for transportation. This involved up to 50,000 vehicles,
cargo, and people at atime, and had to account for starting points, destinations, routes, and
conflict resolution among all parameters. The Al planning techniques allowed a plan to be
generated in hours that would have taken weeks with older methods. The Defense Advanced
Research Project Agency (DARPA) stated that this single application more than paid back
DARPA’s 30-year investment in Al.

Robotics: Many surgeons now use robot assistants in microsurgery. HipNav (DiGioia
et al., 1996) is a system that uses computer vision techniques to create a three-dimensional
model of a patient's internal anatomy and then uses robotic control to guide theinsertion of a
hip replacement prosthesis.

L anguageunder standingand problem solving: PROVERB (Littman et al., 1999) isa
computer program that solves crossword puzzles better than most humans, using constraints
on possible word fillers, alarge database of past puzzles, and a variety of information sources
including dictionaries and online databases such asalist of movies and the actors that appear
in them. For example, it determines that the clue " Nice Story" can be solved by "ETAGE
because its database includes the clue/solution pair "' Story in France/ETAGE” and because it
recognizes that the patterns "Nice X and "X in France™ often have the same solution. The
program does not know that Niceisacity in France, but it can solve the puzzle.

These are just a few examples of artificial intelligence systems that exist today. Not
magic or science fiction—but rather science, engineering, and mathematics, to which this
book provides an introduction.

This chapter defines A1 and establishes the cultural background against which it has devel-
oped. Some of theimportant points are asfollows:

o Different people think of AI differently. Two important questions to ask are: Are you
concerned with thinking or behavior? Do you want to model humans or work from an
ideal standard?

e In this book, we adopt the view that intelligence is concerned mainly with rational
action. Ideally, an intelligent agent takes the best possible action in a situation. We
will study the problem of building agents that are intelligent in this sense.

Section 1.5. Summary 29

¢ Philosophers (going back to 400 B.c.) made Al conceivable by considering the ideas
that the mind isin some ways like a machine, that it operates on knowledge encoded in
some internal language, and that thought can be used to choose what actions to take.

e Mathematicians provided the tools to manipul ate statements of logical certainty as well
as uncertain, probabilistic statements. They also set the groundwork for understanding
computation and reasoning about algorithms.

e Economists formalized the problem of making decisions that maximize the expected
outcome to the decision-maker.

¢ Psychologists adopted theidea that humans and animals can be considered information-
processing machines. Linguists showed that language use fitsinto this model.

e Computer engineers provided the artifacts that make AT applications possible. Al pro-
grams tend to belarge, and they could not work without the great advancesin speed and
memory that the computer industry has provided.

e Control theory deals with designing devices that act optimally on the basis of feedback
from the environment. Initially, the mathematica tools of control theory were quite
different from Al, but the fields are coming closer together.

e Thehistory of AT hashad cyclesof success, misplaced optimism, and resulting cutbacks
in enthusiasm and funding. There have also been cycles of introducing new creative
approaches and systematically refining the best ones.

¢ Al has advanced morerapidly in the past decade because of greater use of the scientific
method in experimenting with and comparing approaches.

¢ Recent progress in understanding the theoretical basisfor intelligence has gone hand in
hand with improvements in the capabilities of real systems. The subfields of AT have
become more integrated, and Al has found common ground with other disciplines.

BIBLIOGRAPHICAL AND HISTORICAL NOTES

The methodological status of artificial intelligence is investigated in The Sciences of the Ar-
tificial, by Herb Simon (1981), which discusses research areas concerned with complex ar-
tifacts. It explains how AT can be viewed as both science and mathematics. Cohen (1995)
gives an overview of experimental methodology within Al. Ford and Hayes (1995) give an
opinionated view of the usefulness of the Turing Test.

Artificial Intelligence: The Very ldea, by John Haugeland (1985) gives a readable ac-
count of the philosophical and practical problems of Al. Cognitive science is well described
by several recent texts (Johnson-Laird, 1988; Stillings et al., 1995; Thagard, 1996) and by
the Encyclopedia of the Cognitive Sciences (Wilson and Keil, 1999). Baker (1989) covers
the syntactic part of modern linguistics, and Chierchia and McConnell-Ginet (1990) cover
semantics. Jurafsky and Martin (2000) cover computational linguistics.

Early Al is described in Feigenbaum and Feldman's Computers and Thought (1963),
Minsky's Semantic Information Processing(1968), and the Machine Intelligence series edited
by Donald Michie. A large number of influential papers have been anthologized by Webber

30

Chapter 1. Introduction

and Nilsson (1981) and by Luger (1995). Early papers on neura networks are collected in
Neurocomputing (Anderson and Rosenfeld, 1988). The Encyclopedia of Al (Shapiro, 1992)
contains survey articles on almost every topic in Al. These articles usually provide a good
entry point into the research literature on each topic.

The most recent work appears in the proceedings of the major AI conferences: the bi-
ennial International Joint Conference on Al (IJCALI), the annual European Conference on Al
(ECALI), and the National Conference on Al, more often known as AAAI, after its sponsoring
organization. The major journals for general Al are Artificial Intelligence, Computational
Intelligence, the |EEE Transactionson Pattern Analysis and Machine Intelligence, |[EEE In-
telligent Systems, and the electronic Journal of Artificial Intelligence Research. Therearealso
many conferences and journals devoted to specific areas, which we cover in the appropriate
chapters. The main professional societies for AI are the American Association for Artificia
Intelligence (AAALI), the ACM Specia Interest Group in Artificia Intelligence (SIGART),
and the Society for Artificial Intelligence and Simulation of Behaviour (AISB). AAAT’s Al
Magazine contains many topical and tutorial articles, and its website, aaai.org, contains news
and background information.

These exercises are intended to stimulate discussion, and some might be set as term projects.
Alternatively, preliminary attempts can be made now, and these attempts can be reviewed
after the completion of the book.

1.1 Definein your own words: (a) intelligence, (b) artificial intelligence, (c) agent.

1.2 Read Turing's original paper on Al (Turing, 1950). In the paper, he discusses several
potential objections to his proposed enterprise and his test for intelligence. Which objec-
tions still carry some weight? Are his refutations valid? Can you think of new objections
arising from developments since he wrote the paper? In the paper, he predicts that, by the
year 2000, a computer will have a 30% chance of passing a five-minute Turing Test with an
unskilled interrogator. What chance do you think a computer would have today? In another
50 years?

1.3 Every year the Loebner prize is awarded to the program that comes closest to passing
aversion of the Turing test. Research and report on the latest winner of the Loebner prize.
What techniques doesit use? How does it advance the state of theat in Al?

14 There are well-known classes of problems that are intractably difficult for computers,
and other classes that are provably undecidable. Does this mean that Al isimpossible?

15 Suppose we extend Evanss ANALOGY program so that it can score 200 on a standard
IQ test. Would we then have a program more intelligent than a human? Explain.

1.6 How could introspection—reporting on one's inner thoughts—be inaccurate? Could |
be wrong about what I'm thinking? Discuss.

Section 1.5. Summary 31

1.7 Examine the Al literature to discover whether the following tasks can currently be
solved by computers:

o

Playing a decent game of table tennis (ping-pong).

Driving in the center of Cairo.

. Buying aweek's worth of groceries at the market.

. Buying aweek’s worth of groceries on the web.

. Playing adecent game of bridge at a competitive level.

. Discovering and proving new mathematical theorems.
Writing an intentionally funny story.

. Giving competent legal advicein a specialized area of law.
Tranglating spoken Englishinto spoken Swedish in real time.
j. Performing acomplex surgical operation.

For the currently infeasibletasks, try to find out what the difficulties are and predict when, if
ever, they will be overcome.

1.8 Someauthors have claimed that perception and motor skills are the most important part
of intelligence, and that “higher level" capacitiesare necessarily parasitic— simpleadd-ons to
these underlying facilities. Certainly, most of evolution and alarge part of the brain have been
devoted to perception and motor skills, whereas Al has found tasks such as game playing and
logical inferenceto be easier, in many ways, than perceiving and acting in the real world. Do
you think that Al’s traditional focuson higher-level cognitive abilities is misplaced?

1.9 Why would evolution tend to result in systems that act rationally? What goals are such
systems designed to achieve?

1.10 Are reflex actions (such as moving your hand away from a hot stove) rational? Are
they intelligent?

1.11 " Surely computers cannot be intelligent—they can do only what their programmers
tell them.” Isthe latter statement true, and does it imply the former?

112 "Surely animals cannot be intelligent—they can do only what their genes tell them."
Isthelatter statement true, and does it imply the former?

1.13 "Surely animals, humans, and computers cannot beintelligent —they can do only what
their constituent atoms are told to do by the laws of physics."” Is the latter statement true, and
doesit imply the former?

INTELLIGENT AGENTS

In which we discuss the nature of agents, perfect or otherwise, the diversity of
environments, and the resulting menagerieof agent types.

Chapter 1 identified the concept of rational agents as central to our approach to arti-
ficia intelligence. In this chapter, we make this notion more concrete. We will see that the
concept of rationality can be applied to awide variety of agents operating in any imaginable
environment. Our plan in this book is to use this concept to develop a small set of design
principlesfor building successful agents—systems that can reasonably be called intelligent.

Wewill begin by examining agents, environments, and the coupling between them. The
observation that some agents behave better than others leads naturally to theidea of arational
agent—one that behaves as well as possible. How well an agent can behave depends on
the nature of the environment; some environments are more difficult than others. We givea
crude categorization of environments and show how properties of an environment influence
the design of suitable agentsfor that environment. We describe a number of basic ' skeleton™
agent designs, which will befleshed out in the rest of the book.

2.1 AGENTS AND ENVIRONMENTS

ENVIRONMENT
SENSOR

ACTUATOR

PERCEPT
PERCEPTSEQUENCE

An agent is anything that can be viewed as perceiving its environment through sensor sand
acting upon that environment through actuators. Thissimpleideaisillustrated in Figure 2.1.
A human agent has eyes, ears, and other organsfor sensors and hands, legs, mouth, and other
body partsfor actuators. A robotic agent might have cameras and infrared range findersfor
sensors and various motorsfor actuators. A software agent receives keystrokes, file contents,
and network packets as sensory inputs and acts on the environment by displaying on the
screen, writing files, and sending network packets. We will make the general assumption that
every agent can perceiveits own actions (but not always the effects).

We usetheterm per cept to refer to the agent's perceptual inputsat any giveninstant. An
agent's per cept sequenceis the complete history of everything the agent has ever perceived.
In general, an agent's choice of action at any given instant can depend on the entire percept
sequence observed to date. If we can specify the agent's choice of action for every possible

Section 2.1.

Agents and Environments 33

AGENTFUNCTION

AGENT PROGRAM

Figure2.1 Agentsinteract with environments through sensors and actuators.

percept sequence, then we have said more or less everything there is to say about the agent.
Mathematically speaking, we say that an agent's behavior is described by the agent function
that maps any given percept sequence to an action.

We can imagine tabulating the agent function that describes any given agent; for most
agents, this would be a very large table—infinite, in fact, unless we place a bound on the
length of percept sequences we want to consider. Given an agent to experiment with, we can,
in principle, construct this table by trying out all possible percept sequences and recording
which actions the agent doesin response.’ Thetableis, of course, an external characterization
of the agent. Internally, the agent function for an artificial agent will be implemented by an
agent program. It isimportant to keep these two ideas distinct. The agent function is an
abstract mathematical description; the agent program is a concrete implementation, running
on the agent architecture.

Toillustrate theseideas, we will use avery simple example—thevacuum-cleaner world
shownin Figure 2.2. Thisworld is so simplethat we can describeeverything that happens; it's
also a made-up world, so we can invent many variations. This particular world has just two
locations: squares A and B. The vacuum agent perceives which square it isin and whether
there is dirt in the square. It can choose to move left, move right, suck up the dirt, or do
nothing. One very simple agent functionis the following: if the current square is dirty, then
suck, otherwise moveto the other square. A partial tabulation of thisagent function is shown
in Figure 2.3. A ssimple agent program for this agent function is given later in the chapter, in
Figure2.8.

Looking at Figure 2.3, we see that various vacuum-world agents can be defined simply
by fillingin the right-hand column in variousways. The obvious question, then, isthis: What

L If the agent uses some randomization to choose its actions, then we would have to try each sequence many
timesto identify the probability of each action. One might imagine that acting randomly is rather silly, but we'll
:seelater in this chapter that it can be very intelligent.

Chapter 2. Intelligent Agents

RATIONAL AGENT

Figure2.2 A vacuum-cleaner world with just two locations.

Percept sequence Action

[A, Clean] Right

[A, Dirty] Suck

[B Clean] Left

[B.Dirty] Suck

[AClean],[AClean| Right

[AClean],[ADirty] Suck

[AClean],[| AClean],[AClean] Right

[AClean],[AClean] [ADirty] Suck
_.Fi_gur_e 2.3 Partid tabulation o a smple agent function for the vacuum-cleaner world

shownin Figure 2.2,

is the right way to Jill out the table? In other words, what makes an agent good or bad,
intelligent or stupid? We answer these questionsin the next section.

Before closing this section, we will remark that the notion of an agent is meant to be a
tool for analyzing systems, not an absol ute characterization that divides the world into agents
and non-agents. One could view a hand-held cal culator as an agent that chooses the action of
displaying “4” when given the percept sequence “2 + 2="" but such an analysis would hardly
aid our understanding of the calculator.

A rational agent is one that does the right thing— conceptualy speaking, every entry in
the table for the agent function is filled out correctly. Obviously, doing the right thing is
better than doing the wrong thing, but what does it mean to do the right thing? As afirst
approximation, we will say that the right action is the one that will cause the agent to be

Section 2.2. Good Behavior: The Concept of Rationality 35

most successful. Therefore, we will need some way to measure success. Together with the
description of the environment and the sensors and actuators of the agent, this will provide a
complete specification of the task facing the agent. Given this, we can define more precisely
what it meansto be rational.

Per formancemeasures

PO RANCE A performance measur e embodies the criterion for success of an agent's behavior. When
an agent is plunked down in an environment, it generates a sequence of actions according
to the percepts it receives. This sequence of actions causes the environment to go through a
sequence of states. If the sequenceisdesirable, then the agent has performed well. Obvioudly,
thereis not one fixed measure suitable for al agents. We could ask the agent for a subjective
opinion of how happy it is with its own performance, but some agents would be unable
to answer, and others would delude themselves.?> Therefore, we will insist on an objective
performance measure, typically oneimposed by the designer who is constructing the agent.

Consider the vacuum-cleaner agent from the preceding section. We might propose to
measure performance by the amount of dirt cleaned up in a single eight-hour shift. With a
rational agent, of course, what you ask for iswhat you get. A rational agent can maximizethis
performance measure by cleaning up the dirt, then dumping it al on the floor, then cleaning
it up again, and so on. A more suitable performance measure would reward the agent for
having a clean floor. For example, one point could be awarded for each clean square at each
time step (perhaps with a penalty for electricity consumed and noise generated). Asa general
rule, it is better to design performance measures according to what one actually wantsin the
environment, rather than according to how one thinks the agent should behave.

The selection of a performance measure is not always easy. For example, the notion
of "clean floor" in the preceding paragraph is based on average cleanliness over time. Yet
the same average cleanliness can be achieved by two different agents, one of which does a
mediocre job all the time while the other cleans energetically but takes long breaks. Which
is preferablemight seem to be afine point of janitorial science, but in fact itis a deep philo-
sophical question with far-reaching implications. Which is better —a reckless life of highs
and lows, or a safe but humdrum existence? Which is better —an economy where everyone
livesin moderate poverty, or onein which somelivein plenty while others are very poor? We
will leave these questions as an exercise for the diligent reader.

Rationality

What is rationa at any given time depends on four things:

e The performance measure that definesthe criterion of success.
e The agent's prior knowledge of the environment.

e The actions that the agent can perform.

e Theagent's percept sequence to date.

2 Human agentsin particular are notorious for " sour grapes” — believing they did not really want something after
not getting it, asin, "Oh well, never mind, | didn't want that stupid Nobel prize anyway."

36

Chapter 2. Intelligent Agents

DEFINITION OF A
RATIONAL AGENT

OMNISCIENCE

Thisleads to adefinition of arational agent:

For each possible percept sequence, a rational agent should select an action that is ex-
pected to maximize its performancemeasure, given the evidence provided by the percept
sequenceand whatever built-in knowledgethe agent has.

Consider the simple vacuum-cleaner agent that cleans asquareif it is dirty and moves to the
other square if not; thisis the agent function tabulated in Figure 2.3. Is this arational agent?
That depends! First, we need to say what the performance measure is, what is known about
the environment, and what sensors and actuators the agent has. Let us assume thefollowing:

e The performance measure awards one point for each clean square at each time step,
over a"lifetime™ of 1000 time steps.

e The"geography" of the environment is known a priori (Figure 2.2) but the dirt distri-
bution and theinitial location of the agent are not. Clean squares stay clean and sucking
cleans the current square. The Left and Right actions move the agent left and right
except when this would take the agent outside the environment, in which case the agent
remains whereitis.

e Theonly available actions are Left, Right, Suck, and NoOp (do nothing).

e The agent correctly perceivesitslocation and whether that location contains dirt.

We claim that under these circumstances the agent is indeed rational; its expected perfor-
manceis at least as high as any other agent's. Exercise 2.4 asks you to provethis.

One can see easily that the same agent would be irrational under different circum-
stances. For example, once al the dirt is cleaned up it will oscillate needlessly back and
forth; if the performance measure includes a penalty of one point for each movement left or
right, the agent will fare poorly. A better agent for this case would do nothing onceit is sure
that all the squares are clean. If clean squares can become dirty again, the agent should occa-
sionally check and re-clean them if needed. If the geography of the environment is unknown,
the agent will need to exploreit rather than stick to squares A and B. Exercise 2.4 asks you
to design agents for these cases.

Omniscience, lear ning, and autonomy

We need to be careful to distinguish between rationality and omniscience. An omniscient
agent knows the actual outcome of its actions and can act accordingly; but omniscience is
impossible in reality. Consider the following example: | am walking aong the Champs
Elysées one day and | see an old friend across the street. Thereis no traffic nearby and I'm
not otherwise engaged, so, being rational, | start to cross the street. Meanwhile, at 33,000
feet, a cargo door falls off a passing airliner,® and before | make it to the other side of the
street | am flattened. Was| irrational to crossthe street? It is unlikely that my obituary would
read "' ldiot attempts to cross street."

This example shows that rationality is not the same as perfection. Rationality max-
imizes expected performance, while perfection maximizes actual performance. Retreating
from a requirement of perfection is not just a question of being fair to agents. The point is

3 See N. Henderson, ""New door latches urged for Boeing 747 jumbo jets," Washington Post, August 24, 1989.

Section 2.2.

Good Behavior: The Concept of Rationality 37

INFORMATION
GATHERING

EXPLORATION

LEARNING

AUTONOMY

that if we expect an agent to do what turns out to be the best action after the fact, it will be
impossible to design an agent to fulfill this specification — unlessweimprove the performance
of crystal balls or time machines.

Our definition of rationality does not require omniscience, then, because the rationa
choice depends only on the percept sequence to date. We must also ensure that we haven't
inadvertently allowed the agent to engage in decidedly underintelligent activities. For exam-
ple, if an agent does not look both ways before crossing abusy road, then its percept sequence
will not tell it that thereis a large truck approaching at high speed. Does our definition of
rationality say that it's now OK to cross the road? Far fromit! First, it would not be rational
to cross the road given this uninformative percept sequence: the risk of accident from cross-
ing without looking IS too great. Second, arational agent should choose the *'looking™ action
before stepping into the street, because looking helps maximize the expected performance.
Doing actions in order to modify future percepts— sometimes called information gather-
ing—is an important part of rationality and is covered in depth in Chapter 16. A second
example of information gathering is provided by the exploration that must be undertaken by
avacuum-cleaning agent in an initially unknown environment.

Our definition requires arational agent not only to gather information, but also tolearn
as much as possible from what it perceives. The agent's initial configuration could reflect
some prior knowledge of the environment, but as the agent gains experience this may be
modified and augmented. There are extreme cases in which the environment is compl etely
known a priori. In such cases, the agent need not perceive or learn; it simply acts correctly.
Of course, such agents are very fragile. Consider thelowly dung beetle. After digging its nest
andlayingitseggs, it fetches aball of dung from anearby heap to plug the entrance. If theball
of dung isremoved from its grasp en route, the beetle continues on and pantomimes plugging
the nest with the nonexistent dung ball, never noticing that it ismissing. Evolution hasbuilt an
assumption into the beetle's behavior, and whenit is violated, unsuccessful behavior results.
Slightly more intelligent is the sphex wasp. The female sphex will dig a burrow, go out
and sting a caterpillar and drag it to the burrow, enter the burrow again to check all is well,
drag the caterpillar inside, and lay its eggs. The caterpillar serves as afood source when the
eggs hatch. So far so good, but if an entomologist moves the caterpillar a few inches away
while the sphex is doing the check, it will revert back to the " drag™ step of its plan, and will
continue the plan without modification, even after dozens of caterpillar-moving interventions.
The sphex is unable to learn that itsinnate plan isfailing, and thus will not changeit.

Successful agents split the task of computing the agent function into three different
periods. when the agent is being designed, some of the computation is done by its designers;
when it is deliberating on its next action, the agent does more computation; and as it learns
from experience, it does even more computation to decide how to modify its behavior.

To the extent that an agent relies on the prior knowledge of its designer rather than
on its own percepts, we say that the agent lacks autonomy. A rational agent should be
autonomous—it should learn what it can to compensate for partial or incorrect prior know!-
edge. For example, avacuum-cleaning agent that |earns to foresee where and when additional
dirt will appear will do better than one that does not. As a practical matter, one seldom re-
quires complete autonomy from the start: when the agent has had little or no experience, it

Chapter 2. Intelligent Agents

would have to act randomly unless the designer gave some assistance. So, just as evolution
provides animals with enough built-in reflexes so that they can survive long enough to learn
for themselves, it would be reasonable to provide an artificia intelligent agent with some
initial knowledge as well as an ability tolearn. After sufficient experience of its environment,
the behavior of arational agent can become effectively independent of its prior knowledge.
Hence, the incorporation of learning alows one to design a single rational agent that will
succeed in avast variety of environments.

TASK
ENVIRONMENTS

PEAS

Now that we have a definition of rationality, we are almost ready to think about building ratio-
nal agents. First, however, we must think about task environments, which are essentialy the
""problems™ to which rational agentsare the solutions.” We begin by showing how to specify
atask environment, illustrating the process with a number of examples. We then show that
task environments comein a variety of flavors. The flavor of the task environment directly
affects the appropriate design for the agent program.

Specifyingthe task environment

In our discussion of the rationdity of the simple vacuum-cleaner agent, we had to specify
the performance measure, the environment, and the agent's actuators and sensors. We will
group all these together under the heading of the task environment. For the acronymically
minded, we call this the PEA S (Performance, Environment, Actuators, Sensors) description.
In designing an agent, the first step must always be to specify the task environment as fully
aspossible.

The vacuum world was a simple example; let us consider a more complex problem:
an automated taxi driver. We will use this example throughout the rest of the chapter. We
should point out, before the reader becomes alarmed, that a fully automated taxi is currently
somewhat beyond the capabilities of existing technology. (See page 27 for a description
of an existing driving robot, or ook at recent proceedings of the conferences on Intelligent
Transportation Systems.) Thefull driving task is extremely open-ended. Thereis no limit to
the novel combinations of circumstancesthat can arise— another reason we choseit asafocus
for discussion. Figure 2.4 summarizes the PEAS description for the taxi's task environment.
We discuss each element in more detail in the following paragraphs.

First, what is the performancemeasur e to which we would like our automated driver
to aspire? Desirable qualities include getting to the correct destination; minimizing fuel con-
sumption and wear and tear; minimizing the trip time and/or cost; minimizing violations of
trafficlaws and disturbances to other drivers; maximizing safety and passenger comfort; max-
imizing profits. Obviously, some of these goals conflict, so there will be tradeoffsinvolved.

Next, what is the driving environment that the taxi will face? Any taxi driver must
deal with a variety of roads, ranging from rural lanes and urban alleys to 12-lane freeways.
Theroads contain other traffic, pedestrians, stray animals, road works, police cars, puddles,

Section 2.3.

The Nature of Environments 39
Agent Type Performance Environment Actuators Sensors
Measure
Taxi driver Safe: fast, legd, Roads, other Steering, Cameras, sonar,
comfortable trip, traffic, accelerator, speedometer,
maximize profits pedestrians, brake, signal, GPS, odometer,
customers horn, display accelerometer,
engine sensors,
keyboard

Figure2.4 PEASdescriptionof thetask environmentfor an automated taxi. |

and potholes. Thetaxi must alsointeract with potential and actual passengers. There areaso
some optional choices. The taxi might need to operate in Southern California, where snow
is seldom a problem, or in Alaska, whereit seldomis not. It could always be driving on the
right, or we might want it to be flexible enough to drive on the left when in Britain or Japan.
Obviously, the more restricted the environment, the easier the design problem.

The actuators available to an automated taxi will be more or less the same as those
availableto ahuman driver: control over the engine through the accelerator and control over
steering and braking. In addition, it will need output to adisplay screen or voice synthesizer
to talk back to the passengers, and perhaps some way to communicate with other vehicles,
politely or otherwise.

To achieveits goalsin the driving environment, the taxi will need to know whereit is,
what elseis on the road, and how fast it is going. Its basic sensor s should therefore include
one or more controllable TV cameras, the speedometer, and the odometer. To control the
vehicle properly, especialy on curves, it should have an accelerometer; it will also need to
know the mechanical state of the vehicle, so it will need the usual array of engine and elec-
trical system sensors. It might have instruments that are not available to the average human
driver: a satellite global positioning system (GPS) to give it accurate position information
with respect to an electronic map, and infrared or sonar sensors to detect distances to other
carsand obstacles. Finally, it will need akeyboard or microphone for the passenger to request
adestination.

In Figure 2.5, we have sketched the basic PEAS elements for a number of additional
agent types. Further examples appear in Exercise 2.5. It may come as a surprise to some
readers that we include in our list of agent types some programs that operate in the entirely
artificial environment defined by keyboard input and character output on a screen. " Surely,”
one might say, "thisis not a real environment, isit?" In fact, what matters is not the dis-
tinction between "red" and "artificia" environments, but the complexity of the relationship
among the behavior of the agent, the percept sequence generated by the environment, and the
performance measure. Some "red" environments are actually quite smple. For example, a
robot designed to inspect parts as they come by on a conveyor belt can make use of a num-
ber of simplifying assumptions: that the lighting is always just so, that the only thing on the
conveyer belt will be parts of akind that it knows about, and that there are only two actions
(accept or reject).

40 Chapter 2. Intelligent Agents
Agent Type Performance Environment Actuators Sensors
Measure
Medical Healthy patient, Patient, hospital, Display Keyboard entry
diagnosis system minimize costs, staff questions, tests, of symptoms,
lawsuits diagnoses, findings, patient's
treatments, answers
referrals
Satellite image Correct image Downlink from Display Color pixel
analysis system categorization orbiting satellite categorization of arrays
scene
Part-picking Percentage of Conveyor belt Jointed arm and Camera, joint
robot partsin correct with parts; bins hand angle sensors
bins
Refinery Maximize purity, Refinery, Valves, pumps, Temperature,
controller yield, safety operators heaters, displays pressure,
chemical sensors
Interactive Maximize Set of students, Display Keyboard entry
English tutor student's score testing agency EXErcises,
on test suggestions,
corrections
Figure25 Examplesd agent typesand their PEAS descriptions.
SOFTWARE AGENTS In contrast, some softwar e agents (or software robots or softbots) exist in rich, un-

SOFTBOTS

limited domains. Imagine a softbot designed to fly aflight smulator for alarge commercial
airplane. The simulator is a very detailed, complex environment including other aircraft and
ground operations, and the software agent must choose from awide variety of actionsin real
time. Or imagine a softbot designed to scan Internet news sources and show the interesting
items to its customers. To do well, it will need some natural language processing abilities,
it will need to learn what each customer isinterested in, and it will need to change its plans
dynamically — for example, when the connection for one news source goes down or when a
new one comes online. The Internet is an environment whose complexity rivalsthat of the
physical world and whose inhabitants include many artificial agents.

Propertiesof task environments

The range of task environments that might arise in Al is obvioudly vast. We can, however,
identify afairly small number of dimensions along which task environments can be catego-
rized. These dimensions determine, to a large extent, the appropriate agent design and the

Section 2.3.

The Nature of Environments 41

FULLY OBSERVABLE

DETERMINISTIC

STOCHASTIC

STRATEGIC

EPISODIC

SEQUENTIAL

applicability of each of the principal families of techniquesfor agent implementation. First,
we list the dimensions, then we analyze several task environmentsto illustrate the ideas. The

definitions here are informal; later chapters provide more precise statements and exampl es of
each kind of environment.

¢ Fully observablevs. partially observable.

If an agent's sensors give it access to the complete state of the environment at each
point in time, then we say that the task environment is fully observable.* A task envi-
ronment is effectively fully observableif the sensors detect all aspects that are relevant
to the choice of action; relevance, in turn, depends on the performance measure. Fully
observable environments are convenient because the agent need not maintain any in-
ternal state to keep track of the world. An environment might be partialy observable
because of noisy and inaccurate sensors or because parts of the state are simply missing
from the sensor data—for example, a vacuum agent with only alocal dirt sensor cannot
tell whether thereisdirt in other squares, and an automated taxi cannot see what other
driversare thinking.

¢ Deterministicvs. stochastic.
If the next state of the environment is completely determined by the current state and
the action executed by the agent, then we say the environment is deterministic; other-
wise, it is stochastic. In principle, an agent need not worry about uncertainty in afully
observable, deterministic environment. If the environment is partially observable, how-
ever, then it could appear to be stochastic. Thisis particularly true if the environment
is complex, making it hard to keep track of all the unobserved aspects. Thus, it is often
better to think of an environment as deterministic or stochastic fromthe point of view of
the agent. Taxi driving is clearly stochastic in this sense, because one can never predict
the behavior of traffic exactly; moreover, one's tires blow out and one's engine seizes
up without warning. The vacuum world as we described it is deterministic, but varia-
tions can include stochastic elements such as randomly appearing dirt and an unreliable
suction mechanism (Exercise 2.12). If the environment is deterministic except for the
actions of other agents, we say that the environment is strategic.
& Episodic vs. sequential.>

In an episodic task environment, the agent's experienceis divided into atomic episodes.
Each episode consists of the agent perceiving and then performing a single action. Cru-
cidly, the next episode does not depend on the actions taken in previous episodes. In
episodic environments, the choice of action in each episode depends only on the episode
itself. Many classification tasks are episodic. For example, an agent that has to spot de-
fective parts on an assembly line bases each decision on the current part, regardiess
of previous decisions, moreover, the current decision doesn't affect whether the next

4 Thefirst edition of this book used the terms accessibleand inaccessibleinstead of fully and partially observ-
able; nondeter ministicinstead of stochastic; and nonepisodic instead of sequential. The new terminology is
more consistent with established usage.

5 The word " sequential" is also used in computer science as the antonym of "parale.” The two meanings are
largely unrelated.

42

Chapter 2. Intelligent Agents

STATIC
DYNAMIC

SEMIDYNAMIC

DISCRETE

CONTINUOUS

SINGLE AGENT
MULTIAGENT

COMPETITIVE

COOPERATIVE

part is defective. In sequential environments, on the other hand, the current decision
could affect all future decisions. Chess and taxi driving are sequentia: in both cases,
short-term actions can have long-term consequences. Episodic environments are much
simpler than sequential environments because the agent does not need to think ahead.

¢ Staticvs. dynamic.

If the environment can change while an agent is deliberating, then we say the environ-
ment is dynamic for that agent; otherwise, it is static. Static environments are easy to
deal with because the agent need not keep looking at the world whileit is deciding on
an action, nor need it worry about the passage of time. Dynamic environments, on the
other hand, are continuously asking the agent what it wants to do; if it hasn't decided
yet, that counts as deciding to do nothing. If the environment itself does not change
with the passage of time but the agent's performance score does, then we say the envi-
ronment is semidynamic. Taxi driving is clearly dynamic: the other cars and the taxi
itself keep moving while the driving algorithm dithers about what to do next. Chess,
when played with aclock, is semidynamic. Crossword puzzles are static.

Discretevs. continuous.

The discrete/continuous distinction can be applied to the state of the environment, to
the way timeis handled, and to the percepts and actionsof the agent. For example, a
discrete-state environment such as a chess game has a finite number of distinct states.
Chess also has a discrete set of percepts and actions. Taxi driving is a continuous-
state and continuous-time problem: the speed and location of the taxi and of the other
vehicles sweep through a range of continuous values and do so smoothly over time.
Taxi-driving actions are also continuous (steering angles, etc.). Input from digital cam-
eras is discrete, strictly speaking, but is typically treated as representing continuously
varying intensities and locations.

¢ Singleagent vs. multiagent.

The distinction between single-agent and multiagent environments may seem simple
enough. For example, an agent solving a crossword puzzle by itself is clearly in a
single-agent environment, whereas an agent playing chess is in a two-agent environ-
ment. There are, however, some subtle issues. First, we have described how an entity
may be viewed as an agent, but we have not explained which entities must be viewed as
agents. Does an agent A (thetaxi driver for example) haveto treat an object B (another
vehicle) as an agent, or can it be treated merely as a stochasticaly behaving object,
analogous to waves at the beach or leaves blowing in the wind? The key distinction is
whether B's behavior is best described as maximizing a performance measure whose
value depends on agent A's behavior. For example, in chess, the opponent entity B is
trying to maximize its performance measure, which, by the rules of chess, minimizes
agent A's performance measure. Thus, chess is acompetitive multiagent environment.
In the taxi-driving environment, on the other hand, avoiding collisions maximizes the
performance measure of all agents, soit isa partially cooper ative multiagent environ-
ment. It isalso partially competitive because, for example, only one car can occupy a
parking space. The agent-design problems arising in multiagent environments are often

Section 2.3. The Nature of Environments 43

Task Environment Observable Deterministic Episodic Static Discrete Agents
Crossword puzzle Fully Deterministic Sequential Static ~ Discrete Single
Chesswith aclock Fully Strategic Sequential Semi Discrete Multi
Poker Partially =~ Stochastic Sequentia Static Discrete Multi
Backgammon Fully Stochastic Sequential ~ Static ~ Discrete Multi
Taxi driving Partially Stochastic Sequential Dynamic Continuous Multi
Medical diagnosis Partially ~ Stochastic Sequential Dynamic Continuous Single
Image-analysis Fully Deterministic Episodic =~ Semi Continuous Single
Part-pickingrobot Partially =~ Stochastic Episodic Dynamic Continuous Single
Refinery controller Partially =~ Stochastic Sequential Dynamic Continuous Single
InteractiveEnglish tutor Partially ~ Stochastic Sequential Dynamic Discrete Multi

Figuré72.6 Examples of task environmentsand their characteristics.

quite different from those in single-agent environments; for example, communication
often emerges as a rational behavior in multiagent environments; in some partially ob-
servable competitive environments, stochastic behavior is rational because it avoids
the pitfalls of predictability.

Asonemight expect, the hardest caseis partially observable, stochastic, sequential, dynamic,
continuous, and multiagent. It also turns out that most real situations are so complex that
whether they are really deterministic is a moot point. For practical purposes, they must be
treated as stochastic. Taxi drivingishardin all these senses.

Figure 2.6 lists the properties of a number of familiar environments. Note that the an-
swers are not always cut and dried. For example, we have listed chess as fully observable;
strictly speaking, thisis false because certain rules about castling, en passant capture, and
draws by repetition require remembering some facts about the game history that are not ob-
servable as part of the board state. These exceptions to observability are of course minor
compared to those faced by thetaxi driver, the English tutor, or the medical diagnosis system.

Some other answers in the table depend on how the task environment is defined. We
havelisted the medical-diagnosis task as single-agent because the disease processin a patient
is not profitably modeled as an agent; but a medical-diagnosis system might also have to
deal with recalcitrant patients and skeptical staff, so the environment could have a multiagent
aspect. Furthermore, medical diagnosisis episodic if one conceivesof the task as selecting a
diagnosisgivenalist of symptoms; the problemissequential if the task caninclude proposing
a series of tests, evaluating progress over the course o treatment, and so on. Also, many
environments are episodic at higher levels than the agent's individual actions. For example,
a chess tournament consists of a sequence of games; each game is an episode, because (by
and large) the contribution of the movesin one game to the agent's overal performance is
not affected by the movesin its previous game. On the other hand, decision making within a
single gameis certainly sequential.

Chapter 2. Intelligent Agents

ENVIROMMENT
CLASS

ENVIRONMENT
GENERATOR

The code repository associated with this book (aima.cs.berkeley.edu) includes imple-
mentations of a number of environments, together with ageneral-purpose environment simu-
lator that places one or more agentsin a simulated environment, observes their behavior over
time, and evaluates them according to a given performance measure. Such experiments are
often carried out not for a single environment, but for many environments drawn from an en-
vironment class. For example, to evaluateataxi driverin ssimulated traffic, we would want to
run many simulations with different traffic, lighting, and weather conditions. If we designed
the agent for a single scenario, we might be able to take advantage of specific properties
of the particular case but might not identify a good design for driving in general. For this
reason, the code repository also includes an environment generator for each environment
classthat selects particular environments (with certain likelihoods) in which to run the agent.
For example, the vacuum environment generator initializes the dirt pattern and agent location
randomly. We are then interested in the agent's average performance over the environment
class. A rational agent for a given environment class maximizes this average performance.
Exercises 2.7 to 2.12 take you through the process of developing an environment class and
evaluating various agents therein.

AGENTPROGRAM

ARCHITECTURE

So far we have talked about agents by describing behavior —the action that is performed
after any given sequence of percepts. Now, we will have to bite the bullet and talk about
how the insides work. The job of Al isto design the agent program that implements the
agent function mapping percepts to actions. We assume this program will run on some sort
of computing device with physical sensors and actuators—we call this the ar chitecture:

agent = architecture +program .

Obviously, the program we choose has to be one that i s appropriate for the architecture. If the
program is going to recommend actions like Walk, the architecture had better have legs. The
architecture might be just an ordinary PC, or it might be a robotic car with several onboard
computers, cameras, and other sensors. In general, the architecture makes the percepts from
the sensors availableto the program, runsthe program, and feeds the program's action choices
to the actuators as they are generated. Most of this book is about designing agent programs,
although Chapters 24 and 25 deal directly with the sensors and actuators.

Agent programs

The agent programs that we will design in this book all have the same skeleton: they take the
current percept as input from the sensors and return an action to the actuators.5 Notice the
difference between the agent program, which takes the current percept asinput, and the agent
function, which takes the entire percept history. The agent program takes just the current

6 There are other choices for the agent program skeleton; for example, we could have the agent programs be
coroutinesthat run asynchronously with the environment. Each such coroutine has an input and output port and
consists of aloop that reads theinput port for percepts and writes actions to the output port.

Section 2.4. The Structure of Agents 45

function TABLE-DRIVEN-AGENT(percept) returnsan action
static: percepts, asequence, initially empty
table, atable of actions, indexed by percept sequences, initially fully specified

append percept to theend of percepts
action «— LOOKUP(percepts, table)
return action

Figure27 The TABLE-DRIVEN-AGENT program is invoked for each new percept and
returnsan action each time. It keepstrack of the percept sequenceusingits own privatedata
structure.

percept asinput because nothing moreisavailablefromtheenvironment; if the agent's actions
depend on the entire percept sequence, the agent will have to remember the percepts.

We will describe the agent programs viathe simple pseudocode language that is defined
in Appendix B. (The online code repository contains implementations in real programming
languages.) For example, Figure 2.7 shows arather trivial agent program that keeps track of
the percept sequence and then uses it to index into atable of actions to decide what to do.
Thetable represents explicitly the agent function that the agent program embodies. To build a
rational agent in thisway, we as designers must construct atable that contains the appropriate
action for every possible percept sequence.

It is instructive to consider why the table-driven approach to agent construction is
doomed to failure. Let 7 be the set of possible percepts and let T be the lifetime of the
agent (the total number of perceptsit will receive). The lookup table will contain Zle |P|t
entries. Consider the automated taxi: the visual input from a single camera comesin at the
rate of roughly 27 megabytes per second (30 frames per second, 640 X 480 pixels with 24
bits of color information). This gives alookup table with over 10250:900.000,000 entries for an
hour's driving. Even the lookup table for chess—a tiny, well-behaved fragment of the real
world—would have at least 10%? entries. The daunting size of these tables (the number of
atoms in the observable universeis less than 103%) means that (a) no physical agent in this
universe will have the space to store the table, (b) the designer would not have time to create
the table, (c) no agent could ever learn al the right table entries from its experience, and (d)
even if the environment is simple enough to yield afeasible table size, the designer still has
no guidance about how to fill in the table entries.

Despite al this, TABLE-DRIVEN-AGENT does do what we want: it implements the
desired agent function. The key challenge for Al is to find out how to write programs that,
to the extent possible, produce rational behavior from a small amount of code rather than
from alarge number of table entries. We have many examples showing that this can be done
successfully in other areas: for example, the huge tables of square roots used by engineers
and schoolchildren prior to the 1970s have now been replaced by a five-line program for
Newton's method running on electronic calculators. The question is, can AI do for general
intelligent behavior what Newton did for square roots? We believe the answer is yes.

Chapter 2. Intelligent Agents

SIMPLE REFLEX

AGENT

ﬁgHPITloN—ACﬂON

function REFLEX-VACUUM-AGENT([location, status]) returnsan action {

if status = Dirty thenreturn Suck
eseif location= Athenreturn Right
eseif location= B then return Left

Figure2.8 The agent programfor a simplereflex agent in the two-state vacuum environ-
ment. This program implements the agent function tabulated in Figure 2.3.

In the remainder of this section, we outline four basic kinds of agent program that
embody the principles underlying aimost all intelligent systems:

e Simple reflex agents;
e Model-based reflex agents;
e Goal-based agents; and
o Utility-based agents.
We then explain in general terms how to convert all theseinto learning agents.

Simplereflex agents

Thesimplest kind of agent isthe ssimpler eflex agent. These agents select actionson the basis
of the current percept, ignoring therest of the percept history. For example, the vacuum agent
whose agent function is tabulated in Figure 2.3 is a simple reflex agent, because its decision
is based only on the current location and on whether that contains dirt. An agent program for
thisagent is shownin Figure 2.8.

Noticethat the vacuum agent programis very small indeed compared to the correspond-
ing table. The most obvious reduction comes from ignoring the percept history, which cuts
down the number of possibilitiesfrom 47" to just 4. A further, small reduction comes from
thefact that, when the current squareis dirty, the action does not depend on the location.

Imagine yourself as the driver of the automated taxi. If the car in front brakes, and its
brake lights come on, then you should notice this and initiate braking. In other words, some
processing is done on the visual input to establish the condition we call *The car in front is
braking." Then, this triggers some established connection in the agent program to the action
“initiatebraking.” We call such a connection a condition-actionrule written as

if car-in-front-is-braking then initiate-braking.
Humans al so have many such connections, some of which are learned responses (asfor driv-
ing) and some of which areinnate reflexes (such as blinking when something approaches the

eye). In the course of the book, we will see severa different waysin which such connections

can belearned and implemented.
The program in Figure 2.8 is specific to one particular vacuum environment. A more
general and flexible approach is first to build a general-purpose interpreter for condition—

7 Also caled stuation-action rules, productions,or if-then rules.

Section 2.4.

The Structure of Agents 47

Figure29 Schematicdiagramof asimplereflex agent.

function SIMPLE-REFLEX-AGENT(percept) r etur nsan action
static: rules, aset of condition—action rules

state «— INTERPRET-INPUT{ percept)
rule «— RULE-MATCH(state, rules)
action «+— RULE-ACTION[rule]
return action

Figure2.10 A simple reflex agent. It acts according to a rule whose condition matches
the current state, as defined by the percept.

action rules and then to create rule sets for specific task environments. Figure 2.9 gives the
structure of this general program in schematic form, showing how the condition-action rules
alow the agent to make the connection from percept to action. (Do not worry if this seems
trivial; it gets moreinteresting shortly.) We use rectangles to denote the current internal state
of the agent's decision process and ovals to represent the background information used in
the process. The agent program, which is aso very simple, is shown in Figure 2.10. The
INTERPRET-INPUT function generates an abstracted description of the current state from the
percept, and the RULE-MATCH function returns the first rule in the set of rules that matches
the given state description. Note that the description in terms of "rules" and "matching™ is
purely conceptual; actual implementations can be as simple as a collection of logic gates
implementing a Boolean circuit.

Simple reflex agents have the admirable property of being smple, but they turn out to
be of very limited intelligence. The agent in Figure 2.10 will work only if the correct deci-
sion can be made on the basis of only the current percept—thatis, only jf the environment is
fully observable. Even alittle bit of unobservability can cause serious trouble. For example,

Chapter 2. Intelligent Agents

RANDOMIZATION

INTERNAL STATE

MODEL-BASED
AGENT

the braking rule given earlier assumes that the condition car-in-front-is-braking can be deter-
mined from the current percept—the current video imege—if the car in front has a centrally
mounted brake light. Unfortunately, older models have different configurations of taillights,
brake lights, and turn-signal lights, and it is not always possible to tell from a single image
whether thecarisbraking. A simplereflex agent driving behind such acar would either brake
continuously and unnecessarily, or, worse, never brake at all.

We can see asimilar problem arising in the vacuum world. Suppose that a simple reflex
vacuum agent is deprived of its location sensor, and has only a dirt sensor. Such an agent
has just two possible percepts. [DirtyJand [Clean] It can Suck in responseto [Dirty]what
should it do in response to [Clean] ?Moving Left fails (for ever) if it happens to start in
square A, and moving Right fails (for ever) if it happens to start in square B. Infiniteloops
are often unavoidablefor simple reflex agents operating in partially observable environments.

Escape from infinite loops is possible if the agent can randomizeits actions. For ex-
ample, if the vacuum agent perceives [Clean]it might flip acoin to choose between Left and
Right. It iseasy to show that the agent will reach the other squarein an averageof two steps.
Then, if that squareisdirty, it will clean it and the cleaning task will be complete. Hence, a
randomized simple reflex agent might outperform a deterministic simple reflex agent.

We mentioned in Section 2.3 that randomized behavior of theright kind can be rational
in some multiagent environments. In single-agent environments, randomization is usually not
rational. It isa useful trick that helps a simple reflex agent in some situations, but in most
cases we can do much better with more sophisticated deterministic agents.

M odel-based reflex agents

The most effective way to handle partial observability is for the agent to keep track of the
part of the world it can't see now. That is, the agent should maintain some sort of internal
statethat depends on the percept history and thereby reflectsat least some of the unobserved
aspects of thecurrent state. For the braking problem, theinternal stateis not too extensive—
just the previous frame from the camera, allowing the agent to detect when two red lights at
the edge of the vehicle go on or off simultaneously. For other driving tasks such as changing
lanes, the agent needs to keep track of where the other cars areif it can't seethem al at once.

Updating this internal state information as time goes by requires two kinds of knowl-
edge to be encoded in the agent program. First, we need some information about how the
world evolvesindependently of the agent—for example, that an overtalung car generally will
be closer behind than it was a moment ago. Second, we need some information about how
the agent's own actions affect the world—for example, that when the agent turns the steering
wheel clockwise, the car turns to the right or that after driving for five minutes northbound
on the freeway oneis usually about five miles north of where one wasfive minutes ago. This
knowledge about "*how the world works™ —whether implemented in simple Boolean circuits
or in complete scientific theories—is called amodd of the world. An agent that uses such a
model is called amode-based agent.

Figure 2.11 gives the structure of the reflex agent with internal state, showing how the
current percept is combined with the old internal state to generate the updated description

Section 2.4.

The Structure of Agents 49

GOAL

Figure2.11 Amodd-basadreflex agent.

function REFLEX- AGENT-WITH-STATE(percept) returnsan action
static: state, adescription df the current world state
rules, aset o condition-actionrules
action, the mogt recent action, initially none

state «— UPDATE-STATE(state, action, percept)
rule — RULE-MATCH(state, rules)

action <— RULE-ACTION[rule]

return action

Figure2.12 A modd-based reflex agent. It keepstrack o the current state of the world
using an internal model. It then chooses an action in the same way as the reflex agent.

of the current state. The agent program is shown in Figure 2.12. The interesting part is the
function UPDATE-STATE, whichisresponsiblefor creating the new internal state description.
As well asinterpreting the new percept in the light of existing knowledge about the state, it
uses information about how the world evolvesto keep track of the unseen parts of the world,
and also must know about what the agent's actions do to the state of the world. Detailed
examples appear in Chapters 10 and 17.

Goal-based agents

Knowing about the current state of the environment is not always enough to decide what
to do. For example, at a road junction, the taxi can turn left, turn right, or go straight on.
The correct decision depends on where the taxi is trying to get to. In other words, as well
as a current state description, the agent needs some sort of goal information that describes
situations that are desrable—for example, being at the passenger's destination. The agent

50

Chapter 2. Intelligent Agents

Figure 213 A model-based, goal-based agent. It keepstrack of the world state as well as
aset of goasit istrying to achieve, and chooses an action that will (eventually) lead to the

achievement of its goals.

program can combine this with information about the results of possible actions (the same
information as was used to update internal statein the reflex agent) in order to choose actions
that achieve the goal. Figure 2.13 shows the goal-based agent's structure.

Sometimes goal -based action selection is straightforward, when goal satisfaction results
immediately from a single action. Sometimes it will be more tricky, when the agent has
to consider long sequences of twists and turns to find a way to achieve the goal. Search
(Chapters 3 to 6) and planning (Chapters 11 and 12) are the subfields of Al devoted to
finding action sequences that achieve the agent's goals.

Noticethat decision making of thiskind isfundamentally different from the condition—
action rules described earlier, in that it involvesconsideration of the future—both **What will
happen if | do such-and-such? and ""Will that make me happy?” In the reflex agent designs,
this information is not explicitly represented, because the built-in rules map directly from
percepts to actions. The reflex agent brakes when it sees brake lights. A goal-based agent, in
principle, could reason that if the car in front hasits brakelightson, it will dow down. Given
the way the world usually evolves, the only action that will achieve the goal of not hitting
other carsis to brake.

Although the goal-based agent appears less efficient, it is more flexible because the
knowledge that supportsits decisionsis represented explicitly and can be modified. If it starts
torain, the agent can updateits knowledge of how effectively its brakes will operate; this will
automatically cause all of the relevant behaviorsto be atered to suit the new conditions. For
the reflex agent, on the other hand, we would have to rewrite many condition—actionrules.
The goal-based agent's behavior can easily be changed to go to adifferent location. Thereflex
agent's rulesfor when to turn and when to go straight will work only for asingle destination;
they must all bereplaced to go somewhere new.

Section 2.4.

The Structure of Agents 51

UTILITY

UTILITY FUNCTION

Utility-based agents

Goals alone are not really enough to generate high-quality behavior in most environments.
For example, there are many action sequencesthat will get the taxi to its destination (thereby
achieving the goal) but some are quicker, safer, more reliable, or cheaper than others. Goals
just provide a crude binary distinction between "happy™ and "unhappy" states, whereas a
more general performance measure should alow a comparison of different world states ac-
cording to exactly how happy they would make the agent if they could be achieved. Because
"happy" does not sound very scientific, the customary terminology is to say that if one world
state is preferred to another, then it has higher utility for the agent.’

A utility function maps a state (or a sequence of states) onto a real number, which
describes the associated degree of happiness. A complete specification of the utility function
alows rational decisionsin two kinds of cases where goals are inadequate. First, when there
are conflicting goals, only some of which can be achieved (for example, speed and safety),
the utility function specifies the appropriate tradeoff. Second, when there are several goals
that the agent can aim for, none of which can be achieved with certainty, utility provides a
way in which thelikelihood of success can be weighed up against theimportance of the goals.

In Chapter 16, we will show that any rational agent must behave as if it possesses a
utility function whose expected valueit tries to maximize. An agent that possesses an explicit
utility function therefore can make rational decisions, and it can do so via a general-purpose
algorithm that does not depend on the specific utility function being maximized. In thisway,
the "' globa™ definition of rationality — designatingas rational those agent functions that have
the highest performance—is turned into a "local’™ constraint on rational-agent designs that
can be expressed in asimple program.

The utility-based agent structure appearsin Figure 2.14. Utility-based agent programs
appear in Part V, where we design decision making agents that must handle the uncertainty
inherent in partially observableenvironments.

L earning agents

We have described agent programs with various methods for selecting actions. We have
not, so far, explained how the agent programs come into being. In his famous early paper,
Turing (1950) considersthe idea of actually programming his intelligent machines by hand.
He estimates how much work this might take and concludes ** Some more expeditious method
seems desirable.” The method he proposes is to build learning machines and then to teach
them. In many areas of Al, thisis now the preferred method for creating state-of-the-art
systems. Learning has another advantage, as we noted earlier: it allows the agenl: to operate
ininitially unknown environments and to become more competent than itsinitial knowledge
alone might alow. In this section, we briefly introduce the main ideas of learning agents.
In amost every chapter of the book, we will comment on opportunities and methods for
learning in particular kinds of agents. Part VI goes into much more depth on the various
learning algorithms themselves.

5 The word " utility" here refers to "'the quality of being useful," not to the electric company or water works.

52

Chapter 2. Intelligent Agents

LEARNINGELEMENT
PERFORMANCE
ELEMENT

CRITIC

PROBLEM
GENERATOR

Figure2.14 A modd-based, utility-based agent. It usesamodd of the world, dong with
autility function that measuresits preferencesamong statesof the world. Thenit choosesthe
action that leads to the best expected utility, where expected utility is computed by averaging
over al possibleoutcome states, weighted by the probability o the outcome.

A learning agent can be divided into four conceptual components, as shown in Fig-
ure 2.15. The most important distinction is between the learning element, which is re-
sponsiblefor making improvements, and the performance element, which is responsiblefor
selecting external actions. The performance element is what we have previously considered
to be the entire agent: it takesin percepts and decides on actions. The learning element uses
feedback from the critic on how the agent is doing and determines how the performance
element should be modified to do better in thefuture.

Thedesign of thelearning element depends very much on the design of the performance
element. When trying to design an agent that learns a certain capability, the first question is
not ""How am | going to get it to learn this?" but ""What kind of performanceelement will my
agent need to do this onceit has learned how?” Given an agent design, learning mechanisms
can be constructed to improve every part of the agent.

The critic tells the learning element how well the agent is doing with respect to a fixed
performance standard. The critic is necessary because the percepts themselves provide no
indication of the agent's success. For example, a chess program could receive a percept
indicating that it has checkmated its opponent, but it needs a performance standard to know
that thisisagood thing; the percept itself does not say so. It isimportant that the performance
standard be fixed. Conceptually, one should think of it as being outside the agent altogether,
because the agent must not modify it tofit its own behavior.

The last component of the learning agent is the problem generator. It isresponsible
for suggesting actions that will lead to new and informative experiences. The point is that
if the performance element had its way, it would keep doing the actions that are best, given
what it knows. But if the agent is willing to explore alittle, and do some perhaps suboptimal
actions in the short run, it might discover much better actions for the long run. The problem

Section 2.4.

The Structure of Agents 53

Performancestandard l

Figure2.15 A general model of learning agents. l

generator's job is to suggest these exploratory actions. Thisis what scientists do when they
carry out experiments. Galileo did not think that dropping rocks from the top of atower in
Pisawas valuablein itself. He was not trying to break the rocks, nor to modify the brains of
unfortunate passers-by. His aim was to modify his own brain, by identifying a better theory
of the motion of objects.

To make the overall design more concrete, | et us return to the automated taxi example.
The performance element consists of whatever collection of knowledge and procedures the
taxi has for selecting its driving actions. The taxi goes out on the road and drives, using
this performance element. The critic observes the world and passes information along to the
learning element. For example, after the taxi makes a quick left turn across three lanes of
traffic, the critic observes the shocking language used by other drivers. From this experience,
the learning element is able to formulate a rule saying this was a bad action, and the perfor-
mance element is modified by installing the new rule. The problem generator might identify
certain areas of behavior in need of improvement and suggest experiments, such as trying out
the brakes on different road surfaces under different conditions.

The learning element can make changesto any of the*'knowledge™ components shown
in the agent diagrams (Figures 2.9, 2.11, 2.13, and 2.14). The simplest casesinvolvelearning
directly from the percept sequence. Observation of pairs of successive states of the environ-
ment can allow the agent.to learn "How the world evolves," and observation of the results of
its actions can allow the agent to learn ""What my actions do." For example, if the jaxi exerts
acertain braking pressure when driving on a wet road, then it will soon find out how much
deceleration is actualy achieved. Clearly, these two learning tasks are more difficult if the
environment isonly partially observable.

The forms of learning in the preceding paragraph do not need to access the external
performance standard—in a sense, the standard is the universal one of making predictions

Chapter 2. Intelligent Agents

that agree with experiment. The situation is slightly more complex for a utility-based agent
that wishes to learn utility information. For example, suppose the taxi-driving agent receives
no tips from passengers who have been thoroughly shaken up during the trip. The externa
performance standard must inform the agent that the loss of tipsis a negative contribution to
its overall performance; then the agent might be able to learn that violent maneuvers do not
contribute to its own utility. In a sense, the performance standard distinguishes part of the
incoming percept asareward (or penalty) that provides direct feedback on the quality of the
agent's behavior. Hard-wired performance standards such as pain and hunger in animals can
be understood in this way. Thisissue is discussed further in Chapter 21.

In summary, agents have a variety of components, and those components can be repre-
sented in many ways within the agent program, so there appears to be great variety among
learning methods. Thereis, however, a single unifying theme. Learning in intelligent agents
can be summarized as a process of modification of each component of the agent to bring the
components into closer agreement with the available feedback information, thereby improv-
ing the overall performanceof the agent.

This chapter has been something of a whirlwind tour of Al, which we have conceived of as
the science of agent design. The major pointsto recall are asfollows:

e An agent is something that perceives and acts in an environment. The agent function
for an agent specifies the action taken by the agent in response to any percept sequence.

e The performancemeasur e evaluates the behavior of the agent in an environment. A
rational agent acts so as to maximize the expected value of the performance measure,
given the percept sequenceit has seen so far.

e A task environment specification includes the performance measure, the externa en-
vironment, the actuators, and the sensors. In designing an agent, the first step must
always be to specify the task environment asfully as possible.

e Task environments vary along several significant dimensions. They can befully or par-
tially observable, deterministic or stochastic, episodic or sequential, static or dynamic,
discrete or continuous, and single-agent or multiagent.

e The agent program implements the agent function. There exists a variety of basic
agent-program designs, reflecting the kind of information made explicit and used in
the decision process. The designs vary in efficiency, compactness, and flexibility. The
appropriate design of the agent program depends on the nature of the environment.

e Simplereflex agentsrespond directly to percepts, whereas model-based r eflex agents
maintain internal state to track aspects of the world that are not evident in the current
percept. Goal-based agents act to achieve their goals, and utility-based agentstry to
maximize their own expected " happiness.”

e All agents can improve their performance through lear ning.

Section 2.5. Summary 55

BIBLIOGRAPHICAL AND HISTORICAL NOTES

The central role of action in intelligence—the notion of practical reasoning—gaes back at
least as far as Aristotle's Nicomachean Ethics. Practical reasoning was aso the subject of
McCarthy's (1958) influential paper "' Programswith Common Sense.” Thefieldsof robotics
and control theory are, by their very nature, concerned principally with the construction of

CONTROLLER physical agents. Theconcept of acontroller in control theory isidentical to that of an agentin
Al. Perhaps surprisingly, AT has concentrated for most of its history on isolated components
of agents-question-answering systems, theorem-provers, vVision systems, and so on—rather
than on whole agents. The discussion of agentsin the text by Genesereth and Nilsson (1987)
was an influential exception. The whole-agent view is now widely accepted in the field and
isacentral themein recent texts (Poole et al., 1998; Nilsson, 1998).

Chapter 1 traced theroots of the concept of rationality in philosophy and economics. In
Al, the concept was of peripheral interest until the mid-1980s, when it began to suffuse many
discussions about the proper technical foundations of the field. A paper by Jon Doyle (1983)
predicted that rational agent design would come to be seen as the core mission of' Al, while
other popular topics would spin off to form new disciplines.

Careful attention to the properties of the environment and their consequences for ratio-
nal agent design is most apparent in the control theory tradition—for example, classical con-
trol systems (Dorf and Bishop, 1999) handle fully observable, deterministic environments;
stochastic optimal control (Kumar and Varaiya, 1986) handles partially observable, stochas-
tic environments; and hybrid control (Henzinger and Sastry, 1998) deals with environments
containing both discrete and continuous elements. The distinction between fully and partially
observable environmentsis also central in the dynamic programming literature devel oped
inthefield of operations research (Puterman, 1994), which we will discuss in Chapter 17.

Reflex agents were the primary model for psychological behaviorists such as Skinner
(1953), who attempted to reduce the psychology of organismsstrictly to input/output Or stim-
ulus/response mappings. The advance from behaviorism to functionalism in psychology,
which was at least partly driven by the application of the computer metaphor to agents (Put-
nam, 1960; Lewis, 1966), introduced the internal state of the agent into the picture. Most
work in AI views the idea of pure reflex agents with state as too simple to provide much
leverage, but work by Rosenschein (1985) and Brooks (1986) questioned this assumption
(see Chapter 25). In recent years, a great deal of work has gone into finding efficient al-
gorithms for keeping track of complex environments (Hamscher et al., 1992). The Remote
Agent program that controlled the Deep Space One spacecraft (described on page 27) is a
particularly impressive example (Muscettola et al., 1998; Jonsson et al., 2000).

Goal-based agents are presupposed in everything from Aristotle's view of practical rea-
soning to McCarthy’s early papers on logical Al. Shakey the Robot (Fikes and Nilsson,
1971; Nilsson, 1984) was the first robotic embodiment of a logical, goal-based agent. A
full logical analysis of goal-based agents appeared in Genesereth and Nilsson (1987), and a

goal-based programming methodol ogy called agent-oriented programming was devel oped by
Shoham (1993).

56

Chapter 2. Intelligent Agents

The goal-based view also dominates the cognitive psychology tradition in the area of
problem solving, beginning with the enormously influential Human ProblemSolving (Newel 1
and Simon, 1972) and running through al of Newell’s later work (Newell, 1990). Goals,
further analyzed as desires (general) and intentions (currently pursued), are centra to the
theory of agents developed by Bratman (1987). This theory has been influential both in
natural language understanding and multiagent systems.

Horvitz et al. (1988) specifically suggest the use of rationality conceived as the maxi-
mization of expected utility as abasisfor Al. The text by Pearl (1988) was thefirstin AI to
cover probability and utility theory in depth; its exposition of practical methodsfor reasoning
and decision making under uncertainty was probably the single biggest factor in the rapid
shift towards utility-based agentsin the 1990s (see Part V).

Thegenera designfor learning agents portrayed in Figure 2.15 isclassic in the machine
learning literature (Buchanan et al., 1978; Mitchell, 1997). Examples of the design, as em-
bodiedin programs, go back at least asfar as Arthur Samuel's (1959, 1967) learning program
for playing checkers. Learning agents are discussed in depth in Part V1.

Interest in agents and in agent design has risen rapidly in recent years, partly because
of the growth of the Internet and the perceived need for automated and mobile softbots(Et-
zioni and Weld, 1994). Relevant papers are collected in Readings in Agents (Huhns and
Singh, 1998) and Foundationsof Rational Agency (Wooldridgeand Rao, 1999). Multiagent
Systems(Weiss, 1999) providesa solid foundation for many aspects of agent design. Confer-
ences devoted to agentsinclude the International Conference on Autonomous Agents, the In-
ternational Workshopon Agent Theories, Architectures, and L anguages, and the | nternational
Conference on Multiagent Systems. Finally, Dung Beetle Ecology (Hanski and Cambefort,
1991) provides a wealth of interesting information on the behavior of dung beetles.

2.1 Definein your own words the following terms: agent, agent function, agent program,
rationality, autonomy, reflex agent, model-based agent, goal -based agent, utility-based agent,
learning agent.

2.2 Both the performance measure and the utility function measure how well an agent is
doing. Explain the difference between the two.

2.3 Thisexercise explores the differences between agent functions and agent programs.

a. Can there be more than one agent program that implements a given agent function?
Give an example, or show why oneis not possible.

b. Arethere agent functions that cannot be implemented by any agent program?

c. Given a fixed machine architecture, does each agent program implement exactly one
agent function?

d. Given an architecture with n bits of storage, how many different possible agent pro-
grams are there?

Section 2.5. Summary 57

24 Let usexaminetherationality of variousvacuum-cleaner agent functions.
a. Show that the simple vacuum-cleaner agent function described in Figure 2.3 isindeed
rational under the assumptions listed on page 36.

b. Describe a rationa agent function for the modified performance measure that deducts

one point for each movement. Does the corresponding agent program reguire internal
state?

c. Discuss possible agent designs for the casesin which clean squares can become dirty
and the geography of the environment is unknown. Does it make sensefor the agent to
learn from its experience in these cases? If so, what should it learn?

2.5 For each of the following agents, develop a PEAS description of the task environment:
a. Robot soccer player;
b. Internet book-shopping agent;
c. Autonomous Marsrover;
d. Mathematician's theorem-proving assistant.

2.6 For each of the agent typeslisted in Exercise 2.5, characterize the environment accord-
ing to the properties givenin Section 2.3, and select a suitable agent design.

The following exercises al concern the implementation of environments and agents for the
vacuum-cleaner world.

2.7 Implement a performance-measuring environment simulator for the vacuum-cleaner
world depicted in Figure 2.2 and specified on page 36. Y our implementation should be modu-
lar, so that the sensors, actuators, and environment characteristics (size, shape, dirt placement,
etc.) can bechanged easily. (Note: for some choices of programming language and operating
system there are already implementations in the online code repository.)

2.8 Implement a simple reflex agent for the vacuum environment in Exercise 2.7. Run
the environment simulator with thisagent for all possibleinitia dirt configurationsand agent

locations. Record the agent's performance score for each configurationand itsoverall average
score.

29 Consider amodified version of the vacuum environment in Exercise 2.7, in which the
agent is penalized one point for each movement.

a. Can asimplereflex agent be perfectly rational for this environment? Explain.

b. What about areflex agent with state? Design such an agent.

c. How do your answers to a and b change if the agent's percepts give it the clean/dirty
status of every square in the environment?

210 Consider amodified version of the vacuum environment in Exercise 2.7, in which the
geography of the environment —itsextent, boundaries, and obstacles—is unknown, asisthe
initial dirt configuration. (The agent can go Up and Down as well as Left and Right.)

a. Can asimple reflex agent be perfectly rational for thisenvironment? Explain.

Chapter 2. Intelligent Agents

b. Can asimple reflex agent with a randomized agent function outperform a simple reflex
agent? Design such an agent and measure its performance on several environments.

c. Can you design an environment in which your randomized agent will perform very
poorly? Show your results.

d. Can areflex agent with state outperform a simple reflex agent? Design such an agent
and measure its performance on several environments. Can you design a rational agent
of thistype?

2.11 Repeat Exercise 2.10 for the case in which the location sensor is replaced with a
"bump" sensor that detects the agent's attempts to move into an obstacle or to cross the
boundaries of the environment. Suppose the bump sensor stops working; how should the

agent behave?

2.12 Thevacuumenvironmentsin the preceding exercises have all been deterministic. Dis-
cuss possible agent programsfor each of the following stochastic versions:

a Murphy's law: twenty-fivepercent of the time, the Suck actionfails to clean thefloor if
itisdirty and depositsdirt onto thefloor if thefloor isclean. How isyour agent program
affected if the dirt sensor givesthe wrong answer 10% of the time?

b. Small children: At each time step, each clean square has a 10% chance of becoming
dirty. Can you come up with arational agent design for this case?

SOLVING PROBLEMSBY
SEARCHING

PROBLEM-SOLVING
AGENT

In which we see how an agent can find a sequence of actions that achieves its
goals, when no single actionwl| do.

The simplest agents discussed in Chapter 2 were the reflex agents, which base their actionson
adirect mapping from statesto actions. Such agents cannot operate well in environmentsfor
which this mapping would be too large to store and would take too long to learn. Goal-based
agents, on the other hand, can succeed by considering future actions and the desirability of
their outcomes.

This chapter describes one kind of goal-based agent called a problem-solving agent.
Problem-solving agents decide what to do by finding sequences of actions that lead to desir-
able states. We start by defining precisely the elements that constitute a *'problem™ and its
"solution,” and give several examples to illustrate these definitions. We then describe sev-
eral general-purpose search algorithms that can be used to solve these problems and compare
the advantages of each algorithm. The algorithms are uninformed, in the sense that they
are given no information about the problem other than its definition. Chapter 4 deals with
informed search algorithms, ones that have someidea of where to look for solutions.

This chapter uses concepts from the analysis of algorithms. Readers unfamiliar with
the concepts of asymptotic complexity (that is, O() notation) and NP-completeness should
consult Appendix A.

Intelligent agents are supposed to maximize their performance measure. As we mentioned
in Chapter 2, achieving thisis sometimes smplifiedif the agent can adopt agoal and aim at
satisfying it. Let usfirst look at why and how an agent might do this.

Imagine an agent in the city of Arad, Romania, enjoying atouring holiday. The agent's
performance measure contains many factors: it wants to improve its suntan, improve its Ro-
manian, take in the sights, enjoy the nightlife (such asit is), avoid hangovers, and so on. The
decision problem is a complex one involving many tradeoffs and careful reading of guide-
books. Now, suppose the agent has a nonrefundable ticket to fly out of Bucharest the follow-

Chapter 3. Solving Problems by Searching

GOAL FORMULATION

PROBLEM
FORMULATION

SEARCH
SOLUTION
EXECUTION

ing day. In that case, it makes sense for the agent to adopt the goal of getting to Bucharest.
Courses of action that don't reach Bucharest on time can be rejected without further consid-
eration and the agent's decision problemis greatly simplified. Goals help organize behavior
by limiting the objectivesthat the agent is trying to achieve. Goal formulation, based on the
current situation and the agent's performance measure, is the first step in problem solving.

We will consider a goal to be a set of world states—exactly those states in which the
goal is satisfied. The agent's task is to find out which sequence of actions will get it to a goal
state. Beforeit can do this, it needs to decide what sorts of actions and states to consider. If it
wereto try to consider actions at the level of "*movetheleft foot forward aninch™ or "'turn the
steering wheel one degreeleft,” the agent would probably never find itsway out of the parking
lot, let alone to Bucharest, because at that level of detail thereistoo much uncertainty in the
world and there would be too many stepsin a solution. Problem formulation is the process
of deciding what actions and states to consider, given agoal. We will discuss this processin
more detail later. For now, let us assume that the agent will consider actions at the level of
driving from one major town to another. The states it will consider therefore correspond to
beingin a particular town.'

Our agent has now adopted the goal of driving to Bucharest, and is considering where
to gofrom Arad. Therearethreeroads out of Arad, one toward Sibiu, one to Timisoara, and
oneto Zerind. None of these achieves the goal, so unless the agent is very familiar with the
geography of Romania, it will not know which road to follow.? In other words, the agent will
not know which of its possible actions is best, because it does not know enough about the
state that results from taking each action. If the agent has no additional knowledge, thenitis
stuck. The best it can do is choose one of the actions at random.

But suppose the agent has a map of Romania, either on paper or in its memory. The
point of a map is to provide the agent with information about the states it might get itself
into, and the actions it can take. The agent can use this information to consider subsequent
stages of a hypothetical journey via each of the three towns, trying to find a journey that
eventually gets to Bucharest. Onceit has found a path on the map from Arad to Bucharest,
it can achieve its goal by carrying out the driving actions that correspond to the legs of the
journey. In general, an agent with several immediate options of unknown value can decide
what to do by first examining different possible sequences of actions that lead to states of

known value, and then choosing the best sequence.
Thisprocess of looking for such asequenceiscalled search. A search algorithmtakesa

problem asinput and returns asolution in theform of an action sequence. Once a solution is
found, the actionsit recommends can be carried out. Thisiscalled the execution phase. Thus,
we have a simple "formulate, search, execute™ design for the agent, as shown in Figure 3.1.
After formulating a goal and a problem to solve, the agent calls a search procedure to solve
it. It then uses the solution to guide its actions, doing whatever the solution recommends as

1 Noticethat each of these " states™ actually corresponds to alarge set of world states, because areal world state
specifies every aspect of reality. Itisimportant to keep in mind the distinction between states in problem solving
and world states.

2 Weare assuming that most readers arein the same position and can easily imagine themselves to be as clueless
as our agent. We apologize to Romanian readers who are unable to take advantage of this pedagogical device.

Section 3.1.

Problem-Solving Agents 61

OPEN-LOOP

function SIMPLE-PROBLEM-SOLVING-AGENT (percept) r etur nsan action
inputs: percept, apercept
static: seq, an action sequence, initially empty
state, some description of the current world state
goal, agodl, initialy null
problem, a problem formulation

state «— UPDATE-STATE(state, percept)

if seqisempty thendo
goal «+ FORMULATE-GOAL(state)
problem «— FORMULATE-PROBLEM(state, goal)
seq < SEARCH(problem)

action « FIRST(seq)

seq +— REST(seq)

return action

Figure3.1 A simple problem-solving agent. It first formulates a goal and a problem,
searchesfor asequenceof actionsthat would solvethe problem, and then executesthe actions
one a atime. When thisis complete, it formulates another goal and starts over. Note that
when it is executing the sequenceit ignores its percepts: it assumes that the solution it has
found will always work.

the next thing to do—typically, thefirst action of the sequence—and then removing that step
from the sequence. Once the solution has been executed, the agent will formulate a new goal.

We first describe the process of problem formulation, and then devote the bulk of the
chapter to various algorithms for the SEARCH function. We will not discuss the workings of
the UPDATE-STATE and FORMULATE-GOAL functions further in this chapter.

Before plunging into the details, let us pause briefly to see where problem-solving
agents fit into the discussion of agents and environments in Chapter 2. The agent design
in Figure 3.1 assumes that the environment is static, because formulating and solving the
problem isdone without paying attention to any changes that might be occurring in the envi-
ronment. The agent design also assumes that the initial stateis known; knowing it is easiest
if the environment is observable. The idea of enumerating " alternative courses of action™
assumes that the environment can be viewed as discrete. Finally, and most importantly, the
agent design assumes that the environment isdeterministic. Solutions to problemsare single
sequences of actions, so they cannot handle any unexpected events; moreover, solutions are
executed without paying attention to the percepts! An agent that carries out its plans with its
eyes closed, so to speak., must be quite certain of what is going on. (Control theorists call
this an open-loop system, because ignoring the percepts breaks the loop between agent and
environment.) All these assumptions mean that we are dealing with the easiest kinds of en-
vironments, which isonereason this chapter comes early on in the book. Section 3.6 takesa
brief look at what happens when we relax the assumptions of observability and determinism.
Chapters 12 and 17 go into much greater depth.

62

Chapter 3. Solving Problems by Searching

PROBLEM

INITIAL STATE

SUCCESSOR
FUNCTION

STATE SPACE

PATH

GOAL TEST

PATHCOST

STEPCOST

OPTIMAL SOLUTION

Well-defined problemsand solutions

A problem can be defined formally by four components:

¢ Theinitial state that the agent startsin. For example, the initial state for our agent in
Romania might be described as In(Arad).

e A description of the possible actions available to the agent. The most common for-
mulation® uses a successor function. Given a particular state X, SUCCESSOR-FN(z)
returnsaset of (action, successor) ordered pairs, where each action is one of the legal
actionsin state x and each successor is a state that can be reached from x by applying
the action. For example, from the state In(Arad), the successor function for the Roma-
nia problem would return

{(Go(Sibiu), In(Sibin)), (Go(Timisoara),In(Tzmisoara)), {Go(Zerind), In{ Zerind))}

Together, theinitial state and successor function implicitly definethe state space of the
problem—the set of all states reachable from the initial state. The state space forms a
graph in which the nodes are states and the arcs between nodes are actions. (The map
of Romania shown in Figure 3.2 can be interpreted as a state space graph if we view
each road as standing for two driving actions, onein each direction.) A path in the state
space is a sequence of states connected by a sequence of actions.

e Thegoal test, which determines whether a given state isagoal state. Sometimes there
is an explicit set of possible goal states, and the test smply checks whether the given
stateisone of them. The agent's goal in Romaniaisthesingleton set { In(Bucharest)}.
Sometimes the goal i s specified by an abstract property rather than an explicitly enumer-
ated set of states. For example, in chess, the goal isto reach a statecalled "' checkmate,”
where the opponent's king is under attack and can't escape.

e A path cost function that assigns a numeric cost to each path. The problem-solving
agent chooses a cost function that reflectsits own performance measure. For the agent
trying to get to Bucharest, timeis of the essence, so the cost of a path might beitslength
in kilometers. In this chapter, we assume that the cost of a path can be described asthe
sum of the costs of theindividual actions along the path. The step cost of taking action
a to go from state x to statey isdenoted by ¢(z, a,y). The step costs for Romania are
shownin Figure 3.2 asroute distances. We will assume that step costsare nonnegative.*

The preceding elements define a problem and can be gathered together into a single data
structure that is given as input to a problem-solving algorithm. A solution to a problem is
a path from the initial state to a goa state. Solution quality is measured by the path cost
function, and an optimal solution has the lowest path cost among all solutions.

Formulating problems

In the preceding section we proposed aformulation of the problem of getting to Bucharestin
terms of theinitial state, successor function, goal test, and path cost. This formulation seems

3 An dternative formulation uses a set of oper ator sthat can be applied to a state to generate successors.
4+ Theimplications of negativecosts are explored in Exercise 3.17.

Section 3.1.

Problem-Solving Agents 63

ABSTRACTION

Figure3.2 A dmplified road mep of part of Romania

reasonable, yet it omits a great many aspects of the real world. Compare the simple state
description we have chosen, In(Arad), to an actua cross-country trip, where the state of the
world includes so many things: the traveling companions, whet is on the radio, the scenery
out of the window, whether there are any law enforcement officersnearby, how far it isto the
next rest stop, the condition of the road, the weather, and so on. All these considerations are
left out of our state descriptions because they areirrelevant to the problem of finding a route
to Bucharest. The processd removing detail from arepresentation is called abstraction.

In addition to abstracting the state description, we must abstract the actions themselves.
A driving action has many effects. Besides changing the location of the vehicle and its occu-
pants, it takes up time, consumesfuel, generates pollution, and changesthe agent (asthey say,
travel is broadening). In our formulation, we take into account only the change in location.
Also, there are many actions that we will omit altogether: turning on the radio, looking out of
the window, dowing down for law enforcement officers, and so on. And of course, we don't
specify actionsat thelevel of “turn steering whed to the left by three degrees™

Can we be more preciseabout defining the appropriatelevel of abstraction? Think of the
abstract states and actions we have chosen as corresponding to large sets of detailed world
states and detailed action sequences. Now consider a solution to the abstract problem: for
example, the path from Arad to Sibiu to Rimnicu Vilceato Pitesti to Bucharest. This abstract
solution correspondsto alarge number of more detailed paths. For example, we could drive
with the radio on between Sibiu and Rimnicu Vilcea, and then switch it off for the rest of
thetrip. The abstractionisvalid if we can expand any abstract solution into a solution in the
more detailed world; a sufficient condition is that for every detailed state that is"in Arad,"”

64

Chapter 3. Solving Problems by Searching

there is adetailed path to some state that is*'in Sibiu,” and so on. The abstraction is useful
if carrying out each of the actions in the solution is easier than the original problem; in this
case they are easy enough that they can be carried out without further search or planning by
an average driving agent. The choice of a good abstraction thus involvesremoving as much
detail as possible while retaining validity and ensuring that the abstract actions are easy to
carry out. Wereit not for the ability to construct useful abstractions, intelligent agents would
be completely swamped by the real world.

TOY PROBLEM

REAL-WORLD
PROBLEM

8-PUZILE

The problem-solving approach has been applied to a vast array of task environments. We
list some of the best known here, distinguishing between toy and real-world problems. A toy
problemisintended toillustrate or exercise various problem-solving methods. It can begiven
aconcise, exact description. This means that it can be used easily by different researchers
to compare the performance of algorithms. A real-world problem is one whose solutions
people actually care about. They tend not to have a single agreed-upon description, but we
will attempt to give the general flavor of their formulations.

Toy problems

The first example we will examineis the vacuum world firstintroduced in Chapter 2. (See
Figure 2.2.) This can be formulated as a problem asfollows:

¢ States: Theagentisin one of two locations, each of which might or might not contain
dirt. Thus thereare 2 x 22 = 8 possible world states.

¢ Initial state: Any statecan be designated as theinitial state.

¢ Successor function: This generates the legal states that result from trying the three
actions (Left, R ght, and Suck). The complete state spaceis shownin Figure 3.3.

& Goal test: Thischeckswhether al the squares are clean.

¢ Path cost: Each step costs 1, so the path cost is the number of stepsin the path.

Compared with the real world, this toy problem has discrete locations, discrete dirt, reliable
cleaning, and it never gets messed up once cleaned. (In Section 3.6, we will relax these
assumptions.) One important thing to note is that the state is determined by both the agent
location and the dirt locations. A larger environment with n locations has n 2™ states.

The8-puzzle, an instance of whichisshowninFigure 3.4, consists of a3x 3 board with
eight numbered tiles and a blank space. A tile adjacent to the blank space can slide into the
space. The object isto reach a specified goal state, such as the one shown on the right of the
figure. The standard formulation is asfollows:

¢ States: A statedescription specifiesthe location of each of the eight tiles and the blank
in one of the nine squares.

¢ Initial state: Any state can be designated as the initial state. Note that any given goal
can bereached from exactly half of the possible initial states (Exercise 3.4).

Section 3.2.

Example Problems 65

Figure 3.3 The state space for the vacuum world. Arcs denote actions: L = Left, R =
R ght, S=Suck.

¢ Successor function: This generates the legal states that result from trying the four
actions (blank moves Left, Right, Up, or Down).

¢ Goal test: This checks whether the state matches the goal configuration shown in Fig-
ure 3.4. (Other goal configurations are possible.)

¢ Path cost: Each step costs 1, so the path cost is the number of stepsin the path.

What abstractions have we included here? The actions are abstracted to their begin-
ning and final states, ignoring the intermediate locations where the block is sliding. We've
abstracted away actions such as shaking the board when pieces get stuck, or extracting the
pieces with a knife and putting them back again. We're left with a description of the rules of
the puzzle, avoiding all the details of physical manipulations.

Start State God State ‘

Figure34 A typica instancedf the 8-puzzle. [

66

Chapter 3. Solving Problems by Searching

SLIDING-BLOCK
PUZZLES

8-QUEENS PROBLEM

INCREMENTAL
FORMULATION

COMPLETE-STATE
FORMULATION

The 8-puzzle belongs to the family of diding-block puzzles, which are often used as
test problems for new search algorithmsin Al. Thisgeneral classisknown to be NP-complete,
so one does not expect to find methods significantly better in the worst case than the search
algorithms described in this chapter and the next. The 8-puzzle has9!/2 =181,440reachable
states and iseasily solved. The 15-puzzle (on a4 X 4 board) has around 1.3 trillion states, and
random instances can be solved optimally in afew milliseconds by the best search algorithms.
The 24-puzzle (on a5 x 5 board) has around 10%® states, and random instances are still quite
difficult to solve optimally with current machines and algorithms.

The goal of the 8-queensproblem is to place eight queens on a chessboard such that
no queen attacks any other. (A queen attacks any piece in the same row, column or diago-
nal.) Figure 3.5 shows an attempted solution that fails: the queen in the rightmost column is
attacked by the queen at thetop | eft.

Figure3.5 Almost asolution to the 8-queens problem. (Solution isleft as an exercise.)

Although efficient special-purpose algorithms exist for this problem and the whole n-
gueens family, it remains an interesting test problem for search algorithms. There are two
main kinds of formulation. An incremental formulation involves operators that augment
the state description, starting with an empty state; for the 8-queens problem, this means that
each action adds a queen to the state. A complete-statefor mulation starts with all 8 queens
on the board and moves them around. In either case, the path cost is of no interest because
only thefina state counts. Thefirstincremental formulation one might try is thefollowing:

¢ States: Any arrangement of 0 to 8 queenson the board is a state.
¢ Initial state: No queens on the board.

¢ Successor function: Add aqueen to any empty square.
& Goal test: 8 queens are on the board, none attacked.

Section 3.2.

Example Problems 67

ROUTE-FINDING
PROBLEM

TOURING PROBLEMS

In thisformulation, we have 64 . 63. .- 57 ~ 1.8 X 10'* possible sequences to investigate. A
better formulation would prohibit placing a queen in any square that is already attacked:

{ States: Arrangements of n queens (0 < n < 8), one per column in the leftmost n
columns, with no queen attacking another are states.

¢ Successor function: Add aqueen to any squarein the leftmost empty column such that
it is not attacked by any other queen.

This formulation reduces the 8-queens state space from 3 X 10 to just 2,057, and solutions
are easy to find. On the other hand, for 100 queens the initial formulation has roughly 104%°
states whereas the improved formulation has about 10°* states (Exercise 3.5). This is ahuge
reduction, but the improved state space is till too big for the algorithms in this chapter to
handle. Chapter 4 describes the complete-state formulation and Chapter 5 gives a simple
algorithm that makes even the million-queens problem easy to solve.

Real-world problems

We have already seen how the route-finding problem is defined in terms of specified loca-
tions and transitions along links between them. Route-finding algorithms are used in a variety
of applications, such as routing in computer networks, military operations planning, and air-
line travel planning systems. These problems are typically complex to specify. Consider a
simplified example of an airline travel problem specified as follows:

{ States: Each is represented by alocation (e.g., an airport) and the current time.

¢ Initial state: Thisis specified by the problem.

¢ Successor function: This returns the states resulting from taking any scheduled flight
(perhaps further specified by seat class and location), leaving later than the current time
plus the within-airport transit time, from the current airport to another.

¢ Goal test: Arewe at the destination by some prespecified time?

< Path cost: This depends on monetary cost, waiting time, flight time, customs and im-
migration procedures, seat quality, time of day, type of airplane, frequent-flyer mileage
awards, and so on.

Commercial travel advice systems use a problem formulation of thiskind, with many addi-
tional complications to handle the byzantine fare structures that airlines impose. Any sea-
soned traveller knows, however, that not al air travel goes according to plan. A really good
system should include contingency plans—such as backup reservationson aternate flights—
to the extent that these are justified by the cost and likelihood of failure of the original plan.

Touring problems are closely related to route-finding problems, but with an important
difference. Consider, for example, the problem, "Visit every city in Figure 3.2 at least once,
starting and ending in Bucharest.”" As with route finding, the actions correspond to trips
between adjacent cities. The state space, however, is quite different. Each state must include
not just the current location but also the set d cities the agent has visited. So the initial
state would be*'In Bucharest; visited{Bucharest}," atypical intermediate state would be*In
Vaslui; visited { Bucharest,Urziceni, Vaslui},” and the goal test would check whether the agent
isin Bucharest and all 20 cities have been visited.

68

Chapter 3. Solving Problems by Searching

TRAVELING
SALESPERSON
PROBLEM

VLSI LAYOUT

ROBOT NAVIGATION

AUTOMATIC
ASSEMBLY
SEQUENCING

PROTEIN DESIGN

INTERNET
SEARCHING

The traveling salesper son problem (TSP) is a touring problem in which each city
must be visited exactly once. Theamisto find the shortest tour. The problem is known to
be NP-hard, but an enormous amount of effort has been expended to improve the capabilities
of TSP agorithms. In addition to planning trips for traveling salespersons, these algorithms
have been used for tasks such as planning movements of automatic circuit-board drills and of
stocking machines on shop floors.

A VLS layout problem requires positioning millions of components and connections
on achip to minimize area, minimize circuit delays, minimize stray capacitances, and max-
imize manufacturing yield. The layout problem comes after the logical design phase, and is
usualy split into two parts: cell layout and channel routing. In cell layout, the primitive
components of the circuit are grouped into cells, each of which performs some recognized
function. Each cell has afixed footprint (size and shape) and requires a certain number of
connections to each of the other cells. The aimis to place the cells on the chip so that they
do not overlap and so that there is room for the connecting wires to be placed between the
cells. Channel routing finds a specific route for each wire through the gaps between the cells.
These search problems are extremely complex, but definitely worth solving. In Chapter 4, we
will see some algorithms capable of solving them.

Robot navigation is a generalization of the route-finding problem described earlier.
Rather than adiscrete set of routes, arobot can movein a continuous space with (in principle)
an infinite set of possible actions and states. For a circular robot moving on a flat surface,
the space is essentially two-dimensional. When the robot has arms and legs or wheels that
must also be controlled, the search space becomes many-dimensional. Advanced techniques
are required just to make the search space finite. We examine some of these methods in
Chapter 25. In addition to the complexity of the problem, real robots must also deal with
errorsin their sensor readings and motor controls.

Automatic assembly sequencing of complex objects by arobot wasfirst demonstrated
by FREDDY (Michie, 1972). Progress since then has been slow but sure, to the point where
the assembly of intricateobjectssuch as electric motorsiseconomically feasible. In assembly
problems, the aim is to find an order in which to assemble the parts of some object. If the
wrong order is chosen, there will be no way to add some part |ater in the sequence without
undoing some of the work aready done. Checking a step in the sequence for feasibility isa
difficult geometrical search problem closely related to robot navigation. Thus, the generation
of legal successorsis the expensive part of assembly sequencing. Any practical algorithm
must avoid exploring all but a tiny fraction of the state space. Another important assembly
problem is protein design, in which the goal is to find a sequence of amino acids that will
fold into athree-dimensional protein with the right properties to cure some disease.

In recent years there has been increased demand for software robots that perform In-
ternet sear ching, looking for answers to questions, for related information, or for shopping
deals. Thisisagood application for search techniques, becauseit is easy to conceptualizethe
Internet as a graph of nodes (pages) connected by links. A full description of Internet search
isdeferred until Chapter 10.

Section 3.3. Searching for Solutions 69

3.3 SEARCHING FOR SOLUTIONS

Having formulated some problems, we now need to solve them. This is done by a search
through the state space. This chapter deals with search techniques that use an explicit search
SEARCHTREE treethat is generated by the initial state and the successor function that together define the
state space. In general, we may have a search graph rather than a search tree, when the
same state can be reached from multiple paths. We defer consideration of this important
complication until Section 3.5.
Figure 3.6 shows some of the expansions in the search tree for finding a route from
SEARCH NODE Arad to Bucharest. The root of the search treeis a sear ch node corresponding to the initial
state, InfArad). The first step is to test whether thisis a goal state. Clearly it is not, but
it isimportant to check so that we can solve trick problems like "starting in Arad, get to
Arad." Because thisis not agoa state, we need to consider some other states. This is done

EXPANDING by expanding the current state; that is, applying the successor function to the current state,

GENERATING thereby generating a new set of states. In this case, we get three new states: In(Sibiu),
In(Timisoara), and In(Zerind). Now we must choose which of these three possibilities to
consider further.

Thisisthe essence of search— followingup one option now and putting the others aside
for later, in case the first choice does not lead to a solution. Suppose we choose Sibiu first.
We check to see whether it is a goal state (it is not) and then expand it to get In(Arad),
In(Fagaras), In(Oradea), and In(RimnicuVilcea). \We can then choose any of these four, or
go back and choose Timisoaraor Zerind. We continue choosing, testing, and expanding until
either a solution isfound or there are no more states to be expanded. The choice of which

searcHsTraTEGY State to expand is determined by the search strategy. The genera tree-search algorithm is
described informally in Figure 3.7.

It isimportant to distinguish between the state space and the search tree. For the route
finding problem, there are only 20 states in the state space, one for each city. But there are
an infinite number of paths in this state space, so the search tree has an infinite number of
nodes. For example, the lhree paths Arad—Sibiu, Arad-Sibiu—-Arad, Arad—Sibiu—Arad—Sibiu
arethefirst threeof aninfinite sequenceof paths. (Obviously, agood search algorithm avoids
following such repeated paths; Section 3.5 shows how.)

There are many ways to represent nodes, but we will assume that a node is a data
structure with five components:

e STATE: the statein the state space to which the node corresponds;
PARENT-NODE: the nodein the search tree that generated this node;

ACTION: the action that was applied to the parent to generate the node;

PATH-COST: the cost, traditionally denoted by ¢(n), of the path from theinitial stateto
the node, asindicated by the parent pointers; and

e DEPTH: the number of stepsaong the path from the initial state.

Itisimportant to remember the distinction between nodes and states. A nodeis aboolkkeeping
'datastructure used to represent the search tree. A state corresponds to a configuration of the

70 Chapter 3. Solving Problems by Searching

world. Thus, nodes are on particular paths, as defined by PARENT-NODE pointers, whereas

states are not. Furthermore, two different nodes can contain the same world stete, if that state

is generated viatwo different search paths. The node data structure is depicted in Figure 3.8.

We also need to represent the collection of nodes that have been generated but not yet

FRINGE expanded —this collection is called the fringe. Each element of thefringeis aleaf node, that

LEAF NODE

' (c) After expanding Sibiu

Figure3.6 Partia search trees for finding a route from Arad to Bucharest. Nodes that
have been expanded are shaded; nodes that have been generated but not yet expanded are
outlinedin bold; nodesthat have not yet been generated are shown in faint dashed lines.

function TREE-SEARCH(problem, strategy) returnsasolution, or failure
initialize the search tree using theinitial state of problem
ioop do
if there are no candidatesfor expansion then returnfailure
choosealeaf nodefor expansion accordingto strategy
if the node containsa goal state then retur n the corresponding solution
€lse expand the node and add the resulting nodes to the search tree

Figure3.7 Aninformal descriptionof the general tree-searchalgorithm.

Section 3.3.

Searchingfor Solutions 71

QUEUE

COMPLETENESS
OPTIMALITY
TIME COMPLEXITY

SPACE COMPLEXITY

Figure38 Nodesare the data structures from which the search treeis constructed. Each
has a parent, a state, and various bookkeeping fields. Arrows point from child to parent.

is, anodewith no successorsin thetree. In Figure 3.6, thefringe of each treeconsists of those
nodes with bold outlines. The simplest representation of the fringe would be a set of nodes.
The search strategy then would be a function that selects the next node to be expanded from
thisset. Althoughthisisconceptually straightforward,it could be computationallyexpensive,
becausethe strategy function might havetolook at every element of the set to choose the best
one. Therefore, we will assumethat the collection of nodesisimplemented as aqueue. The
operationson a queue are asfollows:

o MAKE-QUEUE(element, ...) createsaqueue with the given element(s).

EMPTY 2 queue) returnstrue only if there are no more elementsin the queue.
FIrsT(queue) returnsthefirst element of the queue.

REMOVE-FIRST(queue) returns FIRST(queue) and removesit from the queue.
INSERT(element, queue) inserts an element into the queue and returns the resulting
queue. (Wewill see that different typesof queuesinsert elementsin different orders.)

o INSERT-ALL(elements, queue) insertsaset of elementsinto the queue and returnsthe
resulting queue.

[

With these definitions, we can write the moreformal version of the general tree-searchalgo-
rithm shown in Figure 3.9.

M easuring problem-solving performance

The output of a problem-solvingalgorithmis either failure or a solution. (Some algorithms
might get stuck in aninfiniteloop and never return an output.) We will evaluate an agorithm's

performancein four ways.
¢ Completeness: Isthe a gorithm guaranteed to find a solution when thereis one?
¢ Optimality: Does the strategy find the optimal solution, as defined on page 62?
¢ Time complexity: How long doesit taketo find a solution?
¢ Space complexity: How much memory is needed to performthe search?

72 Chapter 3. Solving Problems by Searching
| function TREE-SEARCH(problem, fringe) returnsasolution, or failure
fringe «— INSERT(MAKE-NODE(INITIAL-STATE[problem)), fringe)
loop do
if EMPTY?(fringe) then return failure
node < REMOVE-FIRST(fringe)
if GOAL-TEST[problem] applied to STATE[node] Succeeds
then return SOLUTION(node)
fringe — INSERT-ALL(EXPAND(node, problem),fringe)
function EXPAND(node, problem)returnsa set of nodes
successor s «— the empty set
for each (action,result) in SUCCESSOR-FN[problem](STATE[node]) dO
s« anew NODE
STATE[5] « result
PARENT-NODE][s] < node
ACTION[s] < action
PATH-COST[s] «+— PATH-COST[node] + STEP-COST(STATE[node], action, result)
DEPTH[s] + DEPTH[node] + 1
add s to successors
return successors
Figure3.9 Thegeneral tree-search algorithm. (Notethat the fringe argument must be an
empty queue, and the type of the queue will affect the order of the search.) The SOLUTION
function returns the sequence of actions obtained by following parent pointers back to the
root.
Time and space complexity are always considered with respect to some measure of the prob-
lem difficulty. In theoretical computer science, the typical measure is the size of the state
space graph, because the graph is viewed as an explicit data structure that is input to the
search program. (The map of Romania is an example of this) In Al, where the graph is
represented implicitly by the initial state and successor function and is frequently infinite,
BRANCHING FACTOR comiplexity IS expressed in terms of three quantities: b, the branching factor or maximum
number of successors of any node; d, the depth of the shallowest goal node; and m, the
maximum length of any path in the state space.
Timeis often measured in terms of the number of nodes generated® during the search,
and space in terms of the maximum number of nodes stored in memory.
SEARCH COST To assess theeffectivenessof asearch algorithm, we can consider just the sear ch cost—
which typically depends on the time complexity but can also include a term for memory
TOTAL COST usage—or we can use the total cost, which combines the search cost and the path cost of the

solution found. For the problem of finding a route from Arad to Bucharest, the search cost

5 Some texts measure time in terms of the number of node expansi ons instead. The two measures differ by at
most afactor of b. It seemsto us that the execution time of a node expansion increases with the number of nodes
generated in that expansion.

Section 3.4.

Uninformed Search Strategies 73

is the amount of time taken by the search and the solution cost is the total length of the path
in kilometers. Thus, to compute the total cost, we have to add kilometers and milliseconds.
Thereisno " officia exchangerate™ between the two, but it might bereasonablein thiscaseto
convert kilometers into milliseconds by using an estimate of the car's average speed (because
time is what the agent cares about). This enables the agent to find an optimal tradeoff point
at which further computation to find a shorter path becomes counterproductive. The more
general problem of tradeoffs between different goods will be taken up in Chapter 16.

UNINFORMED
SEARCH

INFORMED SEARCH
HEURISTIC SEARCH

BEEABTH-FIRST

This section coversfive search strategies that come under the heading of uninformed search
(also called blind search). The term means that they have no additional information about
states beyond that provided in the problem definition. All they can do is generate successors
and distinguish a goal state from a nongoa state. Strategies that know whether one non-
goal stateis' more promising™ than another are called informed sear ch or heuristic search
strategies, they will be covered in Chapter 4. All search strategies are distinguished by the
order in which nodes are expanded.

Breadth-first search

Breadth-fir st sear chis asimple strategy in which the root node is expanded first, then all the
successors of the root node are expanded next, then their successors, and so on. In generd,
all the nodes are expanded at a given depth in the search tree before any nodes at the next
level are expanded.

Breadth-first search can be implemented by calling TREE-SEARCH with an empty
fringe that is a first-in-first-out (FIFO) queue, assuring that the nodes that are visited first
will be expanded first. In other words, calling TREE-SEARCH(problem,FIFO-QUEUE()) re-
sultsin a breadth-first search. The FIFO queue puts all newly generated successors at the end
of the queue, which meansthat shallow nodes are expanded before deeper nodes. Figure 3.10
shows the progress of the search on asimple binary tree.

We will evaluate breadth-first search using the four criteriafrom the previous section.
We can easily see that it is complete—if the shallowest goal node is at some finite depth d,
breadth-first search will eventually find it after expanding all shallower nodes (provided the
branching factor b is finite). The shallowest goal node is not necessarily the optimal one;
technically, breadth-first searchisoptimal if the path cost is a nondecreasing function of the
depth of the node. (For example, when all actions have the same cost.)

Sofar, the news about breadth-first search hasbeen good. Toseewhy itisnot awaysthe
strategy of choice, we haveto consider the amount of time and memory it takes to complete a
search. To do this, we consider a hypothetical state space where every state has b successors.
Theroot of the search tree generates b nodes at the first level, each of which generates 4 more
nodes, for atotal of b? at the second level. Each of these generates b more nodes, yielding b3
nodes at the third level, and so on. Now suppose that the solution is at depth d. In the worst

74

Chapter 3. Solving Problemsby Searching

case, we would expand al but thelast node at level d (sincethe goal itself is not expanded),
generating 5%t — b nodes at level d + 1. Then the total number of nodes generated is

Every node that is generated must remain in memory, becauseit is either part of thefringe
or is an ancestor of afringe node. The space complexity is, therefore, the same as the time
complexity (plusone nodefor theroot).

Those who do complexity analysisare worried (or excited, if they likea challenge) by
exponential complexity bounds suchas O(b%*1). Figure3.11 showswhy. It liststhetime and
memory required for a breadth-first search with branching factor b = 10, for various values
of thesolution depth d. The table assumes that 10,000 nodes can be generated per second and
that a node requires 1000 bytes of storage. Many search problems fit roughly within these
assumptions (giveor takeafactor of 100) when run on amodern personal computer.

There are two lessonsto be learned from Figure 3.11. First, the memory requirements
area bigger problemfor breadth-first searchthan is the execution time. 31 hourswould not
be too long to wait for the solution to an important problem of depth 8, but few computers
havetheterabytedf main memory it would take. Fortunately, there are other search strategies
that requireless memory.

The second lessonis that the time requirementsare still a mgjor factor. If your problem
has a solution at depth 12, then (given our assumptions) it will take 35 yearsfor breadth-first
search (or indeed any uninformed search) to find it. In general, exponential-complexity search
problems cannot be solved by uninformed methods for any but the smallest instances.

Depth Nodes Time Memory

2 1100 Il seconds 1 megabyte

4 111,100 11 seconds 106 megabytes

6 107 19 minutes 10 gigabytes

8 10° 31 hours 1 terabytes

10 10% 129 days 101 terabytes

12 1013 35 years 10 petabytes

14 105 3,523 years 1 exabyte
Figure3.11 Timeand memory requirementsfor breadth-firstsearch. The numbers shown
assume branchingfactor b= 10; 10,000 nodes/second; 1000 bytes/node.

Section 3.4.

Uninformed Search Strategies 75

UNIFORM-COST
SEARCH

Unifor m-cost search

Breadth-first search is optimal when all step costs are equal, because it always expands the
shallowest unexpanded node. By a simple extension, we can find an algorithm that is optimal
with any step cost function. Instead of expanding the shallowest node, unifor m-cost search
expands the node n with the lowest path cost. Note that if all step costs are equal, thisis
identical to breadth-first search.

Uniform-cost search does not care about the number of steps a path has, but only about
their total cost. Therefore, it will get stuck in an infiniteloop if it ever expands a node that
has a zero-cost action leading back to the same state (for example, a NoOp action). We can
guarantee completeness provided the cost of every stepis greater than or equal to some small
positive constant e. This condition is aso sufficient to ensure optimality. 1t means that the
cost of a path always increases as we go aong the path. From this property, it is easy to see
that the algorithm expands nodes in order of increasing path cost. Therefore, the: first goal
node selected for expansion is the optimal solution. (Remember that TREE-SEARCH applies
the goal test only to the nodes that are selected for expansion.) We recommend trying the
algorithm out to find the shortest path to Bucharest.

Uniform-cost search isguided by path costsrather than depths, so its complexity cannot
easily be characterized in termsof b and d. Instead, let C* bethe cost of the optimal solution,
and assume that every action costs at least e. Then the algorithm's worst-case time and space
complexity is O(b**+1¢*/<]), which can be much greater than b?. Thisis becatise uniform-cost
search can, and often does, explorelarge trees of small steps before exploring pathsinvolving
large and perhaps useful steps. When all step costs are equal, of course, b*+1C" /<l isjust be.,

Depth-first search

Depth-fir st sear ch aways expands the deepest node in the current fringe of the search tree.
The progress of the search is illustrated in Figure 3.12. The search proceeds immediately
to the deepest level of the search tree, where the nodes have no successors. As those nodes
are expanded, they are dropped from the fringe, so then the search *'backs up™ to the next
shallowest node that still has unexplored successors.

This strategy can be implemented by TREE-SEARCH with a last-in-first-out (LIFO)
gueue, also known as a stack. As an aternative to the TREE-SEARCH implementation, it is
common to implement depth-first search with a recursivefunction that callsitself on each of
itschildrenin turn. (A recursive depth-first algorithm incorporating a depth limit is shownin
Figure 3.13))

Depth-first search has very modest memory requirements. It needsto storeonly asingle
path from theroot to aleaf node, along with the remaining unexpanded sibling nodesfor each
node on the path. Once a hode has been expanded, it can be removed from memory as soon
as all its descendants have been fully explored. (See Figure 3.12.) For a state space with
branching factor b and maximum depth m, depth-first search requires storage of only bm=+ 1
nodes. Using the same assumptions as Figure 3.11, and assuming that nodes at the same
depth as the goal node have no successors, we find that depth-first search would require 118
kilobytes instead of 10 petabytes at depth d = 12, afactor of 10 billion times|ess space.

76

Chapter 3. Solving Problems by Searching

Figure3.12 Depth-firs search on abinary tree. Nodes that have been expanded and have
no descendantsin the fringe can be removed from memory; these are shown in black. Nodes
a depth 3 are assumed to have no successorsand M isthe only god node.

A variant of depth-first search called backtracking search uses still less memory. In
backtracking, only one successor is generated at atime rather than all successors; each par-
tially expanded node remembers which successor to generate next. In this way, only O{m)
memory is needed rather than O(bm). Backtracking search facilitates yet another memory-
saving (and time-saving) trick: the idea of generating a successor by nodi fyi ng the current
state description directly rather than copying it first. This reduces the memory requirements
to just one state description and O{m) actions. For this to work, we must be able to undo
each modification when we go back to generate the next successor. For problems with large
state descriptions, such as robotic assembly, these techniques are critical to success.

The drawback of depth-first search is that it can make a wrong choice and get stuck
going down avery long (or eveninfinite) path when adifferent choice would lead to asolution
near the root of the search tree. For example, in Figure 3.12, depth-first search will explore
the entire left subtree even if node C is agoa node. If node Jwere also agoal node, then
depth-first search would return it as a solution; hence, depth-first search is not optimal. If

Section 3.4.

Uninformed Search Strategies 77

DEPTH-LIMITED
SEARCH

DIAMETER

function DEPTH-LIMITED-SEARCH(problem, limit) returnsa solution, or failure cutoff
return RECURSIVE-DLS(MAKE-NODE(INITIAL-STATE] problem]), problem, limit)

function RECURSIVE-DLS(node, problem limit) returnsa solution, or failure/cutoff
cutoff_occurred? «+—fase
if GOAL-TEST[problem](STATE[node]) then return SOLUTION(node)
dseif DEPTH[node] = limit then return cutoff
elsefor each successor in EXpAND(nade, problem)do
result «+— RECURSIVE-DLS(successor, problem limit)
if result = cutoff then cutoff-occurred? < true
dseif resault £ failure then return result
if cutoff_occurred? then return cutoff elsereturn failure

Figure3.13 A recursveimplementation of depth-limited search.

theleft subtree were of unbounded depth but contained no solutions, depth-first search would
never terminate; hence, it is not complete. In the worst case, depth-first search will generate
all of the O(b™) nodes in the search tree, where m is the maximum depth of any node. Note
that m can be much larger than d (the depth of the shallowest solution), and isinfiniteif the
tree is unbounded.

Depth-limited search

The problem of unbounded trees can be alleviated by supplying depth-first search with a pre-
determined depth limit £. That is, nodes at depth ¢ are treated asif they have no successors.
This approach is called depth-limited sear ch. The depth limit solves the infinite-path prob-
lem. Unfortunately, it also introduces an additional source of incompleteness if we choose
¢ < d, that is, the shallowest goal is beyond the depth limit. (This is not unlikely when d
is unknown.) Depth-limited search will aso be nonoptimal if we choose £ > d. Its time
complexity is O(b) and its space complexity is O(b£). Depth-first search can be viewed asa
special case of depth-limited search with £ = oco.

Sometimes, depth limits can be based on knowledge of the problem. For example, on
the map of Romaniathere are 20 cities. Therefore, we know that if thereis asolution, it must
be of length 19 at the longest, so £ = 19 is a possible choice. But in fact if we studied the
map carefully, we would discover that any city can be reached from any other city in at most
9 steps. This number, known asthe diameter of the state space, gives us a better depth limit,
which leads to a more efficient depth-limited search. For most problems, however, we will
not know a good depth limit until we have solved the problem.

Depth-limited search can be implemented as a simple modification to the general tree-
search algorithm or to therecursive depth-first search algorithm. We show the pseudocode for
-ecursivedepth-limited searchin Figure 3.13. Notice that depth-limited search can terminate
with two kinds of failure: the standard failure valueindicates no solution; the cutoff value
indicates no solution within the depth limit.

78

Chapter 3. Solving Problems by Searching

ITERATIVE

| ter ativedeepening depth-fir st search

I ter ative degpening sear ch (or iterative deepening depth-first search) is a general strategy,
often used in combination with depth-first search, that finds the best depth limit. It does this
by gradually increasing the limit—firg O, then 1, then 2, and so on—until a goal is found.
This will occur when the depth limit reaches d, the depth of the shallowest goal node. The
algorithm is shown in Figure 3.14. Iterative deepening combines the benefits of depth-first
and breadth-first search. Like depth-first search, its memory requirements are very modest:
O(bd) to be precise. Like breadth-first search, it is complete when the branching factor is
finite and optima when the path cost is a nondecreasing function of the depth of the node.
Figure 3.15 shows four iterations of ITERATIVE-DEEPENING-SEARCH on a binary search
tree, where the solution isfound on the fourth iteration.

Iterative deepening search may seem wasteful, because states are generated multiple
times. It turns out thisis not very costly. The reason is that in a search tree with the same
(or nearly the same) branching factor at each level, most of the nodes are in the bottom level,
so it does not matter much that the upper levels are generated multiple times. In an iterative
deepening search, the nodes on the bottom level (depth d) are generated once, those on the
next to bottom level are generated twice, and so on, up to the children of the root, which are
generated d times. So the total number of nodes generated is

N@DS) = (d)b+ (d - b2 +... + ()p?,
which gives a time complexity of O(b%). We can compare this to the nodes generated by a
breadth-first search:

N(BFS)=b+bp?+ ...+ b+ @it _).
Noticethat breadth-first search generates some nodes at depth d+-1, whereasiterative deepen-

ing does not. Theresult is that iterative deepening is actually faster than breadth-first search,
despite the repeated generation of states. For example, if b =10 and d = 5, the numbers are

In general, iterative deepening is the preferred uninformed search method when there is a
large search space and the depth of the solution is not known.

function ITERATIVE-DEEPENING-SEARCH(problem) returnsa solution, or failure
inputs. problem, a problem

for depth— 0tooo do
result — DEPTH-LIMITED-SEARCH(problem, depth)
if result # cutoff then return result

Figure 3.14 The iterative deepening search algorithm, which repestedly applies depth-
limited search with increasing limits. It terminates when a solutionisfound or if the depth-
limited search returns failure, meaning that no solution exists.

Section 3.4. Uninformed Search Strategies 79
Limt=0 *®._ BN

[TERATIVE:
LENGTHENING
SEARCH

Limit=3 J_.P@.__

Figure3 15 Fouriterationsof iterativedeepening search on a binary tree.

Iterativedeepening searchis analogousto breadth-first search in that it exploresacom-
plete layer of new nodes at each iteration before going on to the next layer. It would seem
worthwhileto develop an iterative analog to uniform-cost search, inheriting the latter algo-
rithm's optimality guarantees while avoiding its memory requirements. The idea is to use
increasing path-cost limitsinstead of increasing depth limits. The resulting algorithm, called
iterative lengthening search, is explored in Exercise 3.11. It turns out, unfortunately, that
iterativelengthening incurs substantial overhead compared to uniform-cost search.

Bidirectional search

The ideabehind bidirectional searchis to run two simultaneous seerches—one forward from
theinitial state and the other backward from the goal, stopping when the two searches meet

80

Chapter 3. Solving Problems by Searching

PREDECESSORS

Figure3.16 A schematic view d a bidirectiona search thet is about to succeed, when a
branch from the start node meets a branch from the god node.

in the middle (Figure 3.16). The motivationis that 5%/2 + 5%/2 is much less than b?, or in the
figure, the area of the two small circlesisless than the area of one big circle centered on the
start and reaching to the goal.

Bidirectional search isimplemented by having one or both of the searches check each
node before it is expanded to see if itisin thefringe of the other search tree; if so, a solution
has been found. For example, if a problem has solution depth d= 6, and each direction runs
breadth-first search one node at atime, then in the worst case the two searches meet when
each hasexpanded all but one of the nodes at depth 3. For b=10, thismeans atotal of 22,200
node generations, compared with 11,111,100 for a standard breadth-first search. Checking a
node for membership in the other search tree can be done in constant time with a hash table,
so thetimecomplexity of bidirectional searchis O(b%/2). Atleast one of the search treesmust
be kept in memory so that the membership check can be done, hence the space complexity
is also O(b%2). This space requirement is the most significant weakness of bidirectional
search. The algorithm is complete and optimal (for uniform step costs) if both searches are
breadth-first; other combinations may sacrificecompleteness, optimality, or both.

The reduction in time complexity makes bidirectional search attractive, but how do
we search backwards? This is not as easy as it sounds. Let the predecessorsof a state X,
Pred(zx), be al those states that have x as a successor. Bidirectional search requires that
Pred (x) be efficiently computable. The easiest case is when all the actionsin the state space
arereversible, so that Pred(x) = Succ(x). Other cases may require substantial ingenuity.

Consider the question of what we mean by "'the goa™ in searching ** backward from the
goal.” For the 8-puzzle and for finding a route in Romania, thereis just one goal state, so the
backward search isvery muchlike theforward search. If thereare severalexplicitly listed goal
dates—for example, the two dirt-free goal states in Figure 3.3—then we can construct a new
dummy goal state whoseimmediate predecessors are al the actual goal states. Alternatively,
some redundant node generations can be avoided by viewing the set of goal statesasasingle
state, each of whose predecessorsis also a set of states—specificaly, the set of states having
a corresponding successor in the set of goal states. (See also Section 3.6.)

The most difficult case for bidirectional search is when the goal test gives only an im-
plicit description of some possibly large set of goal sates—for example, all the states satisfy-

Section 3.5.

Avoiding Repeated States 81

RECTANGULAR GRID

ing the " checkmate™ goal test in chess. A backward search would need to construct compact
descriptions of "all statesthat lead to checkmate by move 12, and so on; and those descrip-
tions would have to be tested against the states generated by the forward search. Thereis no
general way to do this efficiently.

Comparing uninformed sear ch strategies

Figure 3.17 compares search strategies in terms of the four evaluation criteria set forth in
Section 3.4.

Criterion Bregdth- Uniform- Depth- Depth- Iterati\(e Bi di regti onal
First Cost First Limited Deepening (if applicable)
Complete? Yes? Yes®:? No No Yes? Yes®?
Time O@MY) OBy gipmy o O O(b%/?)
Space o) OB) omy o) O(bd) O(b%/2)
Optimal? Yes Yes No No Yes Yes®d

Figure3.17 Evaluation of search strategies. b is the branching factor; d is the depth of
the shallowest solution; m is the maximum depth of the search tree; 1 is the depth limit.
Superscript caveats are as follows: @ completeif bisfinite; * completeif step costs > ¢ for
positivee; ¢ optimal if step costsare all identical; @ if both directionsuse breadth-first search.

Up to this point, we have all but ignored one of the most important complications to the
search process. the possibility of wasting time by expanding states that have already been
encountered and expanded before. For some problems, this possibility never comes up; the
state spaceisatree and thereis only one path to each state. The efficient formulation of the 8-
queens problem (where each new queen is placed in the leftmost empty column) isefficientin
large part because of this--each state can be reached only through one path. If we formulate
the 8-queens problem so that a queen can be placed in any column, then each state with n
‘queenscan be reached by n! different paths.

For some problems, repeated states are unavoidable. Thisincludes al problems where
the actions are reversible, such as route-finding problems and sliding-blocks puzzles. The
search trees for these problems are infinite, but if we prune some of the repeated states,
we can cut the search tree down to finite size, generating only the portion of the tree that
spans the state-space graph. Considering just the search tree up to afixed depth, it is easy to
find cases where eliminating repeated states yields an exponential reduction in search cost.
In the extreme case, a state space of size d + 1 (Figure 3.18(a)) becomes a tree with 2¢
leaves (Figure 3.18(b)). A more realistic example is the rectangular grid asillustrated in
Figure 3.18(c). On agrid, each state hasfour successors, so the search treeincluding repeated

82

Chapter 3. Solving Problems by Searching

CLOSED LIST

OPENLIST

states has 4¢ leaves; but there are only about 2d? distinct states within d steps of any given
state. For d = 20, this means about a trillion nodes but only about 800 distinct states.

Repeated states, then, can cause a solvable problem to become unsolvable if the al-
gorithm does not detect them. Detection usually means comparing the node about to be
expanded to those that have been expanded aready; if a match isfound, then the algorithm
has discovered two paths to the same state and can discard one of them.

For depth-first search, the only nodesin memory are those on the path from the root to
the current node. Comparing those nodes to the current node allows the algorithm to detect
looping paths that can be discarded immediately. Thisis fine for ensuring that finite state
spaces do not become infinite search trees because of loops; unfortunately, it does not avoid
the exponential proliferation of nonlooping paths in problems such as those in Figure 3.18.
Theonly way to avoid theseisto keep more nodesin memory. Thereisafundamental tradeoff
between space and time. Algorithmsthat forget their history are doomed to repeat it.

If an algorithm remembers every state that it has visited, then it can be viewed as ex-
ploring the state-space graph directly. We can modify the general TREE-SEARCH agorithm
to include a data structure called the closed list, which stores every expanded node. (The
fringe of unexpanded nodes is sometimes called the openlist.) If the current node matches a
node on the closed list, it isdiscarded instead of being expanded. The new algorithmiscalled
GRAPH-SEARCH (Figure 3.19). On problems with many repeated states, GRAPH-SEARCH
is much more efficient than TREE-SEARCH. Its worst-case time and space requirements are
proportional to the size of the state space. This may be much smaller than O(6%).

Optimality for graph search is a tricky issue. We said earlier that when a repeated
state is detected, the algorithm has found two paths to the same state. The GRAPH-SEARCH
algorithm in Figure 3.19 always discards the newly discovered path; obviously, if the newly
discovered path is shorter than the original one, GRAPH-SEARCH could miss an optimal
solution. Fortunately, we can show (Exercise 3.12) that this cannot happen when using either

(a) (b) (©

Figure 3.18 State spaces that generate an exponentialy larger search tree. (a) A state
spacein which there are two possibl eactionsleading from A to B, twofrom B to C, and so on.
The state space contains d + 1 states, where d is the maximum depth. (b) The corresponding
search tree, which has 2 branches corresponding to the 2% paths through the space. (c) A
rectangular grid space. States within 2 steps of theinitial state (A) areshownin gray.

Section 3.6.

Searching with Partial Information 83

function GRAPH-SEARCH(problem, fringe) returnsasolution, or failure

closed < an empty set
fringe — INSERT(MAKE-NODE(INITIAL-STATE[problem]), fringe)
loop do
if EMPTY?(fringe) then returnfailure
node «— REMOVE-FIRST(fringe)
if GOAL-TEST[problem](STATE[node]) then return SOLUTION(node)
if STATE[node] isnotin closed then
add STATE[node] to closed
fringe «— INSERT-ALL(EXPAND(node, problem), fringe)

Figure3.19 Thegeneral graph-searchalgorithm. Theset closed can beimplementedwith
a hash table to alow efficient checking for repeated states. This algorithm assumesthat the
first path to a state s isthe cheapest (seetext).

uniform-cost search or breadth-first search with constant step costs; hence, these two optimal
tree-search strategies are also optimal graph-search strategies. Iterative deepening search,
on the other hand, uses depth-first expansion and can easily follow a suboptimal path to a
node before finding the optimal one. Hence, iterative deepening graph search needs to check
whether a newly discovered path to a nodeis better than the original one, and if so, it might
need to revise the depths and path costs of that node's descendants.

Note that the use of a closed list means that depth-first search and iterative deepening
search no longer have linear space requirements. Because the GRAPH-SEARCH algorithm
keeps every node in memory, some searches are infeasible because of memory limitations.

3.6 SEARCHING WITH PARTIAL INFORMATION

In Section 3.3 we assumed that the environment isfully observable and deterministic and that
the agent knowswhat the effects of each action are. Therefore, the agent can calculate exactly
which state results from any sequence of actions and aways knows which stateit isin. Its
percepts provide no new information after each action. What happens when knowledge of the
states or actionsis incomplete? We find that different types of incompleteness lead to three
distinct problem types:

1. Sensorlessproblems (also called confor mant problems): If the agent has no sensors
at al, then (asfar asit knows) it could bein one of several possible initial states, and
each action might therefore lead to one of severa possible successor states.

2. Contingency problems: If the environment is partially observable or if actions are
uncertain, then the agent's percepts provide new information after each action. Each
possible percept defines a contingency that must be planned for. A problem is called
adversarial if the uncertainty is caused by the actions of another agent.

Chapter 3. Solving Problems by Searching

COERCION

BELIEF STATE

| Figure320 Theeght possble states of the vacuum world. |

3. Exploration problems: When the states and actions of the environment are unknown,
the agent must act to discover them. Exploration problems can be viewed as an extreme
case of contingency problems.

As an example, we will use the vacuum world environment. Recall that the state space has
eight states, asshownin Figure 3.20. There are three actions—Lé&ft, Right, and Suck—and the
goal isto clean up al thedirt (states 7 and 8). If the environment is observable, deterministic,
and completely known, then the problem is trivialy solvable by any of the algorithms we
have described. For example, if theinitial stateis 5, then the action sequence [Right,Suck]
will reach agoal state, 8. The remainder of this section deals with the sensorless and contin-
gency versionsof the problem. Exploration problems are covered in Section 4.5, adversarial
problemsin Chapter 6.

Sensor lessproblems

Suppose that the vacuum agent knows all the effects of its actions, but has no sensors. Then
it knows only that itsinitial stateis one of the set {1, 2,3,4,5,6,7,8}. One might suppose
that the agent's predicament is hopeless, but in fact it can do quite well. Because it knows
what its actions do, it can, for example, calculate that the action Right will cause it to bein
one of the states {2, 4, 6, 8}, and the action sequence [Right,Suck] will alwaysend up in one
of the states {4, 8}. Finadly, the sequence [Right,Suck,Left,Suck] is guaranteed to reach the
goal state 7 no matter what the start state. We say that the agent can coerce the world into
state 7, even when it doesn't know where it started. To summarize; when the world is not
fully observable, the agent must reason about sets of states that it might get to, rather than
single states. We call each such set of states a belief state, representing the agent's current
belief about the possible physical statesit might bein. (In afully observable environment,
each belief state contains one physical state.)

Section 3.6. Searching with Partial Information 85

Figure3.21 The reachable portion of the belief state space for the deterministic, sensor-
less vacuum world. Each shaded box correspondsto asingle belief state. At any given point,
the agent isin a particular belief state but does not know which physical stateit isin. The
initial belief state (complete ignorance) is the top center box. Actions are represented by
labeled arcs. Self-loopsare omitted for clarity.

To solve sensorless problems, we searchin the space of belief statesrather than physical
states. Theinitial stateis a belief state, and each action maps from a belief state to another
belief state. An action is applied to a belief state by unioning the results of applying the
action to each physical state in the belief state. A path now connects several belief states,
and a solution is now a path that leads to a belief state, all of whose members are goal states.
Figure 3.21 shows the reachable belief-state space for the deterministic, sensorless vacuum
world. There are only 12 reachable belief states, but the entire belief state space contains
every possible set of physical states, i.e., 2° = 256 belief states. In general, if the physical
state space has S states, the belief state space has 2° belief states.

Our discussion of sensorless problems so far has assumed deterministic actions, but the
analysis is essentially unchanged if the environment is nondeterministic—that is, if actions
may have several possible outcomes. The reason is that, in the absence of sensors, the agent

86

Chapter 3. Solving Problems by Searching

CONTINGENCY
PROBLEM

has no way to tell which outcome actually occurred, so the various possible outcomes are
just additional physical statesin the successor belief state. For example, suppose the environ-
ment obeys Murphy's Law: the so-called Suck action sometimes deposits dirt on the carpet
but only thereis no dirt there already.® Then, if Suck is applied in physical state 4 (see
Figure 3.20), there are two possible outcomes: states 2 and 4. Applied to the initial belief
state, {1,2,3,4,5,6,7,8}, Suck now leads to the belief state that is the union of the out-
come sets for the eight physical states. Calculating this, we find that the new belief state is
{1,2,3,4,5,6,7,8}. So, for asensorless agent in the Murphy's Law world, the Suck action
leaves the belief state unchanged! In fact, the problem isunsolvable. (See Exercise 3.18.) In-
tuitively, the reason is that the agent cannot tell whether the current square is dirty and hence
cannot tell whether the Suck action will clean it up or create more dirt.

Contingency problems

When the environment is such that the agent can obtain new information from its sensors
after acting, the agent faces a contingency problem. The solution to a contingency problem
often takes theform of atree, where each branch may be selected depending on the percepts
received up to that point in the tree. For example, suppose that the agent isin the Murphy's
Law world and that it has a position sensor and alocal dirt sensor, but no sensor capable of
detecting dirt in other squares. Thus, the percept [L,D rty] means that the agent isin one of
thestates {1, 3}. Theagent might formul ate the action sequence [Suck,Right, Suck] .Sucking
would change the state to one of {5, 7}, and moving right would then change the state to one
of {6, 8}. Executing the final Suck action in state 6 takes us to state 8, agoal, but executing it
in state 8 might take us back to state 6 (by Murphy's Law), in which case the plan fails.

By examining the belief-state space for this version of the problem, it can easily be
determined that no fixed action sequence guarantees a solution to this problem. There is,
however, a solution if wedon't insist on a fixed action sequence:

[SuckRight,if /R, Dirty] then Suck]

This extends the space of solutions to include the possibility of selecting actions based on
contingencies arising during execution. Many problems in the real, physical world are con-
tingency problems, because exact prediction isimpossible. For thisreason, many peoplekeep
their eyes open while walking around or driving.

Contingency problems sometimes allow purely sequential solutions. For example, con-
sider a fully observable Murphy's Law world. Contingencies arise if the agent performs a
Suck action in a clean square, because dirt might or might not be deposited in the square.
Aslong as the agent never does this, no contingencies arise and thereis a sequential solution
from every initial state (Exercise 3.18).

The agorithms for contingency problems are more complex than the standard search
algorithms in this chapter; they are covered in Chapter 12. Contingency problems also lend
themselves to a somewhat different agent design, in which the agent can act before it has
found a guaranteed plan. Thisis useful because rather than considering in advance every

6 We assume that most readers face similar problems and can sympathize with our agent. We apologize to
owners of modem, efficient home appliances who cannot take advantage of this pedagogical device.

Section 3.7.

Summary 87

INTERLEAVING

possible contingency that might arise during execution, it is often better to start acting and
see which contingencies do arise. The agent can then continue to solve the problem, taking
into account the additional information. Thistype of interleaving of search and execution is
also useful for exploration problems (see Section 4.5) and for game playing (see Chapter 6).

This chapter has introduced methods that an agent can use to select actions in environments
that are deterministic, observable, static, and completely known. In such cases, the agent can
construct sequences of actions that achieve its goals; this processis called sear ch.

Before an agent can start searching for solutions, it must formulateagoal and then use
the goa to formulate a problem.

A problem consists of four parts: theinitial state, aset of actions,agoal test function,
and a path cost function. The environment of the problem is represented by a state
space. A path through the state space from theinitial stateto agoal stateis asolution.
A single, general TREE-SEARCH agorithm can be used to solve any problem; specific
variantsof the algorithm embody different strategies.

Search algorithmsare judged on the basisof completeness, optimality, time complex-
ity, and space complexity. Complexity depends on b, the branching factor in the state
space, and d, the depth of the shallowest solution.

Breadth-first search selects the shallowest unexpanded node in the search tree for
expansion. Itiscomplete, optimal for unit step costs, and has timeand space complexity
of O(b**+1). The space complexity makesit impractical in most cases. Unifor m-cost
search is similar to breadth-first search but expands the node with lowest path cost,
g(n). Itiscompleteand optimal if the cost of each step exceeds some positive bound e.
Depth-fir st search selects the deepest unexpanded node in the search tree for expan-
sion. It is neither complete nor optimal, and has time complexity of O(b™)and space
complexity of O(bm), where m isthe maximum depth of any path in the state space.
Depth-limited sear ch imposes afixed depth limit on a depth-first search.

I ter ative deepening search calls depth-limited search with increasing limits until a
god isfound. It is complete, optimal for unit step costs, and has time complexity of
O(b%) and space complexity of O (bd)

Bidirectional sear ch can enormoudly reduce time complexity, but it is not always ap-
plicable and may require too much space.

When the state space is a graph rather than atree, it can pay off to check for repeated
statesin the search tree. The GRAPH-SEARCH algorithm eliminatesall duplicate states.
When the environment is partially observable, the agent can apply search algorithmsin
the space of belief states, or setsof possible states that the agent might bein. In some
cases, a single solution sequence can be constructed; in other. cases, the agent needs a
contingency plan to handle unknown circumstances that may arise.

88 Chapter 3. Solving Problems by Searching

BIBLIOGRAPHICAL AND HISTORICAL NOTES

Most of the state-space search problems analyzed in this chapter have a long history in the
literature and are less trivial than they might seem. The missionaries and cannibals prob-
lem used in Exercise 3.9 was analyzed in detail by Amarel (1968). It had been considered
earlier in AI by Simon and Newell (1961), and in operations research by Bellman and Drey-
fus (1962). Studies such as these and Newell and Simon's work on the Logic Theorist (1957)
and GPS (1961) led to the establishment of search algorithms as the primary weaponsin the
armory of 1960s Al researchers and to the establishment of problem solving as the canonical
Al task. Unfortunately, very little work was done on the automation of the problem formu-
lation step. A more recent treatment of problem representation and abstraction, including
Al programs that themselves perform these tasks (in part), isin Knoblock (1990).

The 8-puzzle is a smaller cousin of the 15-puzzle, which was invented by the famous
American game designer Sam Loyd (1959) in the 1870s. The 15-puzzle quickly achieved
immense popularity in the United States, comparable to the more recent sensation caused by
Rubik's Cube. It also quickly attracted the attention of mathematicians (Johnson and Story,
1879; Tait, 1880). The editors of the American Journal of Mathematics stated " The ‘15’
puzzle for the last few weeks has been prominently before the American public, and may
safely be said to have engaged the attention of nine out of ten persons of both sexesand all
ages and conditions of the community. But this would not have weighed with the editors to
induce them toinsert articles upon such asubject in the AmericanJournal of Mathematics, but
for thefact that . . .” (therefollows asummary of the mathematical interest of the 15-puzzle).
An exhaustiveanalysisof the 8-puzzle wascarried out with computer aid by Schofield (1967).
Ratner and Warmuth (1986) showed that the general n X n version of the 15-puzzle belongs
to the class of NP-complete problems.

The 8-queens problem was first published anonymously in the German chess maga-
zine Schach in 1848; it was later attributed to one Max Bezzel. It was republished in 1850
and at that time drew the attention of the eminent mathematician Carl Friedrich Gauss, who
attempted to enumerate all possible solutions, but found only 72. Nauck published all 92
solutions later in 1850. Netto (1901) generalized the problem to n queens, and Abramson
and Yung (1989) found an O(n) agorithm.

Each of the real-world search problems listed in the chapter has been the subject of
agood deal of research effort. Methods for selecting optimal airline flights remain propri-
etary for the most part, but Carl de Marcken (personal communication) has shown that airline
ticket pricing and restrictions have become so convoluted that the problem of selecting an
optimal flightisformally undecidable. The traveling-salesperson problem is a standard com-
binatorial problem in theoretical computer science (Lawler, 1985; Lawler et al., 1992). Karp
(1972) proved the TSP to be NP-hard, but effectiveheuristic approximation methods were de-
veloped (Lin and Kernighan, 1973). Arora (1998) devised afully polynomial approximation
schemefor Euclidean TSPs. VLSI layout methods are surveyed by Shahookar and Mazumder
(1991), and many layout optimization papers appear in VLS| journas. Robotic navigation
and assembly problems are discussed in Chapter 25.

Section 3.7.

Summary 89

Uninformed search algorithms for problem solving are acentral topic of classical com-
puter science (Horowitz and Sahni, 1978) and operations research (Dreyfus, 1969); Deo and
Pang (1984) and Gallo and Pallottino (1988) give more recent surveys. Breadth-first search
was formulated for solving mazes by Moore (1959). The method of dynamic program-
ming (Bellman and Dreyfus, 1962), which systematically records solutions for all subprob-
lems of increasing lengths, can be seen as a form of breadth-first search on graphs. The
two-point shortest-path algorithm of Dijkstra (1959) isthe origin of uniform-cost search.

A version of iterative deepening designed to make efficient use of the chess clock was
first used by Slate and Atkin (1977) in the CHESS 4.5 game-playing program, but the appli-
cation to shortest path graph search is due to Korf (1985a). Bidirectional search, which was
introduced by Pohl (1969, 1971), can aso be very effectivein some cases.

Partially observable and nondeterministic environments have not been studied in great
depth within the problem-solving approach. Some efficiency issues in belief-state search
have been investigated by Genesereth and Nourbakhsh (1993). Koenig and Simmons (1998)
studied robot navigation from an unknown initia position, and Erdmann and Mason (1988)
studied the problem of robotic manipulation without sensors, using a continuous form of
belief-state search. Contingency search has been studied within the planning subfield. (See
Chapter 12.) For the most part, planning and acting with uncertain information have been
handled using the tools of probability and decision theory (see Chapter 17).

The textbooks by Nilsson (1971, 1980) are good general sources of information about
classical search agorithms. A comprehensive and more up-to-date survey can be found
in Korf (1988). Papers about new search agorithms—which, remarkably, continue to be
discovered — appearin journals such asArtijicia Intelligence.

3.1 Definein your own words the following terms. state, state space, search tree, search
node, goal, action, successor function, and branching factor.

32 Explain why problem formulation must follow goal formulation.

3.3 Suppose that LEGAL-ACTIONS(~)denotes the set of actions that are legd in state s,
and RESULT(a, S) denotes the state that results from performing a legal action a in state s.
Define SUCCESSOR-FN in terms of LEGAL-ACTIONS and RESULT, and vice versa.

3.4 Show that the 8-puzzle states are divided into two digoint sets, such that no state in
one set can be transformed into a state in the other set by any number of moves. (Hinz: See
Berlekamp et al. (1982).) Devise aprocedure that will tell you which classagiven state isin,
and explain why thisis a good thing to have for generating random states.

35 Consider the n-queens problem using the " efficient" incremental formulation given on
page 67. Explain why the state spacesizeis at least ¥/n! and estimate the largest » for which
exhaustive exploration is feasible. (Hint: Derive alower bound on the branching factor by
considering the maximum number of squares that a queen can attack in any column.)

90 Chapter 3. Solving Problems by Searching

3.6 Does afinite state space aways lead to a finite search tree? How about a finite state
space that is a tree? Can you be more precise about what types of state spaces alwayslead to
finite search trees? (Adapted from Bender, 1996.)

3.7 Givetheinitial state, goal test, successor function, and cost function for each of the
following. Choose aformulation that is precise enough to be implemented.

a. You have to color a planar map using only four colors, in such a way that no two
adjacent regions have the same color.

b. A 3-foot-tall monkey isin aroom where some bananas are suspended from the 8-foot
ceiling. He would like to get the bananas. The room contains two stackable, movable,
climbable 3-foot-high crates.

C. You have a program that outputs the message "illegal input record when fed a certain
file of input records. You know that processing of each record is independent of the
other records. You want to discover what record isillegal.

d. You havethreejugs, measuring 12 gallons, 8 gallons, and 3 gallons, and a water faucet.
You can fill the jugs up or empty them out from one to another or onto the ground. You
need to measure out exactly one gallon.

3.8 Consider a state space where the start stateis number 1 and the successor function for
state n returns two states, numbers 2n and 2n + 1.

a. Draw the portion of the state space for states 1 to 15.

b. Suppose the god stateis 11. List the order in which nodes will be visited for breadth-
first search, depth-limited search with limit 3, and iterative deepening search.

c. Would bidirectional search be appropriate for this problem? If so, describe in detail
how it would work.

d. What is the branching factor in each direction of the bidirectional search?

e. Does the answer to (c) suggest areformulation of the problem that would allow you to
solve the problem of getting from state 1 to a given goa state with aimost no search?

39 Themissonariesand cannibals problem is usualy stated as follows. Three mission-
aries and three cannibals are on one side of ariver, along with a boat that can hold one or two
people. Find a way to get everyone to the other side, without ever leaving a group of mis-
sionaries in one place outnumbered by the cannibalsin that place. This problemisfamousin
Al because it was the subject of thefirst paper that approached problem formulation from an
analytical viewpoint (Amarel, 1968).
a. Formulate the problem precisely, making only those distinctions necessary to ensure a
vaid solution. Draw a diagram of the complete state space.
b. Implement and solve the problem optimally using an appropriate search algorithm. Isit
agood idea to check for repeated states?
c. Why do you think people have a hard time solving this puzzle, given that the state space
isso simple?

Section3.7.

Summary 91

3.10 Implement two versions of the successor function for the 8-puzzle: one that generates
all the successors at once by copying and editing the 8-puzzle data structure, and one that
generates one new successor each timeit is called and works by modifying the parent state
directly (and undoing the modifications as needed). Write versions of iterative deepening
depth-first search that use these functions and compare their performance.

3.11 On page 79, we mentioned iter ative lengthening sear ch, an iterative analog of uni-
form cost search. Theidea isto use increasing limits on path cost. If anode is generated
whose path cost exceeds the current limit, it isimmediately discarded. For each new itera-
tion, thelimit is set to the lowest path cost of any node discarded in the previousiteration.

a. Show that this algorithm is optimal for general path costs.

b. Consider a uniform tree with branching factor b, solution depth d, and unit step costs.
How many iterations will iterative lengthening require?

c. Now consider step costs drawn from the continuous range [0, 1] with a minimum posi-
tive cost . How many iterations are required in the worst case?

d. Implement the algorithm and apply it to instances of the 8-puzzle and traveling sales-

person problems. Compare the algorithm's performance to that of uniform-cost search,
and comment on your results.

3.12 Prove that uniform-cost search and breadth-first search with constant step costs are
optimal when used with the GRAPH-SEARCH algorithm. Show astate space with varying step
costs in which GRAPH-SEARCH using iterative deepening finds a suboptimal solution.

3.13 Describe a state space in which iterative deepening search performs much worse than
depth-first search (for example, O(n?) vs. O(n)).

3.14 Write a program that will take as input two Web page URLs and find a path of links
from one to the other. What is an appropriate search strategy? I s bidirectional search a good
idea? Could a search engine be used to implement a predecessor function?

3.15 Consider the problem of finding the shortest path between two points on a plane that
has convex polygonal obstaclesas shownin Figure 3.22. This isan idealization of the problem
that arobot has to solve to navigate its way around a crowded environment.

a. Suppose the state space consists of al positions (x,y) in the plane. How many states
are there? How many paths are there to the goal?

b. Explain briefly why the shortest path from one polygon vertex to any other in the scene
must consist of straight-line segments joining some o the vertices of the polygons.
Defineagood state space now. How large is this state space?

c. Definethe necessary functions to implement the search problem, including a successor
function that takes avertex asinput and returnsthe set of verticesthat can bereachedin
astraight linefrom the given vertex. (Do not forget the neighborson the same polygon.)
Use the straight-line distance for the heuristic function.

d. Apply one or more of the algorithmsin this chapter to solve arange of problemsin the
domain, and comment on their performance.

92 Chapter 3. Solving Problems by Searching
Figure3.22 A scenewith polygona obstacles.
B 3.16 Wecan turn the navigation problem in Exercise 3.15 into an environment as follows:

e The percept will be alist of the positions, relative to the agent, of the visible vertices.
The percept does not include the position of the robot! The robot must learn itsown po-
sition from the map; for now, you can assume that each location has a different ""view."

e Each action will be a vector describing a straight-line path to follow. If the path is
unobstructed, the action succeeds; otherwise, the robot stops at the point whereits path
first intersects an obstacle. If the agent returns a zero motion vector and is at the goal
(whichisfixed and known), then the environment should teleport the agent to a random
location (not inside an obstacle).

¢ The performance measure charges the agent 1 point for each unit of distance traversed

and awards 1000 points each time the goal is reached.

a. Implement this environment and a problem-solving agent for it. The agent will need

to formulate a new problem after each teleportation, which will involve discovering its
current location.

b. Document your agent's performance (by having the agent generate suitable commentary

asit moves around) and report its performance over 100 episodes.

C. Modify the environment so that 30% of the time the agent ends up at an unintended

destination (chosen randomly from the other visible verticesif any, otherwise no move
at al). Thisisacrude model of the motion errors of areal robot. Modify the agent
so that when such an error is detected, it finds out where it is and then constructs a
plan to get back to where it was and resume the old plan. Remember that sometimes
getting back to whereit wasmight also fail! Show an example of the agent successfully
overcoming two successive motion errors and still reaching the goal .

d. Now try two different recovery schemes after an error: (1) Head for the closest vertex

on the original route; and (2) replan arouteto the goal from the new location. Compare
the performance of the three recovery schemes. Would the inclusion of search costs
affect the comparison?

Section 3.7. Summary 93

e. Now suppose that there are locations from which the view isidentical. (For example,
suppose theworldisagrid with square obstacles.) What kind of problem doesthe agent
now face? What do solutions ook like?

3.17 Onpage62, wesaid that we would not consider problems with negative path costs. In
this exercise, we explore thisin more depth.

a. Suppose that actions can have arbitrarily large negative costs; explain why this possi-
bility would force any optimal algorithm to explore the entire state space.

b. Doesit help if weinsist that step costs must be greater than or equal to some negative
constant ¢? Consider both trees and graphs.

C. Supposethat thereisaset of operatorsthat form aloop, so that executing the setin some
order resultsin no net change to the state. If al of these operators have negative cost,
what does thisimply about the optimal behavior for an agent in such an environment?

d. One can easily imagine operators with high negative cost, even in domains such as
route finding. For example, some stretches of road might have such beautiful scenery
asto far outweigh the normal costsin termsof time and fuel. Explain, in precise terms,
within the context of state-space search, why humans do not drive round scenic loops
indefinitely, and explain how to definethe state space and operatorsfor route finding so
that artificial agents can also avoid looping.

e. Can you think of areal domain in which step costs are such as to cause looping?

3.18 Consider the sensorless, two-location vacuum world under Murphy's Law. Draw the
belief state space reachablefromtheinitial belief state {1,2,3.4,5,6,7, 8}, and explain why
the problem is unsolvable. Show aso that if the world is fully observable then there is a
solution sequence for each possibleinitial state.

319 Consider the vacuum-world problem definedin Figure 2.2.

a. Which of the algorithms defined in this chapter would be appropriate for this problem?
Should the algorithm check for repeated states?

b. Apply your chosen algorithm to compute an optimal sequence of actions for a 3 x 3
world whoseinitial state has dirt in the three top squares and the agent in the center.

. Construct a search agent for the vacuum world, and evaluateits performance in aset of
3 X 3 worldswith probability 0.2 of dirt in each square. Include the search cost as well
as path cost in the performance measure, using areasonable exchange rate.

d. Compare your best search agent with a simple randomized reflex agent that sucks if
thereisdirt and otherwise moves randomly.

e. Consider what would happen if the world were enlarged to n X n. How does the per-
formance of the search agent and of the reflex agent vary with n?

INFORMED SEARCH AND
EXPLORATION

In which we see how information about the state space can prevent algorithms
fromblundering about in the dark.

Chapter 3 showed that uninformed search strategies can find solutions to problems by system-
atically generating new states and testing them against the goal. Unfortunately, these strate-
gies are incredibly inefficient in most cases. This chapter shows how an informed search
Strategy —one that uses problem-specific knowledge—can find solutions more efficiently.
Section 4.1 describes informed versions of the algorithmsin Chapter 3, and Section 4.2 ex-
plains how the necessary problem-specificinformation can be obtained. Sections 4.3 and 4.4
cover algorithms that perform purely local sear ch in the state space, evaluating and modify-
ing one or more current states rather than systematically exploring pathsfrom an initial state.
These agorithms are suitable for problems in which the path cost is irrelevant and al that
matters is the solution state itself. The family of local-search agorithms includes methods
inspired by statistical physics (Smulated annealing) and evolutionary biology (genetical-
gorithms).Finally, Section 4.5 investigatesonline sear ch, in which the agent isfaced with a
state space that is completely unknown.

ForVEDSEARCH T hiS Section shows how an infor med sear ch strategy--onethat uses problem-specificknowl-
edge beyond the definition of the problem itself —can find solutions more efficiently than an
uninformed strategy.

BEST-FIRST SEARCH The genera approach we will consider is called best-first search. Best-first search is
an instance of the general TREE-SEARCH or GRAPH-SEARCH agorithm in which anodeis
EVALUATION selected for expansion based on an evaluation function, f (n). Traditionally, the node with

the lowest evaluationis selected for expansion, because the evaluation measures distance to
the goal. Best-first search can be implemented within our general search framework via a
priority queue, a data structure that will maintain the fringein ascending order of f -values.
The name " best-first search” is a venerable but inaccurate one. After al, if we could
really expand the best nodefirst, it would not be asearch at al; it would bea straight march to

Section4.1. Informed (Heuristic) Search Strategies 95

thegod. All wecan do is choose the node that appears to be best according to the evaluation
function. If the evaluation function is exactly accurate, then this will indeed be the best
node; in redity, theevaluation function will sometimesbe off, and can lead the search astray.
Nevertheless, we will stick with the name " best-first search,” because " seemingly-best-first
search” is alittle awkward.
There is awhole family of BEST-FIRST-SEARCH algorithmswith different evaluation
HELRISTIC functions.' A key component of these algorithmsis a heuristic function,? denoted h(n):

h(n) = estimated cost of the cheapest path from node » to agoal node.

For example, in Romania, one might estimate the cost of the cheapest path from Arad to
Bucharest via the straight-linedistancefrom Arad to Bucharest.

Heuristic functions are the most common form in which additional knowledge of the
problem isimparted to the search agorithm. We will study heuristicsin more depth in Sec-
tion 4.2. For now, we will consider them to be arbitrary problem-specific functions, with one
congraint: if nisagoal node, then h(n)=0. Theremainder of this section covers two ways
to use heuristicinformation to guide search.

Greedy best-first search

gALeEDY BESTARST Greedy best-first search® tries to expand the node that is closest to the goal, on the grounds
that thisis likely to lead to a solution quickly. Thus, it evaluates nodes by using just the
heurigtic function: f (n)= A(n).
Let us see how this works for route-finding problems in Romania, using the straight-
DTRAIGHT-LINE line distance heuristic, which we will call hgrp. If the god is Bucharest, we will need to
know the straight-linedistancesto Bucharest, which are shown in Figure 4.1. For example,
hsrp(In(Arad)) =366. Notice that the values of hg;,p cannot be computed from the prob-
lem descriptionitself. Moreover, it takes a certain amount of experienceto know that h gz,p
iscorrelated with actua road distancesand is, therefore, auseful heuristic.

Arad 366 Mehadia 241
Bucharest 0 Neamt 234
Craiova 160 Oradea 380
Drobeta 242 Pitesti 100
Eforie 161 Rimnicu Vilcea 193
Fagaras 176 Sibiu 253
Giurgiu 77 Timisoara 329
Hirsova 151 Urziceni 80
lasi 226 Vadui 199
Lugoj 244 Zerind 374
Figure4.1 Vauesof hgrp—straight-line distancestoBucharest.

1 Exercise4.3 asks you to show that thisfamily includes several familiar uninformed algorithms.
= = heuristicfunction h(r) takesa node as input, but it depends only on the state at that node.

3 OQur first edition called this greedy search; other authors have called it best-first search. Our more general
usage of thelatter term follows Pearl (1984).

Chapter 4. Informed Search and Exploration

(@) Theinitial gate

(c) After expanding Sibiu

(d) After expanding Fagaras

253 0

Figure4.2 Stagesin agreedy best-first search for Bucharest using the straight-linedis-
tanceheuristic hgr,p. Nodesarelabeled with their h-values.

Figure 4.2 shows the progress of a greedy best-first search using ~szp to find a path
from Arad to Bucharest. The first node to be expanded from Arad will be Sibiu, because it
is closer to Bucharest than either Zerind or Timisoara. The next node to be expanded will
be Fagaras, because it is closest. Fagaras in turn generates Bucharest, which is the godl.
For this particul ar problem, greedy best-first search using hsr,p finds a solution without ever
expanding a node that is not on the solution path; hence, its search cost is minimal. It is
not optimal, however: the path via Sibiu and Fagaras to Bucharest is 32 kilometers longer
than the path through Rimnicu Vilceaand Pitesti. This shows why the algorithm is called
"greedy” —at each step it tries to get asclose to thegod asit can.

Minimizing A(n) is susceptible to false starts. Consider the problem of getting from
lasi to Fagaras. The heuristic suggests that Neamt be expanded first, because it is closest

Section4.1.

Informed (Heuristic) Search Strategies 97

A SEARCH

ADMISSIBLE
HEURISTIC

to Fagaras, but it is adead end. The solution is to go first to Vadui—a step that is actually
farther from the goa according to the heuristic—and then to continue to Urziceni, Bucharest,
and Fagaras. In this case, then, the heuristic causes unnecessary nodes to be expanded. Fur-
thermore, if we are not careful to detect repeated states, the solution will never be found—the
search will oscillate between Neamt and lasi.

Greedy best-first search resembles depth-first search in the way it prefers to follow a
single path al the way to the goal, but will back up when it hits a dead end. It suffers from
the same defects as depth-first search—it is not optimal, and it isincomplete (because it can
start down an infinite path and never return to try other possibilities). The worst-case time
and space complexity is O(b™), where m is the maximum depth of the search space. With a
good heuristic function, however, the complexity can be reduced substantially. The amount
of the reduction depends on the particular problem and on the quality of the heuristic.

A* search: Minimizingthetotal estimated solution cost

The most widely-known form of best-first search is called A* search (pronounced "A-star
search™). It evaluates nodes by combining g(n), the cost to reach the node, and 4(n), the cost
to get from the node to the goal:

Since g(n) gives the path cost from the start node to node n, and h(n) is the estirnated cost
of the cheapest path from n to the goal, we have

f (n) = estimated cost of the cheapest solution through n

Thus, if we are trying to find the cheapest solution, a reasonable thing to try first is the
node with the lowest value of g(n) t h(n). It turns out that this strategy is more than just
reasonable: provided that the heuristic function £(n) satisfiescertain conditions, A searchis
both complete and optimal.

The optimality of A* is straightforward to analyze if it is used with TREE-SEARCH.
In this case, A* is optimal if A(n) is an admissible heuristic—that is, provided that A (n)
never overestimatesthe cost to reach the goal. Admissible heuristics are by nature optimistic,
because they think the cost of solving the problem islessthanit actually is. Since g(n) isthe
exact cost to reach n, we have as immediate consequence that f (n)never overestimates the
true cost of a solution through n.

An obvious example of an admissible heuristic is the straight-line distance hsy,p that
we used in getting to Bucharest. Straight-line distanceis admissible because the shortest path
between any two pointsis a straight line, so the straight line cannot be an overestimate. In
Figure 4.3, we show the progress of an A* tree search for Bucharest. The vaues of g are
computed from the step costs in Figure 3.2, and the values of h g p are givenin Figure 4.1.
Noticein particular that Bucharest first appears on the fringe at step (€), but it is not selected
for expansion because its f-cost (450) is higher than that of Pitesti (417). Another way to
say thisis that there might be a solution through Pitesti whose cost is as low as 417, so the
algorithm will not settle for a solution that costs 450. From this example, we can extract
a general proof that A* using TREE-SEARCH is optimal if h(n) is admissible. Suppose a

98

Chapter 4. Informed Search and Exploration

() Theinitial state
366=0+366

(b) After expanding Arad

393=140+253

(c) After expanding Sibiu

646=280+366 415=239+176 671=291+380 413=220+193

(d) After expanding Rimnicu Vilce

526=366+160 417=317+100 553=300+253

(e) After expanding Fagaras

591=338+253 450=450+0 526=366+160 417=317+100 553=300+253

(f) After expanding Pitesti

418=418+0 615=455+160 607=414+193

Figure4.3 Stagesinan A* searchfor Bucharest. Nodes arelabeled withf = g + h. The
h values are the straight-linedistancesto Bucharest taken from Figure 4.1.

Section 4.1.

Informed (Heuristic) Search Strategies 99

CONSISTENCY
MONOTONICITY

TRIANGLE
INEQUALITY

suboptimal goal node G5 appears on thefringe, and | et the cost of the optimal solution be C* .
Then, because G is suboptimal and because ~2(G2) =0 (truefor any goal node), we know

f(Ga) = g(G2) T h(Ga) = g(G2) > C*
Now consider afringe node n that is on an optimal solution path—for example, Pitesti in the

example of the preceding paragraph. (There must always be such a nodeif a solution exists.)

If h(n) does not overestimate the cost of completing the solution path, then we know that
f(n)=g(n) T h(n) < C*.

Now we have shown that f (n) < C* < f (G3), so G2 will not be expanded and A* must

return an optimal solution.

If we use the GRAPH-SEARCH algorithm of Figure 3.19 instead of TREE-SEARCH,
then this proof breaks down. Suboptimal solutions can be returned because GRAPH-SEARCH
can discard the optimal path to a repeated state if it is not the first one generated. (See
Exercise 4.4.) There are two ways to fix this problem. The first solution is to extend
GRAPH-SEARCH s0 that it discards the more expensive of any two paths found to the same
node. (Seethe discussion in Section 3.5.) The extrabookkeeping is messy, but it does guar-
antee optimality. The second solution isto ensurethat the optimal path to any repeated stateis
always thefirst one followed —asis the case with uniform-cost search. This property holds if
weimpose an extrarequirement on i (n), namely the requirement of consistency (also called
monotonicity). A heuristic A{n) isconsistent if, for every node n and every successor i of
N generated by any action a, the estimated cost of reaching the goal from nis no greater than
the step cost of getting to n’ plus the estimated cost of reaching the goal from n':

h(n) < c(n,a,n’) t h(n') .

Thisisaform of the general triangleinequality, which stipulates that each side of a triangle
cannot be longer than the sum of the other two sides. Here, the triangleisformed by n, n',
and thegoal closest to n. It isfairly easy to show (Exercise4.7) that every consistent heuristic
isalso admissible. The most important consequence of consistency isthefollowing: A* using
GRAPH-SEARCH isoptimal if h(n) is consistent.

Although consistency is a stricter requirement than admissibility, one has to work quite
hard to concoct heuristics that are admissible but not consistent. All the admissible heuristics
we discussin this chapter are also consistent. Consider, for example, hg;,p. We know that
the genera triangle inequality is satisfied when each side is measured by the straight-line
distance, and that the straight-line distance between n and i is no greater than c(n,a,n’).
Hence, hgy,p isaconsistent heuristic.

Another important consequence of consistency is the following: If h(rn) is consistent,
then the values off (n)along any path are nondecueasing. The proof follows directly from
the definition of consistency. Suppose »’ is asuccessor of n;then g(n’) =g(n) c(n,a,n’)
for some a, and we have

J(n') = g(n") F h(n') = g(n) T e(n,a,n) F h(n') > g(n) F h(n) = f(n).
It follows that the sequence of nodes expanded by A* using GRAPH-SEARCH isin nonde-

creasing order of f (n).Hence, thefirst goal node selected for expansion must be an optimal
solution, since al later nodes will be at least as expensive.

100

Chapter 4. Informed Search and Exploration

CONTOURS

PRUNING

Figure44 Map of Romaniashowing contours at f = 380, f = 400 and f = 420, with
Arad as the start state. Nodes inside a given contour have f -costs less than or equal to the
contour value.

The fact that f-costs are nondecreasing along any path also means that we can draw
contour sin the state space, just like the contoursin a topographic map. Figure 4.4 shows an
example. Inside the contour labeled 400, al nodeshave f (n)less than or equal to 400, and so
on. Then, because A* expands the fringe node of lowest f-cost, we can see that an A* search
fans out from the start node, adding nodesin concentric bands of increasing f -cost.

With uniform-cost search (A* search using h(n) = 0), the bands will be *circular"
around the start state. With more accurate heuristics, the bands will stretch toward the goal
state and become more narrowly focused around the optimal path. If C* isthe cost of the
optimal solution path, then we can say the following:

o A* expands all nodes with f (n) < C*.
¢ A* might then expand some of the nodesright on the " goal contour" (wheref (n)= C%)
before selecting a goa node.

Intuitively, it is obvious that the first solution found must be an optimal one, because goal
nodes in all subsequent contours will have higher f-cost, and thus higher g-cost (because all
goa nodes have h(n) = 0). Intuitively, it is also obvious that A* search is complete. As we
add bands of increasing f, we must eventually reach a band where f is equal to the cost of
the path to agoal state.*

Notice that A* expands no nodes with f(n)> C*—for example, Timisoara is not
expanded in Figure 4.3 even though it is a child of the root. We say that the subtree below
Timisoarais pruned; because h g1, p isadmissible, thealgorithm can safely ignorethissubtree

4 Completeness requires that there be only finitely many nodes with cost less than or equa to C™, a condition
that istrueif al step costsexceed somefinite e andif bisfinite.

Section 4.1. Informed (Heuristic) Search Strategies 101

while still guaranteeing optimality. The concept of pruning— eliminatingpossibilities from
consideration without having to examine them—is important for many areas of Al.

One final observation is that among optimal algorithms of this type— algorithms that
extend search pathsfrom the roat—A* is optimally efficient for any given heuristic function.
That is, no other optimal agorithm is guaranteed to expand fewer nodes than A* (except
possibly through tie-breaking among nodes with f(n)=C*). Thisis because any algorithm
that does not expand all nodes with f(n) < C* runs the risk of missing the optimal solution.

That A* search is complete, optimal, and optimally efficient among all such algorithms
is rather satisfying. Unfortunately, it does not mean that A* is the answer to all our searching
needs. The catch is that, for most problems, the number of nodes within the goal contour
search spaceis still exponential in the length of the solution. Although the proof of the result
is beyond the scope of this book, it has been shown that exponential growth will occur unless
the error in the heuristic function grows no faster than the logarithm of the actual path cost.
In mathematical notation, the condition for subexponential growth is that

where h{ n)isthetrue cost of getting from ntothegoal. For aimost all heuristics in practical
use, the error is at least proportional to the path cost, and the resulting exponential growth
eventually overtakes any computer. For thisreason, it is often impractical to insist on finding
an optimal solution. One can use variants of A* that find suboptimal solutions quickly, or one
can sometimes design heuristics that are more accurate, but not strictly admissible. In any
case, the use of a good heuristic still provides enormous savings compared to the use of an
uninformed search. In Section 4.2, we will look at the question of designing good heuristics.
Computation timeis not, however, A*’s main drawback. Because it keeps all generated
nodes in memory (as do al GRAPH-SEARCH algorithms), A* usually runs out of space long
before it runs out of time. For this reason, A* is not practical for many large-scale prob-
lems. Recently developed algorithms have overcome the space problem without sacrificing
optimality or completeness, at a small cost in execution time. These are discussed next.

Memory-bounded heuristic search

Thesimplest way to reduce memory requirements for A* isto adapt theidea of iterative deep-
ening to the heuristic search context, resulting in theiterative-deepening A" (IDA*)algorithm.
The main difference between IDA* and standard iterative deepening is that the cutoff used
is the f-cost (g+ h) rather than the depth; at each iteration, the cutoff value is the small-
est f-cost of any node that exceeded the cutoff on the previous iteration. IDA* is practical
for many problems with unit step costs and avoids the substantial overhead associated with
keeping asorted queue of nodes. Unfortunately, it suffersfrom the same difficultieswith real-
valued costs as does the iterative version of uniform-cost search described in Exercise 3.11.

This section briefly examines two more recent memory-bounded algorithms, called RBFS
and MA*.
RECURSIVE

BEST-FIRST SEARCH Recursive best-first search (RBFS) is a simple recursive algorithm that attempts to
mimic the operation of standard best-first search, but using only linear space. Thealgorithmis

shownin Figure4.5. Itsstructureissimilar to that of arecursive depth-first search, but rather

102

Chapter 4. Informed Search and Exploration

function RECURSIVE-BEST-FIRST-SEARCH(problem) returnsasolution, or failure
RBFS(problem, MAKE-NODE(INITIAL-STATE[problem]), o)

function RBFS(problem, node, f-limit) returnsasolution, or failureand anew f-cost limit
if GOAL-TEST[problem[(STATE[node]) then return node
successors « EXPAND(node, problem)
if successorsisempty thenreturn failure, co
for each sin successorsdo
fIs] < max(g(s) + h(s), f[node])
r epeat
best « the lowest f-valuenodein successors
iff [best] > f-limit then return failure, f[best]
alternative « the second-lowest f -valueamong successors
result,f [best]«— RBFS(problem, best, min(f-limit, alternative))
if result # failure thenreturn result

Figure4.5 Thealgorithmfor recursivebest-first search.

than continuing indefinitely down the current path, it keeps track of the f-value of the best
alternative path availablefrom any ancestor of the current node. If the current node exceeds
thislimit, the recursion unwinds back to the alternativepath. Astherecursion unwinds, RBFS
replacesthe f-value of each node along the path with the best f-value of its children. In this
way, RBFS remembers the f -value of the best leaf in the forgotten subtree and can therefore
decide whether it’s worth reexpanding the subtree at some later time. Figure 4.6 shows how
RBFS reaches Bucharest.

RBFS is somewhat more efficient than IDA*, but still suffers from excessive node re-
generation. In the example in Figure 4.6, RBFS first follows the path via Rimnicu Vilcea,
then "' changesits mind™* and tries Fagaras, and then changesits mind back again. These mind
changes occur because every time the current best path is extended, there is a good chance
that its f -valuewill increase—h is usually less optimistic for nodes closer to the goal. When
this happens, particularly in large search spaces, the second-best path might become the best
path, so the search hasto backtrack tofollow it. Each mind change correspondsto an iteration
of IDA*,and could reguire many reexpansionsof forgotten nodes to recreate the best path and
extend it one more node.

Like A*, RBFSis an optimal algorithm if the heuristic function ~(r) is admissible. Its
space complexity islinear in the depth of the deepest optimal solution, but its time complexity
israther difficult to characterize: it depends both on the accuracy of the heuristic function and
on how often the best path changes as nodes are expanded. Both IDA* and RBFS are subject to
the potentially exponential increase in complexity associated with searching on graphs (see
Section 3.5), because they cannot check for repeated states other than those on the current
path. Thus, they may explore the same state many times.

IDA* and RBFS suffer from using too little memory. Between iterations, IDA* retains
only a single number: the current f -cost limit. RBFS retains more information in memory,

Section4.1. Informed (Heuristic) Search Strategies 103

(a) After expanding Arad, Sibiu,
and Rimnicu Vilcea

(b) After unwinding back to Sihiu
and expanding Fagaras

(c) After switching back to Rimnicu Vilcea
and expanding Pitesti

Figure4.6 Stagesin an RBFS search for the shortest route to Bucharest. The f-limit
valuefor each recursive call is shown on top of each current node. (&) The path viaRimnicu
Vilceais followed until the current best leaf (Pitesti) has a value that is worse than the best
aternativepath (Fagaras). (b) The recursion unwinds and the best leaf value of the forgotten
subtree (417) is backed up to Rimnicu Vilcea; then Fagaras is expanded, reveding a best
leaf value of 450. (c) The recursionunwinds and the best leaf value of theforgottensubtree
(450) is backed up to Fagaras; then Rirnnicu Vilceais expanded. This time, because the best
aternativepath (through Timisoara)costs at |east 447, the expansioncontinuesto Bucharest.

but it usesonly linear space: even if more memory were available, RBFS has no way to make
use d it.
It seems sensible, therefore, to use all available memory. Two agorithms that do this
A are MA* (memory-bounded A*) and SMA* (simplified MA*). We will describe SMA*, which

SMA*

104

Chapter 4. Informed Search and Exploration

THRASHING

SPACE

OBJECT-LEVEL
SPACE

STATE

is—well —smpler. SMA* proceeds just like A*, expanding the best leaf until memory isfull.
At this point, it cannot add a new node to the search tree without dropping an old one. SMA*
always drops the worst leaf node—the one with the highest f-value. Like RBFS, SMA*
then backs up the value of the forgotten node to its parent. In this way, the ancestor of a
forgotten subtree knows the quality of the best path in that subtree. With this information,
SMA* regenerates the subtree only when all other paths have been shown to ook worse than
the path it hasforgotten. Another way of saying thisisthat, if al the descendants of a node n
are forgotten, then we will not know which way to go from n, but we will still have an idea
of how worthwhileit isto go anywhere from n.

The complete algorithm is too complicated to reproduce here,” but thereis one subtlety
worth mentioning. We said that SMA* expands the best |eaf and del etes the worst leaf. What
if all the leaf nodes have the same f -value? Then the algorithm might select the same node
for deletion and expansion. SMA* solvesthis problem by expanding the newest best |eaf and
deleting the oldest worst leaf. These can bethe same node only if thereisonly oneleaf; in that
case, the current search tree must be a single path from root to leaf that fillsall of memory.
If theleaf is not a goal node, then even if it is on an optimal solution path, that solution is
not reachable with the available memory. Therefore, the node can be discarded exactly as if
it had no successors.

SMA* is complete if there is any reachable solution—that is, if d, the depth of the
shallowest goal node, is less than the memory size (expressed in nodes). It isoptimal if any
optimal solution is reachable; otherwise it returns the best reachable solution. In practical
terms, SMA* might well be the best general-purpose algorithm for finding optimal solutions,
particularly when the state space is a graph, step costs are not uniform, and node generation
is expensive compared to the additional overhead of maintaining the open and closed lists.

On very hard problems, however, it will often be the case that SMA* isforced to switch
back and forth continually between a set of candidate solution paths, only a small subset of
which can fit in memory. (This resembles the problem of thrashingin disk paging systems.)
Then theextratime required for repeated regeneration of the same nodes meansthat problems
that would be practically solvable by A*, given unlimited memory, become intractable for
SMA*. That is to say, memory limitations can make a problemintractable from the point of
view of computation time. Although there is no theory to explain the tradeoff between time
and memory, it seems that this is an inescapable problem. The only way out is to drop the
optimality requirement.

Learningto search better

We have presented several fixed strategies— breadth-first, greedy best-first, and so on—that
have been designed by computer scientists. Could an agent learn how to search better? The
answer isyes, and the method rests on an important concept called the metalevel statespace.
Each state in ametalevel state space captures theinternal (computational) state of a program
that is searching in an object-level state space such as Romania. For example, the internal
state of the A* algorithm consists of the current search tree. Each actionin the metalevel state

5 A rough sketch appeared in thefirst edition of this book.

Section 4.2.

Heuristic Functions 105

space is a computation step that alters the internal state; for example, each computation step
in A* expands a leaf node and adds its successors to the tree. Thus, Figure 4.3, which shows
a sequence of larger and larger search trees, can be seen as depicting a path in the metalevel
state space where each state on the pathis an object-level search tree.

Now, the path in Figure 4.3 hasfive steps, including one step, the expansion of Fagaras,
that is not especialy helpful. For harder problems, there will be many such missteps, and a
metalevel lear ning algorithm can learn from these experiences to avoid exploring unpromis-
ing subtrees. The techniques used for thiskind of learning are described in Chapter 21. The
goal of learning isto minimize the total cost of problem solving, trading off computational
expense and path cost.

In this section, we will look at heuristics for the 8-puzzle, in order to shed light on the nature
of heuristicsin general.

The 8-puzzle was one of the earliest heuristic search problems. As mentioned in Sec-
tion 3.2, the object of the puzzleisto dide thetiles horizontally or vertically into the empty
space until the configuration matches the goal configuration (Figure 4.7).

Start State Goal State |

Figure4.7 A typical instanceof the 8-puzzle. The sClution j& 26 steps leng: l

The average solution cost for arandomly generated %-puzzlenstance is about 22 steps.
The branching factor is about 3. (When theempty tileisin the middle, there are four possible
moves, whenitisin acorner there are two; and whenit isalong an edgethere are three.) This
means that an exhaustive search to depth 22 would look at about 322 ~ 3.1x 10'0 states. By
keeping track of repeated states, we could cut thisdown by afactor of about 170,000, because
there are only 9!/2 = 181,440 distinct states that are reachable. (See Exercise 3.4.) Thisis
a manageable number, but the corresponding number for the 15-puzzleis roughly 103, so
the next order of businessis to find a good heuristic function. If we want to find the shortest
solutions by using A*, we need a heuristic function that never overestimates the number of
steps to the goal. There is along history of such heuristics for the 15-puzzle; here are two
commonly-used candidates:

106

Chapter 4. Informed Search and Exploration

MANHATTAN
DISTANCE

EFFECTIVE
BRANGHING FACTOR

DOMINATION

e h; = the number of misplaced tiles. For Figure 4.7, al o the eight tiles are out of
position, so the start state would have h; = 8. hy isan admissible heuristic, becauseit
isclear that any tilethat is out of place must be moved at least once.

e hos = the sum of the distances o the tiles from their goal positions. Because tiles
cannot move along diagonals, the distance we will count is the sum of the horizontal
and vertical distances. Thisis sometimes called the city block distance or Manhattan
distance. hy is also admissible, because al any move can do is move one tile one step
closer to thegoal. Tiles1 to 8in the start state give a Manhattan distance of

ho=3+14+24+2+24+34+3+2=18.
As wewould hope, neither of these overestimates the true solution cost, which is 26.

Theeffect of heuristicaccuracy on performance

One way to characterizethe quality of a heurigtic is the effective branching factor b*. If the
total number of nodes generated by A* for a particular problemis N, and the solution depth
isd, then b isthe branching factor that a uniform tree of depth d would have to havein order
to contain N+ 1 nodes. Thus,

N+ti=1+p +@*)2+...+ 07,

For example, if A* findsa solution at depth 5 using 52 nodes, then the effective branching
factoris 1.92. The effective branching factor can vary across problem instances, but usualy
itisfairly constant for sufficiently hard problems. Therefore, experimental measurements of
b* on asmall set of problems can provide a good guide to the heuristic's overall usefulness.
A well-designed heuristic would have avalueof b* closeto 1, alowing fairly large problems
to be solved.

To test the heuristic functions h; and hy, we generated 1200 random problems with
solution lengths from 2 to 24 (100 for each even number) and solved them with iterative
deepening search and with A* tree search using both ; and he. Figure 4.8 gives the average
number of nodes generated by each strategy and the effective branching factor. The results
suggest that ho isbetter than k1, and isfar better than using iterative deepening search. On our
solutions with length 14, A* with hs is 30,000 times more efficient than uninformed iterative
deepening search.

One might ask whether hs isalways better than k1. The answer isyes. Itiseasy to see
from the definitions of the two heuristics that, for any node n, 2z(n) > hy(). We thus say
that h, dominatesh;. Domination trandates directly into efficiency: A* using 42 will never
expand more nodes than A* using h; (except possibly for some nodes with f(n) =C¥) . The
argument is simple. Recall the observation on page 100 that every node with f(n) < C* will
surely be expanded. Thisis the same as saying that every node with 2(r) < C* — g(n) will
surely be expanded. But because f is at least as big as ;1 for al nodes, every node that is
surely expanded by A* search with Az will also surely be expanded with h1, and h; might
also cause other nodes to be expanded as well. Hence, it is always better to use a heuristic
function with higher values, provided it does not overestimate and that the computation time
for the heuristicis not too large.

Section 4.2. Heuristic Functions 107
Search Cost Effective Branching Factor
d IDS A(h1) A (ho) IDS Af(hy) Af(ho)
2 10 6 6 245 179 179
4 112 13 12 287 148 145
6 680 20 18 2.73 134 1.30
8 6384 39 25 2.80 133 124
10 47127 93 39 2.19 1.38 122
12 || 3644035 227 73 278 142 124
14 - 539 113 - 144 123
- 1301 211 - 1.45 125
- 3056 363 - 1.46 1.26
= 7276 676 - 147 127
- 18094 1219 - 148 128
ig _ 39135 1641 _ 1.48 1.26
20 Ejgure 4.8 Comparison of the search costs and effective branching factors for the
22 ITER ATIVE-DEEPENING-SEARCH and A* algorithms with h,, he. Data are averaged over
24 {100 instances of the & puzzle, for varioussolution lengths.

RELAXED PROBLEM

I nventing admissibleheuristicfunctions

We have seen that both h; (misplaced tiles) and ©» (Manhattan distance) are fairly good
heuristics for the 8-puzzle and that h. is better. How might one have come up with h9? Isit
possiblefor acomputer to invent such a heuristic mechanicaly?

hy and ho are estimates of the remaining path length for the 8-puzzle, but they are
also perfectly accurate path lengths for simplified versions of the puzzle. If the rules of the
puzzle were changed so that atile could move anywhere, instead of just to the adjacent empty
square, then h; would give the exact number of stepsin the shortest solution. Similarly, if
atile could move one squarein any direction, even onto an occupied square, then ko would
givethe exact number of stepsin the shortest solution. A problem with fewer restrictionson
theactionsis called areaxed problem. The cost of an optimal solution to a relaxedproblem
is an admissible heuristic for the original problem. The heuristic is admissible because
the optimal solution in the original problem is, by definition, also a solution in the relaxed
problem and therefore must be at least as expensive as the optimal solution in the relaxed
problem. Becausethe derived heuristic is an exact cost for the relaxed problem, it must obey
thetriangle inequality and is therefore consistent (see page 99).

If a problem definitionis written down in a formal language, it is possible to construct
relaxed problems automatically.® For example, if the 8-puzzle actions are described as

A tile can move from square A to square B if
A ishorizontally or vertically adjacent to B and B is blank,

8 In Chapters 8 and 11, we will describe formal languages suitable for this task; with formal descriptions that
can be manipulated, the construction of relaxed problems can be automated. For now, we will use English.

108

Chapter 4. Informed Search and Exploration

SUBPROBLEM

PATTERN DATABASES

we can generate three relaxed problems by removing one or both of the conditions:

(a) A tile can move from square A to square B if A is adjacent to B.
(b) A tile can movefrom square A to square B if B is blank.
(c) A tilecan move from square A to square B.

From (a), we can derive hy (Manhattan distance). The reasoning is that h, would be the
proper score if we moved each tilein turn to its destination. The heuristic derived from (b) is
discussed in Exercise 4.9. From (c), we can derive hy (misplaced tiles), because it would be
the proper scoreif tiles could moveto their intended destination in one step. Noticethat itis
crucial that the relaxed problems generated by thistechnique can be solved essentially without
search, because the relaxed rules allow the problem to be decomposed into eight independent
subproblems. If the relaxed problem is hard to solve, then the values of the corresponding
heuristic will be expensive to obtain.”

A program called ABSOLVER can generate heuristics automatically from problem def-
initions, using the *'relaxed problem™ method and various other techniques (Prieditis, 1993).
ABSOLVER generated a new heuristic for the 8-puzzle better than any preexisting heuristic
and found the first useful heuristic for the famous Rubik's cube puzzle.

One problem with generating new heuristic functions is that one often fails to get one
"clearly best" heuristic. If a collection of admissible heuristics 2y ... by, is avalable for a
problem, and none of them dominates any of the others, which should we choose? Asit turns
out, we need not make a choice. We can have the best of al worlds, by defining

h(n) = max{hi(N),..,Am(n)}.

This composite heuristic uses whichever function is most accurate on the node in question.
Because the component heuristics are admissible, hisadmissible; it isalso easy to prove that
his consistent. Furthermore, h dominates all of its component heuristics.

Admissible heuristics can also be derived from the solution cost of a subproblem of
a given problem. For example, Figure 4.9 shows a subproblem of the 8-puzzle instance
in Figure 4.7. The subproblem involves getting tiles 1, 2, 3, 4 into their correct positions.
Clearly, the cost of the optimal solution of this subproblem is alower bound on the cost of
the complete problem. It turns out to be substantially more accurate than Manhattan distance
in some cases.

Theidea behind pattern databasesis to store these exact solution costsfor every pos-
sible subproblem instance—in our example, every possible configuration of thefour tilesand
the blank. (Notice that the locations of the other four tiles are irrelevant for the purposes of
solving the subproblem, but moves of those tiles do count towards the cost.) Then, we com-
pute an admissible heuristic % p s for each complete state encountered during a search simply
by looking up the corresponding subproblem configuration in the database. The database
itself is constructed by searching backwards from the goal state and recording the cost of
each new pattern encountered; the expense of this search is amortized over many subsequent
problem instances.

" Note that a perfect heuristic can be obtained simply by allowing h to run a full breadth-first search ""on the
dy." Thus, thereis a tradeoff between accuracy and computation timefor heuristic functions.

Section 4.2.

Heuristic Functions 109

DATABASES

I Start Sate God State

Figure4.9 A subproblemd the 8-puzzleingtance given in Figure4.7. The task isto get
tiles 1, 2, 3, and 4 into their correct positions, without worrying about what happens to the
other tiles.

The choice of 1-2-3-4 isfairly arbitrary; we could also construct databases for 5-6-7-8,
and for 2-4-6-8, and so on. Each database yields an admissible heuristic, and these heuristics
can becombined, asexplained earlier, by taking the maximum value. A combined heuristic of
thiskind is much more accurate than the Manhattan distance; the number of nodes generated
when solving random 15-puzzles can be reduced by afactor of 1000.

One might wonder whether the heuristics obtained from the 1-2-3-4 database and the
5-6-7-8 could be added, since the two subproblems seem not to overlap. Would this still give
an admissible heuristic? The answer is no, because the solutions of the 1-2-3-4 subproblem
and the 5-6-7-8 subproblem for a given state will almost certainly share some moves—it is
unlikely that 1-2-3-4 can be moved into place without touching 5-6-7-8, and vice versa. But
what if we don't count those moves? That is, we record niat the total cost of solving the
1-2-3-4 subproblem, but just the number of movesinvolving 1-2-3-4. Then it is easy to see
that the sum of the two costsis till alower bound on the cost of solving the entire problem.
Thisis the idea behind digoint pattern databases. Using such databases, it is possible to
solve random 15-puzzles in afew milliseconds— the numbes of nodes generated is reduced
by afactor of 10,000 compared with using Manhattan distance. For 24-puzzles, aspeedup of
roughly a million can be obtained.

Disjoint pattern databases work for dliding-tile puzzles because the problem can be
divided up in such away that each move affects only one subproblem—becauseonly onetile
ismoved at atime. For a problem such as Rubik’s cube, this kind of subdivision cannot be
done because each move affects8 or 9 of the 26 cubies. Currently, it isnot clear how to define
digoint databases for such problems.

L earning heuristicsfrom experience

A heuristic function h(n) is supposed to estimate the cost of a solution beginning from the
state at node n. How could an agent construct such afunction? One solution was givenin the
preceding section— namely, to devise relaxed problemsfor which an optimal solution can be
found easily. Another solution isto learn from experience. “Experience” here means solving
lots of 8-puzzles, for instance. Each optimal solution to an 8-puzzle problem provides ex-

110

Chapter 4. Informed Search and Exploration

FEATURES

amples from which /(n) can be learned. Each example consists of a statefrom the solution
path and the actual cost of the solution from that point. From these examples, an inductive
lear ning algorithm can be used to construct afunction £(») that can (with luck) predict solu-
tion costs for other states that arise during search. Techniquesfor doing just this using neural
nets, decision trees, and other methods are demonstrated in Chapter 18. (The reinforcement
learning methods described in Chapter 21 are aso applicable.)

Inductive learning methods work best when supplied with features of a state that are
relevant to its evaluation, rather than with just the raw state description. For example, the
feature " number of misplaced tiles” might be helpful in predicting the actual distance of a
state from the goal. Let's call this feature z;(n) . We could take 100 randomly generated
8-puzzle configurationsand gather statistics on their actual solution costs. We might find that
when zy(n) is 5, the average solution cost is around 14, and so on. Given these data, the
value of z; can be used to predict A(n). Of course, we can use several features. A second
feature z5(n) might be “number of pairs of adjacent tiles that are also adjacent in the goal
state.” How should z(n) and z2(n) be combined to predict ~(r)? A common approach is
to use alinear combination:

h(n) = c1z1(n) + coma(n)

The constants ¢; and ¢, are adjusted to give the best fit to the actual data on solution costs.
Presumably, ¢; should be positiveand ¢, should be negative.

4.3 LocAL SEARCH ALGORITHMS AND OPTIMIZATION PROBLEMS

LOCAL SEARCH
CURRENT STATE

OPTIMIZATION
PROBLEMS
OBJECTIVE
FUNCTION

The search algorithms that we have seen so far are designed to explore search spaces sys-
tematically. This systematicity is achieved by keeping one or more pathsin memory and by
recording which alternatives have been explored at each point aong the path and which have
not. When a goal isfound, the path to that goal also constitutes a solution to the problem.

In many problems, however, the path to the goal isirrelevant. For example, in the 8-
gueens problem (see page 66), what mattersisthe final configuration of queens, not the order
in which they are added. Thisclass of problemsincludes many important applications such as
integrated-circuit design, factory-floor layout, job-shop scheduling, automatic programming,
telecommunications network optimization, vehicle routing, and portfolio management.

If the path to the goal does not matter, we might consider a different class of ago-
rithms, ones that do not worry about paths at all. Local search agorithms operate using
a single current state (rather than multiple paths) and generally move only to neighbors
of that state. Typicaly, the paths followed by the search are not retained. Although local
search agorithms are not systematic, they have two key advantages: (1) they use very little
memory — usualy aconstant amount; and (2) they can often find reasonable solutionsin large
or infinite (continuous) state spaces for which systematic algorithms are unsuitable.

In addition to finding goals, local search agorithms are useful for solving pure op-
timization problems, in which the aim is to find the best state according to an objective
function. Many optimization problems do not fit the " standard" search modelintroduced in

Section 4.3.

Local Search Algorithms and Optimization Problems 111

STATE SPACE
LANDSCAPE

GLOBAL MINIMUM

GLOBAL MAXIMUM

HILL-CLIMBING

Chapter 3. For example, nature provides an objective function— reproductive fithess—that
Darwinian evolution could be seen as attempting to optimize, but there is no *'goal test™ and
no **path cost™ for this problem.

To understand local search, we will find it very useful to consider the state space land-
scape (asin Figure4.10). A landscape has both “location” (defined by the state) and “eleva-
tion™ (defined by the value of the heuristic cost function or objective function). If elevation
corresponds to cost, then the aim is to find the lowest valey —a global minimum; if eleva-
tion corresponds to an objective function, then the aim is to find the highest pesk—a global
maximum,. (You can convert from one to the other just by inserting a minus sign.) Local
search algorithms explore this landscape. A complete, local search algorithm always finds a
goal if one exists; an optimal algorithm alwaysfindsa global minimum/maximum.

maximum

current
state

— — - - = dtatespace

Figure410 A one-dimensional state space landscapein which elevation corresponds to
theobjectivefunction. Theaimisto find the global maximum. Hill-climbing search modifies
thecurrent statetotry toimproveit, asshown by thearrow. The varioustopographicfeatures
are definedin the text.

Hill-climbing search

Thehill-climbingsearch algorithmis shownin Figure 4.11. It issimply aloop that continu-
ally movesin the direction of increasing value—thet is, uphill. It terminates when it reaches a
“peak” where no neighbor has a higher value. The algorithm does not maintain asearch tree,
so the current node data structure need only record the state and its objective function value.
Hill-climbing does not ook ahead beyond the immediate neighbors of the current state. This
resembles trying to find the top of Mount Everest inathick fog while suffering from amnesia

To illustrate hill-climbing, we will use the 8-queensproblem introduced on page 66.
Local-search algorithms typically use a complete-statefor mulation, where each state has
8 queens on the board, one per column. The successor function returns al possible states
generated by moving a single queen to another squarein the same column (so each state has

112

Chapter 4. Informed Search and Exploration

function HILL-CLIMBING(problem) returnsastate that is alocal maximum
inputs: problem, a problem
local variables. current, anode
neighbor, anode

current « MAKE-NODE(INITIAL-STATE[problem])

loop do
neighbor < ahighest-valuedsuccessor of current
if VALUE[neighbor] < VALUE[current] then return STATE[current]
current «<— neighbor

Figure 411 The hill-climbing search algorithm (stegpest ascent version), which is the
most basic local search technique. At each step the current node is replaced by the best
neighbor; in this version, that means the neighbor with the highest VALUE, but if aheuristic
cost estimate h is used, we would find the neighbor with the lowest h.

(a) (b)

Figure4.12 (8) An 8-queensstate with heuristic cost estimate h=17, showing the value
of h for each possible successor obtained by moving a queen within its column. The best
movesare marked. (b) A local minimumin the 8-queens state space; the state has h=1 but
every successor has ahigher cost.

8 x 7="56 successors). The heuristic cost function h is the number of pairs of queens that
are attacking each other, either directly or indirectly. The globa minimum of this function
is zero, which occurs only at perfect solutions. Figure 4.12¢a) shows a state with h=17.
Thefigure also shows the values of all its successors, with the best successors having h=12.
Hill-climbing a gorithms typically choose randomly among the set of best successors, if there
is more than one.

Section 4.3.

Local Search Algorithms and Optimization Problems 113

GREEDY LOCAL
SEARCH

SHOULDER

SIDEWAYS MOVE

STOCHASTICHILL
CLIMBING

@ﬁﬁlﬁ-ﬁ\‘@ICE HILL

Hill climbingissometimescalled greedy local search becauseit grabs agood neighbor
state without thinking ahead about where to go next. Although greed is considered one of the
seven deadly sins, it turns out that greedy algorithms often perform quite well. Hill climbing
often makes very rapid progress towards a solution, because it isusually quiteeasy toimprove
abad state. For example, from the statein Figure 4.12(a), it takes just five steps to reach the
state in Figure 4.12(b), which has h=1 and is very nearly a solution. Unfortunately, hill
climbing often gets stuck for thefollowing reasons:

¢ Local maxima: alocal maximum is a peak that is higher than each of its neighboring
states, but lower than the global maximum. Hill-climbing algorithms that reach the
vicinity of alocal maximum will be drawn upwards towards the peak, but will then be
stuck with nowhere else to go. Figure 4.10 illusfrates the problem schematically. More
concretely, the state in Figure4.12(b) isin fact alocal maximum (i.e., alocal minimum
for the cost h); every move of a single queen makes the situation worse.

¢ Ridges: aridgeisshown in Figure 4.13. Ridges result in a sequence of local maxima
that is very difficult for greedy algorithms to navigate.

¢ Plateaux: aplateau isan areaof the state space landscape where the evaluation function
isflat. It can beaflat loca maximum, from which no uphill exit exists, or ashoulder,
from which it is possible to make progress. (See Figure 4.10.) A hill-climbing search
might be unable to find its way off the plateau.

In each case, the algorithm reaches a point at which no progressis being made. Starting from
arandomly generated 8-queens state, steepest-ascent hill climbing gets stuck 86% of thetime,
solving only 14% of problem instances. 1t works quickly, taking just 4 steps on average when
it succeeds and 3 when it gets stuck—not bad for astate space with 8% ~ 17 million states.

The agorithm in Figure 4.11 hdts if it reaches a plateau where the best successor has
the same value as the current state. Might it not be a good idea to keep going—to alow a
sdewaysmovein the hope that the plateau isreally a shoulder, as shown in Figure4.10? The
answer isusualy yes, but we must take care. If we always alow sideways moves when there
are no uphill moves, an infinite loop will occur whenever the agorithm reaches a flat local
maximum that is not a shoulder. One common solution is to put alimit on the number of con-
secutive sdleways moves alowed. For example, we could alow up to, say, 100 consecutive
sideways moves in the 8-queens problem. This raises the percentage of problem instances
solved by hill-climbing from 14% to 94%. Success comes at a cost: the algorithm averages
roughly 21 steps for each successful instance and 64 for each failure.

Many variantsof hill-climbing have been invented. Stochastichill climbing chooses at
random from among the uphill moves; the probability of selection can vary with the steepness
of the uphill move. This usually converges more slowly than steepest ascent, but in some
state landscapes it finds better solutions. First-choice hill climbing implements stochastic
hill climbing by generating successors randomly until oneis generated that is better than the
current state. Thisis agood strategy when a state has many (e.g., thousands) of successors.
Exercise4.16 asksyou to investigate.

The hill-climbing algorithms described so far are incomplete—they often fail to find
agoal when one exists because they can get stuck on local maxima. Random-restart hill

114

Chapter 4. Informed Search and Exploration

Figure4.13 Illustration of why ridges cause difficultiesfor hill-climbing. The grid of
states (dark circles) is superimposed on aridgerising from left to right, creating a sequence
of local maximathat are not directly connected to each other. From each local maximum, all
the available actions point downhill.

climbing adopts the well known adage, "If at first you don't succeed, try, try again." It
conducts a series of hill-climbing searches from randomly generated initial states,® stopping
when agoal isfound. It iscompletewith probability approaching 1, for thetrivial reason that
it will eventually generate a goal state as the initial state. If each hill-climbing search has a
probability p of success, then the expected number of restarts required is 1/p. For 8-queens
instances with no sideways moves allowed, p ~ 0.14, so we need roughly 7 iterations to find
agoa (6fallures and 1 success). The expected number of stepsis the cost of one successful
iteration plus (1—p) /p timesthe cost of failure, or roughly 22 steps. When weallow sideways
moves, 1/0.94 =~ 1.06 iterations are needed on averageand (1 x 21)+(0.06/0.94) X 64 ~ 25
steps. For 8-queens, then, random-restart hill climbing isvery effectiveindeed. Evenfor three
million queens, the approach can find solutionsin under a minute.’

The success of hill climbing depends very much on the shape of the state-space land-
scape: if there are few local maxima and plateaux, random-restart hill climbing will find a
good solution very quickly. On the other hand, many real problems have a landscape that
looks morelikeafamily of porcupines on aflat floor, with miniature porcupinesliving on the
tip of each porcupine needle, ad infinirum. NP-hard problems typically have an exponential
number of local maximato get stuck on. Despite this, areasonably good local maximum can
often befound after a small number of restarts.

8 Generating a random state from an implicitly specified state space can be a hard problem in itself.

9 Luby et al. (1993) provethat it is best, in some cases, torestart arandomized search algorithm after aparticular,
fixed amount of time and that this can be much more efficient than letting each search continue indefinitely.
Disallowing or limiting the number of sideways movesis an example of this.

Section 4.3.

Local Search Algorithms and Optimization Problems 115

SIMULATED
ANNEALING

GRADIENTDESCENT

LOCALBEAM
SEARCH

Simulated annealing search

A hill-climbing algorithm that never makes" downhill" movestowardsstates withlower value
(or higher cost) is guaranteed to beincomplete, becauseit can get stuck on alocal maximum.
In contrast, a purely random walk —thet is, moving to a successor chosen uniformly at ran-
dom from the set of successors—is complete, but extremely inefficient. Therefore, it seems
reasonable to try to combine hill climbing with arrandom walk in some way that yields both
efficiency and completeness. Smulated annealing is such an algorithm. In metallurgy, an-
nealing is the process used to temper or harden metals and glass by heating them to a high
temperature and then gradually cooling them, thus allowing the material to coalesce into a
low-energy crystalline state. To understand simulated annealing, let's switch our point of
view from hill climbing to gradient descent (i.e., minimizing cost) and imagine the task of
getting a ping-pong ball into the deepest crevice in a bumpy surface. If we just let the ball
roll, it will cometo rest at alocal minimum. If we shake the surface, we can bounce the ball
out of the local minimum. The trick is to shake just hard enough to bounce the ball out of
local minima, but not hard enough to dislodge it from the global minimum. The simulated-
annealing solution is to start by shaking hard (i.e., at a high temperature) and then gradually
reduce the intensity of the shaking (i.e., lower the temperature).

Theinnermost loop of the simulated-annealing algorithm (Figure 4.14) is quite similar
to hill climbing. Instead of picking the best move, however, it picks a random move. If the
moveimprovesthe situation, it isalwaysaccepted. Otherwise, the algorithm acceptsthe move
with some probability less than 1. The probability decreases exponentially with the™ badness”
of the move—the amount AE by which the evaluation is worsened. The probability also
decreases as the "'temperature™ T goes down: " bad moves are more likely to be allowed at
the start when temperatureis high, and they become more unlikely as T decreases. One can
provethat if the schedule lowers T slowly enough, the algorithm will find a global optimum
with probability approaching 1.

Simulated annealing was first used extensively to solve VLSI layout problemsin the
early 1980s. It has been applied widely to factory scheduling and other large-scal e optimiza-
tion tasks. In Exercise 4.16, you are asked to compare its performance to that of random-
restart hill climbing on the n-queens puzzle.

L ocal beam search

Keeping just one node in memory might seem to be an extreme reaction to the problem of
memory limitations. The local beam sear ch algorithm!? keeps track of k states rather than
just one. It begins with k randomly generated states. At each step, all the successors of all k
states are generated. If any oneisagoal, the algorithm halts. Otherwise, it selects the k best
successors from the complete list and repeats.

At first sight, aloca beam search with k states might seem to be nothing more than
running k random restarts in parallel instead of in sequence. In fact, the two agorithms
are quite different. In a random-restart search, each search process runs independently of

10 |ocal beam search isan adaptation of beam search, whichis a path-based algorithm.

116 Chapter 4. Informed Search and Exploration
function STIMULATED- ANNEALING(problem, schedule) returns asolution state
inputs. problem,aproblem
schedule, a mapping from time to "*temperature”
local variables: current, anode
next, anode
T ,a"temperature” controlling the probability o downward steps
current «+ MAKE-NODE(INITIAL-STATE[problem])
for t — 1to oo do
T « schedule[t]
if T=0thenreturn current
next « arandomly selected successor o current
AFE «— VALUE[next] — VALUE[current]
if AE > 0then current < next
else current « next only with probability e*Z/7
|
\ Figure4.14 Thesmulaed anneding search dgorithm, averson d stochastichill climb- l
ing where some downhill moves are dlowed. Downhill moves are accepted reedily early in - |
the annedling schedule and then less often as time goes on. The schedule input determines
thevadued T asafunction df time.
the others. In a local beam search, useful information is passed among the & parallel search
threads. For example, if one state generates several good successors and the other £ — 1 states
all generate bad successors, then the effect i s that thefirst state says to the others, " Come over
here, the grass is greener!™ The algorithm quickly abandons unfruitful searches and moves
its resourcesto where the most progress is being made.
Inits simplest form, local beam search can suffer from alack of diversity among the
k states—they can quickly become concentrated in a small region of the state space, making
the search little more than an expensive version of hill climbing. A variant called stochastic
SBRUSTCS heam search, analogous to stochastic hill climbing, helps to alleviate this problem. Instead
of choosing the best k from the the pool of candidate successors, stochastic beam search
chooses k successors at random, with the probability of choosing a given successor being
an increasing function of its value. Stochastic beam search bears some resemblance to the
process of natural selection, whereby the " successors™ (offspring) of a "'state’” (organism)
populate the next generation according to its "'value™ (fithess).
Geneticalgorithms
GENETIC A genetic algorithm (or GA) isa variant of stochastic beam searchin which successor states

POPULATION

are generated by combining rwo parent states, rather than by modifying a single state. The
analogy to natural selection is the same as in stochastic beam search, except now we are
dealing with sexual rather than asexual reproduction.

Like beam search, GAs begin with a set of k randomly generated states, called the
population. Each state, or individual, is represented as a string over a finite alphabet — most

Section 4.3.

Local Search Algorithms and Optimization Problems 117

FITNESS FUNCTION

(@) (b) (©)] O]
Initial Populaion Fitness Function Sdection Crossover Mutation

Figure4.15 The genetic dgorithm. The initial population in (a) isranked by the fitness
functionin (b), resultingin pairs for mating in (c). They produce offspring in (d), which are

subject to mutation in (€).

Figure4.16 The 8-queens states corresponding to the first two parentsin Figure 4.15(c)
and the firgt offspringin Figure 4.15(d). The shaded columns are lost in the crossover step
and the unshaded columns are retained.

commonly, astring of Os and 1s. For example, an 8-queens state must specify the positions of
8 queens, each in acolumn of 8 squares, and so requires 8 x log, 8= 24 hits. Alternatively,
the state could be represented as 8 digits, each in the range from 1 to 8. (We will see later
that the two encodings behave differently.) Figure 4.15(a) shows a population of four 8-digit
strings representing 8-queens states.

The production of the next generation of states is shown in Figure 4.15(b)—(e). In (b),
each state is rated by the evaluation function or (in GA terminology) the fitness function.
A fitness function should return higher values for better states, so, for the 8-queens problem
we use the number of nonattacking pairs of queens, which has a value of 28 for a solution.
The values of thefour states are 24, 23, 20, and 11. In this particular variant of the genetic
algorithm, the probability of being chosen for reproducing is directly proportional to the
fitness score, and the percentages are shown next to the raw scores.

In (c), arandom choice of two pairsis selected for reproduction, in accordance with the
probabilitiesin (b). Notice that oneindividual is selected twice and one not at all.!! For each

11 There are many variants of this selection rule. The method of culling,in which all individuals below a given
threshold are discarded, can be shown to converge faster than the random version (Baum et al., 1995).

118

Chapter 4. Informed Search and Exploration

CROSSOVER

MUTATION

SCHEMA

pair to be mated, a crossover point is randomly chosen from the positions in the string. In
Figure4.15 the crossover points are after the third digit in thefirst pair and after the fifth digit
in the second pair.'

In (d), the offspring themselves are created by crossing over the parent strings at the
crossover point. For example, thefirst child of thefirst pair gets the first three digits from the
first parent and the remaining digits from the second parent, whereas the second child gets
the first three digits from the second parent and the rest from the first parent. The 8-queens
states involved in this reproduction step are shown in Figure 4.16. The example illustrates
the fact that, when two parent states are quite different, the crossover operation can produce
astate that is along way from either parent state. It is often the case that the population is
quite diverseearly onin the process, so crossover (like simulated annealing) frequently takes
large stepsin the state space early in the search process and smaller stepslater on when most
individuals are quite similar.

Finally, in (€), each location is subject to random mutation with a small independent
probability. One digit was mutated in the first, third, and fourth offspring. In the 8-queens
problem, this corresponds to choosing a queen at random and moving it to a random square
inits column. Figure 4.17 describes an algorithm that implements all these steps.

Like stochastic beam search, genetic algorithms combine an uphill tendency with ran-
dom exploration and exchange of information among parallel search threads. The primary
advantage, if any, of genetic algorithms comes from the crossover operation. Yet it can be
shown mathematically that, if the positions of the genetic codeis permuted initially in aran-
dom order, crossover conveysno advantage. Intuitively, the advantage comes from the ability
of crossover to combine large blocks of letters that have evolved independently to perform
useful functions, thus raising the level of granularity at which the search operates. For ex-
ample, it could be that putting the first three queens in positions 2, 4, and 6 (where they do
not attack each other) constitutes a useful block that can be combined with other blocks to
construct a solution.

The theory of genetic algorithms explains how this works using the idea of a schema,
which is a substring in which some of the positions can be left unspecified. For example,
the schema 246***+##* describes al 8-queens states in which the first three queens are in
positions 2, 4, and 6 respectively. Strings that match the schema (such as 24613578) are
called instancesof the schema. It can be shown that, if the averagefitnessof theinstances of
aschemais above the mean, then the number of instancesof the schemawithin the population
will grow over time. Clearly, thiseffectis unlikely to be significant if adjacent bitsare totally
unrelated to each other, because then there will be few contiguous blocks that provide a
consistent benefit. Genetic algorithms work best when schemas correspond to meaningful
components of a solution. For example, if the string is a representation of an antenna, then
the schemas may represent components of the antenna, such as reflectors and deflectors. A
good component is likely to be good in a variety of different designs. This suggests that
successful use of genetic algorithms requires careful engineering of the representation.

12 |t is here that the encoding matters. If a 24-bit encoding is used instead of 8 digits, then the crossover point
has a 213 chance of being in the middle of adigit, which results in an essentially arbitrary mutation of that digit.

Section 4.4.

Local Search in Continuous Spaces 119

function GENETIC-ALGORITHM(populalion, FITNESS-FN) returnsanindividual
inputs. population, aset of individuals
FiTNESS-FN, afunction that measures the fitness of an individual

repeat
new-population < empty set
loop for i from 1 to S1ze(population) do
X «— RANDOM-SELECTION(population, FITNESS-FN)
i +— RANDOM-SELECTION(population, FITNESS-FN)
child <~ REPRODUCE(z, Y)
if (small random probability)then child « MUTATE(child)
add child to new-population
population < new_population
until someindividual isfit enough, or enoughtime has elapsed
return the bestindividual in population, according to FITNESS-FN

function REPRODUCE(z, y) returnsan individual
inputs. x, y, parentindividuals

n «— LENGTH(z)
¢ < random number from 1to n
return APPEND(SUBSTRING(z, 1, ¢), SUBSTRING(y, ¢ +1, ny)

Figure4.17 A genetic dgorithm. The agorithm is the same as the one diagrammed in
Figure 4.15, with one variation: in this more popular version, each mating of two parents

producesonly one offspring, not two.

In practice, genetic a gorithmshave had awidespreadimpact on optimization problems,
such as circuit layout and job-shop scheduling. At present, it is not clear whether the apped
o geneticagorithmsarisesfrom their performanceor fromtheir sthetically pleasingorigins
in the theory of evolution. Much work remainsto be done to identify the conditions under
which genetic algorithmsperformwell.

In Chapter 2, we explained the distinction between discrete and continuous environments,
pointing out that most real-world environments are continuous. Yé none of the algorithms
we havedescribed can handl e continuousstate spaces—the successor function would in most
cases return infinitely many states! This section provides a very brief introduction to some
local search techniques for finding optimal solutionsin continuous spaces. The literature
on this topic is vast; many of the basic techniques originated in the 17th century, after the
development of calculus by Newton and Leibniz.!* We will find usesfor these techniquesat

13 A basic knowledge of multivariate calculus and vector arithmetic is useful when oneisreading this section.

120 Chapter 4. Informed Search and Exploration

EVOLUTION AND SEARCH

The theory of evolution was developed in Charles Darwin's On the Origin of
Species by Means of Natural Selection (1859). The central ideais smple: varia-
tions (known as mutations) occur in reproduction and will be preserved in succes-
Sivegenerations approximately in proportion to their effect on reproductivefitness.

Darwin's theory was devel oped with no knowledge of how the traits of organ-
isms can be inherited and modified. The probabilistic laws governing these pro-
cesses were first identified by Gregor Mendel (1866), a monk who experimented
with sweet peas using what he called artificial fertilization. Much later, Watson and
Crick (1953) identified the structure of the DNA molecule and its alphabet, AGTC
(adenine, guanine, thymine, cytosine). In the standard model, variation occurs both
by point mutationsin the | etter sequence and by " crossover™ (in which the DNA of
an offspring is generated by combining long sections of DNA from each parent).

The analogy toloca search algorithms has aready been described; the princi-
pal difference between stochastic beam search and evolution isthe use of sexual re-
production, wherein successors are generated from multiple organisms rather than
just one. The actual mechanisms of evolution are, however, far richer than most
genetic algorithms alow. For example, mutations can involve reversals, duplica-
tions, and movement of large chunks of DNA; some viruses borrow DNA from one
organism and insert it in another; and there are transposabl e genes that do nothing
but copy themselves many thousands of times within the genome. There are even
genes that poison cells from potential mates that do not carry the gene, thereby
increasing their chances of replication. Most important is the fact that the genes
themsel ves encode the mechanisms whereby the genome is reproduced and trans-
lated into an organism. In genetic algorithms, those mechanisms are a separate
program that is not represented within the strings being manipul ated.

Darwinian evolution might well seem to be an inefficient mechanism, having
generated blindly some 10*® or so organisms without improving its search heuris-
ticsoneiota Fifty years before Darwin, however, the otherwise great French natu-
ralist Jean Lamarck (1809) proposed a theory of evolution whereby traits acquired
by adaptation during an organism's lifetime would be passed on to its offspring.
Such a process would be effective, but does not seem to occur in nature. Much
later, James Baldwin (1896) proposed a superficially similar theory: that behavior
learned during an organism's lifetime could accelerate therate of evolution. Unlike
Lamarck's, Baldwin's theory is entirely consistent with Darwinian evolution, be-
cause it relies on selection pressures operating on individuals that havefound local
optimaamong the set of possible behaviorsallowed by their genetic makeup. Mod-
ern computer simulations confirm that the “Baldwin effect™ is real, provided that
"ordinary™ evolution can create organisms whose internal performance measureis
somehow correlated with actual fitness.

Section 4.4.

Local Search in Continuous Spaces 121

GRADIENT

EMPIRICAL
GRADIENT

LINE SEARCH

several placesin the book, including the chapters on learning, vision, and robotics. In short,
anything that deals with the real world.

Let us begin with an example. Suppose we want to place three new airports anywhere
in Romania, such that the sum of squared distances from each city on the map (Figure 3.2)
to its nearest airport is minimized. Then the state space is defined by the coordinates of
the airports. (x1,y1), (z2,92), and (z3,ys). Thisis a six-dimensional space; we also say
that states are defined by six variables. (In general, states are defined by an n-dimensional
vector of variables, X.) Moving around in this space corresponds to moving one or more of
the airports on the map. The objectivefunctionf (x4, y1, 2, y2, 23, y3) is relatively easy to
compute for any particular state once we compute the closest cities, but rather tricky to write
downin generd.

Oneway to avoid continuous problemsis simply to discretize the neighborhood of each
state. For example, we can move only one airport a atimein either the x or y direction by
a fixed amount £6. With 6 variables, this gives 12 possible successors for each state. We
can then apply any of the local search algorithms described previously. One can aso ap-
ply stochastic hill climbing and simulated annealing directly, without discretizing the space.
These algorithms choose successors randomly, which can be done by generating random vec-
torsof length 6.

There are many methods that attempt to use the gradient of the landscape to find a
maximum. The gradient of the objectivefunctionisavector V f that givesthe magnitude and
direction of the steepest slope. For our problem, we have

In some cases, we can find amaximum by solving the equation V f = 0. (Thiscould be done,
for example, if we were placing just one airport; the solution is the arithmetic mean of all the
cities coordinates.) In many cases, however, this equation cannot be solved in closed form.
For example, with three airports, the expression for the gradient depends on what cities are
closest to each airport in the current state. This means we can compute the gradient locally
but not globally. Even so, we can still perform steepest-ascent hill climbing by updating the
current state viathe formula

where ais a small constant. In other cases, the objective function might not be available
in adifferentiable form at dl —for example, the value of a particular set of airport locations
may be determined by running some large-scale economic simulation package. In those
cases, a so-,calledempirical gradient can be determined by evaluating the response to small
increments and decrements in each coordinate. Empirical gradient search is the same as
steepest-ascent hill climbing in adiscretized version of the state space.

Hidden beneath the phrase" a is a small constant” lies a huge variety of methods for
adjusting a. The basic problemis that, if aistoo small, too many steps are needed; if a
istoo large, the search could overshoot the maximum. The technique of line search tries to
overcome this dilemma by extending the current gradient direction—usualy by repeatedly
doubling a—until f startsto decreaseagain. The point at which this occurs becomes the new

122

Chapter 4. Informed Search and Exploration

NEWTON-RAPHSON

HESSIAN

CONSTRAINED
OPTIMIZATION

LINEAR
PROGRAMMING

current state. There are several schools of thought about how the new direction should be
chosen at this point.

For many problems, the most effective algorithm is the venerable Newton-Raphson
method (Newton, 1671; Raphson, 1690). This is a genera technique for finding roots of
functions—that is, solving equations of the form g(z)=0. It works by computing a new
estimate for theroot X according to Newton's formula

To find a maximum or minimum of f, we need to find X such that the gradient is zero (i.e.,
V f(x)=0). Thus g(z) in Newton's formula becomes Vf(X), and the update equation can
be written in matrix—vector form as

X «m X —H;l(x)Vf(X) ,
where H(x) is the Hessian matrix of second derivatives, whose elements H;; are given
by 8%f /82,0z;. Sincethe Hessian has n? entries, Newton—Raphson becomes expensive in
high-dimensional spaces, and many approximations have been devel oped.

Loca search methods suffer from local maxima, ridges, and plateaux in continuous
state spaces just as much as in discrete spaces. Random restarts and simulated annealing can
be used and are often helpful. High-dimensional continuous spaces are, however, big places
inwhichitiseasy to get lost.

A final topic with which a passing acquaintance is useful is constrained optimization.
An optimization problemis constrained if solutions must satisfy some hard constraints on the
vauesof each variable. For example, in our airport-siting problem, we might constrain sites
to be inside Romania and on dry land (rather than in the middle of lakes). The difficulty of
constrained optimization problems depends on the nature of the constraints and the objec-
tive function. The best-known category is that of linear programming problems, in which
constraints must be linear inequalities forming a convex region and the objective function is
also linear. Linear programming problems can be solved in time polynomia in the number
of variables. Problems with different types of constraints and objective functions have also
been studied — quadratic programming, second-order conic programming, and so on.

4.5 ONLINE SEARCH AGENTS AND UNKNOWN ENVIRONMENTS

OFFLINE SEARCH

ONLINE SEARCH

So far we have concentrated on agents that use offline sear ch algorithms. They compute a
complete solution before setting foot in the real world (see Figure 3.1), and then execute the
solution without recourse to their percepts. In contrast, an online search'* agent operates
by interleaving computation and action: first it takes an action, then it observes the environ-
ment and computes the next action. Online search isagood ideain dynamic or semidynamic
domains—domainswhere there is a penalty for sitting around and computing too long. On-
line search is an even better ideafor stochastic domains. In general, an offline search would

14 The term "online" is commonly used in computer science to refer to algorithms that must process input data
asthey are received, rather than waiting for the entire input data set to become available.

Section 4.5.

Online Search Agents and Unknown Environments 123

COMPETITIVE RATIO

have to come up with an exponentially large contingency plan that considers all possible hap-
penings, while an online search need only consider what actually does happen. For example,
a chess playing agent is well-advised to make its first move long beforeit has figured out the
complete course of the game.

Online search is a necessary idea for an exploration problem, where the states and
actions are unknown to the agent. An agent in this state of Ignorance must useits actions as
experiments to determine what to do next, and hence must interleave computation and action.

The canonical example of online search is arobot that is placed in a new building and
must exploreit to build amap that it can use for getting from A to B. Methods for escaping
from labyrinths—required knowledge for aspiring heroes of antiquity —are also examples of
online search algorithms. Spatial exploration is not the only form of exploration, however.
Consider anewborn baby: it has many possible actions, but knows the outcomes of none of
them, and it has experienced only afew of the possible states that it can reach. The baby's
gradua discovery of how the world worksiis, in part, an online search process.

Online sear ch problems

An online search problem can be solved only by an agent executing actions, rather than by a
purely computational process. We will assume that the agent knows just the following:

e ACTIONS(s), whichreturnsalist of actions allowed in state s;

e The step-cost function ¢(s, a, s’)—note that this cannot be used until the agent knows
that s’ isthe outcome; and

e GOAL-TEST(s).

Note in particular that the agent cannot access the successors of a state except by actualy
trying al the actionsin that state. For example, in the maze problem shown in Figure 4.18,
the agent does not know that going Up from (1,1) leads to (1,2); nor, having done that, does
it know that going Down will take it back to (1,1). This degree of ignorance can be reduced
in some applications— for example, arobot explorer might know how its movement actions
work and beignorant only of thelocations of obstacles.

Wewrll assume that the agent can always recognize a state that it has visited before, and
we will assume that the actions are deterministic. (These last two assumptions are relaxed in
Chapter 17.) Finally, the agent might have accessto an admissible heuristic function 4(s) that
estimates the distance from the current stateto a goa state. For example, in Figure 4.18, the
agent might know thelocation of the goal and be able to usethe Manhattan distance heuristic.

Typicaly, the agent's objectiveisto reach agoa state while minimizing cost. (Another
possible objectiveis simply to explore the entire environment.) The cost is the total path cost
of the path that the agent actually travels. It is common to compare this cost with the path
cost of the path the agent would follow if it knew the search space in advance—that is, the
actual shortest path (or shortest complete exploration). In the language of online agorithms,
thisis called the competitive ratio; we would likeit to be as small as possible.

Although this sounds like a reasonable request, it is easy to see that the best achievable
competitive ratio isinfinitein some cases. For example,, if some actions areirreversible, the
online search might accidentally reach adead-end state from which no god stateisreachable.

124

Chapter 4. Informed Search and Exploration

ADVERSARY
ARGUMENT

1 2 3

Figure4.18 A simple maze problem. The agent starts at Sand must reach G, but knows
nothing of the environment.

(a) (b)

Figure4.19 (a) Two state spaces that might lead an online search agent into a dead end.
Any given agent will fail in at least one of these spaces. (b) A two-dimensional environment
that can cause an online search agent to follow an arbitrarily inefficient route to the goal.
Whichever choice the agent makes, the adversary blocks that route with another long, thin
wall, so that the path followedis much longer than the best possible path.

Perhapsyou find theterm " accidentally** unconvincing — after all, there might be an algorithm
that happens not to takethe dead-end path asit explores. Our claim, to be more precise, isthat
no algorithm can avoid dead ends in all state spaces. Consider the two dead-end state spaces
in Figure4.19(a). To an online search algorithm that has visited states S and A, the two state
spaces look identical, so it must make the same decision in both. Therefore, it will fail in
one of them. Thisis an example of an adversary argument — wecan imagine an adversary
that constructs the state space while the agent exploresit and can put thegoal s and dead ends
wherever it likes.

Section 4.5.

Online Search Agents and Unknown Environments 125

SAFELY EXPLORABLE

Dead ends are a rea difficulty for robot exploration—-staircases,ramps, cliffs, and all
kinds of natural terrain present opportunities for irreversible actions. To make progress, we
will simply assume that the state spaceissafely explorable— thatis, somegoal stateisreach-
able from every reachable state. State spaces with reversible actions, such as mazes and
8-puzzles, can be viewed as undirected graphs and are clearly safely explorable.

Even in safely explorable environments, no bounded competitive ratio can be guaran-
teed if there are paths of unbounded cost. Thisis easy to show in environments with irre-
versible actions, but in fact it remains true for the reversible case as well, as Figure 4.19(b)
shows. For thisreason, itiscommon to describe the performance of online search algorithms
interms of the size of the entire state space rather than just the depth of the shallowest goal.

Online sear ch agents

After each action, an online agent receives a percept telling it what state it has reached; from
this information, it can augment its map of the environment. The current map is used to
decide where to go next. This interleaving of planning and action means that online search
algorithms are quite different from the offline search algorithms we have seen previoudly.
For example, offline algorithms such as A* have the ability to expand a node in one part
of the space and then immediately expand a node in another part of the space, because node
expansioninvolvessimulated rather thanreal actions. An online algorithm, on the other hand,
can expand only anode that it physically occupies. To avoid traveling al the way acrossthe
tree to expand the next node, it seems better to expand nodesin a local order. Depth-first
search has exactly this property, because (except when backtracking) the next node expanded
isachild of the previous node expanded.

An online depth-first search agent is shown in Figure 4.20. This agent stores its map
in atable, result(a,s], that records the state resulting from executing action a in state s.
Whenever an action from the current state has not been explored, the agent tries that action.
The difficulty comes when the agent has tried all the actionsin a state. In offlinedepth-first
search, the state is simply dropped from the queue; in an online search, the agent has to
backtrack physically. In depth-first search, this means going back to the state from which the
agent entered the current state most recently. That is achieved by keeping a table that lists,
for each state, the predecessor states to which the agent has riot yet backtracked. If the agent
has run out of states to which it can backtrack, then its search is compl ete.

We recommend that the reader trace through the progress of ONLINE-DFS-AGENT
when applied to the maze givenin Figure 4.18. It isfairly easy to see that the agent will, in
the worst case, end up traversing every link in the state space exactly twice. For exploration,
thisis optimal; for finding a goal, on the other hand, the agent's competitive ratio could be
arbitrarily bad if it goes off on along excursion when thereis a goal right next to the initial
state. Anonlinevariant of iterative deepening solves this problem; for an environment that is
auniform tree, the competitiveratio of such an agent isasmall constant.

Because of its method of backtracking, ONLINE-DFS-AGENT works only in state
spaces where the actions are reversible. There are slightly more complex agorithms that
work in genera state spaces, but no such algorithm has a bounded competitive ratio.

126

Chapter 4. Informed Search and Exploration

RANDOMWALK

function ONLINE-DFS-AGENT(s’) returnsan action
inputs: s, apercept that identifies the current state
static: result, atable, indexed by action and state, initially empty
unexplored, atablethat lists, for each visited state, the actions not yet tried
unbacktracked, atablethat lists, for each visited state, the backtracksnot yet tried
s, a, the previousstate and action, initially null

if GoaL-TEST(s") then return stop
if s’ isanew statethen unexplored]s’] « ACTIONS(s')
if sisnot null then do
result{a, S] « &’
add s to thefront of unbacktracked[s']
if unexplored[s]isempty then
if unbacktracked[s]isempty then return stop
else a« an action b such that result[b, S| = POP(unbacktracked[s'])
else a « PoP(unezplored[s’])
s

return a

Figure4.20 An online search agent that uses depth-first exploration. The agent is appli-
cableonly in bidirected search spaces.

Onlinelocal search

Like depth-first search, hill-climbingsear ch has the property of locality in its node expan-
sions. In fact, because it keeps just one current state in memory, hill-climbing search is
already an online search algorithm! Unfortunately, it is not very useful in its simplest form
because it leaves the agent sitting at local maxima with nowhere to go. Moreover, random
restarts cannot be used, because the agent cannot transport itself to a new state.

Instead of random restarts, one might consider using a random walk to explore the
environment. A random walk simply selects at random one of the available actions from the
current state; preference can be given to actions that have not yet been tried. It is easy to
prove that a random walk will eventually find a goal or complete its exploration, provided
that the spaceis finite.!> On the other hand, the process can be very sow. Figure4.21 shows
an environment in which arandom walk will take exponentially many steps to find the goal,
because, at each step, backward progressistwice aslikely asforward progress. The example
is contrived, of course, but there are many real-world state spaces whose topology causes
these kinds of "'traps” for random walks.

Augmenting hill climbing with memory rather than randomness turns out to be a more
effective approach. The basic ideais to store a " current best estimate™ H(s) of the cost to
reach the goa from each state that has been visited. H(s) starts out being just the heuristic

15 The infinite case is much more tricky. Random walks are complete on infinite one-dimensional and two
dimensional grids, but not on three-dimensional grids! In thelatter case, the probability that the walk ever returns
to the starting point is only about 0.3405. (See Hughes, 1995, for a general introduction.)

Section 4.5.

Online Search Agents and Unknown Environments 127

LRTA*

OPTIMISM UNDER
UNCERTAINTY

ReAsasalincs

Figure4.21 An environmentin which arandom walk will take exponentidly many steps
to find thegoal.

estimate h(s) and is updated as the agent gains experience in the state space. Figure 4.22
shows a simple examplein aone-dimensional state space. In (a), the agent seemsto be stuck
in aflatlocal minimum at the shaded state. Rather than staying whereiit is, the agent should
follow what seems to be the best path to the goal based on the current cost estimates for its
neighbors. The estimated cost to reach the goal through a neighbor s is the cost to get to
s plus the estimated cost to get to a goal from there—that is, c(s,a,s) T H(s). In the
example, there are two actions with estimated costs 1+ 9 and 1+ 2, soit seems best to move
right. Now, it is clear that the cost estimate of 2 for the shaded state was overly optimistic.
Since the best move cost 1 and led to a state that is at least 2 steps from a goal, the shaded
state must be at least 3 steps from a goal, so its H should be updated accordingly, as shown
in Figure 4.22(b). Continuing this process, the agent will move back and forth twice more,
updating H each time and *'flatteningout™ the local minimum until it escapes to the right.

An agent implementing this scheme, which is called learning real-time A* (LRTA*),is
shown in Figure4.23. Like ONLINE-DFS-AGENT, it builds amap of the environment using
the result table. It updates the cost estimatefor the stateit has just left and then chooses the
"apparently best” move according to its current cost estimates. One important detail is that
actions that have not yet been tried in astate s are alwaysassumed to lead immediately to the
goal with theleast possible cost, namely k(s). Thisoptimism under uncertainty encourages
the agent to explore new, possibly promising paths.

AnLRTA* agent isguaranteed tofind agoal in any finite, safely explorable environment.
Unlike A*, however, it is not completefor infinite state spaces- —thereare caseswhereit can be
ledinfinitely astray. It can explore an environment of n statesin O(n?) stepsin theworst case,
but often does much better. The LRTA* agent isjust one of alargefamily of online agentsthat
can be defined by specifying the action selection rule and the update rule in different ways.
We will discuss this family, which was developed originally for stochastic environments, in
Chapter 21.

Learningin onlinesearch

Theinitial ignorance of online search agents providesseveral opportunitiesfor learning. First,
the agents learn a""'map" of the environment — moreprecisely, the outcome of each actionin
each state—simply by recording each of their experiences. (Notice that the assumption of
deterministic environments means that one experience is enough for each action.) Second,
the local search agents acquire more accurate estimates of the value of each state by using
local updating rules, asin LRTA*. In Chapter 21 we will see that these updates eventually

128 Chapter 4. Informed Search and Exploration

(b)

(c)

(d)

Figure4.22 Fiveiterations of LRTA* on a one-dimensional state space. Each state is
labeled with H (s), the current cost estimate to reach agoal, and each arc is labeled withits
step cost. The shaded state marks the location of the agent, and the updated values at each
iteration are circled.

function LRTA *-AGENT(s") returnsan action
inputs. s', a percept that identifies the current state
static: result, atable, indexed by action and state, initially empty
H, atableof cost estimatesindexed by state, initially empty
s, a,the previousstateand action, initialy null

if GOAL-TEST(s") then return stop
if 5" isanew state (notin H)then H[s'] « A(s")
unless s is null

result[a, S| +— &

H[s]«— min LRTA*-COST(s, b, result[b, s] H)
be ACTIONS(s)

a« an action bin ACTIONS(s’) that minimizesLRTA*-CoST(s’, b, result[b, '] H)
s s
return a

function LRTA*-C0sT(s, a,s’, H) returnsacost estimate
if s'isundefined then return h(s)
dsereturnc(s,a,s') + HIs

Figure 423 LRTA*-AGENT selects an action according to the values of neighboring
states, which are updated as the agent moves about the state space.

Section 4.6.

Summary 129

convergeto exact valuesfor every state, provided that the agent explores the state spacein the
right way. Once exact values are known, optimal decisions can be taken simply by moving to
the highest-valued successor —that s, pure hill climbing is then an optimal strategy.

If you followed our suggestion to trace the behavior of ONLINE-DFS- AGENT in the
environment of Figure 4.18, you will have noticed that the agent is not very bright. For
example, after it has seen that the Up action goes from (1,1) to (1,2), the agent still has no
idea that the Down action goes back to (1,1), or that the Up action also goes from (2,1) to
(2,2), from (2,2) to (2,3), and so on. In general, we would like the agent to learn that Up
increases the y-coordinate unless thereisa wall in the way, that Down reducesit, and so on.
For this to happen, we need two things. First, we need a formal and explicitly manipulable
representation for these kinds of general rules; so far, we have hidden theinformation inside
the black box called the successor function. Part IIT i s devoted to thisissue. Second, we need
algorithms that can construct suitable general rules from the specific observations made by
the agent. These are covered in Chapter 18.

This chapter has examined the application of heuristics to reduce search costs. We have
looked at a number of algorithms that use heuristics and found that optimality comes at a stiff
pricein terms of search cost, even with good heuristics.

e Best-firstsearchisjust GRAPH-SEARCH where the minimum-cost unexpanded nodes
(according to some measure) are selected for expansion. Best-first algorithms typically
use aheuristic function h(n) that estimates the cost of asolution from n.

o Greedy best-first search expands nodes with minimal ~(n). It is not optimal, but is
often efficient.

e A* search expands nodes with minimal f (n) = g(n) + h(n). A is complete and
optimal, provided that we guarantee that h(n) is admissible (for TREE-SEARCH) or
consistent (for GRAPH-SEARCH). The space complexity of A* isstill prohibitive.

o The performance of heuristic search agorithms depends on the quality of the heuris-
tic function. Good heuristics can sometimes be constructed by relaxing the problem
definition, by precomputing solution costs for subproblems in a pattern database, or by
learning from experience with the problem class.

e RBFS and SMA* are robust, optimal search agorithms that use limited amounts of
memory; given enough time, they can solve problems that A* cannot solve because it
runs out of memory.

e Local search methods such as hill climbing operate on complete-state formulations,
keeping only a small number of nodesin memory. Severa stochastic algorithms have
been devel oped, including smulated annealing, which returns optimal solutions when
given an appropriate cooling schedule. Many local search methods can also be used to
solve problemsin continuous spaces.

130 Chapter 4. Informed Search and Exploration

e A genetic algorithm isastochastic hill-climbing searchin which alarge population of
statesis maintained. New states are generated by mutation and by crossover, which
combinespairsof statesfrom the population.

e Exploration problemsarise when the agent has no idea about the states and actions of
its environment. For safely explorable environments, online sear ch agents can build a
map and find agoal if oneexists. Updating heuristicestimatesfrom experienceprovides
an effectivemethod to escapefrom local minima

BIBLIOGRAPHICAL AND HISTORICAL NOTES

The use of heuristic information in problem solving appears in an early paper by Simon
and Newell (1958), but the phrase " heuristic search™ and the use of heuristic functions that
estimate the distance to the goal came somewhat later (Newell and Ernst, 1965; Lin, 1965).
Doran and Michie (1966) conducted extensive experimental studies of heuristic search as
applied to anumber of problems, especidly the 8-puzzleand the 15-puzzle. Although Doran
and Michiecarried out theoretical analysesof path length and “penetrance” (theratio of path
length to the total number of nodes examined so far) in heuristic search, they appear to have
ignored theinformation provided by current path length. The A* a gorithm, incorporating the
current path lengthinto heuristic search, was devel oped by Hart, Nilsson, and Raphael (1968),
with some later corrections (Hart et al., 1972). Dechter and Pearl (1985) demonstrated the
optimal efficiency of A*.

The original A* paper introduced the consistency condition on heuristic functions. The
monotonecondition wasintroduced by Pohl (1977) asasimpler replacement, but Pearl (1984)
showed that the two were equivalent. A number of algorithms predating A* used the equiva-
lent of open and closed lists; these include breadth-first, depth-first, and uniform-cost search
(Bellman, 1957; Dijkstra, 1959). Bellman's work in particular showed the importance of
additive path costs in simplifying optimizationa gorithms.

Pohl (1970, 1977) pioneered the study of the relationship between the error in heuris-
tic functions and the time complexity of A*. The proof that A* runsin linear time if the
error in the heuristic function is bounded by a constant can be found in Pohl (1977) and
in Gaschnig (1979). Pearl (1984) strengthened this result to alow alogarithmic growth in
the error. The™ effective branching factor” measure of the efficiency of heuristic search was
proposed by Nilsson (1971).

Therearemany variationson the A* algorithm. Pohl (1973) proposed the use of dynamic
weighting, which uses aweighted sum f,,(n) = wgg(n) * wph(n) of the current path length
and the heuristicfunction as an evaluation function, rather than thesimplesum f (n)=g(n) +
h{n) used in A*. The weightsw, and wy, are adjusted dynamically as the search progresses.
Pohl's al gorithmcan be shown to be e-admissible—that is, guaranteed to find sol utionswithin
afactor 1 ¢ of the optimal solution—where € is a parameter supplied to thealgorithm. The
same property isexhibited by the A} algorithm (Pearl, 1984), which can select any nodefrom
the fringe provided its f -cost is within afactor 1+ ¢ of thelowest-f-cost fringe node. The
selection can be done so as to minimize search cost.

Section 4.6.

Summary 131

A* arid other state-space search algorithms are closely related to the branch-and-bound
techniques that are widely used in operations research (Lawler and Wood, 1966). The
relationships between state-space search and branch-and-bound have been investigated in
depth (Kumar and Kanal, 1983; Nau ez al., 1984; Kumar er al., 1988). Martelli and Monta-
nari (1978) demonstrate a connection between dynamic programming (see Chapter 17) and
certain types of state-space search. Kumar and Kanal (1988) attempt a'* grand unification™ of
heuristic search, dynamic programming, and branch-and-bound techniques under the name
of CDP—the " composite decision process.”

Because computersin the late 1950s and early 1960s had at most afew thousand words
of main memory, mernory-bounded heuristic search was an early research topic. The Graph
Traverser (Doran and Michie, 1966), one of the earliest search programs, commits to an
operator after searching best first up to the memory limit. IDA* (Korf, 1985a, 1985b) was the
first widely used optimal, memory-bounded, heuristic search algorithm, and alarge number
of variantshave been developed. An analysis of the efficiency of IDA* and of its difficulties
with real-valued heuristics appearsin Patrick et al. (1992).

RBFS (Korf, 1991, 1993) is actualy somewhat more complicated than the algorithm
shownin Figure4.5, whichis closer to an independently developed algorithm called iter ative
expansion, or |E (Russell, 1992). RBFS uses alower bound as well as the upper bound; the
two algorithms behave identically with admissible heuristics, but RBFS expands nodes in
best-first order even with an inadmissible heuristic. The idea of keeping track of the best
alternative path appeared earlier in Bratko's (1986) elegant Yrolog implementation of A* and
in the DTA* algorithm (Russell and Wefald, 1991). The latter work also discusses metalevel
state spaces and metalevel learning.

The MA* agorithm appeared in Chakrabarti et al. (1989). SMA*, or Simplified MA*,
emerged from an attempt:toimplement MA* asacomparison algorithmfor | E (Russell, 1992).
Kaindl and Khorsand (1994) have applied SMA* to produce a bidirectional search algorithm
that is substantially faster than previousalgorithms. Korf and Zhang (2000) describe adivide-
and-conquer approach, and Zhou and Hansen (2002) introduce memory-bounded A* graph
search. Korf (1995) surveys memory-bounded search techniques.

The idea that admissible heuristics can be derived by problem relaxation appearsin the
seminal paper by Held and Karp (1970), who used the the minimum-spanning-tree heuristic
to solve the TSP. (See Exercise 4.8.)

The automation of the relaxation process was implemented successfully by Priedi-
tis (1993), building on earlier work with Mostow (Mostow and Prieditis, 1989). The use
of pattern databases to derive admissible heuristics is due to Gasser (1995) and Culberson
and Schaeffer (1998); digoint pattern databases are described by Korf and Felner (2002).
The probabilistic interpretation of heuristics was investigated in depth by Pearl (1984) and
Hansson and Mayer (1989).

By far the most comprehensive source on heuristics and heuristic search algorithms
is Pearl's (1984) Heuristics text. This book provides especially good coverage of the wide
variety of offshootsand variationsof A*,including rigorous proofs of their formal properties.
Kanal and Kumar (1988) present an anthology of important articles on heuristic search. New
results on search algorithms appear regularly in the journal Artificial Intelligence.

132 Chapter 4. Informed Search and Exploration

L ocal-search techniques have along history in mathematics and computer science. In-
deed, the Newton—Raphson method (Newton, 1671; Raphson, 1690) can be seen as a very
efficient local-search method for continuous spaces in which gradient information is avail-
able. Brent (1973) is aclassic reference for optimization algorithms that do not require such
information. Beam search, which we have presented as alocal-search agorithm, originated
as a bounded-width variant of dynamic programming for speech recognition in the HARPY
system (Lowerre, 1976). A related algorithm is analyzed in depth by Pearl (1984, Ch. 5).

The topic of local search has been reinvigorated in recent years by surprisingly good
results for large constraint satisfaction problems such as n-queens (Minton et al ., 1992) and
logical reasoning (Selman et al., 1992) and by the incorporation of randomness, multiple
simultaneous searches, and other improvements. This renaissance of what Christos Papadi-
mitriou has called "New Age" algorithms has also sparked increased interest among theoret-
ical computer scientists (Koutsoupias and Papadimitriou, 1992; Aldous and Vazirani, 1994).

TABU SEARCH In the field of operations research, a variant of hill climbing called tabu sear ch has gained
popularity (Glover, 1989; Glover and Laguna, 1997). Drawing on models of limited short-
term memory in humans, thisagorithm maintainsatabu list of & previously visited states that
cannot berevisited; as well asimproving efficiency when searching graphs, this can alow the
algorithm to escape from some local minima. Another useful improvement on hill climb-
ing is the STAGE agorithm (Boyan and Moore, 1998). Theideais to use the local maxima
found by random-restart hill climbing to get an idea of the overall shape of the landscape.
The agorithm fits a smooth surface to the set of local maxima and then calcul ates the global
maximum of that surface analytically. This becomes the new restart point. The agorithm
has been shown to work in practice on hard problems. (Gomes et al., 1998) showed that
the run time distributions of systematic backtracking algorithms often have a heavy-tailed
distribution, which meansthat the probability of avery long run timeis more than would be
predicted if the run times were normally distributed. This provides atheoretical justification
for random restarts.

Simulated annealing was first described by Kirkpatrick et al. (1983), who borrowed
directly from the Metropolisalgorithm (which is used to simulate complex systems in
physics (Metropoliset al., 1953) and was supposedly invented at aL os Alamos dinner party).
Simulated annealing is now afieldin itself, with hundreds of papers published every year.

Finding optimal solutions in continuous spaces is the subject matter of several fields,
including optimization theory, optimal control theory, and the calculus of variations.
Suitable (and practical) entry points are provided by Press et al. (2002) and Bishop (1995).
Linear programming (LP) wasone of thefirst applications of computers; the ssmplex algo-
rithm (Wood and Dantzig, 1949; Dantzig, 1949) is still used despite worst-case exponential
complexity. Karmarkar (1984) developed apractical polynomial-time algorithm for LP.

Work by Sewall Wright (1931) on the concept of a fitnesslandscape was an impor-
tant precursor to the development of genetic algorithms. In the 1950s, severa statisticians,
including Box (1957) and Friedman (1959), used evolutionary techniques for optimization
EVOLUTION, problems, but it wasn't until Rechenberg (1965, 1973) introduced evolution strategies to

solve optimization problems for airfoils that the approach gained popularity. In the 1960s
and 1970s, John Holland (1975) championed genetic algorithms, both as a useful tool and

DiSTRIEUTIOR

Section 4.6.

Summary 133

ARTIFICIAL LIFE

GENETIC
PROGRAMMING

EULERIANGRAPHS

as a method to expand our understanding of adaptation, biological or otherwise (Holland,
1995). The artificial life movement (Langton, 1995) takes this idea one step further, view-
ing the products of genetic algorithms as organismsrather than solutions to problems. Work
in this field by Hinton and Nowlan (1987) and Ackley and Littman (1991) has done much
to clarify the implications of the Baldwin effect. For general background on evolution, we
strongly recommend Smith and Szathmary (1999).

Most comparisons of genetic algorithms to other approaches (especially stochastic hill-
climbing) have found that the genetic algorithms are slower to converge (O’Reilly and Op-
pacher, 1994; Mitchell et al., 1996; Juels and Wattenberg, 1996; Baluja, 1997). Such findings
are not universally popular within the GA community, but recent attempts within that com-
munity to understand popul ation-based search as an approximate form of Bayesian learning
(see Chapter 20) might help to close the gap between the field and its critics (Pelikan et al .,
1999). The theory of quadratic dynamical systems may also explain the performance of
GAs (Rabani et al., 1998). SeeLohn et al. (2001) for an example of GAs applied to antenna
design, and Larrafiaga et al. (1999) for an application to the traveling salesperson problem.

Thefield of genetic programmingis closely related to genetic algorithms. The princi-
pal differenceis that the representations that are mutated and combined are programs rather
than bit strings. The programs are represented in the form of expression trees; the expressions
can bein astandard language such as Lisp or can be specialty designed to represent circuits,
robot controllers, and so on. Crossover involves splicing together subtrees rather than sub-
strings. This form of mutation guarantees that the offspring are well-formed expressions,
which would not be the case if programs were manipulated as strings.

Recent interest in genetic programming was spurred by John Koza's work (Koza, 1992,
1994), but it goes back at |least to early experiments with machine code by Friedberg (1958)
and with finite-state automata by Fogel et al. (1966). As with genetic algorithms, there is
debate about the effectiveness of the technique. Koza et al. (1999) describe a variety of
experiments on the automated design of circuit devices using genetic programming.

The journals Evolutionary Computation and IEEE Transactions on Evolutionary Com:
putation cover genetic algorithms and genetic programming; articlesare also found in Com-
plex Systems, Adaptive Behavior, and Artificial Life. "'The main conferences are the Inter-
national Conference on Genetic Algorithms and the Conference on Genetic Programming,
recently merged to form the Genetic and Evolutionary Computation Conference. The texts
by Melanie Mitchell (1996) and David Fogel (2000) give good overviewsof the field.

Algorithmsfor exploring unknown state spaces have been of interest for many centuries.
Depth-first search in amaze can beimplemented by keeping one's left hand on the wall; loops
can be avoided by marking each junction. Depth-first searchfails withirreversible actions; the
more general problem of exploring of Eulerian graphs(i.e., graphs in which each node has
equal numbers of incoming and outgoing edges) was solved by an algorithm dueto Hierhol zer
(1873). Thefirst thorough algorithmic study of the exploration problem for arbitrary graphs
was carried out by Deng and Papadimitriou (1990), who developed a completely genera
algorithm, but showed that no bounded competitive ratio is possible for exploring a general
graph. Papadimitriou and Yannakakis (1991) examined the question of finding pathsto agoal
in geometric path-planning environments (where all actions are reversible). They showed that

134

Chapter 4. Informed Search and Exploration

REAL-TIMESEARCH

PARALLELSEARCH

a small competitive ratio is achievable with sguare obstacles, but with genera rectangular
obstacles no bounded ratio can be achieved. (See Figure 4.19.)

The LRTA* agorithm was developed by Korf (1990) as part of an investigation into
real-time search for environments in which the agent must act after searching for only a
fixed amount of time (a much more common situation in two-player games). LRTA* isin
fact a special case of reinforcement learning algorithms for stochastic environments (Barto
etal.,1995). Itspolicy of optimism under uncertainty —aways head for the closest unvisited
state--can result in an exploration pattern that is less efficient in the uninformed case than
simple depth-first search (Koenig, 2000). Dasgupta et /. (1994) show that online iterative
deepening search is optimally efficient for finding a goal in a uniform tree with no heuristic
information. Several informed variants on the LRTA* theme have been developed with dif-
ferent methods for searching and updating within the known portion of the graph (Pemberton
and Korf, 1992). As yet, there is no good understanding of how to find goals with optimal
efficiency when using heuristic information.

Thetopic of parallel sear ch algorithmswas not coveredin the chapter, partly becauseit
requires alengthy discussion of parallel computer architectures. Parallel search is becoming
an important topic in both Al and theoretical computer science. A brief introduction to the
Al literature can be found in Mahanti and Daniels (1993).

4.1 Trace the operation of A* search applied to the problem of getting to Bucharest from
Lugoj using the straight-line distance heuristic. That is, show the sequence of nodes that the
algorithm will consider and the f, g, and h score for each node.

4.2 The heuristic path algorithm is a best-first search in which the objective function is
f(n) = (2 = w)g(n) + wh(n). For what values of w is this algorithm guaranteed to be
optimal? (You may assume that h is admissible) What kind of search does this perform
whenw = 0? Whenw = 1? Whenw = 2?

4.3 Proveeach of the following statements:

a. Breadth-first search isa specia case of uniform-cost search.

b. Breadth-first search, depth-first search, and uniform-cost search are specia cases of
best-first search.

c¢. Uniform-cost search isa special case of A* search.

4.4 Deviseastate space in which A* using GRAPH-SEARCH returns a suboptimal solution
with an A(n) function that is admissible but inconsistent.

45 Wesaw on page 96 that the straight-line distance heuristic leads greedy best-first search
astray on the problem of going from lasi to Fagaras. However, the heuristic is perfect on the
opposite problem: going from Fagaras to lasi. Are there problems for which the heuristicis
misleading in both directions?

Section 4.6. Summary 135

4.6 Inventaheuristic function for the 8-puzzle that sometirnesoverestimates, and show how
it can lead to a suboptimal solution on a particular problem. (Y ou can use acomputer to help
if youwant.) Provethat, if h never overestimatesby morethan c, A* using h returns asolution
whose cost exceeds that of the optimal solution by no more than c.

4.7 Provethat if a heuristic is consistent, it must be admissible. Construct an admissible
heuristic that is not consistent.

e 4.8 Thetraveling salesperson problem (TSP) can be solved via the minimum spanning tree
(MST) heuristic, which is used to estimate the cost of completing a tour, given that a partial
tour has already been constructed. The MST cost of a set of citiesis the smallest sum of the
link costs of any tree that connects all the cities.

a. Show how this heuristic can be derived from arelaxed version of the TSP.
b. Show that the M ST heuristic dominates straight-:linedistance.

c. Write a problem generator for instances of the TSP where cities are represented by
random pointsin the unit square.

d. Find an efficient algorithm in the literature for constructing the MST, and useit with an
admissible search agorithm to solveinstances of the TSP.

4.9 On page 108, we defined the relaxation of the 8-puzzle in which atile can movefrom
square A to square B if B is blank. The exact solution of this problem defines Gaschnig's
heuristic (Gaschnig, 1979). Explain why Gaschnig's heuristic is at least as accurate as h4
(misplaced tiles), and show cases whereit is more accurate than both 4, and hy (Manhattan
distance). Can you suggest away to calculate Gaschnig's heuristic efficiently?

4.10 We gave two simple heuristics for the 8-puzzle:: Manhattan distance and misplaced
tiles. Several heuristicsin the literature purport to improve on this—see, for example, Nils-
son (1971), Mostow and Prieditis (1989), and Hansson et al. (1992). Test these claims by
implementing the heuristics and comparing the performance of theresulting algorithms.

411 Givethe name of the algorithm that results from each of the following special cases:
a. Local beam search with k = 1.
b. Local beam search with oneinitial state and no limit on the number of states retained.
c. Simulated annealing with T = 0 at all times (and omitting the termination test).
d. Genetic algorithm with population size N = 1.

4.12 Sometimes there is no good evaluation function for a problem, but there is a good
comparison method: a way to tell whether one nodeis better than another, without assigning
numerical values to either. Show that this is enough to do a best-first search. Is there an
analog of A*?

4.13 Relatethe time complexity of LRTA* to its space complexity.

4.14 Suppose that an agent is in a 3 X 3 maze environment like the one shown in Fig-
ure4.18. The agent knows that itsinitial locationis(1,1), that thegoal isat (3,3), and that the

136

Chapter 4. Informed Search and Exploration

four actions Up, Down, Left, Right have their usual effects unless blocked by awall. The
agent does not know where theinternal wallsare. In any given state, the agent perceives the
set of legal actions; it can also tell whether thestateisone it has visited before or a new state.
a. Explain how this online search problem can be viewed as an offlinesearch in belief state
space, where the initial belief state includes all possible environment configurations.
How largeis theinitial belief state? How large is the space of belief states?
b. How many distinct percepts are possiblein theinitial state?
c. Describe the first few branches of a contingency plan for this problem. How large
(roughly) isthe complete plan?
Notice that thiscontingency planisasolution for every possible environment fitting the given
description. Therefore, interleaving of search and execution is not strictly necessary evenin
unknown environments.

4.15 Inthisexercise, we will explore the use of local search methods to solve TSPs of the
type definedin Exercise 4.8.
a Devise ahill-climbing approach to solve TSPs. Compare the results with optimal solu-
tions obtained viathe A* agorithm with the MST heuristic (Exercise4.8).
b. Devise a genetic algorithm approach to the traveling salesperson problem. Compare
results to the other approaches. You may want to consult Larrafiaga et al. (1999) for
some suggestions for representations.

416 Generate alarge number of 8-puzzle and 8-queens instances and solve them (where
possible) by hill climbing (steepest-ascent and first-choice variants), hill climbing with ran-
dom restart, and simulated annealing. Measure the search cost and percentage of solved
problems and graph these against the optimal solution cost. Comment on your results.

4.17 Inthisexercise, wewill examine hill climbing in the context of robot navigation, using
the environment in Figure 3.22 as an example.

a. Repeat Exercise 3.16 using hill climbing. Does your agent ever get stuck in alocal
minimum? Isit possiblefor it to get stuck with convex obstacles?

b. Construct a nonconvex polygonal environment in which the agent gets stuck.

c. Modify the hill-climbing algorithm so that, instead of doing a depth-1 search to decide
where to go next, it does a depth-k search. It should find the best k-step path and do
one step along it, and then repeat the process.

d. Istheresome k for which the new algorithmis guaranteed to escape from local minima?

e. Explain how LRTA* enables the agent to escape from local minimain this case.

4.18 Compare the performance of A* and RBFS on a set of randomly generated problems
in the 8-puzzle (with Manhattan distance) and TSP (with MST —see Exercise 4.8) domains.
Discuss your results. What happens to the performance of RBFS when a small random num-
ber is added to the heuristic valuesin the 8-puzzle domain?

CONSTRAINT
SATISFACTION PROBLEMS

BLACKBOX

REPRESENTATION

CONSTRAINT
SATISFACTION
PROBLEM
VARIABLES
CONSTRAINTS
DOMAIN
VALUES
ASSIGNMENT

CONSISTENT

OBJECTIVE
FUNCTION

Inwhichwe see how treating statesas more than just littleblack boxes|eadsto the
invention of a range of powerful new search methodsand a degper under standing
of problemstructureand complexity.

Chapters 3 and 4 explored the idea that problems can be solved by searching in a
space of states. These states can be evaluated by domain-specific heuristics and tested to
see whether they are goal states. From the point of view of the search algorithm, however,
each stateis ablack box with no discernible internal structure. It is represented by an arbi-
trary datastructurethat can be accessed only by the problem-,specifiaoutines—the successor
function, heuristic function, and goal test.

This chapter examines congtraint satisfaction problems, whose states and goal test
conform to a standard, structured, and very simple representation (Section 5.1). Search d-
gorithms can be defined that take advantage of the structure of states and use general-purpose
rather than problem-specific heuristics to enabl e the solution of large problems (Sections 5.2—
5.3). Perhaps most importantly, the standard representation of the goal test revealsthe struc-
ture of the problem itself (Section 5.4). This leads to methods for problem decomposition
and to an understanding of the intimate connection between the structure of a problem and
the difficulty of solving it.

Formally speaking, a congtraint satisfaction problem (or CSP) is defined by a set of vari-
ables, X, Xo,...,X,, and aset of congraints, Cy, Cs,...,C,,. Each variable X; has a
nonempty domain D; of possible values. Each constraint C; involves some subset of the
variables and specifies the allowable combinations of valuesfor that subset. A state of the
problemis defined by an assignment of valuesto someor al of the variables, {X; = v;, X; =
vj,...). An assignment that does not violate any constraints is called a consistent or legal
assignment. A complete assignment is one in which every variable is mentioned, and a so-
lution to a CSP is a complete assignment that satisfiesall the constraints. Some CSPs also

require a solution that maximizes an objective function.

138

Chapter 5. Congtraint Satisfaction Problems

CONSTRAINT GRAPH

So what does dl this mean? Suppose that, having tired of Romania, we are looking
a amap of Australia showing each of its states and territories, as in Figure 5.1(a), and that
we are given the task of coloring each region either red, green, or blue in such away that no
neighboring regions have the same color. To formulatethis as a CSP, we define the variables
to betheregions: WA, NT, Q, NSW,V , SA,and T . Thedomain of each variableis the set
{red, green, blue). The constraintsrequire neighboring regions to have distinct colors; for
example, the allowable combinationsfor WA and NT are the pairs

{(red,green),(red,blue),(green,red),(green, blue),(blue,red),(blue,green)).

(The constraint can also be represented more succinctly as the inequality WA # NT, pro-
vided the constraint satisfaction agorithm has some way to evauate such expressions.) There
are many possiblesolutions, such as

{WA= red, NT = green,Q=red, NSW =green, V =red, SA= blue, T =red }.

It is helpful to visualize a CSP as aconstraint graph, as shown in Figure 5.1(b). The nodes
o the graph correspond to variables of the problem and the arcs correspond to constraints.

Treating a problem as a CSP confers several important benefits. Because the repre-
sentation of states in a CSP conforms to a standard pattern—that is, a set of variables with
assigned vaues—the successor function and goal test can be written in a generic way that
applies to al CSPs. Furthermore, we can develop effective, generic heuristics that require
no additional, domain-specific expertise. Finaly, the structure of the constraint graph can
be used to simplify the solution process, in some cases giving an exponentia reduction in
complexity. The CSP representation is the first, and simplest, in a series of representation
schemesthat will be developed throughout the book.

Tasmania

(a) (b)

Figure5.1 (a) Theprincipal statesand territoriesof Australia. Coloring this map can be
viewed as a constraint satisfaction problem. The goal is to assign colorsto each region so
that no neighboringregionshave the same color. (b) The map-coloring problem represented
as aconstraintgraph.

Section 5.1.

Constraint Satisfaction Problems 139

FINITE DOMAINS

BOOLEAN CSPS

INFINITE DOMAINS

CONSTRAINT
LANGUAGE

LINEAR
CONSTRAINTS

NONLINEAR
CONSTRAINTS

CONTINUOUS
DOMAINS

Itisfairly easy to seethat a CSP can begiven an incremental formulation asastandard
search problem asfollows:

¢ Initial state the empty assignment {1}, in which all variables are unassigned.

¢ Successor function: avalue can be assigned to any unassigned variable, provided that
it does not conflict with previously assigned variables.

{ Goal test: the current assignment is complete.

¢ Path cogt: aconstant cost (e.g., 1) for every step.

Every solution must be a complete assignment and therefore appears at depth n if there are
n variables. Furthermore, the search tree extends only to depth n. For these reasons, depth-
first search algorithms are popular for CSPs. (See Section 5.2.) It is also the case that the
path by which a solution is reached isirrelevant. Hence, we can also use a complete-state
formulation,in which every state is a complete assignment that might or might not satisfy
the constraints. Local search methods work well for thisformulation. (See Section 5.3.)

The simplest kind of CSPinvolvesvariablesthat are discr ete and havefinitedomains.
Map-coloring problems are of this kind. The 8-queens problem described in Chapter 3 can
also be viewed as a finite-domain CSP, where the variables @1, ... , Qs are the positions of
each queenin columns1,. .., 8 and each variablehas the domain {1, 2, 3,4, 5,6, 7, 8}. If the
maximum domain size of any variablein a CSP is d, then the number of possible complete
assignments is O(d") —that is, exponentia in the number of variables. Finite-domain CSPs
include Boolean CSPs, whose variables can be either true or false. Boolean CSPs include
as special cases some NP-complete problems, such as 3SAT. (See Chapter 7.) In the worst
case, therefore, we cannot expect to solve finite-domain CSPsin less than exponential time.
In most practical applications, however, general-purpose CSP al gorithms can solve problems
ordersof magnitude larger than those solvabl e via the general -purpose search algorithms that
we saw in Chapter 3.

Discrete variables can aso have infinite domains—for example, the set of integers or
the set of strings. For example, when scheduling construction jobsonto a calendar, each job's
start date is a variable and the possible values are integer numbers of days from the current
date. With infinite domains, it is no longer possible to describe constraints by enumerating
all alowed combinations of values. Instead, a congtraint language must be used. For ex-
ample, if Joby, which takes fivedays, must precede Jobs, then we would need a constraint
language of algebraic inequalities such as StartJoby +5< StartJobs. It isaso no longer
possible to solve such constraints by enumerating all possible assignments, because there are
infinitely many of them. Special solution agorithms (which we will not discuss here) exist
for linear constraintson integer variables—that is, constraints, such as the one just given,
in which each variable appears only in linear form. It can be shown that no algorithm exists
for solving general nonlinear constraintson integer variables. In some cases, we can reduce
integer constraint problems to finite-domain problems simply by bounding the values of all
the variables. For example, in a scheduling problem, we can set an upper bound equal to the
total length of all the jobs to be scheduled.

Constraint satisfaction problems with continuousdomains are very common in thereal
world and are widely studied in the field of operations research. For example, the scheduling

Chapter 5. Constraint Satisfaction Problems

LINEAR
PROGRAMMING

UNARY CONSTRAINT

BINARY CONSTRAINT

CRYPTARITHMETIC

AUXILIARY
VARIABLES

CONSTRAINT
HYPERGRAPH

PREFERENCE

of experiments on the Hubble Space Telescope requires very precise timing of observations,
the start and finish of each observation and maneuver are continuous-valued variables that
must obey a variety of astronomical, precedence, and power constraints. The best-known
category of continuous-domain CSPs is that of linear programming problems, where con-
straints must be linear inequalities forming a convex region. Linear programming problems
can be solved in time polynomial in the number of variables. Problems with different types of
constraints and objectivefunctions have a so been studied — quadratic programming, second-
order conic programming, and So on.

In addition to examining the types of variables that can appear in CSPs, it is useful to
look at the types of constraints. The simplest typeistheunary constraint,which restricts the
value of a single variable. For example, it could be the case that South Australians actively
dislike the color green. Every unary constraint can be eliminated simply by preprocessing
the domain of the corresponding variable to remove any valuethat violates the constraint. A
binary congtraint relates two variables. For example, SA = NSW isabinary constraint. A
binary CSPis one with only binary constraints; it can be represented as a constraint graph, as
in Figure 5.1(b).

Higher-order constraints involve three or more variables. A familiar example is pro-
vided by cryptarithmeticpuzzles. (See Figure 5.2(a).) It is usual toinsist that each letter in
acryptarithmetic puzzle represent a different digit. For the case in Figure 5.2(a)), this would
be represented as the six-variable constraint Aildiff (F, T,U,W, R, O). Alternatively, it can
be represented by acollection of binary constraints such as F # T. The addition constraints
on thefour columns of the puzzle aso involve severa variablesand can be written as

where X3, X», and X5 areauxiliary variablesrepresenting the digit (0 or 1) carried over into
the next column. Higher-order constraints can be represented in a constraint hyper graph,
such as the one shown in Figure 5.2(b). The sharp-eyed reader will have noticed that the
Alldiff constraint can be broken down into binary constraints— F# T, F # U, and so on.
In fact, as Exercise 5.11 asks you to prove, every higher-order, finite-domain constraint can
bereduced to aset of binary constraintsif enough auxiliary variablesare introduced. Because
of this, we will deal only with binary constraintsin this chapter.

The constraints we have described so far have al been absolute constraints, violation
of which rules out apotential solution. Many real-world CSPsinclude pr efer enceconstraints
indicating which solutions are preferred. For example, in a university timetabling problem,
Prof. X might prefer teaching in the morning whereas Prof. Y prefers teaching in the after-
noon. A timetable that has Prof. X teaching at 2 p.m. would still be a solution (unless Prof. X
happens to be the department chair), but would not be an optimal one. Preference constraints
can often be encoded as costs on individua variable assignments— for example, assigning
an afternoon dlot for Prof. X costs 2 points against the overall objective function, whereas a
morning slot costs 1. With thisformulation, CSPs with preferences can be solved using opti-

Section 5.2.

Backtracking Search for CSPs 141

TWO
+ TWO

FOUR

(a) (b

Figure5.2 (a) A cryptarithmeticproblem. Each letter standsfor adistinct digit; theaimis
to find a substitution of digitsfor letters such that the resulting sumis arithmetically correct,
with the added restriction that no leading zeroes are allowed. (b) The constraint hypergraph
for the cryptarithmeticproblem, showingthe Alldiff constraint aswell asthecolumn addition

constraints. Each constraint is a square box connected to the variablesit constrains.

mization search methods, either path-based or local. We do not discuss such CSPs further in
this chapter, but we provide some pointersin the bibliographical notes section.

5.2 BACKTRACKING SEARCH FOR CSPs

COMMUTATIVITY

BACKTRACKING
SEARCH

The preceding section gave aformulation of CSPs as search problems. Using this formula-
tion, any of the search algorithms from Chapters 3 and 4 can solve CSPs. Suppose we apply
breadth-first search to the generic CSP problem formulation given in the preceding section.
We quickly notice something terrible: the branching factor a the top level is nd, because any
of d values can be assigned to any of n variables. At the next level, the branching factor is
(n-1)d, and so on for n levels. We generate atree withn!. d" leaves, even though there are
only d" possible complete assignments!

Our seemingly reasonable but naive problem formulation hasignored acrucial property
common to al CSPs: commutativity. A problem is commutative if the order of application
of any given set of actions has no effect on the outcome. This is the case for CSPs be-
cause, when assigning valuesto variables, we reach the same partial assignment, regardless
of order. Therefore, all CSP search algorithms generate successors by considering possible
assignments for only a single variable at each node in the search tree. For example, at the
root node of a search treefor coloring the map of Australia, we might have a choice between
SA=red, SA=green, and SA= blue, but we would never choose between SA =red and
WA = blue. With thisrestriction, the number of leavesisd", as we would hope.

The term backtracking search is used for a depth-first search that chooses values for
one variable at a time and backtracks when a variable has no legal valuesleft to assign. The
algorithm is shown in Figure 5.3. Notice that it uses, in effect, the one-at-a-time method of

142

Chapter 5. Constraint Satisfaction Problems

function BACKTRACKING-SEARCH(¢sp) returnsasolution, or failure
return RECURSIVE-BACKTRACKING({ }, csp)

function RECURSIVE-BACKTRACKING(assignment, csp) returnsasolution, or failure
\ if assignment is completethen return assignment
var < SELECT-UNASSIGNED- VARIABLE(VARIABLES[csp], assignment, csp)
for each value in ORDER-DOMAIN-VALUES(zar, assignment, csp) do
if valueisconsistent with assignment accordingto CONSTRAINTS[¢sp] then
add {var = value) to assignment
result < RECURSIVE-BACKTRACKING(assignment, csp)
if result +£ failure then return result
remove { var = value) from assignment
return failure

Figure 5.3 A simple backtracking algorithm for constraint satisfaction problems. The
algorithm is modeled on the recursive depth-first search of Chapter 3. The functions
SELECT-UNASSIGNED-VARIABLE and ORDER-DOMAIN-VALUES can be used to imple-
ment the general -purposeheuristics discussedin the text.

Figure5.4 Partof the search tree generated by simple backtracking for the map-coloring
problemin Figure5.1.

incremental successor generation described on page 76. Also, it extends the current assign-
ment to generate a successor, rather than copying it. Because the representation of CSPsis
standardized, thereis no need to supply BACKTRACKING-SEARCH with a domain-specific
initial state, successor function, or goal test. Part of the search treefor the Australia problem
is shownin Figure 5.4, where we have assigned variablesin the order WA, NT, Q,.. ..

Plain backtracking is an uninformed algorithm in the terminology of Chapter 3, so we
do not expect it to be very effectivefor large problems. Theresultsfor some sample problems
are shown in the first column of Figure 5.5 and confirm our expectations.

In Chapter 4 we remedied the poor performance of uninformed search algorithms by
supplying them with domain-specific heuristic functions derived from our knowledge of the
problem. It turns out that we can solve CSPs efficiently without such domain-specific knowl-

Section 5.2. Backtracking Search for CSPs 143
|Problem | Backiracking| BT+MRV| FowadChecking| ~ FC+MRV | Min-Conflicts |
USA (> 1,000K) (> 1,000K) 2K 60 64
n-Queens (>40,000K) 13,500K (> 40,000K) 817K 4K
Zebra 3,859K 1K 35K 0.5K 2K
Random 1 415K 3K 26K 2K
Random 2 942K 27K 77K 15K

MINIMUM REMAINING
VALUES

Figure55 Comparisonof variousCSP algorithmson various problems. The algorithms
from left to right, are ssimple backtracking, backtracking with the MRV heuristic, forward
checking, forward checking with MRV, and minimum conflictslocal search. Listed in each
cell is the median number of consistency checks (over five runs) required to solve the prob-
lem; notethat all entries except the two in the upper right are in thousands (K). Numbersin
parenthesesmean that no answer wasfound in the allotted number of checks. Thefirst prob-
lemisfinding a 4-coloringfor the 50 states of the United States of America. The remaining
problemsare taken from Bacchus and van Run (1995), Table 1. The second problem counts
the total number of checks required to solve al n-Queens problemsfor nfrom 2to 50. The
third isthe " ZebraPuzzle,” as describedin Exercise’5.13. Thelast two are artificial random
problems. (Min-conflictswas not run on these.) The results suggest that forward checking
withthe MRV heuristicis better on all these problemsthan the other backtrackingalgorithms,
but not always better than min-conflictslocal search.

edge. Instead, we find general -purpose methods that address the following questions:

1. Which variable should be assigned next, and in what order should its values be tried?

2. What are theimplications of the current variable assignments for the other unassigned
variables?

3. When a path fals—that is, a stateis reached in which a variable has no legal values—
can the search avoid repeating thisfailurein subsequent paths?

The subsections that follow answer each of these questionsin turn.

Variableand valueordering

The backtracking algorithm contains the line
var < SELECT-UNASSIGNED-VARIABLE(VARIABLES[csp], assignment, csp).

By default, SELECT-UNASSIGNED-VARIABLE simply selects the next unassigned variable
in the order given by thelist VARIABLES[esp]. Thisstatic variableordering seldom resultsin
the most efficient search. For example, after the assignmentsfor WA =red and NT = green,
thereisonly one possible valuefor SA, soit makessenseto assign SA = blue next rather than
assigning Q. Infact, after SA isassigned, thechoicesfor Q, NSW, and V areall forced. This
intuitive idea—choosing the variable with the fewest "'legd" vaues—is called the minirum
remainingvalues(MRV) heuristic. It also has been called the* most constrained variable™ or
"fail-first" heuristic, the latter becauseit picks a variable that is most likely to cause afailure
soon, thereby pruning the search tree. If thereis avariable X with zero legal valuesremain-
ing, the MRV heuristic will select X and failure will be detected immediately —avoiding
pointless searches through other variables which always will fail when X isfinally selected.

144

Chapter 5. Constraint Satisfaction Problems

DEGREE HEURISTIC

LEAST-
CONSTRAINING-
VALUE

FORWARD
CHECKING

The second column of Figure5.5, labeled BT+MRYV, shows the performanceof thisheuristic.
The performanceis 3 to 3,000 times better than simple backtracking, depending on the prob-
lem. Note that our performance measure ignores the extra cost of computing the heuristic
values; the next subsection describes a method that makes this cost manageable.

The MRV heuristic doesn't help at all in choosing thefirst region to color in Australia,
because initially every region has three legal colors. In thiscase, the degreeheuristic comes
in handy. It attempts to reduce the branching factor on future choices by selecting the vari-
able that is involved in the largest number of constraints on other unassigned variables. In
Figure 5.1, SA is the variable with highest degree, 5; the other variables have degree 2 or 3,
except for T, which has0. Infact, once SA ischosen, applying thedegree heuristic solvesthe
problem without any false seps—you can choose any consistent color at each choice point
and till arrive at a solution with no backtracking. The minimum remaining values heuristic
is usually a more powerful guide, but the degree heuristic can be useful as a tie-breaker.

Once a variable has been selected, the agorithm must decide on the order in which to
examineits values. For this, the least-constraining-valueheuristic can be effectivein some
cases. It prefers the value that rules out the fewest choices for the neighboring variablesin
the constraint graph. For example, suppose that in Figure 5.1 we have generated the partial
assignment with WA = red and NT = green, and that our next choiceisfor Q. Blue would
be a bad choice, because it eliminates the last legal value left for Q's neighbor, SA. The
least-constraining-value heuristic therefore prefers red to blue. In general, the heuristic is
trying to leave the maximum flexibility for subsequent variableassignments. Of course, if we
aretrying to find all the solutions to a problem, not just the first one, then the ordering does
not matter because we have to consider every value anyway. The same holdsif there are no
solutions to the problem.

Propagating information through constraints

So far our search algorithm considers the constraints on a variable only at the time that the
variable is chosen by SELECT-UNASSIGNED-VARIABLE. But by looking at some of the
constraints earlier in the search, or even before the search has started, we can drastically
reduce the search space.

Forward checking

One way to make better use of constraints during search is called forward checking. When-
ever avariable X isassigned, theforward checking process |ooks at each unassigned variable
Y that is connected to X by a constraint and deletes from Y's domain any valuethat isin-
consistent with the value chosen for X. Figure 5.6 shows the progress of a map-coloring
search with forward checking. There are two important points to notice about this exam-
ple. First, notice that after assigning WA = red and Q = green, thedomainsof NT and SA
are reduced to asingle value; we have eliminated branching on these variables altogether by
propagating information from WA and Q. The MRV heuristic, which is an obvious part-
ner for forward checking, would automatically select SA and NT next. (Indeed, we can
view forward checking as an efficient way to incrementally compute the information that the

Section 5.2. Backtracking Search for CSPs 145
I
Initia domains
After WA=red |® GB|RGB|RGB|RGB| GB|RGB
After Q=green 3 B| @ |[R_B[rRGB B[RG B
After V=blue | B R ® RG B

PROPAGATIGN

ARC CONSSTENCY

Figure 5.6 The progress o a map-coloring search with forward checking. WA =red
is assgned first; then forward checking deletes red from the domains of the neighboring
variables NT and SA. After Q= green, green isddeted from the domainsdf NT, SA, and
NSW. After V = blue, blue is deleted from the domainsd NSW and SA, leaving SA with

no legd vaues.

MRV heuristic needs to do its job.) A second point to notice is that, after V = blue, the
domain of SA is empty. Hence, forward checking has detected that the partial assignment
{WA=red,Q= greenV = blue) is inconsistent with the constraints of the problem, and
the algorithm will therefore backtrack immediately.

Congraint propagation

Although forward checking detects many inconsistencies, it does not detect all of them. For
example, consider the third row of Figure5.6. It shows that when WA isred and Qs green,
both NT and SA are forced to be blue. But they are ,adjacentand so cannot have the same
vaue. Forward checking does not detect this as an inconsistency, because it does not look far
enough ahead. Congtraint propagation is the general term for propagating the implications
of aconstraint on one variable onto other variables; in this case we need to propagate from
WA and Q onto N T and SA, (aswas done by forward checking) and then onto the constraint
between NT and SA to detect the inconsistency. And we want to do thisfast: it is no good
reducing the amount of search if we spend more time propagating constraints than we would
have spent doing asimple search.

The idea of arc consstency provides a fast method of constraint propagation that is
substantially stronger than forward checking. Here, “arc” refers to a directed arc in the con-
straint graph, such asthe arcfrom SA to NSW. Giventhe current domainsof SA and NSW,
thearcisconsistent if, for every value x of SA, thereis somevaluey of NSW that isconsis-
tent with x. In the third row of Figure 5.6, the current domains of SA and NSW are {blue)
and {red, blue) respectively. For SA = blue, there is a consistent assignment for NSW,
namely, NSW = red; therefore, the arc from SA to NSW is consistent. On the other hand,
thereverse arc from NSW to SA is not consistent: for the assignment NSW = blue, thereis
no consistent assignment for SA. The arc can be made consistent by deleting the value blue
from the domain of NSW.

We can aso apply arc consistency to the arc from SA to NT at the same stage in the
search process. The third row of the table in Figure 5.6 shows that both variables have the
domain {blue). Theresult is that blue must be deleted from the domain of SA, leaving the
domain empty. Thus, applying arc consistency has resulted in early detection of an inconsis-

146

Chapter 5. Constraint Satisfaction Problems

function AC-3(csp) returnsthe CSP, possibly with reduced domains
inputs: csp, abinary CSP withvariables{ X, Xs, ..., Xn}
local variables. queue, aqueued arcs, initidly dl thearcsin cp

while queue is not empty do
{Xi, X;) < REMOVE-FIRST(queue)
if REMOVE-INCONSISTENT-VALUES(X;, X;) then
for each X}, in NEIGHBORS[X;] - { X} do
add (X, X;) to queue

function REMOVE-INCONSISTENT-VALUES(X;, X;) returnstrueiff we removeavaue
removed — false
for each x in DoMAIN[X;] do
if no vauey in DOMAIN[.X ;] dlows(z,y) to satisfy the congtraint between X; and X;
then deletex from DoMAIN[X;]; removed — true
return removed

Figure5.7 The arc condstency agorithm AC-3. After applying AC-3, either every arc
is arc-consistent, or some variable has an empty domain, indicating that the CSP cannot be
made arc-cons stent (and thus the CSP cannot be solved). The name"AC-3" was used by the
dgorithm'sinventor (Mackworth,1977) becauseit's the third version developedin the paper.

tency that is not detected by pure forward checking.

Arc consistency checking can be applied either as a preprocessing step before the be-
ginning of the search process, or as a propagation step (like forward checking) after every
assignment during search. (The latter algorithm is sometimes called MAC, for Maintaining
Arc Consistency.) In either case, the process must be applied repeatedly until no more incon-
sistencies remain. Thisis because, whenever avalueis deleted from some variable's domain
to remove an arc inconsistency, a new arc inconsistency could arise in arcs pointing to that
variable. Thefull algorithm for arc consistency, AC-3, uses a queue to keep track of the arcs
that need to be checked for inconsistency. (See Figure 5.7.) Each arc (X, X;) inturnis
removed from the agenda and checked; if any values need to be deleted from the domain of
X;, thenevery arc (X, X;) pointing to X; must be reinserted on the queue for checking. The
complexity of arc consistency checking can be analyzed asfollows: a binary CSP has at most
O(n?) arcs; each arc (X}, X;) can be inserted on the agenda only d times, because X; has
a most d values to delete; checking consistency of an arc can be donein O(d?) time; so the
total worst-case timeis O(n2d®). Although thisis substantially more expensive than forward
checking, the extra cost is usually worthwhile.'

Because CSPs include 3SAT as a specia case, we do not expect to find a polynomial-
time a gorithm that can decide whether a given CSPis consistent. Hence, we deduce that arc
consistency does not reveal every possible inconsistency. For example, in Figure 5.1, the par-
tial assignment { WA = red, NSW = red) is inconsistent, but AC-3 will not find the incon-

1 The AC-4 agorithm, due to Mohr and Henderson (1986), runsin O (n2d?). See Exercise5.10.

Section 5.2.

Backtracking Search for CSPs 147

K-CONSISTENCY

NODE CONSISTENCY

PATH CONSISTENCY

STRONGLY
K-CONSISTENT

sistency. Stronger formsof propagation can be defined using the notion called k-consistency.
A CSPis k-consistent if, for any set of & — 1 variablesand for any consistent assignment to
those variables, a consistent value can always be assigned to any kth variable. For example,
1-consistency means that each individual variable by itself is consistent; thisis also called
node consistency. 2-consistency is the same as arc consistency. 3-consistency means that
any pair of adjacent variables can always be extended to a third neighboring variable; thisis
also called path consistency.

A graph is strongly k-consistent if it is k-consistent and is also (k — 1)-consistent,
(k—2)-consistent, . .. al theway downto 1-consistent. Now suppose we havea CSP problem
with n nodes and makeit strongly n-consistent (i.e., strongly k-consistent for £ =n). We can
then solve the problem with no backtracking. First, we choose a consistent valuefor X;. We
are then guaranteed to be able to choose a valuefor X5 because the graph is 2-consistent, for
X3 becauseit is 3-consistent, and so on. For each variable X;, we need only search through
the d valuesin thedomain to find avalueconsistent with X1, ..., X; ;. Weare guaranteed to
findasolutionintime O(nd). Of course, thereisnofreelunch: any algorithm for establishing
n-consistency must take time exponential in n in the worst case.

There is a broad middle ground between n-consistency and arc consistency: running
stronger consistency checks will take more time, but will have a greater effect in reducing
the branching factor and detecting inconsistent partial assignments. It is possible to calcul ate
the smallest value k such that running k-consistency ensures that the problem can be solved
without backtracking (see Section 5.4), but thisis often impractical. In practice, determining
the appropriate level of consistency checking is mostly an empirical science.

Handling special constraints

Certain types of constraints occur frequently in real problems and can be handled using
special-purpose algorithms that are more efficient than the general-purpose methods de-
scribed so far. For example, the Alldiff constraint says that all the variables involved must
have distinct values (asin the cryptarithmetic problem). One simple form of inconsistency
detection for Alldiff constraints works as follows: if there are m variables involved in the
constraint, and if they have n possible distinct values altogether, and m > n, then the con-
straint cannot be satisfied.

This leads to the following simple algorithm: First, remove any variable in the con-
straint that has a singleton domain, and delete that variable's value from the domains of the
remaining variables. Repeat aslong as there are singleton variables. If at any point an empty
domain is produced or there are more variablesthan domain val uesleft, then an inconsistency
has been detected.

Wecan usethis method to detect theinconsistency in the partial assignment { WA = red,
NSW =red) for Figure 5.1. Notice that the variables SA, NT, and Q are effectively con-
nected by an Alldiff constraint because each pair must be a different color. After applying
AC-3 with the partial assignment, the domain of each variableis reduced to { green, blue).
That is, we have three variables and only two colors, so the Alldiff constraint is violated.
Thus, asimple consistency procedure for a higher-order constraint is sometimes more effec-

148

Chapter 5. Constraint Satisfaction Problems

RESOURCE
CONSTRAINT

BROPASATION

CHRONOLOGICAL
BACKTRACKING

CONFLICT SET

BACKJIUMPING

tivethan applying arc consistency to an equivalent set of binary constraints.

Perhaps the most important higher-order constraint is the resource constraint, some-
times called the atmost constraint. For example, let PAq,..., PA, denote the numbers of
personnel assigned to each of four tasks. The constraint that no more than 10 personnel are
assigned in total is written as atmost(10, PA;, PA2, PAs, PAs). Aninconsistency can be
detected simply by checking the sum of the minimum values of the current domains; for
example, if each variable has the domain {3, 4, 5, 6}, the atmost constraint cannot be satis-
fied. We can also enforce consistency by deleting the maximum value of any domain if itis
not consistent with the minimum values of the other domains. Thus, if each variablein our
example has thedomain {2, 3, 4, 5,6}, the values 5 and 6 can be deleted from each domain.

For large resource-limited problems with integer values—such as logistical problems
involving moving thousands of people in hundreds of vehicles—it is usually not possible to
represent the domain of each variable as a large set of integers and gradually reduce that
set by consistency checking methods. Instead, domains are represented by upper and lower
bounds and are managed by bounds propagation. For example, let's suppose there are two
flights, 271 and 272, for which the planes have capacities 165 and 385, respectively. The
initial domains for the numbers of passengers on each flight are then

Flight271 € [0,165] and Flight272 < [0, 385] .

Now suppose we have the additional constraint that the two flights together must carry 420
people: Flight271+ Flight272 € [420, 420]. Propagating bounds constraints, we reduce the

domains to
Flight271 € [35,165] and Flight272 € [255, 385] .

We say that a CSP is bounds-consistent if for every variable X, and for both the lower bound
and upper bound vaues of X, there exists some value of Y that satisfies the constraint be-
tween X and Y, for every variable Y. Thiskind of bounds propagation is widely used in

practical constraint problems.

I ntelligent backtracking: looking backward

The BACKTRACKING-SEARCH algorithm in Figure 5.3 has a very simple policy for what to
do when a branch of the search fails: back up to the preceding variable and try a different
vaue for it. Thisis caled chronological backtracking, because the most recent decision
point isrevisited. In this subsection, we will see that there are much better ways.

Consider what happens when we apply simple backtracking in Figure 5.1 with a fixed
variable ordering @), NSW, V, T, SA, WA, NT. Suppose we have generated the partial
assignment {Q =red, NSW = green,V = blue, T =red). When we try the next variable,
SA, we see that every value violates a constraint. We back up to T and try a new color
for Tasmanial Obviously thisis silly — recoloring Tasmaniacannot resolve the problem with
South Australia

A more intelligent approach to backtracking is to go all the way back to one of the
set of variables that caused thefailure. This set is called the conflict set; here, the conflict
set for SA is {Q, NSW, V). In genera, the conflict set for variable X is the set of previ-
ously assigned variablesthat are connected to X by constraints. The backjumping method

Section 5.2.

Backtracking Search for CSPs 149

CONFLICT-DIRECTED
BACKJUMPING

backtracks to the most recent variable in the conflict set; in this case, backjumping would
jump over Tasmaniaand try a new valuefor V. Thisis easily implemented by modifying
BACKTRACKING-SEARCH s0 that it accumulates the conflict set while checking for alegal
valueto assign. If no lega valueisfound, it should return the most recent element of the
conflict set along with the failure indicator.

The sharp-eyed reader will have noticed that forward checking can supply the conflict
set with no extra work: whenever forward checking based on an assignment to X deletes a
vauefrorn Y's domain, it should add X to Y's conflict set. Also, every timethelast valueis
deleted from Y’s domain, the variablesin the conflict set of Y are added to the conflict set of
X. Then, when we getto Y, we know immediately where to backtrack if needed.

The eagle-eyed reader will have noticed something odd: backjumping occurs when
every value in a domain is in conflict with the current assignment; but forward checking
detects this event and prevents the search from ever reaching such a node! Infact, it can be
shown that every branch pruned by backjumping isaise pruned by forward checking. Hence,
simple backjumping is redundant in a forward-checking search or, indeed, in a search that
uses stronger consistency checking, such as MAC.

Despite the observations of the preceding paragraph, the idea behind backjumping re-
mains agood one: to backtrack based on the reasons for failure. Backjumping noticesfailure
when a variable's domain becomes empty, but in many cases a branch is doomed long before
this occurs. Consider again the partial assignment { WA = red, NSW = red) (which, from
our earlier discussion, isinconsistent). Suppose wetry T = red next and then assign N T, Q,
V, SA. Weknow that no assignment can work for theselast four variables, so eventualy we
run out of valuestotry at NT. Now, thequestionis, where to backtrack? Backjumping cannot
work, because N T does have values consistent with the preceding assigned variables— NT
doesn't have a complete conflict set of preceding variablesthat caused it to fail. We know,
however, that thefour variablesNT, Q, V, and SA, taken together, failed because of a set of
preceding variables, which must be those variables which directly conflict with thefour. This
leads to a deeper notion of the conflict set for a variablesuchas NT: itisthat set of preced-
ing variablesthat caused N T, together with any subsequent variables, to have no consistent
solution. In this case, thesetis WA and NSW, so the agorithm should backtrack to NSW
and skip over Tasmania. A backjumping algorithm that uses conflict sets defined in this way
is called conflict-dir ectedbackjumping.

We must now explain how these new conflict sets are computed. The method isin
fact very simple. The ""terminal” failure of a branch of the search always occurs because a
variable's domain becomes empty; that variable has a standard conflict set. In our example,
SA fails, and its conflict set is (say) { WA, NT,Q}. We backjump to Q, and Q absorbs
the conflict set from SA (minus @ itself, of course) into its own direct conflict set, whichis
{NT, NSW); the new conflict setis { WA, NT', NSW}. That is, there is no solution from
Q onwards, given the preceding assignment to { WA, NT', NSW). Therefore, we backtrack
to NT, the most recent of these. N T absorbs { WA,NT,NSW) —{NT) into its own
direct conflict set { WA}, giving { WA, NSW) (as stated in the previous paragraph). Now
the algorithm backjumps to NSW, as we would hope. To summarize: let X, be the current
variable, and let conf (X ;) beitsconflict set. If every possible valuefor X ; fails, backjump

150 Chapter 5. Constraint Satisfaction Problems

to the most recent variable X; in conf (X;), and set
conf (X;) « conf (X;) U conf(X;) — {X;}.
Conflict-directed backjumping takes us back to the right point in the search tree, but doesn't

O TRANT prevent usfrom making the same mistakesin another branch of thetree. Constraint learning
actually modifiesthe CSP by adding a new constraint that isinduced from these conflicts.

5.3 LOCAL SEARCH FOR CONSTRAINT SATISFACTION PROBLEMS

L ocal-search agorithms (see Section 4.3) turn out to be very effectivein solving many CSPs.
They use a complete-state formulation: the initial state assigns a value to every variable,
and the successor function usually works by changing the value of one variable at a time.
For example, in the 8-queens problem, the initial state might be a random configuration of
8 queens in 8 columns, and the successor function picks one queen and considers moving it
elsewhereinitscolumn. Another possibility would be start with the 8 queens, one per column
in apermutation of the 8 rows, and to generate a successor by having two queens swap rows.>
We have actually already seen an example of local search for CSP solving: the application of
hill climbing to the n-queens problem (page 112). The application of WALKSAT (page 223)
to solve satisfiability problems, which are a specia case of CSPs, is another.

In choosing anew valuefor avariable, the most obvious heuristic is to select the value

MIN-CONFLICTS that results in the minimum number of conflicts with other variables—the min-conflicts
heuristic. The algorithm is shown in Figure 5.8 and its application to an 8-queens problemis
diagrammed in Figure 5.9 and quantifiedin Figure 5.5.

Min-conflictsissurprisingly effectivefor many CSPs, particularly when given areason-
ableinitial state. Its performance is shown in the last column of Figure 5.5. Amazingly, on
the n-queens problem, if you don't count theinitial placement of queens, the runtime of min-
conflictsis roughly independent d problem size. It solves even the million-queens problem
in an average of 50 steps (after the initial assignment). This remarkable observation was the
stimulusleading to agreat deal of research in the 1990s on local search and the distinction be-
tween easy and hard problems, which we take up in Chapter 7. Roughly speaking, n-queens
is easy for local search because solutions are densely distributed throughout the state space.
Min-conflictsalso works well for hard problems. For example, it has been used to schedule
observationsfor the Hubble Space Telescope, reducing the time taken to schedule a week of
observationsfrom three weeks (1) to around 10 minutes.

Another advantage of local search is that it can be used in an online setting when the
problem changes. This is particularly important in scheduling problems. A week's airline
schedule may involve thousands of flights and tens of thousands of personnel assignments,
but bad wesather at one airport can render the schedule infeasible. We would like to repair the
schedule with a minimum number of changes. This can be easily done with alocal search
algorithm starting from the current schedule. A backtracking search with the new set of

2 Local search can easily be extended to CSPs with objective functions. In that case, all the techniques for hill
climbing and simulated annealing can be applied to optimize the objective function.

Section5.4. The Structure of Problems 151

function MiN-CONFELICTS(csp, max-steps) returnsasolution or failure
inputs. ¢sp, aconstraint satisfaction problem
max-steps, the number of steps allowed beforegiving up

current — aninitial complete assignmentfor csp
for 4 = 1 to max-steps do
if current isasolutionfor csp thenreturn current
var «— arandomly chosen, conflicted variable from VARIABLES[csp]
value «+ thevalue v for var that minimizes CONFLICTS(var, v, current, csp)
set var =valuein current
return failure

Figure5.8 The MIN-CoNFLICTS agorithmfor solving CSPs by local search. Theinitial
state may be chosen randomly or by a greedy assignment process that chooses a minimal-
conflict value for each variable in turn. The CONFLICTS function counts the number of
constraints violated by a particular value, given therest of the current assignment.

Figure59 A two-step solution for an 8-queens problem using min-conflicts. At each
stage, a queen is chosen for reassignment in its colunnn. The number of conflicts (in this
case, the number of attacking queens) is shown in each square. The agorithm moves the
gueen to the min-conflict square, breaking ties randomly.

constraints usualy requires much more time and might find a solution with many changes
from the current schedule.

In this section, we examineways in which the structureof the problem, as represented by the
constraint graph, can be used to find solutionsquickly. Most of the approacheshere are very
general and are applicableto other problemsbesidesCSPs, for example probabilisticreason-
ing. After al, theonly way we can possibly hopeto deal with thereal world is to decompose
it into many subproblems. Looking again at Figure5.1(b) with aview toidentifying problem

152 Chapter 5. Constraint Satisfaction Problems

structure, onefact stands out: Tasmaniais not connected to the mainland.? | ntuitively,itisob-

INDEPENDENT vious that coloring Tasmaniaand coloring the mainland areindependent subproblems— any
solution for the mainland combined with any solution for Tasmaniayields a solution for the
CONNECTED whole map. Independence can be ascertained simply by looking for connected components

of the constraint graph. Each component corresponds to a subproblem CSP;. If assignment
S; isasolution of CSP,, then [, S; isasolution of (J; CSP,. Why is thisimportant? Con-
sider the following: suppose each CSP, has c variablesfrom the total of n variables, where
cis aconstant. Then there are n/c subproblems, each of which takes at most d° work to
solve. Hence, the total work is O(d®°n/c), which islinear in n; without the decomposition,
the total work is O(d"), whichis exponential in n. Let’s make this more concrete: dividing a
Boolean CSP with n =80 into four subproblems with c= 20 reduces the worst-case solution
timefrom thelifetimeof the universedown to less than a second.

Completely independent subproblems are delicious, then, but rare. In most cases, the
subproblems of a CSP are connected. The simplest caseis when the constraint graph forms a
tree: any two variables are connected by at most one path. Figure5.10(a) shows a schematic
example.* We will show that any tree-structured CSP can be solved in time linear in the
number d variables. The algorithm has the following steps:

1. Choose any variable asthe root of the tree, and order the variablesfrom the root to the
leavesin such away that every node's parent in the tree precedesit in the ordering. (See
Figure 5.10(b).) Label the variables X, ..., X, in order. Now, every variable except
the root has exactly one parent variable.

2. For j from n down to 2, apply arc consistency to the arc (Xi,X;), where X is the
parent of X;, removing valuesfrom DOMAIN[X;] as necessary.

3. For j from 1 to n, assign any valuefor X; consistent with the value assigned for X;,
where X; is the parent of .X;.

There are two key points to note. First, after step 2 the CSP is directionally arc-consistent,
so the assignment of values in step 3 requires no backtracking. (See the discussion of k-
consistency on page 147.) Second, by applying the arc-consistency checksin reverse order in
step 2, the algorithm ensures that any deleted val ues cannot endanger the consistency of arcs
that have been processed aready. The complete algorithm runsin time O(nd?).

Now that we havean efficientalgorithmfor trees, we can consider whether more general
constraint graphs can be reduced to trees somehow. There are two primary ways to do this,
one based on removing nodes and one based on collapsing nodes together.

The first approach involves assigning values to some variables so that the remaining
variables form a tree. Consider the constraint graph for Australia, shown again in Fig-
ure 5.11(a). If we could delete South Australia, the graph would become atree, asin (b).
Fortunately, we can do this (in the graph, not the continent) by fixing a value for SA and
deleting from the domains of the other variables any values that are inconsistent with the
valuechosen for SA.

3 A careful cartographer or patriotic Tasmanian might object that Tasmania should not be colored the same as

its nearest mainland neighbor, to avoid theimpression that it might be part of that state.
4 Sadly, very few regions of the world, with the possible exception of Sulawesi, have tree-structured maps.

Section 5.4.

The Structureof Problems 153

CYCLE CUTSET

Figure5.10 (&) Thecondraint grgph o atree-structured CSP. (b) A linear ordering of the
varigbles congstent with the tree with A astheroot.

Now, any solution for the CSP after SA and its constraints are removed will be con-
sistent with the value chosen for SA. (This works for binary CSPs; the situation is more
complicatec! with higher-order constraints.) Therefore, we can solve the remaining tree with
the algorithm given above and thus solve the whole problem. Of course, in the general case
(as opposed to map coloring) the value chosen for SA could be the wrong one, so we would
need to try each of them. The general algorithmis asfollows:

1. Chooseasubset S from VARIABLES[csp] such that the constraint graph becomesatree
after remova of S. Siscalled acycle cutset.
2. For each possible assignment to the variablesin S that satisfiesall constraintson S,

(8 removefrom the domainsof the remaining variablesany valuesthat areinconsis-
tent with the assignmentfor S, and

(b) If theremaining CSP hasa solution, returnit together with the assignment for S.

If the cycle cutset has size ¢, then the tota runtime is O(d° . (n — c)d?). If the graphis
"nearly atree” then ¢ will be small and the savings over straight backtracking will be huge.

154

Chapter 5. Constraint Satisfaction Problems

CUTSET
CONDITIONING

TREE
DECOMPOSITION

In the worst case, however, ¢ can be aslarge as (n — 2). Finding the smallest cycle cutset is
NP-hard, but several efficient approximation algorithms are known for this task. The overall
algorithmic approach is called cutset conditioning; we will seeit againin Chapter 14, where

it is used for reasoning about probabilities.
The second approach is based on constructing a tree decomposition of the constraint

graphinto aset of connected subproblems. Each subproblem is solved independently, and the
resulting solutions are then combined. Like most divide-and-conquer algorithms, this works
well if no subproblem is too large. Figure 5.12 shows a tree decomposition of the map-
coloring problem into five subproblems. A tree decomposition must satisfy the following
three requirements:

e Every variablein the origina problem appearsin at least one of the subproblems.

e |f two variablesare connected by a constraint in the original problem, they must appear
together (along with the constraint) in at least one of the subproblems.

o If avariableappearsin two subproblemsin thetree, it must appear in every subproblem
along the path connecting those subproblems.

The first two conditions ensure that all the variables and constraints are represented in the
decomposition. The third condition seems rather technical, but simply reflects the constraint
that any given variable must have the same value in every subproblem in which it appears;
the links joining subproblems in the tree enforce this constraint. For example, SA appearsin
all four of the connected subproblems in Figure 5.12. You can verify from Figure 5.11 that
this decomposition makes sense.

Figure5.12 A tree decompositionof the constraint graphin Figure5.11(a).

We solve each subproblem independently; if any one has no solution, we know the en-
tireproblem has no solution. If we can solveall the subproblems, then we attempt to construct

Section 5.5.

Summary 155

TREEWIDTH

aglobal solution asfollows. First, we view each subproblem asa ' mega-variable” whose do-
main is the set of al solutionsfor the subproblem. For example, the leftmost subproblemsin
Figure 5.12is amap-coloring problem with three variables and hence has six solutions—one
is{WA = red, SA = blue, NT = green). Then, we solve the constraints connecting the
subproblems using the efficient algorithm for trees given earlier. The constraints between
subproblems simply insist that the subproblem solutions agree on their shared variables. For
example, given the solution { WA = red, SA = blue, NT = green} for thefirst subproblem,
the only consistent solution for the next subproblemis{ SA = blue, NT = green,Q = red).
A given constraint graph admits many tree decompositions; in choosing a decompo-
sition, the aim is to make the subproblems as small as possible. The tree width of a tree
decomposition of a graph is one less than the size of iihe largest subproblem; the tree width
of the graph itself is defined to be the minimum tree width among all its tree decompositions.
If agraph has tree width w, and we are given the corresponding tree decomposition, then the
problem can be solved in O(nd“*!) time. Hence, CSPs with constraint graphs of bounded
tree width are solvable in polynomial time. Unfortunately, finding the decomposition with
minimal tree width is NP-hard, but there are heuristic methods that work well in practice.

e Constraint satisfaction problems (or CSPs) consist of variables with constraints on
them. Many important real-world problems can be described as CSPs. The structure of
aCSP can berepresented by itsconstraint graph.

¢ Backtrackingsearch, aform of depth-first search, iscommonly used for solving CSPs.

¢ The minimum remainingvaluesand degr ee heuristics are domain-independent meth-
ods for deciding which variable to choose next in a backtracking search. The least-
constraining-valueheuristic helpsin ordering the variable values.

¢ By propagating the consequences of the partial assignmentsthat it constructs, the back-
tracking algorithm can reduce greatly the branching factor of the problem. Forward
checkingis the simplest method for doing this. Are consistency enforcement isamore
powerful technique, but can be more expensiveto run.

e Backtracking occurs when no legal assignment can be found for a variable. Conflict-
directed backjumpingbacktracks directly to the source of the problem.

¢ Local search using themin-conflictsheuristic hasbeen applied to constraint satisfaction
problems with great success.

e The complexity of solving a CSP is strongly related to the structure of its constraint
graph. Tree-structured problems can be solved in linear time. Cutset conditioningcan
reduce a general CSP to atree-structured one and is very efficientif asmall cutset can
befound. Treedecomposition techniquestransform the CSPinto atree of subproblems
and are efficient if the tree width of the constraint graph is small.

156

Chapter 5. Constraint Satisfaction Problems

BIBLIOGRAPHICAL AND HISTORICAL NOTES

DIOPHANTINE
EQUATIONS

GRAPH COLORING

The earliest work related to constraint satisfaction dealt largely with numerical constraints.
Equational constraints with integer domains were studied by the Indian mathematician Brah-
maguptain the seventh century; they are often called Diophantineequations, after the Greek
mathematician Diophantus (c. 200-284), who actually considered the domain of positivera-
tionals. Systematic methodsfor solving linear equations by variableelimination were studied
by Gauss (1829); the solution of linear inequality constraints goes back to Fourier (1827).

Finite-domain constraint satisfaction problems also have a long history. For example,
graph coloring (of which map coloring is a specia case) is an old problem in mathematics.
According to Biggs et al. (1986), the four-color conjecture (that every planar graph can be
colored with four or fewer colors) wasfirst made by Francis Guthrie, astudent of De Morgan,
in 1852. It resisted solution—despite several published claims to the contrary — until a proof
was devised, with the aid of acomputer, by Appel and Haken (1977).

Specific classes of constraint satisfaction problems occur throughout the history of
computer science. One of the most influential early examples was the SKETCHPAD sys-
tem (Sutherland, 1963), which solved geometric constraints in diagrams and was the fore-
runner of modern drawing programs and CAD tools. Theidentification of CSPs as a general
class is due to Ugo Montanari (1974). The reduction of higher-order CSPs to purely binary
CSPs with auxiliary variables (see Exercise 5.11) is due originally to the 19th-century logi-
cian Charles Sanders Peirce. It wasintroduced into the CSPliterature by Dechter (1990b) and
was elaborated by Bacchus and van Beek (1998). CSPs with preferences among solutions are
studied widely in the optimization literature; see Bistarelli et al. (1997) for a generalization
of the CSP framework to allow for preferences. The bucket-elimination algorithm (Dechter,
1999) can also be applied to optimization problems.

Backtracking search for constraint satisfaction is due to Bitner and Reingold (1975),
although they trace the basic algorithm back to the 19th century. Bitner and Reingold also
introduced the MRV heuristic, which they called the most-constrained-variable heuristic.
Brelaz (1979) used the degree heuristic as a tie-breaker after applying the MRV heuristic.
Theresulting algorithm, despite its smplicity, is still the best method for k-coloring arbitrary
graphs. Haralick and Elliot (1980) proposed the |east-constraining-value heuristic.

Constraint propagation methods were popularized by Waltz's (1975) success on poly-
hedral line-labeling problems for computer vision. Waltz showed that, in many problems,
propagation completely eliminates the need for backtracking. Montanari (1974) introduced
the notion of constraint networks and propagation by path consistency. Alan Mackworth
(1977) proposed the A C-3 algorithm for enforcing arc consistency as well asthe general idea
of combining backtracking with some degree of consistency enforcement. AC-4, a more
efficient arc consistency a gorithm, was developed by Mohr and Henderson (1986). Soon af -
ter Mackworth's paper appeared, researchers began experimenting with the tradeoff between
the cost of consistency enforcement and the benefitsin terms of search reduction. Haralick
and Elliot (1980) favored the minimal forward checking algorithm described by McGregor
(1979), whereas Gaschnig (1979) suggested full arc consistency checking after each variable

Section 5.5.

Summary 157

DEPENDENCY-
DIRECTED
BACKTRACKING

CONSTRAINT
RECORDING

BACKMARKING

DYNAMIC
BACKTRACKING

assgnment—an algorithm later called MAC by Sabin and Freuder (1994). The latter paper
provides somewhat convincing evidence that, on harder CSPs, full arc consistency checlung
pays off. Freuder (1978, 1982) investigated the notion of k-consistency and its relationship
to the complexity of solving CSPs. Apt (1999) describes a generic agorithmic framework
within which consistency propagation agorithms can be analyzed.

Specia methods for handling higher-order constraints have been developed primarily
within the context of constraint logic programming. Marriott and Stuckey (1998) pro-
vide excellent coverage of research inthisarea. The Alldiff constraint was studied by Regin
(1994). Bounds constraints wereincorporated into constraint logic programming by Van Hen-
tenryck et al. (1998).

The basic backjumping method is due to John Gaschnig (1977, 1979). Kondrak and
van Beek (1997) showed that this algorithm is essentially subsumed by forward checking.
Conflict-directed backjumping was devised by Prosser (1993). The most general and pow-
erful form of intelligent backtracking was actually developed very early on by Stallman and
Sussman (1977). Their technique of dependency-directed backtrackingled to the develop-
ment of truth maintenance systems (Doyle, 1979), which we will discussin Section 10.8.
The connection between the two areasis analyzed by de Kleer (1989).

The work of Stallman and Sussman also introduced the idea of constraint record-
ing, in which partial results obtained by search can be saved and reused later in the search.
Theidea wasintroduced formally into backtracking search by Dechter (1990a). Backmark-
ing (Gaschnig, 1979) is a particularly simple method in which consistent and inconsistent
pairwise assignments are saved and used to avoid rechecking constraints. Backmarking can
be combined with conflict-directed backjumping; Kondrak and van Beek (1997) present a
hybrid algorithm that provably subsumes either method taken separately. The method of
dynamic backtracking (Ginsberg, 1993) retains successful partial assignments from later
subsets of variables when backtracking over an earlier choice that does not invalidate the
later success.

Local search in constraint satisfaction problems was popularized by the work of Kirk-
patrick et al. (1983) on smulated annealing (see Chapter 4), which is widely used for
scheduling problems. The min-conflicts heuristic wasfirst proposed by Gu (1989) and wasde-
veloped independently by Minton et al. (1992). Sosic and Gu (1994) showed how it could be
applied to solve the 3,000,000 queens problemin less than aminute. The astounding success
of local search using min-conflicts on the n-queens problem led to areappraisal of the nature
and prevalence of "easy" and " hard problems. Peter Cheeseman et al. (1991) explored the
difficulty of randomly generated CSPs and discovered that almost all such problems either
aretrivialy easy or have no solutions. Only if the parameters of the problem generator are
set in a certain narrow range, within which roughly half of the problems are solvable, do we
find " hard" problem instances. We discuss this phenomenon further in Chapter 7.

Work relating the structure and complexity of CSPsoriginates with Freuder (1985), who
showed that search on arc-consistent trees works without any backtracking. A similar result,
with extensions to acyclic hypergraphs, was developed in the database community (Beeri
et a., 1983). Since those papers were published, there has been a great deal of progressin
developing more general results relating the complexity of solving a CSP to the structure of

158

Chapter 5. Constraint Satisfaction Problems

itsconstraint graph. The notion of tree width wasintroduced by the graph theorists Robertson
and Seymour (1986). Dechter and Pearl (1987, 1989), building on the work of Freuder, ap-
plied the same notion (which they called induced width) to constraint satisfaction problems
and developed the tree decomposition approach sketched in Section 5.4. Drawing on this
work and on results from database theory, Gottlob et al. (1999a, 1999b) developed a notion,
hypertree width, that is based on the characterization of the CSP as a hypergraph. In addi-
tion to showing that any CSP with hypertree width w can be solved in time O(n**logn),
they also showed that hypertree width subsumes all previously defined measures of "width"
in the sense that there are cases where the hypertree width is bounded and the other measures
are unbounded.

There are several good surveys of CSP techniques, including those by Kumar (1992),
Dechter and Frost (1999), and Bartak (2001); and the encyclopediaarticlesby Dechter (1992)
and Mackworth (1992). Pearson and Jeavons (1997) survey tractable classes of CSPs, cover-
ing both structural decomposition methods and methods that rely on propertiesof thedomains
or constraints themselves. Kondrak and van Beek (1997) give an analytical survey of back-
tracking search algorithms, and Bacchus and van Run (1995) give a more empirical survey.
The texts by Tsang (1993) and by Marriott and Stuckey (1998) go into much more depth
than has been possible in this chapter. Several interesting applications are described in the
collection edited by Freuder and Mackworth (1994). Papers on constraint satisfaction ap-
pear regularly in Artificial Intelligence and in the specialist journal, Constraints. The primary
conference venue is the International Conference on Principles and Practice of Constraint
Programming, often called CP.

EXERCISES

5.1 Definein your own words the terms constraint satisfaction problem, constraint, back-
tracking search, arc consistency, backjumping and min-conflicts.

52 How many solutions are there for the map-coloring problemin Figure 5.1 ?

53 Explain why it is a good heuristic to choose the variable that is most constrained, but
the valuethat is least constraining in aCSP search.

54 Consider the problem of constructing (not solving) crossword puzzles:® fitting words
into a rectangular grid. The grid, which is given as part of the problem, specifies which
squares are blank and which are shaded. Assume that alist of words (i.e., adictionary) is
provided and that the task is tofill in the blank squares using any subset of thelist. Formulate
this problem precisely in two ways:
a. As agenera search problem. Choose an appropriate search algorithm, and specify a
heuristic function, if you think oneis needed. Isit better to fill in blanks one letter at a
time or one word at atime?

5 Ginsberg et al. (1990) discuss several methods for constructing crossword puzzles. Littman et al. (1999) tackle
the harder problem of solving them.

Section 5.5.

Summary 159

FLOOR-PLANNING

CLASS SCHEDULING

b. Asaconstraint satisfaction problem. Should the variables be words or letters?
Which formulation do you think will be better? Why?

55 Give preciseformulations for each of thefollowing as constraint satisfaction problems:

a. Rectilinear floor-planning: find nonoverlapping places in alarge rectangle for a num-
ber of smaller rectangles.
b. Class scheduling: Thereisafixed number of professorsand classrooms, alist of classes

to be offered, and alist of possible time slots for classes. Each professor has a set of
classes that he or she can teach.

56 Solve the cryptarithmetic problem in Figure 5.2 by hand, using backtracking, forward
checking, and the MRV and |east-constraining-value heuristics.

57 Figureb5.5 tests out various algorithms on the n-queens problem. Try these same al-
gorithms on map-coloring problems generated randomly as follows: scatter n points on the
unit square; selecting apoint X at random, connect X by a straight line to the nearest point
Y such that X is not aready connected to Y and the line crosses no other line; repeat the
previous step until no more connections are possible. Construct the performance tablefor the
largest n you can manage, using both d= 3 and d =4 colors. Comment on your results.

58 Usethe AC-3 algorithm to show that arc consistency is able to detect the inconsistency
of the partia assignment { WA =red,V = blue) for the problem shownin Figure 5.1.

59 What isthe worst-case complexity of running AC-3 on atree-structured CSP?

5.10 AC-3 putsback on the queue every arc (X1,,X;) whenever any valueis deleted from
thedomain of X;, evenif each valueof Xi, isconsistent with several remaining valuesof X;.
Suppose that, for every arc (X1,, Xi), we keep track of the number of remaining valuesof X;
that are consistent with each value of Xi,. Explain how to update these numbers efficiently
and hence show that arc consistency can be enforced in total time O(n2d?).

5.1 Show how asingle ternary constraint such as “A + B = ¢” can be turned into three
binary constraints by using an auxiliary variable. You may assume finite domains. (Hint:
consider a new variable that takes on values which are pairs of other values, and consider
constraints such as'" X isthefirst element of the pair Y."") Next, show how constraints with
more than three variablescan betreated similarly. Finally, show how unary constraints can be
eliminated by altering the domains of variables. This completes the demonstration that any
CSP can be transformed into a CSP with only binary constraints.

5.12 Supposethat agraph isknown to haveacyclecutset of no morethan £ nodes. Describe
asimple algorithm for finding a minimal cycle cutset whose runtime is not much more than
O(n*) for aCSPwith n variables. Searchtheliteraturefor methodsfor finding approximately
minimal cycle cutsets in time that is polynomial in the size of the cutset. Does the existence
of such algorithms make the cycle cutset method practical?

513 Consider the following logic puzzle: In five houses, each with a different color, live
5 persons of different nationalities, each of whom prefer a different brand of cigarette, a

Chapter 5. Constraint Satisfaction Problems

different drink, and a different pet. Given the following facts, the question to answer is
"Where does the zebralive, and in which house do they drink water?"

The Englishmanlivesin the red house.

The Spaniard owns the dog.

The Norwegian livesin thefirst house on theleft.

Koolsare smoked in the yellow house.

The man who smokes Chesterfieldslives in the house next to the man with thefox.

The Norwegian lives next to the blue house.

The Winston smoker owns snails.

The Lucky Strike smoker drinks orangejuice.

The Ukrainiandrinkstea.

The Japanese smokes Parliaments.

Kools are smoked in the house next to the house wherethe horseis kept.

Coffeeisdrunk in the green house.

The Green houseisimmediately to the right (your right) of theivory house.

Milk is drunk in the middle house.
Discussdifferent representationsaof this problemas a CSP. Why would one prefer one repre-
sentation over another?

In which we examine the problemsthat arise when wetry to plan ehead inaworld
where other agents are planning against us.

GAMES

ZERO-SUM GAMES

PERFECT
INFORMATION

Chapter 2 introduced multiagent environments, in which any given agent will need to con-
sider the actions of other agents and how they affect its own welfare. The unpredictability
of these other agents can introduce many possible contingencies into the agent's problem-
solving process, asdiscussed in Chapter 3. The distinction between cooper ativeand compet-
itive multiagent environments was also introduced in Chapter 2. Competitive environments,
in which the agents' goals are in conflict, give rise to adversarial search problems—often
known as games.

Mathematical gametheory, a branch of economics, views any multiagent environment
as agame provided that the impact of each agent on the othersis " significant,” regardless of
whether the agents are cooperative or competitive.! In Al, .'games” are usually of a rather
specialized kind—what game theorists call deterministic, turn-taking, two-player, zero-sum
gamesof perfectinformation.In our terminology, thismeans deterministic, fully observable
environments in which there are two agents whose actions must aternate and in which the
utility values at the end of the game are always egual and opposite. For example, if one
player winsagame of chess (+1), the other player necessarily loses (-1). It isthis opposition
between the agents' utility functions that makes the situation adversarial. We will consider
multiplayer games, non-zero-sum games, and stochastic games briefly in thischapter, but will
delay discussion of game theory proper until Chapter 17.

Games have engaged the intellectua faculties of humans— sometimesto an alarming
degree—for as long as civilization has existed. For Al researchers, the abstract nature of
games makes them an appealing subject for study. The state of a game is easy to represent,
and agents are usually restricted to asmall number of actions whose outcomes are defined by

1 Environments with very many agents are best viewed as economies rather than games.

162

Chapter 6. Adversarid Search

IMPERFECT
INFORMATION

preciserules. Physical games, such as croquet and ice hockey, have much more complicated
descriptions, a much larger range of possible actions, and rather imprecise rules defining
the legality of actions. With the exception of robot soccer, these physical games have not
attracted much interestin the AI community.

Game playing was one of thefirgt tasks undertakenin Al. By 1950, aimost as soon as
computersbecameprogrammabl e, chess had been tackled by Konrad Zuse (theinventor of the
first programmablecomputer and thefirst programming language), by Claude Shannon (the
inventor of information theory), by Norbert Wiener (the creator of modern control theory),
and by Alan Turing. Sincethen, there has been steady progressin the standard of play, to the
point that machines have surpassed humans in checkersand Othello, have defeated human
champions (although not every time) in chess and backgammon, and are competitivein many
other games. The main exceptionis Go, in which computers perform at the amateur level.

Games, unlike most of the toy problemsstudied in Chapter 3, are interesting because
they are too hard to solve. For example, chess has an average branching factor of about 35,
and games often go to 50 moves by each player, so the search tree has about 35 1%° or 10154
nodes (athough the search graph has " only" about 10#? distinct nodes). Games, like the redl
world, thereforerequire the ability to make some decision even when cal cul ating the optimeal
decisionisinfeasible. Games a so penalizeinefficiency severely. Whereasan implementation
of Ar search that is half as efficient will smply cost twice as much to run to completion, a
chess programthat is haf asefficientin using its available time probably will be beaten into
theground, other thingsbeing equal. Game-playingresearch hastherefore spawned anumber
o interesting ideas on how to make the best possible use of time.

We begin with a definition of the optimal move and an algorithm for finding it. We
then look at techniquesfor choosing a good move when timeis limited. Pruning allows us
toignore portionsdf the search tree that make no differenceto thefina choice, and heuristic
evaluation functions alow usto approximatethetrue utility of a statewithout doing acom-
plete search. Section 6.5 discusses games such as backgammon that include an element of
chance; we a so discuss bridge, which includes elementsaof imperfect information because
not all cards are visibleto each player. Finaly, welook at how state-of-the-art game-playing
programsfare against human opposition and at directionsfor future developments.

We will consider games with two players, whom we will call MAX and MIN for reasonsthat
will soon becomeobvious. MAX movesfirst, and then they take turns moving until the game
isover. At theend of the game, points are awarded to the winning player and penatiesare
given to the loser. A game can be formally defined as a kind of search problem with the
following components:

e Theinitial state, which includesthe board position and identifiesthe player to move.

e A successor function, whichreturnsalist of (move, state) pairs, eachindicating alegal
move and the resulting state.

Section 6.2. Optimal Decisionsin Games 163

TERMINALTEST ¢ A terminal test, which determines when the game is over. States where the game has
ended are called terminal states.

e A utility function (also called an objective function or payoff function), which gives
anumeric value for the terminal states. In chess, the outcome is a win, loss, or draw,
with values +1, -1, or 0. Some games have a wider variety of possible outcomes; the
payoffs in backgammon range from +192 to —192. This chapter deals mainly with
zero-sum games, athough we will briefly mention non-zero-sum games.

GAME TREE The initia state and the legal moves for each side define the game treefor the game. Fig-
ure 6.1 shows part of the game tree for tic-tac-toe (noughts and crosses). From the initial
state, MAX has nine possible moves. Play alternates between MAX’s placing an X and MIN’s
placing an O until we reach leaf nodes corresponding to terminal states such that one player
has three in arow or al the squares are filled. The number on each leaf node indicates the
utility valueof the terminal state from the point of view of MAX; high valuesare assumed to
be good for MAX and bad for MiN (which is how the players get their names). It iSMAX’s job
to use the search tree (particularly the utility of terminal states) to determine the best move.

Optimal strategies

In a normal search problem, the optimal solution would be a sequence of movesleading to a
goal date—a terminal state that isawin. In a game, on the other hand, MIN has something

STRATEGY to say about it. MAX therefore must find a contingent strategy, which specifiesmMAx’s move
in theinitial state, then MAX's movesin the states resulting from every possible response by
MIN, then MAX’s movesin the states resulting from every possible response by MIN to those
moves, and so on. Roughly speaking, an optimal strategy |eads to outcomes at least as good
as any other strategy when oneis playing an infallible opponent. We will begin by showing
how to find this optimal strategy, even though it should be infeasible for MAX to compute it
for games more complex than tic-tac-toe.

Even asimple game like tic-tac-toe is too complex for us to draw the entire game tree,
so we will switch to the trivial game in Figure 6.2. The possible moves for MAX at the root
node arelabeled a1, a2, and as. The possible repliesto a; for MIN are b1, ba, b3, and so on.
This particular game ends after one move each by MAX and MIN. (In game parlance, we say

PLY that this tree is one move deep, consisting of two half-moves, each of whichis called aply.)
The utilities of the terminal statesin this game rangefrom 210 14.
Given a game tree, the optimal strategy can be determined by examining the minimax
MINIMAX VALUE value of each node, which we write as MINIMAX-VALUE(n). The minimax value of anode
is the utility (for MAX) of being in the corresponding state, assuming that both players play
optimally from there to the end of the game. Obvioudly, the minimax value of a terminal
state is just its utility. Furthermore, given a choice, Max will prefer to move to a state of
maximum value, whereas MIN prefers a state of minimmum value. So we have thefollowing:

MINIMAX-VALUE(n) =
UTILITY(n) if nisatermina state

MAX,c Gyccessors(n) MINIMAX-VALUE(s) if nis aMAX node
MiNge Guccessors(n) MINIMAX-VALUE(s) if nisaMIN node.

164

Chapter 6. Adversarial Search

TERMINAL
Utility -l 0 +1

Figure6.1 A (partial) search tree for the game of tic-tac-toe. The top nodeis theinitial
state, and MAX movesfirst, placing an X in an empty square. We show part of the searchtree,
giving aternating moves by MIN (0) and MAX, until we eventually reach terminal states,
[which can be assigned utilitiesaccording to the rules of the game.

MAX

MIN

3 12 8 2 4 6 14 5 2

Figure 6.2 A two-ply gametree. The A nodes are"MAX nodes" in which it is MAX’s
turn to move, and the ¥ nodes are**MIN nodes."” The terminal nodes show the utility values
for MmAX; the other nodes are label ed with their minimax values. MAX’s best move at the root
is a1, becauseit leadsto the successor with the highest minimax value, and MIN’s best reply
is by, becauseit |eads to the successor with the lowest minimax value.

Let us apply these definitions to the game tree in Figure 6.2. The terminal nodes on the
bottom level are aready labeled with their utility values. The first MIN node, labeled B, has
three successors with values 3, 12, and 8, so its minimax valueis 3. Similarly, the other two
MIN nodes have minimax value2. Theroot nodeisaMAX node; its successors have minimax

Section 6.2.

Optimal Decisionsin Games

MINIMAX DECISION

MINIMAX ALGORITHM

BACKEDUP

vaues3, 2, and 2; soit hasaminimax value of 3. We can also identify theminimax decision
at theroot: action a; isthe optimal choice for MAX becauseit leads to the successor with the
highest minimax value.

This definition of optimal play for MAX assumes that MIN also plays optimaly —it
maximizes the worst-case outcome for MAX. What if MIN does not play optimally? Then it
is easy to show (Exercise 6.2) that MAX will do even better. There may be other strategies
against suboptimal opponents that do better than the minimax strategy; but these strategies
necessarily do worse against optimal opponents.

Theminimax algorithm

The minimax algorithm (Figure 6.3) computes the minimax decision from the current state.
It uses a simple recursive computation of the minimax valuesof each successor state, directly
implementing the defining equations. The recursion proceeclsall the way down to the leaves
of the tree, and then the minimax values are backed up through the tree as the recursion
unwinds. For example, in Figure 6.2, the algorithm first recurses down to the three bottom-
|eft nodes, and usesthe UTILITY function on them to discover that their valuesare 3, 12, and
8 respectively. Then it takes the minimum of these values, 3, and returnsit as the backed-up
vaueof node B. A similar process givesthe backed up valuesof 2for C and 2for D. Finally,
we take the maximum of 3, 2, and 2 to get the backed-up valueof 3 for the root node.

The minimax algorithm performs a complete depth-first exploration of the game tree.
If the maximum depth of the tree is m, and there are b legal moves at each point, then the
time complexity of the minimax agorithm is O(b™). The space complexity is O(bm) for
an algorithm that generates all successors at once, or O(m) for an algorithm that generates
successors one at a time (see page 76). For real games, of course, the time cost is totally
impractical, but this algorithm serves asthe basisfor the mathematical analysis of games and
for more practical algorithms.

Optimal decisionsin multiplayer games

Many popular games allow morethan two players. Let usexamine how to extend the minimax
idea to multiplayer games. Thisis straightforward from the technical viewpoint, but raises
some interesting new conceptual issues.

First, we need to replace the single value for each node with a vector of values. For
example, in athree-player gamewith players A, B, and C, avector (v 4, vg, v¢) isassociated
with each node. For terminal states, this vector givesthe utility of the state from each player's
viewpoint. (In two-player, zero-sum games, the two-element vector can bereduced to asingle
value because the values are always opposite.) The simplest way to implement thisisto have
the UTILITY function return avector of utilities.

Now we haveto consider nonterminal states. Consider the node marked X in the game
tree shown in Figure 6.4. In that state, player C' chooses what to do. The two choices |lead
to terminal states with utility vectors (va =1,v5=2,vc=6) and (v4 =4,v5 =2,vc=3).
Since6is bigger than 3, C should choosethefirst move. Thisrneansthat if state X isreached,
subsequent play will lead to aterminal state with utilities (v4 =1,v5 =2, vo =6). Hence,

166

Chapter 6. Adversarial Search

ALLIANCES

function MINIMAX-DECISION(state) returnsan action
inputs: state, current statein game

v «+— MAX-VALUE(state)
returnthe action in SUCCESSORS(stale) with value v

function MAX-VALUE(state) returnsa utility value
if TERMINAL-TEST(state) then return UTILITY (state)
Y —00
for a, sin SUCCESSORS(state) dO
v +— MAX(v, MIN-VALUE(s))
returnv

function MIN-VALUE(state) returnsa wtility value
if TERMINAL-TEST(state) then return UTILITY(state)
U= 0
for a, sin SUCCESSORS(state) do
v «+— MIN(v, MAX-~VALUE(s))
returnv

Figure 6.3 An agorithmfor calculating minimax decisions. It returns the action corre-
sponding to the best possible move, that is, the move that leads to the outcome with the
best utility, under the assumption that the opponent plays to minimize utility. The functions
MAX-VALUE and MIN-VALUE go through the wholegametree, all the way to theleaves, to
determine the backed-upvaue of astate.

to move
A

(1,2,6) (42,3 (1,20 @741 5 1,1) (1,52 ((7.71) (54,5

Figure6.4 Thefirst threeply of agame tree with three players (A, B, C). Each nodeis
labeled with valuesfrom the viewpoint of each player. The best moveis marked at the root.

the backed-up value of X is this vector. In general, the backed-up value of a node nisthe
utility vector of whichever successor has the highest valuefor the player choosing at n.
Anyone who plays multiplayer games, such as Diplomacy ™, quickly becomes aware
that thereisalot more going on than in two-player games. Multiplayer gamesusually involve
alliances, whether formal or informal, among the players. Alliances are made and broken

Section 6.3.

Alpha—BetaPruning 167

ALPHA-BETA
PRUNING

as the game proceeds. How are we to understand such behavior? Are alliances a natural
consequence of optimal strategies for each player in a multiplayer game? It turns out that
they can be. For example suppose A and B are in weak positions and C' is in a stronger
position. Then it is often optimal for both A and B to attack C' rather than each other, lest
C destroy each of themindividually. In this way, collaboration emerges from purely selfish
behavior. Of course, as soon as C weakens under the joint onslaught, the alliance loses its
vaue, and either A or B could violate the agreement. In some cases, explicit alliances merely
make concrete what would have happened anyway. In other cases thereis a social stigmato
breaking an aliance, so players must balance theimmediate advantage of breaking an alliance
against the long-term disadvantage of being perceived as untrustworthy. See Section 17.6 for
more on these complications.

If the game is not zero-sum, then collaboration can also occur with just two players.
Suppose, for example, that thereisaterminal statewith utilities (v4 = 1000, vz = 1000), and
that 1000 is the highest possible utility for each player. Then the optimal strategy isfor both
players to do everything possible to reach this state—-that is, the players will automatically
cooperate to achieve a mutually desirable goal.

The problem with minimax search is that the number of game states it has to examine is
exponentia in the number of moves. Unfortunately we can't eliminate the exponent, but we
can effectively cut it in half. Thetrick isthat it is possible to compute the correct minimax
decision without looking at every node in the game tree. That is, we can borrow the idea
of pruning from Chapter 4 in order to eliminate large parts of the tree from consideration.
The particular technique we will examine is called alpha-beta pruning. When applied to a
standard minimax tree, it returns the same move as minimax would, but prunes away branches
that cannot possibly influence the final decision.

Consider again the two-ply game treefrom Figure6.2. Let's go through the calculation
of the optimal decision once more, this time paying careful attention to what we know at
each point in the process. The steps are explained in Figure 6.5. The outcome is that we can
identify the minimax decision without ever evaluating two of the leaf nodes.

Another way to look at thisis asasimplification of the formulafor MINIMAX-VALUE.
L et the two uneval uated successors of node C in Figure 6.5 havevalues x and y and let z be
the minimum of x and y. The value of the root nodeis given by

MINIMAX-VALUE(r0ot) = max(min(3,12,8), min(2,z, y),min(14, 5, 2))
= max(3, min(2, X,y), 2)
= max(3, z, 2) where z < 2
= 3.

In other words, the value of the root and hence the minimax decision are independent of the
vauesof the pruned leaves x and y.

168

Chapter 6. Adversarial Search

Figure6.5 Stagesinthecalculationof the optimal decision for thegametreein Figure6.2.
At each point, we show the range of possible values for each node. (a) Thefirst leaf below
B hasthevalue 3. Hence, B, which isaMIN node, hasa value of at most 3. (b) The second
leaf below B hasavalueof 12; MmN would avoid this move, so the value of B is still at most
3. (c) Thethird leaf below B has avalueof 8; we have seen all B's successors, so the value
of Bisexactly 3. Now, we can infer that the value of theroot is at least 3, becauseMAX has
achoice worth 3 & theroot. (d) Thefirst leaf bdlow C hasthe value 2. Hence, C, whichis
aMIN node, has avaluedf at most 2. But we know that B isworth 3, so MAX would never
choose C. Therefore, thereis no point in looking at the other successorsof C. Thisis an
exampleof apha—betapruning. (€) Thefirst leaf below D hasthe value 14, so D is worth at
most 14. Thisisstill higher than MAX's best alternative(i.e., 3), S0 we need to keep exploring
D's successors. Notice aso that we now have boundson al of the successorsof the root, so
theroot's vaueis aso at most 14. (f) The second successor of D is worth 5, so again we
need to keep exploring. The third successor isworth 2, so now D isworth exactly 2. MAX’s

decision at theroot isto moveto B, givingavaueof 3.

Alpha-beta pruning can be applied to trees of any depth, and it is often possible to
prune entire subtrees rather than just leaves. The general principleisthis: consider a node n
somewhere in the tree (see Figure 6.6), such that Player has a choice of moving to that node.
If Player has abetter choice m either at the parent node of n or at any choice point further up,
then nwill never be reached in actual play. So once we have found out enough about n (by
examining some of its descendants) to reach this conclusion, we can pruneit.

Remember that minimax search is depth-first, so at any one time we just have to con-
sider the nodes along a single path in the tree. Alpha—beta pruning gets its name from the

Section 6.3.

Alpha—BetaPruning 169

Figure6.6 Alpha-betapruning: the generd case. If misbetter than n for Player, we will
never get to nin play.

following two parameters that describe bounds on the backed.-upval uesthat appear anywhere
along the path:

a = thevaueof thebest (i.e., highest-value) choice we havefound so far at any choice point
along the path for MAX.

3 = thevalueof the best (i.e., lowest-value) choice we havefound so far at any choice point
along the path for MIN.

Alpha-beta search updates the values of a and 3 asit goes along and prunes the remaining
branches at a node (i.e., terminates the recursive call) as soon as the value of the current
nodeis known to be worse than the current a or /3 value for MAX or MIN, respectively. The
complete algorithmisgivenin Figure6.7. We encourage thereader to traceits behavior when
applied to the treein Figure 6.5.

The effectiveness of apha—beta pruning is highly dependent on the order in which the
successors are examined. For example, in Figure 6.5(e) and (f), we could not prune any
successors of D at all because the worst successors (from the point of view of MIN) were
generated first. If the third successor had been generated first, we would have been able to
prune the other two. This suggests that it might be worthwhile to try to examine first the
successors that are likely to be best.

If we assume that this can be done,? then it turns out that al pha—beta needs to examine
only O(b™/2) nodes to pick the best move, instead of O(6™) for minimax. This means that
the effective branching factor becomes v/b instead of 5—for chess, 6 instead of 35. Put
another way, apha—betacan look ahead roughly twice as far as minimax in the same amount
of time. If successors are examined in random order rather than best-first, the total number of
nodes examined will beroughly O(b3™/4) for moderate b. For chess, afairly simple ordering
function (such as trying captures first, then threats, then forward moves, and then backward
moves) gets you to within about afactor of 2 of the best-.caseQ(6™/2) result. Adding dynamic

2 Obviously, it cannot be done perfectly; otherwise the ordering function could be used to play aperfect game!

170

Chapter 6.

Adversarial Search

TRANSPOSTIONS

function ALPHA-BETA-SEARCH(state) returnsan action
inputs: state, current sate in game

v« MAX-VALUE(state, —00, +0<0)
return the action in SUCCESSORS(state) with vduev

function MAX-VALUE(state, a,8) returnsa utility value
inputs: state, current datein game
a, thevdued the bet dternativefor MAX dong the path to state
3, thevadued the best dternativefor min dong the path to state

if TERMINAL-TEST(state) then return UTILITY(state)
V— —00
for a, s iN SUCCESSORS(state) do
v — MAX(v, MIN-VALUE(s, a, 3))
if v > FGthenreturnv
a«— MAX(x, V)
return v

function MIN-VALUE(state, a,/3) returnsa utility value
inputs: state, current gatein game
a,the vdue of the best dternativefor mAx adong the path to state
3, thevdue o the best dternativefor MIN dong the path to state

if TERMINAL-TEST(state) then return UTILITY (state)
U — +00
for a, s in SUCCESSORS(state) do
V < MIN(v, MAX-VALUE(%a,)
if v < athenreturnv
B8+ MIN(3, v)
returnv

Figure6.7 The dpha-beta search dgorithm. Notice that these routines are the same as
the MINIMAX routinesin Figure 6.3, except for the two linesin each o MIN-VALUE ad
MAX-VALUE that maintain a and 3 (and the bookkeepingto pass these parametersaong).

move-ordering schemes, such as trying first the moves that were found to be best last time,

brings us quite close to the theoretical limit.

In Chapter 3, we noted that repeated states in the search tree can cause an exponential
increase in search cost. In games, repeated states occur frequently because of transposi-
tions— different permutations of the move sequence that end up in the same position. For
example, if White has one move a4 that can be answered by Black with 4; and an unre-
lated move a2 on the other side of the board that can be answered by b2, then the sequences
la1, by, a2, be] and [aq, ba, as, by] both end up in the same position (as do the permutations
beginning with as). Itisworthwhileto storethe evaluation of this positionin a hash table the
first timeit is encountered, so that we don't have to recompute it on subsequent occurrences.

Section 6.4.

Imperfect, Real-Time Decisions 171

FpseosToN

CUTOFFTEST

The hash table of previously seen positionsis traditionally called a transpodtion table; it is
essentially identical to the closed list in GRAPH-SEARCH (page 83). Using a transposition
table can have a dramatic effect, sometimes as much as doubling the reachable search depth
in chess. On the other hand, if we are evaluating amillion nodes per second, it is not practical

tokeep all of themin the transposition table. Various strategies have been used to choose the
most valuable ones.

The minimax a gorithm generates the entire game search space, whereas the alpha-betaalgo-
rithm allows us to prune large parts of it. However, apha-betastill has to search al the way
to terminal statesfor at least aportion of the search space. Thisdepth is usually not practical,
because moves must be made in a reasonable amount of time—typically a few minutes at
most. Shannon's 1950 paper, Programming a computer for playing chess, proposed instead
that programs should cut off the search earlier and apply a heuristic evaluation function
to states in the search, effectively turning nonterminal nodes into terminal leaves. In other
words, the suggestion is to alter minimax or alpha—betain two ways: the utility function is
replaced by a heuristic evaluation function EVAL, which gives an estimate of the position's
utility, and theterminal test isreplaced by a cutoff test that decides when to apply EVAL.

Evaluation functions

An evauation function returns an estimate of the expected utility of the game from a given
position, just as the heuristic functions of Chapter 4 return an estimate of the distance to
the goal. Theidea of an estimator was not new when Shannon proposed it. For centuries,
chess players (and aficionados of other games) have developed ways of judging the value of
a position, because humans are even more limited in the amount of search they can do than
are computer programs. It should be clear that the performance of a game-playing program
is dependent on the quality of its evaluation function. An inaccurate evaluation function will
guide an agent toward positions that turn out to be Los. How exactly do we design good
evaluation functions?

First, the evaluation function should order the terminal states in the same way as the
true utility function; otherwise, an agent using it might select suboptimal moves even if it
can see ahead all the way to the end of the game. Second, the computation must not take too
long! (The evaluationfunction could call MINIMAX-DECISION asasubroutine and calculate
the exact value of the position, but that would defeat the whole purpose: to savetime.) Third,
for nonterminal states, the evaluation function should be strongly correlated with the actual
chances of winning.

One might well wonder about the phrase " chancesof winning.” After al, chessis not
agame of chance: we know the current state with certainty, and there are no dice involved.
But if the search must be cut off at nonterminal states, then the algorithm will necessarily
be uncertain about the final outcomes of those states. This type of uncertainty isinduced by

172

Chapter 6. Adversaria Search

FEATURES

EXPECTEDVALUE

MATERIALVALUE

WEIGHTED LINEAR
FUNCTION

computationa, rather than informational, limitations. Given the limited amount of computa-
tion that the evaluation function is allowed to do for a given state, the best it can do is make
aguess about thefinal outcome.

Let us make this idea more concrete. Most evaluation functions work by calculating
various features of the sate—for example, the number of pawns possessed by each side
in a game of chess. The features, taken together, define various categories or equivalence
classes of states: the states in each category have the same values for al the features. Any
given category, generally speaking, will contain some states that lead to wins, some that lead
to draws, and some that lead to losses. The evaluation function cannot know which states
are which, but it can return a single value that reflects the proportion of states with each
outcome. For example, suppose our experience suggests that 72% of the states encountered
in the category lead to a win (utility +1); 20%to aloss (-1), and 8% to adraw (0). Then a
reasonable evaluation for states in the category is the weighted average or expected value:
(0.72 x +1) + (0.20 x —1) + (0.08 x 0) = 0.52. In principle, the expected value can be
determined for each category, resulting in an evaluation function that worksfor any state. As
with terminal states, the evaluation function need not return actual expected values, as long
asthe ordering of the statesis the same.

In practice, this kind of analysis requires too many categories and hence too much
experience to estimate all the probabilities of winning. Instead, most evaluation functions
compute separate numerical contributions from each feature and then combine them to find
the total value. For example, introductory chess books give an approximate material value
for each piece: each pawnisworth 1, aknight or bishopisworth 3, arook 5, and the queen 9.
Other features such as ' good pawn structure™ and ""king safety" might be worth half a pawn,
say. These feature values are then simply added up to obtain the evaluation of the position.
A secure advantage equivalent to a pawn gives a substantial likelihood of winning, and a
secure advantage equivalent to three pawns should give amost certain victory, asillustrated
in Figure 6.8(a). Mathematically, this kind of evaluationfunction is called aweighted linear
function, because it can be expressed as

EVAL(s) = wy f1(s) Fwafo(s) ¥ ... +wnfu(s) = Y wifi(s)
i=1

where each w, is a weight and each f; is afeature of the position. For chess, the f; could be
the numbers of each kind of piece on the board, and the w, could be the values of the pieces
(1 for pawn, 3 for bishop, etc.).

Adding up the values of features seems like a reasonable thing to do, but in fact it
involvesavery strong assumption: that the contribution of each feature is independent of the
vaues of the other features. For example, assigning the value 3 to a bishop ignores the fact
that bishops are more powerful in the endgame, when they have alot of space to maneuver.
For thisreason, current programsfor chess and other games also use nonlinear combinations
of features. For example, apair of bishops might be worth slightly more than twice the value
of asingle bishop, and a bishop is worth more in the endgame than at the beginning.

The astute reader will have noticed that the features and weights are not part of the
rules of chess! They come from centuries of human chess-playing experience. Given the

Section 6.4.

Imperfect, Real-Time Decisions 173

i (8) Whiteto move (b) White to move

Figure 6.8 Two dlightly different chess positions. In (a), black has an advantage of a ‘
knight and two pawns and will win the game. In (b), black will lose after white captures the ||

linear form of the evaluation, the features and weights result in the best approximation to
the true ordering of states by vaue. In particular, experience suggests that a secure material
advantage of more than one point will probably win the game, al other things being equal;
a three-point advantage is sufficient for near-certain victory. In games where this kind of
experience is not available, the weights of the evaluation function can be estimated by the
machine learning techniques of Chapter 18. Reassuringly, applying these techniques to chess
has confirmed that a bishop isindeed worth about three pawns.

Cutting off search

The next step is to modify ALPHA-BETA-SEARCH so that it will call the heuristic EVAL
function when it is appropriate to cut off the search. In terms of implementation, we replace
the two linesin Figure 6.7 that mention TERMINAL-TIEST with the following line:

if CUTOFF-TEST(state, depth) then return EVAL(state)

We also must arrange for some bookkeeping so that the current depth isincremented on each
recursivecall. The most straightforward approach to controlling the amount of searchisto set
afixed depth limit, so that CUTOFE-TEST(state, depth) returns truefor all depth greater than
some fixed depth d. (It must also return truefor all terminal states, just as TERMINAL-TEST
did.) The depth d ischosen so that the amount of time used will not exceed what the rules of
the game alow.

A more robust approach isto apply iterative deepening, as defined in Chapter 3. When
time runs out, the program returns the move selected by the deepest completed search. How-
ever, these approaches can lead to errors due to the approximate nature of the evaluation
function. Consider again the simple evauation function for chess based on material advan-
tage. Suppose the program searches to the depth limit, reaching the position in Figure 6.8(b),

174

Chapter 6. Adversarial Search

QUIESCENCE

QUIESCENCE
SEARCH

HORIZON EFFECT

SINGULAR
EXTENSIONS

FORWARD PRUNING

where Black is ahead by a knight and two pawns. It would report this as the heuristic value
of the state, thereby declaring that the state will likely lead to a win by Black. But White's
next move captures Black's queen with no compensation. Hence, the position isreally won
for White, but this can be seen only by looking ahead one more ply.

Obviously, amore sophisticated cutoff test is needed. Theevaluation function should be
applied only to positions that are quiescent — that is, unlikely to exhibit wild swingsin value
in the near future. In chess, for example, positions in which favorable captures can be made
are not quiescent for an evaluation function that just counts material. Nonguiescent positions
can be expanded further until quiescent positions are reached. This extra searchiscalled a
quiescence search; sometimes it is restricted to consider only certain types of moves, such
as capture moves, that will quickly resolve the uncertainties in the position.

The horizon effect is more difficult to eliminate. It arises when the program is facing
amove by the opponent that causes serious damage and i s ultimately unavoidable. Consider
the chess game in Figure 6.9. Black is ahead in material, but if White can advance its pawn
from the seventh row to the eighth, the pawn will become a queen and create an easy win
for White. Black can forestall this outcome for 14 ply by checking White with the rook,
but inevitably the pawn will become a queen. The problem with fixed-depth search is that it
believesthat these stalling moves have avoided the queening move—we say that the stalling
moves push theinevitable queening move" over the search horizon™ to aplace whereit cannot
be detected.

As hardware improvements lead to deeper searches, one expects that the horizon effect
will occur less frequently — very long delaying sequences are quite rare. The use of singular
extensions has also been quite effective in avoiding the horizon effect without adding too
much search cost. A singular extension isamovethat is* clearly better* than all other moves
inagiven position. A singular-extension search can go beyond the normal depth limit without
incurring much cost because its branching factor is 1. (Quiescence search can be thought of
as a variant of singular extensions.) In Figure 6.9, a singular extension search will find the
eventual queening move, provided that black's checking moves and white's king moves can
beidentified as" clearly better” than the alternatives.

So far we have talked about cutting off search at acertain level and about doing alpha—
beta pruning that provably has no effect on the result. It is aso possible to do forward
pruning, meaning that some moves at a given node are pruned immediately without further
consideration. Clearly, most humans playing chess only consider a few moves from each
position (at least consciously). Unfortunately, the approachisrather dangerous becausethere
is no guarantee that the best move will not be pruned away. This can be disastrous if applied
near the root, because every so often the program will miss some " obvious™ moves. Forward
pruning can beused safely in special situations— for example, when two movesare symmetric
or otherwise equivalent, only one of them need be considered— or for nodes that are deep in
the search tree.

Combining al the techniques described here results in a program that can play cred-
itable chess (or other games). Let us assume we have implemented an evaluation function
for chess, a reasonable cutoff test with a quiescence search, and a large transposition table.
Let us also assume that, after months of tedious bit-bashing, we can generate and evaluate

Section 6.5.

Games That Include an Element of Chance 175

| Black to move

| Figure6.9 The horizon effect. A seriesdf checks by the black rook forcestheineviteble
| queening move by white " over the horizon™ and makesthis positionlook likeawin for black,
whenit is redly awin for white.

around amillion nodes per second on thelatest PC, allowing us to search roughly 200 million
nodes per move under standard time controls (three minutes per move). The branching factor
for chessis about 35, on average, and 35° is about 50 million, so if we used minimax search
we could look ahead only about five plies. Though not incompetent, such a program can be
fooled easily by an average human chess player, who can occasionally plan six or eight plies
ahead. With alpha—beta search we get to about 10 ply, which results in an expert level of
play. Section 6.7 describes additional pruning techniques that can extend the effective search
depth to roughly 14 plies. To reach grandmaster status we would need an extensively tuned
evaluation function and alarge database of optimal opening and endgame moves. It wouldn't
hurt to have a supercomputer to run the program on.

Inreal life, thereare many unpredictable external eventsthat put usinto unforeseen situations.
Many games mirror this unpredictability by including arandom element, such asthethrowing
of dice. In this way, they take us a step nearer reality, and it is worthwhile to see how this
affectsthe decision-making process.

Backgammon is a typical game that combines luck and skill. Dice are rolled at the
beginning of a player's turn to determine the legal moves. In the backgammon position of
Figure 6.10, for example, white has rolled a 6-5, and has four possible moves.

Although White knows what his or her own legal moves are, White does not know what
Black is going to roll and thus does not know what Black's legal moves will be. That means
White cannot construct a standard game tree of the sort we saw in chess and tic-tac-toe. A

176 Chapter 6. Adversarial Search

25

Figure6.10 A typica backgammon position. The goal of the gameis to move al one's
pieces off the board. White moves clockwisetoward 25, and black moves counterclockwise
toward 0. A piececan moveto any position unless there are multiple opponent piecesthere;
if thereis one opponent, it is captured and must start over. In the position shown, White has
rolled 6-5 and must choose among four legal moves: (5-10,5-11), (5-11,19-24), (5-10,10-
16), and (5-11,11-16).

TERMINAL 2 -1 1 -1 1

Figure 6.11 Schematicgametreefor abackgammon position.

Section 6.5.

Games That Include an Element of Chance 177

CHANCENODES

gxf‘lgthMl.NlMﬁK

game tree in backgammon must include chance nodesin addition to MAX and MIN nodes.
Chance nodes are shown as circles in Figure 6.11. The branches leading from each chance
node denote the possible dice rolls, and each is labeled with the roll and the chance that it
will occur. There are 36 waysto roll two dice, each equally likely; but because a 6-5 is the
same as a5-6, thereare only 21 distinct rolls. The six doubles (1-1 through 6-6) have a 1/36
chance of coming up, the other 15 distinct rollsa 1/18 chance each.

The next step isto understand how to make correct decisions. Obviously, we still want
to pick the move that leads to the best position. However, the resulting positions do not
have definite minimax values. Instead, we can only calculate the expected value, where the
expectationistakenover all the possibledicerollsthat could occur. Thisleads usto generalize
the minimax value for deterministic games to an expectiminimax value for games with
chance nodes. Termina nodes and MAX and MIN nodes (for which the dice roll is known)
work exactly the same way as before; chance nodes are evaluated by taking the weighted
average of the valuesresulting from all possible dicerolls, that is,

EXPECTIMINIMAX(n) =
UTILITY(7) if nisaterminal state
MAX e Guccessors(n) EXPECTIMINIMAX(s) if nisaMAX node
MiNge Guccessors(n) EXPECTIMINIMAX(s) if nisaMIN node

> scSuccessors(n) (8) . EXPECTIMINIMAX(s) if nis achance node

where the successor function for a chance node n simply augments the state of n with each
possible dice roll to produce each successor s and P(s) is the probability that that dice roll
occurs. These equations can be backed up recursively all the way to the root of the tree, just
asin minimax. Weleave the details of the algorithm as an exercise.

Position evaluation in games with chance nodes

As with minimax, the obvious approximation to make with expectiminimax is to cut the
search off at some point and apply an evaluation function to each leaf. One might think that
evaluation functions for games such as backgammon dhould be just like evaluation functions
for chess—they just need to give higher scoresto better positions. But in fact, the presence of
chance nodes means that one has to be more careful about what the eval uation values mean.
Figure 6.12 shows what happens. with an evaluation function that assigns values [1, 2, 3,
41 to the leaves, move A; is best; with values [1, 20, 30, 400], move A, is best. Hence,
the program behaves totally differently if we make a change in the scale of some evaluation
vaues! It turns out that, to avoid this sengitivity, the evaluation function must be a positive
linear transformation of the probability of winning from aposition (or, more generally, of the
expected utility of the position). Thisis an important and general property of situationsin
which uncertainty isinvolved, and we discussit further in Chapter 16.

Complexity of expectiminimax

If the program knew in advance all the dice rolls that would occur for the rest of the game,
solving a game with dice would be just like solving a game without dice, which minimax

178

Chapter 6. Adversarial Search

MAX

CHANCE

MIN

Figure6.12 An order-preserving transformetion on leaf vaues changes the best move.

does in O(b™) time. Because expectiminimax is also considering al the possible dice-roll
sequences, it will take O(b™n™), where n is the number of distinct rolls.

Even if the search depth islimited to some small depth d, the extra cost compared with
that of minimax makes it unrealistic to consider looking ahead very far in most games of
chance. In backgammon nis 21 and bis usually around 20, but in some situations can be as
high as 4000for dicerolls that are doubles. Three pliesis probably all we could manage.

Another way to think about the problem is this: the advantage of apha—betais that
it ignores future developments that just are not going to happen, given best play. Thus, it
concentrates on likely occurrences. In games with dice, there are no likely sequences of
moves, because for those moves to take place, the dice would first have to come out the right
way to make them legal. Thisis ageneral problem whenever uncertainty enters the picture:
the possibilities are multiplied enormously, and forming detailed plans of action becomes
pointless, because the world probably will not play along.

No doubt it will have occurred to the reader that perhaps something like apha—beta
pruning could be applied to game trees with chance nodes. It turns out that it can. The
analysisfor MIN and MAX nodes is unchanged, but we can also prune chance nodes, using
abit of ingenuity. Consider the chance node C'in Figure 6.11 and what happensto its value
as we examine and evaluate its children. Isit possible to find an upper bound on the value
of C before we havelooked at all its children? (Recall that thisis what apha—betaneeds to
prune anode and its subtree.) At first sight, it might seem impossible, because the valueof C
is theaverage of its children's values. Until we havelooked at all the dicerolls, this average
could be anything, because the unexamined children might have any value at all. But if we
put bounds on the possible values of the utility function, then we can arrive at boundsfor the
average. For example, if we say that all utility valuesare between +3 and — 3, then the value
of leaf nodes is bounded, and in turn we can place an upper bound on the value of a chance
node without looking at all its children.

Section 6.5.

Games That Include an Element of Chance 179

Card games

Card games are interesting for many reasons besides tiheir connection with gambling. Among
the huge variety of games, we will focus on those in which cards are dealt randomly at the
beginning of the game, with each player receiving a hand of cards that is not visible to the
other players. Such gamesinclude bridge, whist, heats, and some formsof poker.

At first sight, it might seem that card games are just like dice games: the cards are
dealt randomly and determine the moves available to each player, but all the dice arerolled
at the beginning! We will pursue this observation further. It will turn out to be quite useful in
practice. Itisalso quite wrong, for interesting reasons.

Imagine two players, MAX and MIN, playing some practice hands of four-card two
handed bridge with al the cards showing. The hands are asfollows, with MAX to play first:

MAX: ©6 $6 &9 8 MIN: ©4 &2 &105.

Suppose that MAX leads the & 9. MIN must now follow suit, playing either the & 10 or the
& 5. MIN playsthe & 10 and wins the trick. MIN goes nexl. and leadsthe # 2. MAX has no
spades (and so cannot win the trick) and therefore must throw away some card. The obvious
choice is the ¢» 6 because the other two remaining cards are winners. Now, whichever card
MIN leadsfor the next trick, MAX will win both remaining tricks and the game will be tied at
two tricks each. It is easy to show, using a suitable variant of minimax (Exercise 6.12), that
MAX's lead of the & 9 isinfact an optimal choice.
Now let's modify MIN’s hand, replacing the © 4 with the 4:

MAX: ©6 &6 98 MIN: &4 &2 &105.

The two cases are entirely symmetric: play will beidentical, except that on the second trick
MAX will throw away the 6. Again, the game will betied at two tricks each and the lead of
the & 9 is an optimal choice.

So far, so good. Now let's hide one of MIN’s cards: MAX knows that MIN has either
the first hand (with the © 4) or the second hand (with the ¢» 4), but has no idea which. MAX
reasons asfollows:

The & 9 is an optimal choice against MIN’s first hand and against MIN’s second hand, so
it must be optimal how because | know that MIN has one of the two hands.

More generally, MAX isusing what we might call "*averaging over clairvoyancy.” The idea
is to evaluate a given course of action when there are unseen cards by first computing the
minimax value of that action for each possible deal of the cards, and then computing the
expected value over all deals using the probability of each deal.

If you think this is reasonable (or if you have no idea because you don't understand
bridge), consider the following story:

Day 1: Road A leads to a heap of gold pieces; Road B leads to afork. Taketheleft fork
and you'll find amound of jewels, but take the right fork and you'll be run over by abus.
Day 2: Road A leads to a heap of gold pieces; Road B leads to afork. Take the right fork
and you'll findamound of jewels, but take the left fork and you'll be run over by a bus.
Day 3: Road A leadsto a heap of gold pieces; Road B leadsto afork. Guess correctly and
you'll find a mound of jewels, but guess incorrectly and you'll be run over by a bus.

180

Chapter 6. Adversarial Search

CHESS

Obviously, it's not unreasonabl e to take Road B on thefirst two days. No sane person, though,
would take Road B on Day 3. Yet thisis exactly what averaging over clairvoyancy suggests:
Road B is optimal in the situations of Day 1 and Day 2; therefore it is optimal on Day 3,
because one of the two previous situations must hold. Let us return to the card game: after
MAX leads the & 9, MIN wins with the & 10. As before, MIN leads the & 2, and now MAX is
at thefork in the road without any instructions. If MAX throwsaway the ¢V 6 and MIN still has
the © 4, the © 4 becomes awinner and MAX loses the game. Similarly, If MAX throwsaway
the ¢» 6 and MIN still has the {» 4, MAX also loses. Therefore, playing the & 9 first leads to a
situation where MAX has a 50% chance of losing. (It would be much better to play the ¥ 6
and the < 6 first, guaranteeing a tied game.)

The lesson to be drawn from all this is that when information is missing, one must
consider what information onewl|l have at each pointin the game. The problem with MAX's
agorithm is that it assumes that in each possible deal, play will proceed as if all the cards
are visible. Asour example shows, thisleads MAX to act asif al future uncertainty will be
resolved when the time comes. MAX's algorithm will aso never decide to gather information
(or provide information to a partner), because within each deal there's no need to do so; yet
in games such as bridge, it is often a good idea to play a card that will help one discover
things about one's opponent's cards or that will tell one's partner about one's own cards.
These kinds of behaviors are generated automatically by an optimal algorithm for games of
imperfect information. Such an algorithm searches not in the space of world states (hands
of cards), but in the space of belief states (beliefs about who has which cards, with what
probabilities). We will be able to explain the algorithm properly in Chapter 17, once we have
developed the necessary probabilistic machinery. In that chapter, we will also expand on
onefinal and very important point: in games of imperfect information, it's best to give away
as little information to the opponent as possible, and often the best way to do thisis to act
unpredictably. Thisis why restaurant hygiene inspectors do random inspection visits.

One might say that game playing is to AI as Grand Prix motor racing is to the car indus-
try: state-of-the-art game programs are blindingly fast, incredibly well-tuned machines that
incorporate very advanced engineering techniques, but they aren't much use for doing the
shopping. Although some researchers believe that game playing is somewhat irrelevant to
mainstream Al, it continues to generate both excitement and a steady stream of innovations
that have been adopted by the wider community.

Chess: In 1957, Herbert Simon predicted that within 10 years computers would beat the

human world champion. Forty years later, the Deep Blue program defeated Garry Kasparov
in asix-game exhibition match. Simon was wrong, but only by afactor of 4. Kasparov wrote:

The decisivegame of the match was Game 2, which left ascar in my memory ... we saw
something that went well beyond our wildest expectationsof how well acomputer would
be able to foresee the long-term positional consequencesof its decisions. The machine

Section 6.6.

State-of-the-Art Game Programs 181

NULL MOVE

FUTILITY PRUNING

CHECKERS

refused to move to a position thet hed a decisve short-term advantage—showing a very
humean sensedf danger. (Kasparov, 1997)

Deep Blue was developed by Murray Campbell, Feng-Hsiung Hsu, and Joseph Hoane at
IBM (see Campbell et al., 2002), building on the Deep Thought design developed earlier
by Campbell and Hsu at Carnegie Mellon. The winning machine was a parallel computer
with 30 IBM RS/6000 processors running the " software search™ and 480 custom VLSI chess
processors that performed move generation (including moveordering), the™ hardwaresearch™
for the last few levels of the tree, and the evaluation of leaf nodes. Deep Blue searched 126
million nodes per second on average, with a peak speed of 330 million nodes per second. It
generated up to 30 billion positions per move, reaching depth 14 routinely. The heart of the
machineis astandard iterative-deepening a pha-betasearch with atransposition table, but the
key toits success seems to have been its ability to generate extensions beyond the depth limit
for sufficiently interesting lines of forcing/forced moves. In some cases the search reached a
depth of 40 plies. The evaluation function had over 8000 features, many of them describing
highly specific patterns of pieces. An " openingbook” of about 4000 positions was used, as
well as a database of 700,000 grandmaster games from which consensus recommendations
could be extracted. The system also used a large endgame database of solved positions,
containing all positionswithfive piecesand many with six pieces. Thisdatabase has the effect
of substantially extending the effective search depth, allowing Deep Blue to play perfectly in
some cases even when it is many moves away from checkmate.

The success of Deep Blue reinforced the widely held belief that progressin computer
game-playing has come primarily from ever-more-powerful hardware—a view encouraged
by IBM. Deep Blue's creators, on the other hand, state that the search extensions and eval-
uation function were also critical (Campbell et al., 2002). Moreover, we know that several
recent algorithmic improvements have allowed programs running on standard PCs to win
every World Computer-Chess Championship since 1992, often defeating massively parallel
opponents that could search 1000 times more nodes. A variety of pruning heuristics are used
to reduce the effective branching factor to less than 3 (compared with the actual branching
factor of about 35). The most important of theseis the null move heuristic, which generates
a good lower bound on the value of a position, using a shallow search in which the oppo-
nent gets to move twice at the beginning. This lower bound often allows alpha—beta pruning
without the expense of a full-depth search. Also important is futility pruning, which helps
decide in advance which moves will cause a beta cutoff in the successor nodes.

The Deep Blue team declined a chance for a rematch with Kasparov. Instead, the
most recent major competition in 2002 featured the program FRITZ against world cham-
pion Vladimir Kramnik. The eight game match ended in adraw. The conditions of the match
were much more favorable to the human, and the hardware was an ordinary PC, not a super-
computer. Still, Krarnnik commented that "It is now clear that the top program and the world
champion are approximately equal.”

Checkers: Beginning in 1952, Arthur Samuel of IBM, working in his spare time, devel oped
a checkers program that learned its own evaluation function by playing itself thousands of
times. We describe this idea in more detail in Chapter 21. Samuel's program began as a

182

Chapter 6. Adversarial Search

OTHELLO

BACKGAMMON

novice, but after only afew days self-play had improved itself beyond Samuel's own level
(although he was not a strong player). In 1962 it defeated Robert Nealy, achampion at "' blind
checkers,” through an error on his part. Many people felt that this meant computers were su-
perior to peopleat checkers, but this was not the case. Still, when one considers that Samuel's
computing equipment (an IBM 704) had 10,000 words of main memory, magnetic tape for
long-term storage, and a.000001-GHz processor, the win remains a great accomplishment.

Few other people attempted to do better until Jonathan Schaeffer and colleagues de-
veloped Chinook, which runs on regular PCs and uses apha—beta search. Chinook uses a
precomputed database of all 444 billion positions with eight or fewer pieces on the board to
make its endgame play flawless. Chinook camein second in the 1990 U.S. Open and earned
the right to challenge for the world championship. It then ran up against a problem, in the
form of Marion Tindey. Dr. Tinsley had been world champion for over 40 years, losing only
threegamesin all that time. In thefirst match against Chinook, Tinsley suffered hisfourth and
fifth losses, but won the match 20.5-18.5. The world championship match in August 1994
between Tinsley and Chinook ended prematurely when Tinsley had to withdraw for health
reasons. Chinook became the official world champion.

Schaeffer believesthat, with enough computing power, the database of endgames could
be enlarged to the point where aforward search from theinitial position would always reach
solved positions, i.e., checkers would be completely solved. (Chinook has announced a win
asearly asmove5.) Thiskind of exhaustive analysis can be done by hand for 3 X 3tic-tac-toe
and has been done by computer for Qubic (4 X 4 X 4 tic-tac-toe), Go-Moku (fivein arow), and
Nine-Men's Morris (Gasser, 1998). Remarkable work by Ken Thompson and Lewis Stiller
(1992) solved al five-piece and some six-piece chess endgames, making them available on
the Internet. Stiller discovered one case where aforced mate existed but required 262 moves,
this caused some consternation because the rules of chess require some " progress” to occur
within 50 moves.

Othello, also called Revers, is probably more popular as a computer game than as a board
game. It has a smaller search space than chess, usualy 5 to 15 legal moves, but evaluation
expertise had to be developed from scratch. In 1997, the Logistello program (Buro, 2002)
defeated the human world champion, Takeshi Murakami , by six gamesto none. Itisgenerally
acknowledged that humans are no match for computers at Othello.

Backgammon: Section 6.5 explained why the inclusion of uncertainty from dice rolls makes
deep search an expensive luxury. Most work on backgammon has gone into improving
the evaluation function. Gerry Tesauro (1992) combined Samuel's reinforcement learning
method with neural network techniques (Chapter 20) to develop a remarkably accurate eval-
uator that is used with a search to depth 2 or 3. After playing more than a million training
games against itself, Tesauro's program, TD-GAMMONis reliably ranked among the top
three playersin the world. The program's opinions on the opening moves of the game have
in some cases radically altered the received wisdom.

Go is the most popular board game in Asia, requiring at least as much discipline from its
professionals as chess. Because the board is 19 x 19, the branching factor starts at 361,
which is too daunting for regular search methods. Up to 1997 there were no competent

Section 6.7.

Discussion 183

BRIDGE

programs at all, but now programs often play respectable moves. Most of the best programs
combine pattern recognition techniques (when the following pattern of pieces appears, this
move should be considered) with limited search (decide whether these piecescan be captured,
staying within the local area). The strongest programs at the time of writing are probably
Chen Zhixing's Goemate and Michael Reiss Go4++, each rated somewhere around 10 kyu
(weak amateur). Go isan areathat islikely to benefit from intensiveinvestigation using more
sophisticated reasoning methods. Success may come from finding ways to integrate several
lines of local reasoning about each of the many, loosely connected **subgames™ into which
Go can be decomposed. Such techniques would be of enormous valuefor intelligent systems
in general.

Bridgeisagame of imperfect information: aplayer's cards are hidden from the other players.
Bridge is also amultiplayer game with four playersinstead of two, athough the players are
pairedinto two teams. Aswe saw in Section 6.5, optimal play in bridge can include elements
of information-gathering, communication, bluffing, and careful weighing of probabilities.
Many of these techniques are used in the Bridge Baron 'M program (Smith et al., 1998),
which won the 1997 computer bridge championship. While it does not play optimally, Bridge
Baron is one of the few successful game-playing systems to use complex, hierarchical plans
(see Chapter 12) involving high-level ideas such asfinessing and squeezing that are familiar
to bridge players.

The GIB program (Ginsberg, 1999) won the 2000 championship quite decisively. GIB
uses the ""averaging over clairvoyancy™ method, with two crucial modifications. First, rather
than examining how well each choice works for every possible arrangement of the hidden
cards--of which there can be up to 10 million—it examines arandom sample of 100 arrange-
ments. Second, GIB uses explanation-based gener alizationto compute and cache genera
rules for optimal play in various standard classes of situations. This enables it to solve each
deal exactly. GIB’s tactical accuracy makes up for itsinability to reason about information.
It finished 12th in afield of 35in the par contest (involving just play of the hand) at the 1998
human world championship, far exceeding the expectations of many human experts.

Because calculating optimal decisions in games is intractable in most cases, al algorithms
must make some assumptions and approximations. The standard approach, based on mini-
max, evaluation functions, and alpha—beta, isjust one way to do this. Probably becauseit was
proposed so early on, the standard approach had been developed intensively and dominates
other methodsin tournament play. Somein thefield believethat this has caused game playing
to become divorced from the mainstream of Al research, because the standard approach no
longer provides much room for new insight into general questions of decision making. Inthis
section, welook at the alternatives.

First, let us consider minimax. Minimax selects an optimal move in a given search
tree provided that the leaf node evaluations are exactly correct. In redlity, evaluations are

184

Chapter 6. Adversaria Search

METAREASONING

Figure6.13 A two-ply game treefor which minimax may beinappropriate.

usually crude estimates of the value of a position and can be considered to have large errors
associated with them. Figure 6.13 shows a two-ply game tree for which minimax seems
inappropriate. Minimax suggests taking the right-hand branch, whereasit is quite likely that
the true value of the left-hand branch is higher. The minimax choice relies on the assumption
that all of the nodes labeled with values 100, 101, 102, and 100 are actually better than the
node labeled with value 99. However, the fact that the node labeled 99 has siblings |abeled
1000 suggests that in fact it might have a higher true value. One way to deal with this problem
is to have an evaluation that returns a probability distribution over possible values. Then
one can calculate the probability distribution for the parent's value using standard statistical
techniques. Unfortunately, the values of sibling nodes are usually highly correlated, so this
can be an expensive calculation, requiring hard to obtain information.

Next, we consider the search algorithm that generates the tree. The aim of an agorithm
designer is to specify a computation that runs quickly and yields a good move. The most
obvious problem with the a pha-betaagorithm is that it is designed not just to select agood
move, but also to calculate bounds on the values of al the legal moves. To see why this
extrainformation is unnecessary, consider a position in which thereis only one legal move.
Alpha—betasearch still will generate and evaluate alarge, and totally useless, search tree. Of
course, we can insert a test into the algorithm, but this merely hides the underlying problem:
many of the calculations done by alpha—beta are largely irrelevant. Having only one legal
move is not much different from having several legal moves, one of which is fine and the
rest of which are obviously disastrous. In a ™ clear favorite™ situation like this, it would be
better to reach a quick decision after a small amount of search than to waste time that could
be more productively used later on a more problematic position. Thisleadsto theideaof the
utility d a node expansion. A good search algorithm should select node expansions of high
utility —thet is, ones that are likely to lead to the discovery of a significantly better move. If
there are no node expansions whose utility is higher than their cost (in terms of time), then
the algorithm should stop searching and make a move. Notice that this works not only for
clear-favoritesituations, but also for the case of symmetrical moves, for which no amount of
search will show that one moveis better than another.

This kind of reasoning about what computations to do is called metar easoning (rea-

soning about reasoning). It applies not just to game playing, but to any kind of reasoning

Section 6.8.

Summary 185

at all. All computations are done in the service of trying to reach better decisions, al have
costs, and all have some likelihood of resulting in a certain improvement in decision quality.
Alpha-betaincorporates the simplest kind of metareasoning, namely, a theorem to the effect
that certain branches of the tree can beignored without loss. It is possible to do much better.
In Chapter 16, we will see how theseideas can be made precise and implementable.

Finally, let us reexamine the nature of search itself. Algorithmsfor heuristic search and
for game playing work by generating sequences of concrete states, starting from the initial
state and then applying an evaluationfunction. Clearly, thisisnot how humans play games. In
chess, one often has a particular goal in mind—for example, trapping the opponent's queen—
and can usethisgoal to selectively generate plausible plans for achievingit. Thiskind of goal-
directed reasoning or planning sometimes eliminates combinatorial search atogether. (See
Part IV.) David Wilkins’ (1980) PARADISE is the only program to have used goal-directed
reasoning successfully in chess: it was capable of solving some chess problems requiring an
18-move combination. As yet there is no good understanding of how to combine the two
kinds of agorithm into arobust and efficient system, although Bridge Baron might be a step
in the right direction. A fully integrated system would be a significant achievement not just
for game-playing research, but also for Al research in general, because it would be a good
basisfor agenerd intelligent agent.

We have looked at a variety of games to understand what optimal play means and to under-
stand how to play well in practice. The most important ideas are asfollows:

¢ A game can be defined by theinitial state (how the boardisset up), thelegal actionsin
each state, aterminal test (which says when the gameis over), and a utility function
that appliesto terminal states.

¢ In two-player zero-sum games with perfect information, the minimax algorithm can
select optimal moves using a depth-first enumeration of the game tree.

e The alpha-beta search agorithm computes the same optimal move as minimax, but
achieves much greater efficiency by eliminating subtrees that are provably irrelevant.

e Usually,itis not feasibleto consider the whole game tree (even with apha—beta), so we
need to cut the search off at some point and apply an evaluationfunction that givesan
estimate of the utility of a state.

¢ Games of chance can be handled by an extension to the minimax algorithm that evalu-
ates a chance node by taking the average utility of al its children nodes, weighted by
the probability of each child.

e Optimal play in games of imperfect information, such as bridge, requires reasoning
about the current and future belief states of each player. A simple approximation can
be obtained by averaging the value of an action over each possible configuration of
missing information.

186 Chapter 6. Adversarial Search

e Programs can match or beat the best human playersin checkers, Othello, and backgam-
mon and are close behind in bridge. A program has beaten the world chess champion
in one exhibition match. Programs remain at the amateur level in Go.

BIBLIOGRAPHICAL AND HISTORICAL NOTES

Theearly history of mechanical game playing was marred by numerous frauds. The most no-
torious of these was Baron Wolfgang von Kempelen's (1734-1804) " The Turk," a supposed
chess-playing automaton that defeated Napoleon before being exposed as a magician's trick
cabinet housing a human chess expert (see Levitt, 2000). It played from 1769 to 1854. In
1846, Charles Babbage (who had been fascinated by the Turk) appears to have contributed
the first serious discussion of the feasibility of computer chess and checkers (Morrison and
Morrison, 1961). He also designed, but did not build, a special-purpose machinefor playing
tic-tac-toe. Thefirst true game-playing machine was built around 1890 by the Spanish engi-
neer Leonardo Torresy Quevedo. It specialized in the™ KRK (king and rook vs. king) chess
endgame, guaranteeing a win with king and rook from any position.

The minimax algorithm is often traced to a paper published in 1912 by Ernst Zermelo,
the developer of modern set theory. The paper unfortunately contained several errors and
did not describe minimax correctly. A solid foundation for game theory was developed in
the seminal work Theory of Games and Economic Behavior (von Neumann and Morgen-
stern, 1944), which included an analysis showing that some games requirestrategies that are
randomized (or otherwise unpredictable). See Chapter 17 for more information.

Many influential figures of the early computer era wereintrigued by the possibility of
computer chess. Konrad Zuse (1945), the first person to design a programmable computer,
developedfairly detailed ideas about how it might be done. Norbert Wiener's (1948) influen-
tial book Cybernetics discussed one possible design for a chess program, including the ideas
of minimax search, depth cutoffs, and evaluation functions. Claude Shannon (1950) laid out
the basic principles of modern game-playing programs in much more detail than Wiener. He
introduced the idea of quiescence search and described some ideas for selective (nonexhaus-
tive) game-tree search. Slater (1950) and the commentators on his article also explored the
possibilitiesfor computer chess play. In particular, 1. J. Good (1950) devel oped the notion of
quiescence independently of Shannon.

In 1951, Alan Turing wrote the first computer program capable of playing afull game
of chess (see Turing et al., 1953). But Turing's program never actually ran on a computer; it
was tested by hand simulation against a very weak human player, who defeated it. Meanwhile
D. G. Prinz (1952) had written, and actually run, a program that solved chess problems,
athough it did not play afull game. Alex Bernstein wrote the first program to play a full
game of standard chess (Bernstein and Roberts, 1958; Bernstein et al., 1958).%

John McCarthy conceived the idea of apha—beta search in 1956, athough he did not
publishit. The NSS chess program (Newel 1et al., 1958) used a simplified version of alpha-—

3 Newell et al. (1958) mention a Russian program, BESM, that may have predated Bernstein’s program.

Section 6.8.

Summary 187

beta; it was the first chess program to do so. According to Nilsson (1971), Arthur Samuel's
checkers program (Samuel, 1959, 1967) also used a pha—beta, although Samuel did not men-
tion it in the published reports on the system. Papers describing a pha—betawere published
in theearly 1960s (Hart and Edwards, 1961; Brudno, 1963; Slagle, 1963b). An implementa-
tion of full alpha—betais described by Slagle and Dixon (1969) in a program for playing the
game of Kalah. Alpha—betawas also used by the “Kotok—McCarthy” chess program written
by a student of John McCarthy (Kotok, 1962). Knuth and Moore (1975) provide a history
of alpha-beta, along with a proof of its correctness and a time complexity analysis. Their
analysis of alpha—betawith random successor ordering showed an asymptotic complexity of
O((b/1og b)%), which seemed rather dismal because the effective branching factor 5/logb is
not much less than bitself. They then realized that the asymptotic formulaisaccurate only for
b > 1000 or so, whereas the often-quoted O(b>¥/*) applies to the range of branching factors
encountered in actual games. Pear1(1982b) shows alpha—beta to be asymptotically optimal
among all fixed-depth game-tree search algorithms.

The first computer chess match featured the Kotok-McCarthy program and the™ I TEP
program written in the mid-1960s at Moscow's Institute of Theoretical and Experimental
Physics (Adelson-Velsky et al., 1970). This intercontinental match was played by telegraph.
It ended with a3-1 victory for thel TEP programin 1967. Thefirst chess program to compete
successfully with humans was MacHack 6 (Greenblatt et al., 1967). Its rating of approxi-
mately 1400 was well above the novicelevel of 1000, but it fell far short of therating of 2800
or more that would have been needed to fulfill Herb Simon's 1957 prediction that a computer
program would be world chess champion within 10 years (Simon and Newell, 1958).

Beginning withthefirst ACM North American Computer-Chess Championshipin 1970,
competition among chess programs became serious. Programs in the early 1970s became ex-
tremely complicated, with various kinds of tricks for eliminating some branches of search,
for generating plausible moves, and so on. In 1974, the first World Computer-Chess Champi-
onship was held in Stockholm and won by Kaissa(Adelson-Velskyet al., 1975), another pro-
gram from ITEP. Kaissa used the much more straightforward approach of exhaustive alpha—
beta search combined with quiescence search. Thedominance of thisapproach was confirmed
by the convincing victory of CHESS 4.6 in the 1977 World Computer-Chess Championship.
CHESS 4.6 examined up to 400,000 positions per move and had a rating of 1900.

A later version of Greenblatt's MacHack 6 was the first chess program to run on cus-
tom hardware designed specifically for chess (Moussouris et al., 1979), but the first pro-
gram to achieve notable success through the use of custom hardware was Belle (Condon
and Thompson, 1982). Belle's move generation and position evaluation hardware enabled
it to explore several million positions per move. Belle achieved a rating of 2250, becoming
the first master-level program. The HITECH system, al so a special-purpose computer, was de-
signed by former World Correspondence Chess Champion Hans Berliner and his student Carl
Ebeling at CMU to allow rapid calculation of evaluation functions (Ebeling, 1987; Berliner
and Ebeling, 1989). Generating about 10 million positions per move, HiTECH became North
American computer champion in 1985 and was the first program to defeat a human grand-
master, in 1987. Deep Thought, which was aso developecl at CMU, went further in the
direction of pure search speed (Hsu et al., 1990). It achieved arating of 2551 and was the

188

Chapter 6. Adversarial Search

forerunner of Deep Blue. The Fredkin Prize, established in 1980, offered $5000 to the first
program to achieve a master rating, $10,000 to the first program to achieve a USCF (United
States Chess Federation) rating of 2500 (near the grandmaster level), and $100,000 for the
first program to defeat the human world champion. The $5000 prize was claimed by Bellein
1983, the $10,000 prize by Deep Thought in 1989, and the $100,000 prize by Deep Blue for
its victory over Garry Kasparov in 1997. It is important to remember that Deep Blue's suc-
cess was due to algorithmic improvements as well as hardware (Hsu, 1999; Campbell et a/.,
2002). Techniques such as the null-move heuristic (Beal, 1990) have led to programs that
arequite selectivein their searches. Thelast three World Computer-Chess Championshipsin
1992, 1995, and 1999 were won by programs running on standard PCs. Probably the most
complete description of a modern chess program is provided by Ernst Heinz (2000), whose
DARKTHOUGHT program was the highest-ranked noncommercial PC program at the 1999
world championships.

Several attempts have been made to overcome the problems with the "' standard ap-
proach” that were outlined in Section 6.7. The first selective search algorithm with some
theoretical grounding was probably B* (Berliner, 1979), which attempts to maintain interval
bounds on the possible value of a node in the game tree, rather than giving it a single point-
valued estimate. Leaf nodes are selected for expansion in an attempt to refine the top-level
bounds until one moveis*clearly best." Palay (1985) extends the B* idea using probability
distributions on valuesin place of intervals. David McAllester’s (1988) conspiracy number
search expands leaf nodes that, by changing their values, could cause the program to prefer a
new move at the root. MGSS* (Russell and Wefald, 1989) uses the decision-theoretic tech-
niques of Chapter 16 to estimate the value of expanding each leaf in terms of the expected
improvement in decision quality at the root. It outplayed an apha—betaagorithm at Othello
despite searching an order of magnitude fewer nodes. The MGSS* approach is, in principle,
applicable to the control of any form of deliberation.

Alpha-beta search is in many ways the two-player analog of depth-first branch-and-
bound, which is dominated by A* in the single-agent case. The SSS* agorithm (Stockman,
1979) can be viewed as a two-player A* and never expands more nodes than alpha—beta to
reach the same decision. The memory requirements and computational overhead of the queue
make SSS* in its original form impractical, but a linear-space version has been developed
from the RBFS agorithm (Korf and Chickering, 1996). Plaat et al. (1996) developed a new
view of SSS* as a combination of apha—betaand transposition tables, showing how to over-
come the drawbacks of the original algorithm and developing a new variant called MTD(f)
that has been adopted by a number of top programs.

D. F Beal (1980) and Dana Nau (1980, 1983) studied the weaknesses of minimax ap-
plied to approximate evaluations. They showed that under certain independence assumptions
about the distribution of leaf valuesin the tree, minimaxing can yield values at the root that
are actually less reliable than the direct use of the evaluation function itself. Pearl's book
Heuristics (1984) partially explains this apparent paradox and analyzes many game-playing
algorithms. Baum and Smith (1997) propose a probability-based replacement for minimax,
showing that it results in better choices in certain games. There is till little theory of the
effectsof cutting off search at different levels and applying evaluation functions.

Section6.8.

Summary 189

The expectiminimax algorithm was proposed by Donald Michie (1966), athough of
course it follows directly from the principles of game-tree evaluation due to von Neumann
and Morgenstern. Bruce Ballard (1983) extended apha—beta pruning to cover trees with
chance nodes. Thefirst successful backgammon program was BKG (Berliner, 1977, 1980b);
it used acomplex, manually constructed evaluation function and searched only to depth 1. It
was the first program to defeat a human world champion & a major classic game (Berliner,
1980a). Berliner readily acknowledged that this was a very short exhibition match (not a
world championship match) and that BKG was very lucky with the dice. Work by Gerry
Tesauro, first on NEUROGAMMON (Tesauro, 1989) and later on TD-GAM M ONTesauro,
1995), showed that much better results could be obtained via reinforcement learning, which
we will cover in Chapter 21.

Checkers, rather than chess, was the first of the classic games fully played by a com-
puter. Christopher Strachey (1952) wrote the first working program for checkers. Schaeffer
(1997) gives a highly readable, "warts and al'* account of the development of his Chinook
world champion checkers program.

Thefirst Go-playing programs were developed somewhat later than those for checkers
and chess (Lefkovitz, 1960; Remus, 1962) and have progressed more slowly. Ryder (1971)
used a pure search-based approach with a variety of selective pruning methods to overcome
the enormous branching factor. Zobrist (1970) used condition—action rules to suggest plau-
sible moves when known patterns appeared. Reitman and Wilcox (1979) combined rules
and search to good effect, and most modem programs have followed this hybrid approach.
Miiller (2002) summarizes the state of the art of computerized Go and provides a wealth of
references. Anshelevich (2000) uses related techniquesfor the game of Hex. The Computer
Go Newdletrer, published by the Computer Go Association, describes current developments.

Paperson computer game playing appear in avariety of venues. Therather misleadingly
named conference proceedings Heuristic Programming in Artificial Intelligence report on the
Computer Olympiads, which include a wide variety of games. There are also several edited
collections of important papers on game-playing research (Levy, 1988a, 1988b; Marsland
and Schaeffer, 1990). The International Computer Chess Association (ICCA), founded in
1977, publishes the quarterly ICGA Journal (formerly the ICCA Journal). Important papers
havebeen published in the serial anthology Advancesin Computer Chess, starting with Clarke
(1977). Volume 134 of thejourna Artijicial Intelligence (2002) contains descriptions of state-
of-the-art programs for chess, Othello, Hex, shogi, Go, backgammon, poker, Scrabble. ™and
other games.

6.1 This problem exercises the basic concepts of game playing, using tic-tac-toe (noughts
and crosses) as an example. We define X, as the number of rows, columns, or diagonals
with exactly n X's and no O’s. Similarly, O,, is the number of rows, columns, or diagonals
with just n O’s. The utility function assigns +1 to any position with X5 = 1 and —1 to any

190 Chapter 6. Adversaria Search

position with O3 = 1. All other terminal positions have utility 0. For nonterminal positions,
we usealinear evaluationfunction defined as Eval (S)= 3 X5 (S)+X1(s) — (302(s) +O1(s)).

a. Approximately how many possible games of tic-tac-toe are there?

b. Show the whole game tree starting from an empty board down to depth 2 (i.e., one X
and one O on the board), taking symmetry into account.

. Mark on your tree the evaluations of al the positions at depth 2.

d. Using the minimax algorithm, mark on your tree the backed-up valuesfor the positions
at depths 1 and O, and use those valuesto choose the best starting move.

e. Circle the nodes at depth 2 that would not be evaluated if apha-beta pruning were
applied, assuming the nodes are generated in the optimal order for al pha-betapruning.

6.2 Provethefollowing assertion: for every game tree, the utility obtained by MAX using
minimax decisions against a suboptimal MIN will be never be lower than the utility obtained
playing against an optimal MIN. Can you come up with a game tree in which MAX can do
still better using a suboptimal strategy against a suboptimal MIN?

6.3 Consider the two-player game described in Figure 6.14.
a. Draw the complete game tree, using the following conventions:
e Writeeach stateas (s 4, sg) where s4 and s denote the token locations.
e Put each terminal statein a square boxesand writeits game valuein acircle.
o Put loop states (states that already appear on the path to theroot) in double square
boxes. Sinceit is not clear how to assign valuesto loop states, annotate each with
a“?” inacircle.

b. Now mark each node with its backed-up minimax value (also in acircle). Explain how
you handled the “?” valuesand why.

c. Explain why the standard minimax algorithm would fail on this game tree and briefly
sketch how you might fix it, drawing on your answer to (b). Does your modified algo-
rithm give optimal decisionsfor al games with loops?

d. This4-square game can be generalized to n squares for any n > 2. Prove that A wins
if nisevenand losesif nisodd.

Figure6.14 Thestartingpositionaf asimplegame. Player A movesfirst. Thetwo players
take turns moving, and each player must move his token to an open adjacent spacein either
direction. If the opponent occupies an adjacent space, then a player may jump over the
opponent to the next open spaceif any. (For example,if A ison 3and Bison 2, then A may
move back to 1.) The game ends when one player reaches the opposite end of the board. If
player A reaches space 4 first, then the vaue of the gameto A is +1; if player B reaches
space 1first, then the valueof thegameto A is —1.

Section 6.8.

Summary 191

6.4 Implement move generators and evaluation functions for one or more of the following
games. Kalah, Othello, checkers, and chess. Construct a general apha—beta game-playing
agent that uses your implementation. Compare the effect of increasing search depth, improv-
ing move ordering, and improving the evaluation function. How close does your effective
branching factor cometo theideal case of perfect move ordering?

65 Develop aformal proof of correctness for apha-beta pruning. To do this, consider the
situation shown in Figure 6.15. The question is whether to prune node n;, which is a max-
node and a descendant of node n;. The basicideaisto prune it if and only if the minimax
valueof n; can beshown to be independent of the value of ;.

a. Thevalueof n; isgivenby

Find asimilar expression for ny and hence an expression for ny in termsof n;.

b. Let /; bethe minimum (or maximum) valueof the nodesto theleft of noden; at depthi,
whose minimax valueisaready known. Similarly, let r; be the minimum (or maximum)
value of the unexplored nodes to theright of n; at depth i. Rewrite your expression for
n1 intermsof thel; and r; values.

c. Now reformulate the expression to show that in order to affect ny, n; must not exceed
acertain bound derived from the I; values.

d. Repeat the processfor the case where n; is amin-node.

6.6 Implement the expectiminimax agorithm and the *-apha—betaagorithm, which is de-
scribed by Ballard (1983), for pruning game trees with chance nodes. Try them on a game
such as backgammon and measure the pruning effectivenessof *-apha—beta

192

Chapter 6. Adversaria Search

6.7 Provethat with apositivelinear transformation of leaf values(i.e., transforming avalue
x to ax T bwherea > 0), the choice of move remains unchangedin agame tree, even when

there are chance nodes.

6.8 Consider the following procedurefor choosing movesin games with chance nodes:

¢ Generate some die-roll sequences (say, 50) down to a suitable depth (say, 8).

¢ With known dierolls, the game tree becomes deterministic. For each die-roll sequence,
solve theresulting deterministic game tree using alpha—beta.

e Usetheresultsto estimate the value of each move and to choose the best.

Will this procedure work well? Why (not)?

6.9 Describe and implement a real-time, multiplayer game-playing environment, where
timeis part of the environment state and players are given fixed time all ocations.

6.10 Describe or implement state descriptions, move generators, terminal tests, utility func-
tions, and evaluation functions for one or more of the following games: Monopoly, Scrabble,
bridge (assuming a given contract), and poker (choose your favorite variety).

6.11 Consider carefully theinterplay of chanceeventsand partial information in each of the
gamesin Exercise 6.10.

a. For whichisthe standard expectirninimax model appropriate? |mplement the algorithm
and run it in your game-playing agent, with appropriate modifications to the game-
playing environment.

b. For which would the scheme described in Exercise 6.8 be appropriate?

c. Discuss how you might deal with the fact that in some of the games, the players do not
have the same knowledge of the current state.

6.12 The minimax algorithm assumes that players take turns moving, but in card games
such as whist and bridge, the winner of the previoustrick playsfirst on the next trick.

a. Modify theagorithm to work properly for thesegames. Y ou may assumethat afunction
WINNER(s) is available that reports which player won the trick just completed (if any).

b. Draw the game treefor thefirst pair of hands shown on page 179.

6.13 The Chinook checkers program makes extensive use of endgame databases, which
provide exact valuesfor every position with eight or fewer pieces. How might such databases
be generated efficiently?

6.14 Discuss how well the standard approach to game playing would apply to games such
astennis, pool, and croquet, which take place in a continuous physical state space.

6.15 Describe how the minimax and alpha-beta algorithms change for two-player, non-
zero-sum gamesin which each player has his or her own utility function. You may assume
that each player knows the other's utility function. If there are no constraints on the two
terminal utilities, isit possiblefor any node to be pruned by alpha—beta?

Section 6.8.

Summary 193

6.16 Suppose you have a chess program that can evaluate 1 million nodes per second. De-
cide on a compact representation of a game state for storage in a transposition table. About
how many entries can you fit in a500MB in-memory table? Will that be enough for the three
minutes of search allocated for one move? How many table lookups can you do in the timeiit
would taketo do one evaluation? Now suppose the transposition tableislarger than can fit in
memory. About how many evaluations could you do in the timeit takes to do one disk seek
with standard disk hardware?

LOGICAL AGENTS

In which we design agents that can form representations of the would, use a pro-
cess of inference to derive new representations about the world, and use these new
representations to deduce what to do.

This chapter introduces knowledge-based agents. The concepts that we discuss—the repre-
sentation of knowledge and the reasoning processes that bring knowledgeto life—are central
to theentirefield of artificial intelligence.

Humans, it seems, know things and do reasoning. Knowledge and reasoning are al'so
important for artificial agents because they enable successful behaviors that would be very
hard to achieveotherwise. Wehave seen that knowledge of action outcomes enables problem-
solving agents to perform well in complex environments. A reflex agent could only find its
way from Arad to Bucharest by dumb luck. The knowledge of problem-solving agentsis,
however, very specific and inflexible. A chess program can calculate the legal moves of its
king, but does not know in any useful sense that no piece can be on two different squares
at the same time. Knowledge-based agents can benefit from knowledge expressed in very
general forms, combining and recombining information to suit myriad purposes. Often, this
process can be quite far removed from the needs of the moment—as when a mathematician
proves a theorem or an astronomer calculates the earth's life expectancy.

Knowledge and reasoning also play a crucia role in dealing with partially observable
environments. A knowledge-based agent can combine general knowledge with current per-
cepts to infer hidden aspects of the current state prior to selecting actions. For example, a
physician diagnoses a patient—thét is, infers a disease state that is not directly observable—
prior to choosing a treatment. Some of the knowledge that the physician usesisin theform of
rules learned from textbooks and teachers, and someisin theform of patterns of association
that the physician may not be ableto consciously describe. If it's inside the physician's head,
it counts as knowledge.

Understanding natural language &l so requires inferring hidden state, namely, the inten-
tion of the speaker. When we hear, ** John saw the diamond through the window and coveted
it," we know "it" refers to the diamond and not the window —we reason, perhaps uncon-
scioudly, with our knowledge of relative value. Similarly, when we hear, **John threw the
brick through the window and brokeit,” we know "it" refersto the window. Reasoning allows

Section 7.1.

Knowledge-Based Agents 195

us to cope with thevirtually infinitevariety of utterances using afinitestore of commonsense
knowledge. Problem-solving agents have difficulty with thiskind of ambiguity because their
representation of contingency problemsisinherently exponential.

Our final reason for studying knowledge-based agentsis their flexibility. They are able
to accept new tasks in the form of explicitly described goals, they can achieve competence
quickly by being told or learning new knowledge about the environment, and they can adapt
to changes in the environment by updating the relevant knowledge.

We begin in Section 7.1 with the overall agent design. Section 7.2 introduces a simple
new environment, the wumpus world, and illustrates the operation of a knowledge-based
agent without going into any technical detail. Then, in Section 7.3, we explain the general
principles of logic. Logic will be the primary vehicle for representing knowledge throughout
Part TII of the book. The knowledge of logical agentsis aways definite--each propositionis
either true or falsein the world, although the agent may be agnostic about some propositions.

Logic has the pedagogical advantage of being a simple example of arepresentation for
knowledge-based agents, but logic has some severelimitations. Clearly, alarge portion of the
reasoning carried out by humans and other agents in partially observable environments de-
pends on handling knowledge that is uncertain. Logic cannot represent this uncertainty well,
so in Part V we cover probability, which can. In Part VI and Part VII we cover many repre-
sentations, including some based on continuous mathematics such as mixtures of Gaussians,
neural networks, and other representations.

Section 7.4 of this chapter defines a simple logic called propositional logic. While
much lessexpressivethanfirst-order logic (Chapter 8), propositional logic servestoillustrate
all the basic concepts of logic. There is aso a well-developed technology for reasoning in
propositional logic, which we describein sections 7.5 and 7.6. Finally, Section 7.7 combines
the concept of logical agents with the technology of propositional logic to build some simple
agents for the wumpus world. Certain shortcomings in propositional logic are identified,
motivating the devel opment of more powerful logics in subsequent chapters.

KNOWLEDGEBASE

SENTENCE

KEBRESEHmon

LANGUAGE

INFERENCE
LOGICAL AGENTS

The central component of aknowledge-based agent isitsknowledge base, or KB. Informally,
a knowledge base is a set of sentences. (Here "sentence” is used as atechnical term. It is
related but is not identical to the sentences of English and other natural languages.) Each sen-
tenceisexpressed in alanguage called aknowledge representation language and represents
some assertion about the world.

There must be a way to add new sentences to the knowledge base and a way to query
what is known. The standard names for these tasks are TELL and ASK, respectively. Both
tasks may involve inference—that is, deriving new sentences from old. In logical agents,
which are the main subject of study in this chapter, inference must obey the fundamental
requirement that when one Asxs aquestion of theknowledge base, the answer should follow
from what has been told (or rather, TELLed) to the knowledge base previoudy. Later in the

196 Chapter 7. Logical Agents
function KB- AGENT(percept) returnsan action
static: KB, aknowledge base
t,acounter, initially 0, indicatingtime
TELL(K B, MAKE-PERCEPT-SENTENCE(percept, t))
action «— Ask(KX B, Make-AcTion- QUERY (1Y)
TELL(KB, MAKE-ACTION-SENTENCE(action, t))
te—t+1
return action
Figure7.1 A generic knowledge-based agent.
chapter, we will be more precise about the crucial word "follow.” For now, takeit to mean
that the inference process should not just make things up asit goes along.
Figure 7.1 showsthe outline of aknowledge-based agent program. Like all our agents,
it takes a percept asinput and returns an action. The agent maintains a knowledge base, KB,
Saenan which may initially contain some background knowledge. Each time the agent program is

KNOWLEDGE LEVEL

IMPLEMENTATION
LEVEL

called, it does three things. First, it TELLS the knowledge base what it perceives. Second,
it Asks the knowledge base what action it should perform. In the process of answering
this query, extensive reasoning may be done about the current state of the world, about the
outcomes of possible action sequences, and so on. Third, the agent records its choice with
TELL and executesthe action. The second TELL is necessary to let the knowledge base know
that the hypothetical action has actually been executed.

The details of the representation language are hidden inside three functions that im-
plement the interface between the sensors and actuators and the core representation and rea-
soning system. MAKE-PERCEPT-SENTENCE constructs a sentence asserting that the agent
perceived the given percept at the giventime. MAKE-ACTION-QUERY constructs a sentence
that asks what action should be doneat the current time. Finally, MAKE-ACTION-SENTENCE
constructs a sentence asserting that the chosen action was executed. The details of the infer-
ence mechanisms are hidden inside TELL and AsK. Later sections will reveal these details.

The agent in Figure 7.1 appears quite similar to the agents with internal state described
in Chapter 2. Because of the definitionsof TELL and Ask, however, the knowledge-based
agent is not an arbitrary program for calculating actions. It isamenable to adescription at the
knowledge level, where we need specify only what the agent knows and what its goals are,
in order to fix its behavior. For example, an automated taxi might have the goal of delivering
a passenger to Marin County and might know that it isin San Francisco and that the Golden
Gate Bridge is the only link between the two locations. Then we can expect it to cross the
Golden Gate Bridge because it knowsthat that will achieve its goal. Notice that thisanalysis
isindependent of how the taxi works at theimplementation level. It doesn't matter whether
its geographical knowledgeisimplemented as linked lists or pixel maps, or whether it reasons
by manipulating strings of symbols stored in registers or by propagating noisy signalsin a
network of neurons.

Section 7.2.

The Wumpus World 197

DECLARATIVE

As we mentioned in the introduction to the chapter, one can build a knowledge-based
agent sinply by TELLing it what it needs to know. The agent's initial program, before
it starts to receive percepts, is built by adding one by one the sentences that represent the
designer's knowledge of the environment. Designing the representation language to make it
easy to express this knowledge in the form of sentences simplifies the construction problem
enormously. This is called the declarative approach to system building. In contrast, the
procedural approach encodes desired behaviors directly as program code; minimizing the
role of explicit representation and reasoning can result in a much more efficient system. We
will see agents of both kindsin Section 7.7. In the 1970s and 1980s, advocates of the two
approaches engaged m heated debates. We now understand that a successful agent must
combine both declarative and procedural elementsinits design.

In addition to TELLing it what it needs to know, we can provide a knowledge-based
agent with mechanisms that alow it to learn for itself. These mechanisms, which are dis-
cussed in Chapter 18, create general knowledge about the environment out of a series of
percepts. Thisknowledge can beincorporated into the agent's knowledge base and used for
decision making. In this way, the agent can be fully autonomous.

All these capabilities— representation,reasoning, and learning—rest on the centuries-
long development of the theory and technology of logic. Before explaining that theory and
technology, however, we will create a simple world with which to illustrate them.

WUMPUS WORLD

Thewumpusworld isacave consisting of rooms connected by passageways. Lurking some-
wherein the caveis the wumpus, a beast that eats anyone who entersits room. The wumpus
can be shot by an agent, but the agent has only one arrow. Some rooms contain bottomless
pits that will trap anyone who wanders into these rooms (except for the wumpus, which is
too big tofall in). The only mitigating feature of living in this environment is the possibility
of finding a heap of gold. Although the wumpus world is rather tame by modern computer
game standards, it makes an excellent testbed environment for intelligent agents. Michael
Genesereth was the first to suggest this.

A sample wumpus world is shown in Figure 7.2. The precise definition of the task
environment is given, as suggested in Chapter 2, by the PEAS description:

$ Performancemeasure: +1000 for picking up the gold, —1000 for falling into a pit or
being eaten by the wumpus, -1 for each action taken and —10for using up the arrow.

¢ Environment: A 4 X 4 grid of rooms. The agent always starts in the square labeled
[1,1], facing to the right. The locations of the gold and the wumpus are chosen ran-
domly, with a uniform distribution, from the squares other than the start square. In
addition, each square other than the start can be a pit, with probability 0.2.

¢ Actuators. The agent can move forward, turn left by 90°, or turn right by 90". The
agent dies a miserable death if it enters a square containing a pit or alive wumpus. (It
is safe, albeit smelly, to enter a square with a dead wumpus.) Moving forward has no

198

Chapter 7. Logical Agents

effect if thereisawall in front of the agent. The action Grab can be used to pick up an
object that isin the same square as the agent. The action Shoot can be used to fire an
arrow in a straight linein the direction the agent isfacing. The arrow continues until it
either hits (and hence kills) the wumpus or hits a wall. The agent only has one arrow,
so only thefirst Shoot action has any effect.

¢ Sensors. The agent has five sensors, each of which givesasingle bit of information:

- In the sguare containing the wumpus and in the directly (not diagonally) adjacent
sguares the agent will perceive a stench.
- In the squares directly adjacent to a pit, the agent will perceivea breeze.
- In the square wherethe gold is, the agent will perceiveaglitter.
- When an agent walksinto awall, it will perceivea bump.
= When the wumpus is killed, it emits a woeful scream that can be perceived any-
wherein the cave.
The percepts will be giventotheagentin theform of alist of fivesymbols; for example,
if thereisastench and a breeze, but no glitter, bump, or scream, the agent will receive
the percept [Stench,Breeze, None, None, None].

Exercise 7.1 asks you to define the wumpus environment along the various dimensions given
in Chapter 2. The principal difficulty for the agent isitsinitial ignorance of the configuration
of the environment; overcoming this ignorance seems to require logical reasoning. In most
instances of the wumpusworld, it is possible for the agent to retrieve the gold safely. Occa-
sionally, the agent must choose between going home empty-handed and risking death to find
the gold. About 21% of the environments are utterly unfair, because the gold isin a pit or

surrounded by pits.

Let us watch a knowledge-based wumpus agent exploring the environment shown in

Figure7.2. Theagent's initial knowledge base contains therules of the environment, aslisted

Figure7.2 A typica wumpus world. Theagent isin the bottom left corner.

Section 7.2.

The Wumpus World 199

previously; in particular, it knowsthat itisin [1,1] and that {1,1] isasafe square. We will see
how its knowledge evolves as new percepts arrive and actions are taken.

The first percept is [None,None, None, None, None] from which the agent can con-
cludethat its neighboring squares are safe. Figure7.3(a) shows the agent's state of knowledge
at this point. We list (some of) the sentences in the knowledge base using letters such as B
(breezy) and OK (safe, neither pit nor wumpus) marked in the appropriate squares. Fig-
ure 7.2, on the other hand, depicts the world itself.

Figure 7.3 The first step taken by the agent in the wumpus world. (a) The initial sit-

uaion, after percept [None,None, None, None, None]. (b) After one move, with percept
[None,Breeze, None, None, None].

From the fact that there was no stench or breezein [1,1], the agent can infer that [1,2]
and [2,1] arefree of dangers. They are marked with an OK toindicate this. A cautious agent
will move only into a square that it knowsis OK. Let us suppose the agent decides to move
forward to [2,1], giving the scene in Figure 7.3(b).

The agent detects a breezein [2,1], so there must be a prt in a neighboring square. The
pit cannot bein [1,1], by therules of the game, so there must be a pitin [2,2] or [3,1] or both.
The notation P?in Figure7.3(b) indicates a possible pit in those squares. At this point, there
is only one known square that is OK and has not been visited yet. So the prudent agent will
turn around, go back to [1,1}, and then proceed to [1,2].

The new percept in [1,2] is [Stench,None, None, None, None] ,resulting in the state
of knowledge shownin Figure 7.4(a). Thestenchin [1,2] meansthat there must be awumpus
nearby. But the wumpus cannot bein[1,11, by therules of the game, and it cannot bein [2,2]
(or the agent would have detected a stench when it was in {2,1]). Therefore, the agent can
infer that the wumpusisin {1,3]. The notation W! indicates this. Moreover, the lack of a
Breeze in [1,2] implies that thereis no pitin [2,2]. Yet we already inferred that there must
be a pit in ether [2,2] or [3,1], so this meansit must bein [3,1]. Thisis afairly difficult
inference, because it combines knowledge gained at different times in different places and

200

Chapter 7. Logica Agents

1,4 24 34 44 [[] =Agent 1,4 24 3.4 44
B =Breeze P?
G =Glitter, Gold
OK = Safe square
23 33 4,3 = Ppj : 43
1,3 Wi P Pit 13w 23 3,3 ps
S = Stench S G
V = Visited B
H1,2 12,2 W = Wumpus
[A] 32 42 12 |22 32 42
S Vv \Y
oK OK OK OK
1,1 2,1 4. 1,1 2,1 4,1
B 31 4, B |31,
\ v \Y \%
oK OK oK oK
(@) (b
Figure 7.4 Two later stages in the progress of the agent. (a) After the third move,
with percept [Stench,None, None, None, None]. (b) After the fifth move, with percept
[Stench,Breeze, Glitter, None, None].

relieson the lack of apercept to make one crucial step. Theinferenceis beyond the abilities
of most animals, but it istypical of thekind of reasoning that alogical agent does.

The agent has now proved to itself that thereis neither a pit nor awumpusin [2,2], so
itis OK to move there. We will not show the agent's state of knowledge at {2,2]; we just
assume that the agent turns and moves to [2,3], giving us Figure 7.4(b). In [2,3], the agent
detectsaglitter, soit should grab the gold and thereby end the game.

In each case where the agent draws a conclusion from the available information, that
conclusion is guaranteed to be correct if the available informationis correct. Thisis a
fundamental property of logical reasoning. In the rest of this chapter, we describe how to
build logical agents that can represent the necessary information and draw the conclusions
that were described in the preceding paragraphs.

SYNTAX

This section provides an overview of all the fundamental conceptsof logical representation
and reasoning. We postponethe technical detailsof any particular form of logic until the next
section. We will instead useinformal examplesfrom the wumpusworld and from thefamiliar
realmof arithmetic. We adopt this rather unusual approach becausetheideas of logic arefar
more general and beautiful than is commonly supposed.

In Section 7.1, we said that knowledge bases consist of sentences. These sentences
are expressed according to the syntax of the representation language, which specifiesall the
sentencesthat are well formed. The notion of syntax is clear enough in ordinary arithmetic:
"x *+y = 4"is awel-formed sentence, whereas “z2y+ =" is not. The syntax of logical

Section 7.3.

Logic 201

SEMANTICS

TRUTH
POSSIBLE WORLD

MODEL

ENTAILMENT

languages (and of arithmetic, for that matter) isusually designed for writing papers and books.
There are literally dozens of different syntaxes, some with lots of Greek letters and exotic
mathematical symbols, and some with rather visually appealing diagrams with arrows and
bubbles. In all cases, however, sentences in an agent's knowledge base are rea physical
configurations of (parts of) the agent. Reasoning will involve generating and manipulating
those configurations.

A logic must also define the semanticsof the language. Loosely speaking, semantics
has to do with the "meaning" of sentences. In logic;, the definition is more precise. The
semantics of the language defines the truth of each sentence with respect to each possible
world. For example, the usual semantics adopted for arithmetic specifies that the sentence
"x T y=4"istruein aworld where X is2 and y is 2, but false in a world where X is 1
andy is 1." In standard logics, every sentence must be either true or false in each possible
world—thereis no "'in between.”?

When we need to be precise, we will use the term model in place of ** possible world."
(We will also use the phrase “m isamodel of a to mean that sentence a is true in model
m.) Whereas possible worlds might be thought of as (potentially) real environments that the
agent might or might not be in, models are mathematical abstractions, each of which simply
fixes the truth or falsehood of every relevant sentence. Informally, we may think of x and
y as the number of men and women sitting at a table playing bridge, for example, and the
sentence x T y =4 is true when there are four in total; formally, the possible models are just
all possible assignments of numbersto the variablesz and y. Each such assignment fixesthe
truth of any sentence of arithmetic whose variablesare x and y.

Now that we have a notion of truth, we are ready to talk about logical reasoning. This
involvesthe relation of logical entailment between sentences—the idea that a sentence fol-
lows logically from another sentence. In mathematical notation, we write as

to mean that the sentence a entails the sentence 5. The formal definition of entailment is
this: a = g if and only if, in every model in which aiistrue, 3 is also true. Another way to
say thisisthat if a istrue, then 3 must also be true. Informally, the truth of 3 is" contained"
in the truth of a. The relation of entailment is familiar from. arithmetic; we are happy with
the idea that the sentence x Ty =4 entails the sentence 4=z +y. Obviously, in any model
wherex + y =4--suchasthe model in whichx is2 and y is2—it isthecasethat 4=x +y.
We will see shortly that a knowledge base can be considered a statement, and we often talk
of aknowledge base entailing a sentence.

We can apply the samekind of analysisto the wumpus-world reasoning example given
in the preceding section. Consider the situation in Figure 7.3(b): the agent has detected
nothingin [1,1] and a breezein [2,1]. These percepts, combined with the agent's knowledge
of therules of the wumpus world (the PEAS description on page 197), constitute the KB. The

1 The reader will no doubt have noticed the similarity between the notion of truth of sentences and the notion of
satisfaction of constraintsin Chapter 5. Thisis no accident—constraint |anguages areindeed logics and constraint
solvingisaform of logical reasoning.

2 FuzzYlogic, discussed in Chapter 14, allows for degrees of truth.

202

Chapter 7. Logical Agents

LOGICAL INFERENCE
MODEL CHECKING

| @) (b)

Figure75 Possblemodedsfor thepresenced pitsin squares(1,2], [2,2], and [3,1], given
obsarvationsd nothingin [1,1] and abreezein [2,1]. (8) Modesd the knowledge baseand
a; (nopitin [1,2]). (b) Moddsd the knowledge base and a2 (no pit in [2,2]).

agent isinterested (among other things) in whether the adjacent squares[1,2], [2,2], and [3,1]
contain pits. Each of the three squares might or might not contain a pit, so (for the purposes
of thisexample) there are 2* = 8 possible models. These are shownin Figure 7.5.2

The KB isfalsein models that contradict what the agent knows—for example, the KB
isfalsein any model in which [1,2] contains a pit, because thereis no breezein [1,1]. There
arein fact just three models in which the KB is true, and these are shown as a subset of the
modelsin Figure 7.5. Now let us consider two possible conclusions:

ay ="Thereisnopitin[1,2].”

ag ="Thereisnopitin [2,2].”
We have marked the models of a; and as in Figures 7.5(a) and 7.5(b) respectively. By
inspection, we see the following:

in every model in which KB istrue, o isalso true.
Hence, KB |= @1: thereisno pitin [1,2]. We can also see that

in some modelsin which KB is true, o2 isfalse.
Hence, KB £ ae: the agent cannot conclude that thereisno pitin [2,2]. (Nor canit conclude
that there isapitin [2,2].)*

The preceding example not only illustrates entailment, but also shows how the defini-
tion of entailment can be applied to derive conclusons—thatis, to carry out logical infer-

ence. Theinference algorithm illustrated in Figure 7.5 is called model checking, because it
enumerates all possible models to check that ais truein al modelsin which KB istrue.

3 Although thefigure showsthe models as partial wumpus worlds, they arereally nothing more than assignments
of true andfalse to the sentences "thereisapitin [1,2]” etc. Models, in the mathematical sense, do not need to
have ’orrible 'airy wumpusesin them.

4 The agent can calculate theprobability that thereisa pitin [2,2]; Chapter 13 shows how.

Section 7.3.

Logic 203

SOUND
TRUTH-PRESERVING

COMPLETENESS

In understanding entailment and inference, it might help to think of the set of all conse-
quences of KB asahaystack and of a as a needle. Entailment islike the needle being in the
haystack; inferenceislikefindingit. This distinctionisembodied in someformal notation: if
an inference algorithm i can derive a from KB, we write

which is pronounced “« is derived from KB by i or *“i derivesa from KB."

An inference algorithm that derives only entailed sentences is called sound or truth-
preserving. Soundness is a highly desirable property. An unsound inference procedure es-
sentially makesthings up asit goes aong—it announces the discovery of nonexistent needles.
It is easy to see that model checking, when it is applicable,’ is asound procedure.

The property of completenessis also desirable: an inference agorithm is complete if
it can derive any sentence that is entailed. For rea haystacks, which are finite in extent,
it seems obvious that a systematic examination can always decide whether the needleisin
the haystack. For many knowledge bases, however, the haystack of consequencesisinfinite,
and completeness becomes an important issue.® Fortunately, there are complete inference
proceduresfor logics that are sufficiently expressive to handle many knowledge bases.

We have described a reasoning process whose conclusions are guaranteed to be true
in any world in which the premises are true; in particular, if KB is true in the real world,
then any sentence « derived from KB by a sound inference procedureis also truein the real
world. So, while an inference process operates on "' syntax" —-interna physical configurations
such as bits in registers or patterns of electrical blips in brains—the process corresponds
to the real-world relationship whereby some aspect of the real world is the case’ by virtue
of other aspects of the real world being the case. This correspondence between world and
representation isillustrated in Figure 7.6.

Sentences ™ Sentence
Entails
) @ o
Representation 3 g
World ¥ l
Aspects of the ™ Aspect of the
real world Follows real world

Figure7.6 Sentencesare physical configurations of the agent, and reasoningis a process
of constructing new physical configurationsfrom old ones. Logical reasoning should en-
sure that the new configurationsrepresent aspects of the world that actually follow from the

5 Modd checking works if the space of models is finite—for example, in wumpus worlds of fixed size. For
arithmetic, on the other hand, the space of modelsisinfinite: even if we restrict ourselves to the integers, there
areinfinitely many pairsof valuesfor x andy inthesentence x + 5 = 4.

8 Compare with the case of infinite search spacesin Chapter 3, where depth-first search is not complete.

7 AsWittgenstein (1922) put it in hisfamous Tractatus: * The world is everything that is the case™

204

Chapter 7. Logical Agents

GROUNDING

Thefinal issue that must be addressed by an account of logical agentsisthat of ground-
ing—the connection, if any, between logical reasoning processes and the real environmentin
which the agent exists. In particular, how do we know that KB istruein the real world? (Af-
ter all, KB isjust "syntax" inside the agent's head.) Thisis a philosophical question about
which many, many books have been written. (See Chapter 26.) A simple answer is that the
agent's sensors create the connection. For example, our wumpus-world agent hasasmell sen-
sor. The agent program creates a suitable sentence whenever thereis asmell. Then, whenever
that sentenceisin theknowledge base, itistruein thereal world. Thus, the meaning and truth
of percept sentences are defined by the processes of sensing and sentence construction that
produce them. What about therest of the agent's knowledge, such asitsbelief that wumpuses
cause smells in adjacent squares? Thisis not a direct representation of a single percept, but
ageneral rule—derived, perhaps, from perceptua experience but not identical to a statement
of that experience. General rules like this are produced by a sentence construction process
caled lear ning, which is the subject of Part VI. Learning isfalible. It could be the case that
wumpuses cause smells except on February 29 in leap years, which is when they take their
baths. Thus, KB may not be truein the real world, but with good learning procedures there
is reason for optimism.

FHEROSITIONAL

ATOMIC SENTENCES
PROPOSITION
SYMBOL

COMPLEX
SENTENCES

LOGICAL
CONNECTIVES

NEGATION
LITERAL

We now present a very simple logic called propositional logic.® We cover the syntax of
propositional logic and its semantics—theway in which the truth of sentencesis determined.
Then welook at entailment —the relation between a sentence and another sentence that fol -
lowsfrom it—and see how thisleads to a simple algorithm for logical inference. Everything
takes place, of course, in the wumpus world.

Syntax

The syntax of propositional logic defines the allowable sentences. The atomic sentences—
the indivisible syntactic elements— consist of a single proposition symbol. Each such sym-
bol stands for a proposition that can be true or false. We will use uppercase names for
symbols: P, Q, R, and so on. The names are arbitrary but are often chosen to have some
mnemonic value to the reader. For example, we might use W 3 to stand for the proposition
that the wumpusisin [1,3]. (Remember that symbols such as ; 5 are atomic, i.e., W, 1,
and 3 are not meaningful parts of the symbol.) There are two proposition symbols with fixed
meanings. True isthe aways-true proposition and False is the always-fal se proposition.

Complex sentencesare constructed from simpler sentences using logical connectives.
There are five connectivesin common use:

- (not). A sentence such as =W 3 is caled the negation of 7 3. A literal iseither an
atomic sentence (a positiveliteral) or a negated atomic sentence (anegativeliteral).

8 Propositional logicis also called Boolean logic, after the logician George Boole (1815-1864).

Section 7.4.

Propositional Logic: A Very SimpleLogic 205

CONJUNCTION

DISJUNCTION

IMPLICATION
PREMISE

CONCLUSION

BICONDITIONAL

A (and). A sentence whose main connectiveis A, such as Wi 3 A P31, is caled a con-
junction; its parts are the conjuncts. (The A looks like an "A" for *And.")

V (or). A sentenceusing V, suchas (W1 3A P3 1)V Wa 5. is adigunctionof thediguncts
(W13 A Ps1) and W 5. (Historically, theV comesfrom the Latin “vel,” which means
"or." For most people, itiseasier to remember as an upside-down A.)

= (implies). A sentence suchas (W1 3A P3 1) = W, is caled animplication (or con-
ditional). Its premiseor antecedent is (W; 3 A P31), and itsconclusionor consequent
is =Wa . Implications are also known as rules or if-then statements. The implication
symbol is sometimes writtenin other books as > or —.

4 (if and only if). The sentence W13 < —Ws 2 isabiconditional.

Figure7.7 givesaformal grammar of propositional logic; see page 984 if you are not familiar
with the BNF notation.

Sentence — AtomicSentence | ComplezSentence

True| False| Symboal

Pl Q| R| ...
ComplexSentence — - Sentence

(Sentence A Sentence)

(Sentence V Sentence)

(Sentence =+ Sentence)
(Sentence < Sentence)

AtomicSentence

Symbol

!

!

|
\
|
1

Figure7.7 A BNF (Backus—Naur Form) grammar of sentencesin propositional logic.

Notice that the grammar is very strict about parentheses: every sentence constructed
with binary connectives must be enclosed in parentheses. This ensures that the syntax is
completely unambiguous. It also means that we have to write ((A A B) = C)instead of
AAB = (C,for example. Toimprove readability, we will often omit parentheses, relying
instead on an order of precedence for the connectives. This is similar to the precedence
used in arithmetic— for example, ab t ¢ is read as ((ab)+ o) rather than a(b T c) because
multiplication has higher precedence than addition. The order of precedencein propositional
logic is (from highest to lowest): -, A, V, =, and <. |-lence, the sentence

-PVQAR =S
is equivalent to the sentence

(~P)V(QAR) = 5.
Precedence does not resolve ambiguity in sentencessuch as A A B AC, which could beread
as ((AAB)AC)oras (AA (BA C)).Because these two readings mean the same thing

according to the semantics givenin the next section, sentences suchas AA BA C areallowed.
WeasodlowAVvBV (Cad A <& B < C. SentencessuchasA = B = (arenot

206

Chapter 7. Logica Agents

TRUTHTABLE

allowed because the two readings have different meanings; we insist on parenthesesin this
case. Finaly, we will sometimes use square brackets instead of parentheses when it makes
the sentence clearer.

Semantics

Having specified the syntax of propositional logic, we now specify its semantics. The se-
mantics defines the rules for determining the truth of a sentence with respect to a particular
model. In propositional logic, amodel simply fixes the truth value—true or fase—for every
proposition symbol. For example, if the sentences in the knowledge base make use of the
proposition symbols P 2, P 2, and P 1, then one possible model is

m, = { P12 =false, Pyy=false, P3;=true) .
With three proposition symbols, there are 2% =8 possible models—exactly those depicted
in Figure 7.5. Notice, however, that because we have pinned down the syntax, the models
become purely mathematical objects with no necessary connection to wumpus worlds. P 2
isjust asymbol; it might mean “thereisapitin [1,2]” or *1'm in Paristoday and tomorrow."

The semantics for propositional logic must specify how to compute the truth value of
any sentence, given amodel. Thisis done recursively. All sentences are constructed from
atomic sentences and the five connectives; therefore, we need to specify how to compute the
truth of atomic sentences and how to compute the truth of sentencesformed with each of the
five connectives. Atomic sentences are easy:

e Trueistrue in every model and False isfalsein every model.

e The truth value of every other proposition symbol must be specified directly in the
model. For example, in the model m; given earlier, P, 2 isfalse.

For complex sentences, we have rules such as

e For any sentence s and any model m, the sentence —s istruein m if and only if s is
falsein m.

Such rules reduce the truth of a complex sentence to the truth of simpler sentences. The
rules for each connective can be summarized in a truth table that specifies the truth value
of acomplex sentence for each possible assignment of truth valuesto its components. Truth
tables for the five logical connectives are given in Figure 7.8. Using these tables, the truth
vaueof any sentence s can be computed with respect to any model m by asimple process of
recursive evaluation. For example, the sentence —P; 2 A (P22 V Ps1), evduatedin my, gives
true A (false v true) =true A true=true. Exercise 7.3 asks you to write the algorithm
PL-TRUE?(s, m), which computes the truth value of a propositional logic sentence sin a
model m.

Previously we said that a knowledge base consists of a set of sentences. We can now
see that alogical knowledge base isa conjunction of those sentences. That is, if we start with
anempty KB anddo TELL(KB, S1) ... TELL(KB, S,) thenwehave KB = S1 A ... A Sp,.
This means that we can treat knowledge bases and sentences interchangeably.

The truth tablesfor "and,” "oy and " not" arein close accord with our intuitions about
the English words. The main point of possible confusionisthat PV Q istruewhen Pistrue

Section 7.4. Propositional Logic: A Very SimpleLogic 207
P Q —-P PAQ Pv@Q P=qQ P e Q
false false true false false true true
false true true false true true false
true false false false true false false
true true false true true true true

Figure7.8 Truth tablesfor thefive logical connectives. To use the table to comp lgeé’,r%g]r[
example, the valuedf PV Q when Pistrueand Q isfalsg, first look on theleft for t-oTur%’er
where P istrue and Qisfalse (thethird row). Thenlook in that row under the Pv Q cilcr)1 [E.Q
to seetheresult: true. Another way to look at thisisto think of each row asamodel, anséiltmg

entries under each column for that row as saying whether the corresponding sentences true
in that model.

or Qistrueor both. Thereis adifferent connective called “exclusive or" (“xor” for short) that
yields false when both disjuncts are true.” There is no consensus on the symbol for exclusive
or; two choices are vV and &.

The truth table for = may seem puzzling at first, because it might not quite fit one's
intuitive understanding of " P implies @™ or “if Pthen Q." For one thing, propositional logic
does not require any relation of causation or relevance between Pand Q. The sentence”5is
odd implies Tokyo is the capital of Japan™ is a true sentence of propositional logic (under the
normal interpretation), even though it is a decidedly odd sentence of English. Another point
of confusion is that any implication is true whenever its antecedent is false. For example, “5
isevenimplies Samissmart™ istrue, regardless of whether Sam is smart. This seems bizarre,
but it makes senseif you think of " P = @~ assaying, "'If P istrue, then | am claiming that
Qistrue. Otherwise | am making no clam." The only way for this sentence to befalseisif
Pistruebut Qisfalse.

The truth table for a biconditional, P Q, shows that it is true whenever both
P = Qand Q = Paretrue. In English, thisisoften written as" Pif and only if Q” or “P
iff Q" The rules of the wumpus world are best written using <. For example, a square is
breezy if a neighboring square has a pit, and a square is breezy only if a neighboring square
has a pit. So we need biconditionals such as

where B; ; meansthat thereisabreezein [1,1]. Notice that the one-way implication

is true in the wumpus world, but incomplete. It does not rule out models in which By 1 is
false and P 5 is true, which would violate the rules of the wumpus world. Another way of
putting it is that the implication requires the presence of pitsif there is a breeze, whereas the
biconditional also reguires the absence of pitsif thereisno breeze.

9 Latin has a separate word, aut, for exclusiveor.

208

Chapter 7. Logical Agents

A smpleknowledge base

Now that we have defined the semanticsfor propositional logic, we can construct aknowledge
base for the wumpus world. For simplicity, we will dea only with pits; the wumpus itself
isleft as an exercise. We will provide enough knowledge to carry out the inference that was
doneinformally in Section 7.3.

First, we need to choose our vocabulary of proposition symbols. For each s, |:

o Let P ; betrueif thereisapitin [i,j].
e Let B; ; betrueif thereisabreezein [i,j].
The knowledge baseincludes the following sentences, each one labeled for convenience:

e Thereisnopitin[1,17:

e A squareis breezy if and only if thereis a pit in a neighboring square. This has to be
stated for each square; for now, weinclude just the relevant squares:

e The preceding sentences are true in al wumpus worlds. Now we include the breeze
perceptsfor thefirst two squares visited in the specific world the agent isin, leading up
to the situation in Figure 7.3(b).

The knowledge base, then, consists of sentences R; through Rs. It can aso be considered as
asingle sentence—the conjunction B; A Ry A R3 A R4 A Rs—because it assertsthat al the
individual sentences aretrue.

Inference

Recall that the aim of logical inference is to decide whether KB = a for some sentence a.
For example, is P 2 entailed? Our first algorithm for inference will be a direct implementa-
tion of the definition of entailment: enumerate the models, and check that ais truein every
model in which KB istrue. For propositional logic, models are assignments of true or false
to every proposition symbol. Returning to our wumpus-world example, the relevant proposi-
tion symbols are By 3, By 1, P 1, Pra, P21, P22, and P31. With seven symbols, there are
27 =128 possible models; in three of these, KB istrue (Figure 7.9). In those three models,
—P) 5 is true, hence thereisno pitin [1,2]. On the other hand, /2 2 is truein two of the three
models and falsein one, so we cannot yet tell whether thereisapitin [2,2].

Figure 7.9 reproduces in a more precise form the reasoning illustrated in Figure 7.5. A
general algorithmfor deciding entailment in propositional logicisshownin Figure 7.10. Like
the BACKTRACKING-SEARCH agorithm on page 76, TT-ENTAIL Sperforms a recursive
enumeration of afinite space of assignmentsto variables. The algorithmis sound, because it

Section 7.4.

Propositional Logic: A Very Simple Logic 209

Figure7.9 Atruth table constructed for the knowledge base given in thetext. KB istrue
if Ry through Rj are true, which occursin just 3 of the 128 rows. In all 3rows, Py 2 isfase,
so thereisno pitin {1,2]. On the other hand, there might (or might not) beapitin [2,2].

function TT-ENTAILS?(K B, a) returnstrueor fase
inputs: KB, the knowledge base, a sentencein proposi
a, the query, asentencein propositional logic

tional logic

symbols « alist of the propositionsymbolsin KB and a
return TT-CHECK-ALL(XB,a,symbols|])

function TT-CHECK-ALL(KB, a, symbols,model) returns true or fase
if EMPTY?(symbols) then
if PL-TRUE?(KB, model)then return PL-TRUE?(c;, model)
esereturn true
dsedo
P — FIRST(symbols); rest — REST(symbols)
return TT-CHECK-ALL(KB, a,rest,EXTEND(P, true, model))and
TT-CHECK-ALL(KB, a,rest, EXTEND(P, false,:model))

Figure 7.10 A truth-table enumeration algorithm for deciding propositional entailment.
TT stands for truth table. PL-TRUE?eturns true if a sentence holds within amodel. The
variablemodd representsa partial modd —an assignment to only some of the variables. The
function call EXTEND(P, true, modd) returns a new partial model in which P has the value

true.

implements directly the definition of entailment, and complete, becauseit worksfor any KB

and « and always terminates—there are only finitely many models to examine.

Of course, ""finitely many" isnot alwaysthe same as "few." If KB and a contain n sym-
bolsin all, then there are 2" models. Thus, the time complexity of the algorithm is O(27).
(The space complexity is only O(n) because the enumeration is depth-first.) Later in this

210

Chapter 7. Logical Agents

LOGICAL
EQUIVALENCE

VALIDITY

TAUTOLOGY

DEDUCTION
THEOREM

) = (BAa) commutativity of A
) (3va) commutativity of v
((aAB)Ay) = (aA(BAy)) associdivityof A
((av B)Vy) = (av(8Vy)) associdivityof v
-(a) a double-negation elimination
(=3 =3 —~a) contraposition
(=a vV 3) implication elimination
((a= A AL =t a)) biconditional elimination
(ma Vv =) De Morgan
(e A=) DeMorgan
((aAB)V (aA~)) distributivity of A overV
((av B) A (av~)) distributivityof V over A

(aA s
(avp

o

Wome we

(an(BVv)
(av (B A)

1/t

Figure7.11 Standard logical equivalences. The symbols ¢, 4, and v stand for arbitrary

sentencesof propositional logic.

chapter, we will see agorithmsthat are much more efficientin practice. Unfortunately, every
known inference algorithm for propositional logic has a worst-case complexity that is expo-
nential in the size of the input. We do not expect to do better than this because propositional
entailment is co-NP-complete. (See Appendix A.)

Equivalence, validity, and satisfiability

Before we plunge into the details of logical inference algorithms, we will need some addi-
tional concepts related to entailment. Like entailment, these concepts apply to all forms of
logic, but they are best illustrated for a particular logic, such as propositional logic.

Thefirst concept islogical equivalence: two sentencesa and 3 arelogically equivalent
if they aretrue in the same set of models. Wewritethisasa = (. For example, we can easily
show (using truth tables) that P A Q and Q A P arelogically equivalent; other equivalences
are shownin Figure 7.11. They play much the same role in logic as arithmetic identities do
in ordinary mathematics. An aternative definition of equivalenceis asfollows: for any two
sentences a and 3,

a=g ifandonlyif al=pgadf=a.
(Recall that = means entailment.)

The second concept we will need is validity. A sentence is valid if it is true in all

models. For example, the sentence P v —P is valid. Valid sentences are also known as
tautologies—they are necessarily true and hence vacuous. Because the sentence Dueistrue

in all models, every vaid sentenceislogically equivalentto Due.
What good are vaid sentences? From our definition of entailment, we can derive the
deduction theorem, which was known to the ancient Greeks:

For any sentencesa and 3, a = 3 if and only if the sentence (a: =) isvalid.
(Exercise 7.4 asks for a proof.) We can think of the inference algorithm in Figure 7.10 as

Section 7.5.

Reasoning Patternsin Propositional Logic 211

SATISFIABILITY

SATISFIES

REDUCTIO AD
ABSURDUM

REFUTATION

checking the validity of (KB = a). Conversely, every vaid implication sentence describes
alegitimate inference.

Thefinal concept we will needis satisfiability. A sentence is satisfiableif itistruein
some model. For example, the knowledge base given earlier, (R; ARy AR AN A N
is satisfiable because there are three modelsin which it is true, as shown in Figure 7.9. If
asentence a istruein a model m, then we say that m satisfiesa, or that misa mode of
a. Sdtisfiability can be checked by enumerating the possible models until one is found that
satisfies the sentence. Determining the satisfiability of sentences in propositional logic was
thefirst problem proved to be NP-complete.

Many problemsin computer science arereally satisfiability problems. For example, all
the constraint satisfaction problemsin Chapter 5 are essentially asking whether the constraints
are satisfiable by some assignment. With appropriate transformations, search problems can
also be solved by checking satisfiability. Validity and satisffiability are of course connected:
aisvdidiff —a isunsatisfiable; contrapositively, e is satisfiableiff —a is not valid. We also
have thefollowing useful result:

a = 3 if and only if the sentence (aA —3) is unsatisfiable.

Proving # from a by checking the unsatisfiability of (a A —3) corresponds exactly to the
standard mathematical proof technique of reductio ad absurdum (literaly, "' reduction to an
absurd thing™). Itisalsocalled proof by refutation or proof by contr adiction. One assumesa
sentence /3 to befalse and shows that thisleadsto a contradiction with known axioms a. This
contradiction is exactly what is meant by saying that the sentence (aA —3) isunsatisfiable.

INFERENCE RULES
MODUS PONENS

AND-ELIMINATION

This section covers standard patterns of inference that can be applied to derive chains of
conclusions that lead to the desired goal. These patterns of inference are called inference
rules. The best-known ruleis called Modus Ponensand is written asfollows:
a = 3, «
g

The notation means that, whenever any sentences of the form a = 3 and a are given, then
the sentence /3 can beinferred. For example, if (WumpusAhead A WumpusAlive) = Shoot
and (WumpusAhead A WumpusAlive) are given, then Shoot can beinferred.

Another useful inference ruleis And-Elimination, which says that, from aconjunction,
any of the conjuncts can beinferred:

anp
a
For example, from (WumpusAhead A WumpusAlive), WumpusAlive can beinferred.

By considering the possible truth values of aand 3, one can show easily that Modus
Ponens and And-Elimination are sound once and for al. These rules can then be used in
any particular instances where they apply, generating sound inferences without the need for
enumerating models.

212

Chapter 7. Logical Agents

PROOF

MONQTONICITY

All of thelogical equivalencesin Figure 7.11 can be used asinference rules. For exam-

ple, the equivalencefor biconditional elimination yields the two inference rules
o & f g @ BB =)
(@ = BHAB = a) a & p

Not al inference rules work in both directions like this. For example, we cannot run Modus
Ponens in the opposite direction to obtain a = 3 and a from g.

L et us see how theseinference rules and equival encescan be used in the wumpus world.
We start with the knowledge base containing 12; through Rs, and show how to prove —F 2,
thatis, thereisnopitin [1,2]. First, we apply biconditional elimination to R to obtain

Then we apply And-Elimination to Rg to obtain

Logical equivalencefor contrapositives gives

Now we can apply Modus Ponens with Rg and the percept R4 (i.e., =B 1), to obtain
Finally, we apply De Morgan's rule, giving the conclusion

That is, neither [1,2] nor [2,1] contains a pit.

The preceding derivation—a sequence of applications of inference rules—is called a
proof. Finding proofsis exactly like finding solutions to search problems. In fact, if the
successor function is defined to generate all possible applications of inference rules, then all
of the search algorithms in Chapters 3 and 4 can be applied to find proofs. Thus, searching
for proofs is an dternative to enumerating models. The search can go forward from the
initial knowledge base, applying inference rules to derive the goal sentence, or it can go
backward from the goal sentence, trying to find a chain of inference rules leading from the
initial knowledge base. Later in this section, we will see two families of algorithms that use
these techniques.

Thefact that inference in propositional logic is NP-compl ete suggests that, in the worst
case, searching for proofsis going to be no more efficient than enumerating models. In many
practical cases, however, finding a proof can be highly efficient simply because it can ignore
irrelevant propositions, no matter how many of them there are. For example, the proof given
earlier leading to —P; o A =% does not mention the propositions Bz,1, 1,1, Py 2, or Ps 5.
They can be ignored because the goal proposition, P12, appears only in sentence Rg; the
other propositionsin R4 appear only in R4 and Ro; so Ri, R3, and Rs have no bearing on
the proof. The same would hold evenif we added a million more sentences to the knowledge
base; the simple truth-table algorithm, on the other hand, would be overwhelmed by the
exponential explosion of models.

This property of logical systems actually follows from a much more fundamental prop-
erty called monotonicity. Monotonicity says that the set of entailed sentences can only in-

Section 7.5.

Reasoning Patternsin Propositional Logic 213

crease as informationis added to the knowledgebase. ! For any sentencesa and 3,
if KBEao then KBASBEa.

For exampl e, supposethe knowledge base containsthe additional assertion 3 stating that there
areexactly eight pitsin theworld. Thisknowledgemight helpthe agent draw additional con-
clusions, but it cannot invalidateany conclusion a already inferred—such as the conclusion
that thereisno pitin[1,2]. Monotonicity meansthat inferencerules can be applied whenever
suitable premises are found in the knowledge base—the conclusion of the rule must follow
regardlessd what else isin the knowledge base.

Resolution

We have argued that the inference rules covered so far are sound, but we have not discussed
the question of completeness for the inference algorithmsthat use them. Search algorithms
such as iterative deepening search (page 78) are complete in the sense that they will find
any reachable goal, but if the available inferencerules are inadequate, then the goal is not
reachable—no proof existsthat uses only those inference rules. For example, if we removed
the biconditional elimination rule, the proof in the preceding section would not go through.
The current section introduces a single inference rule, resolution, that yields a complete
inference a gorithm when coupled with any complete search algorithm.

We begin by using asimpleversion of theresolutionrule in the wumpusworld. Let us
consider the stepsleading up to Figure 7.4(a): the agent returns from [2,1] to [1,1] and then
goesto [1,2], whereit perceives a stench, but no breeze. We add the following factsto the
knowledge base:

By the same processthat led to R1o earlier, we can now derive the absence of pitsin (2,2]
and [1,3] (rememberthat [1,1] isaready known to be pitless):

We can also gpply biconditiona elimination to Rg, followed by modus ponens with Rj, to
obtainthefact that thereisapitin[1,1], [2,2], or [3,1]:

Now comes thefirst applicationof theresolutionrule: theliteral =2 in Ry3 resolveswith
theliteral P22 in Ry5 to give

In English; if there's apitin one of [1,1], [2,2], and [3,1], and it's not in [2,2], then it’s in
(1,17 or [3,1]. Similarly, theliteral =P, ; in R, resolveswiththeliteral P; ; in R;¢ togive

10 Nonmonotonic logics, which violate the monotonicity property, capture a common property of human rea-
soning: changing one's mind. They arediscussed in Section 10.7.

Chapter 7. Logical Agents

UNIT RESOLUTION

COMPLEMENTARY
LITERALS

CLAUSE

UNIT CLAUSE
RESOLUTION

FACTORING

REFUTATION
COMPLETENESS

In English: if there's apitin[1,1] or [3,1], andit's notin [1,1], thenit's in [3,1]. Theselast
two inference steps are examples of the unit resolution inferencerule,

where each ¢ is aliteral and #; and m are complementary literals(i.e., oneis the negation
of the other). Thus, the unit resolution rule takes a dause—a disjunction of literals—and a
literal and produces a new clause. Note that asingle literal can be viewed as a digunction of
oneliteral, also known as aunit clause.

The unit resolution rule can be generalized to thefull resolution rule,

where ¢; and m; are complementary literals. If we were dealing only with clauses of length
two we could writethisas

That is, resolution takes two clauses and produces a new clause containing all the literals of
the two original clauses except the two complementary literals. For example, we have

Thereis one more technical aspect of the resolution rule: the resulting clause should contain
only onecopy of each literal." Theremoval of multiple copies of literals is called factoring.
For example, if weresolve (A v B) with (A V —B), weobtain (A V A), which is reduced to
just A.

The soundness of the resolution rule can be seen easily by considering theliteral ;. If
¢; istrue, then m; isfalse, and hencemy V...V m; 1V m;11V --.V m, must be true,
becausemy V ...V my isgiven. If ¢; isfase thenéy V...V £i 1V 4i1 V...V £ must
betruebecause /1 Vv ...V £ isgiven. Now ¢; iseither true or false, so one or other of these
conclusions holds—exactly as the resolution rule states.

What ismore surprising about theresolution ruleisthat it formsthe basisfor afamily of
complete inference procedures. Any complete search algorithm, applying only the resolution
rule, can derive any conclusion entailed by any knowledge base in propositional logic. There
isacaveat: resolution iscompletein a specialized sense. Given that A istrue, we cannot use
resolution to automatically generatethe consequence A vV B. However, we can use resolution
to answer the question of whether A vV B istrue. Thisis called refutation completeness,
meaning that resolution can always be used to either confirm or refute a sentence, but it
cannot be used to enumerate true sentences. The next two subsections explain how resolution
accomplishesthis.

1 If aclauseis viewed as a set of literals, then this restriction is automatically respected. Using set notation for
clauses makes the resol ution rule much cleaner, at the cost of introducing additional notation.

Section 7.5.

Reasoning Patternsin Propositional Logic 215

ROHMALFOHM

K-CNF

Conjunctivenormal form

Theresolution ruleappliesonly to digunctionsof literals, soit would seem to berelevant only
to knowledge bases and queries consisting of such digunctions. How, then, can it lead to a
completeinference procedurefor all of propositional logic? The answer isthat every sentence
of propositional logic is logically equivalent to a conjunction of digunctions of literals. A
sentence expressed as a conjunction of digunctions of literals is said to be in conjunctive
normal form or CNF. We will also find it useful later to consider the restricted family of

K-CNF sentences. A sentencein k-CNF has exactly k literals per clause:
(Pl)]_ V Y El,k) A...A (f?l‘]_ V . A% fﬁ-,k] .

It turns out that every sentence can be transformed into a 3-CNF sentence that has an equiva
lent set of models.
Rather than prove these assertions (see Exercise 7.10), we describe a simple conversion

procedure. Weillustrate the procedure by converting Rz, the sentence B 1 < (Piav Py1),
into CNF. The steps are asfollows:

1. Eliminate <, replacing a < g with (a= () A(8 = a).
(Big = (PiaVPo1))A((Pi2V Pa1) = Bia).
2. Eliminate =, replacing a = § with—a V 3:
(=B1,1V P2V Pi)A(—(PiaV P21) VB,

3. CNF requires — to appear only in literals, so we ' move — inwards" by repeated appli-
cation of the following equivalencesfrom Figure 7.11:
-(—a) = a (double-negation elimination)
=(a A f) = (—aV —-F) (DeMorgan)
-(av fB) = (-a A-3) (DeMorgan)
In the example, we require just one application of the last rule:
(_‘Bl,l \Y PLQ V Pg‘l) A ((—-Pl}z A ""PQ_I]_J V B1-.1) .

4. Now we have a sentence containing nested A and Vv operators applied to literals. We
apply the distributivity law from Figure 7.11, distributing vV over A wherever possible.

(mB1aV PioV Par) A(—mPr2V Bii) A(—P21 V Byy).

The original sentence is now in CNF, as a conjunction of three clauses. It is much harder to
read, but it can be used asinput to aresolution procedure.

A resolutionalgorithm

Inference procedures based on resolution work by using the principle of proof by contra-
diction discussed at the end of Section 7.4. That is, to show that KB a, we show that
(KBA —a) isunsatisfiable. We do thisby proving a contradiction.

A resolution algorithm is shown in Figure 7.12. First, (KB A —«) is converted into
CNF. Then, the resolution rule is applied to the resulting clauses. Each pair that contains
complementary literals isresolved to produce a new clause, which is added to the set if it is
not aready present. The process continues until one of two things happens:

216

Chapter 7. Logical Agents

function PL-RESOLUTION(K B, a)returnstrue or false
inputs. KB, the knowledge base, a sentencein propositional logic
a, the query, asentencein propositional logic

clauses « the set of clausesin the CNF representation of KB A —a
new — { }
loop do
for each C;, Cj in clauses do
resolvents «+— PL-RESOLVE(C;, C;)
if resolvents containsthe empty clausethen return true
new < newU resolvents
if new C clauses then return false
clauses+ clausesU new

Figure 7.12 A simple resolution agorithm for propositional logic. The function

PL-RESOLV Eeturnsthe set of all possibleclausesobtained by resolving its two inputs.

Figure7.13 Partia application of PL-RESOLUTIOfd asimpleinferencein the wumpus
world. =7 2 isshown tofollow from thefirst four clausesin the top row.

e there are no new clauses that can be added, in which case KB does not entail a; or,
e two clausesresolve to yield the empty clause, in which case KB entails a.

Theempty clause—adisjunction of no diguncts—isequivalent to Fal se because adisjunction
istrueonly if at least one of its digunctsis true. Another way to see that an empty clause
represents a contradiction is to observe that it arises only from resolving two complementary
unit clauses such as P and —P.

We can apply the resolution procedure to a very simple inference in the wumpus world.
When the agentisin [1,1], thereis no breeze, so there can be no pitsin neighboring squares.
The relevant knowledge baseis

and we wish to prove a which is, say, =F; 2. When we convert (KB A —«) into CNF, we
obtain the clauses shown at thetop of Figure 7.13. The second row of thefigure showsall the
clauses obtained by resolving pairsin the first row. Then, when P 2 is resolved with =Py 2,
we obtain the empty clause, shown as a small square. Inspection of Figure 7.13 reveals that

Section 7.5.

Reasoning Patternsin Propositional Logic 217

RESOLUTION
CLOSURE

GROUND
RESOLUTION
THEOREM

HORN CLAUSES

many resolution steps are pointless. For example, theclause By 1V =By 1V P12 isequivalent
to True V P, 2 whichisequivalent to True. Deducing that Trueistrueis not very helpful.
Therefore, any clausein which two complementary literals appear can be discarded.

Completeness of resolution

To conclude our discussion of resolution, we now show why PL-RESOLUTION complete.
To do this, it will be useful tointroduce the resolution closure RC(.S) of aset of clauses S,
whichisthe set of al clauses derivableby repeated application of theresolution ruleto clauses
in S or their derivatives. The resolution closure is what PL-RESOL UTIORbmputes as the
final value of the variable clauses. It iseasy to seethat RC(.S) must befinite, because there
are only finitely many distinct clausesthat can be constructed aut of the symbols P, . .., P
that appear in S. (Noticethat this would not be true without the factoring step that removes
multiple copies of literals.) Hence, PL-RESOL UTIO&liways terminates.

The completeness theorem for resolution in propositional logic is called the ground
resolution theorem:

If a set of clauses is unsatisfiable, then the resolution closure of those clauses
contains the empty clause.

We prove this theorem by demonstrating its contrapositive: if the closure RC(.S) does not
contain the empty clause, then Sis satisfiable. In fact, we can construct a model for S with
suitable truth valuesfor P, .. ., P. The construction procedureis asfollows:

For : from 1tok,

- Ifthereisaclausein RC(S) containing theliteral — P; suchthat all itsother literals
are false under the assignment chosen for Py, ..., P;,_,, thenassign falseto P,.
- Otherwise, assign trueto F;.

It remains to show that this assignment to P, ..., P, isamodel of S, provided that RC(.S)
is closed under resolution and does not contain the empty clause. The proof of thisisleft as
an exercise.

Forward and backward chaining

The completeness of resolution makesit avery important inference method. In many practical
situations, however, the full power of resolution is not needed. Real-world knowledge bases
often contain only clauses of a restricted kind called Horn clauses. A Horn clause is a
disiunction of literals of which at most one is positive. For example, the clause (=L; ; V
= BreezeV By 1), where Ly ; meansthat the agent's location is [1,1], isaHorn clause, whereas
(=B, V P2V P 1) isnot.

Therestriction to just one positiveliteral may seem sonnewhat arbitrary and uninterest-
ing, but it is actually very important for three reasons:

1. Every Horn clause can be written as an implication whose premise is a conjunction of
positive literals and whose conclusion is a single positiveliteral. (See Exercise 7.12.)
For example, theHorn clause (—L1,;1 V—BreezeV By 1) can be written astheimplication

218

Chapter 7. Logica Agents

DEFINITE CLAUSES
HEAD
BODY
FACT

INTEGRITY
CONSTRAINTS

FORWARD CHAINING

BACKWARD
CHAINING

AND-OR GRAPH

FIXED POINT

(L1,1 ABreeze) = By 1. Inthelatter form, the sentence is much easier to read: it says
that if theagentisin[1,1] and thereisabreeze, then [1,1] is breezy. Peoplefind it easy
to read and write sentences in thisform for many domains of knowledge.

Horn clauseslikethisonewith exactly onepositiveliteral arecalled definiteclauses.
The positive literal is called the head and the negative literals form the body of the
clause. A definite clause with no negative literals simply asserts a given proposition—
sometimes called a fact. Definite clauses form the basis for logic programming,
which is discussed in Chapter 9. A Horn clause with no positive literals can be writ-
ten as an implication whose conclusion is the literal False. For example, the clause
(=W1,1 V =W 2)—the wumpus cannot be in both [1,1] and [1,2]—is equivaent to
W11 A Wi 2 = False. Such sentences are called integrity constraintsin the database
world, where they are used to signal errors in the data. In the algorithms that follow,
we assume for simplicity that the knowledge base contains only definite clauses and no
integrity constraints. We say these knowledge bases are in Horn form.

2. Inference with Horn clauses can be done through the forwar d chaining and backwar d
chaining algorithms, which we explain next. Both of these algorithms are very natural,
in that the inference steps are obvious and easy to follow for humans.

3. Deciding entailment with Horn clauses can be done in timethat is linear in the size of
the knowledge base.

This last fact is a pleasant surprise. 1t means that logical inference is very cheap for many
propositional knowledge bases that are encountered in practice.

The forward-chaining algorithm PL-FC-ENTAILS2(K B, q) determines whether asin-
gle proposition symbol g—the query —is entailed by a knowledge base of Horn clauses. It
begins from known facts (positive literals) in the knowledge base. If all the premises of an
implication are known, thenits conclusion is added to the set of known facts. For example, if
Ly 1 and Breeze areknownand (L1,; A Breeze) = By isin the knowledge base, then B
can be added. This process continues until the query q is added or until no further inferences
can be made. The detailed algorithm is shown in Figure 7.14; the main point to remember is
that it runsin linear time.

The best way to understand the algorithm is through an example and a picture. Fig-
ure 7.15(a) shows a simple knowledge base of Horn clauses with A and B as known facts.
Figure7.15(b) shows the same knowledge base drawn as an AND-OR graph. In AND-OR
graphs, multiple links joined by an arc indicate a conjunction--every link must be proved—
while multiple links without an arc indicate a digunction—any link can be proved. It is easy
to see how forward chaining worksin the graph. The known leaves (here, A and B) are set,
and inference propagates up the graph as far as possible. Wherever a conjunction appears,
the propagation waits until all the conjuncts are known before proceeding. The reader is
encouraged to work through the examplein detail.

Itiseasy to seethat forward chaining is sound: every inference is essentially an appli-
cation of Modus Ponens. Forward chaining is also complete: every entailed atomic sentence
will be derived. The easiest way to see thisisto consider the final state of the inferred table
(after the algorithm reaches a fixed point where no new inferences are possible). The table

Section 7.5.

Reasoning Patternsin Propositional Logic 219

DATA-DRIVEN

function PL-FC-ENTAILS?(K B, q) returnstrue or false
inputs. K B, theknowledgebase, aset of propositional Horn clauses
g, the query, aproposition symbol
local variables: count, atable, indexed by clause, initially the number of premises
inferred, atable, indexed by symbol, each entry initially false
agenda, alist of symbols, initially the symbolsknown to be truein KB

while agenda is not empty do
p < PoP(agenda)
if p=qgthenreturntrue
unlessinferred[p] do
inferred[p]« true
for each Horn clause ¢ in whose premise p appearsdo
decrement count| c]
if count[c]=0then
PUsH(HEAD[c], agenda)
return false

Figure7.14 Theforward-chaining algorithm for propositional logic. The agenda keeps
track of symbols known to be true but not yet " processed.” The count table keeps track of
how many premisesof each implicationare as yet unknown. Whenever anew symbol p from
the agendais processed, the count is reduced by one for each implicationin whose premise
p appears. (These can beidentifiedin constant time if K B is indexed appropriately.) If a
count reaches zero, all the premises o the implication are known so its conclusion can be
added to the agenda. Finally, we need to keep track d which symbolshave been processed;
an inferred symbol need not be added to the agendalf it has been processed previoudly. This
avoids redundant work; it also preventsinfiniteloops that could be caused by implications
suchasP= Qand Q= P.

contains true for each symbol inferred during the process, and false for al other symbals.
Wecan view thetableasalogical model; moreover, every definite clause inthe original KB is
trueinthis model. Tosee this, assume the opposite, namely that someclausea; A...Aap = b
isfalsein themodel. Then a; A ... A a; must be true in the model and b must befase in
the model. But this contradicts our assumption that the algorithm has reached afi xed point!
We can conclude, therefore, that the set of atomic sentencesinferred at thefi xed point defi nes
amodel of the original KB. Furthermore, any atomic sentence q that is entailed by the KB
must be truein all its models and in this model in particular. Hence, every entailed sentence
g must be inferred by the algorithm.

Forward chaining is an example of the general concept of data-driven reasoning—that
is, reasoning in which thefocus of attention starts with the known data. It can be used within
an agent to derive conclusions from incoming percepts, often without a specific query in
mind. For example, the wumpus agent might TELL its percepts to the knowledge base using
an incremental forward-chaining algorithm in which new facts can be added to the agenda to
initiate new inferences. In humans, a certain amount of data-driven reasoning occurs as new

220 Chapter 7. Logical Agents

P=0Q

LAM = P
BAL = M
ANP = L
ANB = L

A B
(a) ®)

Figure7.15 (&) A smpleknowledge base of Horn clauses. (b) The corresponding AND-
OR graph.

information arrives. For example, if | amindoors and hear rain starting to fall, it might occur
tomethat the picnic will becanceled. Yetit will probably not occur to methat the seventeenth
petal on thelargest rosein my neighbor's garden will get wet; humans keep forward chaining
under careful control, lest they be swamped with irrelevant consequences.

The backward-chaining algorithm, as its name suggests, works backwards from the
query. If the query q is known to be true, then no work is needed. Otherwise, the algorithm
finds those implicationsin the knowledge base that conclude g. If all the premises of one of
those implications can be proved true (by backward chaining), then q istrue. When applied
to the query Q in Figure 7.15, it works back down the graph until it reaches a set of known
facts that forms the basisfor a proof. The detailed algorithm isleft as an exercise; as with
forward chaining, an efficientimplementation runsin linear time.

GOALDRECTED Backward chaining is a form of goal-directed reasoning. It is useful for answering
specific questions such as ""What shall | do now?* and "'Where are my keys?' Often, the
cost of backward chaining is much less than linear in the size of the knowledge base, because
the process touches only relevant facts. In general, an agent should share the work between
forward and backward reasoning, limiting forward reasoning to the generation of facts that
arelikely to be relevant to queries that will be solved by backward chaining.

7.6 EFFECTIVE PROPOSITIONAL INFERENCE

In this section, we describe two families of efficient algorithms for propositional inference
based on model checking: one approach based on backtracking search, and one on hillclimb-
ing search. These algorithms are part of the " technology" of propositional logic. This section
can be skimmed on afirst reading of the chapter.

Section 7.6.

Effective propositional inference 221

DAVIS-PUTNAM
ALGORITHM

PURE SYMBOL

The algorithms we describe are for checking satisfiability. We have aready noted the
connection between finding a satisfying model for alogical sentence and finding a solution
for a constraint satisfaction problem, so it is perhaps not surprising that the two families
of agorithms closely resemble the backtracking algorithms of Section 5.2 and the local-
search algorithms of Section 5.3. They are, however, extremely important in their own right
because so many combinatorial problemsin computer science can be reduced to checking the
satisfiability of a propositional sentence. Any improvement in satisfiability algorithms has
huge consequences for our ability to handle complexity in general.

A complete backtrackingalgorithm

Thefirst algorithm we will consider is often called the Davis-Putnam algorithm, after the
seminal paper by Martin Davis and Hilary Putnam (1960). The algorithmisin fact the version
described by Davis, Logemann, and Loveland (1962), sowewill call it DPL L after theinitials
of all four authors. DPLL takes as input a sentence in conjunctive normal form—a set of
clauses. Like BACKTRACKING-SEARCH and TT-ENTAILS?jt is essentidly a recursive,
depth-first enumeration of possible models. It embodies three improvements over the simple
schemeof TT-ENTAILS?:

¢ Early termination: The algorithm detects whether the sentence must be true or false,
even with a partially completed model. A clause is true if any litera is true, even if
the other literals do not yet have truth values; hence, the sentence as a whole could be
judged true even before the model is complete. For example, the sentence (AV B) A
(Av C)istrueif Aistrue, regardlessof the vauesof B and C. Similarly, a sentence
isfaseif any clauseisfalse, which occurs when each of itsliteralsisfalse. Again, this
can occur long before the model is complete. Early termination avoids examination of
entire subtrees in the search space.

e Pure symbol heuristic: A puresymbol isasymbol that always appears with the same
"dgn” in all clauses. For example, in the three clauses (A v -B), (-B Vv ~C), and
(Cv A), the symbol A is pure because only the positive literal appears, B is pure
because only the negative literal appears, and C' isimpure. It is easy to see that if
a sentence has a model, then it has a model with the pure symbols assigned so as to
make their literals true, because doing so can never make a clause false. Note that, in
determining the purity of a symbol, the algorithm can ignore clauses that are already
known to be truein the model constructed so far. For example, if the model contains
B=false, then the clause (—B V (') isaready true, and C' becomes pure because it
appearsonly in (CV A).

e Uit clause heuristic: A unit clause was defined earlier as a clause with just one lit-
eral. In the context of DPLL, it also means clauses in which all literals but one are
aready assigned false by the model. For example, if the model contains B = false,
then (B V —C') becomes a unit clause becauseit is equivaent to (False V -, or just
—~C. Obvioudly, for this clause to be true, C' must be set to false. The unit clause
heuristic assigns al such symbols before branching on the remainder. One important
consequence of the heuristic isthat any attempt to prove (by refutation) aliteral that is

222

Chapter 7. Logical Agents

UNIT PROPAGATION

function DPLL-SATISFIABLE?(s) returnstrue or false
inputs: s, asentencein propositional logic

clauses « the set of clausesin the CNF representationaf s
symbols « alist of the propositionsymbolsin s
return DPLL(clauses, symbols,|})

function DPLL(clauses, symbols, model) returnstrue or false

if every clausein clauses istruein model then return true
if someclausein clausesisfasein model thenreturn false
P, value < FIND-PURE-S YMBOL(symbols, clauses, model)
if Pisnon-null then return DPLL(clauses, symbols — P, EXTEND(F, value, model)
P, value «— FIND-UNIT-CLAUSE(clauses, model)
if P isnon-null then return DPLL(clauses, Symbols - P,EXTEND(P, value, model)
P — FIRST(symbols); rest «— REST(symbols)
return DPLL(clauses, rest, EXTEND(F, true, model))or
DPLL(clauses, rest, EXTEND(P, false,model))

Figure7.16 The DPLL algorithmfor checking satisfiability of asentencein propositional
logic. FIND-PURE-SYmMBOL and FIND-UNIT-CLAUSE aredescribedin thetext; eachreturns
asymbol (or null) and thetruth valuetoassign to that symbol. Like TT-ENTAIL S?it operates
over partial models.

aready in the knowledge base will succeed immediately (Exercise 7.16). Notice also
that assigning one unit clause can create another unit clause—for example, when C'is
set to false, (CV A) becomes a unit clause, causing true to be assigned to A. This
"'cascade" of forced assignmentsis called unit propagation. It resembles the process
of forward chaining with Horn clauses, and indeed, if the CNF expression contains only
Horn clauses then DPLL essentially replicatesforward chaining. (See Exercise 7.17.)

The DPLL agorithmisshownin Figure 7.16. We have giventhe essential skeleton of the al-
gorithm, which describes the search processitself. We have not described the data structures
that must be maintained in order to make each search step efficient, nor the tricks that can
be added to improve performance: clause learning, variableselection heuristics, and random-
ized restarts. When these are included DPLL is one of the fastest satisfiability algorithms
yet developed, despite its antiquity. The CHAFF implementation is used to solve hardware
verification problems with amillion variables.

L ocal-sear ch algorithms

We have seen several local-search algorithms so far in this book, including HILL-CLIMBING
(page 112) and SIMULATED-ANNEALING (page 116). These algorithms can be applied di-
rectly to satisfiability problems, provided that we choose the right evaluation function. Be-
cause the goal isto find an assignment that satisfiesevery clause, an evaluation function that
counts the number of unsatisfied clauses will do the job. Infact, thisis exactly the measure

Section 7.6.

Effective propositional inference 223

function WALKSAT(clauses, p, max-flips) returnsasatisfying model or failure
inputs: clauses, aset of clausesin propositional logic
p, the probability of choosing to do a**randornwalk” move, typically around 0.5
max-flips, number of flipsallowed beforegiving up

model + arandom assignment of true/false to the symbolsin clauses
for i = 1to max-flips do
if model satisfies clauses then return model
clause « arandomly selected clausefrom clauses that isfalsein model
with probability pflipthe valuein model of arandomly selected symbol from clause
elseflip whichever symbol in clause maximizes the number of satisfied clauses
return failure

Figure 717 The WALKSAT algorithm for checking satisfiability by randomly flipping

the values of variables. Many versionsof the algorithm exist.

used by the MIN-CONFLICTS agorithm for CSPs (page 151). All these algorithms take steps
in the space of complete assignments, flipping the truth value of one symbol at atime. The
space usually contains many local minima, to escape from which various forms of random-
ness are required. In recent years, there has been a great deal of experimentation to find a
good balance between greediness and randomness.

One of the simplest and most effectivealgorithmsto ernergefrom al thiswork is called
WALKSAT (Figure 7.17). On every iteration, the algorithm picks an unsatisfied clause and
picks a symbol in the clause to flip. It chooses randomly between two ways to pick which
symbol to flip: (1) a**'min-conflicts” step that minimizes the number of unsatisfied clausesin
the new state, and (2) a*'random walk” step that picksthe symbol randomly.

Does WALKSAT actually work? Clearly, if it returns a model, then the input sentence
isindeed satisfiable. What if it returns failure? Unfortunately, in that case we cannot tell
whether the sentence i s unsatisfiable or we need to give the algorithm more time. We could
try setting maz _flips toinfinity. Inthat case, itiseasy to show that WALKS AT will eventually
return a model (if one exists), provided that the probability p > 0. Thisis because thereis
always a sequence of flips leading to a satisfying assignment, and eventually the random
walk steps will generate that sequence. Alas, if maz_flips is infinity and the sentence is
unsatisfiable, then the algorithm never terminates!

What this suggests is that local-search algorithms such as WALKS AT are most useful
when we expect a solution to exig —for example, the problems discussed in Chapters 3 and 5
usually have solutions. On the other hand, local search cannot always detect unsatisfiability,
which isrequired for deciding entailment. For example, an agent cannot reliably use local
search to provethat asquareis safein the wumpus world. Instead, it can say, *'| thought about
it for an hour and couldn't come up with a possible world in which the square isn't safe.” If
the local-search algorithm is usually really fast at finding amodel when one exists, the agent
might bejustifiedin assuming that failure to find amodel indicates unsatisfiability. Thisisn't
the same as a proof, of course, and the agent should think twice before staking itslife onit.

224

Chapter 7. Logical Agents

UNDERCONSTRAINED

CRITICAL POINT

Hard satisfiability problems

We now look at how DPLL and WALKSAT perform in practice. We are particularly inter-
ested in hard problems, because easy problems can be solved by any old algorithm. In Chap-
ter 5, we saw some surprising discoveries about certain kinds of problems. For example, the
n-queens problem —thought to be quite tricky for backtracking search agorithms—turned
out to betrivialy easy for local-search methods, such as rnin-conflicts. Thisis because solu-
tions are very densely distributed in the space of assignments, and any initial assignment is
guaranteed to have asolution nearby. Thus, n-queensiseasy because it isunder constrained.

When we look at satisfiability problems in conjunctive normal form, an undercon-
strained problem is one with relatively few clauses constraining the variables. For example,
hereis arandomly generated'? 3-CNF sentence with five symbols and five clauses:

16 of the 32 possible assignments are models of this sentence, so, on average, it would take
just two random guesses to find a model.

So where are the hard problems? Presumably, if we increase the number of clauses,
keeping the number of symbols fixed, we make the problem more constrained, and solutions
become harder to find. Let m be the number of clauses and n be the number of symbols.
Figure 7.18(a) shows the probability that a random 3-CNF sentence is satisfiable, as afunc-
tion of the clause/symbol ratio, m/n, with n fixed at 50. As we expect, for small m/n the
probability isclose to 1, and at large 2 /n the probability is closeto 0. The probability drops
fairly sharply around m/n=4.3. CNF sentences near thiscritical point could be described
as"' nearly satisfiable™ or "' nearly unsatisfiable.” Is this where the hard problems are?

Figure 7.18(b) shows the runtime for DPLL and WALKSAT around this point, where
we have restricted attention to just the satisfiable problems. Three things are clear: Firgt,
problems near the critical point are much more difficult than other random problems. Second,
even on the hardest problems, DPLL is quite effective—an average of afew thousand steps
compared with 259 =~ 105 for truth-table enumeration. Third, WALKSAT is much faster
than DPLL throughout the range.

Of course, these results are only for randomly generated problems. Real problems do
not necessarily have the same structure—in termsof proportionsof positiveand negativeliter-
als, densities of connections among clauses, and so on—as random problems. Yet, in practice,
WALKSAT and related algorithms are very good at solving real problems too—often as good
as the best special-purpose algorithms for those tasks. Problems with thousands of symbols
and millions of clauses are routinely handled by solvers such as CHAFF. These observa-
tions suggest that some combination of the min-conflictsheuristic and random-walk behavior
provides a general-purpose capability for resolving most situations in which combinatorial
reasoning is required.

12 Each clausecontains three randomly selected di sti nct symbols, each of whichis negated with 50% probability.

Section 7.7.

Agents Based on Propositional Logic 225

0o 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 8
Clause/symbol ratiom/n Clause/symbol ratio m/n
(a) (®)

Figure7.18 (a) Graph showing the probability that arandom 3-CNF sentencewith n =50
symbolsissatisfiable, asafunctionof theclause/symbol ratiom/n. (b) Graph of themedian
runtimeof DPLL and WALKSAT on 100 satisfiable random 3-CNF sentenceswith n =50,

for anarrow range of m /n around the critical point.

In this section, we bring together what we have learned so far in order to construct agents
that operate using propositional logic. We will look; at two kinds of agents: those which
use inference algorithms and a knowledge base, like the generic knowledge-based agent in
Figure 7.1, and those which evaluate logical expressions directly in the form of circuits. We
will demonstrate both kinds of agentsin the wumpus world, and will find that both suffer
from serious drawbacks.

Finding pitsand wumpusesusing logical inference

Let us begin with an agent that reasons logically about the location of pits, wumpuses, and
safe squares. It begins with a knowledge base that states the ™ physics” of the wumpus world.
It knows that [1,1] does not contain a pit or awumpus; that is, ~P; ; and =W, ;. For every
square [X,y], it knows a sentence stating how a breeze arises:

B:}c,'y = (Px,y-]-l V Pz,y—l \% P:J:+1,y v Px—l,y) . (7.1)
For every square [X,y], it knows a sentence stating how a stench arises:
Sm,'y A (Wﬁ‘.‘,y—I—l \% I"!./r:r,-;,r—l vV W;r-i-l,y \ H’r;r-—l,y) . (7.2)

Finally, it knows that there is exactly one wumpus. Thisis expressed in two parts. First, we
have to say that thereis at least one wumpus:

WianvWiaV .- . VWygVWia.

Then, we have to say that there is at most one wumpus. One way to do thisis to say that
for any two sguares, one of them must be wumpus-free. With n squares, we get n(n— 1)/2

226

Chapter 7. Logical Agents

function PL-WuUMPUS-AGENT(percept) returnsan action
inputs: percept, alist, [stenchpreeze, glitter]
static: KB, aknowledgebase, initially containing the " physics” of the wumpus world
X, ¥, orientation, theagent's position (initially 1,1) and orientation(initially right)
visited, an array indicating which sguares have been visited, initialy false
action, the agent's most recent action, initially null
plan, an action sequence, initially empty

update X,y ,orientation, visited based on action

if stench then TELL(KB, S,,) €lseTELL(KB, - S;)

if breeze then TELL(XB, B.,) else TELL(XB, -~ B,,))

if glitter then action « grab

dseif planisnonempty then action«+ Pop(plan)

elseif for somefringe square[i,j1, ASK(KB, (-~ P; ; A = W; ;))istrueor

for somefringe square[i,j1, ASK(KB, (P;; v W; ;))is false then do

plan « A*-GRAPH-SEARCH(ROUTE-PROBLEM([z,y], orientation, 7,51, visited))
action «— Popr(plan)

else action «+ arandomly chosen move

return action

Figure7.19 A wumpus-world agent that uses propositional logic to identify pits, wum-
puses, and safe squares. The subroutine ROUTE-PROBLEM constructs a search problem
whose solutionis a sequence of actionsleading from [xy] to [¢,7] and passing through only
previoudly visited squares.

sentences such as W11 V =Wj 2. For a4 X 4 world, then, we begin with a total of 155
sentences containing 64 distinct symbols.

The agent program, shown in Figure 7.19, TELLS its knowledge base about each new
breeze and stench percept. (It also updates some ordinary program variablesto keep track of
whereit is and where it has been—more on thislater.) Then, the program chooses where to
look next among the fringe squares—that is, the squares adjacent to those already visited. A
fringe square [14,5] isprovably sdfe if the sentence (—F; ; A =W, ;) is entailed by the knowl-
edge base. The next best thingisa possibly safe square, for which the agent cannot provethat
thereisa pit or awumpus—that is, for which (P; ; V W; ;) is not entailed.

The entailment computation in Ask can be implemented using any of the methods
described earlier in the chapter. TT-ENTAILSPFigure 7.10) is obviously impractical, since
it would have to enumerate 264 rows. DPLL (Figure 7.16) performs the required inferences
in afew milliseconds, thanks mainly to the unit propagation heuristic. WALKSAT can aso
be used, with the usual caveats about incompleteness. In wumpus worlds, failures to find a
model, given 10,000 flips, invariably correspond to unsatisfiability,so no errors are likely due
to incompl eteness.

PL-WUM PUS-A GENAorks quite well in a small wumpus world. Thereis, however,
something deeply unsatisfying about the agent's knowledge base. KB contains " physics”
sentences of the form givenin Equations (7.1) and (7.2)for every single square. The larger

Section 7.7.

Agents Based on Propositional Logic 227

CIACUIT-BASED
AGENT

SEQUENTIAL
CIRCUIT

GATES
REGISTERS

the environment, the larger the initial knowledge base needs to be. We would much prefer
to have just two sentences that say how breezes and stenches arise in all squares. These are
beyond the powers of propositional logic to express. In the next chapter, we will see a more
expressivelogical language in which such sentences are easy to express.

Keepingtrack of location and orientation

The agent program in Figure 7.19 "cheats" because it keeps track of location outside the
knowledge base, instead of using logical reasoning.!*> To do it "properly,” we will need
propositions for location. One's first inclination might be to use a symbol such as L, ; to
mean that the agentisin [1,1]. Then theinitial knowledge base might include sentences like

L1 A FacingRight A Forward = La; .

Instantly, we see that this won't work. If the agent startsin [1,1] facing right and moves
forward, the knowledge base will entail both L; ; (the original location) and L ; (the new
location). Yet these propositions cannot both be true! The problemisthat thelocation propo-
sitions should refer to two different times. We need L{{,l to mean that the agent isin [1,1] at
timel, L%‘] to mean that the agentisin [2,1] at time 2, and so on. The orientation and action
propositions also need to depend on time. Therefore, the correct sentenceis

and so on. It turns out to be quite tricky to build a complete and correct knowledge base
for keeping track of everything in the wumpus world; we will defer the full discussion until
Chapter 10. The point we want to make hereis that the initial knowledge base will contain
sentences like the preceding two examplesfor every time t ,aswell asfor every location. That
is, for every timet and location [X,y], the knowledge base contains a sentence of the form

Even if we put an upper limit on the number of time steps alowed— 100, perhaps—we end
up with tens of thousands of sentences. The same problem arises if we add the sentences
"as needed for each new time step. This proliferation of clauses makes the knowledge base
unreadable for a human, but fast propositional solvers can till handle the 4 X 4 Wumpus
world with ease (they reach their limit at around 100 x 100). The circuit-based agents in
the next subsection offer a partial solution to this clause proliferation problem, but the full
solution will haveto wait until we have developed first-order logic in Chapter 8.

Circuit-based agents

A circuit-based agent isa particular kind of reflex agent with state, as defined in Chapter 2.
The percepts are inputs to a sequential circuit—a network of gates, each of which imple-
ments alogical connective, and registers, each of which stores the truth value of a single
proposition. The outputs of the circuit are registers corresponding to actions—for example,

13 The observant reader will have noticed that this allowed us to finesse the connection between the raw percepts
such as Breeze and the location-specific propositions such as Bi ;.

228

Chapter 7. Logical Agents

DATAFLOW

DELAY LINE

Breeze [] Forward

Stench []

Glitter
Bump

Scream

Figure7.20 Part of acircuit-based agent for the wumpus world, showing inputs, outputs,
thecircuitfor grabbingthegold, and thecircuitfor determining whether thewumpusis aive.
Registers are shown as rectanglesand one-step delays are shown as small triangles.

the Grab output is set to true if the agent wants to grab something. If the Glitter input is
connected directly to the Grab output, the agent will grab the goal whenever it seesit. (See
Figure7.20.)

Circuits are evauated in a dataflow fashion: at each time step, the inputs are set and
the signals propagate through the circuit. Whenever a gate has all itsinputs, it producesan
output. This processis closely related to the process of forward chaining in an AND-OR
graph such as Figure7.15(b).

We said in the preceding section that circuit-based agents handle time more satisfac-
torily than propositional inference-based agents. This is because the value stored in each
register gives the truth value of the corresponding proposition symbol at the current time't,
rather than having a different copy for each different time step. For example, we might have
an Aliveregister that should contain true when thewumpusisaliveand falsewhenitisdead.
This register correspondsto the propositionsymbol Alive', so on each time step it refers to
adifferent proposition. The internal state of the agent—i.e., its memory —is maintained by
connectingtheoutput of aregister back into thecircuit throughadelay line. Thisddiversthe
vaue of theregister at the previous time step. Figure 7.20 shows an example. The valuefor
Alive is given by the conjunction of the negation of Scream and the delayed value of Alive
itself. In terms of propositions, the circuit for Alive implementsthe biconditional

which says that the wumpusiis alive a time t if and only if there was no scream perceived
atimet (fromascreamatt — 1) and it was diveat t — 1. We assume that the circuit is
initialized with Alive set to true. Therefore, Alive will remain true until thereis a scream,
whereupon it will becomefalse and stay false. Thisis exactly what we want.

Section 7.7.

Agents Based on Propositional Logic 229

Breeze |:|

Glitter []
Bump

Scream |:|

Figure7.21 Thedircuit for determining whether the agent is & [1,1]. Every location and

orientation register has asimilar circuit attached.

The agent's location can be handled in much the same way as the wumpus's health. We
need an L, , register for each x and y; its value should be true if the agent isat [x,y]. The
circuit that sets the value of L, is, however, much more complicated than the circuit for
Alive. For example, the agentisat [1,1] attimetif (a) it wasthereat t — 1 and either didn't
move forward or tried but bumped into awall; or (b) it was at [1,2] facing down and moved
forward; or (c) it was at [2,1] facing left and moved forward:

The circuit for Ly ; is shown in Figure 7.21. Every location register has a similar circuit
attached to it. Exercise 7.13(b) asks you to design acircuit for the orientation propositions.

The circuits in Figures 7.20 and 7.21 maintain tihe correct truth values for Alive and
L, for al time. These propositions are unusual, however, in that their correct truth values
can always be ascertained. Consider instead the proposition By 4: square [4,4] is breezy.
Although this proposition's truth value remains fixed, the agent cannot learn that truth value
until it has visited [4,4] (or deduced that there is an adjacent pit). Propositional and first-
order logic are designed to represent true, false, and unknown propositions automatically,
but circuits are not: the register for B4 4 must contain some value, either true or false, even
before the truth has been discovered. The valuein the register might well be the wrong one,
and this could lead the agent astray. In other words, we need to represent three possible states
(By,4 is known true, known false, or unknown) and we only have one bit to do it with.

The solution to this problemis to use two bitsinstead of one. B 4 isrepresented by two
registersthat we will call K (By 4) and K (—=By 4), where K standsfor "known.". (Remember
that these are still just symbols with complicated names, even though they look like structured

230

Chapter 7. Logical Agents

KNOWLEDGE
PROPOSITION

ACYCLICITY

expressions!) When both K'(Bj,4) and K (—By 4) arefase, it means the truth value of By 4
isunknown. (If both aretrue, there's a bug in the knowledge base!) Now whenever we would
use By 4 in some part of the circuit, we use K (B4 4) instead ; and whenever we would use
—By 4, weuse K(—By). Ingeneral, werepresent each potentially indeterminate proposition
with two knowledge propositionsthat state whether the underlying propositionis known to
be true and known to befalse.

We will see an example of how to use knowledge propositions shortly. First, we need to
work out how to determine the truth valuesof the knowledge propositionsthemselves. Notice
that, whereas By,4 has a fixed truth value, K (B4 4) and K(—~Bs.4) do change as the agent
finds out more about the world. For example, K (B, 4) starts out false and then becomes true
as soon as By 4 can be determined to be true—that is, when the agent isin [4,4] and detects a
breeze. It staystrue thereafter. So we have

A similar equation can be writtenfor K (B4 4)*.

Now that the agent knows about breezy squares, it can deal with pits. The absence of a
pit in asquare can be ascertained if and only if one of the neighboring squares is known not
to be breezy. For example, we have

Determining that there is a pit in a square is more difficult —there must be a breeze in an
adjacent square that cannot be accounted for by another pit:

While the circuits for determining the presence or absence of pits are somewhat hairy, they
have only a constant number of gates for each square. This property is essential if we are
to build circuit-based agents that scale up in a reasonable way. It is realy a property of
the wumpus world itself; we say that an environment exhibits locality if the truth of each
proposition of interest can be determined looking only at a constant number of other propo-
sitions. Locality is very sensitive to the precise " physics” of the environment. For example,
the minesweeper domain (Exercise 7.11) is nonlocal because determining that a mineisin
a given square can involve looking at squares arbitrarily far awvay. For nonlocal domains,

circuit-based agents are not always practical.
Thereis oneissue around which we have tiptoed carefully: the question of acyclicity.

A circuit is acyclic if every path that connects the output of a register back to its input has
an intervening delay element. We require that all circuits be acyclic because cyclic circuits,
as physical devices, do not work! They can go into unstable oscillations resulting in un-
defined values. As an example of a cyclic circuit, consider the following augmentation of
Equation (7.6):

K(Bya)t © K(Bga)™' v (L4 A Breeze') vV K(Ps)" vV K(Py3)" . (7.9
The extra disiuncts, K (Ps4)" and K (P, 3)", alow the agent to determine breeziness from
the known presence of adjacent pits, which seems entirely reasonable. Now, unfortunately,

Section 7.7.

Agents Based on Propositional Logic 231

breeziness depends on adjacent pits, and pits depend on adjacent breeziness through equations
such as Equation (7.8). Therefore, the complete circuit would contain cycles.

The difficulty is not that the augmented Equation (7.9) is incorrect. Rather, the prob-
lem is that the interlocking dependencies represented by these equations cannot be resolved
by the simple mechanism of propagating truth valuesin the corresponding Boolean circuit.
The acyclic version using Equation (7.6), which determines breeziness only from direct ob-
servation, is incomplete in the sense that at some points the circuit-based agent might know
less than an inference-based agent using a complete inference procedure. For example, if
thereisabreezein [1,1], the inference-based agent can conclude that thereis also abreezein
[2,2], whereasthe acyclic circuit-based agent using Equation (7.6) cannot. A complete circuit
can be built—after all, sequential circuits can emulate any digital computer —but it would be
significantly more complex.

A comparison

Theinference-based agent and the circuit-based agent represent the declarative and procedu-
ral extremesin agent design. They can be compared along several dimensions:

e Conciseness. The circuit-based agent, unlike the inference-based agent, need not have
separate copies of its ""knowledge” for every time step. Instead, it refers only to the
current and previous time steps. Both agents need copies of the "' physics” (expressed
as sentences or circuits) for every square and therefore do not scale well to larger en-
vironments. In environments with many objects related in complex ways, the number
of propositions will swamp any propositional agent. Such environments require the ex-
pressive power of first-order logic. (See Chapter 13) Propositional agents of both kinds
are also poorly suited for expressing or solving the problemof finding apath to anearby
safe square. (For thisreason, PL-WUM PUS-A GENdlls back on a search algorithm.)

e Computational efficiency: Inthe worst case, inference can take time exponentia in the
number of symbols, whereas evaluating a circuit takes time linear in the size of the
circuit (or linear in the depth of the circuit if realized as a physical device). In practice,
however, we saw that DPL L completed the required inferences very quickly.'

¢ Conzpleteness: We suggested earlier that the circuit-based agent might be incomplete
because of the acyclicity restriction. The reasons for incompleteness are actually more
fundamental. First, remember that a circuit executes in time linear in the circuit size.
This means that, for some environments, a circuit that is complete (i.c., one that com-
putes the truth value of every determinable proposition) must be exponentially larger
than the inference-based agent's KB. Otherwise, we would have a way to solve the
propositional entailment problem in less than exponentia time, whichis very unlikely.
A second reason is the nature of the internal state of the agent. The inference-based
agent remembers every percept and knows, either implicitly or explicitly, every sen-
tence that follows from the percepts and initial KB. For example, given B ;, it knows
the disiunction Py 2 V Ps 1, from which B, 5 follows. The circuit-based agent, on the

4 Infact, al the inferences done by acircuit can bedonein linear time by DPLL! Thisis because evaluating a
circuit, like forward chaining, can be emulated by DPLL using the unit propagation rule.

232

Chapter 7. Logical Agents

COMPILATION

other hand, forgets al previous percepts and remembers just the individual proposi-
tions stored in registers. Thus, 7 2 and P ; remain individually unknown after thefirst
percept, so no conclusion will be drawn about B ».

e Easeof construction: Thisisavery important issue about whichitishard to be precise.
Certainly, this author found it much easier to state the " physics” declaratively, whereas
devising small, acyclic, not-too-incomplete circuits for direct detection of pits seemed
quite difficult.

In sum, it seems there are tradeoffsamong computational efficiency, conciseness, complete-
ness, and ease of construction. When the connection between percepts and actionsis simple—
asin the connection between Glitter and Grab—a circuit seemsoptimal. For more complex
connections, the declarative approach may be better. In a domain such as chess, for example,
the declarative rules are concise and easily encoded (at least in first-order logic), but acircuit
for computing moves directly from board states would be unimaginably vast.

We see different points on these tradeoffs in the animal kingdom. The lower animals
with very simple nervous systems are probably circuit-based, whereas higher animals, in-
cluding humans, seem to perform inference on explicit representations. This enables them
to compute much more complex agent functions. Humans also have circuits to implement
reflexes, and perhaps also compile declarative representations into circuits when certain in-
ferences become routine. In this way, a hybrid agent design (see Chapter 2) can have the
best of both worlds.

We have introduced knowledge-based agents and have shown how to define a logic with
which such agents can reason about the world. The main points are asfollows:

e Intelligent agents need knowledge about the world in order to reach good decisions.

e Knowledgeis contained in agentsin the form of sentencesin a knowledger epresen-
tation language that are stored in aknowledgebase.

e A knowledge-based agent is composed of a knowledge base and an inference mecha-
nism. It operates by storing sentences about the world in its knowledge base, using the
inference mechanism to infer new sentences, and using these sentences to decide what
action to take.

¢ A representation language is defined by its syntax, which specifies the structure of
sentences, and itssemantics, which definesthe truth of each sentencein each possible
world or model.

e The relationship of entailment between sentences is crucia to our understanding of

reasoning. A sentence a entails another sentence 3 if 3 istruein al worlds where a
is true. Equivalent definitions include the validity of the sentence a = 3 and the

unsatisfiability of the sentence a A (.

Section 7.8. Summary 233

e Inferenceistheprocess of deriving new sentences from old ones. Sound inferenceago-
rithms derive only sentences that are entailed; completeagorithms deriveall sentences
that are entailed.

¢ Proposgtional logicis a very simple language consisting of proposition symbolsand
logical connectives. It can handle propositions that are known true, known false, or
completely unknown.

e The set of possible models, given a fixed propositiona vocabulary, is finite, so en-
tailment can be checked by enumerating models. Efficient model-checking inference
algorithms for propositional logic include backtracking and local-search methods and
can often solve large problems very quickly.

e Inferencerules are patterns of sound inference that can be used to find proofs. The
resolution rule yields a complete inference algorithm for knowledge bases that are
expressed in conjunctivenormal form. Forward chaining and backward chaining
are very natural reasoning algorithmsfor knowledge basesin Horn form.

e Two kinds of agents can be built on the basis of' propositional logic: inference-based
agents use inference algorithms to keep track of the world and deduce hidden proper-
ties, whereas cir cuit-basedagentsrepresent propositionsasbitsin registersand update
them using signal propagation in logical circuits.

¢ Propositional logic isreasonably effectivefor centain tasks within an agent, but does not
scale to environments of unbounded size because it lacks the expressive power to deal
concisely with time, space, and universal patterns of relationships among objects.

BIBLIOGRAPHICAL AND HISTORICAL NOTES

John McCarthy’s paper "' Programs with Common Sense” (McCarthy, 1958, 1968) promul-
gated the notion of agents that use logical reasoning to mediate between perceptsand actions.
It also raised the flag of declarativism, pointing out that telling an agent what it needs to
know is a very elegant way to build software. Allen Newell’s (1982) article” The Knowledge
Level" makes the case that rational agents can be described and analyzed at an abstract level
defined by the knowledge they possess rather than the programs they run. The declarative
and procedural approachesto Al are compared in Boden (19'77). The debate was revived by,
among others, Brooks (1991) and Nilsson (1991).

Logicitself had its originsin ancient Greek philosophy and mathematics. Variouslog-
ical principles— principles connecting the syntactic structure of sentences with their truth
and falsity, with their meaning, or with the validity of argumentsin which they figure—are
scattered in the works of Plato. The first known systematic study of logic was carried out
by Aristotle, whose work was assembled by his students after his death in 322 B.c. as a

SYLLOGISMS treatise called the Organon. Aristotle's syllogisms were what we would now call nnference
rules. Although the syllogisms included elements of both propositional and first-order logic,
the system as a whole was very weak by modern standards. It did not alow for patterns of
inferencethat apply to sentences of arbitrary complexity, asin modem propositional logic.

234

Chapter 7. Logical Agents

The closely related Megarian and Stoic schools (originatingin the fifth century B.c.
and continuing for several centuries thereafter) introduced the systematicstudy of implication
and other basic constructs still used in modern propositional logic. The useof truth tablesfor
defininglogical connectivesis due to Philo of Megara. The Stoics took five basic inference
rules as valid without proof, including the rule we now call Modus Ponens. They derived a
number of other rules from these five, using among other principles the deduction theorem
(page 210) and were much clearer about the notion of proof than Aristotle was. The Stoics
claimed that their logic was completein the sense of capturing all valid inferences, but what
remainsistoo fragmentary totell. A good account of the history of Megarianand Stoiclogic,
asfar asit isknown, isgiven by Benson Mates (1953).

Theidea o reducing logical inferenceto a purely mechanical process applied to afor-
mal languageis due to Wilhelm Leibniz (1646-1716). Leibniz's own mathematical logic,
however, was severely defective, and he is better remembered simply for introducing these
ideas as goals to be attained than for hisattemptsat realizing them.

George Boole (1847) introduced the first comprehensive and workable system of for-
mal logicin his book The Mathematical Analysisd | ogi ¢c. Bool€'s logic was closely mod-
eled on the ordinary algebra of real numbers and used substitution of logically equivalent
expressions as its primary inference method. Although Boole's system still fell short of full
propositional logic, it was close enough that other mathematicians could quickly fill in the
gaps. Schroder (1877) described conjunctive normal form, while Horn form was introduced
much later by Alfred Horn (1951). The first comprehensive exposition of modern proposi-
tional logic (and first-order logic) isfound in Gottlob Frege's (1879) Begriffschrift (" Concept
Writing" or "* Conceptual Notation™).

Thefirst mechanical deviceto carry out logical inferences was constructed by the third
Earl of Stanhope (1753-1816). The Stanhope Demonstrator could handle syllogisms and
certain inferencesin the theory of probability. William Stanley Jevons, one of those who
improved upon and extended Boole's work, constructed his *logical piano™ in 1869 to per-
form inferences in Boolean logic. An entertaining and instructive history of these and other
early mechanical devices for reasoningis given by Martin Gardner (1968). The first pub-
lished computer program for logical inference was the Logic Theorist of Newell, Shaw,
and Simon (1957). This program was intended to model human thought processes. Mar-
tin Davis (1957) had actually designed a program that came up with a proof in 1954, but the
Logic Theorist's results were published dightly earlier. Both Davis's 1954 program and the
Logic Theorist were based on somewhat ad hoc methods that did not strongly influencelater
automated deduction.

Truth tables as amethod of testing thevalidity or unsatisfiability of sentencesin thelan-
guage of propositional logic were introduced independently by Ludwig Wittgenstein (1922)
and Emil Post (1921). In the 1930s, a great deal of progress was made on inference meth-
odsfor first-order logic. In particular, Godel (1930) showed that a complete procedure for
inference in first-order logic could be obtained via a reduction to propositiona logic, us
ing Herbrand's theorem (Herbrand, 1930). We will take up this history again in Chapter 9;
the important point hereis that the development of efficient propositional algorithmsin the
1960s was motivatedlargely by theinterestof mathematiciansin an effectivetheorem prover

Section 7.8.

Summary 235

for first-order logic. The Davis—Putnam agorithm (Davis and Putnam, 1960) was the first
effective algorithm for propositional resolution but wasin most cases much less efficient than
the DPL L backtracking algorithm introduced two years later (1962). Thefull resolution rule
and a proof of its completeness appeared in asemina paper by J. A. Robinson (1965), which
also showed how to do first-order reasoning without resort to propositional techniques.

Stephen Cook (1971) showed that deciding satisfiability of a sentence in propositional
logic is NP-complete. Since deciding entailment is equivalent to deciding unsatisfiability, it
is co-NP-complete. Many subsets of propositional logic are known for which the satisfia-
bility problem is polynomially solvable; Horn clauses are one such subset. The linear-time
forward-chaining algorithm for Horn clauses is due to Dowling and Gallier (1984), who de-
scribe their algorithm as a dataflow process similar to the propagation of signalsin acircuit.
Satisfiability has becomeone of the canonica examplesfor NP reductions; for example Kaye
(2000) showed that the Minesweeper game (see Exercise 7.11) is NP-complete.

Local search algorithmsfor satisfiability were tried by various authors throughout the
1980s; al of the algorithms were based on the idea of minimizing the number of unsatisfied
clauses (Hansen and Jaumard, 1990). A particularly effective algorithm was developed by
Gu (1989) and independently by Selman et al. (1992), who called it GSAT and showed that
it was capable of solving a wide range of very hard problems very quickly. The WALKSAT
algorithm described in the chapter is due to Selman et al. (1996).

The "phase transition™ in satisfiability of random &£-SAT problems was first observed
by Simon and Dubois (1989). Empirical results due to, Crawford and Auton (1993) suggest
that it lies at a clause/variable ratio of around 4.24 for large random 3-SAT problems; this
paper also describes a very efficient implementation of DPLL. Bayardo and Schrag (1997)
describe another efficient DPLL implementation using techniques from constraint satisfac-
tion, and Moskewicz et al. (2001) describe CHAFF, which solves million-variable hardware
verification problems and was the winner of the SAT 2002 Competition. Li and Anbulagan
(1997) discuss heuristics based on unit propagation that allow for fast solvers. Cheeseman
et al. (1991) provide data on a number of related problems and conjecture that all NP hard
problems have a phase transition. Kirkpatrick and Selman (1994) describe ways in which
techniquesfrom statistical physics might provideinsight into the precise* shape™ of the phase
transition. Theoretical analysis of its location is still rather weak: all that can be proved is
that it lies in the range [3.003,4.598] for random 3-SAT. Cook and Mitchell (1997) give an
excellent survey of results on this and several other satisfiability-related topics.

Early theoretical investigationsshowed that DPL L has polynomial average-case com-
plexity for certain natural distributions of problems. This potentially exciting fact became
less exciting when Franco and Paull (1983) showed that the same problems could be solved
in constant time simply by guessing random assignments. The random-generation method
described in the chapter produces much harder problems. Motivated by the empirical success
of local search on these problems, Koutsoupias and Papadimitriou (1992) showed that asim-
ple hill-climbing algorithm can solve almost all satisfiability problem instances very quickly,
suggesting that hard problems are rare. Moreover, Schoning (1999) exhibited a randomized
variant of GSAT whose wor st-case expected runtime on 3-SAT problemsis 1.333 *—still ex-
ponential, but substantially faster than previous worst-case bounds. Satisfiability algorithms

236

Chapter 7. Logical Agents

are still avery active area of research; the collection of articlesin Du et d. (1999) providesa
good starting point.

Circuit-based agents can be traced back to the seminal paper of McCulloch and Pitts
(1943), which initiated the field of neura networks. Contrary to popular supposition, the
paper was concerned with the implementation of a Boolean circuit-based agent design in the
brain. Circuit-based agents have received little attention in Al, however. The most notable
exception is the work of Stan Rosenschein (Rosenschein, 1985; Kaelbling and Rosenschein,
1990), who devel oped ways to compile circuit-based agents from declarative descriptions of
the task environment. The circuits for updating propositions stored in registers are closely
related to the successor -stateaxiom developed for first-order logic by Reiter (1991). The
work of Rod Brooks (1986, 1989) demonstrates the effectivenessof circuit-based designsfor
controlling robots—a topic we take up in Chapter 25. Brooks (1991) arguesthat circuit-based
designs are all that is needed for Al—tha representation and reasoning are cumbersome,
expensive, and unnecessary. In our view, neither approach is sufficient by itself.

The wumpus world was invented by Gregory Yob (1975). Ironically, Yob developed
it because he was bored with games played on a grid: the topology of his original wumpus
world was a dodecahedron; we put it back in the boring old grid. Michael Genesereth was
the first to suggest that the wumpus world be used as an agent testbed.

7.1 Describe the wumpus world according to the properties of task environmentslisted in
Chapter 2.

7.2 Suppose the agent has progressed to the point shownin Figure 7.4(a), having perceived
nothing in [1,1], a breeze in [2,1], and a stench in [1,2]. and is now concerned with the
contents of [1,3], [2,2], and [3,1]. Each of these can contain a pit and at most one can contain
awumpus. Following the example of Figure 7.5, construct the set of possible worlds. (You
should find 32 of them.) Mark the worldsin which the KB is true and those in which each of
thefollowing sentencesistrue:

ag ="Thereisnopitin[2,2].”
as ="Thereisawumpusin [1,3]”

Hence show that KB = a2 and KB = as.

7.3 Consider the problem of deciding whether a propositional logic sentence is true in a
given model.

a. Write arecursive algorithm PL-TRUE?(s, m) that returns true if and o