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The	Unfinished	Fable	of	the	Sparrows

	

It	was	the	nest-building	season,	but	after	days	of	 long	hard	work,	 the	sparrows
sat	in	the	evening	glow,	relaxing	and	chirping	away.

“We	are	all	so	small	and	weak.	Imagine	how	easy	life	would	be	if	we	had	an
owl	who	could	help	us	build	our	nests!”

“Yes!”	 said	 another.	 “And	we	 could	 use	 it	 to	 look	 after	 our	 elderly	 and	our
young.”

“It	could	give	us	advice	and	keep	an	eye	out	for	the	neighborhood	cat,”	added
a	third.

Then	Pastus,	 the	 elder-bird,	 spoke:	 “Let	 us	 send	 out	 scouts	 in	 all	 directions
and	try	to	find	an	abandoned	owlet	somewhere,	or	maybe	an	egg.	A	crow	chick
might	also	do,	or	a	baby	weasel.	This	could	be	the	best	thing	that	ever	happened
to	 us,	 at	 least	 since	 the	 opening	 of	 the	 Pavilion	 of	Unlimited	Grain	 in	 yonder
backyard.”

The	 flock	was	 exhilarated,	 and	 sparrows	 everywhere	 started	 chirping	 at	 the
top	of	their	lungs.

Only	 Scronkfinkle,	 a	 one-eyed	 sparrow	 with	 a	 fretful	 temperament,	 was
unconvinced	of	the	wisdom	of	the	endeavor.	Quoth	he:	“This	will	surely	be	our
undoing.	Should	we	not	give	some	thought	to	the	art	of	owl-domestication	and
owl-taming	first,	before	we	bring	such	a	creature	into	our	midst?”

Replied	Pastus:	“Taming	an	owl	sounds	like	an	exceedingly	difficult	thing	to
do.	It	will	be	difficult	enough	to	find	an	owl	egg.	So	let	us	start	there.	After	we
have	succeeded	in	raising	an	owl,	 then	we	can	think	about	 taking	on	this	other
challenge.”

“There	is	a	flaw	in	that	plan!”	squeaked	Scronkfinkle;	but	his	protests	were	in
vain	as	 the	 flock	had	already	 lifted	off	 to	 start	 implementing	 the	directives	 set
out	by	Pastus.



Just	 two	 or	 three	 sparrows	 remained	 behind.	 Together	 they	 began	 to	 try	 to
work	 out	 how	 owls	might	 be	 tamed	 or	 domesticated.	 They	 soon	 realized	 that
Pastus	had	been	right:	this	was	an	exceedingly	difficult	challenge,	especially	in
the	absence	of	an	actual	owl	to	practice	on.	Nevertheless	they	pressed	on	as	best
they	could,	constantly	fearing	that	the	flock	might	return	with	an	owl	egg	before
a	solution	to	the	control	problem	had	been	found.

It	 is	 not	 known	 how	 the	 story	 ends,	 but	 the	 author	 dedicates	 this	 book	 to
Scronkfinkle	and	his	followers.



PREFACE

	

Inside	 your	 cranium	 is	 the	 thing	 that	 does	 the	 reading.	 This	 thing,	 the	 human
brain,	has	some	capabilities	 that	 the	brains	of	other	animals	 lack.	 It	 is	 to	 these
distinctive	capabilities	 that	we	owe	our	dominant	position	on	 the	planet.	Other
animals	have	stronger	muscles	and	sharper	claws,	but	we	have	cleverer	brains.
Our	modest	 advantage	 in	 general	 intelligence	 has	 led	 us	 to	 develop	 language,
technology,	 and	 complex	 social	 organization.	 The	 advantage	 has	 compounded
over	time,	as	each	generation	has	built	on	the	achievements	of	its	predecessors.

If	 some	 day	we	 build	machine	 brains	 that	 surpass	 human	 brains	 in	 general
intelligence,	then	this	new	superintelligence	could	become	very	powerful.	And,
as	the	fate	of	the	gorillas	now	depends	more	on	us	humans	than	on	the	gorillas
themselves,	 so	 the	 fate	 of	 our	 species	 would	 depend	 on	 the	 actions	 of	 the
machine	superintelligence.

We	do	have	one	advantage:	we	get	 to	build	 the	stuff.	 In	principle,	we	could
build	 a	 kind	 of	 superintelligence	 that	 would	 protect	 human	 values.	We	would
certainly	 have	 strong	 reason	 to	 do	 so.	 In	 practice,	 the	 control	 problem—the
problem	 of	 how	 to	 control	 what	 the	 superintelligence	 would	 do—looks	 quite
difficult.	 It	 also	 looks	 like	 we	 will	 only	 get	 one	 chance.	 Once	 unfriendly
superintelligence	 exists,	 it	 would	 prevent	 us	 from	 replacing	 it	 or	 changing	 its
preferences.	Our	fate	would	be	sealed.

In	 this	 book,	 I	 try	 to	 understand	 the	 challenge	 presented	 by	 the	 prospect	 of
superintelligence,	 and	 how	 we	 might	 best	 respond.	 This	 is	 quite	 possibly	 the
most	 important	 and	most	 daunting	 challenge	 humanity	 has	 ever	 faced.	And—
whether	we	succeed	or	fail—it	is	probably	the	last	challenge	we	will	ever	face.

It	is	no	part	of	the	argument	in	this	book	that	we	are	on	the	threshold	of	a	big
breakthrough	in	artificial	intelligence,	or	that	we	can	predict	with	any	precision
when	 such	 a	 development	 might	 occur.	 It	 seems	 somewhat	 likely	 that	 it	 will
happen	sometime	in	this	century,	but	we	don’t	know	for	sure.	The	first	couple	of
chapters	do	discuss	possible	pathways	and	say	something	about	the	question	of



timing.	The	bulk	of	the	book,	however,	is	about	what	happens	after.	We	study	the
kinetics	of	an	intelligence	explosion,	the	forms	and	powers	of	superintelligence,
and	 the	 strategic	 choices	 available	 to	 a	 superintelligent	 agent	 that	 attains	 a
decisive	advantage.	We	then	shift	our	focus	to	the	control	problem	and	ask	what
we	 could	 do	 to	 shape	 the	 initial	 conditions	 so	 as	 to	 achieve	 a	 survivable	 and
beneficial	outcome.	Toward	the	end	of	the	book,	we	zoom	out	and	contemplate
the	 larger	 picture	 that	 emerges	 from	 our	 investigations.	 Some	 suggestions	 are
offered	on	what	ought	 to	be	done	now	 to	 increase	our	 chances	of	 avoiding	 an
existential	catastrophe	later.

This	has	not	been	an	easy	book	to	write.	I	hope	the	path	that	has	been	cleared
will	 enable	 other	 investigators	 to	 reach	 the	 new	 frontier	 more	 swiftly	 and
conveniently,	 so	 that	 they	 can	 arrive	 there	 fresh	 and	 ready	 to	 join	 the	work	 to
further	expand	 the	 reach	of	our	comprehension.	 (And	 if	 the	way	 that	has	been
made	 is	 a	 little	bumpy	and	bendy,	 I	hope	 that	 reviewers,	 in	 judging	 the	 result,
will	not	underestimate	the	hostility	of	the	terrain	ex	ante!)

This	has	not	been	an	easy	book	to	write:	I	have	tried	to	make	it	an	easy	book
to	read,	but	I	don’t	think	I	have	quite	succeeded.	When	writing,	I	had	in	mind	as
the	target	audience	an	earlier	time-slice	of	myself,	and	I	tried	to	produce	a	kind
of	 book	 that	 I	 would	 have	 enjoyed	 reading.	 This	 could	 prove	 a	 narrow
demographic.	Nevertheless,	I	think	that	the	content	should	be	accessible	to	many
people,	 if	 they	 put	 some	 thought	 into	 it	 and	 resist	 the	 temptation	 to
instantaneously	misunderstand	 each	 new	 idea	 by	 assimilating	 it	with	 the	most
similar-sounding	cliché	available	in	their	cultural	larders.	Non-technical	readers
should	not	 be	discouraged	by	 the	occasional	 bit	 of	mathematics	or	 specialized
vocabulary,	 for	 it	 is	 always	 possible	 to	 glean	 the	 main	 point	 from	 the
surrounding	explanations.	(Conversely,	for	those	readers	who	want	more	of	the
nitty-gritty,	there	is	quite	a	lot	to	be	found	among	the	endnotes.1)

Many	of	 the	points	made	 in	 this	book	are	probably	wrong.2	 It	 is	 also	 likely
that	there	are	considerations	of	critical	importance	that	I	fail	to	take	into	account,
thereby	invalidating	some	or	all	of	my	conclusions.	I	have	gone	to	some	length
to	 indicate	 nuances	 and	 degrees	 of	 uncertainty	 throughout	 the	 text—
encumbering	it	with	an	unsightly	smudge	of	“possibly,”	“might,”	“may,”	“could
well,”	 “it	 seems,”	 “probably,”	 “very	 likely,”	 “almost	 certainly.”	 Each	 qualifier
has	 been	 placed	 where	 it	 is	 carefully	 and	 deliberately.	 Yet	 these	 topical
applications	of	 epistemic	modesty	 are	not	 enough;	 they	must	be	 supplemented
here	 by	 a	 systemic	 admission	 of	 uncertainty	 and	 fallibility.	 This	 is	 not	 false



modesty:	 for	while	 I	believe	 that	my	book	 is	 likely	 to	be	 seriously	wrong	and
misleading,	 I	 think	 that	 the	 alternative	 views	 that	 have	 been	 presented	 in	 the
literature	 are	 substantially	 worse—including	 the	 default	 view,	 or	 “null
hypothesis,”	according	to	which	we	can	for	the	time	being	safely	or	reasonably
ignore	the	prospect	of	superintelligence.
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CHAPTER	1
Past	developments	and	present	capabilities

	

We	begin	by	 looking	back.	History,	at	 the	 largest	 scale,	 seems	 to	exhibit	a
sequence	 of	 distinct	 growth	 modes,	 each	 much	 more	 rapid	 than	 its
predecessor.	 This	 pattern	 has	 been	 taken	 to	 suggest	 that	 another	 (even
faster)	 growth	 mode	 might	 be	 possible.	 However,	 we	 do	 not	 place	 much
weight	 on	 this	 observation—this	 is	 not	 a	 book	 about	 “technological
acceleration”	 or	 “exponential	 growth”	 or	 the	 miscellaneous	 notions
sometimes	gathered	under	the	rubric	of	“the	singularity.”	Next,	we	review
the	 history	 of	 artificial	 intelligence.	 We	 then	 survey	 the	 field’s	 current
capabilities.	Finally,	we	glance	at	 some	recent	expert	opinion	 surveys,	and
contemplate	our	ignorance	about	the	timeline	of	future	advances.

Growth	modes	and	big	history

	

A	 mere	 few	 million	 years	 ago	 our	 ancestors	 were	 still	 swinging	 from	 the
branches	in	the	African	canopy.	On	a	geological	or	even	evolutionary	timescale,
the	 rise	 of	Homo	 sapiens	 from	 our	 last	 common	 ancestor	 with	 the	 great	 apes
happened	 swiftly.	 We	 developed	 upright	 posture,	 opposable	 thumbs,	 and—
crucially—some	 relatively	 minor	 changes	 in	 brain	 size	 and	 neurological
organization	 that	 led	 to	 a	 great	 leap	 in	 cognitive	 ability.	 As	 a	 consequence,
humans	 can	 think	 abstractly,	 communicate	 complex	 thoughts,	 and	 culturally
accumulate	information	over	the	generations	far	better	than	any	other	species	on
the	planet.

These	 capabilities	 let	 humans	 develop	 increasingly	 efficient	 productive
technologies,	making	it	possible	for	our	ancestors	to	migrate	far	away	from	the
rainforest	 and	 the	 savanna.	 Especially	 after	 the	 adoption	 of	 agriculture,
population	densities	rose	along	with	the	total	size	of	the	human	population.	More
people	meant	more	 ideas;	greater	densities	meant	 that	 ideas	could	spread	more
readily	 and	 that	 some	 individuals	 could	 devote	 themselves	 to	 developing



specialized	skills.	These	developments	increased	the	rate	of	growth	of	economic
productivity	 and	 technological	 capacity.	 Later	 developments,	 related	 to	 the
Industrial	 Revolution,	 brought	 about	 a	 second,	 comparable	 step	 change	 in	 the
rate	of	growth.

Such	 changes	 in	 the	 rate	 of	 growth	 have	 important	 consequences.	 A	 few
hundred	thousand	years	ago,	in	early	human	(or	hominid)	prehistory,	growth	was
so	 slow	 that	 it	 took	 on	 the	 order	 of	 one	 million	 years	 for	 human	 productive
capacity	to	increase	sufficiently	to	sustain	an	additional	one	million	individuals
living	at	 subsistence	 level.	By	5000	BC,	 following	 the	Agricultural	Revolution,
the	rate	of	growth	had	increased	to	the	point	where	the	same	amount	of	growth
took	 just	 two	 centuries.	 Today,	 following	 the	 Industrial	 Revolution,	 the	world
economy	grows	on	average	by	that	amount	every	ninety	minutes.1

Even	the	present	rate	of	growth	will	produce	impressive	results	if	maintained
for	a	moderately	long	time.	If	the	world	economy	continues	to	grow	at	the	same
pace	 as	 it	 has	over	 the	past	 fifty	years,	 then	 the	world	will	 be	 some	4.8	 times
richer	by	2050	and	about	34	times	richer	by	2100	than	it	is	today.2

Yet	 the	prospect	of	continuing	on	a	 steady	exponential	growth	path	pales	 in
comparison	to	what	would	happen	if	the	world	were	to	experience	another	step
change	in	the	rate	of	growth	comparable	 in	magnitude	to	 those	associated	with
the	Agricultural	Revolution	and	the	Industrial	Revolution.	The	economist	Robin
Hanson	 estimates,	 based	 on	 historical	 economic	 and	 population	 data,	 a
characteristic	 world	 economy	 doubling	 time	 for	 Pleistocene	 hunter–gatherer
society	 of	 224,000	 years;	 for	 farming	 society,	 909	 years;	 and	 for	 industrial
society,	 6.3	 years.3	 (In	Hanson’s	model,	 the	 present	 epoch	 is	 a	mixture	 of	 the
farming	and	the	industrial	growth	modes—the	world	economy	as	a	whole	is	not
yet	 growing	 at	 the	 6.3-year	 doubling	 rate.)	 If	 another	 such	 transition	 to	 a
different	 growth	mode	were	 to	 occur,	 and	 it	were	 of	 similar	magnitude	 to	 the
previous	 two,	 it	 would	 result	 in	 a	 new	 growth	 regime	 in	 which	 the	 world
economy	would	double	in	size	about	every	two	weeks.

Such	 a	 growth	 rate	 seems	 fantastic	 by	 current	 lights.	 Observers	 in	 earlier
epochs	 might	 have	 found	 it	 equally	 preposterous	 to	 suppose	 that	 the	 world
economy	would	one	day	be	doubling	several	times	within	a	single	lifespan.	Yet
that	is	the	extraordinary	condition	we	now	take	to	be	ordinary.

The	 idea	 of	 a	 coming	 technological	 singularity	 has	 by	 now	 been	 widely



popularized,	starting	with	Vernor	Vinge’s	seminal	essay	and	continuing	with	the
writings	of	Ray	Kurzweil	and	others.4	The	term	“singularity,”	however,	has	been
used	confusedly	in	many	disparate	senses	and	has	accreted	an	unholy	(yet	almost
millenarian)	aura	of	techno-utopian	connotations.5	Since	most	of	these	meanings
and	 connotations	 are	 irrelevant	 to	 our	 argument,	 we	 can	 gain	 clarity	 by
dispensing	with	the	“singularity”	word	in	favor	of	more	precise	terminology.

The	 singularity-related	 idea	 that	 interests	 us	 here	 is	 the	 possibility	 of	 an
intelligence	 explosion,	 particularly	 the	 prospect	 of	 machine	 superintelligence.
There	 may	 be	 those	 who	 are	 persuaded	 by	 growth	 diagrams	 like	 the	 ones	 in
Figure	1	that	another	drastic	change	in	growth	mode	is	in	the	cards,	comparable
to	the	Agricultural	or	Industrial	Revolution.	These	folk	may	then	reflect	that	it	is
hard	 to	 conceive	 of	 a	 scenario	 in	 which	 the	 world	 economy’s	 doubling	 time
shortens	to	mere	weeks	that	does	not	involve	the	creation	of	minds	that	are	much
faster	and	more	efficient	than	the	familiar	biological	kind.	However,	the	case	for
taking	seriously	the	prospect	of	a	machine	intelligence	revolution	need	not	rely
on	curve-fitting	exercises	or	extrapolations	from	past	economic	growth.	As	we
shall	see,	there	are	stronger	reasons	for	taking	heed.



Figure	1	Long-term	history	of	world	GDP.	Plotted	on	a	linear	scale,	the	history
of	the	world	economy	looks	like	a	flat	line	hugging	the	x-axis,	until	it	suddenly
spikes	vertically	upward.	(a)	Even	when	we	zoom	in	on	the	most	recent	10,000
years,	the	pattern	remains	essentially	one	of	a	single	90°	angle.	(b)	Only	within
the	past	100	years	or	so	does	the	curve	lift	perceptibly	above	the	zero-level.	(The
different	 lines	 in	 the	plot	correspond	to	different	data	sets,	which	yield	slightly
different	estimates.6)

	

Great	expectations

	



Machines	matching	humans	in	general	intelligence—that	is,	possessing	common
sense	 and	 an	 effective	 ability	 to	 learn,	 reason,	 and	 plan	 to	 meet	 complex
information-processing	 challenges	 across	 a	wide	 range	 of	 natural	 and	 abstract
domains—have	been	expected	since	the	invention	of	computers	in	the	1940s.	At
that	time,	the	advent	of	such	machines	was	often	placed	some	twenty	years	into
the	future.7	Since	 then,	 the	expected	arrival	date	has	been	receding	at	a	 rate	of
one	 year	 per	 year;	 so	 that	 today,	 futurists	 who	 concern	 themselves	 with	 the
possibility	 of	 artificial	 general	 intelligence	 still	 often	 believe	 that	 intelligent
machines	are	a	couple	of	decades	away.8

Two	 decades	 is	 a	 sweet	 spot	 for	 prognosticators	 of	 radical	 change:	 near
enough	to	be	attention-grabbing	and	relevant,	yet	far	enough	to	make	it	possible
to	 suppose	 that	 a	 string	 of	 breakthroughs,	 currently	 only	 vaguely	 imaginable,
might	 by	 then	 have	 occurred.	 Contrast	 this	 with	 shorter	 timescales:	 most
technologies	that	will	have	a	big	impact	on	the	world	in	five	or	ten	years	from
now	are	already	in	limited	use,	while	technologies	that	will	reshape	the	world	in
less	than	fifteen	years	probably	exist	as	laboratory	prototypes.	Twenty	years	may
also	be	close	to	the	typical	duration	remaining	of	a	forecaster’s	career,	bounding
the	reputational	risk	of	a	bold	prediction.

From	the	fact	 that	some	individuals	have	overpredicted	artificial	 intelligence
in	 the	past,	 however,	 it	 does	not	 follow	 that	AI	 is	 impossible	or	will	 never	 be
developed.9	The	main	reason	why	progress	has	been	slower	than	expected	is	that
the	technical	difficulties	of	constructing	intelligent	machines	have	proved	greater
than	the	pioneers	foresaw.	But	this	leaves	open	just	how	great	those	difficulties
are	and	how	far	we	now	are	from	overcoming	them.	Sometimes	a	problem	that
initially	 looks	 hopelessly	 complicated	 turns	 out	 to	 have	 a	 surprisingly	 simple
solution	(though	the	reverse	is	probably	more	common).

In	 the	next	 chapter,	we	will	 look	at	different	paths	 that	may	 lead	 to	human-
level	machine	intelligence.	But	let	us	note	at	the	outset	that	however	many	stops
there	are	between	here	and	human-level	machine	intelligence,	the	latter	is	not	the
final	destination.	The	next	stop,	just	a	short	distance	farther	along	the	tracks,	is
superhuman-level	 machine	 intelligence.	 The	 train	 might	 not	 pause	 or	 even
decelerate	at	Humanville	Station.	It	is	likely	to	swoosh	right	by.

The	mathematician	 I.	 J.	Good,	who	 had	 served	 as	 chief	 statistician	 in	Alan
Turing’s	 code-breaking	 team	 in	 World	 War	 II,	 might	 have	 been	 the	 first	 to
enunciate	 the	 essential	 aspects	 of	 this	 scenario.	 In	 an	 oft-quoted	 passage	 from



1965,	he	wrote:

Let	an	ultraintelligent	machine	be	defined	as	a	machine	that	can	far	surpass
all	the	intellectual	activities	of	any	man	however	clever.	Since	the	design	of
machines	 is	one	of	 these	 intellectual	activities,	an	ultraintelligent	machine
could	design	even	better	machines;	there	would	then	unquestionably	be	an
“intelligence	 explosion,”	 and	 the	 intelligence	 of	 man	 would	 be	 left	 far
behind.	Thus	the	first	ultraintelligent	machine	is	the	last	invention	that	man
need	ever	make,	provided	that	the	machine	is	docile	enough	to	tell	us	how
to	keep	it	under	control.10

	
	

It	may	seem	obvious	now	that	major	existential	risks	would	be	associated	with
such	 an	 intelligence	 explosion,	 and	 that	 the	 prospect	 should	 therefore	 be
examined	with	the	utmost	seriousness	even	if	it	were	known	(which	it	is	not)	to
have	 but	 a	 moderately	 small	 probability	 of	 coming	 to	 pass.	 The	 pioneers	 of
artificial	intelligence,	however,	notwithstanding	their	belief	in	the	imminence	of
human-level	 AI,	 mostly	 did	 not	 contemplate	 the	 possibility	 of	 greater-than-
human	AI.	 It	 is	 as	 though	 their	 speculation	muscle	 had	 so	 exhausted	 itself	 in
conceiving	the	radical	possibility	of	machines	reaching	human	intelligence	that	it
could	 not	 grasp	 the	 corollary—that	 machines	 would	 subsequently	 become
superintelligent.

The	AI	pioneers	for	the	most	part	did	not	countenance	the	possibility	that	their
enterprise	 might	 involve	 risk.11	 They	 gave	 no	 lip	 service—let	 alone	 serious
thought—to	 any	 safety	 concern	 or	 ethical	 qualm	 related	 to	 the	 creation	 of
artificial	minds	and	potential	computer	overlords:	a	lacuna	that	astonishes	even
against	 the	 background	 of	 the	 era’s	 not-so-impressive	 standards	 of	 critical
technology	 assessment.12	 We	 must	 hope	 that	 by	 the	 time	 the	 enterprise
eventually	does	become	feasible,	we	will	have	gained	not	only	the	technological
proficiency	 to	 set	 off	 an	 intelligence	 explosion	 but	 also	 the	 higher	 level	 of
mastery	that	may	be	necessary	to	make	the	detonation	survivable.

But	before	we	turn	to	what	lies	ahead,	it	will	be	useful	to	take	a	quick	glance
at	the	history	of	machine	intelligence	to	date.

Seasons	of	hope	and	despair



	

In	the	summer	of	1956	at	Dartmouth	College,	ten	scientists	sharing	an	interest	in
neural	 nets,	 automata	 theory,	 and	 the	 study	of	 intelligence	 convened	 for	 a	 six-
week	 workshop.	 This	 Dartmouth	 Summer	 Project	 is	 often	 regarded	 as	 the
cockcrow	of	artificial	intelligence	as	a	field	of	research.	Many	of	the	participants
would	later	be	recognized	as	founding	figures.	The	optimistic	outlook	among	the
delegates	 is	 reflected	 in	 the	proposal	 submitted	 to	 the	Rockefeller	Foundation,
which	provided	funding	for	the	event:

We	propose	that	a	2	month,	10	man	study	of	artificial	intelligence	be	carried
out….	 The	 study	 is	 to	 proceed	 on	 the	 basis	 of	 the	 conjecture	 that	 every
aspect	of	learning	or	any	other	feature	of	intelligence	can	in	principle	be	so
precisely	described	that	a	machine	can	be	made	to	simulate	it.	An	attempt
will	 be	 made	 to	 find	 how	 to	 make	 machines	 that	 use	 language,	 form
abstractions	 and	 concepts,	 solve	 kinds	 of	 problems	 now	 reserved	 for
humans,	and	improve	themselves.	We	think	that	a	significant	advance	can
be	made	in	one	or	more	of	these	problems	if	a	carefully	selected	group	of
scientists	work	on	it	together	for	a	summer.

	
	

In	 the	six	decades	since	 this	brash	beginning,	 the	 field	of	artificial	 intelligence
has	been	through	periods	of	hype	and	high	expectations	alternating	with	periods
of	setback	and	disappointment.

The	first	period	of	excitement,	which	began	with	the	Dartmouth	meeting,	was
later	described	by	John	McCarthy	(the	event’s	main	organizer)	as	the	“Look,	Ma,
no	hands!”	 era.	During	 these	 early	days,	 researchers	built	 systems	designed	 to
refute	claims	of	the	form	“No	machine	could	ever	do	X!”	Such	skeptical	claims
were	 common	 at	 the	 time.	 To	 counter	 them,	 the	 AI	 researchers	 created	 small
systems	that	achieved	X	in	a	“microworld”	(a	well-defined,	limited	domain	that
enabled	 a	 pared-down	 version	 of	 the	 performance	 to	 be	 demonstrated),	 thus
providing	a	proof	of	concept	and	showing	that	X	could,	in	principle,	be	done	by
machine.	One	such	early	system,	the	Logic	Theorist,	was	able	to	prove	most	of
the	 theorems	 in	 the	 second	 chapter	 of	 Whitehead	 and	 Russell’s	 Principia
Mathematica,	 and	 even	 came	 up	with	 one	 proof	 that	 was	much	more	 elegant
than	the	original,	thereby	debunking	the	notion	that	machines	could	“only	think
numerically”	and	showing	that	machines	were	also	able	to	do	deduction	and	to



invent	logical	proofs.13	A	follow-up	program,	the	General	Problem	Solver,	could
in	principle	solve	a	wide	range	of	formally	specified	problems.14	Programs	that
could	 solve	 calculus	 problems	 typical	 of	 first-year	 college	 courses,	 visual
analogy	 problems	 of	 the	 type	 that	 appear	 in	 some	 IQ	 tests,	 and	 simple	 verbal
algebra	problems	were	also	written.15	The	Shakey	robot	(so	named	because	of	its
tendency	to	tremble	during	operation)	demonstrated	how	logical	reasoning	could
be	 integrated	with	 perception	 and	 used	 to	 plan	 and	 control	 physical	 activity.16
The	 ELIZA	 program	 showed	 how	 a	 computer	 could	 impersonate	 a	 Rogerian
psychotherapist.17	 In	 the	mid-seventies,	 the	 program	SHRDLU	 showed	 how	 a
simulated	 robotic	 arm	 in	 a	 simulated	world	 of	 geometric	 blocks	 could	 follow
instructions	and	answer	questions	 in	English	 that	were	 typed	 in	by	a	user.18	 In
later	decades,	systems	would	be	created	that	demonstrated	that	machines	could
compose	music	 in	 the	 style	 of	 various	 classical	 composers,	 outperform	 junior
doctors	 in	certain	clinical	diagnostic	 tasks,	drive	cars	autonomously,	and	make
patentable	inventions.19	There	has	even	been	an	AI	that	cracked	original	jokes.20
(Not	 that	 its	 level	 of	 humor	was	 high—“What	 do	 you	 get	when	 you	 cross	 an
optic	with	a	mental	object?	An	eye-dea”—but	children	reportedly	found	its	puns
consistently	entertaining.)

The	methods	that	produced	successes	in	the	early	demonstration	systems	often
proved	difficult	 to	 extend	 to	a	wider	variety	of	problems	or	 to	harder	problem
instances.	One	 reason	 for	 this	 is	 the	 “combinatorial	 explosion”	 of	 possibilities
that	must	be	explored	by	methods	that	rely	on	something	like	exhaustive	search.
Such	methods	work	well	for	simple	instances	of	a	problem,	but	fail	when	things
get	 a	 bit	more	 complicated.	For	 instance,	 to	 prove	 a	 theorem	 that	 has	 a	 5-line
long	 proof	 in	 a	 deduction	 system	 with	 one	 inference	 rule	 and	 5	 axioms,	 one
could	simply	enumerate	the	3,125	possible	combinations	and	check	each	one	to
see	if	it	delivers	the	intended	conclusion.	Exhaustive	search	would	also	work	for
6-and	 7-line	 proofs.	 But	 as	 the	 task	 becomes	 more	 difficult,	 the	 method	 of
exhaustive	search	soon	runs	into	trouble.	Proving	a	theorem	with	a	50-line	proof
does	not	 take	 ten	 times	 longer	 than	proving	a	 theorem	 that	has	 a	5-line	proof:
rather,	 if	 one	 uses	 exhaustive	 search,	 it	 requires	 combing	 through	 550	 ≈	 8.9	 ×
1034	 possible	 sequences—which	 is	 computationally	 infeasible	 even	 with	 the
fastest	supercomputers.

To	overcome	 the	combinatorial	 explosion,	one	needs	algorithms	 that	 exploit
structure	 in	 the	 target	domain	and	 take	advantage	of	prior	knowledge	by	using
heuristic	search,	planning,	and	flexible	abstract	representations—capabilities	that



were	poorly	developed	in	the	early	AI	systems.	The	performance	of	these	early
systems	also	suffered	because	of	poor	methods	for	handling	uncertainty,	reliance
on	 brittle	 and	 ungrounded	 symbolic	 representations,	 data	 scarcity,	 and	 severe
hardware	 limitations	 on	 memory	 capacity	 and	 processor	 speed.	 By	 the	 mid-
1970s,	 there	was	 a	 growing	 awareness	 of	 these	 problems.	The	 realization	 that
many	 AI	 projects	 could	 never	 make	 good	 on	 their	 initial	 promises	 led	 to	 the
onset	of	 the	 first	 “AI	winter”:	 a	period	of	 retrenchment,	during	which	 funding
decreased	and	skepticism	increased,	and	AI	fell	out	of	fashion.

A	new	springtime	arrived	 in	 the	early	1980s,	when	Japan	 launched	its	Fifth-
Generation	Computer	Systems	Project,	a	well-funded	public–private	partnership
that	 aimed	 to	 leapfrog	 the	 state	 of	 the	 art	 by	 developing	 a	 massively	 parallel
computing	architecture	that	would	serve	as	a	platform	for	artificial	intelligence.
This	 occurred	 at	 peak	 fascination	 with	 the	 Japanese	 “post-war	 economic
miracle,”	 a	 period	 when	 Western	 government	 and	 business	 leaders	 anxiously
sought	 to	 divine	 the	 formula	 behind	 Japan’s	 economic	 success	 in	 hope	 of
replicating	the	magic	at	home.	When	Japan	decided	to	invest	big	in	AI,	several
other	countries	followed	suit.

The	 ensuing	 years	 saw	 a	 great	 proliferation	 of	 expert	 systems.	 Designed	 as
support	tools	for	decision	makers,	expert	systems	were	rule-based	programs	that
made	simple	inferences	from	a	knowledge	base	of	facts,	which	had	been	elicited
from	human	domain	experts	and	painstakingly	hand-coded	in	a	formal	language.
Hundreds	 of	 these	 expert	 systems	 were	 built.	 However,	 the	 smaller	 systems
provided	little	benefit,	and	the	larger	ones	proved	expensive	to	develop,	validate,
and	keep	updated,	and	were	generally	cumbersome	to	use.	It	was	impractical	to
acquire	a	standalone	computer	just	for	the	sake	of	running	one	program.	By	the
late	1980s,	this	growth	season,	too,	had	run	its	course.

The	 Fifth-Generation	 Project	 failed	 to	 meet	 its	 objectives,	 as	 did	 its
counterparts	in	the	United	States	and	Europe.	A	second	AI	winter	descended.	At
this	point,	a	critic	could	justifiably	bemoan	“the	history	of	artificial	intelligence
research	 to	 date,	 consisting	 always	 of	 very	 limited	 success	 in	 particular	 areas,
followed	immediately	by	failure	to	reach	the	broader	goals	at	which	these	initial
successes	 seem	at	 first	 to	 hint.”21	 Private	 investors	 began	 to	 shun	 any	venture
carrying	the	brand	of	“artificial	 intelligence.”	Even	among	academics	and	their
funders,	“AI”	became	an	unwanted	epithet.22

Technical	work	continued	apace,	however,	 and	by	 the	1990s,	 the	 second	AI



winter	 gradually	 thawed.	 Optimism	was	 rekindled	 by	 the	 introduction	 of	 new
techniques,	 which	 seemed	 to	 offer	 alternatives	 to	 the	 traditional	 logicist
paradigm	(often	referred	to	as	“Good	Old-Fashioned	Artificial	Intelligence,”	or
“GOFAI”	for	short),	which	had	focused	on	high-level	symbol	manipulation	and
which	 had	 reached	 its	 apogee	 in	 the	 expert	 systems	 of	 the	 1980s.	 The	 newly
popular	 techniques,	 which	 included	 neural	 networks	 and	 genetic	 algorithms,
promised	 to	 overcome	 some	 of	 the	 shortcomings	 of	 the	 GOFAI	 approach,	 in
particular	 the	 “brittleness”	 that	 characterized	 classical	 AI	 programs	 (which
typically	 produced	 complete	 nonsense	 if	 the	 programmers	made	 even	 a	 single
slightly	 erroneous	 assumption).	 The	 new	 techniques	 boasted	 a	 more	 organic
performance.	For	example,	neural	networks	exhibited	 the	property	of	“graceful
degradation”:	a	small	amount	of	damage	to	a	neural	network	typically	resulted	in
a	 small	 degradation	 of	 its	 performance,	 rather	 than	 a	 total	 crash.	 Even	 more
importantly,	neural	networks	could	learn	from	experience,	finding	natural	ways
of	 generalizing	 from	 examples	 and	 finding	 hidden	 statistical	 patterns	 in	 their
input.23	 This	 made	 the	 nets	 good	 at	 pattern	 recognition	 and	 classification
problems.	 For	 example,	 by	 training	 a	 neural	 network	 on	 a	 data	 set	 of	 sonar
signals,	 it	 could	 be	 taught	 to	 distinguish	 the	 acoustic	 profiles	 of	 submarines,
mines,	and	sea	life	with	better	accuracy	than	human	experts—and	this	could	be
done	 without	 anybody	 first	 having	 to	 figure	 out	 in	 advance	 exactly	 how	 the
categories	were	to	be	defined	or	how	different	features	were	to	be	weighted.

While	simple	neural	network	models	had	been	known	since	the	late	1950s,	the
field	 enjoyed	 a	 renaissance	 after	 the	 introduction	 of	 the	 backpropagation
algorithm,	which	made	it	possible	to	train	multilayered	neural	networks.24	Such
multilayered	networks,	which	have	one	or	more	 intermediary	(“hidden”)	 layers
of	neurons	between	the	input	and	output	layers,	can	learn	a	much	wider	range	of
functions	 than	 their	 simpler	 predecessors.25	 Combined	 with	 the	 increasingly
powerful	 computers	 that	 were	 becoming	 available,	 these	 algorithmic
improvements	 enabled	 engineers	 to	 build	 neural	 networks	 that	 were	 good
enough	to	be	practically	useful	in	many	applications.

The	 brain-like	 qualities	 of	 neural	 networks	 contrasted	 favorably	 with	 the
rigidly	 logic-chopping	but	brittle	performance	of	 traditional	 rule-based	GOFAI
systems—enough	so	to	inspire	a	new	“-ism,”	connectionism,	which	emphasized
the	 importance	 of	 massively	 parallel	 sub-symbolic	 processing.	 More	 than
150,000	 academic	 papers	 have	 since	 been	 published	 on	 artificial	 neural
networks,	and	they	continue	to	be	an	important	approach	in	machine	learning.



Evolution-based	 methods,	 such	 as	 genetic	 algorithms	 and	 genetic
programming,	 constitute	 another	 approach	 whose	 emergence	 helped	 end	 the
second	AI	winter.	 It	made	perhaps	a	 smaller	academic	 impact	 than	neural	nets
but	was	widely	popularized.	 In	evolutionary	models,	a	population	of	candidate
solutions	 (which	 can	 be	 data	 structures	 or	 programs)	 is	 maintained,	 and	 new
candidate	solutions	are	generated	randomly	by	mutating	or	recombining	variants
in	 the	existing	population.	Periodically,	 the	population	 is	pruned	by	applying	a
selection	 criterion	 (a	 fitness	 function)	 that	 allows	only	 the	better	 candidates	 to
survive	 into	 the	 next	 generation.	 Iterated	 over	 thousands	 of	 generations,	 the
average	quality	of	the	solutions	in	the	candidate	pool	gradually	increases.	When
it	works,	 this	kind	of	 algorithm	can	produce	efficient	 solutions	 to	 a	very	wide
range	of	problems—solutions	that	may	be	strikingly	novel	and	unintuitive,	often
looking	more	like	natural	structures	than	anything	that	a	human	engineer	would
design.	And	 in	 principle,	 this	 can	happen	without	much	need	 for	 human	 input
beyond	 the	 initial	 specification	 of	 the	 fitness	 function,	 which	 is	 often	 very
simple.	In	practice,	however,	getting	evolutionary	methods	to	work	well	requires
skill	 and	 ingenuity,	 particularly	 in	 devising	 a	 good	 representational	 format.
Without	an	efficient	way	to	encode	candidate	solutions	(a	genetic	language	that
matches	 latent	 structure	 in	 the	 target	 domain),	 evolutionary	 search	 tends	 to
meander	endlessly	in	a	vast	search	space	or	get	stuck	at	a	local	optimum.	Even	if
a	good	representational	format	is	found,	evolution	is	computationally	demanding
and	is	often	defeated	by	the	combinatorial	explosion.

Neural	 networks	 and	 genetic	 algorithms	 are	 examples	 of	 methods	 that
stimulated	 excitement	 in	 the	 1990s	 by	 appearing	 to	 offer	 alternatives	 to	 the
stagnating	GOFAI	paradigm.	But	the	intention	here	is	not	to	sing	the	praises	of
these	 two	 methods	 or	 to	 elevate	 them	 above	 the	 many	 other	 techniques	 in
machine	learning.	In	fact,	one	of	the	major	theoretical	developments	of	the	past
twenty	 years	 has	 been	 a	 clearer	 realization	 of	 how	 superficially	 disparate
techniques	 can	 be	 understood	 as	 special	 cases	within	 a	 common	mathematical
framework.	For	example,	many	types	of	artificial	neural	network	can	be	viewed
as	classifiers	 that	perform	a	particular	kind	of	statistical	calculation	(maximum
likelihood	 estimation).26	 This	 perspective	 allows	 neural	 nets	 to	 be	 compared
with	 a	 larger	 class	 of	 algorithms	 for	 learning	 classifiers	 from	 examples
—“decision	 trees,”	 “logistic	 regression	 models,”	 “support	 vector	 machines,”
“naive	 Bayes,”	 “k-nearest-neighbors	 regression,”	 among	 others.27	 In	 a	 similar
manner,	 genetic	 algorithms	 can	 be	 viewed	 as	 performing	 stochastic	 hill-
climbing,	which	is	again	a	subset	of	a	wider	class	of	algorithms	for	optimization.
Each	of	these	algorithms	for	building	classifiers	or	for	searching	a	solution	space



has	 its	 own	 profile	 of	 strengths	 and	 weaknesses	 which	 can	 be	 studied
mathematically.	 Algorithms	 differ	 in	 their	 processor	 time	 and	 memory	 space
requirements,	 which	 inductive	 biases	 they	 presuppose,	 the	 ease	 with	 which
externally	produced	content	can	be	incorporated,	and	how	transparent	their	inner
workings	are	to	a	human	analyst.

Behind	 the	 razzle-dazzle	 of	 machine	 learning	 and	 creative	 problem-solving
thus	lies	a	set	of	mathematically	well-specified	tradeoffs.	The	ideal	is	that	of	the
perfect	Bayesian	agent,	one	that	makes	probabilistically	optimal	use	of	available
information.	 This	 ideal	 is	 unattainable	 because	 it	 is	 too	 computationally
demanding	 to	 be	 implemented	 in	 any	 physical	 computer	 (see	 Box	 1).
Accordingly,	 one	 can	 view	 artificial	 intelligence	 as	 a	 quest	 to	 find	 shortcuts:
ways	 of	 tractably	 approximating	 the	 Bayesian	 ideal	 by	 sacrificing	 some
optimality	or	generality	while	preserving	enough	to	get	high	performance	in	the
actual	domains	of	interest.

A	reflection	of	this	picture	can	be	seen	in	the	work	done	over	the	past	couple
of	 decades	 on	 probabilistic	 graphical	 models,	 such	 as	 Bayesian	 networks.
Bayesian	 networks	 provide	 a	 concise	 way	 of	 representing	 probabilistic	 and
conditional	 independence	 relations	 that	 hold	 in	 some	 particular	 domain.
(Exploiting	 such	 independence	 relations	 is	 essential	 for	 overcoming	 the
combinatorial	 explosion,	 which	 is	 as	 much	 of	 a	 problem	 for	 probabilistic
inference	as	it	is	for	logical	deduction.)	They	also	provide	important	insight	into
the	concept	of	causality.28

One	 advantage	 of	 relating	 learning	 problems	 from	 specific	 domains	 to	 the
general	 problem	 of	 Bayesian	 inference	 is	 that	 new	 algorithms	 that	 make
Bayesian	 inference	 more	 efficient	 will	 then	 yield	 immediate	 improvements
across	 many	 different	 areas.	 Advances	 in	 Monte	 Carlo	 approximation
techniques,	 for	 example,	 are	 directly	 applied	 in	 computer	 vision,	 robotics,	 and
computational	 genetics.	 Another	 advantage	 is	 that	 it	 lets	 researchers	 from
different	 disciplines	 more	 easily	 pool	 their	 findings.	 Graphical	 models	 and
Bayesian	 statistics	 have	 become	 a	 shared	 focus	 of	 research	 in	 many	 fields,
including	 machine	 learning,	 statistical	 physics,	 bioinformatics,	 combinatorial
optimization,	and	communication	theory.35	A	fair	amount	of	the	recent	progress
in	 machine	 learning	 has	 resulted	 from	 incorporating	 formal	 results	 originally
derived	 in	 other	 academic	 fields.	 (Machine	 learning	 applications	 have	 also
benefitted	 enormously	 from	 faster	 computers	 and	 greater	 availability	 of	 large
data	sets.)



Box	1	An	optimal	Bayesian	agent

	

An	 ideal	 Bayesian	 agent	 starts	 out	 with	 a	 “prior	 probability	 distribution,”	 a
function	 that	 assigns	 probabilities	 to	 each	 “possible	 world”	 (i.e.	 to	 each
maximally	specific	way	the	world	could	turn	out	to	be).29	This	prior	incorporates
an	 inductive	 bias	 such	 that	 simpler	 possible	 worlds	 are	 assigned	 higher
probabilities.	(One	way	to	formally	define	the	simplicity	of	a	possible	world	is	in
terms	 of	 its	 “Kolmogorov	 complexity,”	 a	 measure	 based	 on	 the	 length	 of	 the
shortest	computer	program	that	generates	a	complete	description	of	the	world.30)
The	 prior	 also	 incorporates	 any	 background	 knowledge	 that	 the	 programmers
wish	to	give	to	the	agent.

As	 the	 agent	 receives	 new	 information	 from	 its	 sensors,	 it	 updates	 its
probability	 distribution	 by	 conditionalizing	 the	 distribution	 on	 the	 new
information	 according	 to	 Bayes’	 theorem.31	 Conditionalization	 is	 the
mathematical	 operation	 that	 sets	 the	 new	 probability	 of	 those	 worlds	 that	 are
inconsistent	 with	 the	 information	 received	 to	 zero	 and	 renormalizes	 the
probability	 distribution	 over	 the	 remaining	 possible	 worlds.	 The	 result	 is	 a
“posterior	probability	distribution”	(which	the	agent	may	use	as	its	new	prior	in
the	next	 time	step).	As	 the	agent	makes	observations,	 its	probability	mass	 thus
gets	concentrated	on	the	shrinking	set	of	possible	worlds	that	remain	consistent
with	the	evidence;	and	among	these	possible	worlds,	simpler	ones	always	have
more	probability.

Metaphorically,	we	can	think	of	a	probability	as	sand	on	a	large	sheet	of	paper.
The	paper	 is	partitioned	into	areas	of	various	sizes,	each	area	corresponding	 to
one	possible	world,	with	larger	areas	corresponding	to	simpler	possible	worlds.
Imagine	also	a	layer	of	sand	of	even	thickness	spread	across	the	entire	sheet:	this
is	our	prior	probability	distribution.	Whenever	an	observation	is	made	that	rules
out	some	possible	worlds,	we	remove	the	sand	from	the	corresponding	areas	of
the	paper	and	redistribute	it	evenly	over	the	areas	that	remain	in	play.	Thus,	the
total	 amount	of	 sand	on	 the	 sheet	never	 changes,	 it	 just	 gets	 concentrated	 into
fewer	areas	as	observational	evidence	accumulates.	This	is	a	picture	of	learning
in	 its	 purest	 form.	 (To	 calculate	 the	 probability	 of	 a	 hypothesis,	 we	 simply
measure	 the	 amount	 of	 sand	 in	 all	 the	 areas	 that	 correspond	 to	 the	 possible
worlds	in	which	the	hypothesis	is	true.)



So	 far,	 we	 have	 defined	 a	 learning	 rule.	 To	 get	 an	 agent,	 we	 also	 need	 a
decision	 rule.	To	 this	end,	we	endow	 the	agent	with	a	“utility	 function”	which
assigns	a	number	to	each	possible	world.	The	number	represents	the	desirability
of	that	world	according	to	the	agent’s	basic	preferences.	Now,	at	each	time	step,
the	agent	selects	the	action	with	the	highest	expected	utility.32	(To	find	the	action
with	the	highest	expected	utility,	the	agent	could	list	all	possible	actions.	It	could
then	 compute	 the	 conditional	 probability	 distribution	 given	 the	 action—the
probability	 distribution	 that	 would	 result	 from	 conditionalizing	 its	 current
probability	 distribution	 on	 the	 observation	 that	 the	 action	 had	 just	 been	 taken.
Finally,	it	could	calculate	the	expected	value	of	the	action	as	the	sum	of	the	value
of	 each	 possible	world	multiplied	 by	 the	 conditional	 probability	 of	 that	world
given	the	action.33)

The	learning	rule	and	the	decision	rule	together	define	an	“optimality	notion”
for	 an	agent.	 (Essentially	 the	 same	optimality	notion	has	been	broadly	used	 in
artificial	 intelligence,	 epistemology,	 philosophy	 of	 science,	 economics,	 and
statistics.34)	 In	 reality,	 it	 is	 impossible	 to	 build	 such	 an	 agent	 because	 it	 is
computationally	intractable	to	perform	the	requisite	calculations.	Any	attempt	to
do	so	succumbs	to	a	combinatorial	explosion	just	 like	 the	one	described	in	our
discussion	 of	 GOFAI.	 To	 see	 why	 this	 is	 so,	 consider	 one	 tiny	 subset	 of	 all
possible	worlds:	 those	 that	 consist	of	 a	 single	 computer	monitor	 floating	 in	 an
endless	 vacuum.	 The	 monitor	 has	 1,	 000	 ×	 1,	 000	 pixels,	 each	 of	 which	 is
perpetually	either	on	or	off.	Even	 this	subset	of	possible	worlds	 is	enormously
large:	the	2(1,000	×	1,000)	possible	monitor	states	outnumber	all	 the	computations
expected	ever	to	take	place	in	the	observable	universe.	Thus,	we	could	not	even
enumerate	all	 the	possible	worlds	 in	 this	 tiny	 subset	of	 all	possible	worlds,	 let
alone	perform	more	elaborate	computations	on	each	of	them	individually.

Optimality	 notions	 can	 be	 of	 theoretical	 interest	 even	 if	 they	 are	 physically
unrealizable.	 They	 give	 us	 a	 standard	 by	 which	 to	 judge	 heuristic
approximations,	 and	 sometimes	 we	 can	 reason	 about	 what	 an	 optimal	 agent
would	do	 in	 some	 special	 case.	We	will	 encounter	 some	alternative	optimality
notions	for	artificial	agents	in	Chapter	12.

	

State	of	the	art



	

Artificial	intelligence	already	outperforms	human	intelligence	in	many	domains.
Table	1	surveys	the	state	of	game-playing	computers,	showing	that	AIs	now	beat
human	champions	in	a	wide	range	of	games.36

These	achievements	might	not	seem	impressive	today.	But	this	is	because	our
standards	 for	 what	 is	 impressive	 keep	 adapting	 to	 the	 advances	 being	 made.
Expert	 chess	 playing,	 for	 example,	 was	 once	 thought	 to	 epitomize	 human
intellection.	In	the	view	of	several	experts	in	the	late	fifties:	“If	one	could	devise
a	 successful	 chess	machine,	one	would	 seem	 to	have	penetrated	 to	 the	core	of
human	intellectual	endeavor.”55	This	no	longer	seems	so.	One	sympathizes	with
John	 McCarthy,	 who	 lamented:	 “As	 soon	 as	 it	 works,	 no	 one	 calls	 it	 AI
anymore.”56

Table	1	Game-playing	AI

Checkers Superhuman

Arthur	Samuel’s	checkers	program,	originally
written	in	1952	and	later	improved	(the	1955
version	incorporating	machine	learning),	becomes
the	first	program	to	learn	to	play	a	game	better	than
its	creator.37	In	1994,	the	program	CHINOOK
beats	the	reigning	human	champion,	marking	the
first	time	a	program	wins	an	official	world
championship	in	a	game	of	skill.	In	2002,	Jonathan
Schaeffer	and	his	team	“solve”	checkers,	i.e.
produce	a	program	that	always	makes	the	best
possible	move	(combining	alpha-beta	search	with	a
database	of	39	trillion	endgame	positions).	Perfect
play	by	both	sides	leads	to	a	draw.38

Backgammon Superhuman

1979:	The	backgammon	program	BKG	by	Hans
Berliner	defeats	the	world	champion—the	first
computer	program	to	defeat	(in	an	exhibition
match)	a	world	champion	in	any	game—though
Berliner	later	attributes	the	win	to	luck	with	the
dice	rolls.39



	 	

1992:	The	backgammon	program	TD-Gammon	by
Gerry	Tesauro	reaches	championship-level	ability,
using	temporal	difference	learning	(a	form	of
reinforcement	learning)	and	repeated	plays	against
itself	to	improve.40

	 	 In	the	years	since,	backgammon	programs	have	far
surpassed	the	best	human	players.41

Traveller
TCS

Superhuman
in
collaboration
with
human42

In	both	1981	and	1982,	Douglas	Lenat’s	program
Eurisko	wins	the	US	championship	in	Traveller
TCS	(a	futuristic	naval	war	game),	prompting	rule
changes	to	block	its	unorthodox	strategies.43
Eurisko	had	heuristics	for	designing	its	fleet,	and	it
also	had	heuristics	for	modifying	its	heuristics.

Othello Superhuman
1997:	The	program	Logistello	wins	every	game	in
a	six-game	match	against	world	champion	Takeshi
Murakami.44

Chess Superhuman

1997:	Deep	Blue	beats	the	world	chess	champion,
Garry	Kasparov.	Kasparov	claims	to	have	seen
glimpses	of	true	intelligence	and	creativity	in	some
of	the	computer’s	moves.45	Since	then,	chess
engines	have	continued	to	improve.46

Crosswords Expert	level 1999:	The	crossword-solving	program	Proverb
outperforms	the	average	crossword-solver.47

2012:	The	program	Dr.	Fill,	created	by	Matt
Ginsberg,	scores	in	the	top	quartile	among	the



	 	

otherwise	human	contestants	in	the	American
Crossword	Puzzle	Tournament.	(Dr.	Fill’s
performance	is	uneven.	It	completes	perfectly	the
puzzle	rated	most	difficult	by	humans,	yet	is
stumped	by	a	couple	of	nonstandard	puzzles	that
involved	spelling	backwards	or	writing	answers
diagonally.)48

Scrabble Superhuman As	of	2002,	Scrabble-playing	software	surpasses
the	best	human	players.49

Bridge Equal	to	the
best

By	2005,	contract	bridge	playing	software	reaches
parity	with	the	best	human	bridge	players.50

Jeopardy! Superhuman

2010:	IBM’s	Watson	defeats	the	two	all-time-
greatest	human	Jeopardy!	champions,	Ken
Jennings	and	Brad	Rutter.51	Jeopardy!	is	a
televised	game	show	with	trivia	questions	about
history,	literature,	sports,	geography,	pop	culture,
science,	and	other	topics.	Questions	are	presented
in	the	form	of	clues,	and	often	involve	wordplay.

Poker Varied

Computer	poker	players	remain	slightly	below	the
best	humans	for	full-ring	Texas	hold	‘em	but
perform	at	a	superhuman	level	in	some	poker
variants.52

FreeCell Superhuman

Heuristics	evolved	using	genetic	algorithms
produce	a	solver	for	the	solitaire	game	FreeCell
(which	in	its	generalized	form	is	NP-complete)	that
is	able	to	beat	high-ranking	human	players.53



Go
Very	strong
amateur
level

As	of	2012,	the	Zen	series	of	go-playing	programs
has	reached	rank	6	dan	in	fast	games	(the	level	of	a
very	strong	amateur	player),	using	Monte	Carlo
tree	search	and	machine	learning	techniques.54	Go-
playing	programs	have	been	improving	at	a	rate	of
about	1	dan/year	in	recent	years.	If	this	rate	of
improvement	continues,	they	might	beat	the	human
world	champion	in	about	a	decade.

There	is	an	important	sense,	however,	in	which	chess-playing	AI	turned	out	to
be	 a	 lesser	 triumph	 than	 many	 imagined	 it	 would	 be.	 It	 was	 once	 supposed,
perhaps	 not	 unreasonably,	 that	 in	 order	 for	 a	 computer	 to	 play	 chess	 at
grandmaster	 level,	 it	would	have	 to	be	endowed	with	a	high	degree	of	general
intelligence.57	 One	might	 have	 thought,	 for	 example,	 that	 great	 chess	 playing
requires	 being	 able	 to	 learn	 abstract	 concepts,	 think	 cleverly	 about	 strategy,
compose	flexible	plans,	make	a	wide	range	of	ingenious	logical	deductions,	and
maybe	even	model	one’s	opponent’s	thinking.	Not	so.	It	turned	out	to	be	possible
to	 build	 a	 perfectly	 fine	 chess	 engine	 around	 a	 special-purpose	 algorithm.58
When	implemented	on	the	fast	processors	that	became	available	towards	the	end
of	the	twentieth	century,	it	produces	very	strong	play.	But	an	AI	built	like	that	is
narrow.	It	plays	chess;	it	can	do	no	other.59

In	 other	 domains,	 solutions	 have	 turned	 out	 to	 be	 more	 complicated	 than
initially	 expected,	 and	 progress	 slower.	 The	 computer	 scientist	 Donald	 Knuth
was	struck	 that	“AI	has	by	now	succeeded	 in	doing	essentially	everything	 that
requires	 ‘thinking’	 but	 has	 failed	 to	 do	 most	 of	 what	 people	 and	 animals	 do
‘without	thinking’—that,	somehow,	is	much	harder!”60	Analyzing	visual	scenes,
recognizing	 objects,	 or	 controlling	 a	 robot’s	 behavior	 as	 it	 interacts	 with	 a
natural	 environment	 has	 proved	 challenging.	 Nevertheless,	 a	 fair	 amount	 of
progress	 has	 been	 made	 and	 continues	 to	 be	 made,	 aided	 by	 steady
improvements	in	hardware.

Common	sense	and	natural	language	understanding	have	also	turned	out	to	be
difficult.	It	is	now	often	thought	that	achieving	a	fully	human-level	performance
on	 these	 tasks	 is	 an	 “AI-complete”	 problem,	 meaning	 that	 the	 difficulty	 of
solving	 these	 problems	 is	 essentially	 equivalent	 to	 the	 difficulty	 of	 building
generally	human-level	intelligent	machines.61	In	other	words,	if	somebody	were
to	succeed	in	creating	an	AI	that	could	understand	natural	language	as	well	as	a



human	adult,	they	would	in	all	likelihood	also	either	already	have	succeeded	in
creating	an	AI	that	could	do	everything	else	that	human	intelligence	can	do,	or
they	would	be	but	a	very	short	step	from	such	a	general	capability.62

Chess-playing	 expertise	 turned	 out	 to	 be	 achievable	 by	 means	 of	 a
surprisingly	simple	algorithm.	It	 is	 tempting	 to	speculate	 that	other	capabilities
—such	 as	 general	 reasoning	 ability,	 or	 some	 key	 ability	 involved	 in
programming—might	 likewise	be	achievable	 through	some	surprisingly	simple
algorithm.	The	 fact	 that	 the	best	performance	at	one	 time	 is	attained	 through	a
complicated	mechanism	does	not	mean	that	no	simple	mechanism	could	do	the
job	as	well	or	better.	 It	might	simply	be	 that	nobody	has	yet	found	the	simpler
alternative.	The	Ptolemaic	 system	 (with	 the	Earth	 in	 the	 center,	 orbited	by	 the
Sun,	the	Moon,	planets,	and	stars)	represented	the	state	of	the	art	in	astronomy
for	 over	 a	 thousand	 years,	 and	 its	 predictive	 accuracy	was	 improved	 over	 the
centuries	 by	 progressively	 complicating	 the	 model:	 adding	 epicycles	 upon
epicycles	 to	 the	 postulated	 celestial	 motions.	 Then	 the	 entire	 system	 was
overthrown	by	the	heliocentric	theory	of	Copernicus,	which	was	simpler	and—
though	only	after	further	elaboration	by	Kepler—more	predictively	accurate.63

Artificial	intelligence	methods	are	now	used	in	more	areas	than	it	would	make
sense	to	review	here,	but	mentioning	a	sampling	of	them	will	give	an	idea	of	the
breadth	 of	 applications.	 Aside	 from	 the	 game	AIs	 listed	 in	 Table	 1,	 there	 are
hearing	 aids	 with	 algorithms	 that	 filter	 out	 ambient	 noise;	 route-finders	 that
display	maps	and	offer	navigation	advice	to	drivers;	recommender	systems	that
suggest	 books	 and	 music	 albums	 based	 on	 a	 user’s	 previous	 purchases	 and
ratings;	and	medical	decision	support	systems	that	help	doctors	diagnose	breast
cancer,	 recommend	 treatment	 plans,	 and	 aid	 in	 the	 interpretation	 of
electrocardiograms.	 There	 are	 robotic	 pets	 and	 cleaning	 robots,	 lawn-mowing
robots,	rescue	robots,	surgical	robots,	and	over	a	million	industrial	robots.64	The
world	population	of	robots	exceeds	10	million.65

Modern	 speech	 recognition,	 based	 on	 statistical	 techniques	 such	 as	 hidden
Markov	 models,	 has	 become	 sufficiently	 accurate	 for	 practical	 use	 (some
fragments	 of	 this	 book	 were	 drafted	 with	 the	 help	 of	 a	 speech	 recognition
program).	 Personal	 digital	 assistants,	 such	 as	 Apple’s	 Siri,	 respond	 to	 spoken
commands	 and	 can	 answer	 simple	 questions	 and	 execute	 commands.	 Optical
character	 recognition	 of	 handwritten	 and	 typewritten	 text	 is	 routinely	 used	 in
applications	such	as	mail	sorting	and	digitization	of	old	documents.66



Machine	 translation	 remains	 imperfect	 but	 is	 good	 enough	 for	 many
applications.	Early	systems	used	the	GOFAI	approach	of	hand-coded	grammars
that	 had	 to	 be	 developed	 by	 skilled	 linguists	 from	 the	 ground	 up	 for	 each
language.	 Newer	 systems	 use	 statistical	 machine	 learning	 techniques	 that
automatically	 build	 statistical	 models	 from	 observed	 usage	 patterns.	 The
machine	infers	the	parameters	for	these	models	by	analyzing	bilingual	corpora.
This	approach	dispenses	with	linguists:	the	programmers	building	these	systems
need	not	even	speak	the	languages	they	are	working	with.67

Face	recognition	has	improved	sufficiently	in	recent	years	that	it	is	now	used
at	automated	border	crossings	 in	Europe	and	Australia.	The	US	Department	of
State	 operates	 a	 face	 recognition	 system	with	 over	 75	million	photographs	 for
visa	processing.	Surveillance	systems	employ	increasingly	sophisticated	AI	and
data-mining	 technologies	 to	 analyze	 voice,	 video,	 or	 text,	 large	 quantities	 of
which	are	trawled	from	the	world’s	electronic	communications	media	and	stored
in	giant	data	centers.

Theorem-proving	 and	 equation-solving	 are	 by	 now	 so	 well	 established	 that
they	 are	 hardly	 regarded	 as	 AI	 anymore.	 Equation	 solvers	 are	 included	 in
scientific	 computing	 programs	 such	 as	 Mathematica.	 Formal	 verification
methods,	 including	 automated	 theorem	 provers,	 are	 routinely	 used	 by	 chip
manufacturers	to	verify	the	behavior	of	circuit	designs	prior	to	production.

The	US	military	and	intelligence	establishments	have	been	leading	the	way	to
the	 large-scale	 deployment	 of	 bomb-disposing	 robots,	 surveillance	 and	 attack
drones,	 and	 other	 unmanned	 vehicles.	 These	 still	 depend	 mainly	 on	 remote
control	by	human	operators,	but	work	 is	underway	 to	extend	 their	autonomous
capabilities.

Intelligent	 scheduling	 is	 a	 major	 area	 of	 success.	 The	 DART	 tool	 for
automated	logistics	planning	and	scheduling	was	used	in	Operation	Desert	Storm
in	 1991	 to	 such	 effect	 that	DARPA	 (the	Defense	Advanced	Research	 Projects
Agency	in	the	United	States)	claims	that	 this	single	application	more	than	paid
back	 their	 thirty-year	 investment	 in	 AI.68	 Airline	 reservation	 systems	 use
sophisticated	scheduling	and	pricing	systems.	Businesses	make	wide	use	of	AI
techniques	 in	 inventory	 control	 systems.	 They	 also	 use	 automatic	 telephone
reservation	 systems	 and	 helplines	 connected	 to	 speech	 recognition	 software	 to
usher	their	hapless	customers	through	labyrinths	of	interlocking	menu	options.



AI	technologies	underlie	many	Internet	services.	Software	polices	the	world’s
email	 traffic,	 and	 despite	 continual	 adaptation	 by	 spammers	 to	 circumvent	 the
countermeasures	being	brought	against	them,	Bayesian	spam	filters	have	largely
managed	 to	 hold	 the	 spam	 tide	 at	 bay.	 Software	 using	 AI	 components	 is
responsible	for	automatically	approving	or	declining	credit	card	transactions,	and
continuously	monitors	account	activity	 for	signs	of	 fraudulent	use.	 Information
retrieval	 systems	 also	 make	 extensive	 use	 of	 machine	 learning.	 The	 Google
search	engine	is,	arguably,	the	greatest	AI	system	that	has	yet	been	built.

Now,	 it	must	be	 stressed	 that	 the	demarcation	between	artificial	 intelligence
and	software	in	general	is	not	sharp.	Some	of	the	applications	listed	above	might
be	viewed	more	as	generic	software	applications	rather	 than	AI	 in	particular—
though	this	brings	us	back	to	McCarthy’s	dictum	that	when	something	works	it
is	 no	 longer	 called	 AI.	 A	 more	 relevant	 distinction	 for	 our	 purposes	 is	 that
between	systems	that	have	a	narrow	range	of	cognitive	capability	(whether	they
be	called	“AI”	or	not)	and	systems	that	have	more	generally	applicable	problem-
solving	capacities.	Essentially	all	the	systems	currently	in	use	are	of	the	former
type:	narrow.	However,	many	of	them	contain	components	that	might	also	play	a
role	in	future	artificial	general	intelligence	or	be	of	service	in	its	development—
components	 such	 as	 classifiers,	 search	 algorithms,	 planners,	 solvers,	 and
representational	frameworks.

One	high-stakes	and	extremely	competitive	environment	in	which	AI	systems
operate	 today	 is	 the	 global	 financial	market.	Automated	 stock-trading	 systems
are	widely	used	by	major	investing	houses.	While	some	of	these	are	simply	ways
of	automating	 the	execution	of	particular	buy	or	sell	orders	 issued	by	a	human
fund	 manager,	 others	 pursue	 complicated	 trading	 strategies	 that	 adapt	 to
changing	market	conditions.	Analytic	systems	use	an	assortment	of	data-mining
techniques	and	 time	series	analysis	 to	scan	for	patterns	and	 trends	 in	securities
markets	or	 to	correlate	historical	price	movements	with	external	variables	such
as	 keywords	 in	 news	 tickers.	 Financial	 news	 providers	 sell	 newsfeeds	 that	 are
specially	 formatted	 for	 use	 by	 such	AI	 programs.	Other	 systems	 specialize	 in
finding	arbitrage	opportunities	within	or	between	markets,	or	in	high-frequency
trading	 that	 seeks	 to	 profit	 from	minute	 price	movements	 that	 occur	 over	 the
course	of	milliseconds	(a	 timescale	at	which	communication	 latencies	even	for
speed-of-light	 signals	 in	 optical	 fiber	 cable	 become	 significant,	 making	 it
advantageous	 to	 locate	 computers	 near	 the	 exchange).	 Algorithmic	 high-
frequency	 traders	 account	 for	 more	 than	 half	 of	 equity	 shares	 traded	 on	 US
markets.69	Algorithmic	trading	has	been	implicated	in	the	2010	Flash	Crash	(see



Box	2).

Box	2	The	2010	Flash	Crash

	

By	the	afternoon	of	May,	6,	2010,	US	equity	markets	were	already	down	4%	on
worries	 about	 the	 European	 debt	 crisis.	 At	 2:32	 p.m.,	 a	 large	 seller	 (a	mutual
fund	complex)	 initiated	a	sell	algorithm	to	dispose	of	a	 large	number	of	 the	E-
Mini	S&P	500	futures	contracts	to	be	sold	off	at	a	sell	rate	linked	to	a	measure	of
minute-to-minute	 liquidity	 on	 the	 exchange.	 These	 contracts	 were	 bought	 by
algorithmic	 high-frequency	 traders,	 which	 were	 programmed	 to	 quickly
eliminate	 their	 temporary	 long	 positions	 by	 selling	 the	 contracts	 on	 to	 other
traders.	With	demand	from	fundamental	buyers	slacking,	the	algorithmic	traders
started	 to	sell	 the	E-Minis	primarily	 to	other	algorithmic	 traders,	which	 in	 turn
passed	 them	 on	 to	 other	 algorithmic	 traders,	 creating	 a	 “hot	 potato”	 effect
driving	 up	 trading	 volume—this	 being	 interpreted	 by	 the	 sell	 algorithm	 as	 an
indicator	 of	 high	 liquidity,	 prompting	 it	 to	 increase	 the	 rate	 at	 which	 it	 was
putting	E-Mini	contracts	on	the	market,	pushing	the	downward	spiral.	At	some
point,	the	high-frequency	traders	started	withdrawing	from	the	market,	drying	up
liquidity	while	prices	continued	to	fall.	At	2:45	p.m.,	trading	on	the	E-Mini	was
halted	by	 an	 automatic	 circuit	 breaker,	 the	 exchange’s	 stop	 logic	 functionality.
When	trading	was	restarted,	a	mere	five	seconds	later,	prices	stabilized	and	soon
began	to	recover	most	of	the	losses.	But	for	a	while,	at	the	trough	of	the	crisis,	a
trillion	dollars	had	been	wiped	off	the	market,	and	spillover	effects	had	led	to	a
substantial	number	of	trades	in	individual	securities	being	executed	at	“absurd”
prices,	such	as	one	cent	or	100,000	dollars.	After	the	market	closed	for	the	day,
representatives	 of	 the	 exchanges	met	with	 regulators	 and	 decided	 to	 break	 all
trades	that	had	been	executed	at	prices	60%	or	more	away	from	their	pre-crisis
levels	 (deeming	 such	 transactions	 “clearly	 erroneous”	 and	 thus	 subject	 to	post
facto	cancellation	under	existing	trade	rules).70

The	 retelling	 here	 of	 this	 episode	 is	 a	 digression	 because	 the	 computer
programs	 involved	 in	 the	 Flash	 Crash	 were	 not	 particularly	 intelligent	 or
sophisticated,	and	the	kind	of	threat	they	created	is	fundamentally	different	from
the	 concerns	 we	 shall	 raise	 later	 in	 this	 book	 in	 relation	 to	 the	 prospect	 of
machine	 superintelligence.	 Nevertheless,	 these	 events	 illustrate	 several	 useful
lessons.	 One	 is	 the	 reminder	 that	 interactions	 between	 individually	 simple



components	 (such	 as	 the	 sell	 algorithm	 and	 the	 high-frequency	 algorithmic
trading	 programs)	 can	 produce	 complicated	 and	 unexpected	 effects.	 Systemic
risk	can	build	up	in	a	system	as	new	elements	are	introduced,	risks	that	are	not
obvious	until	after	something	goes	wrong	(and	sometimes	not	even	then).71

Another	 lesson	 is	 that	 smart	 professionals	 might	 give	 an	 instruction	 to	 a
program	based	on	a	sensible-seeming	and	normally	sound	assumption	(e.g.	that
trading	volume	is	a	good	measure	of	market	liquidity),	and	that	this	can	produce
catastrophic	 results	when	 the	 program	 continues	 to	 act	 on	 the	 instruction	with
iron-clad	 logical	 consistency	 even	 in	 the	 unanticipated	 situation	 where	 the
assumption	 turns	 out	 to	 be	 invalid.	 The	 algorithm	 just	 does	what	 it	 does;	 and
unless	 it	 is	a	very	special	kind	of	algorithm,	 it	does	not	care	 that	we	clasp	our
heads	 and	 gasp	 in	 dumbstruck	 horror	 at	 the	 absurd	 inappropriateness	 of	 its
actions.	This	is	a	theme	that	we	will	encounter	again.

A	 third	 observation	 in	 relation	 to	 the	 Flash	 Crash	 is	 that	 while	 automation
contributed	 to	 the	 incident,	 it	 also	 contributed	 to	 its	 resolution.	 The	 pre-
preprogrammed	 stop	order	 logic,	which	 suspended	 trading	when	prices	moved
too	 far	 out	 of	 whack,	 was	 set	 to	 execute	 automatically	 because	 it	 had	 been
correctly	anticipated	that	the	triggering	events	could	happen	on	a	timescale	too
swift	 for	 humans	 to	 respond.	 The	 need	 for	 pre-installed	 and	 automatically
executing	 safety	 functionality—as	 opposed	 to	 reliance	 on	 runtime	 human
supervision—again	foreshadows	a	theme	that	will	be	important	in	our	discussion
of	machine	superintelligence.72

	

Opinions	about	the	future	of	machine	intelligence

	

Progress	on	two	major	fronts—towards	a	more	solid	statistical	and	information-
theoretic	 foundation	 for	 machine	 learning	 on	 the	 one	 hand,	 and	 towards	 the
practical	and	commercial	success	of	various	problem-specific	or	domain-specific
applications	on	the	other—has	restored	to	AI	research	some	of	its	lost	prestige.
There	may,	 however,	 be	 a	 residual	 cultural	 effect	 on	 the	AI	 community	 of	 its
earlier	 history	 that	 makes	 many	 mainstream	 researchers	 reluctant	 to	 align
themselves	with	over-grand	ambition.	Thus	Nils	Nilsson,	one	of	the	old-timers	in



the	 field,	 complains	 that	 his	 present-day	 colleagues	 lack	 the	 boldness	 of	 spirit
that	propelled	the	pioneers	of	his	own	generation:

Concern	for	“respectability”	has	had,	I	think,	a	stultifying	effect	on	some	AI
researchers.	I	hear	them	saying	things	like,	“AI	used	to	be	criticized	for	its
flossiness.	Now	that	we	have	made	solid	progress,	let	us	not	risk	losing	our
respectability.”	 One	 result	 of	 this	 conservatism	 has	 been	 increased
concentration	 on	 “weak	 AI”—the	 variety	 devoted	 to	 providing	 aids	 to
human	thought—and	away	from	“strong	AI”—the	variety	 that	attempts	 to
mechanize	human-level	intelligence.73

	
	

Nilsson’s	sentiment	has	been	echoed	by	several	others	of	the	founders,	including
Marvin	Minsky,	John	McCarthy,	and	Patrick	Winston.74

The	last	few	years	have	seen	a	resurgence	of	interest	in	AI,	which	might	yet
spill	 over	 into	 renewed	 efforts	 towards	 artificial	 general	 intelligence	 (what
Nilsson	 calls	 “strong	 AI”).	 In	 addition	 to	 faster	 hardware,	 a	 contemporary
project	would	 benefit	 from	 the	 great	 strides	 that	 have	 been	made	 in	 the	many
subfields	 of	 AI,	 in	 software	 engineering	 more	 generally,	 and	 in	 neighboring
fields	such	as	computational	neuroscience.	One	indication	of	pent-up	demand	for
quality	 information	 and	 education	 is	 shown	 in	 the	 response	 to	 the	 free	 online
offering	of	an	introductory	course	in	artificial	intelligence	at	Stanford	University
in	 the	 fall	 of	 2011,	 organized	 by	 Sebastian	 Thrun	 and	 Peter	 Norvig.	 Some
160,000	 students	 from	 around	 the	 world	 signed	 up	 to	 take	 it	 (and	 23,000
completed	it).75

Expert	 opinions	 about	 the	 future	 of	 AI	 vary	 wildly.	 There	 is	 disagreement
about	 timescales	 as	 well	 as	 about	 what	 forms	 AI	 might	 eventually	 take.
Predictions	 about	 the	 future	 development	 of	 artificial	 intelligence,	 one	 recent
study	noted,	“are	as	confident	as	they	are	diverse.”76

Although	the	contemporary	distribution	of	belief	has	not	been	very	carefully
measured,	 we	 can	 get	 a	 rough	 impression	 from	 various	 smaller	 surveys	 and
informal	 observations.	 In	 particular,	 a	 series	 of	 recent	 surveys	 have	 polled
members	of	 several	 relevant	expert	communities	on	 the	question	of	when	 they
expect	“human-level	machine	intelligence”	(HLMI)	to	be	developed,	defined	as



“one	 that	 can	 carry	 out	 most	 human	 professions	 at	 least	 as	 well	 as	 a	 typical
human.”77	 Results	 are	 shown	 in	 Table	 2.	 The	 combined	 sample	 gave	 the
following	 (median)	 estimate:	 10%	 probability	 of	 HLMI	 by	 2022,	 50%
probability	by	2040,	and	90%	probability	by	2075.	(Respondents	were	asked	to
premiss	 their	 estimates	 on	 the	 assumption	 that	 “human	 scientific	 activity
continues	without	major	negative	disruption.”)

These	 numbers	 should	 be	 taken	 with	 some	 grains	 of	 salt:	 sample	 sizes	 are
quite	small	and	not	necessarily	 representative	of	 the	general	expert	population.
They	are,	however,	in	concordance	with	results	from	other	surveys.78

The	 survey	 results	 are	 also	 in	 line	with	 some	 recently	 published	 interviews
with	about	two-dozen	researchers	in	AI-related	fields.	For	example,	Nils	Nilsson
has	spent	a	long	and	productive	career	working	on	problems	in	search,	planning,
knowledge	 representation,	 and	 robotics;	 he	 has	 authored	 textbooks	 in	 artificial
intelligence;	 and	he	 recently	 completed	 the	most	 comprehensive	history	of	 the
field	written	to	date.79	When	asked	about	arrival	dates	for	HLMI,	he	offered	the
following	opinion:80

10%	chance:	2030

50%	chance:	2050

90%	chance:	2100

Table	2	When	will	human-level	machine	intelligence	be	attained?81

	

Judging	from	the	published	interview	transcripts,	Professor	Nilsson’s	probability



distribution	 appears	 to	 be	 quite	 representative	 of	 many	 experts	 in	 the	 area—
though	again	it	must	be	emphasized	that	there	is	a	wide	spread	of	opinion:	there
are	 practitioners	 who	 are	 substantially	 more	 boosterish,	 confidently	 expecting
HLMI	 in	 the	 2020–40	 range,	 and	 others	 who	 are	 confident	 either	 that	 it	 will
never	happen	or	 that	 it	 is	 indefinitely	 far	off.82	 In	 addition,	 some	 interviewees
feel	that	the	notion	of	a	“human	level”	of	artificial	intelligence	is	ill-defined	or
misleading,	or	are	for	other	reasons	reluctant	to	go	on	record	with	a	quantitative
prediction.

My	own	view	is	that	the	median	numbers	reported	in	the	expert	survey	do	not
have	enough	probability	mass	on	later	arrival	dates.	A	10%	probability	of	HLMI
not	 having	 been	 developed	 by	 2075	 or	 even	 2100	 (after	 conditionalizing	 on
“human	scientific	activity	continuing	without	major	negative	disruption”)	seems
too	low.

Historically,	 AI	 researchers	 have	 not	 had	 a	 strong	 record	 of	 being	 able	 to
predict	 the	 rate	of	advances	 in	 their	own	field	or	 the	shape	 that	 such	advances
would	 take.	On	 the	one	hand,	 some	 tasks,	 like	 chess	playing,	 turned	out	 to	be
achievable	 by	 means	 of	 surprisingly	 simple	 programs;	 and	 naysayers	 who
claimed	that	machines	would	“never”	be	able	to	do	this	or	that	have	repeatedly
been	 proven	 wrong.	 On	 the	 other	 hand,	 the	 more	 typical	 errors	 among
practitioners	 have	 been	 to	 underestimate	 the	 difficulties	 of	 getting	 a	 system	 to
perform	robustly	on	real-world	tasks,	and	to	overestimate	the	advantages	of	their
own	particular	pet	project	or	technique.

The	 survey	 also	 asked	 two	other	 questions	 of	 relevance	 to	 our	 inquiry.	One
inquired	 of	 respondents	 about	 how	much	 longer	 they	 thought	 it	would	 take	 to
reach	 superintelligence	 assuming	 human-level	 machine	 is	 first	 achieved.	 The
results	are	in	Table	3.

Another	question	inquired	what	 they	thought	would	be	the	overall	 long-term
impact	 for	 humanity	 of	 achieving	 human-level	 machine	 intelligence.	 The
answers	are	summarized	in	Figure	2.

My	 own	 views	 again	 differ	 somewhat	 from	 the	 opinions	 expressed	 in	 the
survey.	I	assign	a	higher	probability	to	superintelligence	being	created	relatively
soon	 after	 human-level	 machine	 intelligence.	 I	 also	 have	 a	 more	 polarized
outlook	on	 the	consequences,	 thinking	an	extremely	good	or	an	extremely	bad
outcome	 to	 be	 somewhat	 more	 likely	 than	 a	 more	 balanced	 outcome.	 The



reasons	for	this	will	become	clear	later	in	the	book.

	

Table	3	How	long	from	human	level	to	superintelligence?

	 	

	 Within	2	years	after	HLMIWithin	30	years	after	HLMI

TOP100 5% 50%

Combined 10% 75%

Figure	2	Overall	long-term	impact	of	HLMI.83

	

Small	 sample	 sizes,	 selection	 biases,	 and—above	 all—the	 inherent
unreliability	of	the	subjective	opinions	elicited	mean	that	one	should	not	read	too



much	 into	 these	 expert	 surveys	 and	 interviews.	 They	 do	 not	 let	 us	 draw	 any
strong	conclusion.	But	they	do	hint	at	a	weak	conclusion.	They	suggest	that	(at
least	 in	 lieu	 of	 better	 data	 or	 analysis)	 it	 may	 be	 reasonable	 to	 believe	 that
human-level	 machine	 intelligence	 has	 a	 fairly	 sizeable	 chance	 of	 being
developed	 by	 mid-century,	 and	 that	 it	 has	 a	 non-trivial	 chance	 of	 being
developed	considerably	sooner	or	much	 later;	 that	 it	might	perhaps	 fairly	 soon
thereafter	 result	 in	 superintelligence;	 and	 that	 a	 wide	 range	 of	 outcomes	may
have	a	significant	chance	of	occurring,	including	extremely	good	outcomes	and
outcomes	that	are	as	bad	as	human	extinction.84	At	the	very	least,	 they	suggest
that	the	topic	is	worth	a	closer	look.



CHAPTER	2
Paths	to	superintelligence

	

Machines	 are	 currently	 far	 inferior	 to	humans	 in	 general	 intelligence.	Yet
one	 day	 (we	 have	 suggested)	 they	will	 be	 superintelligent.	How	do	we	 get
from	here	to	there?	This	chapter	explores	several	conceivable	technological
paths.	We	 look	 at	 artificial	 intelligence,	 whole	 brain	 emulation,	 biological
cognition,	 and	 human–machine	 interfaces,	 as	 well	 as	 networks	 and
organizations.	 We	 evaluate	 their	 different	 degrees	 of	 plausibility	 as
pathways	to	superintelligence.	The	existence	of	multiple	paths	increases	the
probability	that	the	destination	can	be	reached	via	at	least	one	of	them.

We	can	tentatively	define	a	superintelligence	as	any	intellect	that	greatly	exceeds
the	 cognitive	 performance	 of	 humans	 in	 virtually	 all	 domains	 of	 interest.1	We
will	have	more	to	say	about	the	concept	of	superintelligence	in	the	next	chapter,
where	 we	 will	 subject	 it	 to	 a	 kind	 of	 spectral	 analysis	 to	 distinguish	 some
different	 possible	 forms	 of	 superintelligence.	 But	 for	 now,	 the	 rough
characterization	just	given	will	suffice.	Note	that	the	definition	is	noncommittal
about	 how	 the	 superintelligence	 is	 implemented.	 It	 is	 also	 noncommittal
regarding	 qualia:	whether	 a	 superintelligence	would	 have	 subjective	 conscious
experience	might	matter	greatly	for	some	questions	(in	particular	for	some	moral
questions),	 but	 our	 primary	 focus	 here	 is	 on	 the	 causal	 antecedents	 and
consequences	of	superintelligence,	not	on	the	metaphysics	of	mind.2

The	 chess	 program	Deep	 Fritz	 is	 not	 a	 superintelligence	 on	 this	 definition,
since	 Fritz	 is	 only	 smart	within	 the	 narrow	 domain	 of	 chess.	Certain	 kinds	 of
domain-specific	superintelligence	could,	however,	be	important.	When	referring
to	superintelligent	performance	limited	to	a	particular	domain,	we	will	note	the
restriction	explicitly.	For	 instance,	an	“engineering	superintelligence”	would	be
an	intellect	that	vastly	outperforms	the	best	current	human	minds	in	the	domain
of	engineering.	Unless	otherwise	noted,	we	use	the	term	to	refer	to	systems	that
have	a	superhuman	level	of	general	intelligence.

But	 how	might	 we	 create	 superintelligence?	 Let	 us	 examine	 some	 possible



paths.

Artificial	intelligence

	

Readers	of	this	chapter	must	not	expect	a	blueprint	for	programming	an	artificial
general	intelligence.	No	such	blueprint	exists	yet,	of	course.	And	had	I	been	in
possession	of	such	a	blueprint,	I	most	certainly	would	not	have	published	it	in	a
book.	 (If	 the	 reasons	 for	 this	 are	 not	 immediately	 obvious,	 the	 arguments	 in
subsequent	chapters	will	make	them	clear.)

We	 can,	 however,	 discern	 some	 general	 features	 of	 the	 kind	 of	 system	 that
would	 be	 required.	 It	 now	 seems	 clear	 that	 a	 capacity	 to	 learn	 would	 be	 an
integral	 feature	 of	 the	 core	 design	 of	 a	 system	 intended	 to	 attain	 general
intelligence,	 not	 something	 to	 be	 tacked	 on	 later	 as	 an	 extension	 or	 an
afterthought.	The	same	holds	for	the	ability	to	deal	effectively	with	uncertainty
and	probabilistic	information.	Some	faculty	for	extracting	useful	concepts	from
sensory	 data	 and	 internal	 states,	 and	 for	 leveraging	 acquired	 concepts	 into
flexible	combinatorial	representations	for	use	in	logical	and	intuitive	reasoning,
also	 likely	 belong	 among	 the	 core	 design	 features	 in	 a	modern	AI	 intended	 to
attain	general	intelligence.

The	early	Good	Old-Fashioned	Artificial	Intelligence	systems	did	not,	for	the
most	part,	focus	on	learning,	uncertainty,	or	concept	formation,	perhaps	because
techniques	for	dealing	with	these	dimensions	were	poorly	developed	at	the	time.
This	is	not	to	say	that	the	underlying	ideas	are	all	that	novel.	The	idea	of	using
learning	 as	 a	 means	 of	 bootstrapping	 a	 simpler	 system	 to	 human-level
intelligence	 can	 be	 traced	 back	 at	 least	 to	 Alan	 Turing’s	 notion	 of	 a	 “child
machine,”	which	he	wrote	about	in	1950:

Instead	of	trying	to	produce	a	programme	to	simulate	the	adult	mind,	why
not	rather	try	to	produce	one	which	simulates	the	child’s?	If	this	were	then
subjected	to	an	appropriate	course	of	education	one	would	obtain	the	adult
brain.3

	
	



Turing	envisaged	an	iterative	process	to	develop	such	a	child	machine:

We	 cannot	 expect	 to	 find	 a	 good	 child	machine	 at	 the	 first	 attempt.	One
must	 experiment	 with	 teaching	 one	 such	 machine	 and	 see	 how	 well	 it
learns.	One	can	then	try	another	and	see	if	it	is	better	or	worse.	There	is	an
obvious	connection	between	this	process	and	evolution….	One	may	hope,
however,	 that	 this	 process	 will	 be	 more	 expeditious	 than	 evolution.	 The
survival	 of	 the	 fittest	 is	 a	 slow	 method	 for	 measuring	 advantages.	 The
experimenter,	by	the	exercise	of	intelligence,	should	be	able	to	speed	it	up.
Equally	important	is	the	fact	that	he	is	not	restricted	to	random	mutations.	If
he	can	trace	a	cause	for	some	weakness	he	can	probably	think	of	the	kind	of
mutation	which	will	improve	it.4

	
	

We	 know	 that	 blind	 evolutionary	 processes	 can	 produce	 human-level	 general
intelligence,	 since	 they	 have	 already	 done	 so	 at	 least	 once.	 Evolutionary
processes	with	 foresight—that	 is,	genetic	programs	designed	and	guided	by	an
intelligent	 human	 programmer—should	 be	 able	 to	 achieve	 a	 similar	 outcome
with	far	greater	efficiency.	This	observation	has	been	used	by	some	philosophers
and	 scientists,	 including	 David	 Chalmers	 and	 Hans	 Moravec,	 to	 argue	 that
human-level	 AI	 is	 not	 only	 theoretically	 possible	 but	 feasible	 within	 this
century.5	The	 idea	 is	 that	we	can	estimate	 the	 relative	capabilities	of	evolution
and	human	engineering	to	produce	intelligence,	and	find	that	human	engineering
is	 already	 vastly	 superior	 to	 evolution	 in	 some	 areas	 and	 is	 likely	 to	 become
superior	in	the	remaining	areas	before	too	long.	The	fact	that	evolution	produced
intelligence	 therefore	 indicates	 that	human	engineering	will	 soon	be	able	 to	do
the	same.	Thus,	Moravec	wrote	(already	back	in	1976):

The	 existence	 of	 several	 examples	 of	 intelligence	 designed	 under	 these
constraints	should	give	us	great	confidence	that	we	can	achieve	the	same	in
short	 order.	 The	 situation	 is	 analogous	 to	 the	 history	 of	 heavier	 than	 air
flight,	 where	 birds,	 bats	 and	 insects	 clearly	 demonstrated	 the	 possibility
before	our	culture	mastered	it.6

	
	

One	needs	to	be	cautious,	though,	in	what	inferences	one	draws	from	this	line	of



reasoning.	 It	 is	 true	 that	 evolution	 produced	 heavier-than-air	 flight,	 and	 that
human	engineers	subsequently	succeeded	in	doing	likewise	(albeit	by	means	of	a
very	 different	 mechanism).	 Other	 examples	 could	 also	 be	 adduced,	 such	 as
sonar,	magnetic	navigation,	chemical	weapons,	photoreceptors,	and	all	kinds	of
mechanic	 and	kinetic	 performance	 characteristics.	However,	 one	 could	 equally
point	to	areas	where	human	engineers	have	thus	far	failed	to	match	evolution:	in
morphogenesis,	self-repair,	and	the	immune	defense,	for	example,	human	efforts
lag	 far	 behind	 what	 nature	 has	 accomplished.	Moravec’s	 argument,	 therefore,
cannot	 give	 us	 “great	 confidence”	 that	 we	 can	 achieve	 human-level	 artificial
intelligence	“in	 short	order.”	At	best,	 the	evolution	of	 intelligent	 life	places	an
upper	bound	on	the	intrinsic	difficulty	of	designing	intelligence.	But	this	upper
bound	could	be	quite	far	above	current	human	engineering	capabilities.

Another	way	of	deploying	an	evolutionary	argument	for	the	feasibility	of	AI	is
via	 the	 idea	 that	 we	 could,	 by	 running	 genetic	 algorithms	 on	 sufficiently	 fast
computers,	 achieve	 results	 comparable	 to	 those	 of	 biological	 evolution.	 This
version	of	 the	evolutionary	argument	 thus	proposes	a	specific	method	whereby
intelligence	could	be	produced.

But	is	it	true	that	we	will	soon	have	computing	power	sufficient	to	recapitulate
the	 relevant	 evolutionary	 processes	 that	 produced	 human	 intelligence?	 The
answer	depends	both	on	how	much	computing	technology	will	advance	over	the
next	 decades	 and	 on	 how	 much	 computing	 power	 would	 be	 required	 to	 run
genetic	algorithms	with	the	same	optimization	power	as	the	evolutionary	process
of	natural	selection	that	lies	in	our	past.	Although,	in	the	end,	the	conclusion	we
get	 from	 pursuing	 this	 line	 of	 reasoning	 is	 disappointingly	 indeterminate,	 it	 is
instructive	to	attempt	a	rough	estimate	(see	Box	3).	If	nothing	else,	the	exercise
draws	attention	to	some	interesting	unknowns.

The	upshot	is	that	the	computational	resources	required	to	simply	replicate	the
relevant	evolutionary	processes	on	Earth	that	produced	human-level	intelligence
are	 severely	 out	 of	 reach—and	 will	 remain	 so	 even	 if	 Moore’s	 law	 were	 to
continue	for	a	century	(cf.	Figure	3).	It	is	plausible,	however,	that	compared	with
brute-force	 replication	 of	 natural	 evolutionary	 processes,	 vast	 efficiency	 gains
are	 achievable	 by	 designing	 the	 search	 process	 to	 aim	 for	 intelligence,	 using
various	 obvious	 improvements	 over	 natural	 selection.	 Yet	 it	 is	 very	 hard	 to
bound	 the	magnitude	 of	 those	 attainable	 efficiency	 gains.	We	 cannot	 even	 say
whether	 they	 amount	 to	 five	 or	 to	 twenty-five	 orders	 of	 magnitude.	 Absent
further	 elaboration,	 therefore,	 evolutionary	 arguments	 are	 not	 able	 to



meaningfully	 constrain	 our	 expectations	 of	 either	 the	 difficulty	 of	 building
human-level	machine	intelligence	or	the	timescales	for	such	developments.

Box	3	What	would	it	take	to	recapitulate	evolution?

	

Not	every	 feat	 accomplished	by	evolution	 in	 the	course	of	 the	development	of
human	 intelligence	 is	 relevant	 to	a	human	engineer	 trying	 to	artificially	evolve
machine	intelligence.	Only	a	small	portion	of	evolutionary	selection	on	Earth	has
been	 selection	 for	 intelligence.	 More	 specifically,	 the	 problems	 that	 human
engineers	 cannot	 trivially	 bypass	 may	 have	 been	 the	 target	 of	 a	 very	 small
portion	 of	 total	 evolutionary	 selection.	 For	 example,	 since	 we	 can	 run	 our
computers	on	electrical	power,	we	do	not	have	to	reinvent	the	molecules	of	the
cellular	 energy	 economy	 in	 order	 to	 create	 intelligent	 machines—yet	 such
molecular	evolution	of	metabolic	pathways	might	have	used	up	a	 large	part	of
the	 total	 amount	 of	 selection	 power	 that	 was	 available	 to	 evolution	 over	 the
course	of	Earth’s	history.7

One	might	argue	that	the	key	insights	for	AI	are	embodied	in	the	structure	of
nervous	systems,	which	came	into	existence	less	than	a	billion	years	ago.8	If	we
take	that	view,	then	the	number	of	relevant	“experiments”	available	to	evolution
is	drastically	curtailed.	There	are	some	4–6×1030	prokaryotes	in	the	world	today,
but	 only	 1019	 insects,	 and	 fewer	 than	 1010	 humans	 (while	 pre-agricultural
populations	 were	 orders	 of	 magnitude	 smaller).9	 These	 numbers	 are	 only
moderately	intimidating.

Evolutionary	algorithms,	however,	require	not	only	variations	to	select	among
but	 also	 a	 fitness	 function	 to	 evaluate	 variants,	 and	 this	 is	 typically	 the	 most
computationally	 expensive	 component.	 A	 fitness	 function	 for	 the	 evolution	 of
artificial	 intelligence	 plausibly	 requires	 simulation	 of	 neural	 development,
learning,	and	cognition	to	evaluate	fitness.	We	might	thus	do	better	not	to	look	at
the	 raw	 number	 of	 organisms	 with	 complex	 nervous	 systems,	 but	 instead	 to
attend	to	 the	number	of	neurons	in	biological	organisms	that	we	might	need	to
simulate	to	mimic	evolution’s	fitness	function.	We	can	make	a	crude	estimate	of
that	 latter	 quantity	 by	 considering	 insects,	 which	 dominate	 terrestrial	 animal
biomass	(with	ants	alone	estimated	to	contribute	some	15–20%).10	 Insect	brain



size	 varies	 substantially,	with	 large	 and	 social	 insects	 sporting	 larger	 brains:	 a
honeybee	brain	has	just	under	106	neurons,	a	fruit	fly	brain	has	105	neurons,	and
ants	are	in	between	with	250,000	neurons.11	The	majority	of	smaller	insects	may
have	brains	of	only	a	few	thousand	neurons.	Erring	on	the	side	of	conservatively
high,	if	we	assigned	all	1019	insects	fruit-fly	numbers	of	neurons,	the	total	would
be	1024	insect	neurons	in	the	world.	This	could	be	augmented	with	an	additional
order	 of	magnitude	 to	 account	 for	 aquatic	 copepods,	 birds,	 reptiles,	mammals,
etc.,	to	reach	1025.	(By	contrast,	in	pre-agricultural	times	there	were	fewer	than
107	humans,	with	under	1011	neurons	each:	thus	fewer	than	1018	human	neurons
in	total,	though	humans	have	a	higher	number	of	synapses	per	neuron.)

The	 computational	 cost	 of	 simulating	 one	 neuron	 depends	 on	 the	 level	 of
detail	 that	one	includes	in	the	simulation.	Extremely	simple	neuron	models	use
about	 1,000	 floating-point	 operations	 per	 second	 (FLOPS)	 to	 simulate	 one
neuron	 (in	 real-time).	 The	 electrophysiologically	 realistic	 Hodgkin–Huxley
model	 uses	 1,200,000	 FLOPS.	 A	 more	 detailed	 multi-compartmental	 model
would	add	another	three	to	four	orders	of	magnitude,	while	higher-level	models
that	abstract	systems	of	neurons	could	subtract	two	to	three	orders	of	magnitude
from	 the	 simple	models.12	 If	we	were	 to	 simulate	 1025	 neurons	 over	 a	 billion
years	 of	 evolution	 (longer	 than	 the	 existence	 of	 nervous	 systems	 as	we	 know
them),	and	we	allow	our	computers	to	run	for	one	year,	these	figures	would	give
us	 a	 requirement	 in	 the	 range	 of	 1031–1044	 FLOPS.	 For	 comparison,	 China’s
Tianhe-2,	 the	 world’s	 most	 powerful	 supercomputer	 as	 of	 September	 2013,
provides	only	3.39×1016	FLOPS.	 In	 recent	decades,	 it	has	 taken	approximately
6.7	 years	 for	 commodity	 computers	 to	 increase	 in	 power	 by	 one	 order	 of
magnitude.	Even	 a	 century	of	 continued	Moore’s	 law	would	not	 be	 enough	 to
close	 this	 gap.	 Running	 more	 specialized	 hardware,	 or	 allowing	 longer	 run-
times,	could	contribute	only	a	few	more	orders	of	magnitude.

This	 figure	 is	 conservative	 in	 another	 respect.	 Evolution	 achieved	 human
intelligence	without	aiming	at	this	outcome.	In	other	words,	the	fitness	functions
for	 natural	 organisms	 do	 not	 select	 only	 for	 intelligence	 and	 its	 precursors.13
Even	 environments	 in	 which	 organisms	 with	 superior	 information	 processing
skills	 reap	 various	 rewards	 may	 not	 select	 for	 intelligence,	 because
improvements	to	intelligence	can	(and	often	do)	impose	significant	costs,	such	as
higher	 energy	 consumption	 or	 slower	 maturation	 times,	 and	 those	 costs	 may
outweigh	 whatever	 benefits	 are	 gained	 from	 smarter	 behavior.	 Excessively
deadly	 environments	 also	 reduce	 the	 value	 of	 intelligence:	 the	 shorter	 one’s



expected	lifespan,	the	less	time	there	will	be	for	increased	learning	ability	to	pay
off.	Reduced	selective	pressure	for	intelligence	slows	the	spread	of	intelligence-
enhancing	 innovations,	 and	 thus	 the	 opportunity	 for	 selection	 to	 favor
subsequent	innovations	that	depend	on	them.	Furthermore,	evolution	may	wind
up	 stuck	 in	 local	 optima	 that	 humans	 would	 notice	 and	 bypass	 by	 altering
tradeoffs	 between	 exploitation	 and	 exploration	 or	 by	 providing	 a	 smooth
progression	 of	 increasingly	 difficult	 intelligence	 tests.14	 And	 as	 mentioned
earlier,	evolution	scatters	much	of	its	selection	power	on	traits	that	are	unrelated
to	intelligence	(such	as	Red	Queen’s	races	of	competitive	co-evolution	between
immune	 systems	 and	 parasites).	 Evolution	 continues	 to	 waste	 resources
producing	 mutations	 that	 have	 proved	 consistently	 lethal,	 and	 it	 fails	 to	 take
advantage	 of	 statistical	 similarities	 in	 the	 effects	 of	 different	mutations.	 These
are	all	 inefficiencies	 in	natural	 selection	 (when	viewed	as	a	means	of	evolving
intelligence)	that	it	would	be	relatively	easy	for	a	human	engineer	to	avoid	while
using	evolutionary	algorithms	to	develop	intelligent	software.

It	 is	 plausible	 that	 eliminating	 inefficiencies	 like	 those	 just	 described	would
trim	 many	 orders	 of	 magnitude	 off	 the	 1031–1044	 FLOPS	 range	 calculated
earlier.	Unfortunately,	it	is	difficult	to	know	how	many	orders	of	magnitude.	It	is
difficult	 even	 to	 make	 a	 rough	 estimate—for	 aught	 we	 know,	 the	 efficiency
savings	could	be	five	orders	of	magnitude,	or	ten,	or	twenty-five.15

	

Figure	3	Supercomputer	performance.	In	a	narrow	sense,	“Moore’s	law”	refers
to	the	observation	that	 the	number	of	 transistors	on	integrated	circuits	have	for
several	 decades	 doubled	 approximately	 every	 two	years.	However,	 the	 term	 is



often	 used	 to	 refer	 to	 the	 more	 general	 observation	 that	 many	 performance
metrics	 in	 computing	 technology	 have	 followed	 a	 similarly	 fast	 exponential
trend.	 Here	 we	 plot	 peak	 speed	 of	 the	 world’s	 fastest	 supercomputer	 as	 a
function	of	time	(on	a	logarithmic	vertical	scale).	In	recent	years,	growth	in	the
serial	speed	of	processors	has	stagnated,	but	increased	use	of	parallelization	has
enabled	 the	 total	 number	 of	 computations	 performed	 to	 remain	 on	 the	 trend
line.16

	

There	 is	 a	 further	 complication	 with	 these	 kinds	 of	 evolutionary
considerations,	 one	 that	makes	 it	 hard	 to	 derive	 from	 them	 even	 a	 very	 loose
upper	bound	on	the	difficulty	of	evolving	intelligence.	We	must	avoid	the	error
of	 inferring,	 from	 the	 fact	 that	 intelligent	 life	 evolved	 on	 Earth,	 that	 the
evolutionary	 processes	 involved	 had	 a	 reasonably	 high	 prior	 probability	 of
producing	 intelligence.	 Such	 an	 inference	 is	 unsound	 because	 it	 fails	 to	 take
account	of	the	observation	selection	effect	that	guarantees	that	all	observers	will
find	 themselves	 having	 originated	 on	 a	 planet	 where	 intelligent	 life	 arose,	 no
matter	 how	 likely	 or	 unlikely	 it	 was	 for	 any	 given	 such	 planet	 to	 produce
intelligence.	Suppose,	 for	example,	 that	 in	addition	 to	 the	systematic	effects	of
natural	 selection	 it	 required	 an	 enormous	 amount	 of	 lucky	 coincidence	 to
produce	 intelligent	 life—enough	 so	 that	 intelligent	 life	 evolves	 on	 only	 one
planet	out	of	every	1030	planets	on	which	simple	replicators	arise.	In	that	case,
when	we	 run	 our	 genetic	 algorithms	 to	 try	 to	 replicate	what	 natural	 evolution
did,	we	might	find	that	we	must	run	some	1030	simulations	before	we	find	one
where	 all	 the	 elements	 come	 together	 in	 just	 the	 right	 way.	 This	 seems	 fully
consistent	 with	 our	 observation	 that	 life	 did	 evolve	 here	 on	 Earth.	 Only	 by
careful	and	somewhat	intricate	reasoning—by	analyzing	instances	of	convergent
evolution	 of	 intelligence-related	 traits	 and	 engaging	 with	 the	 subtleties	 of
observation	 selection	 theory—can	we	partially	circumvent	 this	 epistemological
barrier.	Unless	one	takes	the	trouble	to	do	so,	one	is	not	in	a	position	to	rule	out
the	possibility	that	the	alleged	“upper	bound”	on	the	computational	requirements
for	recapitulating	the	evolution	of	intelligence	derived	in	Box	3	might	be	too	low
by	thirty	orders	of	magnitude	(or	some	other	such	large	number).17

Another	 way	 of	 arguing	 for	 the	 feasibility	 of	 artificial	 intelligence	 is	 by
pointing	to	the	human	brain	and	suggesting	that	we	could	use	it	as	a	template	for
a	machine	 intelligence.	One	can	distinguish	different	versions	of	 this	approach
based	on	how	closely	they	propose	to	imitate	biological	brain	functions.	At	one



extreme—that	 of	 very	 close	 imitation—we	 have	 the	 idea	 of	 whole	 brain
emulation,	which	we	will	discuss	in	the	next	subsection.	At	the	other	extreme	are
approaches	that	take	their	inspiration	from	the	functioning	of	the	brain	but	do	not
attempt	low-level	imitation.	Advances	in	neuroscience	and	cognitive	psychology
—which	will	be	aided	by	improvements	 in	 instrumentation—should	eventually
uncover	 the	 general	 principles	 of	 brain	 function.	 This	 knowledge	 could	 then
guide	AI	efforts.	We	have	already	encountered	neural	networks	as	an	example	of
a	 brain-inspired	 AI	 technique.	 Hierarchical	 perceptual	 organization	 is	 another
idea	that	has	been	transferred	from	brain	science	to	machine	learning.	The	study
of	 reinforcement	 learning	 has	 been	 motivated	 (at	 least	 in	 part)	 by	 its	 role	 in
psychological	 theories	 of	 animal	 cognition,	 and	 reinforcement	 learning
techniques	(e.g.	the	“TD-algorithm”)	inspired	by	these	theories	are	now	widely
used	 in	AI.18	More	cases	 like	 these	will	 surely	accumulate	 in	 the	 future.	Since
there	 is	 a	 limited	 number—perhaps	 a	 very	 small	 number—of	 distinct
fundamental	 mechanisms	 that	 operate	 in	 the	 brain,	 continuing	 incremental
progress	 in	 brain	 science	 should	 eventually	 discover	 them	 all.	 Before	 this
happens,	 though,	 it	 is	 possible	 that	 a	 hybrid	 approach,	 combining	 some	brain-
inspired	 techniques	 with	 some	 purely	 artificial	 methods,	 would	 cross	 the
finishing	line.	In	that	case,	the	resultant	system	need	not	be	recognizably	brain-
like	even	though	some	brain-derived	insights	were	used	in	its	development.

The	availability	of	the	brain	as	template	provides	strong	support	for	the	claim
that	machine	 intelligence	 is	ultimately	feasible.	This,	however,	does	not	enable
us	to	predict	when	it	will	be	achieved	because	it	is	hard	to	predict	the	future	rate
of	discoveries	in	brain	science.	What	we	can	say	is	that	the	further	into	the	future
we	 look,	 the	 greater	 the	 likelihood	 that	 the	 secrets	 of	 the	 brain’s	 functionality
will	 have	 been	 decoded	 sufficiently	 to	 enable	 the	 creation	 of	 machine
intelligence	in	this	manner.

Different	 people	 working	 toward	 machine	 intelligence	 hold	 different	 views
about	how	promising	neuromorphic	 approaches	 are	 compared	with	 approaches
that	aim	for	completely	synthetic	designs.	The	existence	of	birds	demonstrated
that	heavier-than-air	flight	was	physically	possible	and	prompted	efforts	to	build
flying	machines.	Yet	the	first	functioning	airplanes	did	not	flap	their	wings.	The
jury	 is	 out	 on	whether	machine	 intelligence	will	 be	 like	 flight,	which	 humans
achieved	through	an	artificial	mechanism,	or	like	combustion,	which	we	initially
mastered	by	copying	naturally	occurring	fires.

Turing’s	 idea	 of	 designing	 a	 program	 that	 acquires	 most	 of	 its	 content	 by



learning,	rather	than	having	it	pre-programmed	at	the	outset,	can	apply	equally	to
neuromorphic	and	synthetic	approaches	to	machine	intelligence.

A	variation	on	Turing’s	conception	of	a	child	machine	is	 the	 idea	of	a	“seed
AI.”19	Whereas	 a	 child	machine,	 as	Turing	 seems	 to	have	 envisaged	 it,	would
have	 a	 relatively	 fixed	 architecture	 that	 simply	 develops	 its	 inherent
potentialities	by	accumulating	content,	a	seed	AI	would	be	a	more	sophisticated
artificial	 intelligence	 capable	 of	 improving	 its	 own	 architecture.	 In	 the	 early
stages	 of	 a	 seed	AI,	 such	 improvements	might	 occur	mainly	 through	 trial	 and
error,	 information	 acquisition,	or	 assistance	 from	 the	programmers.	At	 its	 later
stages,	 however,	 a	 seed	 AI	 should	 be	 able	 to	 understand	 its	 own	 workings
sufficiently	to	engineer	new	algorithms	and	computational	structures	to	bootstrap
its	cognitive	performance.	This	needed	understanding	could	result	from	the	seed
AI	 reaching	 a	 sufficient	 level	 of	 general	 intelligence	 across	many	 domains,	 or
from	crossing	some	threshold	in	a	particularly	relevant	domain	such	as	computer
science	or	mathematics.

This	 brings	 us	 to	 another	 important	 concept,	 that	 of	 “recursive	 self-
improvement.”	A	successful	seed	AI	would	be	able	to	iteratively	enhance	itself:
an	 early	version	of	 the	AI	 could	design	 an	 improved	version	of	 itself,	 and	 the
improved	version—being	smarter	than	the	original—might	be	able	to	design	an
even	 smarter	 version	 of	 itself,	 and	 so	 forth.20	 Under	 some	 conditions,	 such	 a
process	of	 recursive	 self-improvement	might	continue	 long	enough	 to	 result	 in
an	 intelligence	 explosion—an	 event	 in	 which,	 in	 a	 short	 period	 of	 time,	 a
system’s	level	of	 intelligence	increases	from	a	relatively	modest	endowment	of
cognitive	capabilities	(perhaps	sub-human	in	most	respects,	but	with	a	domain-
specific	talent	for	coding	and	AI	research)	to	radical	superintelligence.	We	will
return	to	this	important	possibility	in	Chapter	4,	where	the	dynamics	of	such	an
event	will	be	analyzed	more	closely.	Note	that	this	model	suggests	the	possibility
of	 surprises:	 attempts	 to	 build	 artificial	 general	 intelligence	 might	 fail	 pretty
much	 completely	 until	 the	 last	 missing	 critical	 component	 is	 put	 in	 place,	 at
which	 point	 a	 seed	 AI	 might	 become	 capable	 of	 sustained	 recursive	 self-
improvement.

Before	 we	 end	 this	 subsection,	 there	 is	 one	 more	 thing	 that	 we	 should
emphasize,	 which	 is	 that	 an	 artificial	 intelligence	 need	 not	 much	 resemble	 a
human	mind.	 AIs	 could	 be—indeed,	 it	 is	 likely	 that	most	 will	 be—extremely
alien.	We	should	expect	that	they	will	have	very	different	cognitive	architectures
than	biological	intelligences,	and	in	their	early	stages	of	development	they	will



have	 very	 different	 profiles	 of	 cognitive	 strengths	 and	weaknesses	 (though,	 as
we	 shall	 later	 argue,	 they	 could	 eventually	 overcome	 any	 initial	 weakness).
Furthermore,	 the	 goal	 systems	 of	 AIs	 could	 diverge	 radically	 from	 those	 of
human	beings.	There	is	no	reason	to	expect	a	generic	AI	to	be	motivated	by	love
or	 hate	 or	 pride	 or	 other	 such	 common	 human	 sentiments:	 these	 complex
adaptations	would	require	deliberate	expensive	effort	to	recreate	in	AIs.	This	is
at	once	a	big	problem	and	a	big	opportunity.	We	will	 return	 to	 the	 issue	of	AI
motivation	in	later	chapters,	but	it	is	so	central	to	the	argument	in	this	book	that
it	is	worth	bearing	in	mind	throughout.

Whole	brain	emulation

	

In	 whole	 brain	 emulation	 (also	 known	 as	 “uploading”),	 intelligent	 software
would	 be	 produced	 by	 scanning	 and	 closely	 modeling	 the	 computational
structure	of	a	biological	brain.	This	approach	thus	represents	a	 limiting	case	of
drawing	 inspiration	 from	 nature:	 barefaced	 plagiarism.	Achieving	whole	 brain
emulation	requires	the	accomplishment	of	the	following	steps.

First,	a	sufficiently	detailed	scan	of	a	particular	human	brain	is	created.	This
might	involve	stabilizing	the	brain	post-mortem	through	vitrification	(a	process
that	turns	tissue	into	a	kind	of	glass).	A	machine	could	then	dissect	the	tissue	into
thin	slices,	which	could	be	fed	into	another	machine	for	scanning,	perhaps	by	an
array	 of	 electron	microscopes.	Various	 stains	might	 be	 applied	 at	 this	 stage	 to
bring	out	different	structural	and	chemical	properties.	Many	scanning	machines
could	work	in	parallel	to	process	multiple	brain	slices	simultaneously.

Second,	 the	 raw	data	 from	 the	 scanners	 is	 fed	 to	 a	 computer	 for	 automated
image	 processing	 to	 reconstruct	 the	 three-dimensional	 neuronal	 network	 that
implemented	cognition	in	the	original	brain.	In	practice,	this	step	might	proceed
concurrently	with	 the	 first	 step	 to	 reduce	 the	 amount	 of	 high-resolution	 image
data	 stored	 in	 buffers.	 The	 resulting	 map	 is	 then	 combined	 with	 a	 library	 of
neurocomputational	models	of	different	types	of	neurons	or	of	different	neuronal
elements	(such	as	particular	kinds	of	synaptic	connectors).	Figure	4	shows	some
results	of	scanning	and	image	processing	produced	with	present-day	technology.

In	 the	 third	 stage,	 the	 neurocomputational	 structure	 resulting	 from	 the
previous	step	is	implemented	on	a	sufficiently	powerful	computer.	If	completely



successful,	 the	 result	 would	 be	 a	 digital	 reproduction	 of	 the	 original	 intellect,
with	memory	 and	 personality	 intact.	The	 emulated	 human	mind	 now	 exists	 as
software	on	a	computer.	The	mind	can	either	inhabit	a	virtual	reality	or	interface
with	the	external	world	by	means	of	robotic	appendages.

The	 whole	 brain	 emulation	 path	 does	 not	 require	 that	 we	 figure	 out	 how
human	cognition	works	or	how	to	program	an	artificial	 intelligence.	It	requires
only	 that	 we	 understand	 the	 low-level	 functional	 characteristics	 of	 the	 basic
computational	elements	of	 the	brain.	No	 fundamental	conceptual	or	 theoretical
breakthrough	is	needed	for	whole	brain	emulation	to	succeed.

Whole	brain	emulation	does,	however,	require	some	rather	advanced	enabling
technologies.	 There	 are	 three	 key	 prerequisites:	 (1)	 scanning:	 high-throughput
microscopy	with	 sufficient	 resolution	 and	 detection	 of	 relevant	 properties;	 (2)
translation:	 automated	 image	 analysis	 to	 turn	 raw	 scanning	 data	 into	 an
interpreted	 three-dimensional	 model	 of	 relevant	 neurocomputational	 elements;
and	 (3)	 simulation:	 hardware	 powerful	 enough	 to	 implement	 the	 resultant
computational	 structure	 (see	 Table	 4).	 (In	 comparison	 with	 these	 more
challenging	 steps,	 the	 construction	 of	 a	 basic	 virtual	 reality	 or	 a	 robotic
embodiment	with	an	audiovisual	input	channel	and	some	simple	output	channel
is	relatively	easy.	Simple	yet	minimally	adequate	I/O	seems	feasible	already	with
present	technology.23)



Figure	 4	 Reconstructing	 3D	 neuroanatomy	 from	 electron	microscope	 images.
Upper	 left:	 A	 typical	 electron	 micrograph	 showing	 cross-sections	 of	 neuronal
matter—dendrites	and	axons.	Upper	right:	Volume	image	of	rabbit	retinal	neural
tissue	acquired	by	 serial	block-face	 scanning	electron	microscopy.21	 Individual
2D	images	have	been	stacked	into	a	cube	(with	a	side	of	approximately	11	μm).
Bottom:	Reconstruction	of	a	subset	of	the	neuronal	projections	filling	a	volume
of	neuropil,	generated	by	an	automated	segmentation	algorithm.22

	

There	 is	 good	 reason	 to	 think	 that	 the	 requisite	 enabling	 technologies	 are
attainable,	 though	 not	 in	 the	 near	 future.	Reasonable	 computational	models	 of
many	 types	of	neuron	and	neuronal	processes	already	exist.	 Image	 recognition
software	has	been	developed	that	can	trace	axons	and	dendrites	through	a	stack
of	two-dimensional	images	(though	reliability	needs	to	be	improved).	And	there
are	 imaging	 tools	 that	 provide	 the	 necessary	 resolution—with	 a	 scanning



tunneling	 microscope	 it	 is	 possible	 to	 “see”	 individual	 atoms,	 which	 is	 a	 far
higher	 resolution	 than	 needed.	 However,	 although	 present	 knowledge	 and
capabilities	suggest	that	there	is	no	in-principle	barrier	to	the	development	of	the
requisite	enabling	 technologies,	 it	 is	clear	 that	a	very	great	deal	of	 incremental
technical	 progress	 would	 be	 needed	 to	 bring	 human	 whole	 brain	 emulation
within	 reach.24	 For	 example,	 microscopy	 technology	 would	 need	 not	 just
sufficient	 resolution	 but	 also	 sufficient	 throughput.	Using	 an	 atomic-resolution
scanning	 tunneling	microscope	 to	 image	 the	 needed	 surface	 area	would	 be	 far
too	slow	to	be	practicable.	It	would	be	more	plausible	to	use	a	lower-resolution
electron	 microscope,	 but	 this	 would	 require	 new	 methods	 for	 preparing	 and
staining	 cortical	 tissue	 to	 make	 visible	 relevant	 details	 such	 as	 synaptic	 fine
structure.	 A	 great	 expansion	 of	 neurocomputational	 libraries	 and	 major
improvements	in	automated	image	processing	and	scan	interpretation	would	also
be	needed.

Table	4	Capabilities	needed	for	whole	brain	emulation



	



	

In	general,	whole	brain	emulation	relies	 less	on	 theoretical	 insight	and	more
on	 technological	 capability	 than	 artificial	 intelligence.	 Just	 how	 much
technology	 is	 required	 for	 whole	 brain	 emulation	 depends	 on	 the	 level	 of
abstraction	 at	 which	 the	 brain	 is	 emulated.	 In	 this	 regard	 there	 is	 a	 tradeoff
between	 insight	and	 technology.	 In	general,	 the	worse	our	 scanning	equipment
and	 the	 feebler	 our	 computers,	 the	 less	we	 could	 rely	 on	 simulating	 low-level
chemical	 and	 electrophysiological	 brain	 processes,	 and	 the	 more	 theoretical
understanding	 would	 be	 needed	 of	 the	 computational	 architecture	 that	 we	 are
seeking	 to	 emulate	 in	 order	 to	 create	 more	 abstract	 representations	 of	 the
relevant	 functionalities.25	 Conversely,	 with	 sufficiently	 advanced	 scanning
technology	and	abundant	computing	power,	 it	might	be	possible	 to	brute-force
an	 emulation	 even	 with	 a	 fairly	 limited	 understanding	 of	 the	 brain.	 In	 the
unrealistic	 limiting	case,	we	could	imagine	emulating	a	brain	at	 the	level	of	 its
elementary	particles	using	the	quantum	mechanical	Schrödinger	equation.	Then
one	could	 rely	entirely	on	existing	knowledge	of	physics	and	not	at	all	on	any



biological	model.	This	extreme	case,	however,	would	place	utterly	impracticable
demands	 on	 computational	 power	 and	 data	 acquisition.	 A	 far	 more	 plausible
level	of	emulation	would	be	one	 that	 incorporates	 individual	neurons	and	 their
connectivity	matrix,	along	with	some	of	the	structure	of	their	dendritic	trees	and
maybe	some	state	variables	of	individual	synapses.	Neurotransmitter	molecules
would	not	be	simulated	 individually,	but	 their	 fluctuating	concentrations	would
be	modeled	in	a	coarse-grained	manner.

To	 assess	 the	 feasibility	 of	whole	 brain	 emulation,	 one	must	 understand	 the
criterion	for	success.	The	aim	is	not	to	create	a	brain	simulation	so	detailed	and
accurate	that	one	could	use	it	to	predict	exactly	what	would	have	happened	in	the
original	brain	if	it	had	been	subjected	to	a	particular	sequence	of	stimuli.	Instead,
the	aim	is	to	capture	enough	of	the	computationally	functional	properties	of	the
brain	 to	 enable	 the	 resultant	 emulation	 to	 perform	 intellectual	 work.	 For	 this
purpose,	much	of	the	messy	biological	detail	of	a	real	brain	is	irrelevant.

A	 more	 elaborate	 analysis	 would	 distinguish	 between	 different	 levels	 of
emulation	 success	 based	 on	 the	 extent	 to	 which	 the	 information-processing
functionality	of	the	emulated	brain	has	been	preserved.	For	example,	one	could
distinguish	 among	 (1)	 a	 high-fidelity	 emulation	 that	 has	 the	 full	 set	 of
knowledge,	 skills,	 capacities,	 and	values	of	 the	 emulated	brain;	 (2)	 a	distorted
emulation	 whose	 dispositions	 are	 significantly	 non-human	 in	 some	 ways	 but
which	is	mostly	able	to	do	the	same	intellectual	labor	as	the	emulated	brain;	and
(3)	a	generic	emulation	(which	might	also	be	distorted)	that	is	somewhat	like	an
infant,	 lacking	 the	 skills	 or	memories	 that	 had	 been	 acquired	 by	 the	 emulated
adult	 brain	 but	 with	 the	 capacity	 to	 learn	 most	 of	 what	 a	 normal	 human	 can
learn.26

While	 it	 appears	 ultimately	 feasible	 to	 produce	 a	 high-fidelity	 emulation,	 it
seems	quite	likely	that	the	first	whole	brain	emulation	that	we	would	achieve	if
we	went	down	this	path	would	be	of	a	lower	grade.	Before	we	would	get	things
to	work	perfectly,	we	would	probably	get	 things	 to	work	 imperfectly.	 It	 is	also
possible	that	a	push	toward	emulation	technology	would	lead	to	the	creation	of
some	 kind	 of	 neuromorphic	 AI	 that	 would	 adapt	 some	 neurocomputational
principles	discovered	during	emulation	efforts	and	hybridize	them	with	synthetic
methods,	and	that	this	would	happen	before	the	completion	of	a	fully	functional
whole	brain	emulation.	The	possibility	of	such	a	spillover	into	neuromorphic	AI,
as	 we	 shall	 see	 in	 a	 later	 chapter,	 complicates	 the	 strategic	 assessment	 of	 the
desirability	of	seeking	to	expedite	emulation	technology.



How	 far	 are	 we	 currently	 from	 achieving	 a	 human	whole	 brain	 emulation?
One	 recent	 assessment	 presented	 a	 technical	 roadmap	 and	 concluded	 that	 the
prerequisite	 capabilities	might	 be	 available	 around	mid-century,	 though	with	 a
large	 uncertainty	 interval.27	 Figure	 5	 depicts	 the	 major	 milestones	 in	 this
roadmap.	The	 apparent	 simplicity	of	 the	map	may	be	deceptive,	 however,	 and
we	should	be	careful	not	to	understate	how	much	work	remains	to	be	done.	No
brain	 has	 yet	 been	 emulated.	 Consider	 the	 humble	 model	 organism
Caenorhabditis	 elegans,	 which	 is	 a	 transparent	 roundworm,	 about	 1	 mm	 in
length,	with	302	neurons.	The	complete	connectivity	matrix	of	these	neurons	has
been	known	since	the	mid-1980s,	when	it	was	laboriously	mapped	out	by	means
of	slicing,	electron	microscopy,	and	hand-labeling	of	specimens.29	But	knowing
merely	which	neurons	are	connected	with	which	is	not	enough.	To	create	a	brain
emulation	 one	 would	 also	 need	 to	 know	 which	 synapses	 are	 excitatory	 and
which	 are	 inhibitory;	 the	 strength	 of	 the	 connections;	 and	 various	 dynamical
properties	 of	 axons,	 synapses,	 and	 dendritic	 trees.	 This	 information	 is	 not	 yet
available	even	for	the	small	nervous	system	of	C.	elegans	(although	it	may	now
be	within	 range	 of	 a	 targeted	moderately	 sized	 research	 project).30	 Success	 at
emulating	a	tiny	brain,	such	as	that	of	C.	elegans,	would	give	us	a	better	view	of
what	it	would	take	to	emulate	larger	brains.



Figure	5	Whole	brain	 emulation	 roadmap.	Schematic	of	 inputs,	 activities,	 and
milestones.28

	

At	 some	 point	 in	 the	 technology	 development	 process,	 once	 techniques	 are
available	 for	 automatically	 emulating	 small	 quantities	 of	 brain	 tissue,	 the
problem	reduces	to	one	of	scaling.	Notice	“the	ladder”	at	the	right	side	of	Figure
5.	This	ascending	series	of	boxes	represents	a	final	sequence	of	advances	which
can	 commence	 after	 preliminary	 hurdles	 have	 been	 cleared.	The	 stages	 in	 this
sequence	 correspond	 to	 whole	 brain	 emulations	 of	 successively	 more
neurologically	 sophisticated	 model	 organisms—for	 example,	 C.	 elegans	 →
honeybee	→	mouse	→	 rhesus	monkey	 →	 human.	 Because	 the	 gaps	 between
these	 rungs—at	 least	 after	 the	 first	 step—are	mostly	quantitative	 in	nature	and
due	mainly	 (though	 not	 entirely)	 to	 the	 differences	 in	 size	 of	 the	 brains	 to	 be
emulated,	they	should	be	tractable	through	a	relatively	straightforward	scale-up
of	scanning	and	simulation	capacity.31

Once	we	 start	 ascending	 this	 final	 ladder,	 the	eventual	 attainment	of	human
whole	brain	emulation	becomes	more	clearly	foreseeable.32	We	can	thus	expect
to	get	some	advance	warning	before	arrival	at	human-level	machine	intelligence
along	 the	 whole	 brain	 emulation	 path,	 at	 least	 if	 the	 last	 among	 the	 requisite
enabling	 technologies	 to	 reach	 sufficient	 maturity	 is	 either	 high-throughput
scanning	 or	 the	 computational	 power	 needed	 for	 real-time	 simulation.	 If,
however,	 the	 last	 enabling	 technology	 to	 fall	 into	 place	 is	 neurocomputational
modeling,	then	the	transition	from	unimpressive	prototypes	to	a	working	human
emulation	could	be	more	abrupt.	One	could	imagine	a	scenario	in	which,	despite
abundant	 scanning	 data	 and	 fast	 computers,	 it	 is	 proving	 difficult	 to	 get	 our
neuronal	models	 to	work	right.	When	finally	 the	 last	glitch	 is	 ironed	out,	what
was	 previously	 a	 completely	 dysfunctional	 system—analogous	 perhaps	 to	 an
unconscious	brain	undergoing	a	grand	mal	seizure—might	snap	into	a	coherent
wakeful	state.	In	this	case,	the	key	advance	would	not	be	heralded	by	a	series	of
functioning	 animal	 emulations	 of	 increasing	magnitude	 (provoking	 newspaper
headlines	 of	 correspondingly	 escalating	 font	 size).	 Even	 for	 those	 paying
attention	it	might	be	difficult	to	tell	in	advance	of	success	just	how	many	flaws
remained	in	the	neurocomputational	models	at	any	point	and	how	long	it	would
take	to	fix	them,	even	up	to	the	eve	of	the	critical	breakthrough.	(Once	a	human
whole	 brain	 emulation	 has	 been	 achieved,	 further	 potentially	 explosive
developments	would	take	place;	but	we	postpone	discussion	of	this	until	Chapter



4.)

Surprise	 scenarios	are	 thus	 imaginable	 for	whole	brain	emulation	even	 if	all
the	relevant	research	were	conducted	in	the	open.	Nevertheless,	compared	with
the	AI	path	to	machine	intelligence,	whole	brain	emulation	is	more	likely	to	be
preceded	 by	 clear	 omens	 since	 it	 relies	 more	 on	 concrete	 observable
technologies	 and	 is	 not	 wholly	 based	 on	 theoretical	 insight.	We	 can	 also	 say,
with	 greater	 confidence	 than	 for	 the	AI	 path,	 that	 the	 emulation	 path	will	 not
succeed	in	the	near	future	(within	the	next	fifteen	years,	say)	because	we	know
that	several	challenging	precursor	technologies	have	not	yet	been	developed.	By
contrast,	 it	 seems	 likely	 that	 somebody	could	 in	principle	 sit	down	and	code	a
seed	AI	on	an	ordinary	present-day	personal	computer;	and	it	 is	conceivable—
though	unlikely—that	somebody	somewhere	will	get	the	right	insight	for	how	to
do	this	in	the	near	future.

Biological	cognition

	

A	 third	 path	 to	 greater-than-current-human	 intelligence	 is	 to	 enhance	 the
functioning	 of	 biological	 brains.	 In	 principle,	 this	 could	 be	 achieved	 without
technology,	through	selective	breeding.	Any	attempt	to	initiate	a	classical	large-
scale	 eugenics	 program,	 however,	 would	 confront	 major	 political	 and	 moral
hurdles.	Moreover,	unless	the	selection	were	extremely	strong,	many	generations
would	be	required	to	produce	substantial	results.	Long	before	such	an	initiative
would	bear	fruit,	advances	in	biotechnology	will	allow	much	more	direct	control
of	 human	 genetics	 and	 neurobiology,	 rendering	 otiose	 any	 human	 breeding
program.	We	will	 therefore	 focus	on	methods	 that	hold	 the	potential	 to	deliver
results	faster,	on	the	timescale	of	a	few	generations	or	less.

Our	 individual	 cognitive	 capacities	 can	 be	 strengthened	 in	 various	 ways,
including	 by	 such	 traditional	methods	 as	 education	 and	 training.	 Neurological
development	 can	 be	 promoted	 by	 low-tech	 interventions	 such	 as	 optimizing
maternal	 and	 infant	 nutrition,	 removing	 lead	 and	 other	 neurotoxic	 pollutants
from	 the	 environment,	 eradicating	 parasites,	 ensuring	 adequate	 sleep	 and
exercise,	 and	 preventing	 diseases	 that	 affect	 the	 brain.33	 Improvements	 in
cognition	 can	 certainly	 be	 obtained	 through	 each	 of	 these	 means,	 though	 the
magnitudes	of	 the	gains	 are	 likely	 to	be	modest,	 especially	 in	populations	 that
are	 already	 reasonably	 well-nourished	 and	 -schooled.	 We	 will	 certainly	 not



achieve	 superintelligence	 by	 any	 of	 these	 means,	 but	 they	 might	 help	 on	 the
margin,	particularly	by	 lifting	up	 the	deprived	and	expanding	 the	catchment	of
global	 talent.	 (Lifelong	 depression	 of	 intelligence	 due	 to	 iodine	 deficiency
remains	 widespread	 in	 many	 impoverished	 inland	 areas	 of	 the	 world—an
outrage	given	that	the	condition	can	be	prevented	by	fortifying	table	salt	at	a	cost
of	a	few	cents	per	person	and	year.34)

Biomedical	enhancements	could	give	bigger	boosts.	Drugs	already	exist	 that
are	 alleged	 to	 improve	 memory,	 concentration,	 and	 mental	 energy	 in	 at	 least
some	subjects.35	(Work	on	this	book	was	fueled	by	coffee	and	nicotine	chewing
gum.)	While	 the	 efficacy	 of	 the	 present	 generation	 of	 smart	 drugs	 is	 variable,
marginal,	 and	generally	dubious,	 future	nootropics	might	 offer	 clearer	 benefits
and	 fewer	 side	 effects.36	 However,	 it	 seems	 implausible,	 on	 both	 neurological
and	evolutionary	grounds,	that	one	could	by	introducing	some	chemical	into	the
brain	of	a	healthy	person	spark	a	dramatic	 rise	 in	 intelligence.37	The	 cognitive
functioning	 of	 a	 human	 brain	 depends	 on	 a	 delicate	 orchestration	 of	 many
factors,	 especially	 during	 the	 critical	 stages	 of	 embryo	development—and	 it	 is
much	more	likely	that	this	self-organizing	structure,	to	be	enhanced,	needs	to	be
carefully	balanced,	 tuned,	and	cultivated	 rather	 than	simply	 flooded	with	some
extraneous	potion.

Manipulation	 of	 genetics	 will	 provide	 a	 more	 powerful	 set	 of	 tools	 than
psychopharmacology.	 Consider	 again	 the	 idea	 of	 genetic	 selection:	 instead	 of
trying	 to	 implement	 a	 eugenics	 program	 by	 controlling	 mating	 patterns,	 one
could	 use	 selection	 at	 the	 level	 of	 embryos	 or	 gametes.38	 Pre-implantation
genetic	diagnosis	has	already	been	used	during	 in	vitro	 fertilization	procedures
to	 screen	 embryos	 produced	 for	 monogenic	 disorders	 such	 as	 Huntington’s
disease	and	for	predisposition	to	some	late-onset	diseases	such	as	breast	cancer.
It	has	also	been	used	for	sex	selection	and	for	matching	human	leukocyte	antigen
type	with	that	of	a	sick	sibling,	who	can	then	benefit	from	a	cord-blood	stem	cell
donation	when	the	new	baby	is	born.39	The	range	of	 traits	 that	can	be	selected
for	or	against	will	expand	greatly	over	the	next	decade	or	two.	A	strong	driver	of
progress	in	behavioral	genetics	is	the	rapidly	falling	cost	of	genotyping	and	gene
sequencing.	 Genome-wide	 complex	 trait	 analysis,	 using	 studies	 with	 vast
numbers	 of	 subjects,	 is	 just	 now	 starting	 to	 become	 feasible	 and	 will	 greatly
increase	 our	 knowledge	 of	 the	 genetic	 architectures	 of	 human	 cognitive	 and
behavioral	 traits.40	 Any	 trait	 with	 a	 non-negligible	 heritability—including
cognitive	 capacity—could	 then	 become	 susceptible	 to	 selection.41	 Embryo



selection	does	not	require	a	deep	understanding	of	the	causal	pathways	by	which
genes,	 in	 complicated	 interplay	 with	 environments,	 produce	 phenotypes:	 it
requires	only	(lots	of)	data	on	the	genetic	correlates	of	the	traits	of	interest.

It	is	possible	to	calculate	some	rough	estimates	of	the	magnitude	of	the	gains
obtainable	in	different	selection	scenarios.42	Table	5	shows	expected	increases	in
intelligence	 resulting	 from	 various	 amounts	 of	 selection,	 assuming	 complete
information	about	the	common	additive	genetic	variants	underlying	the	narrow-
sense	heritability	of	 intelligence.	(With	partial	 information,	 the	effectiveness	of
selection	would	 be	 reduced,	 though	 not	 quite	 to	 the	 extent	 one	might	 naively
expect.44)	 Unsurprisingly,	 selecting	 between	 larger	 numbers	 of	 embryos
produces	 larger	 gains,	 but	 there	 are	 steeply	 diminishing	 returns:	 selection
between	100	embryos	does	not	produce	a	gain	anywhere	near	fifty	times	as	large
as	that	which	one	would	get	from	selection	between	2	embryos.45

Table	5	Maximum	IQ	gains	from	selecting	among	a	set	of	embryos43

	 	

Selection IQ	points	gained

1	in	2 4.2

1	in	10 11.5

1	in	100 18.8

1	in	1000 24.3

5	generations	of	1	in	10 <	65	(b/c	diminishing	returns)



10	generations	of	1	in	10 <	130	(b/c	diminishing	returns)

Cumulative	limits	(additive	variants	optimized
for	cognition)

100	+	(<	300	(b/c	diminishing
returns))

Interestingly,	the	diminishment	of	returns	is	greatly	abated	when	the	selection
is	 spread	over	multiple	 generations.	Thus,	 repeatedly	 selecting	 the	 top	1	 in	 10
over	 ten	 generations	 (where	 each	 new	 generation	 consists	 of	 the	 offspring	 of
those	selected	in	the	previous	generation)	will	produce	a	much	greater	increase
in	 the	 trait	 value	 than	 a	 one-off	 selection	 of	 1	 in	 100.	 The	 problem	 with
sequential	 selection,	of	course,	 is	 that	 it	 takes	 longer.	 If	 each	generational	 step
takes	 twenty	 or	 thirty	 years,	 then	 even	 just	 five	 successive	 generations	would
push	us	well	into	the	twenty-second	century.	Long	before	then,	more	direct	and
powerful	 modes	 of	 genetic	 engineering	 (not	 to	 mention	 machine	 intelligence)
will	most	likely	be	available.

There	is,	however,	a	complementary	technology,	one	which,	once	it	has	been
developed	for	use	 in	humans,	would	greatly	potentiate	 the	enhancement	power
of	 pre-implantation	 genetic	 screening:	 namely,	 the	 derivation	 of	 viable	 sperm
and	eggs	from	embryonic	stem	cells.46	The	techniques	for	this	have	already	been
used	 to	 produce	 fertile	 offspring	 in	 mice	 and	 gamete-like	 cells	 in	 humans.
Substantial	 scientific	 challenges	 remain,	 however,	 in	 translating	 the	 animal
results	 to	humans	and	 in	avoiding	epigenetic	abnormalities	 in	 the	derived	stem
cell	 lines.	 According	 to	 one	 expert,	 these	 challenges	 might	 put	 human
application	“10	or	even	50	years	in	the	future.”47

With	stem	cell-derived	gametes,	the	amount	of	selection	power	available	to	a
couple	 could	 be	 greatly	 increased.	 In	 current	 practice,	 an	 in	 vitro	 fertilization
procedure	typically	involves	the	creation	of	fewer	than	ten	embryos.	With	stem
cell-derived	 gametes,	 a	 few	 donated	 cells	 might	 be	 turned	 into	 a	 virtually
unlimited	number	of	gametes	that	could	be	combined	to	produce	embryos,	which
could	 then	be	genotyped	or	sequenced,	and	the	most	promising	one	chosen	for
implantation.	Depending	on	the	cost	of	preparing	and	screening	each	individual
embryo,	this	technology	could	yield	a	severalfold	increase	in	the	selective	power
available	to	couples	using	in	vitro	fertilization.

More	 importantly	 still,	 stem	 cell-derived	 gametes	 would	 allow	 multiple



generations	 of	 selection	 to	 be	 compressed	 into	 less	 than	 a	 human	 maturation
period,	 by	 enabling	 iterated	 embryo	 selection.	 This	 is	 a	 procedure	 that	 would
consist	of	the	following	steps:48

	

1	Genotype	and	select	a	number	of	embryos	that	are	higher	in	desired	genetic
characteristics.

2	Extract	stem	cells	from	those	embryos	and	convert	them	to	sperm	and	ova,
maturing	within	six	months	or	less.49

3	Cross	the	new	sperm	and	ova	to	produce	embryos.

4	Repeat	until	large	genetic	changes	have	been	accumulated.

In	 this	manner,	 it	would	be	possible	 to	 accomplish	 ten	or	more	generations	of
selection	 in	 just	 a	 few	 years.	 (The	 procedure	 would	 be	 time-consuming	 and
expensive;	however,	in	principle,	it	would	need	to	be	done	only	once	rather	than
repeated	 for	 each	 birth.	 The	 cell	 lines	 established	 at	 the	 end	 of	 the	 procedure
could	be	used	to	generate	very	large	numbers	of	enhanced	embryos.)

As	 Table	 5	 indicates,	 the	 average	 level	 of	 intelligence	 among	 individuals
conceived	 in	 this	 manner	 could	 be	 very	 high,	 possibly	 equal	 to	 or	 somewhat
above	that	of	the	most	intelligent	individual	in	the	historical	human	population.
A	 world	 that	 had	 a	 large	 population	 of	 such	 individuals	 might	 (if	 it	 had	 the
culture,	 education,	 communications	 infrastructure,	 etc.,	 to	 match)	 constitute	 a
collective	superintelligence.

The	 impact	 of	 this	 technology	 will	 be	 dampened	 and	 delayed	 by	 several
factors.	 There	 is	 the	 unavoidable	 maturational	 lag	 while	 the	 finally	 selected
embryos	grow	into	adult	human	beings:	at	least	twenty	years	before	an	enhanced
child	 reaches	 full	 productivity,	 longer	 still	 before	 such	 children	 come	 to
constitute	a	 substantial	 segment	of	 the	 labor	 force.	Furthermore,	even	after	 the
technology	has	been	perfected,	adoption	rates	will	probably	start	out	low.	Some
countries	might	prohibit	its	use	altogether,	on	moral	or	religious	grounds.50	Even
where	 selection	 is	 allowed,	 many	 couples	 will	 prefer	 the	 natural	 way	 of
conceiving.	 Willingness	 to	 use	 IVF,	 however,	 would	 increase	 if	 there	 were
clearer	benefits	associated	with	the	procedure—such	as	a	virtual	guarantee	that
the	 child	 would	 be	 highly	 talented	 and	 free	 from	 genetic	 predispositions	 to



disease.	 Lower	 health	 care	 costs	 and	 higher	 expected	 lifetime	 earnings	 would
also	argue	in	favor	of	genetic	selection.	As	use	of	the	procedure	becomes	more
common,	particularly	among	social	elites,	there	might	be	a	cultural	shift	toward
parenting	 norms	 that	 present	 the	 use	 of	 selection	 as	 the	 thing	 that	 responsible
enlightened	couples	do.	Many	of	the	initially	reluctant	might	join	the	bandwagon
in	 order	 to	 have	 a	 child	 that	 is	 not	 at	 a	 disadvantage	 relative	 to	 the	 enhanced
children	of	their	friends	and	colleagues.	Some	countries	might	offer	inducements
to	 encourage	 their	 citizens	 to	 take	 advantage	 of	 genetic	 selection	 in	 order	 to
increase	 the	 country’s	 stock	 of	 human	 capital,	 or	 to	 increase	 long-term	 social
stability	 by	 selecting	 for	 traits	 like	 docility,	 obedience,	 submissiveness,
conformity,	risk-aversion,	or	cowardice,	outside	of	the	ruling	clan.

Effects	on	intellectual	capacity	would	also	depend	on	the	extent	to	which	the
available	selection	power	would	be	used	for	enhancing	cognitive	traits	(Table	6).
Those	who	do	opt	to	use	some	form	of	embryo	selection	would	have	to	choose
how	to	allocate	 the	selection	power	at	 their	disposal,	and	 intelligence	would	 to
some	 extent	 be	 in	 competition	 with	 other	 desired	 attributes,	 such	 as	 health,
beauty,	personality,	or	athleticism.	Iterated	embryo	selection,	by	offering	such	a
large	 amount	 of	 selection	 power,	 would	 alleviate	 some	 of	 these	 tradeoffs,
enabling	 simultaneous	 strong	 selection	 for	 multiple	 traits.	 However,	 this
procedure	would	tend	to	disrupt	the	normal	genetic	relationship	between	parents
and	child,	something	that	could	negatively	affect	demand	in	many	cultures.51

With	 further	 advances	 in	 genetic	 technology,	 it	 may	 become	 possible	 to
synthesize	 genomes	 to	 specification,	 obviating	 the	 need	 for	 large	 pools	 of
embryos.	 DNA	 synthesis	 is	 already	 a	 routine	 and	 largely	 automated
biotechnology,	 though	 it	 is	 not	 yet	 feasible	 to	 synthesize	 an	 entire	 human
genome	that	could	be	used	in	a	reproductive	context	(not	least	because	of	still-
unresolved	 difficulties	 in	 getting	 the	 epigenetics	 right).54	 But	 once	 this
technology	has	matured,	an	embryo	could	be	designed	with	the	exact	preferred
combination	of	genetic	inputs	from	each	parent.	Genes	that	are	present	in	neither
of	the	parents	could	also	be	spliced	in,	including	alleles	that	are	present	with	low
frequency	 in	 the	population	but	which	may	have	significant	positive	effects	on
cognition.55

Table	6	Possible	impacts	from	genetic	selection	in	different	scenarios52



	

One	 intervention	 that	 becomes	 possible	 when	 human	 genomes	 can	 be
synthesized	is	genetic	“spell-checking”	of	an	embryo.	(Iterated	embryo	selection
might	 also	 allow	 an	 approximation	 of	 this.)	 Each	 of	 us	 currently	 carries	 a
mutational	 load,	with	perhaps	hundreds	of	mutations	 that	 reduce	 the	efficiency
of	 various	 cellular	 processes.56	 Each	 individual	 mutation	 has	 an	 almost
negligible	effect	(whence	it	is	only	slowly	removed	from	the	gene	pool),	yet	in
combination	 such	 mutations	 may	 exact	 a	 heavy	 toll	 on	 our	 functioning.57
Individual	differences	in	intelligence	might	to	a	significant	extent	be	attributable
to	 variations	 in	 the	 number	 and	 nature	 of	 such	 slightly	 deleterious	 alleles	 that
each	of	us	carries.	With	gene	synthesis	we	could	take	the	genome	of	an	embryo
and	 construct	 a	 version	 of	 that	 genome	 free	 from	 the	 genetic	 noise	 of
accumulated	mutations.	If	one	wished	to	speak	provocatively,	one	could	say	that
individuals	created	from	such	proofread	genomes	might	be	“more	human”	than
anybody	 currently	 alive,	 in	 that	 they	 would	 be	 less	 distorted	 expressions	 of
human	form.	Such	people	would	not	all	be	carbon	copies,	because	humans	vary
genetically	 in	ways	other	 than	by	carrying	different	deleterious	mutations.	But
the	 phenotypical	manifestation	 of	 a	 proofread	 genome	may	 be	 an	 exceptional
physical	 and	 mental	 constitution,	 with	 elevated	 functioning	 in	 polygenic	 trait
dimensions	 like	 intelligence,	 health,	 hardiness,	 and	 appearance.58	 (A	 loose
analogy	 could	 be	 made	 with	 composite	 faces,	 in	 which	 the	 defects	 of	 the
superimposed	individuals	are	averaged	out:	see	Figure	6.)



Figure	6	Composite	faces	as	a	metaphor	for	spell-checked	genomes.	Each	of	the
central	pictures	was	produced	by	superimposing	photographs	of	sixteen	different
individuals	(residents	of	Tel	Aviv).	Composite	faces	are	often	judged	to	be	more
beautiful	 than	 any	 of	 the	 individual	 faces	 of	 which	 they	 are	 composed,	 as
idiosyncratic	 imperfections	 are	 averaged	 out.	 Analogously,	 by	 removing
individual	mutations,	proofread	genomes	may	produce	people	closer	to	“Platonic
ideals.”	 Such	 individuals	would	 not	 all	 be	 genetically	 identical,	 because	many
genes	 come	 in	 multiple	 equally	 functional	 alleles.	 Proofreading	 would	 only
eliminate	variance	arising	from	deleterious	mutations.59

	

Other	 potential	 biotechnological	 techniques	 might	 also	 be	 relevant.	 Human
reproductive	 cloning,	once	achieved,	 could	be	used	 to	 replicate	 the	genome	of
exceptionally	talented	individuals.	Uptake	would	be	limited	by	the	preference	of
most	 prospective	 parents	 to	 be	 biologically	 related	 to	 their	 children,	 yet	 the
practice	could	nevertheless	come	to	have	non-negligible	impact	because	(1)	even
a	relatively	small	increase	in	the	number	of	exceptionally	talented	people	might
have	a	significant	effect;	and	(2)	it	is	possible	that	some	state	would	embark	on	a
larger-scale	eugenics	program,	perhaps	by	paying	surrogate	mothers.	Other	kinds
of	genetic	engineering—such	as	the	design	of	novel	synthetic	genes	or	insertion
into	 the	 genome	 of	 promoter	 regions	 and	 other	 elements	 to	 control	 gene
expression—might	 also	 become	 important	 over	 time.	 Even	 more	 exotic
possibilities	may	exist,	such	as	vats	full	of	complexly	structured	cultured	cortical
tissue,	 or	 “uplifted”	 transgenic	 animals	 (perhaps	 some	 large-brained	 mammal
such	as	the	whale	or	elephant,	enriched	with	human	genes).	These	latter	ones	are
wholly	 speculative,	 but	 over	 a	 longer	 time	 frame	 they	 perhaps	 cannot	 be
completely	discounted.



So	far	we	have	discussed	germline	interventions,	ones	that	would	be	done	on
gametes	or	embryos.	Somatic	gene	enhancements,	by	bypassing	 the	generation
cycle,	 could	 in	 principle	 produce	 impacts	 more	 quickly.	 However,	 they	 are
technologically	much	more	challenging.	They	require	that	the	modified	genes	be
inserted	into	a	large	number	of	cells	in	the	living	body—including,	in	the	case	of
cognitive	 enhancement,	 the	 brain.	 Selecting	 among	 existing	 egg	 cells	 or
embryos,	in	contrast,	requires	no	gene	insertion.	Even	such	germline	therapies	as
do	involve	modifying	the	genome	(such	as	proofreading	the	genome	or	splicing
in	 rare	 alleles)	 are	 far	 easier	 to	 implement	 at	 the	 gamete	 or	 the	 embryo	 stage,
where	 one	 is	 dealing	 with	 a	 small	 number	 of	 cells.	 Furthermore,	 germline
interventions	 on	 embryos	 can	 probably	 achieve	 greater	 effects	 than	 somatic
interventions	on	adults,	because	 the	 former	would	be	able	 to	 shape	early	brain
development	 whereas	 the	 latter	 would	 be	 limited	 to	 tweaking	 an	 existing
structure.	(Some	of	what	could	be	done	through	somatic	gene	therapy	might	also
be	achievable	by	pharmacological	means.)

Focusing	 therefore	on	germline	 interventions,	we	must	 take	 into	account	 the
generational	 lag	 delaying	 any	 large	 impact	 on	 the	 world.60	 Even	 if	 the
technology	were	perfected	today	and	immediately	put	to	use,	it	would	take	more
than	 two	 decades	 for	 a	 genetically	 enhanced	 brood	 to	 reach	 maturity.
Furthermore,	with	human	applications	 there	 is	normally	a	delay	of	at	 least	one
decade	 between	 proof	 of	 concept	 in	 the	 laboratory	 and	 clinical	 application,
because	of	the	need	for	extensive	studies	to	determine	safety.	The	simplest	forms
of	genetic	selection,	however,	could	 largely	abrogate	 the	need	for	such	 testing,
since	 they	 would	 use	 standard	 fertility	 treatment	 techniques	 and	 genetic
information	to	choose	between	embryos	that	might	otherwise	have	been	selected
by	chance.

Delays	could	also	result	from	obstacles	rooted	not	in	a	fear	of	failure	(demand
for	 safety	 testing)	 but	 in	 fear	 of	 success—demand	 for	 regulation	 driven	 by
concerns	about	 the	moral	permissibility	of	genetic	 selection	or	 its	wider	 social
implications.	Such	concerns	are	 likely	 to	be	more	 influential	 in	some	countries
than	 in	 others,	 owing	 to	 differing	 cultural,	 historical,	 and	 religious	 contexts.
Post-war	 Germany,	 for	 example,	 has	 chosen	 to	 give	 a	 wide	 berth	 to	 any
reproductive	 practices	 that	 could	 be	 perceived	 to	 be	 even	 in	 the	 remotest	way
aimed	at	enhancement,	a	stance	that	is	understandable	given	the	particularly	dark
history	of	atrocities	connected	to	the	eugenics	movement	in	that	country.	Other
Western	countries	are	likely	to	take	a	more	liberal	approach.	And	some	countries
—perhaps	China	or	Singapore,	both	of	which	have	long-term	population	policies



—might	not	only	permit	 but	 actively	promote	 the	use	of	genetic	 selection	 and
genetic	 engineering	 to	 enhance	 the	 intelligence	 of	 their	 populations	 once	 the
technology	to	do	so	is	available.

Once	 the	 example	 has	 been	 set,	 and	 the	 results	 start	 to	 show,	 holdouts	will
have	 strong	 incentives	 to	 follow	 suit.	 Nations	 would	 face	 the	 prospect	 of
becoming	cognitive	backwaters	and	losing	out	in	economic,	scientific,	military,
and	 prestige	 contests	 with	 competitors	 that	 embrace	 the	 new	 human
enhancement	technologies.	Individuals	within	a	society	would	see	places	at	elite
schools	being	filled	with	genetically	selected	children	(who	may	also	on	average
be	prettier,	healthier,	and	more	conscientious)	and	will	want	their	own	offspring
to	have	the	same	advantages.	There	is	some	chance	that	a	large	attitudinal	shift
could	 take	 place	 over	 a	 relatively	 short	 time,	 perhaps	 in	 as	 little	 as	 a	 decade,
once	 the	 technology	 is	 proven	 to	 work	 and	 to	 provide	 a	 substantial	 benefit.
Opinion	surveys	in	the	United	States	reveal	a	dramatic	shift	in	public	approval	of
in	vitro	fertilization	after	the	birth	of	the	first	“test	tube	baby,”	Louise	Brown,	in
1978.	A	 few	years	 earlier,	 only	18%	of	Americans	 said	 they	would	personally
use	 IVF	 to	 treat	 infertility;	yet	 in	 a	poll	 taken	 shortly	 after	 the	birth	of	Louise
Brown,	53%	said	they	would	do	so,	and	the	number	has	continued	to	rise.61	(For
comparison,	 in	 a	 poll	 taken	 in	 2004,	 28%	 of	 Americans	 approved	 of	 embryo
selection	 for	“strength	or	 intelligence,”	58%	approved	of	 it	 for	avoiding	adult-
onset	cancer,	and	68%	approved	of	it	to	avoid	fatal	childhood	disease.62)

If	 we	 add	 up	 the	 various	 delays—say	 five	 to	 ten	 years	 to	 gather	 the
information	 needed	 for	 significantly	 effective	 selection	 among	 a	 set	 of	 IVF
embryos	 (possibly	much	 longer	before	 stem	cell-derived	gametes	 are	 available
for	use	in	human	reproduction),	ten	years	to	build	significant	uptake,	and	twenty
to	twenty-five	years	for	the	enhanced	generation	to	reach	an	age	where	they	start
becoming	productive,	we	find	that	germline	enhancements	are	unlikely	to	have	a
significant	impact	on	society	before	the	middle	of	this	century.	From	that	point
onward,	however,	the	intelligence	of	significant	segments	of	the	adult	population
may	 begin	 to	 be	 boosted	 by	 genetic	 enhancements.	 The	 speed	 of	 the	 ascent
would	 then	 greatly	 accelerate	 as	 cohorts	 conceived	 using	more	 powerful	 next-
generation	 genetic	 technologies	 (in	 particular	 stem	 cell-derived	 gametes	 and
iterative	embryo	selection)	enter	the	labor	force.

With	the	full	development	of	the	genetic	technologies	described	above	(setting
aside	the	more	exotic	possibilities	such	as	intelligence	in	cultured	neural	tissue),
it	might	be	possible	to	ensure	that	new	individuals	are	on	average	smarter	than



any	human	who	has	yet	existed,	with	peaks	that	rise	higher	still.	The	potential	of
biological	 enhancement	 is	 thus	 ultimately	 high,	 probably	 sufficient	 for	 the
attainment	 of	 at	 least	 weak	 forms	 of	 superintelligence.	 This	 should	 not	 be
surprising.	After	 all,	 dumb	evolutionary	processes	 have	dramatically	 amplified
the	intelligence	in	the	human	lineage	even	compared	with	our	close	relatives	the
great	apes	and	our	own	humanoid	ancestors;	and	 there	 is	no	reason	to	suppose
Homo	sapiens	to	have	reached	the	apex	of	cognitive	effectiveness	attainable	in	a
biological	 system.	 Far	 from	being	 the	 smartest	 possible	 biological	 species,	we
are	 probably	 better	 thought	 of	 as	 the	 stupidest	 possible	 biological	 species
capable	of	starting	a	technological	civilization—a	niche	we	filled	because	we	got
there	first,	not	because	we	are	in	any	sense	optimally	adapted	to	it.

Progress	along	the	biological	path	is	clearly	feasible.	The	generational	lag	in
germline	 interventions	means	 that	 progress	 could	 not	 be	 nearly	 as	 sudden	 and
abrupt	 as	 in	 scenarios	 involving	machine	 intelligence.	 (Somatic	gene	 therapies
and	pharmacological	interventions	could	theoretically	skip	the	generational	lag,
but	they	seem	harder	to	perfect	and	are	less	likely	to	produce	dramatic	effects.)
The	ultimate	potential	of	machine	 intelligence	 is,	of	course,	vastly	greater	 than
that	of	organic	intelligence.	(One	can	get	some	sense	of	the	magnitude	of	the	gap
by	considering	 the	speed	differential	between	electronic	components	and	nerve
cells:	 even	 today’s	 transistors	 operate	 on	 a	 timescale	 ten	million	 times	 shorter
than	 that	 of	 biological	 neurons.)	 However,	 even	 comparatively	 moderate
enhancements	 of	 biological	 cognition	 could	 have	 important	 consequences.	 In
particular,	 cognitive	 enhancement	 could	 accelerate	 science	 and	 technology,
including	 progress	 toward	 more	 potent	 forms	 of	 biological	 intelligence
amplification	and	machine	intelligence.	Consider	how	the	rate	of	progress	in	the
field	of	artificial	intelligence	would	change	in	a	world	where	Average	Joe	is	an
intellectual	 peer	 of	Alan	Turing	or	 John	von	Neumann,	 and	where	millions	of
people	tower	far	above	any	intellectual	giant	of	the	past.63

A	discussion	of	the	strategic	implications	of	cognitive	enhancement	will	have
to	 await	 a	 later	 chapter.	 But	 we	 can	 summarize	 this	 section	 by	 noting	 three
conclusions:	 (1)	 at	 least	 weak	 forms	 of	 superintelligence	 are	 achievable	 by
means	 of	 biotechnological	 enhancements;	 (2)	 the	 feasibility	 of	 cognitively
enhanced	 humans	 adds	 to	 the	 plausibility	 that	 advanced	 forms	 of	 machine
intelligence	 are	 feasible—because	 even	 if	 we	 were	 fundamentally	 unable	 to
create	 machine	 intelligence	 (which	 there	 is	 no	 reason	 to	 suppose),	 machine
intelligence	might	still	be	within	reach	of	cognitively	enhanced	humans;	and	(3)
when	we	consider	scenarios	stretching	significantly	into	the	second	half	of	this



century	 and	 beyond,	 we	 must	 take	 into	 account	 the	 probable	 emergence	 of	 a
generation	of	 genetically	 enhanced	populations—voters,	 inventors,	 scientists—
with	the	magnitude	of	enhancement	escalating	rapidly	over	subsequent	decades.

Brain–computer	interfaces

	

It	 is	 sometimes	 proposed	 that	 direct	 brain–computer	 interfaces,	 particularly
implants,	 could	 enable	 humans	 to	 exploit	 the	 fortes	 of	 digital	 computing—
perfect	 recall,	 speedy	 and	 accurate	 arithmetic	 calculation,	 and	 high-bandwidth
data	transmission—enabling	the	resulting	hybrid	system	to	radically	outperform
the	 unaugmented	 brain.64	 But	 although	 the	 possibility	 of	 direct	 connections
between	human	brains	and	computers	has	been	demonstrated,	it	seems	unlikely
that	such	interfaces	will	be	widely	used	as	enhancements	any	time	soon.65

To	begin	with,	there	are	significant	risks	of	medical	complications—including
infections,	 electrode	 displacement,	 hemorrhage,	 and	 cognitive	 decline—when
implanting	electrodes	in	the	brain.	Perhaps	the	most	vivid	illustration	to	date	of
the	 benefits	 that	 can	 be	 obtained	 through	 brain	 stimulation	 is	 the	 treatment	 of
patients	with	Parkinson’s	disease.	The	Parkinson’s	implant	is	relatively	simple:	it
does	 not	 really	 communicate	with	 the	 brain	 but	 simply	 supplies	 a	 stimulating
electric	 current	 to	 the	 subthalamic	 nucleus.	 A	 demonstration	 video	 shows	 a
subject	 slumped	 in	 a	 chair,	 completely	 immobilized	 by	 the	 disease,	 then
suddenly	 springing	 to	 life	 when	 the	 current	 is	 switched	 on:	 the	 subject	 now
moves	his	arms,	stands	up	and	walks	across	the	room,	turns	around	and	performs
a	 pirouette.	 Yet	 even	 behind	 this	 especially	 simple	 and	 almost	 miraculously
successful	procedure,	there	lurk	negatives.	One	study	of	Parkinson	patients	who
had	received	deep	brain	implants	showed	reductions	in	verbal	fluency,	selective
attention,	 color	 naming,	 and	 verbal	 memory	 compared	 with	 controls.	 Treated
subjects	also	reported	more	cognitive	complaints.66	Such	 risks	and	side	effects
might	be	 tolerable	 if	 the	procedure	 is	used	 to	alleviate	severe	disability.	But	 in
order	for	healthy	subjects	to	volunteer	themselves	for	neurosurgery,	there	would
have	 to	 be	 some	 very	 substantial	 enhancement	 of	 normal	 functionality	 to	 be
gained.

This	 brings	 us	 to	 the	 second	 reason	 to	 doubt	 that	 superintelligence	 will	 be
achieved	 through	 cyborgization,	 namely	 that	 enhancement	 is	 likely	 to	 be	 far
more	 difficult	 than	 therapy.	 Patients	 who	 suffer	 from	 paralysis	 might	 benefit



from	 an	 implant	 that	 replaces	 their	 severed	 nerves	 or	 activates	 spinal	 motion
pattern	generators.67	Patients	who	are	deaf	or	blind	might	benefit	from	artificial
cochleae	and	retinas.68	Patients	with	Parkinson’s	disease	or	chronic	pain	might
benefit	from	deep	brain	stimulation	that	excites	or	inhibits	activity	in	a	particular
area	of	the	brain.69	What	seems	far	more	difficult	to	achieve	is	a	high-bandwidth
direct	interaction	between	brain	and	computer	to	provide	substantial	increases	in
intelligence	of	 a	 form	 that	 could	not	be	more	 readily	 attained	by	other	means.
Most	 of	 the	 potential	 benefits	 that	 brain	 implants	 could	 provide	 in	 healthy
subjects	could	be	obtained	at	far	less	risk,	expense,	and	inconvenience	by	using
our	regular	motor	and	sensory	organs	to	interact	with	computers	located	outside
of	our	bodies.	We	do	not	need	to	plug	a	fiber	optic	cable	into	our	brains	in	order
to	 access	 the	 Internet.	 Not	 only	 can	 the	 human	 retina	 transmit	 data	 at	 an
impressive	rate	of	nearly	10	million	bits	per	second,	but	it	comes	pre-packaged
with	 a	massive	 amount	 of	 dedicated	wetware,	 the	 visual	 cortex,	 that	 is	 highly
adapted	 to	 extracting	meaning	 from	 this	 information	 torrent	 and	 to	 interfacing
with	other	brain	areas	for	further	processing.70	Even	if	there	were	an	easy	way	of
pumping	more	information	into	our	brains,	the	extra	data	inflow	would	do	little
to	increase	the	rate	at	which	we	think	and	learn	unless	all	the	neural	machinery
necessary	 for	 making	 sense	 of	 the	 data	 were	 similarly	 upgraded.	 Since	 this
includes	almost	all	of	the	brain,	what	would	really	be	needed	is	a	“whole	brain
prosthesis–—which	is	 just	another	way	of	saying	artificial	general	 intelligence.
Yet	 if	 one	 had	 a	 human-level	 AI,	 one	 could	 dispense	 with	 neurosurgery:	 a
computer	might	as	well	have	a	metal	casing	as	one	of	bone.	So	this	limiting	case
just	takes	us	back	to	the	AI	path,	which	we	have	already	examined.

Brain–computer	 interfacing	 has	 also	 been	 proposed	 as	 a	 way	 to	 get
information	out	of	the	brain,	for	purposes	of	communicating	with	other	brains	or
with	machines.71	Such	uplinks	have	helped	patients	with	locked-in	syndrome	to
communicate	with	 the	 outside	world	 by	 enabling	 them	 to	move	 a	 cursor	 on	 a
screen	 by	 thought.72	 The	 bandwidth	 attained	 in	 such	 experiments	 is	 low:	 the
patient	 painstakingly	 types	 out	 one	 slow	 letter	 after	 another	 at	 a	 rate	 of	 a	 few
words	per	minute.	One	can	readily	imagine	improved	versions	of	this	technology
—perhaps	a	next-generation	implant	could	plug	into	Broca’s	area	(a	region	in	the
frontal	lobe	involved	in	language	production)	and	pick	up	internal	speech.73	But
whilst	such	a	 technology	might	assist	some	people	with	disabilities	 induced	by
stroke	or	muscular	degeneration,	it	would	hold	little	appeal	for	healthy	subjects.
The	 functionality	 it	would	provide	 is	 essentially	 that	 of	 a	microphone	 coupled
with	 speech	 recognition	 software,	 which	 is	 already	 commercially	 available—



minus	the	pain,	inconvenience,	expense,	and	risks	associated	with	neurosurgery
(and	 minus	 at	 least	 some	 of	 the	 hyper-Orwellian	 overtones	 of	 an	 intracranial
listening	 device).	 Keeping	 our	 machines	 outside	 of	 our	 bodies	 also	 makes
upgrading	easier.

But	what	 about	 the	 dream	of	 bypassing	words	 altogether	 and	 establishing	 a
connection	between	two	brains	that	enables	concepts,	thoughts,	or	entire	areas	of
expertise	to	be	“downloaded”	from	one	mind	to	another?	We	can	download	large
files	 to	 our	 computers,	 including	 libraries	with	millions	 of	 books	 and	 articles,
and	 this	 can	 be	 done	 over	 the	 course	 of	 seconds:	 could	 something	 similar	 be
done	 with	 our	 brains?	 The	 apparent	 plausibility	 of	 this	 idea	 probably	 derives
from	an	incorrect	view	of	how	information	is	stored	and	represented	in	the	brain.
As	noted,	 the	 rate-limiting	step	 in	human	 intelligence	 is	not	how	fast	 raw	data
can	be	fed	 into	 the	brain	but	 rather	how	quickly	 the	brain	can	extract	meaning
and	 make	 sense	 of	 the	 data.	 Perhaps	 it	 will	 be	 suggested	 that	 we	 transmit
meanings	 directly,	 rather	 than	 package	 them	 into	 sensory	 data	 that	 must	 be
decoded	 by	 the	 recipient.	 There	 are	 two	 problems	 with	 this.	 The	 first	 is	 that
brains,	by	contrast	to	the	kinds	of	program	we	typically	run	on	our	computers,	do
not	use	standardized	data	storage	and	representation	formats.	Rather,	each	brain
develops	 its	 own	 idiosyncratic	 representations	 of	 higher-level	 content.	 Which
particular	 neuronal	 assemblies	 are	 recruited	 to	 represent	 a	 particular	 concept
depends	on	the	unique	experiences	of	the	brain	in	question	(along	with	various
genetic	factors	and	stochastic	physiological	processes).	Just	as	in	artificial	neural
nets,	meaning	in	biological	neural	networks	 is	 likely	represented	holistically	 in
the	structure	and	activity	patterns	of	sizeable	overlapping	regions,	not	in	discrete
memory	 cells	 laid	 out	 in	 neat	 arrays.74	 It	 would	 therefore	 not	 be	 possible	 to
establish	 a	 simple	 mapping	 between	 the	 neurons	 in	 one	 brain	 and	 those	 in
another	in	such	a	way	that	thoughts	could	automatically	slide	over	from	one	to
the	other.	In	order	for	the	thoughts	of	one	brain	to	be	intelligible	to	another,	the
thoughts	need	to	be	decomposed	and	packaged	into	symbols	according	to	some
shared	 convention	 that	 allows	 the	 symbols	 to	 be	 correctly	 interpreted	 by	 the
receiving	brain.	This	is	the	job	of	language.

In	principle,	one	could	imagine	offloading	the	cognitive	work	of	articulation
and	interpretation	to	an	interface	that	would	somehow	read	out	the	neural	states
in	the	sender’s	brain	and	somehow	feed	in	a	bespoke	pattern	of	activation	to	the
receiver’s	 brain.	 But	 this	 brings	 us	 to	 the	 second	 problem	 with	 the	 cyborg
scenario.	Even	setting	aside	 the	(quite	 immense)	 technical	challenge	of	how	to
reliably	 read	 and	 write	 simultaneously	 from	 perhaps	 billions	 of	 individually



addressable	neurons,	creating	the	requisite	interface	is	probably	an	AI-complete
problem.	The	interface	would	need	to	include	a	component	able	(in	real-time)	to
map	 firing	patterns	 in	one	brain	onto	semantically	equivalent	 firing	patterns	 in
the	other	brain.	The	detailed	multilevel	understanding	of	the	neural	computation
needed	 to	accomplish	such	a	 task	would	seem	to	directly	enable	neuromorphic
AI.

Despite	these	reservations,	the	cyborg	route	toward	cognitive	enhancement	is
not	 entirely	 without	 promise.	 Impressive	 work	 on	 the	 rat	 hippocampus	 has
demonstrated	the	feasibility	of	a	neural	prosthesis	that	can	enhance	performance
in	a	simple	working-memory	task.75	 In	 its	present	version,	 the	 implant	collects
input	 from	 a	 dozen	 or	 two	 electrodes	 located	 in	 one	 area	 (“CA3”)	 of	 the
hippocampus	 and	 projects	 onto	 a	 similar	 number	 of	 neurons	 in	 another	 area
(“CA1”).	 A	 microprocessor	 is	 trained	 to	 discriminate	 between	 two	 different
firing	patterns	in	the	first	area	(corresponding	to	two	different	memories,	“right
lever”	 or	 “left	 lever”)	 and	 to	 learn	 how	 these	 patterns	 are	 projected	 into	 the
second	 area.	 This	 prosthesis	 can	 not	 only	 restore	 function	 when	 the	 normal
neural	connection	between	the	two	neural	areas	is	blockaded,	but	by	sending	an
especially	clear	 token	of	a	particular	memory	pattern	 to	 the	 second	area	 it	 can
enhance	 the	performance	on	 the	memory	 task	beyond	what	 the	 rat	 is	normally
capable	of.	While	a	technical	tour	de	force	by	contemporary	standards,	the	study
leaves	 many	 challenging	 questions	 unanswered:	 How	 well	 does	 the	 approach
scale	 to	 greater	 numbers	 of	 memories?	 How	 well	 can	 we	 control	 the
combinatorial	 explosion	 that	 otherwise	 threatens	 to	 make	 learning	 the	 correct
mapping	infeasible	as	the	number	of	input	and	output	neurons	is	increased?	Does
the	 enhanced	 performance	 on	 the	 test	 task	 come	 at	 some	hidden	 cost,	 such	 as
reduced	ability	to	generalize	from	the	particular	stimulus	used	in	the	experiment,
or	 reduced	 ability	 to	 unlearn	 the	 association	 when	 the	 environment	 changes?
Would	 the	 test	subjects	still	 somehow	benefit	even	 if—unlike	rats—they	could
avail	 themselves	 of	 external	 memory	 aids	 such	 as	 pen	 and	 paper?	 And	 how
much	harder	would	it	be	 to	apply	a	similar	method	to	other	parts	of	 the	brain?
Whereas	 the	 present	 prosthesis	 takes	 advantage	 of	 the	 relatively	 simple	 feed-
forward	 structure	 of	 parts	 of	 the	 hippocampus	 (basically	 serving	 as	 a
unidirectional	bridge	between	areas	CA3	and	CA1),	other	structures	in	the	cortex
involve	convoluted	feedback	loops	which	greatly	increase	the	complexity	of	the
wiring	diagram	and,	presumably,	 the	difficulty	of	deciphering	 the	 functionality
of	any	embedded	group	of	neurons.

One	hope	for	the	cyborg	route	is	that	the	brain,	if	permanently	implanted	with



a	 device	 connecting	 it	 to	 some	 external	 resource,	 would	 over	 time	 learn	 an
effective	 mapping	 between	 its	 own	 internal	 cognitive	 states	 and	 the	 inputs	 it
receives	 from,	 or	 the	 outputs	 accepted	 by,	 the	 device.	 Then	 the	 implant	 itself
would	not	need	to	be	intelligent;	rather,	the	brain	would	intelligently	adapt	to	the
interface,	much	as	the	brain	of	an	infant	gradually	learns	to	interpret	the	signals
arriving	from	receptors	in	its	eyes	and	ears.76	But	here	again	one	must	question
how	much	would	really	be	gained.	Suppose	that	the	brain’s	plasticity	were	such
that	it	could	learn	to	detect	patterns	in	some	new	input	stream	arbitrary	projected
onto	some	part	of	 the	cortex	by	means	of	a	brain–computer	 interface:	why	not
project	the	same	information	onto	the	retina	instead,	as	a	visual	pattern,	or	onto
the	 cochlea	 as	 sounds?	 The	 low-tech	 alternative	 avoids	 a	 thousand
complications,	and	 in	either	case	 the	brain	could	deploy	 its	pattern-recognition
mechanisms	and	plasticity	to	learn	to	make	sense	of	the	information.

Networks	and	organizations

	

Another	 conceivable	 path	 to	 superintelligence	 is	 through	 the	 gradual
enhancement	 of	 networks	 and	 organizations	 that	 link	 individual	 human	minds
with	one	another	 and	with	various	 artifacts	 and	bots.	The	 idea	here	 is	not	 that
this	would	enhance	the	intellectual	capacity	of	individuals	enough	to	make	them
superintelligent,	 but	 rather	 that	 some	 system	 composed	 of	 individuals	 thus
networked	and	organized	might	attain	a	form	of	superintelligence—what	in	the
next	chapter	we	will	elaborate	as	“collective	superintelligence.”77

Humanity	has	gained	enormously	in	collective	intelligence	over	the	course	of
history	 and	 prehistory.	 The	 gains	 come	 from	 many	 sources,	 including
innovations	 in	 communications	 technology,	 such	 as	 writing	 and	 printing,	 and
above	all	 the	 introduction	of	 language	 itself;	 increases	 in	 the	size	of	 the	world
population	and	the	density	of	habitation;	various	improvements	in	organizational
techniques	 and	 epistemic	 norms;	 and	 a	 gradual	 accumulation	 of	 institutional
capital.	 In	 general	 terms,	 a	 system’s	 collective	 intelligence	 is	 limited	 by	 the
abilities	 of	 its	 member	 minds,	 the	 overheads	 in	 communicating	 relevant
information	 between	 them,	 and	 the	 various	 distortions	 and	 inefficiencies	 that
pervade	 human	 organizations.	 If	 communication	 overheads	 are	 reduced
(including	 not	 only	 equipment	 costs	 but	 also	 response	 latencies,	 time	 and
attention	 burdens,	 and	 other	 factors),	 then	 larger	 and	more	 densely	 connected



organizations	 become	 feasible.	 The	 same	 could	 happen	 if	 fixes	 are	 found	 for
some	 of	 the	 bureaucratic	 deformations	 that	warp	 organizational	 life—wasteful
status	 games,	 mission	 creep,	 concealment	 or	 falsification	 of	 information,	 and
other	agency	problems.	Even	partial	solutions	to	these	problems	could	pay	hefty
dividends	for	collective	intelligence.

The	 technological	 and	 institutional	 innovations	 that	 could	 contribute	 to	 the
growth	 of	 our	 collective	 intelligence	 are	 many	 and	 various.	 For	 example,
subsidized	 prediction	 markets	 might	 foster	 truth-seeking	 norms	 and	 improve
forecasting	on	contentious	scientific	and	social	issues.78	Lie	detectors	(should	it
prove	feasible	 to	make	ones	 that	are	reliable	and	easy	 to	use)	could	reduce	 the
scope	for	deception	 in	human	affairs.79	Self-deception	detectors	might	be	even
more	powerful.80	 Even	without	 newfangled	 brain	 technologies,	 some	 forms	 of
deception	might	 become	 harder	 to	 practice	 thanks	 to	 increased	 availability	 of
many	kinds	of	data,	including	reputations	and	track	records,	or	the	promulgation
of	 strong	 epistemic	 norms	 and	 rationality	 culture.	 Voluntary	 and	 involuntary
surveillance	 will	 amass	 vast	 amounts	 of	 information	 about	 human	 behavior.
Social	 networking	 sites	 are	 already	 used	 by	 over	 a	 billion	 people	 to	 share
personal	 details:	 soon,	 these	 people	 might	 begin	 uploading	 continuous	 life
recordings	 from	 microphones	 and	 video	 cameras	 embedded	 in	 their	 smart
phones	or	eyeglass	frames.	Automated	analysis	of	such	data	streams	will	enable
many	new	applications	(sinister	as	well	as	benign,	of	course).81

Growth	 in	 collective	 intelligence	 may	 also	 come	 from	 more	 general
organizational	and	economic	 improvements,	and	from	enlarging	 the	fraction	of
the	world’s	population	that	 is	educated,	digitally	connected,	and	integrated	into
global	intellectual	culture.82

The	Internet	stands	out	as	a	particularly	dynamic	frontier	 for	 innovation	and
experimentation.	Most	of	its	potential	may	still	remain	unexploited.	Continuing
development	 of	 an	 intelligent	 Web,	 with	 better	 support	 for	 deliberation,	 de-
biasing,	and	judgment	aggregation,	might	make	large	contributions	to	increasing
the	collective	intelligence	of	humanity	as	a	whole	or	of	particular	groups.

But	what	of	the	seemingly	more	fanciful	idea	that	the	Internet	might	one	day
“wake	up”?	Could	the	Internet	become	something	more	than	just	 the	backbone
of	 a	 loosely	 integrated	 collective	 superintelligence—something	 more	 like	 a
virtual	 skull	 housing	 an	 emerging	 unified	 superintellect?	 (This	was	 one	 of	 the
ways	 that	 superintelligence	 could	 arise	 according	 to	Vernor	Vinge’s	 influential



1993	 essay,	which	 coined	 the	 term	 “technological	 singularity.”83)	Against	 this
one	 could	 object	 that	machine	 intelligence	 is	 hard	 enough	 to	 achieve	 through
arduous	 engineering,	 and	 that	 it	 is	 incredible	 to	 suppose	 that	 it	 will	 arise
spontaneously.	However,	 the	 story	need	not	be	 that	 some	future	version	of	 the
Internet	 suddenly	 becomes	 superintelligent	 by	 mere	 happenstance.	 A	 more
plausible	 version	 of	 the	 scenario	 would	 be	 that	 the	 Internet	 accumulates
improvements	 through	 the	 work	 of	 many	 people	 over	 many	 years—work	 to
engineer	better	search	and	information	filtering	algorithms,	more	powerful	data
representation	 formats,	 more	 capable	 autonomous	 software	 agents,	 and	 more
efficient	 protocols	 governing	 the	 interactions	 between	 such	 bots—and	 that
myriad	 incremental	 improvements	 eventually	 create	 the	 basis	 for	 some	 more
unified	form	of	web	intelligence.	It	seems	at	least	conceivable	that	such	a	web-
based	 cognitive	 system,	 supersaturated	 with	 computer	 power	 and	 all	 other
resources	 needed	 for	 explosive	 growth	 save	 for	 one	 crucial	 ingredient,	 could,
when	 the	 final	missing	constituent	 is	dropped	 into	 the	 cauldron,	blaze	up	with
superintelligence.	This	type	of	scenario,	though,	converges	into	another	possible
path	 to	 superintelligence,	 that	 of	 artificial	 general	 intelligence,	which	we	 have
already	discussed.

Summary

	

The	fact	that	there	are	many	paths	that	lead	to	superintelligence	should	increase
our	 confidence	 that	 we	 will	 eventually	 get	 there.	 If	 one	 path	 turns	 out	 to	 be
blocked,	we	can	still	progress.

That	 there	 are	 multiple	 paths	 does	 not	 entail	 that	 there	 are	 multiple
destinations.	 Even	 if	 significant	 intelligence	 amplification	 were	 first	 achieved
along	one	of	the	non-machine-intelligence	paths,	this	would	not	render	machine
intelligence	irrelevant.	Quite	the	contrary:	enhanced	biological	or	organizational
intelligence	 would	 accelerate	 scientific	 and	 technological	 developments,
potentially	 hastening	 the	 arrival	 of	 more	 radical	 forms	 of	 intelligence
amplification	such	as	whole	brain	emulation	and	AI.

This	 is	 not	 to	 say	 that	 it	 is	 a	matter	 of	 indifference	how	we	get	 to	machine
superintelligence.	The	path	taken	to	get	there	could	make	a	big	difference	to	the
eventual	 outcome.	 Even	 if	 the	 ultimate	 capabilities	 that	 are	 obtained	 do	 not
depend	much	on	the	trajectory,	how	those	capabilities	will	be	used—how	much



control	we	humans	have	over	their	disposition—might	well	depend	on	details	of
our	 approach.	 For	 example,	 enhancements	 of	 biological	 or	 organizational
intelligence	might	 increase	our	ability	 to	anticipate	 risk	and	 to	design	machine
superintelligence	that	is	safe	and	beneficial.	(A	full	strategic	assessment	involves
many	complexities,	and	will	have	to	await	Chapter	14.)

True	superintelligence	 (as	opposed	 to	marginal	 increases	 in	current	 levels	of
intelligence)	 might	 plausibly	 first	 be	 attained	 via	 the	 AI	 path.	 There	 are,
however,	many	fundamental	uncertainties	along	this	path.	This	makes	it	difficult
to	rigorously	assess	how	long	the	path	is	or	how	many	obstacles	there	are	along
the	 way.	 The	 whole	 brain	 emulation	 path	 also	 has	 some	 chance	 of	 being	 the
quickest	 route	 to	 superintelligence.	 Since	 progress	 along	 this	 path	 requires
mainly	 incremental	 technological	 advances	 rather	 than	 theoretical
breakthroughs,	 a	 strong	 case	 can	 be	 made	 that	 it	 will	 eventually	 succeed.	 It
seems	 fairly	 likely,	 however,	 that	 even	 if	 progress	 along	 the	 whole	 brain
emulation	path	 is	 swift,	artificial	 intelligence	will	nevertheless	be	 first	 to	cross
the	finishing	line:	this	is	because	of	the	possibility	of	neuromorphic	AIs	based	on
partial	emulations.

Biological	 cognitive	 enhancements	 are	 clearly	 feasible,	 particularly	 ones
based	 on	 genetic	 selection.	 Iterated	 embryo	 selection	 currently	 seems	 like	 an
especially	 promising	 technology.	 Compared	 with	 possible	 breakthroughs	 in
machine	 intelligence,	 however,	 biological	 enhancements	 would	 be	 relatively
slow	 and	 gradual.	 They	 would,	 at	 best,	 result	 in	 relatively	 weak	 forms	 of
superintelligence	(more	on	this	shortly).

The	 clear	 feasibility	 of	 biological	 enhancement	 should	 increase	 our
confidence	 that	 machine	 intelligence	 is	 ultimately	 achievable,	 since	 enhanced
human	 scientists	 and	 engineers	will	 be	 able	 to	make	more	 and	 faster	 progress
than	 their	 au	 naturel	 counterparts.	 Especially	 in	 scenarios	 in	 which	 machine
intelligence	 is	 delayed	 beyond	 mid-century,	 the	 increasingly	 cognitively
enhanced	 cohorts	 coming	 onstage	 will	 play	 a	 growing	 role	 in	 subsequent
developments.

Brain–computer	 interfaces	 look	 unlikely	 as	 a	 source	 of	 superintelligence.
Improvements	 in	 networks	 and	 organizations	 might	 result	 in	 weakly
superintelligent	forms	of	collective	intelligence	in	the	long	run;	but	more	likely,
they	 will	 play	 an	 enabling	 role	 similar	 to	 that	 of	 biological	 cognitive
enhancement,	 gradually	 increasing	 humanity’s	 effective	 ability	 to	 solve



intellectual	 problems.	 Compared	 with	 biological	 enhancements,	 advances	 in
networks	and	organization	will	make	a	difference	sooner—in	fact,	such	advances
are	occurring	continuously	and	are	having	a	significant	impact	already.	However,
improvements	 in	 networks	 and	 organizations	may	 yield	 narrower	 increases	 in
our	problem-solving	capacity	than	will	improvements	in	biological	cognition—
boosting	“collective	intelligence”	rather	than	“quality	intelligence,”	to	anticipate
a	distinction	we	are	about	to	introduce	in	the	next	chapter.



CHAPTER	3
Forms	of	superintelligence

	

So	what,	exactly,	do	we	mean	by	“superintelligence”?	While	we	do	not	wish
to	get	bogged	down	in	terminological	swamps,	something	needs	to	be	said	to
clarify	the	conceptual	ground.	This	chapter	identifies	three	different	forms
of	superintelligence,	and	argues	that	they	are,	in	a	practically	relevant	sense,
equivalent.	We	 also	 show	 that	 the	 potential	 for	 intelligence	 in	 a	 machine
substrate	 is	 vastly	greater	 than	 in	a	biological	 substrate.	Machines	have	a
number	 of	 fundamental	 advantages	 which	 will	 give	 them	 overwhelming
superiority.	Biological	humans,	even	if	enhanced,	will	be	outclassed.

Many	machines	and	nonhuman	animals	already	perform	at	superhuman	levels	in
narrow	 domains.	 Bats	 interpret	 sonar	 signals	 better	 than	 man,	 calculators
outperform	us	in	arithmetic,	and	chess	programs	beat	us	in	chess.	The	range	of
specific	tasks	that	can	be	better	performed	by	software	will	continue	to	expand.
But	 although	 specialized	 information	processing	 systems	will	have	many	uses,
there	are	additional	profound	issues	that	arise	only	with	the	prospect	of	machine
intellects	 that	have	enough	general	 intelligence	 to	substitute	 for	humans	across
the	board.

As	 previously	 indicated,	 we	 use	 the	 term	 “superintelligence”	 to	 refer	 to
intellects	that	greatly	outperform	the	best	current	human	minds	across	many	very
general	 cognitive	 domains.	This	 is	 still	 quite	 vague.	Different	 kinds	 of	 system
with	 rather	disparate	performance	attributes	could	qualify	as	 superintelligences
under	 this	definition.	To	advance	 the	analysis,	 it	 is	helpful	 to	disaggregate	 this
simple	 notion	 of	 superintelligence	 by	 distinguishing	 different	 bundles	 of
intellectual	 super-capabilities.	 There	 are	 many	 ways	 in	 which	 such
decomposition	 could	be	done.	Here	we	will	 differentiate	 between	 three	 forms:
speed	 superintelligence,	 collective	 superintelligence,	 and	 quality
superintelligence.

Speed	superintelligence



	

A	speed	superintelligence	is	an	intellect	that	is	just	like	a	human	mind	but	faster.
This	 is	 conceptually	 the	 easiest	 form	 of	 superintelligence	 to	 analyze.1	We	 can
define	speed	superintelligence	as	follows:

Speed	superintelligence:	A	system	 that	 can	do	all	 that	 a	human	 intellect
can	do,	but	much	faster.

	
	

By	“much”	we	here	mean	 something	 like	“multiple	orders	of	magnitude.”	But
rather	 than	 try	 to	expunge	every	 remnant	of	vagueness	 from	the	definition,	we
will	entrust	the	reader	with	interpreting	it	sensibly.2

The	 simplest	 example	 of	 speed	 superintelligence	 would	 be	 a	 whole	 brain
emulation	running	on	fast	hardware.3	An	emulation	operating	at	a	speed	of	 ten
thousand	times	that	of	a	biological	brain	would	be	able	to	read	a	book	in	a	few
seconds	 and	 write	 a	 PhD	 thesis	 in	 an	 afternoon.	 With	 a	 speedup	 factor	 of	 a
million,	 an	 emulation	 could	 accomplish	 an	 entire	 millennium	 of	 intellectual
work	in	one	working	day.4

To	 such	 a	 fast	mind,	 events	 in	 the	 external	world	 appear	 to	 unfold	 in	 slow
motion.	Suppose	your	mind	ran	at	10,000×.	If	your	fleshly	friend	should	happen
to	 drop	 his	 teacup,	 you	 could	watch	 the	 porcelain	 slowly	 descend	 toward	 the
carpet	 over	 the	 course	 of	 several	 hours,	 like	 a	 comet	 silently	 gliding	 through
space	toward	an	assignation	with	a	far-off	planet;	and,	as	the	anticipation	of	the
coming	crash	 tardily	propagates	 through	 the	 folds	of	your	 friend’s	gray	matter
and	from	thence	out	 into	his	peripheral	nervous	system,	you	could	observe	his
body	gradually	assuming	the	aspect	of	a	frozen	oops—enough	time	for	you	not
only	to	order	a	replacement	cup	but	also	to	read	a	couple	of	scientific	papers	and
take	a	nap.

Because	 of	 this	 apparent	 time	 dilation	 of	 the	 material	 world,	 a	 speed
superintelligence	 would	 prefer	 to	 work	 with	 digital	 objects.	 It	 could	 live	 in
virtual	 reality	 and	 deal	 in	 the	 information	 economy.	 Alternatively,	 it	 could
interact	 with	 the	 physical	 environment	 by	 means	 of	 nanoscale	 manipulators,
since	 limbs	 at	 such	 small	 scales	 could	 operate	 faster	 than	 macroscopic
appendages.	 (The	 characteristic	 frequency	 of	 a	 system	 tends	 to	 be	 inversely



proportional	to	its	length	scale.5)	A	fast	mind	might	commune	mainly	with	other
fast	minds	rather	than	with	bradytelic,	molasses-like	humans.

The	speed	of	light	becomes	an	increasingly	important	constraint	as	minds	get
faster,	since	faster	minds	face	greater	opportunity	costs	 in	 the	use	of	 their	 time
for	traveling	or	communicating	over	long	distances.6	Light	is	roughly	a	million
times	 faster	 than	 a	 jet	 plane,	 so	 it	 would	 take	 a	 digital	 agent	 with	 a	 mental
speedup	of	1,000,000×	about	the	same	amount	of	subjective	time	to	travel	across
the	 globe	 as	 it	 does	 a	 contemporary	 human	 journeyer.	Dialing	 somebody	 long
distance	 would	 take	 as	 long	 as	 getting	 there	 “in	 person,”	 though	 it	 would	 be
cheaper	 as	 a	 call	 would	 require	 less	 bandwidth.	 Agents	 with	 large	 mental
speedups	who	want	to	converse	extensively	might	find	it	advantageous	to	move
near	one	another.	Extremely	fast	minds	with	need	for	frequent	interaction	(such
as	members	of	a	work	team)	may	take	up	residence	in	computers	located	in	the
same	building	to	avoid	frustrating	latencies.

Collective	superintelligence

	

Another	form	of	superintelligence	is	a	system	achieving	superior	performance	by
aggregating	large	numbers	of	smaller	intelligences:

Collective	 superintelligence:	 A	 system	 composed	 of	 a	 large	 number	 of
smaller	 intellects	 such	 that	 the	 system’s	overall	performance	across	many
very	general	domains	vastly	outstrips	that	of	any	current	cognitive	system.

	
	

Collective	 superintelligence	 is	 less	 conceptually	 clear-cut	 than	 speed
superintelligence.7	However,	 it	 is	more	familiar	empirically.	While	we	have	no
experience	with	human-level	minds	 that	differ	 significantly	 in	clock	speed,	we
do	 have	 ample	 experience	 with	 collective	 intelligence,	 systems	 composed	 of
various	 numbers	 of	 human-level	 components	 working	 together	 with	 various
degrees	 of	 efficiency.	 Firms,	 work	 teams,	 gossip	 networks,	 advocacy	 groups,
academic	communities,	countries,	even	humankind	as	a	whole,	can—if	we	adopt
a	 somewhat	 abstract	 perspective—be	 viewed	 as	 loosely	 defined	 “systems”
capable	 of	 solving	 classes	 of	 intellectual	 problems.	 From	 experience,	we	 have



some	sense	of	how	easily	different	tasks	succumb	to	the	efforts	of	organizations
of	various	size	and	composition.

Collective	 intelligence	excels	at	solving	problems	that	can	be	readily	broken
into	 parts	 such	 that	 solutions	 to	 sub-problems	 can	 be	 pursued	 in	 parallel	 and
verified	 independently.	 Tasks	 like	 building	 a	 space	 shuttle	 or	 operating	 a
hamburger	 franchise	 offer	myriad	 opportunities	 for	 division	 of	 labor:	 different
engineers	 work	 on	 different	 components	 of	 the	 spacecraft;	 different	 staffs
operate	 different	 restaurants.	 In	 academia,	 the	 rigid	 division	 of	 researchers,
students,	 journals,	 grants,	 and	 prizes	 into	 separate	 self-contained	 disciplines—
though	unconducive	to	the	type	of	work	represented	by	this	book—might	(only
in	 a	 conciliatory	 and	 mellow	 frame	 of	 mind)	 be	 viewed	 as	 a	 necessary
accommodation	 to	 the	 practicalities	 of	 allowing	 large	 numbers	 of	 diversely
motivated	 individuals	 and	 teams	 to	 contribute	 to	 the	 growth	 of	 human
knowledge	 while	 working	 relatively	 independently,	 each	 plowing	 their	 own
furrow.

A	 system’s	 collective	 intelligence	 could	 be	 enhanced	 by	 expanding	 the
number	or	the	quality	of	its	constituent	intellects,	or	by	improving	the	quality	of
their	organization.8	To	obtain	a	collective	superintelligence	from	any	present-day
collective	 intelligence	would	 require	 a	 very	 great	 degree	 of	 enhancement.	The
resulting	system	would	need	to	be	capable	of	vastly	outperforming	any	current
collective	 intelligence	 or	 other	 cognitive	 system	 across	 many	 very	 general
domains.	A	new	conference	format	that	lets	scholars	exchange	information	more
effectively,	 or	 a	 new	 collaborative	 information-filtering	 algorithm	 that	 better
predicted	 users’	 ratings	 of	 books	 and	 movies,	 would	 clearly	 not	 on	 its	 own
amount	to	anything	approaching	collective	superintelligence.	Nor	would	a	50%
increase	in	the	world	population,	or	an	improvement	in	pedagogical	method	that
enabled	students	to	complete	a	school	day	in	four	hours	instead	of	six.	Some	far
more	 extreme	 growth	 of	 humanity’s	 collective	 cognitive	 capacity	 would	 be
required	to	meet	the	criterion	of	collective	superintelligence.

Note	 that	 the	 threshold	 for	 collective	 superintelligence	 is	 indexed	 to	 the
performance	 levels	of	 the	present—that	 is,	 the	 early	 twenty-first	 century.	Over
the	 course	 of	 human	 prehistory,	 and	 again	 over	 the	 course	 of	 human	 history,
humanity’s	 collective	 intelligence	 has	 grown	 by	 very	 large	 factors.	 World
population,	for	example,	has	increased	by	at	least	a	factor	of	a	thousand	since	the
Pleistocene.9	On	this	basis	alone,	current	levels	of	human	collective	intelligence
could	 be	 regarded	 as	 approaching	 superintelligence	 relative	 to	 a	 Pleistocene



baseline.	 Some	 improvements	 in	 communications	 technologies—especially
spoken	 language,	 but	 perhaps	 also	 cities,	writing,	 and	 printing—could	 also	 be
argued	 to	have,	 individually	or	 in	combination,	provided	super-sized	boosts,	 in
the	 sense	 that	 if	 another	 innovation	 of	 comparable	 impact	 to	 our	 collective
intellectual	 problem-solving	 capacity	 were	 to	 happen,	 it	 would	 result	 in
collective	superintelligence.10

A	certain	kind	of	reader	will	be	tempted	at	this	point	to	interject	that	modern
society	 does	 not	 seem	 so	 particularly	 intelligent.	 Perhaps	 some	 unwelcome
political	 decision	 has	 just	 been	 made	 in	 the	 reader’s	 home	 country,	 and	 the
apparent	 unwisdom	 of	 that	 decision	 now	 looms	 large	 in	 the	 reader’s	mind	 as
evidence	of	the	mental	incapacity	of	the	modern	era.	And	is	it	not	the	case	that
contemporary	 humanity	 is	 idolizing	 material	 consumption,	 depleting	 natural
resources,	polluting	the	environment,	decimating	species	diversity,	all	the	while
failing	 to	 remedy	 screaming	 global	 injustices	 and	 neglecting	 paramount
humanistic	 or	 spiritual	 values?	 However,	 setting	 aside	 the	 question	 of	 how
modernity’s	shortcomings	stack	up	against	 the	not-so-inconsiderable	failings	of
earlier	 epochs,	 nothing	 in	our	definition	of	 collective	 superintelligence	 implies
that	 a	 society	with	 greater	 collective	 intelligence	 is	 necessarily	 better	 off.	 The
definition	 does	 not	 even	 imply	 that	 the	more	 collectively	 intelligent	 society	 is
wiser.	 We	 can	 think	 of	 wisdom	 as	 the	 ability	 to	 get	 the	 important	 things
approximately	right.	It	is	then	possible	to	imagine	an	organization	composed	of	a
very	 large	 cadre	 of	 very	 efficiently	 coordinated	 knowledge	 workers,	 who
collectively	can	solve	 intellectual	problems	across	many	very	general	domains.
This	organization,	 let	us	suppose,	can	operate	most	kinds	of	businesses,	 invent
most	 kinds	of	 technologies,	 and	optimize	most	 kinds	of	 processes.	Even	 so,	 it
might	get	a	few	key	big-picture	issues	entirely	wrong—for	instance,	it	may	fail
to	 take	 proper	 precautions	 against	 existential	 risks—and	 as	 a	 result	 pursue	 a
short	 explosive	 growth	 spurt	 that	 ends	 ingloriously	 in	 total	 collapse.	 Such	 an
organization	 could	 have	 a	 very	 high	 degree	 of	 collective	 intelligence;	 if
sufficiently	 high,	 the	 organization	 is	 a	 collective	 superintelligence.	We	 should
resist	 the	temptation	to	roll	every	normatively	desirable	attribute	into	one	giant
amorphous	concept	of	mental	 functioning,	as	 though	one	could	never	 find	one
admirable	 trait	without	all	 the	others	being	equally	present.	 Instead,	we	should
recognize	 that	 there	 can	 exist	 instrumentally	 powerful	 information	 processing
systems—intelligent	systems—that	are	neither	inherently	good	nor	reliably	wise.
But	we	will	revisit	this	issue	in	Chapter	7.

Collective	 superintelligence	 could	 be	 either	 loosely	 or	 tightly	 integrated.	 To



illustrate	 a	 case	 of	 loosely	 integrated	 collective	 superintelligence,	 imagine	 a
planet,	 MegaEarth,	 which	 has	 the	 same	 level	 of	 communication	 and
coordination	 technologies	 that	 we	 currently	 have	 on	 the	 real	 Earth	 but	with	 a
population	 one	million	 times	 as	 large.	With	 such	 a	 huge	 population,	 the	 total
intellectual	workforce	 on	MegaEarth	would	 be	 correspondingly	 larger	 than	 on
our	 planet.	 Suppose	 that	 a	 scientific	 genius	 of	 the	 caliber	 of	 a	 Newton	 or	 an
Einstein	arises	at	least	once	for	every	10	billion	people:	then	on	MegaEarth	there
would	 be	 700,000	 such	 geniuses	 living	 contemporaneously,	 alongside
proportionally	 vast	 multitudes	 of	 slightly	 lesser	 talents.	 New	 ideas	 and
technologies	would	 be	 developed	 at	 a	 furious	 pace,	 and	 global	 civilization	 on
MegaEarth	would	constitute	a	loosely	integrated	collective	superintelligence.11

If	we	gradually	increase	the	level	of	integration	of	a	collective	intelligence,	it
may	eventually	become	a	unified	intellect—a	single	large	“mind”	as	opposed	to
a	 mere	 assemblage	 of	 loosely	 interacting	 smaller	 human	 minds.12	 The
inhabitants	 of	 MegaEarth	 could	 take	 steps	 in	 that	 direction	 by	 improving
communications	 and	 coordination	 technologies	 and	 by	 developing	 better	ways
for	 many	 individuals	 to	 work	 on	 any	 hard	 intellectual	 problem	 together.	 A
collective	 superintelligence	could	 thus,	 after	gaining	 sufficiently	 in	 integration,
become	a	“quality	superintelligence.”

Quality	superintelligence

	

We	can	distinguish	a	third	form	of	superintelligence.

Quality	 superintelligence:	A	 system	 that	 is	 at	 least	 as	 fast	 as	 a	 human
mind	and	vastly	qualitatively	smarter.

	
	

As	with	 collective	 intelligence,	 intelligence	 quality	 is	 also	 a	 somewhat	murky
concept;	and	in	this	case	the	difficulty	is	compounded	by	our	lack	of	experience
with	 any	 variations	 in	 intelligence	 quality	 above	 the	 upper	 end	 of	 the	 present
human	 distribution.	 We	 can,	 however,	 get	 some	 grasp	 of	 the	 notion	 by
considering	some	related	cases.



First,	 we	 can	 expand	 the	 range	 of	 our	 reference	 points	 by	 considering
nonhuman	animals,	which	have	intelligence	of	lower	quality.	(This	is	not	meant
as	a	speciesist	remark.	A	zebrafish	has	a	quality	of	intelligence	that	is	excellently
adapted	 to	 its	 ecological	 needs;	 but	 the	 relevant	 perspective	 here	 is	 a	 more
anthropocentric	 one:	 our	 concern	 is	 with	 performance	 on	 humanly	 relevant
complex	cognitive	tasks.)	Nonhuman	animals	lack	complex	structured	language;
they	are	capable	of	no	or	only	rudimentary	tool	use	and	tool	construction;	they
are	 severely	 restricted	 in	 their	 ability	 to	make	 long-term	 plans;	 and	 they	 have
very	limited	abstract	reasoning	ability.	Nor	are	these	limitations	fully	explained
by	a	lack	of	speed	or	of	collective	intelligence	among	nonhuman	animal	minds.
In	 terms	 of	 raw	 computational	 power,	 human	 brains	 are	 probably	 inferior	 to
those	 of	 some	 large	 animals,	 including	 elephants	 and	 whales.	 And	 although
humanity’s	complex	technological	civilization	would	be	impossible	without	our
massive	advantage	 in	collective	 intelligence,	not	all	distinctly	human	cognitive
capabilities	depend	on	collective	 intelligence.	Many	are	highly	developed	even
in	 small,	 isolated	hunter–gatherer	 bands.13	And	many	 are	 not	 nearly	 as	 highly
developed	among	highly	organized	nonhuman	animals,	such	as	chimpanzees	and
dolphins	intensely	trained	by	human	instructors,	or	ants	living	in	their	own	large
and	well-ordered	 societies.	Evidently,	 the	 remarkable	 intellectual	 achievements
of	Homo	sapiens	are	to	a	significant	extent	attributable	to	specific	features	of	our
brain	 architecture,	 features	 that	 depend	 on	 a	 unique	 genetic	 endowment	 not
shared	by	other	animals.	This	observation	can	help	us	 illustrate	 the	concept	of
quality	superintelligence:	it	is	intelligence	of	quality	at	least	as	superior	to	that	of
human	 intelligence	 as	 the	 quality	 of	 human	 intelligence	 is	 superior	 to	 that	 of
elephants’,	dolphins’,	or	chimpanzees’.

A	second	way	to	illustrate	the	concept	of	quality	superintelligence	is	by	noting
the	 domain-specific	 cognitive	 deficits	 that	 can	 afflict	 individual	 humans,
particularly	deficits	that	are	not	caused	by	general	dementia	or	other	conditions
associated	 with	 wholesale	 destruction	 of	 the	 brain’s	 neurocomputational
resources.	 Consider,	 for	 example,	 individuals	 with	 autism	 spectrum	 disorders
who	 may	 have	 striking	 deficits	 in	 social	 cognition	 while	 functioning	 well	 in
other	cognitive	domains;	or	individuals	with	congenital	amusia,	who	are	unable
to	hum	or	recognize	simple	 tunes	yet	perform	normally	 in	most	other	respects.
Many	 other	 examples	 could	 be	 adduced	 from	 the	 neuropsychiatric	 literature,
which	 is	 replete	with	case	studies	of	patients	 suffering	narrowly	circumscribed
deficits	 caused	by	genetic	 abnormalities	or	brain	 trauma.	Such	examples	 show
that	normal	human	adults	have	a	range	of	remarkable	cognitive	talents	 that	are
not	 simply	 a	 function	 of	 possessing	 a	 sufficient	 amount	 of	 general	 neural



processing	power	or	even	a	sufficient	amount	of	general	intelligence:	specialized
neural	circuitry	is	also	needed.	This	observation	suggests	the	idea	of	possible	but
non-realized	 cognitive	 talents,	 talents	 that	 no	 actual	 human	 possesses	 even
though	other	intelligent	systems—ones	with	no	more	computing	power	than	the
human	brain—that	did	have	those	talents	would	gain	enormously	in	their	ability
to	accomplish	a	wide	range	of	strategically	relevant	tasks.

Accordingly,	by	considering	nonhuman	animals	and	human	 individuals	with
domain-specific	 cognitive	 deficits,	 we	 can	 form	 some	 notion	 of	 different
qualities	 of	 intelligence	 and	 the	 practical	 difference	 they	 make.	 Had	 Homo
sapiens	 lacked	 (for	 instance)	 the	 cognitive	 modules	 that	 enable	 complex
linguistic	representations,	 it	might	have	been	just	another	simian	species	 living
in	harmony	with	nature.	Conversely,	were	we	to	gain	some	new	set	of	modules
giving	an	advantage	comparable	to	that	of	being	able	to	form	complex	linguistic
representations,	we	would	become	superintelligent.

Direct	and	indirect	reach

	

Superintelligence	in	any	of	these	forms	could,	over	time,	develop	the	technology
necessary	to	create	any	of	the	others.	The	indirect	reaches	of	these	three	forms	of
superintelligence	are	therefore	equal.	In	that	sense,	the	indirect	reach	of	current
human	intelligence	is	also	in	the	same	equivalence	class,	under	the	supposition
that	we	are	able	eventually	to	create	some	form	of	superintelligence.	Yet	there	is
a	 sense	 in	 which	 the	 three	 forms	 of	 superintelligence	 are	much	 closer	 to	 one
another:	 any	 one	 of	 them	 could	 create	 other	 forms	 of	 superintelligence	 more
rapidly	 than	 we	 can	 create	 any	 form	 of	 superintelligence	 from	 our	 present
starting	point.

The	direct	reaches	of	the	three	different	forms	of	superintelligence	are	harder
to	 compare.	 There	 may	 be	 no	 definite	 ordering.	 Their	 respective	 capabilities
depend	on	the	degree	to	which	they	instantiate	their	respective	advantages—how
fast	 a	 speed	 superintelligence	 is,	 how	 qualitatively	 superior	 a	 quality
superintelligence	 is,	 and	 so	 forth.	At	most,	we	might	 say	 that,	ceteris	paribus,
speed	 superintelligence	 excels	 at	 tasks	 requiring	 the	 rapid	 execution	 of	 a	 long
series	 of	 steps	 that	 must	 be	 performed	 sequentially	 while	 collective
superintelligence	 excels	 at	 tasks	 admitting	 of	 analytic	 decomposition	 into
parallelizable	sub-tasks	and	tasks	demanding	the	combination	of	many	different



perspectives	and	skill	sets.	In	some	vague	sense,	quality	superintelligence	would
be	the	most	capable	form	of	all,	inasmuch	as	it	could	grasp	and	solve	problems
that	 are,	 for	 all	 practical	 purposes,	 beyond	 the	 direct	 reach	 of	 speed
superintelligence	and	collective	superintelligence.14

In	some	domains,	quantity	is	a	poor	substitute	for	quality.	One	solitary	genius
working	out	of	a	cork-lined	bedroom	can	write	In	Search	of	Lost	Time.	Could	an
equivalent	 masterpiece	 be	 produced	 by	 recruiting	 an	 office	 building	 full	 of
literary	hacks?15	Even	within	 the	range	of	present	human	variation	we	see	 that
some	 functions	 benefit	 greatly	 from	 the	 labor	 of	 one	 brilliant	 mastermind	 as
opposed	to	the	joint	efforts	of	myriad	mediocrities.	If	we	widen	our	purview	to
include	superintelligent	minds,	we	must	countenance	a	likelihood	of	there	being
intellectual	 problems	 solvable	 only	 by	 superintelligence	 and	 intractable	 to	 any
ever-so-large	collective	of	non-augmented	humans.

There	 might	 thus	 be	 some	 problems	 that	 are	 solvable	 by	 a	 quality
superintelligence,	and	perhaps	by	a	speed	superintelligence,	yet	which	a	loosely
integrated	 collective	 superintelligence	 cannot	 solve	 (other	 than	 by	 first
amplifying	its	own	intelligence).16	We	cannot	clearly	see	what	all	these	problems
are,	 but	 we	 can	 characterize	 them	 in	 general	 terms.17	 They	 would	 tend	 to	 be
problems	 involving	multiple	 complex	 interdependencies	 that	 do	 not	 permit	 of
independently	verifiable	solution	steps:	problems	that	therefore	cannot	be	solved
in	 a	 piecemeal	 fashion,	 and	 that	 might	 require	 qualitatively	 new	 kinds	 of
understanding	 or	 new	 representational	 frameworks	 that	 are	 too	 deep	 or	 too
complicated	 for	 the	 current	 edition	 of	 mortals	 to	 discover	 or	 use	 effectively.
Some	 types	 of	 artistic	 creation	 and	 strategic	 cognition	 might	 fall	 into	 this
category.	Some	types	of	scientific	breakthrough,	perhaps,	likewise.	And	one	can
speculate	 that	 the	 tardiness	and	wobbliness	of	humanity’s	progress	on	many	of
the	“eternal	problems”	of	philosophy	are	due	 to	 the	unsuitability	of	 the	human
cortex	 for	 philosophical	work.	On	 this	 view,	 our	most	 celebrated	 philosophers
are	like	dogs	walking	on	their	hind	legs—just	barely	attaining	the	threshold	level
of	performance	required	for	engaging	in	the	activity	at	all.18

Sources	of	advantage	for	digital	intelligence

	

Minor	changes	in	brain	volume	and	wiring	can	have	major	consequences,	as	we



see	when	we	compare	the	intellectual	and	technological	achievements	of	humans
with	 those	 of	 other	 apes.	 The	 far	 greater	 changes	 in	 computing	 resources	 and
architecture	 that	 machine	 intelligence	 will	 enable	 will	 probably	 have
consequences	that	are	even	more	profound.	It	is	difficult,	perhaps	impossible,	for
us	to	form	an	intuitive	sense	of	the	aptitudes	of	a	superintelligence;	but	we	can	at
least	 get	 an	 inkling	 of	 the	 space	 of	 possibilities	 by	 looking	 at	 some	 of	 the
advantages	 open	 to	 digital	 minds.	 The	 hardware	 advantages	 are	 easiest	 to
appreciate:

	

Speed	of	computational	elements.	Biological	neurons	operate	at	a	peak	speed	of
about	 200	 Hz,	 a	 full	 seven	 orders	 of	 magnitude	 slower	 than	 a	 modern
microprocessor	(~	2	GHz).19	As	a	consequence,	the	human	brain	is	forced	to	rely
on	 massive	 parallelization	 and	 is	 incapable	 of	 rapidly	 performing	 any
computation	that	requires	a	 large	number	of	sequential	operations.20	 (Anything
the	 brain	 does	 in	 under	 a	 second	 cannot	 use	 much	 more	 than	 a	 hundred
sequential	 operations—perhaps	 only	 a	 few	 dozen.)	 Yet	 many	 of	 the	 most
practically	 important	algorithms	 in	programming	and	computer	science	are	not
easily	 parallelizable.	 Many	 cognitive	 tasks	 could	 be	 performed	 far	 more
efficiently	 if	 the	 brain’s	 native	 support	 for	 parallelizable	 pattern-matching
algorithms	 were	 complemented	 by,	 and	 integrated	 with,	 support	 for	 fast
sequential	processing.

Internal	communication	speed.	Axons	carry	action	potentials	at	speeds	of	120	m/s
or	 less,	 whereas	 electronic	 processing	 cores	 can	 communicate	 optically	 at	 the
speed	 of	 light	 (300,000,000	 m/s).21	 The	 sluggishness	 of	 neural	 signals	 limits
how	big	a	biological	brain	can	be	while	functioning	as	a	single	processing	unit.
For	example,	to	achieve	a	round-trip	latency	of	less	than	10	ms	between	any	two
elements	 in	 a	 system,	 biological	 brains	 must	 be	 smaller	 than	 0.11	 m3.	 An
electronic	system,	on	the	other	hand,	could	be	6.1×1017	m3,	about	 the	size	of	a
dwarf	planet:	eighteen	orders	of	magnitude	larger.22

Number	of	computational	elements.	The	human	brain	has	somewhat	 fewer	 than
100	billion	neurons.23	Humans	have	about	three	and	a	half	times	the	brain	size	of
chimpanzees	 (though	 only	 one-fifth	 the	 brain	 size	 of	 sperm	 whales).24	 The
number	of	neurons	in	a	biological	creature	is	most	obviously	limited	by	cranial
volume	and	metabolic	constraints,	but	other	factors	may	also	be	significant	for



larger	brains	(such	as	cooling,	development	time,	and	signal-conductance	delays
—see	 the	 previous	 point).	 By	 contrast,	 computer	 hardware	 is	 indefinitely
scalable	 up	 to	 very	 high	 physical	 limits.25	 Supercomputers	 can	 be	warehouse-
sized	or	larger,	with	additional	remote	capacity	added	via	high-speed	cables.26

Storage	capacity.	Human	working	memory	 is	 able	 to	 hold	 no	more	 than	 some
four	 or	 five	 chunks	 of	 information	 at	 any	 given	 time.27	 While	 it	 would	 be
misleading	 to	 compare	 the	 size	 of	 human	 working	 memory	 directly	 with	 the
amount	of	RAM	in	a	digital	computer,	it	is	clear	that	the	hardware	advantages	of
digital	 intelligences	 will	 make	 it	 possible	 for	 them	 to	 have	 larger	 working
memories.	 This	 might	 enable	 such	 minds	 to	 intuitively	 grasp	 complex
relationships	that	humans	can	only	fumblingly	handle	via	plodding	calculation.28
Human	 long-term	 memory	 is	 also	 limited,	 though	 it	 is	 unclear	 whether	 we
manage	to	exhaust	its	storage	capacity	during	the	course	of	an	ordinary	lifetime
—the	rate	at	which	we	accumulate	information	is	so	slow.	(On	one	estimate,	the
adult	human	brain	stores	about	one	billion	bits—a	couple	of	orders	of	magnitude
less	 than	a	 low-end	smartphone.29)	Both	 the	amount	of	 information	 stored	and
the	speed	with	which	it	can	be	accessed	could	thus	be	vastly	greater	in	a	machine
brain	than	in	a	biological	brain.

Reliability,	lifespan,	sensors,	etc.	Machine	intelligences	might	have	various	other
hardware	 advantages.	 For	 example,	 biological	 neurons	 are	 less	 reliable	 than
transistors.30	 Since	 noisy	 computing	 necessitates	 redundant	 encoding	 schemes
that	use	multiple	elements	to	encode	a	single	bit	of	 information,	a	digital	brain
might	 derive	 some	 efficiency	 gains	 from	 the	 use	 of	 reliable	 high-precision
computing	elements.	Brains	become	fatigued	after	a	few	hours	of	work	and	start
to	 permanently	 decay	 after	 a	 few	 decades	 of	 subjective	 time;	microprocessors
are	not	subject	to	these	limitations.	Data	flow	into	a	machine	intelligence	could
be	increased	by	adding	millions	of	sensors.	Depending	on	the	technology	used,	a
machine	might	have	reconfigurable	hardware	that	can	be	optimized	for	changing
task	requirements,	whereas	much	of	the	brain’s	architecture	is	fixed	from	birth	or
only	slowly	changeable	(though	the	details	of	synaptic	connectivity	can	change
over	shorter	timescales,	like	days).31

At	 present,	 the	 computational	 power	 of	 the	 biological	 brain	 still	 compares
favorably	with	that	of	digital	computers,	though	top-of-the-line	supercomputers
are	 attaining	 levels	 of	 performance	 that	 are	 within	 the	 range	 of	 plausible
estimates	of	the	brain’s	processing	power.32	But	hardware	is	rapidly	improving,



and	the	ultimate	limits	of	hardware	performance	are	vastly	higher	than	those	of
biological	computing	substrates.

Digital	minds	will	also	benefit	from	major	advantages	in	software:

	

Editability.	It	is	easier	to	experiment	with	parameter	variations	in	software	than	in
neural	wetware.	For	example,	with	a	whole	brain	emulation	one	could	easily	trial
what	 happens	 if	 one	 adds	more	 neurons	 in	 a	 particular	 cortical	 area	 or	 if	 one
increases	 or	 decreases	 their	 excitability.	 Running	 such	 experiments	 in	 living
biological	brains	would	be	far	more	difficult.

Duplicability.	With	software,	one	can	quickly	make	arbitrarily	many	high-fidelity
copies	to	fill	the	available	hardware	base.	Biological	brains,	by	contrast,	can	be
reproduced	only	very	slowly;	and	each	new	instance	starts	out	in	a	helpless	state,
remembering	nothing	of	what	its	parents	learned	in	their	lifetimes.

Goal	coordination.	Human	collectives	are	replete	with	inefficiencies	arising	from
the	 fact	 that	 it	 is	 nearly	 impossible	 to	 achieve	 complete	uniformity	of	purpose
among	the	members	of	a	large	group—at	least	until	it	becomes	feasible	to	induce
docility	on	a	large	scale	by	means	of	drugs	or	genetic	selection.	A	“copy	clan”	(a
group	of	identical	or	almost	identical	programs	sharing	a	common	goal)	would
avoid	such	coordination	problems.

Memory	 sharing.	 Biological	 brains	 need	 extended	 periods	 of	 training	 and
mentorship	 whereas	 digital	 minds	 could	 acquire	 new	 memories	 and	 skills	 by
swapping	 data	 files.	A	 population	 of	 a	 billion	 copies	 of	 an	AI	 program	 could
synchronize	their	databases	periodically,	so	that	all	the	instances	of	the	program
know	 everything	 that	 any	 instance	 learned	 during	 the	 previous	 hour.	 (Direct
memory	transfer	requires	standardized	representational	formats.	Easy	swapping
of	high-level	cognitive	content	would	therefore	not	be	possible	between	just	any
pair	of	machine	intelligences.	In	particular,	it	would	not	be	possible	among	first-
generation	whole	brain	emulations.)

New	modules,	modalities,	and	algorithms.	Visual	perception	seems	to	us	easy	and
effortless,	 quite	 unlike	 solving	 textbook	 geometry	 problems—this	 despite	 the
fact	that	it	takes	a	massive	amount	of	computation	to	reconstruct,	from	the	two-
dimensional	 patterns	 of	 stimulation	 on	 our	 retinas,	 a	 three-dimensional
representation	of	 a	world	populated	with	 recognizable	objects.	The	 reason	 this



seems	easy	is	that	we	have	dedicated	low-level	neural	machinery	for	processing
visual	 information.	 This	 low-level	 processing	 occurs	 unconsciously	 and
automatically,	without	draining	our	mental	energy	or	conscious	attention.	Music
perception,	 language	 use,	 social	 cognition,	 and	 other	 forms	 of	 information
processing	 that	 are	 “natural”	 for	 us	 humans	 seem	 to	 be	 likewise	 supported	 by
dedicated	 neurocomputational	 modules.	 An	 artificial	 mind	 that	 had	 such
specialized	support	 for	other	cognitive	domains	 that	have	become	 important	 in
the	 contemporary	 world—such	 as	 engineering,	 computer	 programming,	 and
business	strategy—would	have	big	advantages	over	minds	like	ours	that	have	to
rely	 on	 clunky	 general-purpose	 cognition	 to	 think	 about	 such	 things.	 New
algorithms	may	also	be	developed	to	take	advantage	of	the	distinct	affordances
of	digital	hardware,	such	as	its	support	for	fast	serial	processing.

The	 ultimately	 attainable	 advantages	 of	 machine	 intelligence,	 hardware	 and
software	 combined,	 are	 enormous.33	 But	 how	 rapidly	 could	 those	 potential
advantages	be	realized?	That	is	the	question	to	which	we	now	turn.



CHAPTER	4
The	kinetics	of	an	intelligence	explosion

	

Once	 machines	 attain	 some	 form	 of	 human-equivalence	 in	 general
reasoning	 ability,	 how	 long	 will	 it	 then	 be	 before	 they	 attain	 radical
superintelligence?	Will	 this	 be	 a	 slow,	 gradual,	 protracted	 transition?	 Or
will	 it	 be	 sudden,	 explosive?	 This	 chapter	 analyzes	 the	 kinetics	 of	 the
transition	 to	 superintelligence	 as	 a	 function	 of	 optimization	 power	 and
system	recalcitrance.	We	consider	what	we	know	or	may	reasonably	surmise
about	the	behavior	of	these	two	factors	in	the	neighborhood	of	human-level
general	intelligence.

Timing	and	speed	of	the	takeoff

	

Given	 that	 machines	 will	 eventually	 vastly	 exceed	 biology	 in	 general
intelligence,	but	that	machine	cognition	is	currently	vastly	narrower	than	human
cognition,	one	is	led	to	wonder	how	quickly	this	usurpation	will	take	place.	The
question	we	are	asking	here	must	be	sharply	distinguished	from	the	question	we
considered	in	Chapter	1	about	how	far	away	we	currently	are	from	developing	a
machine	with	human-level	general	 intelligence.	Here	 the	question	 is	 instead,	 if
and	when	 such	 a	machine	 is	 developed,	 how	 long	will	 it	 be	 from	 then	 until	 a
machine	 becomes	 radically	 superintelligent?	 Note	 that	 one	 could	 think	 that	 it
will	 take	 quite	 a	 long	 time	 until	 machines	 reach	 the	 human	 baseline,	 or	 one
might	be	agnostic	about	how	long	that	will	take,	and	yet	have	a	strong	view	that
once	 this	happens,	 the	 further	 ascent	 into	 strong	 superintelligence	will	be	very
rapid.

It	can	be	helpful	to	think	about	these	matters	schematically,	even	though	doing
so	 involves	 temporarily	 ignoring	 some	 qualifications	 and	 complicating	 details.
Consider,	 then,	 a	 diagram	 that	 plots	 the	 intellectual	 capability	 of	 the	 most
advanced	machine	intelligence	system	as	a	function	of	time	(Figure	7).



A	horizontal	line	labeled	“human	baseline”	represents	the	effective	intellectual
capabilities	 of	 a	 representative	 human	 adult	 with	 access	 to	 the	 information
sources	 and	 technological	 aids	 currently	 available	 in	 developed	 countries.	 At
present,	 the	most	advanced	AI	 system	 is	 far	below	 the	human	baseline	on	any
reasonable	 metric	 of	 general	 intellectual	 ability.	 At	 some	 point	 in	 future,	 a
machine	might	 reach	 approximate	 parity	 with	 this	 human	 baseline	 (which	we
take	 to	 be	 fixed—anchored	 to	 the	 year	 2014,	 say,	 even	 if	 the	 capabilities	 of
human	 individuals	 should	have	 increased	 in	 the	 intervening	years):	 this	would
mark	 the	onset	of	 the	 takeoff.	The	capabilities	of	 the	system	continue	 to	grow,
and	at	some	later	point	the	system	reaches	parity	with	the	combined	intellectual
capability	of	all	of	humanity	(again	anchored	to	the	present):	what	we	may	call
the	“civilization	baseline”.	Eventually,	if	the	system’s	abilities	continue	to	grow,
it	 attains	 “strong	 superintelligence”—a	 level	 of	 intelligence	vastly	greater	 than
contemporary	humanity’s	combined	intellectual	wherewithal.	The	attainment	of
strong	superintelligence	marks	the	completion	of	the	takeoff,	though	the	system
might	continue	to	gain	in	capacity	thereafter.	Sometime	during	the	takeoff	phase,
the	 system	 may	 pass	 a	 landmark	 which	 we	 can	 call	 “the	 crossover”,	 a	 point
beyond	 which	 the	 system’s	 further	 improvement	 is	 mainly	 driven	 by	 the
system’s	 own	 actions	 rather	 than	 by	work	 performed	 upon	 it	 by	 others.1	 (The
possible	existence	of	such	a	crossover	will	become	important	 in	 the	subsection
on	optimization	power	and	explosivity,	later	in	this	chapter.)

Figure	 7	 Shape	 of	 the	 takeoff.	 It	 is	 important	 to	 distinguish	 between	 these
questions:	“Will	a	 takeoff	occur,	and	 if	so,	when?”	and	“If	and	when	a	 takeoff
does	occur,	how	steep	will	it	be?”	One	might	hold,	for	example,	that	it	will	be	a
very	long	time	before	a	takeoff	occurs,	but	that	when	it	does	it	will	proceed	very
quickly.	Another	relevant	question	(not	illustrated	in	this	figure)	is,	“How	large	a



fraction	of	the	world	economy	will	participate	in	the	takeoff?”	These	questions
are	related	but	distinct.

	

With	 this	 picture	 in	 mind,	 we	 can	 distinguish	 three	 classes	 of	 transition
scenarios—scenarios	 in	which	 systems	progress	 from	human-level	 intelligence
to	 superintelligence—based	 on	 their	 steepness;	 that	 is	 to	 say,	 whether	 they
represent	a	slow,	fast,	or	moderate	takeoff.

Slow

A	slow	takeoff	is	one	that	occurs	over	some	long	temporal	interval,	such	as
decades	 or	 centuries.	 Slow	 takeoff	 scenarios	 offer	 excellent	 opportunities
for	human	 political	 processes	 to	 adapt	 and	 respond.	Different	 approaches
can	 be	 tried	 and	 tested	 in	 sequence.	 New	 experts	 can	 be	 trained	 and
credentialed.	 Grassroots	 campaigns	 can	 be	mobilized	 by	 groups	 that	 feel
they	are	being	disadvantaged	by	unfolding	developments.	If	it	appears	that
new	kinds	of	secure	infrastructure	or	mass	surveillance	of	AI	researchers	is
needed,	such	systems	could	be	developed	and	deployed.	Nations	fearing	an
AI	 arms	 race	 would	 have	 time	 to	 try	 to	 negotiate	 treaties	 and	 design
enforcement	mechanisms.	Most	preparations	undertaken	before	onset	of	the
slow	takeoff	would	be	rendered	obsolete	as	better	solutions	would	gradually
become	visible	in	the	light	of	the	dawning	era.

Fast

A	 fast	 takeoff	 occurs	over	 some	 short	 temporal	 interval,	 such	 as	minutes,
hours,	or	days.	Fast	takeoff	scenarios	offer	scant	opportunity	for	humans	to
deliberate.	Nobody	need	even	notice	anything	unusual	before	 the	game	 is
already	lost.	In	a	fast	takeoff	scenario,	humanity’s	fate	essentially	depends
on	 preparations	 previously	 put	 in	 place.	 At	 the	 slowest	 end	 of	 the	 fast
takeoff	 scenario	 range,	 some	 simple	 human	 actions	 might	 be	 possible,
analogous	 to	 flicking	 open	 the	 “nuclear	 suitcase”;	 but	 any	 such	 action
would	either	be	elementary	or	have	been	planned	and	pre-programmed	 in
advance.

Moderate

A	 moderate	 takeoff	 is	 one	 that	 occurs	 over	 some	 intermediary	 temporal



interval,	such	as	months	or	years.	Moderate	takeoff	scenarios	give	humans
some	chance	to	respond	but	not	much	time	to	analyze	the	situation,	to	test
different	approaches,	or	to	solve	complicated	coordination	problems.	There
is	not	enough	time	to	develop	or	deploy	new	systems	(e.g.	political	systems,
surveillance	 regimes,	 or	 computer	 network	 security	 protocols),	 but	 extant
systems	could	be	applied	to	the	new	challenge.

	

During	a	slow	takeoff,	there	would	be	plenty	of	time	for	the	news	to	get	out.
In	a	moderate	takeoff,	by	contrast,	it	is	possible	that	developments	would	be	kept
secret	 as	 they	 unfold.	 Knowledge	 might	 be	 restricted	 to	 a	 small	 group	 of
insiders,	 as	 in	 a	 covert	 state-sponsored	military	 research	program.	Commercial
projects,	small	academic	teams,	and	“nine	hackers	in	a	basement”	outfits	might
also	 be	 clandestine—though,	 if	 the	 prospect	 of	 an	 intelligence	 explosion	were
“on	the	radar”	of	state	intelligence	agencies	as	a	national	security	priority,	then
the	most	promising	private	projects	would	seem	to	have	a	good	chance	of	being
under	 surveillance.	 The	 host	 state	 (or	 a	 dominant	 foreign	 power)	 would	 then
have	the	option	of	nationalizing	or	shutting	down	any	project	that	showed	signs
of	commencing	takeoff.	Fast	takeoffs	would	happen	so	quickly	that	there	would
not	 be	much	 time	 for	word	 to	 get	 out	 or	 for	 anybody	 to	mount	 a	meaningful
reaction	if	it	did.	But	an	outsider	might	intervene	before	the	onset	of	the	takeoff
if	they	believed	a	particular	project	to	be	closing	in	on	success.

Moderate	 takeoff	 scenarios	 could	 lead	 to	 geopolitical,	 social,	 and	 economic
turbulence	as	individuals	and	groups	jockey	to	position	themselves	to	gain	from
the	 unfolding	 transformation.	 Such	 upheaval,	 should	 it	 occur,	 might	 impede
efforts	 to	 orchestrate	 a	 well-composed	 response;	 alternatively,	 it	 might	 enable
solutions	more	radical	than	calmer	circumstances	would	permit.	For	instance,	in
a	moderate	takeoff	scenario	where	cheap	and	capable	emulations	or	other	digital
minds	gradually	flood	labor	markets	over	a	period	of	years,	one	could	imagine
mass	 protests	 by	 laid-off	 workers	 pressuring	 governments	 to	 increase
unemployment	 benefits	 or	 institute	 a	 living	 wage	 guarantee	 to	 all	 human
citizens,	 or	 to	 levy	 special	 taxes	 or	 impose	 minimum	 wage	 requirements	 on
employers	who	use	emulation	workers.	In	order	for	any	relief	derived	from	such
policies	 to	be	more	than	fleeting,	support	for	 them	would	somehow	have	to	be
cemented	into	permanent	power	structures.	Similar	issues	can	arise	if	the	takeoff
is	 slow	 rather	 than	 moderate,	 but	 the	 disequilibrium	 and	 rapid	 change	 in
moderate	scenarios	may	present	special	opportunities	for	small	groups	to	wield



disproportionate	influence.

It	might	appear	to	some	readers	that	of	these	three	types	of	scenario,	the	slow
takeoff	is	the	most	probable,	the	moderate	takeoff	is	less	probable,	and	the	fast
takeoff	 is	 utterly	 implausible.	 It	 could	 seem	 fanciful	 to	 suppose	 that	 the	world
could	be	radically	transformed	and	humanity	deposed	from	its	position	as	apex
cogitator	over	the	course	of	an	hour	or	two.	No	change	of	such	moment	has	ever
occurred	 in	 human	 history,	 and	 its	 nearest	 parallels—the	 Agricultural	 and
Industrial	 Revolutions—played	 out	 over	 much	 longer	 timescales	 (centuries	 to
millennia	in	the	former	case,	decades	to	centuries	in	the	latter).	So	the	base	rate
for	the	kind	of	transition	entailed	by	a	fast	or	medium	takeoff	scenario,	in	terms
of	the	speed	and	magnitude	of	the	postulated	change,	is	zero:	it	lacks	precedent
outside	myth	and	religion.2

Nevertheless,	this	chapter	will	present	some	reasons	for	thinking	that	the	slow
transition	scenario	is	improbable.	If	and	when	a	takeoff	occurs,	it	will	likely	be
explosive.

To	 begin	 to	 analyze	 the	 question	 of	 how	 fast	 the	 takeoff	 will	 be,	 we	 can
conceive	 of	 the	 rate	 of	 increase	 in	 a	 system’s	 intelligence	 as	 a	 (monotonically
increasing)	 function	 of	 two	 variables:	 the	 amount	 of	 “optimization	 power”,	 or
quality-weighted	 design	 effort,	 that	 is	 being	 applied	 to	 increase	 the	 system’s
intelligence,	and	 the	responsiveness	of	 the	system	to	 the	application	of	a	given
amount	 of	 such	 optimization	 power.	 We	 might	 term	 the	 inverse	 of
responsiveness	“recalcitrance”,	and	write:

	

Pending	 some	 specification	 of	 how	 to	 quantify	 intelligence,	 design	 effort,	 and
recalcitrance,	 this	expression	 is	merely	qualitative.	But	we	can	at	 least	observe
that	a	system’s	intelligence	will	increase	rapidly	if	either	a	lot	of	skilled	effort	is
applied	to	the	task	of	increasing	its	intelligence	and	the	system’s	intelligence	is
not	 too	hard	 to	 increase	or	 there	 is	a	non-trivial	design	effort	and	 the	system’s
recalcitrance	is	low	(or	both).	If	we	know	how	much	design	effort	is	going	into
improving	a	particular	system,	and	the	rate	of	improvement	this	effort	produces,
we	could	calculate	the	system’s	recalcitrance.



Further,	 we	 can	 observe	 that	 the	 amount	 of	 optimization	 power	 devoted	 to
improving	some	system’s	performance	varies	between	systems	and	over	time.	A
system’s	recalcitrance	might	also	vary	depending	on	how	much	the	system	has
already	been	optimized.	Often,	the	easiest	improvements	are	made	first,	leading
to	 diminishing	 returns	 (increasing	 recalcitrance)	 as	 low-hanging	 fruits	 are
depleted.	 However,	 there	 can	 also	 be	 improvements	 that	 make	 further
improvements	easier,	leading	to	improvement	cascades.	The	process	of	solving	a
jigsaw	 puzzle	 starts	 out	 simple—it	 is	 easy	 to	 find	 the	 corners	 and	 the	 edges.
Then	 recalcitrance	 goes	 up	 as	 subsequent	 pieces	 are	 harder	 to	 fit.	 But	 as	 the
puzzle	nears	completion,	 the	search	space	collapses	and	the	process	gets	easier
again.

To	proceed	 in	our	 inquiry,	we	must	 therefore	 analyze	how	 recalcitrance	 and
optimization	 power	might	 vary	 in	 the	 critical	 time	 periods	 during	 the	 takeoff.
This	will	occupy	us	over	the	next	few	pages.

Recalcitrance

	

Let	 us	 begin	with	 recalcitrance.	 The	 outlook	 here	 depends	 on	 the	 type	 of	 the
system	under	consideration.	For	completeness,	we	first	cast	a	brief	glance	at	the
recalcitrance	that	would	be	encountered	along	paths	to	superintelligence	that	do
not	 involve	 advanced	 machine	 intelligence.	 We	 find	 that	 recalcitrance	 along
those	paths	appears	to	be	fairly	high.	That	done,	we	will	turn	to	the	main	case,
which	 is	 that	 the	 takeoff	 involves	machine	 intelligence;	 and	 there	we	 find	 that
recalcitrance	at	the	critical	juncture	seems	low.

Non-machine	intelligence	paths

	

Cognitive	enhancement	via	 improvements	 in	public	health	and	diet	has	steeply
diminishing	 returns.3	 Big	 gains	 come	 from	 eliminating	 severe	 nutritional
deficiencies,	 and	 the	 most	 severe	 deficiencies	 have	 already	 been	 largely
eliminated	in	all	but	the	poorest	countries.	Only	girth	is	gained	by	increasing	an
already	 adequate	 diet.	 Education,	 too,	 is	 now	 probably	 subject	 to	 diminishing
returns.	 The	 fraction	 of	 talented	 individuals	 in	 the	 world	 who	 lack	 access	 to



quality	education	is	still	substantial,	but	declining.

Pharmacological	 enhancers	 might	 deliver	 some	 cognitive	 gains	 over	 the
coming	 decades.	 But	 after	 the	 easiest	 fixes	 have	 been	 accomplished—perhaps
sustainable	 increases	 in	 mental	 energy	 and	 ability	 to	 concentrate,	 along	 with
better	 control	 over	 the	 rate	 of	 long-term	 memory	 consolidation—subsequent
gains	 will	 be	 increasingly	 hard	 to	 come	 by.	 Unlike	 diet	 and	 public	 health
approaches,	however,	improving	cognition	through	smart	drugs	might	get	easier
before	 it	 gets	 harder.	 The	 field	 of	 neuropharmacology	 still	 lacks	much	 of	 the
basic	knowledge	 that	would	be	needed	 to	competently	 intervene	 in	 the	healthy
brain.	Neglect	of	enhancement	medicine	as	a	legitimate	area	of	research	may	be
partially	 to	 blame	 for	 this	 current	 backwardness.	 If	 neuroscience	 and
pharmacology	 continue	 to	 progress	 for	 a	 while	 longer	 without	 focusing	 on
cognitive	enhancement,	then	maybe	there	would	be	some	relatively	easy	gains	to
be	had	when	at	last	the	development	of	nootropics	becomes	a	serious	priority.4

Genetic	cognitive	enhancement	has	a	U-shaped	recalcitrance	profile	similar	to
that	of	nootropics,	but	with	 larger	potential	gains.	Recalcitrance	starts	out	high
while	 the	 only	 available	 method	 is	 selective	 breeding	 sustained	 over	 many
generations,	 something	 that	 is	 obviously	 difficult	 to	 accomplish	 on	 a	 globally
significant	 scale.	 Genetic	 enhancement	 will	 get	 easier	 as	 technology	 is
developed	for	cheap	and	effective	genetic	testing	and	selection	(and	particularly
when	 iterated	 embryo	 selection	 becomes	 feasible	 in	 humans).	 These	 new
techniques	 will	 make	 it	 possible	 to	 tap	 the	 pool	 of	 existing	 human	 genetic
variation	 for	 intelligence-enhancing	 alleles.	 As	 the	 best	 existing	 alleles	 get
incorporated	into	genetic	enhancement	packages,	however,	further	gains	will	get
harder	 to	 come	 by.	 The	 need	 for	 more	 innovative	 approaches	 to	 genetic
modification	may	 then	 increase	 recalcitrance.	 There	 are	 limits	 to	 how	 quickly
things	can	progress	along	 the	genetic	enhancement	path,	most	notably	 the	 fact
that	 germline	 interventions	 are	 subject	 to	 an	 inevitable	 maturational	 lag:	 this
strongly	counteracts	the	possibility	of	a	fast	or	moderate	takeoff.5	That	embryo
selection	can	only	be	applied	in	the	context	of	in	vitro	fertilization	will	slow	its
rate	of	adoption:	another	limiting	factor.

The	recalcitrance	along	the	brain–computer	path	seems	initially	very	high.	In
the	unlikely	event	that	it	somehow	becomes	easy	to	insert	brain	implants	and	to
achieve	 high-level	 functional	 integration	 with	 the	 cortex,	 recalcitrance	 might
plummet.	In	the	long	run,	the	difficulty	of	making	progress	along	this	path	would
be	similar	to	that	involved	in	improving	emulations	or	AIs,	since	the	bulk	of	the



brain–computer	 system’s	 intelligence	would	 eventually	 reside	 in	 the	 computer
part.

The	 recalcitrance	 for	 making	 networks	 and	 organizations	 in	 general	 more
efficient	 is	 high.	 A	 vast	 amount	 of	 effort	 is	 going	 into	 overcoming	 this
recalcitrance,	 and	 the	 result	 is	 an	 annual	 improvement	 of	 humanity’s	 total
capacity	by	perhaps	no	more	than	a	couple	of	percent.6	Furthermore,	shifts	in	the
internal	 and	 external	 environment	mean	 that	 organizations,	 even	 if	 efficient	 at
one	time,	soon	become	ill-adapted	to	their	new	circumstances.	Ongoing	reform
effort	is	thus	required	even	just	to	prevent	deterioration.	A	step	change	in	the	rate
of	gain	in	average	organizational	efficiency	is	perhaps	conceivable,	but	it	is	hard
to	see	how	even	 the	most	 radical	 scenario	of	 this	kind	could	produce	anything
faster	than	a	slow	takeoff,	since	organizations	operated	by	humans	are	confined
to	work	on	human	timescales.	The	Internet	continues	 to	be	an	exciting	frontier
with	 many	 opportunities	 for	 enhancing	 collective	 intelligence,	 with	 a
recalcitrance	that	seems	at	the	moment	to	be	in	the	moderate	range—progress	is
somewhat	swift	but	a	lot	of	effort	is	going	into	making	this	progress	happen.	It
may	be	expected	 to	 increase	as	 low-hanging	fruits	 (such	as	search	engines	and
email)	are	depleted.

Emulation	and	AI	paths

	

The	difficulty	of	advancing	toward	whole	brain	emulation	is	difficult	to	estimate.
Yet	we	can	point	 to	a	specific	 future	milestone:	 the	successful	emulation	of	an
insect	brain.	That	milestone	stands	on	a	hill,	and	 its	conquest	would	bring	 into
view	 much	 of	 the	 terrain	 ahead,	 allowing	 us	 to	 make	 a	 decent	 guess	 at	 the
recalcitrance	of	scaling	up	the	technology	to	human	whole	brain	emulation.	(A
successful	emulation	of	a	small-mammal	brain,	such	as	that	of	a	mouse,	would
give	an	even	better	vantage	point	 that	would	allow	the	distance	remaining	 to	a
human	whole	brain	emulation	to	be	estimated	with	a	high	degree	of	precision.)
The	path	toward	artificial	intelligence,	by	contrast,	may	feature	no	such	obvious
milestone	 or	 early	 observation	 point.	 It	 is	 entirely	 possible	 that	 the	 quest	 for
artificial	 intelligence	will	appear	 to	be	 lost	 in	dense	 jungle	until	an	unexpected
breakthrough	reveals	the	finishing	line	in	a	clearing	just	a	few	short	steps	away.

Recall	 the	 distinction	 between	 these	 two	 questions:	How	hard	 is	 it	 to	 attain
roughly	human	levels	of	cognitive	ability?	And	how	hard	is	it	to	get	from	there



to	superhuman	 levels?	The	 first	question	 is	mainly	 relevant	 for	predicting	how
long	it	will	be	before	the	onset	of	a	takeoff.	It	is	the	second	question	that	is	key
to	assessing	the	shape	of	the	takeoff,	which	is	our	aim	here.	And	though	it	might
be	tempting	to	suppose	that	the	step	from	human	level	to	superhuman	level	must
be	 the	harder	one—this	 step,	after	all,	 takes	place	“at	 a	higher	altitude”	where
capacity	must	be	superadded	to	an	already	quite	capable	system—this	would	be
a	 very	 unsafe	 assumption.	 It	 is	 quite	 possible	 that	 recalcitrance	 falls	 when	 a
machine	reaches	human	parity.

Consider	first	whole	brain	emulation.	The	difficulties	involved	in	creating	the
first	 human	 emulation	 are	 of	 a	 quite	 different	 kind	 from	 those	 involved	 in
enhancing	 an	 existing	 emulation.	 Creating	 a	 first	 emulation	 involves	 huge
technological	 challenges,	 particularly	 in	 regard	 to	 developing	 the	 requisite
scanning	 and	 image	 interpretation	 capabilities.	 This	 step	 might	 also	 require
considerable	amounts	of	physical	capital—an	industrial-scale	machine	park	with
hundreds	of	high-throughput	scanning	machines	is	not	implausible.	By	contrast,
enhancing	the	quality	of	an	existing	emulation	involves	tweaking	algorithms	and
data	structures:	essentially	a	software	problem,	and	one	that	could	turn	out	to	be
much	easier	than	perfecting	the	imaging	technology	needed	to	create	the	original
template.	 Programmers	 could	 easily	 experiment	with	 tricks	 like	 increasing	 the
neuron	count	in	different	cortical	areas	to	see	how	it	affects	performance.7	They
also	 could	 work	 on	 code	 optimization	 and	 on	 finding	 simpler	 computational
models	 that	 preserve	 the	 essential	 functionality	 of	 individual	 neurons	 or	 small
networks	 of	 neurons.	 If	 the	 last	 technological	 prerequisite	 to	 fall	 into	 place	 is
either	scanning	or	translation,	with	computing	power	being	relatively	abundant,
then	not	much	attention	might	have	been	given	during	the	development	phase	to
implementational	efficiency,	and	easy	opportunities	for	computational	efficiency
savings	 might	 be	 available.	 (More	 fundamental	 architectural	 reorganization
might	 also	 be	 possible,	 but	 that	 takes	 us	 off	 the	 emulation	 path	 and	 into	 AI
territory.)

Another	 way	 to	 improve	 the	 code	 base	 once	 the	 first	 emulation	 has	 been
produced	is	to	scan	additional	brains	with	different	or	superior	skills	and	talents.
Productivity	 growth	 would	 also	 occur	 as	 a	 consequence	 of	 adapting
organizational	structures	and	workflows	to	the	unique	attributes	of	digital	minds.
Since	 there	 is	 no	 precedent	 in	 the	 human	 economy	 of	 a	 worker	 who	 can	 be
literally	copied,	reset,	run	at	different	speeds,	and	so	forth,	managers	of	the	first
emulation	 cohort	 would	 find	 plenty	 of	 room	 for	 innovation	 in	 managerial
practices.



After	 initially	 plummeting	 when	 human	 whole	 brain	 emulation	 becomes
possible,	 recalcitrance	 may	 rise	 again.	 Sooner	 or	 later,	 the	 most	 glaring
implementational	 inefficiencies	 will	 have	 been	 optimized	 away,	 the	 most
promising	 algorithmic	 variations	 will	 have	 been	 tested,	 and	 the	 easiest
opportunities	 for	 organizational	 innovation	 will	 have	 been	 exploited.	 The
template	 library	will	 have	 expanded	 so	 that	 acquiring	more	 brain	 scans	would
add	little	benefit	over	working	with	existing	templates.	Since	a	template	can	be
multiplied,	each	copy	can	be	individually	trained	in	a	different	field,	and	this	can
be	 done	 at	 electronic	 speed,	 it	might	 be	 that	 the	 number	 of	 brains	 that	would
need	 to	be	scanned	 in	order	 to	capture	most	of	 the	potential	economic	gains	 is
small.	Possibly	a	single	brain	would	suffice.

Another	 potential	 cause	 of	 escalating	 recalcitrance	 is	 the	 possibility	 that
emulations	 or	 their	 biological	 supporters	 will	 organize	 to	 support	 regulations
restricting	the	use	of	emulation	workers,	limiting	emulation	copying,	prohibiting
certain	 kinds	 of	 experimentation	with	 digital	minds,	 instituting	workers’	 rights
and	 a	 minimum	 wage	 for	 emulations,	 and	 so	 forth.	 It	 is	 equally	 possible,
however,	 that	 political	 developments	 would	 go	 in	 the	 opposite	 direction,
contributing	to	a	fall	in	recalcitrance.	This	might	happen	if	initial	restraint	in	the
use	of	emulation	labor	gives	way	to	unfettered	exploitation	as	competition	heats
up	 and	 the	 economic	 and	 strategic	 costs	 of	 occupying	 the	moral	 high	 ground
become	clear.

As	 for	 artificial	 intelligence	 (non-emulation	 machine	 intelligence),	 the
difficulty	 of	 lifting	 a	 system	 from	 human-level	 to	 superhuman	 intelligence	 by
means	of	 algorithmic	 improvements	depends	on	 the	attributes	of	 the	particular
system.	Different	architectures	might	have	very	different	recalcitrance.

In	 some	 situations,	 recalcitrance	 could	 be	 extremely	 low.	 For	 example,	 if
human-level	AI	 is	 delayed	 because	 one	 key	 insight	 long	 eludes	 programmers,
then	when	 the	 final	breakthrough	occurs,	 the	AI	might	 leapfrog	 from	below	 to
radically	 above	 human	 level	 without	 even	 touching	 the	 intermediary	 rungs.
Another	 situation	 in	which	 recalcitrance	 could	 turn	out	 to	be	 extremely	 low	 is
that	 of	 an	 AI	 system	 that	 can	 achieve	 intelligent	 capability	 via	 two	 different
modes	of	processing.	To	illustrate	this	possibility,	suppose	an	AI	is	composed	of
two	 subsystems,	 one	 possessing	 domain-specific	 problem-solving	 techniques,
the	other	possessing	general-purpose	reasoning	ability.	It	could	then	be	the	case
that	while	 the	second	subsystem	remains	below	a	certain	capacity	 threshold,	 it
contributes	nothing	to	the	system’s	overall	performance,	because	the	solutions	it



generates	 are	 always	 inferior	 to	 those	 generated	 by	 the	 domain-specific
subsystem.	Suppose	now	that	a	small	amount	of	optimization	power	is	applied	to
the	general-purpose	subsystem	and	that	this	produces	a	brisk	rise	in	the	capacity
of	 that	 subsystem.	 At	 first,	 we	 observe	 no	 increase	 in	 the	 overall	 system’s
performance,	indicating	that	recalcitrance	is	high.	Then,	once	the	capacity	of	the
general-purpose	subsystem	crosses	the	threshold	where	its	solutions	start	to	beat
those	 of	 the	 domain-specific	 subsystem,	 the	 overall	 system’s	 performance
suddenly	 begins	 to	 improve	 at	 the	 same	 brisk	 pace	 as	 the	 general-purpose
subsystem,	even	as	the	amount	of	optimization	power	applied	stays	constant:	the
system’s	recalcitrance	has	plummeted.

It	 is	 also	 possible	 that	 our	 natural	 tendency	 to	 view	 intelligence	 from	 an
anthropocentric	perspective	will	lead	us	to	underestimate	improvements	in	sub-
human	 systems,	 and	 thus	 to	overestimate	 recalcitrance.	Eliezer	Yudkowsky,	 an
AI	 theorist	who	 has	written	 extensively	 on	 the	 future	 of	machine	 intelligence,
puts	the	point	as	follows:

AI	might	make	an	apparently	sharp	jump	in	intelligence	purely	as	the	result
of	 anthropomorphism,	 the	human	 tendency	 to	 think	of	 “village	 idiot”	 and
“Einstein”	 as	 the	 extreme	ends	of	 the	 intelligence	 scale,	 instead	of	 nearly
indistinguishable	 points	 on	 the	 scale	 of	 minds-in-general.	 Everything
dumber	 than	 a	 dumb	 human	 may	 appear	 to	 us	 as	 simply	 “dumb”.	 One
imagines	 the	 “AI	 arrow”	 creeping	 steadily	 up	 the	 scale	 of	 intelligence,
moving	 past	 mice	 and	 chimpanzees,	 with	 AIs	 still	 remaining	 “dumb”
because	AIs	cannot	speak	fluent	language	or	write	science	papers,	and	then
the	AI	 arrow	 crosses	 the	 tiny	 gap	 from	 infra-idiot	 to	 ultra-Einstein	 in	 the
course	of	one	month	or	some	similarly	short	period.8	(See	Fig.	8.)

	
	

The	upshot	of	these	several	considerations	is	that	it	is	difficult	to	predict	how
hard	it	will	be	 to	make	algorithmic	improvements	 in	 the	first	AI	 that	reaches	a
roughly	 human	 level	 of	 general	 intelligence.	 There	 are	 at	 least	 some	 possible
circumstances	 in	 which	 algorithm-recalcitrance	 is	 low.	 But	 even	 if	 algorithm-
recalcitrance	is	very	high,	this	would	not	preclude	the	overall	recalcitrance	of	the
AI	in	question	from	being	low.	For	it	might	be	easy	to	increase	the	intelligence
of	 the	 system	 in	 other	 ways	 than	 by	 improving	 its	 algorithms.	 There	 are	 two
other	factors	that	can	be	improved:	content	and	hardware.



First,	consider	content	improvements.	By	“content”	we	here	mean	those	parts
of	 a	 system’s	 software	 assets	 that	 do	 not	 make	 up	 its	 core	 algorithmic
architecture.	Content	might	 include,	 for	 example,	 databases	of	 stored	percepts,
specialized	skills	libraries,	and	inventories	of	declarative	knowledge.	For	many
kinds	of	system,	the	distinction	between	algorithmic	architecture	and	content	is
very	unsharp;	nevertheless,	it	will	serve	as	a	rough-and-ready	way	of	pointing	to
one	 potentially	 important	 source	 of	 capability	 gains	 in	 a	machine	 intelligence.
An	 alternative	 way	 of	 expressing	 much	 the	 same	 idea	 is	 by	 saying	 that	 a
system’s	 intellectual	 problem-solving	 capacity	 can	 be	 enhanced	 not	 only	 by
making	the	system	cleverer	but	also	by	expanding	what	the	system	knows.

Figure	8	A	less	anthropomorphic	scale?	The	gap	between	a	dumb	and	a	clever
person	 may	 appear	 large	 from	 an	 anthropocentric	 perspective,	 yet	 in	 a	 less
parochial	 view	 the	 two	 have	 nearly	 indistinguishable	 minds.9	 It	 will	 almost
certainly	prove	harder	and	take	longer	to	build	a	machine	intelligence	that	has	a
general	level	of	smartness	comparable	to	that	of	a	village	idiot	than	to	improve
such	a	system	so	that	it	becomes	much	smarter	than	any	human.

	

Consider	a	contemporary	AI	system	such	as	TextRunner	(a	research	project	at
the	 University	 of	 Washington)	 or	 IBM’s	 Watson	 (the	 system	 that	 won	 the
Jeopardy!	 quiz	 show).	 These	 systems	 can	 extract	 certain	 pieces	 of	 semantic
information	by	analyzing	 text.	Although	 these	systems	do	not	understand	what
they	 read	 in	 the	 same	 sense	 or	 to	 the	 same	 extent	 as	 a	 human	 does,	 they	 can
nevertheless	 extract	 significant	 amounts	 of	 information	 from	 natural	 language
and	use	that	information	to	make	simple	inferences	and	answer	questions.	They
can	also	learn	from	experience,	building	up	more	extensive	representations	of	a
concept	as	 they	encounter	additional	 instances	of	 its	use.	They	are	designed	 to
operate	for	much	of	the	time	in	unsupervised	mode	(i.e.	to	learn	hidden	structure
in	 unlabeled	 data	 in	 the	 absence	 of	 error	 or	 reward	 signal,	 without	 human
guidance)	 and	 to	 be	 fast	 and	 scalable.	 TextRunner,	 for	 instance,	works	with	 a
corpus	of	500	million	web	pages.10



Now	 imagine	 a	 remote	 descendant	 of	 such	 a	 system	 that	 has	 acquired	 the
ability	 to	 read	with	as	much	understanding	as	a	human	 ten-year-old	but	with	a
reading	 speed	 similar	 to	 that	 of	TextRunner.	 (This	 is	 probably	 an	AI-complete
problem.)	So	we	are	 imagining	a	system	that	 thinks	much	faster	and	has	much
better	memory	 than	 a	 human	 adult,	 but	 knows	much	 less,	 and	perhaps	 the	 net
effect	 of	 this	 is	 that	 the	 system	 is	 roughly	 human-equivalent	 in	 its	 general
problem-solving	ability.	But	its	content	recalcitrance	is	very	low—low	enough	to
precipitate	a	takeoff.	Within	a	few	weeks,	the	system	has	read	and	mastered	all
the	content	contained	in	the	Library	of	Congress.	Now	the	system	knows	much
more	 than	 any	 human	 being	 and	 thinks	 vastly	 faster:	 it	 has	 become	 (at	 least)
weakly	superintelligent.

A	 system	 might	 thus	 greatly	 boost	 its	 effective	 intellectual	 capability	 by
absorbing	pre-produced	content	accumulated	through	centuries	of	human	science
and	civilization:	 for	 instance,	by	reading	 through	 the	Internet.	 If	an	AI	reaches
human	 level	 without	 previously	 having	 had	 access	 to	 this	material	 or	 without
having	been	able	to	digest	it,	then	the	AI’s	overall	recalcitrance	will	be	low	even
if	it	is	hard	to	improve	its	algorithmic	architecture.

Content-recalcitrance	is	a	relevant	concept	for	emulations,	 too.	A	high-speed
emulation	has	an	advantage	not	only	because	it	can	complete	the	same	tasks	as
biological	humans	more	quickly,	but	also	because	it	can	accumulate	more	timely
content,	 such	 as	 task-relevant	 skills	 and	 expertise.	 In	 order	 to	 tap	 the	 full
potential	 of	 fast	 content	 accumulation,	 however,	 a	 system	 needs	 to	 have	 a
correspondingly	large	memory	capacity.	There	is	little	point	in	reading	an	entire
library	 if	you	have	 forgotten	all	 about	 the	aardvark	by	 the	 time	you	get	 to	 the
abalone.	 While	 an	 AI	 system	 is	 likely	 to	 have	 adequate	 memory	 capacity,
emulations	 would	 inherit	 some	 of	 the	 capacity	 limitations	 of	 their	 human
templates.	 They	 may	 therefore	 need	 architectural	 enhancements	 in	 order	 to
become	capable	of	unbounded	learning.

So	far	we	have	considered	 the	recalcitrance	of	architecture	and	of	content—
that	 is,	 how	 difficult	 it	 would	 be	 to	 improve	 the	 software	 of	 a	 machine
intelligence	 that	 has	 reached	 human	 parity.	Now	 let	 us	 look	 at	 a	 third	way	 of
boosting	the	performance	of	machine	intelligence:	improving	its	hardware.	What
would	be	the	recalcitrance	for	hardware-driven	improvements?

Starting	with	intelligent	software	(emulation	or	AI)	one	can	amplify	collective
intelligence	 simply	by	using	additional	computers	 to	 run	more	 instances	of	 the



program.11	One	could	also	amplify	speed	intelligence	by	moving	the	program	to
faster	computers.	Depending	on	the	degree	to	which	the	program	lends	itself	to
parallelization,	 speed	 intelligence	 could	 also	 be	 amplified	 by	 running	 the
program	on	more	processors.	This	is	likely	to	be	feasible	for	emulations,	which
have	 a	 highly	 parallelized	 architecture;	 but	 many	 AI	 programs,	 too,	 have
important	subroutines	that	can	benefit	from	massive	parallelization.	Amplifying
quality	intelligence	by	 increasing	computing	power	might	also	be	possible,	but
that	case	is	less	straightforward.12

The	recalcitrance	for	amplifying	collective	or	speed	intelligence	(and	possibly
quality	intelligence)	in	a	system	with	human-level	software	is	therefore	likely	to
be	 low.	The	only	difficulty	 involved	 is	gaining	access	 to	 additional	 computing
power.	There	 are	 several	ways	 for	 a	 system	 to	 expand	 its	hardware	base,	 each
relevant	over	a	different	timescale.

In	 the	 short	 term,	 computing	 power	 should	 scale	 roughly	 linearly	 with
funding:	twice	the	funding	buys	twice	the	number	of	computers,	enabling	twice
as	many	 instances	of	 the	software	 to	be	 run	simultaneously.	The	emergence	of
cloud	computing	services	gives	a	project	the	option	to	scale	up	its	computational
resources	without	 even	 having	 to	wait	 for	 new	 computers	 to	 be	 delivered	 and
installed,	 though	 concerns	 over	 secrecy	 might	 favor	 the	 use	 of	 in-house
computers.	 (In	 certain	 scenarios,	 computing	 power	 could	 also	 be	 obtained	 by
other	means,	such	as	by	commandeering	botnets.13)	Just	how	easy	it	would	be	to
scale	the	system	by	a	given	factor	depends	on	how	much	computing	power	the
initial	 system	 uses.	A	 system	 that	 initially	 runs	 on	 a	 PC	 could	 be	 scaled	 by	 a
factor	 of	 thousands	 for	 a	 mere	 million	 dollars.	 A	 program	 that	 runs	 on	 a
supercomputer	would	be	far	more	expensive	to	scale.

In	the	slightly	longer	term,	the	cost	of	acquiring	additional	hardware	may	be
driven	up	as	a	growing	portion	of	the	world’s	installed	capacity	is	being	used	to
run	 digital	 minds.	 For	 instance,	 in	 a	 competitive	 market-based	 emulation
scenario,	the	cost	of	running	one	additional	copy	of	an	emulation	should	rise	to
be	roughly	equal	to	the	income	generated	by	the	marginal	copy,	as	investors	bid
up	the	price	for	existing	computing	infrastructure	to	match	the	return	they	expect
from	their	investment	(though	if	only	one	project	has	mastered	the	technology	it
might	gain	a	degree	of	monopsony	power	 in	 the	computing	power	market	and
therefore	pay	a	lower	price).

Over	a	somewhat	longer	timescale,	the	supply	of	computing	power	will	grow



as	new	capacity	is	installed.	A	demand	spike	would	spur	production	in	existing
semiconductor	foundries	and	stimulate	the	construction	of	new	plants.	(A	one-off
performance	boost,	perhaps	amounting	to	one	or	two	orders	of	magnitude,	might
also	be	obtainable	by	using	customized	microprocessors.14)	Above	all,	the	rising
wave	 of	 technology	 improvements	 will	 pour	 increasing	 volumes	 of
computational	power	into	the	turbines	of	the	thinking	machines.	Historically,	the
rate	of	improvement	of	computing	technology	has	been	described	by	the	famous
Moore’s	 law,	 which	 in	 one	 of	 its	 variations	 states	 that	 computing	 power	 per
dollar	doubles	every	18	months	or	so.15	Although	one	cannot	bank	on	this	rate	of
improvement	 continuing	 up	 to	 the	 development	 of	 human-level	 machine
intelligence,	yet	until	fundamental	physical	limits	are	reached	there	will	remain
room	for	advances	in	computing	technology.

There	are	thus	reasons	to	expect	that	hardware	recalcitrance	will	not	be	very
high.	Purchasing	more	computing	power	for	the	system	once	it	proves	its	mettle
by	 attaining	 human-level	 intelligence	 might	 easily	 add	 several	 orders	 of
magnitude	of	computing	power	(depending	on	how	hardware-frugal	the	project
was	 before	 expansion).	 Chip	 customization	 might	 add	 one	 or	 two	 orders	 of
magnitude.	Other	means	of	expanding	the	hardware	base,	such	as	building	more
factories	 and	 advancing	 the	 frontier	 of	 computing	 technology,	 take	 longer—
normally	 several	 years,	 though	 this	 lag	 would	 be	 radically	 compressed	 once
machine	 superintelligence	 revolutionizes	 manufacturing	 and	 technology
development.

In	summary,	we	can	talk	about	the	likelihood	of	a	hardware	overhang:	when
human-level	 software	 is	 created,	 enough	 computing	 power	 may	 already	 be
available	to	run	vast	numbers	of	copies	at	great	speed.	Software	recalcitrance,	as
discussed	 above,	 is	 harder	 to	 assess	 but	 might	 be	 even	 lower	 than	 hardware
recalcitrance.	 In	 particular,	 there	may	be	content	overhang	 in	 the	 form	of	 pre-
made	 content	 (e.g.	 the	 Internet)	 that	 becomes	 available	 to	 a	 system	 once	 it
reaches	 human	 parity.	 Algorithm	 overhang—pre-designed	 algorithmic
enhancements—is	also	possible	but	perhaps	less	likely.	Software	improvements
(whether	in	algorithms	or	content)	might	offer	orders	of	magnitude	of	potential
performance	gains	that	could	be	fairly	easily	accessed	once	a	digital	mind	attains
human	parity,	on	top	of	the	performance	gains	attainable	by	using	more	or	better
hardware.

Optimization	power	and	explosivity



	

Having	 examined	 the	 question	 of	 recalcitrance	we	must	 now	 turn	 to	 the	 other
half	of	our	schematic	equation,	optimization	power.	To	recall:	Rate	of	change	in
Intelligence	=	Optimization	power/Recalcitrance.	As	reflected	in	this	schematic,
a	 fast	 takeoff	does	not	 require	 that	 recalcitrance	during	 the	 transition	phase	be
low.	 A	 fast	 takeoff	 could	 also	 result	 if	 recalcitrance	 is	 constant	 or	 even
moderately	 increasing,	 provided	 the	 optimization	 power	 being	 applied	 to
improving	the	system’s	performance	grows	sufficiently	rapidly.	As	we	shall	now
see,	there	are	good	grounds	for	thinking	that	the	applied	optimization	power	will
increase	during	the	transition,	at	least	in	the	absence	of	a	deliberate	measures	to
prevent	this	from	happening.

We	can	distinguish	 two	phases.	The	 first	phase	begins	with	 the	onset	of	 the
takeoff,	when	the	system	reaches	the	human	baseline	for	individual	intelligence.
As	the	system’s	capability	continues	to	increase,	it	might	use	some	or	all	of	that
capability	to	improve	itself	(or	to	design	a	successor	system—which,	for	present
purposes,	 comes	 to	 the	 same	 thing).	However,	most	of	 the	optimization	power
applied	to	the	system	still	comes	from	outside	the	system,	either	from	the	work
of	programmers	and	engineers	employed	within	 the	project	or	 from	such	work
done	by	the	rest	of	the	world	as	can	be	appropriated	and	used	by	the	project.16	If
this	phase	drags	out	for	any	significant	period	of	time,	we	can	expect	the	amount
of	optimization	power	applied	to	the	system	to	grow.	Inputs	both	from	inside	the
project	and	 from	 the	outside	world	are	 likely	 to	 increase	as	 the	promise	of	 the
chosen	 approach	 becomes	 manifest.	 Researchers	 may	 work	 harder,	 more
researchers	may	be	recruited,	and	more	computing	power	may	be	purchased	to
expedite	progress.	The	increase	could	be	especially	dramatic	if	the	development
of	human-level	machine	intelligence	takes	the	world	by	surprise,	in	which	case
what	was	previously	a	small	research	project	might	suddenly	become	the	focus
of	 intense	 research	and	development	efforts	around	 the	world	 (though	some	of
those	efforts	might	be	channeled	into	competing	projects).

A	second	growth	phase	will	begin	if	at	some	point	the	system	has	acquired	so
much	capability	 that	most	of	 the	optimization	power	exerted	on	 it	comes	 from
the	system	itself	(marked	by	the	variable	level	labeled	“crossover”	in	Figure	7).
This	fundamentally	changes	 the	dynamic,	because	any	increase	 in	 the	system’s
capability	 now	 translates	 into	 a	 proportional	 increase	 in	 the	 amount	 of
optimization	 power	 being	 applied	 to	 its	 further	 improvement.	 If	 recalcitrance
remains	constant,	this	feedback	dynamic	produces	exponential	growth	(see	Box



4).	The	doubling	constant	depends	on	the	scenario	but	might	be	extremely	short
—mere	seconds	in	some	scenarios—if	growth	is	occurring	at	electronic	speeds,
which	might	happen	as	a	result	of	algorithmic	improvements	or	the	exploitation
of	 an	 overhang	 of	 content	 or	 hardware.17	 Growth	 that	 is	 driven	 by	 physical
construction,	 such	 as	 the	 production	 of	 new	 computers	 or	 manufacturing
equipment,	would	require	a	somewhat	longer	timescale	(but	still	one	that	might
be	very	short	compared	with	the	current	growth	rate	of	the	world	economy).

It	 is	 thus	 likely	 that	 the	applied	optimization	power	will	 increase	during	 the
transition:	initially	because	humans	try	harder	to	improve	a	machine	intelligence
that	is	showing	spectacular	promise,	later	because	the	machine	intelligence	itself
becomes	capable	of	driving	further	progress	at	digital	speeds.	This	would	create
a	real	possibility	of	a	fast	or	medium	takeoff	even	if	recalcitrance	were	constant
or	slightly	increasing	around	the	human	baseline.18	Yet	we	saw	in	the	previous
subsection	 that	 there	 are	 factors	 that	 could	 lead	 to	 a	 big	 drop	 in	 recalcitrance
around	 the	 human	 baseline	 level	 of	 capability.	 These	 factors	 include,	 for
example,	 the	possibility	of	 rapid	hardware	 expansion	once	 a	working	 software
mind	 has	 been	 attained;	 the	 possibility	 of	 algorithmic	 improvements;	 the
possibility	of	scanning	additional	brains	(in	the	case	of	whole	brain	emulation);
and	the	possibility	of	rapidly	incorporating	vast	amounts	of	content	by	digesting
the	Internet	(in	the	case	of	artificial	intelligence).24

Box	4	On	the	kinetics	of	an	intelligence	explosion

	

We	 can	 write	 the	 rate	 of	 change	 in	 intelligence	 as	 the	 ratio	 between	 the
optimization	power	applied	to	the	system	and	the	system’s	recalcitrance:

	

The	 amount	 of	 optimization	power	 acting	on	 a	 system	 is	 the	 sum	of	whatever
optimization	 power	 the	 system	 itself	 contributes	 and	 the	 optimization	 power
exerted	 from	 without.	 For	 example,	 a	 seed	 AI	 might	 be	 improved	 through	 a
combination	of	 its	 own	efforts	 and	 the	 efforts	 of	 a	 human	programming	 team,



and	 perhaps	 also	 the	 efforts	 of	 the	 wider	 global	 community	 of	 researchers
making	 continuous	 advances	 in	 the	 semiconductor	 industry,	 computer	 science,
and	related	fields:19

	

A	 seed	 AI	 starts	 out	 with	 very	 limited	 cognitive	 capacities.	 At	 the	 outset,
therefore,	 	 is	 small.20	 What	 about	 	 and	 ?	 There	 are	 cases	 in
which	 a	 single	 project	 has	more	 relevant	 capability	 than	 the	 rest	 of	 the	world
combined—the	Manhattan	project,	for	instance,	brought	a	very	large	fraction	of
the	world’s	 best	 physicists	 to	Los	Alamos	 to	work	on	 the	 atomic	bomb.	More
commonly,	 any	 one	 project	 contains	 only	 a	 small	 fraction	 of	 the	world’s	 total
relevant	research	capability.	But	even	when	the	outside	world	has	a	greater	total
amount	 of	 relevant	 research	 capability	 than	 any	 one	 project,	 may
nevertheless	exceed	 ,	since	much	of	the	outside	world’s	capability	is	not	be
focused	 on	 the	 particular	 system	 in	 question.	 If	 a	 project	 begins	 to	 look
promising—which	will	happen	when	a	system	passes	the	human	baseline	if	not
before—it	might	attract	additional	investment,	increasing	 .	If	the	project’s
accomplishments	are	public,	 	might	also	rise	as	the	progress	inspires	greater
interest	in	machine	intelligence	generally	and	as	various	powers	scramble	to	get
in	on	the	game.	During	the	transition	phase,	therefore,	total	optimization	power
applied	to	improving	a	cognitive	system	is	likely	to	increase	as	the	capability	of
the	system	increases.21

As	 the	 system’s	 capabilities	 grow,	 there	 may	 come	 a	 point	 at	 which	 the
optimization	 power	 generated	 by	 the	 system	 itself	 starts	 to	 dominate	 the
optimization	power	applied	to	it	from	outside	(across	all	significant	dimensions
of	improvement):

	

This	crossover	 is	significant	because	beyond	this	point,	further	improvement	to
the	system’s	capabilities	contributes	strongly	to	increasing	the	total	optimization
power	 applied	 to	 improving	 the	 system.	We	 thereby	 enter	 a	 regime	 of	 strong
recursive	 self-improvement.	 This	 leads	 to	 explosive	 growth	 of	 the	 system’s



capability	 under	 a	 fairly	 wide	 range	 of	 different	 shapes	 of	 the	 recalcitrance
curve.

To	 illustrate,	 consider	 first	 a	 scenario	 in	which	 recalcitrance	 is	 constant,	 so
that	the	rate	of	increase	in	an	AI’s	intelligence	is	equal	to	the	optimization	power
being	 applied.	 Assume	 that	 all	 the	 optimization	 power	 that	 is	 applied	 comes
from	 the	 AI	 itself	 and	 that	 the	 AI	 applies	 all	 its	 intelligence	 to	 the	 task	 of
amplifying	its	own	intelligence,	so	that	 	=	I.22	We	then	have

	

Solving	this	simple	differential	equation	yields	the	exponential	function

	

But	 recalcitrance	 being	 constant	 is	 a	 rather	 special	 case.	 Recalcitrance	 might
well	 decline	 around	 the	 human	 baseline,	 due	 to	 one	 or	 more	 of	 the	 factors
mentioned	in	the	previous	subsection,	and	remain	low	around	the	crossover	and
some	 distance	 beyond	 (perhaps	 until	 the	 system	 eventually	 approaches
fundamental	physical	limits).	For	example,	suppose	that	the	optimization	power
applied	 to	 the	 system	 is	 roughly	 constant	 (i.e.	 	 +	 	≈	c)	prior	 to	 the
system	 becoming	 capable	 of	 contributing	 substantially	 to	 its	 own	 design,	 and
that	this	leads	to	the	system	doubling	in	capacity	every	18	months.	(This	would
be	roughly	in	line	with	historical	improvement	rates	from	Moore’s	law	combined
with	software	advances.23)	This	 rate	of	 improvement,	 if	 achieved	by	means	of
roughly	 constant	 optimization	 power,	 entails	 recalcitrance	 declining	 as	 the
inverse	of	the	system	power:

	

If	recalcitrance	continues	to	fall	along	this	hyperbolic	pattern,	then	when	the	AI
reaches	 the	 crossover	 point	 the	 total	 amount	 of	 optimization	 power	 applied	 to
improving	the	AI	has	doubled.	We	then	have



	

The	 next	 doubling	 occurs	 7.5	months	 later.	Within	 17.9	months,	 the	 system’s
capacity	 has	 grown	 a	 thousandfold,	 thus	 obtaining	 speed	 superintelligence
(Figure	9).

This	particular	growth	trajectory	has	a	positive	singularity	at	t	=	18	months.	In
reality,	 the	assumption	that	recalcitrance	is	constant	would	cease	to	hold	as	 the
system	began	 to	 approach	 the	 physical	 limits	 to	 information	processing,	 if	 not
sooner.

These	two	scenarios	are	intended	for	illustration	only;	many	other	trajectories
are	 possible,	 depending	 on	 the	 shape	 of	 the	 recalcitrance	 curve.	 The	 claim	 is
simply	that	the	strong	feedback	loop	that	sets	in	around	the	crossover	point	tends
strongly	to	make	the	takeoff	faster	than	it	would	otherwise	have	been.

Figure	9	One	simple	model	of	an	intelligence	explosion.

	

	

These	 observations	 notwithstanding,	 the	 shape	 of	 the	 recalcitrance	 curve	 in
the	relevant	region	is	not	yet	well	characterized.	In	particular,	it	is	unclear	how



difficult	it	would	be	to	improve	the	software	quality	of	a	human-level	emulation
or	AI.	The	difficulty	of	expanding	the	hardware	power	available	to	a	system	is
also	 not	 clear.	 Whereas	 today	 it	 would	 be	 relatively	 easy	 to	 increase	 the
computing	power	available	to	a	small	project	by	spending	a	thousand	times	more
on	computing	power	or	by	waiting	a	few	years	for	the	price	of	computers	to	fall,
it	is	possible	that	the	first	machine	intelligence	to	reach	the	human	baseline	will
result	 from	 a	 large	 project	 involving	 pricey	 supercomputers,	 which	 cannot	 be
cheaply	 scaled,	 and	 that	 Moore’s	 law	 will	 by	 then	 have	 expired.	 For	 these
reasons,	although	a	fast	or	medium	takeoff	looks	more	likely,	the	possibility	of	a
slow	takeoff	cannot	be	excluded.25



CHAPTER	5
Decisive	strategic	advantage

	

A	question	distinct	from,	but	related	to,	the	question	of	kinetics	is	whether
there	 will	 there	 be	 one	 superintelligent	 power	 or	 many?	 Might	 an
intelligence	 explosion	 propel	 one	 project	 so	 far	 ahead	 of	 all	 others	 as	 to
make	 it	 able	 to	 dictate	 the	 future?	 Or	 will	 progress	 be	 more	 uniform,
unfurling	 across	 a	 wide	 front,	 with	many	 projects	 participating	 but	 none
securing	an	overwhelming	and	permanent	lead?

The	preceding	chapter	analyzed	one	key	parameter	in	determining	the	size	of	the
gap	 that	 might	 plausibly	 open	 up	 between	 a	 leading	 power	 and	 its	 nearest
competitors—namely,	 the	 speed	 of	 the	 transition	 from	 human	 to	 strongly
superhuman	intelligence.	This	suggests	a	first-cut	analysis.	If	the	takeoff	is	fast
(completed	over	the	course	of	hours,	days,	or	weeks)	then	it	is	unlikely	that	two
independent	projects	would	be	taking	off	concurrently:	almost	certainty,	the	first
project	would	 have	 completed	 its	 takeoff	 before	 any	 other	 project	would	 have
started	 its	 own.	 If	 the	 takeoff	 is	 slow	 (stretching	 over	many	 years	 or	 decades)
then	there	could	plausibly	be	multiple	projects	undergoing	takeoffs	concurrently,
so	 that	 although	 the	 projects	 would	 by	 the	 end	 of	 the	 transition	 have	 gained
enormously	 in	capability,	 there	would	be	no	 time	at	which	any	project	was	 far
enough	 ahead	 of	 the	 others	 to	 give	 it	 an	 overwhelming	 lead.	 A	 takeoff	 of
moderate	 speed	 is	 poised	 in	between,	with	 either	 condition	 a	possibility:	 there
might	or	might	not	be	more	than	one	project	undergoing	the	takeoff	at	the	same
time.1

Will	one	machine	intelligence	project	get	so	far	ahead	of	the	competition	that
it	gets	a	decisive	strategic	advantage—that	is,	a	level	of	technological	and	other
advantages	 sufficient	 to	 enable	 it	 to	 achieve	 complete	world	 domination?	 If	 a
project	 did	 obtain	 a	 decisive	 strategic	 advantage,	 would	 it	 use	 it	 to	 suppress
competitors	and	form	a	singleton	(a	world	order	in	which	there	is	at	 the	global
level	a	single	decision-making	agency)?	And	if	there	is	a	winning	project,	how
“large”	would	it	be—not	in	terms	of	physical	size	or	budget	but	in	terms	of	how
many	people’s	desires	would	be	controlling	 its	design?	We	will	 consider	 these



questions	in	turn.

Will	 the	 frontrunner	 get	 a	 decisive	 strategic
advantage?

	

One	factor	influencing	the	width	of	the	gap	between	frontrunner	and	followers	is
the	 rate	 of	 diffusion	 of	 whatever	 it	 is	 that	 gives	 the	 leader	 a	 competitive
advantage.	A	frontrunner	might	find	it	difficult	to	gain	and	maintain	a	large	lead
if	 followers	 can	 easily	 copy	 the	 frontrunner’s	 ideas	 and	 innovations.	 Imitation
creates	 a	 headwind	 that	 disadvantages	 the	 leader	 and	 benefits	 laggards,
especially	if	 intellectual	property	is	weakly	protected.	A	frontrunner	might	also
be	 especially	 vulnerable	 to	 expropriation,	 taxation,	 or	 being	 broken	 up	 under
anti-monopoly	regulation.

It	would	be	a	mistake,	however,	 to	assume	that	 this	headwind	must	 increase
monotonically	with	the	gap	between	frontrunner	and	followers.	Just	as	a	racing
cyclist	who	falls	 too	 far	behind	 the	competition	 is	no	 longer	shielded	 from	the
wind	 by	 the	 cyclists	 ahead,	 so	 a	 technology	 follower	 who	 lags	 sufficiently
behind	the	cutting	edge	might	find	it	hard	to	assimilate	the	advances	being	made
at	the	frontier.2	The	gap	in	understanding	and	capability	might	have	grown	too
large.	The	leader	might	have	migrated	to	a	more	advanced	technology	platform,
making	subsequent	innovations	untransferable	to	the	primitive	platforms	used	by
laggards.	 A	 sufficiently	 pre-eminent	 leader	 might	 have	 the	 ability	 to	 stem
information	leakage	from	its	research	programs	and	its	sensitive	installations,	or
to	sabotage	its	competitors’	efforts	to	develop	their	own	advanced	capabilities.

If	the	frontrunner	is	an	AI	system,	it	could	have	attributes	that	make	it	easier
for	it	to	expand	its	capabilities	while	reducing	the	rate	of	diffusion.	In	human-run
organizations,	economies	of	scale	are	counteracted	by	bureaucratic	inefficiencies
and	 agency	 problems,	 including	 difficulties	 in	 keeping	 trade	 secrets.3	 These
problems	would	presumably	 limit	 the	growth	of	a	machine	 intelligence	project
so	long	as	it	is	operated	by	humans.	An	AI	system,	however,	might	avoid	some
of	 these	 scale	 diseconomies,	 since	 the	 AI’s	 modules	 (in	 contrast	 to	 human
workers)	 need	 not	 have	 individual	 preferences	 that	 diverge	 from	 those	 of	 the
system	 as	 a	 whole.	 Thus,	 the	 AI	 system	 could	 avoid	 a	 sizeable	 chunk	 of	 the
inefficiencies	 arising	 from	 agency	 problems	 in	 human	 enterprises.	 The	 same



advantage—having	 perfectly	 loyal	 parts—would	 also	make	 it	 easier	 for	 an	AI
system	to	pursue	long-range	clandestine	goals.	An	AI	would	have	no	disgruntled
employees	 ready	 to	 be	 poached	 by	 competitors	 or	 bribed	 into	 becoming
informants.4

We	can	get	a	sense	of	the	distribution	of	plausible	gaps	in	development	times
by	 looking	at	some	historical	examples	 (see	Box	5).	 It	 appears	 that	 lags	 in	 the
range	 of	 a	 few	 months	 to	 a	 few	 years	 are	 typical	 of	 strategically	 significant
technology	projects.

Box	5	Technology	races:	some	historical	examples

	

Over	 long	historical	 timescales,	 there	has	been	an	increase	in	 the	rate	at	which
knowledge	 and	 technology	 diffuse	 around	 the	 globe.	As	 a	 result,	 the	 temporal
gaps	between	technology	leaders	and	nearest	followers	have	narrowed.

China	 managed	 to	 maintain	 a	 monopoly	 on	 silk	 production	 for	 over	 two
thousand	years.	Archeological	 finds	 suggest	 that	 production	might	have	begun
around	3000	BC,	or	even	earlier.5	Sericulture	was	a	closely	held	secret.	Revealing
the	 techniques	 was	 punishable	 by	 death,	 as	 was	 exporting	 silkworms	 or	 their
eggs	 outside	 China.	 The	 Romans,	 despite	 the	 high	 price	 commanded	 by
imported	silk	cloth	in	their	empire,	never	learnt	the	art	of	silk	manufacture.	Not
until	around	AD	300	did	a	Japanese	expedition	manage	to	capture	some	silkworm
eggs	along	with	four	young	Chinese	girls,	who	were	forced	to	divulge	the	art	to
their	abductors.6	Byzantium	joined	the	club	of	producers	in	AD	522.	The	story	of
porcelain-making	 also	 features	 long	 lags.	 The	 craft	 was	 practiced	 in	 China
during	the	Tang	Dynasty	around	AD	600	(and	might	have	been	in	use	as	early	as
AD	 200),	 but	 was	 mastered	 by	 Europeans	 only	 in	 the	 eighteenth	 century.7
Wheeled	 vehicles	 appeared	 in	 several	 sites	 across	 Europe	 and	 Mesopotamia
around	3500	BC	but	reached	the	Americas	only	in	post-Columbian	times.8	On	a
grander	scale,	the	human	species	took	tens	of	thousands	of	years	to	spread	across
most	of	the	globe,	the	Agricultural	Revolution	thousands	of	years,	the	Industrial
Revolution	only	hundreds	of	years,	and	an	Information	Revolution	could	be	said
to	 have	 spread	 globally	 over	 the	 course	 of	 decades—though,	 of	 course,	 these
transitions	are	not	necessarily	of	equal	profundity.	(The	Dance	Dance	Revolution
video	game	spread	from	Japan	to	Europe	and	North	America	in	just	one	year!)



Technological	competition	has	been	quite	extensively	studied,	particularly	 in
the	 contexts	 of	 patent	 races	 and	 arms	 races.9	 It	 is	 beyond	 the	 scope	 of	 our
investigation	 to	 review	this	 literature	here.	However,	 it	 is	 instructive	 to	 look	at
some	 examples	 of	 strategically	 significant	 technology	 races	 in	 the	 twentieth
century	(see	Table	7).

With	 regard	 to	 these	 six	 technologies,	 which	were	 regarded	 as	 strategically
important	 by	 the	 rivaling	 superpowers	 because	 of	 their	 military	 or	 symbolic
significance,	 the	 gaps	 between	 leader	 and	 nearest	 laggard	 were	 (very
approximately)	 49	months,	 36	months,	 4	months,	 1	month,	 4	months,	 and	 60
months,	respectively—longer	than	the	duration	of	a	fast	takeoff	and	shorter	than
the	duration	of	a	slow	takeoff.10	In	many	cases,	the	laggard’s	project	benefitted
from	espionage	and	publicly	available	 information.	The	mere	demonstration	of
the	 feasibility	 of	 an	 invention	 can	 also	 encourage	 others	 to	 develop	 it
independently;	and	fear	of	falling	behind	can	spur	the	efforts	to	catch	up.

Perhaps	 closer	 to	 the	 case	 of	 AI	 are	 mathematical	 inventions	 that	 do	 not
require	 the	 development	 of	 new	 physical	 infrastructure.	 Often	 these	 are
published	 in	 the	 academic	 literature	 and	 can	 thus	 be	 regarded	 as	 universally
available;	 but	 in	 some	 cases,	 when	 the	 discovery	 appears	 to	 offer	 a	 strategic
advantage,	publication	is	delayed.	For	example,	two	of	the	most	important	ideas
in	public-key	 cryptography	 are	 the	Diffie–Hellman	key	 exchange	protocol	 and
the	RSA	encryption	scheme.	These	were	discovered	by	the	academic	community
in	 1976	 and	1978,	 respectively,	 but	 it	 has	 later	 been	 confirmed	 that	 they	were
known	by	cryptographers	at	the	UK’s	communications	security	group	since	the
early	 1970s.20	 Large	 software	 projects	 might	 offer	 a	 closer	 analogy	 with	 AI
projects,	but	it	is	harder	to	give	crisp	examples	of	typical	lags	because	software
is	 usually	 rolled	 out	 in	 incremental	 installments	 and	 the	 functionalities	 of
competing	systems	are	often	not	directly	comparable.

Table	7	Some	strategically	significant	technology	races



	

	

It	is	possible	that	globalization	and	increased	surveillance	will	reduce	typical
lags	 between	 competing	 technology	 projects.	Yet	 there	 is	 likely	 to	 be	 a	 lower
bound	on	how	short	the	average	lag	could	become	(in	the	absence	of	deliberate
coordination).21	 Even	 absent	 dynamics	 that	 lead	 to	 snowball	 effects,	 some
projects	 will	 happen	 to	 end	 up	 with	 better	 research	 staff,	 leadership,	 and
infrastructure,	 or	 will	 just	 stumble	 upon	 better	 ideas.	 If	 two	 projects	 pursue
alternative	 approaches,	 one	 of	which	 turns	 out	 to	work	 better,	 it	may	 take	 the
rival	project	many	months	to	switch	to	the	superior	approach	even	if	it	is	able	to
closely	monitor	what	the	forerunner	is	doing.

Combining	these	observations	with	our	earlier	discussion	of	the	speed	of	the
takeoff,	we	 can	 conclude	 that	 it	 is	 highly	 unlikely	 that	 two	 projects	would	 be
close	 enough	 to	 undergo	 a	 fast	 takeoff	 concurrently;	 for	 a	medium	 takeoff,	 it
could	easily	go	either	way;	and	for	a	slow	takeoff,	it	is	highly	likely	that	several
projects	would	undergo	the	process	in	parallel.	But	the	analysis	needs	a	further
step.	The	key	question	 is	not	how	many	projects	undergo	a	 takeoff	 in	 tandem,
but	how	many	projects	emerge	on	the	yonder	side	sufficiently	tightly	clustered	in
capability	 that	 none	 of	 them	 has	 a	 decisive	 strategic	 advantage.	 If	 the	 takeoff
process	 is	 relatively	 slow	 to	 begin	 and	 then	 gets	 faster,	 the	 distance	 between
competing	projects	would	 tend	 to	grow.	To	return	 to	our	bicycle	metaphor,	 the
situation	would	be	analogous	 to	a	pair	of	cyclists	making	 their	way	up	a	steep
hill,	 one	 trailing	 some	 distance	 behind	 the	 other—the	 gap	 between	 them	 then
expanding	as	 the	frontrunner	reaches	 the	peak	and	starts	accelerating	down	the
other	side.

Consider	 the	 following	medium	 takeoff	 scenario.	 Suppose	 it	 takes	 a	 project
one	 year	 to	 increase	 its	 AI’s	 capability	 from	 the	 human	 baseline	 to	 a	 strong
superintelligence,	and	that	one	project	enters	this	takeoff	phase	with	a	six-month
lead	over	the	next	most	advanced	project.	The	two	projects	will	be	undergoing	a
takeoff	 concurrently.	 It	 might	 seem,	 then,	 that	 neither	 project	 gets	 a	 decisive
strategic	 advantage.	 But	 that	 need	 not	 be	 so.	 Suppose	 it	 takes	 nine	months	 to
advance	 from	 the	 human	 baseline	 to	 the	 crossover	 point,	 and	 another	 three
months	 from	 there	 to	 strong	 superintelligence.	 The	 frontrunner	 then	 attains
strong	superintelligence	three	months	before	the	following	project	even	reaches



the	 crossover	 point.	 This	 would	 give	 the	 leading	 project	 a	 decisive	 strategic
advantage	 and	 the	 opportunity	 to	 parlay	 its	 lead	 into	 permanent	 control	 by
disabling	 the	 competing	 projects	 and	 establishing	 a	 singleton.	 (Note	 that	 the
concept	 of	 a	 singleton	 is	 an	 abstract	 one:	 a	 singleton	 could	 be	 democracy,	 a
tyranny,	a	single	dominant	AI,	a	strong	set	of	global	norms	that	include	effective
provisions	 for	 their	 own	 enforcement,	 or	 even	 an	 alien	 overlord—its	 defining
characteristic	 being	 simply	 that	 it	 is	 some	 form	 of	 agency	 that	 can	 solve	 all
major	global	coordination	problems.	It	may,	but	need	not,	resemble	any	familiar
form	of	human	governance.22)

Since	there	is	an	especially	strong	prospect	of	explosive	growth	just	after	the
crossover	point,	when	 the	strong	positive	feedback	 loop	of	optimization	power
kicks	 in,	 a	 scenario	 of	 this	 kind	 is	 a	 serious	 possibility,	 and	 it	 increases	 the
chances	that	the	leading	project	will	attain	a	decisive	strategic	advantage	even	if
the	takeoff	is	not	fast.

How	large	will	the	successful	project	be?

	

Some	paths	to	superintelligence	require	great	resources	and	are	therefore	likely
to	 be	 the	 preserve	 of	 large	 well-funded	 projects.	 Whole	 brain	 emulation,	 for
instance,	 requires	 many	 different	 kinds	 of	 expertise	 and	 lots	 of	 equipment.
Biological	intelligence	enhancements	and	brain–computer	interfaces	would	also
have	 a	 large	 scale	 factor:	while	 a	 small	 biotech	 firm	might	 invent	 one	 or	 two
drugs,	 achieving	 superintelligence	 along	 one	 of	 these	 paths	 (if	 doable	 at	 all)
would	likely	require	many	inventions	and	many	tests,	and	therefore	the	backing
of	an	 industrial	 sector	or	a	well-funded	national	program.	Achieving	collective
superintelligence	by	making	organizations	and	networks	more	efficient	requires
even	more	extensive	input,	involving	much	of	the	world	economy.

The	AI	path	is	more	difficult	to	assess.	Perhaps	it	would	require	a	very	large
research	 program;	 perhaps	 it	 could	 be	 done	 by	 a	 small	 group.	 A	 lone	 hacker
scenario	 cannot	 be	 excluded	 either.	 Building	 a	 seed	AI	might	 require	 insights
and	 algorithms	 developed	 over	 many	 decades	 by	 the	 scientific	 community
around	the	world.	But	it	is	possible	that	the	last	critical	breakthrough	idea	might
come	 from	 a	 single	 individual	 or	 a	 small	 group	 that	 succeeds	 in	 putting
everything	together.	This	scenario	is	less	realistic	for	some	AI	architectures	than
others.	A	system	 that	has	a	 large	number	of	parts	 that	need	 to	be	 tweaked	and



tuned	to	work	effectively	 together,	and	then	painstakingly	 loaded	with	custom-
made	 cognitive	 content,	 is	 likely	 to	 require	 a	 larger	 project.	 But	 if	 a	 seed	AI
could	be	instantiated	as	a	simple	system,	one	whose	construction	depends	only
on	getting	a	few	basic	principles	right,	then	the	feat	might	be	within	the	reach	of
a	 small	 team	 or	 an	 individual.	 The	 likelihood	 of	 the	 final	 breakthrough	 being
made	by	a	small	project	increases	if	most	previous	progress	in	the	field	has	been
published	in	the	open	literature	or	made	available	as	open	source	software.

We	must	distinguish	the	question	of	how	big	will	be	the	project	that	directly
engineers	 the	 system	 from	 the	 question	 of	 how	 big	 the	 group	 will	 be	 that
controls	whether,	 how,	 and	when	 the	 system	 is	 created.	The	atomic	bomb	was
created	primarily	by	a	group	of	scientists	and	engineers.	(The	Manhattan	Project
employed	 about	 130,000	 people	 at	 its	 peak,	 the	 vast	 majority	 of	 whom	were
construction	workers	or	building	operators.23)	These	technical	experts,	however,
were	controlled	by	the	US	military,	which	was	directed	by	the	US	government,
which	was	ultimately	accountable	to	the	American	electorate,	which	at	the	time
constituted	about	one-tenth	of	the	adult	world	population.24

Monitoring

	

Given	 the	 extreme	 security	 implications	 of	 superintelligence,	 governments
would	 likely	seek	 to	nationalize	any	project	on	 their	 territory	 that	 they	 thought
close	 to	 achieving	 a	 takeoff.	 A	 powerful	 state	 might	 also	 attempt	 to	 acquire
projects	located	in	other	countries	through	espionage,	theft,	kidnapping,	bribery,
threats,	military	 conquest,	 or	 any	 other	 available	means.	A	 powerful	 state	 that
cannot	acquire	a	 foreign	project	might	 instead	destroy	 it,	 especially	 if	 the	host
country	lacks	an	effective	deterrent.	If	global	governance	structures	are	strong	by
the	 time	a	breakthrough	begins	 to	 look	 imminent,	 it	 is	possible	 that	promising
projects	would	be	placed	under	international	control.

An	 important	 question,	 therefore,	 is	 whether	 national	 or	 international
authorities	 will	 see	 an	 intelligence	 explosion	 coming.	 At	 present,	 intelligence
agencies	 do	 not	 appear	 to	 be	 looking	 very	 hard	 for	 promising	 AI	 projects	 or
other	 forms	 of	 potentially	 explosive	 intelligence	 amplification.25	 If	 they	 are
indeed	not	paying	(much)	attention,	this	is	presumably	due	to	the	widely	shared
perception	 that	 there	 is	no	prospect	whatever	of	 imminent	 superintelligence.	 If
and	when	it	becomes	a	common	belief	among	prestigious	scientists	that	there	is



a	 substantial	 chance	 that	 superintelligence	 is	 just	 around	 the	 corner,	 the	major
intelligence	 agencies	of	 the	world	would	probably	 start	 to	monitor	 groups	 and
individuals	who	seem	to	be	engaged	in	relevant	research.	Any	project	that	began
to	 show	 sufficient	 progress	 could	 then	 be	 promptly	 nationalized.	 If	 political
elites	were	persuaded	by	the	seriousness	of	the	risk,	civilian	efforts	in	sensitive
areas	might	be	regulated	or	outlawed.

How	difficult	would	such	monitoring	be?	The	task	is	easier	if	the	goal	is	only
to	 keep	 track	 of	 the	 leading	 project.	 In	 that	 case,	 surveillance	 focusing	 on	 the
several	best-resourced	projects	may	be	sufficient.	If	the	goal	is	instead	to	prevent
any	work	from	taking	place	(at	least	outside	of	specially	authorized	institutions)
then	 surveillance	 would	 have	 to	 be	 more	 comprehensive,	 since	 many	 small
projects	and	individuals	are	in	a	position	to	make	at	least	some	progress.

It	 would	 be	 easier	 to	 monitor	 projects	 that	 require	 significant	 amounts	 of
physical	 capital,	 as	 would	 be	 the	 case	 with	 a	 whole	 brain	 emulation	 project.
Artificial	 intelligence	 research,	 by	 contrast,	 requires	only	 a	personal	 computer,
and	would	therefore	be	more	difficult	to	monitor.	Some	of	the	theoretical	work
could	 be	 done	 with	 pen	 and	 paper.	 Even	 so,	 it	 would	 not	 be	 too	 difficult	 to
identify	 most	 capable	 individuals	 with	 a	 serious	 long-standing	 interest	 in
artificial	 general	 intelligence	 research.	 Such	 individuals	 usually	 leave	 visible
trails.	 They	 may	 have	 published	 academic	 papers,	 presented	 at	 conferences,
posted	 on	 Internet	 forums,	 or	 earned	 degrees	 from	 leading	 computer	 science
departments.	 They	 may	 also	 have	 had	 communications	 with	 other	 AI
researchers,	allowing	them	to	be	identified	by	mapping	the	social	graph.

Projects	designed	from	the	outset	to	be	secret	could	be	more	difficult	to	detect.
An	ordinary	software	development	project	could	serve	as	a	front.26	Only	careful
analysis	 of	 the	 code	 being	 produced	would	 reveal	 the	 true	 nature	 of	what	 the
project	was	 trying	 to	 accomplish.	Such	analysis	would	 require	 a	 lot	of	 (highly
skilled)	manpower,	 whence	 only	 a	 small	 number	 of	 suspect	 projects	 could	 be
scrutinized	 at	 this	 level.	 The	 task	 would	 become	 much	 easier	 if	 effective	 lie
detection	 technology	 had	 been	 developed	 and	 could	 be	 routinely	 used	 in	 this
kind	of	surveillance.27

Another	 reason	 states	 might	 fail	 to	 catch	 precursor	 developments	 is	 the
inherent	 difficulty	 of	 forecasting	 some	 types	 of	 breakthrough.	 This	 is	 more
relevant	to	AI	research	than	to	whole	brain	emulation	development,	since	for	the
latter	the	key	breakthrough	is	more	likely	to	be	preceded	by	a	clear	gradient	of



steady	advances.

It	 is	 also	 possible	 that	 intelligence	 agencies	 and	 other	 government
bureaucracies	have	a	certain	clumsiness	or	rigidity	that	might	prevent	them	from
understanding	 the	 significance	 of	 some	 developments	 that	 might	 be	 clear	 to
some	outside	groups.	Barriers	to	official	understanding	of	a	potential	intelligence
explosion	might	be	especially	steep.	It	is	conceivable,	for	example,	that	the	topic
will	become	inflamed	with	religious	or	political	controversies,	rendering	it	taboo
for	 officials	 in	 some	 countries.	 The	 topic	might	 become	 associated	with	 some
discredited	 figure	 or	 with	 charlatanry	 and	 hype	 in	 general,	 hence	 shunned	 by
respected	 scientists	 and	 other	 establishment	 figures.	 (As	we	 saw	 in	Chapter	1,
something	 like	 this	 has	 already	 happened	 twice:	 recall	 the	 two	 “AI	winters.”)
Industry	 groups	 might	 lobby	 to	 prevent	 aspersions	 being	 cast	 on	 profitable
business	 areas;	 academic	 communities	might	 close	 ranks	 to	marginalize	 those
who	voice	concerns	about	 long-term	consequences	of	 the	 science	 that	 is	being
done.28

Consequently,	a	total	intelligence	failure	cannot	be	ruled	out.	Such	a	failure	is
especially	 likely	 if	 breakthroughs	 should	occur	 in	 the	nearer	 future,	 before	 the
issue	 has	 risen	 to	 public	 prominence.	 And	 even	 if	 intelligence	 agencies	 get	 it
right,	 political	 leaders	 might	 not	 listen	 or	 act	 on	 the	 advice.	 Getting	 the
Manhattan	 Project	 started	 took	 an	 extraordinary	 effort	 by	 several	 visionary
physicists,	 including	 especially	 Mark	 Oliphant	 and	 Leó	 Szilárd:	 the	 latter
persuaded	Eugene	Wigner	to	persuade	Albert	Einstein	to	put	his	name	on	a	letter
to	persuade	President	Franklin	D.	Roosevelt	 to	 look	into	 the	matter.	Even	after
the	project	reached	its	full	scale,	Roosevelt	remained	skeptical	of	its	workability
and	significance,	as	did	his	successor	Harry	Truman.

For	better	or	worse,	it	would	probably	be	harder	for	a	small	group	of	activists
to	affect	the	outcome	of	an	intelligence	explosion	if	big	players,	such	as	states,
are	taking	active	part.	Opportunities	for	private	individuals	to	reduce	the	overall
amount	 of	 existential	 risk	 from	 a	 potential	 intelligence	 explosion	 are	 therefore
greatest	 in	 scenarios	 in	 which	 big	 players	 remain	 relatively	 oblivious	 to	 the
issue,	 or	 in	 which	 the	 early	 efforts	 of	 activists	 make	 a	 major	 difference	 to
whether,	when,	which,	or	with	what	attitude	big	players	enter	the	game.	Activists
seeking	maximum	 expected	 impact	may	 therefore	wish	 to	 focus	most	 of	 their
planning	on	such	high-leverage	scenarios,	even	if	they	believe	that	scenarios	in
which	big	players	end	up	calling	all	the	shots	are	more	probable.



International	collaboration

	

International	 coordination	 is	 more	 likely	 if	 global	 governance	 structures
generally	get	stronger.	Coordination	might	also	be	more	likely	if	the	significance
of	an	intelligence	explosion	is	widely	appreciated	ahead	of	time	and	if	effective
monitoring	 of	 all	 serious	 projects	 is	 feasible.	 Even	 if	monitoring	 is	 infeasible,
however,	international	cooperation	would	still	be	possible.	Many	countries	could
band	together	to	support	a	joint	project.	If	such	a	joint	project	were	sufficiently
well	resourced,	it	could	have	a	good	chance	of	being	the	first	to	reach	the	goal,
especially	if	any	rival	project	had	to	be	small	and	secretive	to	elude	detection.

There	 are	 precedents	 of	 large-scale	 successful	 multinational	 scientific
collaborations,	 such	 as	 the	 International	 Space	 Station,	 the	 Human	 Genome
Project,	 and	 the	 Large	 Hadron	 Collider.29	 However,	 the	 major	 motivation	 for
collaboration	 in	 those	 cases	was	 cost-sharing.	 (In	 the	 case	 of	 the	 International
Space	 Station,	 fostering	 a	 collaborative	 spirit	 between	 Russia	 and	 the	 United
States	 was	 itself	 an	 important	 goal.30)	 Achieving	 similar	 collaboration	 on	 a
project	 that	 has	 enormous	 security	 implications	 would	 be	 more	 difficult.	 A
country	 that	 believed	 it	 could	 achieve	 a	 breakthrough	 unilaterally	 might	 be
tempted	 to	 go	 it	 alone	 rather	 than	 subordinate	 its	 efforts	 to	 a	 joint	 project.	 A
country	might	also	refrain	from	joining	an	international	collaboration	from	fear
that	 other	 participants	might	 siphon	 off	 collaboratively	 generated	 insights	 and
use	them	to	accelerate	a	covert	national	project.

An	 international	 project	 would	 thus	 need	 to	 overcome	 major	 security
challenges,	and	a	fair	amount	of	trust	would	probably	be	needed	to	get	it	started,
trust	that	may	take	time	to	develop.	Consider	that	even	after	the	thaw	in	relations
between	the	United	States	and	the	Soviet	Union	following	Gorbachev’s	ascent	to
power,	 arms	 reduction	 efforts—which	 could	 be	 greatly	 in	 the	 interests	 of	 both
superpowers—had	a	fitful	beginning.	Gorbachev	was	seeking	steep	reductions	in
nuclear	arms	but	negotiations	stalled	on	the	issue	of	Reagan’s	Strategic	Defense
Initiative	 (“Star	 Wars”),	 which	 the	 Kremlin	 strenuously	 opposed.	 At	 the
Reykjavík	 Summit	 meeting	 in	 1986,	 Reagan	 proposed	 that	 the	 United	 States
would	 share	 with	 the	 Soviet	 Union	 the	 technology	 that	 would	 be	 developed
under	 the	 Strategic	 Defense	 Initiative,	 so	 that	 both	 countries	 could	 enjoy
protection	 against	 accidental	 launches	 and	 against	 smaller	 nations	 that	 might
develop	 nuclear	 weapons.	 Yet	 Gorbachev	was	 not	 persuaded	 by	 this	 apparent



win–win	 proposition.	 He	 viewed	 the	 gambit	 as	 a	 ruse,	 refusing	 to	 credit	 the
notion	that	the	Americans	would	share	the	fruits	of	their	most	advanced	military
research	 at	 a	 time	when	 they	were	 not	 even	willing	 to	 share	with	 the	 Soviets
their	technology	for	milking	cows.31	Regardless	of	whether	Reagan	was	in	fact
sincere	 in	 his	 offer	 of	 superpower	 collaboration,	mistrust	made	 the	 proposal	 a
non-starter.

Collaboration	 is	 easier	 to	 achieve	 between	 allies,	 but	 even	 there	 it	 is	 not
automatic.	 When	 the	 Soviet	 Union	 and	 the	 United	 States	 were	 allied	 against
Germany	 during	World	War	 II,	 the	 United	 States	 concealed	 its	 atomic	 bomb
project	 from	 the	 Soviet	 Union.	 The	 United	 States	 did	 collaborate	 on	 the
Manhattan	 Project	 with	 Britain	 and	 Canada.32	 Similarly,	 the	 United	 Kingdom
concealed	 its	 success	 in	 breaking	 the	 German	 Enigma	 code	 from	 the	 Soviet
Union,	but	shared	it—albeit	with	some	difficulty—with	the	United	States.33	This
suggests	that	in	order	to	achieve	international	collaboration	on	some	technology
that	is	of	pivotal	importance	for	national	security,	it	might	be	necessary	to	have
built	beforehand	a	close	and	trusting	relationship.

We	will	return	in	Chapter	14	to	the	desirability	and	feasibility	of	international
collaboration	in	the	development	of	intelligence	amplification	technologies.

From	decisive	strategic	advantage	to	singleton

	

Would	a	project	that	obtained	a	decisive	strategic	advantage	choose	to	use	it	to
form	a	singleton?

Consider	 a	 vaguely	 analogous	 historical	 situation.	 The	 United	 States
developed	 nuclear	 weapons	 in	 1945.	 It	 was	 the	 sole	 nuclear	 power	 until	 the
Soviet	Union	developed	 the	atom	bomb	in	1949.	During	 this	 interval—and	for
some	time	thereafter—the	United	States	may	have	had,	or	been	in	a	position	to
achieve,	a	decisive	military	advantage.

The	United	States	could	then,	theoretically,	have	used	its	nuclear	monopoly	to
create	a	singleton.	One	way	in	which	it	could	have	done	so	would	have	been	by
embarking	on	an	all-out	effort	to	build	up	its	nuclear	arsenal	and	then	threatening
(and	 if	 necessary,	 carrying	 out)	 a	 nuclear	 first	 strike	 to	 destroy	 the	 industrial
capacity	 of	 any	 incipient	 nuclear	 program	 in	 the	USSR	and	 any	other	 country



tempted	to	develop	a	nuclear	capability.

A	 more	 benign	 course	 of	 action,	 which	 might	 also	 have	 had	 a	 chance	 of
working,	 would	 have	 been	 to	 use	 its	 nuclear	 arsenal	 as	 a	 bargaining	 chip	 to
negotiate	a	strong	international	government—a	veto-less	United	Nations	with	a
nuclear	monopoly	 and	 a	mandate	 to	 take	 all	 necessary	 actions	 to	 prevent	 any
country	from	developing	its	own	nuclear	weapons.

Both	of	these	approaches	were	proposed	at	the	time.	The	hardline	approach	of
launching	 or	 threatening	 a	 first	 strike	 was	 advocated	 by	 some	 prominent
intellectuals	 such	 as	 Bertrand	 Russell	 (who	 had	 long	 been	 active	 in	 anti-war
movements	 and	 who	 would	 later	 spend	 decades	 campaigning	 against	 nuclear
weapons)	 and	 John	 von	 Neumann	 (co-creator	 of	 game	 theory	 and	 one	 of	 the
architects	of	US	nuclear	strategy).34	Perhaps	it	is	a	sign	of	civilizational	progress
that	the	very	idea	of	threatening	a	nuclear	first	strike	today	seems	borderline	silly
or	morally	obscene.

A	version	of	the	benign	approach	was	tried	in	1946	by	the	United	States	in	the
form	of	the	Baruch	plan.	The	proposal	involved	the	USA	giving	up	its	temporary
nuclear	monopoly.	Uranium	and	thorium	mining	and	nuclear	technology	would
be	 placed	 under	 the	 control	 of	 an	 international	 agency	 operating	 under	 the
auspices	of	the	United	Nations.	The	proposal	called	for	the	permanent	members
of	 the	 Security	 Council	 to	 give	 up	 their	 vetoes	 in	 matters	 related	 to	 nuclear
weapons	in	order	to	prevent	any	great	power	found	to	be	in	breach	of	the	accord
from	vetoing	the	imposition	of	remedies.35	Stalin,	seeing	that	 the	Soviet	Union
and	 its	 allies	 could	 be	 easily	 outvoted	 in	 both	 the	 Security	 Council	 and	 the
General	 Assembly,	 rejected	 the	 proposal.	 A	 frosty	 atmosphere	 of	 mutual
suspicion	descended	on	the	relations	between	the	former	wartime	allies,	mistrust
that	 soon	 solidified	 into	 the	Cold	War.	As	had	been	widely	predicted,	 a	 costly
and	extremely	dangerous	nuclear	arms	race	followed.

Many	 factors	might	dissuade	a	human	organization	with	a	decisive	 strategic
advantage	from	creating	a	singleton.	These	include	non-aggregative	or	bounded
utility	 functions,	 non-maximizing	 decision	 rules,	 confusion	 and	 uncertainty,
coordination	problems,	and	various	costs	associated	with	a	takeover.	But	what	if
it	were	not	a	human	organization	but	a	superintelligent	artificial	agent	that	came
into	 possession	 of	 a	 decisive	 strategic	 advantage?	 Would	 the	 aforementioned
factors	be	equally	effective	at	inhibiting	an	AI	from	attempting	to	seize	power?
Let	us	briefly	run	through	the	list	of	factors	and	consider	how	they	might	apply



in	this	case.

Human	 individuals	and	human	organizations	 typically	have	preferences	over
resources	 that	 are	 not	 well	 represented	 by	 an	 “unbounded	 aggregative	 utility
function.”	 A	 human	 will	 typically	 not	 wager	 all	 her	 capital	 for	 a	 fifty–fifty
chance	of	doubling	it.	A	state	will	typically	not	risk	losing	all	its	territory	for	a
ten	 percent	 chance	 of	 a	 tenfold	 expansion.	 For	 individuals	 and	 governments,
there	are	diminishing	returns	to	most	resources.	The	same	need	not	hold	for	AIs.
(We	will	return	to	the	problem	of	AI	motivation	in	subsequent	chapters.)	An	AI
might	therefore	be	more	likely	to	pursue	a	risky	course	of	action	that	has	some
chance	of	giving	it	control	of	the	world.

Humans	 and	 human-run	 organizations	 may	 also	 operate	 with	 decision
processes	that	do	not	seek	to	maximize	expected	utility.	For	example,	they	may
allow	for	fundamental	risk	aversion,	or	“satisficing”	decision	rules	that	focus	on
meeting	adequacy	 thresholds,	or	“deontological”	side-constraints	 that	proscribe
certain	kinds	of	action	 regardless	of	how	desirable	 their	consequences.	Human
decision	makers	often	 seem	 to	be	 acting	out	 an	 identity	or	 a	 social	 role	 rather
than	seeking	to	maximize	the	achievement	of	some	particular	objective.	Again,
this	need	not	apply	to	artificial	agents.

Bounded	 utility	 functions,	 risk	 aversion,	 and	 non-maximizing	 decision	 rules
may	 combine	 synergistically	 with	 strategic	 confusion	 and	 uncertainty.
Revolutions,	even	when	 they	succeed	 in	overthrowing	 the	existing	order,	often
fail	to	produce	the	outcome	that	their	instigators	had	promised.	This	tends	to	stay
the	 hand	 of	 a	 human	 agent	 if	 the	 contemplated	 action	 is	 irreversible,	 norm-
breaking,	and	lacking	precedent.	A	superintelligence	might	perceive	the	situation
more	clearly	and	therefore	face	less	strategic	confusion	and	uncertainty	about	the
outcome	 should	 it	 attempt	 to	 use	 its	 apparent	 decisive	 strategic	 advantage	 to
consolidate	its	dominant	position.

Another	 major	 factor	 that	 can	 inhibit	 groups	 from	 exploiting	 a	 potentially
decisive	strategic	advantage	is	the	problem	of	internal	coordination.	Members	of
a	conspiracy	that	is	in	a	position	to	seize	power	must	worry	not	only	about	being
infiltrated	 from	 the	 outside,	 but	 also	 about	 being	 overthrown	 by	 some	 smaller
coalition	of	insiders.	If	a	group	consists	of	a	hundred	people,	and	a	majority	of
sixty	 can	 take	 power	 and	 disenfranchise	 the	 non-conspirators,	 what	 is	 then	 to
stop	 a	 thirty-five-strong	 subset	 of	 these	 sixty	 from	 disenfranchising	 the	 other
twenty-five?	 And	 then	 maybe	 a	 subset	 of	 twenty	 disenfranchising	 the	 other



fifteen?	Each	of	the	original	hundred	might	have	good	reason	to	uphold	certain
established	norms	 to	prevent	 the	general	unraveling	 that	 could	 result	 from	any
attempt	 to	 change	 the	 social	 contract	 by	 means	 of	 a	 naked	 power	 grab.	 This
problem	 of	 internal	 coordination	 would	 not	 apply	 to	 an	 AI	 system	 that
constitutes	a	single	unified	agent.36

Finally,	there	is	the	issue	of	cost.	Even	if	the	United	States	could	have	used	its
nuclear	monopoly	to	establish	a	singleton,	it	might	not	have	been	able	to	do	so
without	 incurring	 substantial	 costs.	 In	 the	 case	 of	 a	 negotiated	 agreement	 to
place	nuclear	weapons	under	the	control	of	a	reformed	and	strengthened	United
Nations,	 these	 costs	 might	 have	 been	 relatively	 small;	 but	 the	 costs—moral,
economic,	political,	and	human—of	actually	attempting	world	conquest	through
the	 waging	 of	 nuclear	 war	 would	 have	 been	 almost	 unthinkably	 large,	 even
during	the	period	of	nuclear	monopoly.	With	sufficient	technological	superiority,
however,	these	costs	would	be	far	smaller.	Consider,	for	example,	a	scenario	in
which	one	nation	had	such	a	vast	technological	lead	that	it	could	safely	disarm
all	other	nations	at	the	press	of	a	button,	without	anybody	dying	or	being	injured,
and	with	almost	no	damage	 to	 infrastructure	or	 to	 the	environment.	With	 such
almost	 magical	 technological	 superiority,	 a	 first	 strike	 would	 be	 a	 lot	 more
tempting.	Or	 consider	 an	 even	greater	 level	of	 technological	 superiority	which
might	enable	the	frontrunner	to	cause	other	nations	to	voluntarily	lay	down	their
arms,	not	by	threatening	them	with	destruction	but	simply	by	persuading	a	great
majority	 of	 their	 populations	 by	 means	 of	 an	 extremely	 effectively	 designed
advertising	and	propaganda	campaign	extolling	the	virtues	of	global	unity.	If	this
were	 done	 with	 the	 intention	 to	 benefit	 everybody,	 for	 instance	 by	 replacing
national	rivalries	and	arms	races	with	a	fair,	representative,	and	effective	world
government,	it	is	not	clear	that	there	would	be	even	a	cogent	moral	objection	to
the	leveraging	of	a	temporary	strategic	advantage	into	a	permanent	singleton.

Various	 considerations	 thus	 point	 to	 an	 increased	 likelihood	 that	 a	 future
power	 with	 superintelligence	 that	 obtained	 a	 sufficiently	 large	 strategic
advantage	would	actually	use	it	to	form	a	singleton.	The	desirability	of	such	an
outcome	depends,	of	course,	on	the	nature	of	the	singleton	that	would	be	created
and	 also	 on	 what	 the	 future	 of	 intelligent	 life	 would	 look	 like	 in	 alternative
multipolar	scenarios.	We	will	 revisit	 those	questions	 in	 later	chapters.	But	 first
let	us	take	a	closer	look	at	why	and	how	a	superintelligence	would	be	powerful
and	effective	at	achieving	outcomes	in	the	world.



CHAPTER	6
Cognitive	superpowers

	

Suppose	 that	a	digital	 superintelligent	agent	came	 into	being,	and	that	 for
some	reason	it	wanted	to	take	control	of	the	world:	would	 it	be	able	to	do
so?	In	this	chapter	we	consider	some	powers	that	a	superintelligence	could
develop	and	what	they	may	enable	it	to	do.	We	outline	a	takeover	scenario
that	 illustrates	 how	 a	 superintelligent	 agent,	 starting	 as	 mere	 software,
could	 establish	 itself	 as	 a	 singleton.	 We	 also	 offer	 some	 remarks	 on	 the
relation	between	power	over	nature	and	power	over	other	agents.

The	principal	reason	for	humanity’s	dominant	position	on	Earth	is	that	our	brains
have	 a	 slightly	 expanded	 set	 of	 faculties	 compared	 with	 other	 animals.1	 Our
greater	intelligence	lets	us	transmit	culture	more	efficiently,	with	the	result	that
knowledge	and	technology	accumulates	from	one	generation	to	the	next.	By	now
sufficient	 content	 has	 accumulated	 to	 make	 possible	 space	 flight,	 H-bombs,
genetic	 engineering,	 computers,	 factory	 farms,	 insecticides,	 the	 international
peace	movement,	 and	 all	 the	 accouterments	 of	modern	 civilization.	Geologists
have	started	referring	to	the	present	era	as	the	Anthropocene	in	recognition	of	the
distinctive	biotic,	sedimentary,	and	geochemical	signatures	of	human	activities.2
On	one	estimate,	we	appropriate	24%	of	the	planetary	ecosystem’s	net	primary
production.3	 And	 yet	 we	 are	 far	 from	 having	 reached	 the	 physical	 limits	 of
technology.

These	observations	make	it	plausible	that	any	type	of	entity	that	developed	a
much	 greater	 than	 human	 level	 of	 intelligence	would	 be	 potentially	 extremely
powerful.	Such	entities	could	accumulate	content	much	faster	than	us	and	invent
new	 technologies	 on	 a	 much	 shorter	 timescale.	 They	 could	 also	 use	 their
intelligence	to	strategize	more	effectively	than	we	can.

Let	 us	 consider	 some	 of	 the	 capabilities	 that	 a	 superintelligence	 could	 have
and	how	it	could	use	them.

Functionalities	and	superpowers



	

It	 is	 important	 not	 to	 anthropomorphize	 superintelligence	when	 thinking	 about
its	 potential	 impacts.	 Anthropomorphic	 frames	 encourage	 unfounded
expectations	about	the	growth	trajectory	of	a	seed	AI	and	about	the	psychology,
motivations,	and	capabilities	of	a	mature	superintelligence.

For	example,	a	common	assumption	is	that	a	superintelligent	machine	would
be	like	a	very	clever	but	nerdy	human	being.	We	imagine	that	the	AI	has	book
smarts	but	lacks	social	savvy,	or	that	it	 is	logical	but	not	intuitive	and	creative.
This	idea	probably	originates	in	observation:	we	look	at	present-day	computers
and	 see	 that	 they	 are	good	at	 calculation,	 remembering	 facts,	 and	 at	 following
the	 letter	 of	 instructions	while	 being	oblivious	 to	 social	 contexts	 and	 subtexts,
norms,	emotions,	and	politics.	The	association	is	strengthened	when	we	observe
that	the	people	who	are	good	at	working	with	computers	tend	themselves	to	be
nerds.	So	it	is	natural	to	assume	that	more	advanced	computational	intelligence
will	have	similar	attributes,	only	to	a	higher	degree.

This	heuristic	might	retain	some	validity	in	the	early	stages	of	development	of
a	 seed	 AI.	 (There	 is	 no	 reason	 whatever	 to	 suppose	 that	 it	 would	 apply	 to
emulations	or	 to	cognitively	enhanced	humans.)	 In	 its	 immature	 stage,	what	 is
later	to	become	a	superintelligent	AI	might	still	lack	many	skills	and	talents	that
come	 naturally	 to	 a	 human;	 and	 the	 pattern	 of	 such	 a	 seed	AI’s	 strengths	 and
weaknesses	might	indeed	bear	some	vague	resemblance	to	an	IQ	nerd.	The	most
essential	characteristic	of	a	seed	AI,	aside	from	being	easy	 to	 improve	(having
low	 recalcitrance),	 is	 being	 good	 at	 exerting	 optimization	 power	 to	 amplify	 a
system’s	intelligence:	a	skill	which	is	presumably	closely	related	to	doing	well	in
mathematics,	 programming,	 engineering,	 computer	 science	 research,	 and	 other
such	 “nerdy”	 pursuits.	 However,	 even	 if	 a	 seed	 AI	 does	 have	 such	 a	 nerdy
capability	profile	at	one	stage	of	its	development,	this	does	not	entail	that	it	will
grow	 into	 a	 similarly	 limited	 mature	 superintelligence.	 Recall	 the	 distinction
between	 direct	 and	 indirect	 reach.	 With	 sufficient	 skill	 at	 intelligence
amplification,	all	other	intellectual	abilities	are	within	a	system’s	indirect	reach:
the	system	can	develop	new	cognitive	modules	and	skills	as	needed—including
empathy,	 political	 acumen,	 and	 any	 other	 powers	 stereotypically	 wanting	 in
computer-like	personalities.

Even	if	we	recognize	that	a	superintelligence	can	have	all	the	skills	and	talents
we	 find	 in	 the	 human	 distribution,	 along	with	 other	 talents	 that	 are	 not	 found



among	 humans,	 the	 tendency	 toward	 anthropomorphizing	 can	 still	 lead	 us	 to
underestimate	the	extent	to	which	a	machine	superintelligence	could	exceed	the
human	 level	 of	 performance.	 Eliezer	 Yudkowsky,	 as	 we	 saw	 in	 an	 earlier
chapter,	 has	 been	 particularly	 emphatic	 in	 condemning	 this	 kind	 of
misconception:	our	intuitive	concepts	of	“smart”	and	“stupid”	are	distilled	from
our	experience	of	variation	over	the	range	of	human	thinkers,	yet	the	differences
in	 cognitive	 ability	 within	 this	 human	 cluster	 are	 trivial	 in	 comparison	 to	 the
differences	between	any	human	intellect	and	a	superintelligence.4

Chapter	3	 reviewed	 some	of	 the	potential	 sources	of	 advantage	 for	machine
intelligence.	The	magnitudes	of	the	advantages	are	such	as	to	suggest	that	rather
than	 thinking	 of	 a	 superintelligent	 AI	 as	 smart	 in	 the	 sense	 that	 a	 scientific
genius	is	smart	compared	with	the	average	human	being,	it	might	be	closer	to	the
mark	to	think	of	such	an	AI	as	smart	in	the	sense	that	an	average	human	being	is
smart	compared	with	a	beetle	or	a	worm.

It	 would	 be	 convenient	 if	 we	 could	 quantify	 the	 cognitive	 caliber	 of	 an
arbitrary	cognitive	system	using	some	familiar	metric,	such	as	IQ	scores	or	some
version	of	 the	Elo	 ratings	 that	measure	 the	 relative	 abilities	 of	 players	 in	 two-
player	games	 such	 as	 chess.	But	 these	metrics	 are	not	 useful	 in	 the	 context	 of
superhuman	artificial	general	intelligence.	We	are	not	interested	in	how	likely	a
superintelligence	 is	 to	 win	 at	 a	 game	 of	 chess.	 As	 for	 IQ	 scores,	 they	 are
informative	 only	 insofar	 as	 we	 have	 some	 idea	 of	 how	 they	 correlate	 with
practically	relevant	outcomes.5	For	example,	we	have	data	that	show	that	people
with	an	IQ	of	130	are	more	likely	than	those	with	an	IQ	of	90	to	excel	in	school
and	to	do	well	in	a	wide	range	of	cognitively	demanding	jobs.	But	suppose	we
could	somehow	establish	that	a	certain	future	AI	will	have	an	IQ	of	6,455:	then
what?	We	would	have	no	idea	of	what	such	an	AI	could	actually	do.	We	would
not	 even	 know	 that	 such	 an	AI	 had	 as	much	 general	 intelligence	 as	 a	 normal
human	 adult—perhaps	 the	AI	would	 instead	 have	 a	 bundle	 of	 special-purpose
algorithms	 enabling	 it	 to	 solve	 typical	 intelligence	 test	 questions	 with
superhuman	efficiency	but	not	much	else.

Some	 recent	 efforts	 have	 been	made	 to	 develop	measurements	 of	 cognitive
capacity	 that	 could	 be	 applied	 to	 a	 wider	 range	 of	 information-processing
systems,	 including	 artificial	 intelligences.6	 Work	 in	 this	 direction,	 if	 it	 can
overcome	various	technical	difficulties,	may	turn	out	to	be	quite	useful	for	some
scientific	 purposes	 including	 AI	 development.	 For	 purposes	 of	 the	 present
investigation,	however,	 its	usefulness	would	be	 limited	since	we	would	 remain



unenlightened	 about	 what	 a	 given	 superhuman	 performance	 score	 entails	 for
actual	ability	to	achieve	practically	important	outcomes	in	the	world.

It	will	therefore	serve	our	purposes	better	to	list	some	strategically	important
tasks	and	then	to	characterize	hypothetical	cognitive	systems	in	terms	of	whether
they	have	or	lack	whatever	skills	are	needed	to	succeed	at	these	tasks.	See	Table
8.	We	will	 say	 that	 a	 system	 that	 sufficiently	excels	 at	 any	of	 the	 tasks	 in	 this
table	has	a	corresponding	superpower.

A	 full-blown	 superintelligence	would	 greatly	 excel	 at	 all	 of	 these	 tasks	 and
would	 thus	 have	 the	 full	 panoply	 of	 all	 six	 superpowers.	 Whether	 there	 is	 a
practically	significant	possibility	of	a	domain-limited	intelligence	that	has	some
of	the	superpowers	but	remains	unable	for	a	significant	period	of	time	to	acquire
all	of	them	is	not	clear.	Creating	a	machine	with	any	one	of	these	superpowers
appears	to	be	an	AI-complete	problem.	Yet	it	is	conceivable	that,	for	example,	a
collective	superintelligence	consisting	of	a	sufficiently	large	number	of	human-
like	biological	or	electronic	minds	would	have,	 say,	 the	economic	productivity
superpower	but	lack	the	strategizing	superpower.	Likewise,	it	is	conceivable	that
a	 specialized	 engineering	 AI	 could	 be	 built	 that	 has	 the	 technology	 research
superpower	while	completely	lacking	skills	in	other	areas.	This	is	more	plausible
if	 there	exists	 some	particular	 technological	domain	such	 that	virtuosity	within
that	 domain	 would	 be	 sufficient	 for	 the	 generation	 of	 an	 overwhelmingly
superior	 general-purpose	 technology.	 For	 instance,	 one	 could	 imagine	 a
specialized	 AI	 adept	 at	 simulating	 molecular	 systems	 and	 at	 inventing
nanomolecular	designs	that	realize	a	wide	range	of	important	capabilities	(such
as	 computers	 or	 weapons	 systems	 with	 futuristic	 performance	 characteristics)
described	by	the	user	only	at	a	fairly	high	level	of	abstraction.7	Such	an	AI	might
also	be	able	 to	produce	a	detailed	blueprint	 for	how	to	bootstrap	from	existing
technology	 (such	 as	 biotechnology	 and	 protein	 engineering)	 to	 the	 constructor
capabilities	 needed	 for	 high-throughput	 atomically	 precise	 manufacturing	 that
would	allow	inexpensive	fabrication	of	a	much	wider	range	of	nanomechanical
structures.8	 However,	 it	 might	 turn	 out	 to	 be	 the	 case	 that	 an	 engineering	 AI
could	 not	 truly	 possess	 the	 technological	 research	 superpower	 without	 also
possessing	 advanced	 skills	 in	 areas	 outside	 of	 technology—a	 wide	 range	 of
intellectual	 faculties	 might	 be	 needed	 to	 understand	 how	 to	 interpret	 user
requests,	 how	 to	model	 a	 design’s	 behavior	 in	 real-world	 applications,	 how	 to
deal	with	unanticipated	bugs	and	malfunctions,	how	to	procure	the	materials	and
inputs	needed	for	construction,	and	so	forth.9



Table	8	Superpowers:	some	strategically	relevant	tasks	and	corresponding	skill
sets

	 	

Task Skill	set Strategic	relevance

Intelligence
amplification

AI	programming,	cognitive
enhancement	research,	social
epistemology	development,	etc.

•	System	can	bootstrap	its
intelligence

Strategizing

Strategic	planning,	forecasting,
prioritizing,	and	analysis	for
optimizing	chances	of	achieving
distant	goal

•	Achieve	distant	goals

•	Overcome	intelligent
opposition

Social
manipulation

Social	and	psychological
modeling,	manipulation,	rhetoric
persuasion

•	Leverage	external	resources	by
recruiting	human	support

•	Enable	a	“boxed”	AI	to
persuade	its	gatekeepers	to	let
it	out

•	Persuade	states	and
organizations	to	adopt	some
course	of	action

Hacking Finding	and	exploiting	security
flaws	in	computer	systems

•	AI	can	expropriate
computational	resources	over
the	Internet

•	A	boxed	AI	may	exploit
security	holes	to	escape
cybernetic	confinement



•	Steal	financial	resources

•	Hijack	infrastructure,	military
robots,	etc.

Technology
research

Design	and	modeling	of	advanced
technologies	(e.g.	biotechnology,
nanotechnology)	and
development	paths

•	Creation	of	powerful	military
force

•	Creation	of	surveillance	system

•	Automated	space	colonization

Economic
productivity

Various	skills	enabling
economically	productive
intellectual	work

•	Generate	wealth	which	can	be
used	to	buy	influence,
services,	resources	(including
hardware),	etc.

A	 system	 that	 has	 the	 intelligence	 amplification	 superpower	 could	 use	 it	 to
bootstrap	 itself	 to	 higher	 levels	 of	 intelligence	 and	 to	 acquire	 any	of	 the	 other
intellectual	 superpowers	 that	 it	 does	 not	 possess	 at	 the	 outset.	 But	 using	 an
intelligence	 amplification	 superpower	 is	 not	 the	 only	 way	 for	 a	 system	 to
become	 a	 full-fledged	 superintelligence.	 A	 system	 that	 has	 the	 strategizing
superpower,	for	instance,	might	use	it	to	devise	a	plan	that	will	eventually	bring
an	 increase	 in	 intelligence	 (e.g.	by	positioning	 the	 system	so	as	 to	become	 the
focus	for	intelligence	amplification	work	performed	by	human	programmers	and
computer	science	researchers).

An	AI	takeover	scenario

	

We	thus	find	that	a	project	that	controls	a	superintelligence	has	access	to	a	great
source	of	power.	A	project	 that	controls	 the	first	superintelligence	 in	 the	world
would	 probably	 have	 a	 decisive	 strategic	 advantage.	 But	 the	 more	 immediate
locus	 of	 the	 power	 is	 in	 the	 system	 itself.	 A	 machine	 superintelligence	 might
itself	 be	 an	 extremely	 powerful	 agent,	 one	 that	 could	 successfully	 assert	 itself



against	the	project	that	brought	it	into	existence	as	well	as	against	the	rest	of	the
world.	This	 is	 a	 point	 of	 paramount	 importance,	 and	we	will	 examine	 it	more
closely	in	the	coming	pages.

Now	 let	 us	 suppose	 that	 there	 is	 a	 machine	 superintelligence	 that	 wants	 to
seize	 power	 in	 a	 world	 in	 which	 it	 has	 as	 yet	 no	 peers.	 (Set	 aside,	 for	 the
moment,	the	question	of	whether	and	how	it	would	acquire	such	a	motive—that
is	a	topic	for	the	next	chapter.)	How	could	the	superintelligence	achieve	this	goal
of	world	domination?

We	can	imagine	a	sequence	along	the	following	lines	(see	Figure	10).

1	Pre-criticality	phase

	

Scientists	conduct	research	in	the	field	of	artificial	intelligence	and	other	relevant
disciplines.	This	work	culminates	 in	 the	 creation	of	 a	 seed	AI.	The	 seed	AI	 is
able	to	improve	its	own	intelligence.	In	its	early	stages,	the	seed	AI	is	dependent
on	help	from	human	programmers	who	guide	its	development	and	do	most	of	the
heavy	lifting.	As	the	seed	AI	grows	more	capable,	it	becomes	capable	of	doing
more	of	the	work	by	itself.

2	Recursive	self-improvement	phase

	

At	 some	 point,	 the	 seed	 AI	 becomes	 better	 at	 AI	 design	 than	 the	 human
programmers.	Now	when	the	AI	improves	itself,	it	improves	the	thing	that	does
the	 improving.	An	 intelligence	 explosion	 results—a	 rapid	 cascade	of	 recursive
self-improvement	cycles	causing	the	AI’s	capability	to	soar.	(We	can	thus	think
of	 this	 phase	 as	 the	 takeoff	 that	 occurs	 just	 after	 the	AI	 reaches	 the	 crossover
point,	assuming	the	intelligence	gain	during	this	part	of	the	takeoff	is	explosive
and	 driven	 by	 the	 application	 of	 the	 AI’s	 own	 optimization	 power.)	 The	 AI
develops	the	intelligence	amplification	superpower.	This	superpower	enables	the
AI	 to	develop	all	 the	other	 superpowers	detailed	 in	Table	8.	At	 the	 end	 of	 the
recursive	self-improvement	phase,	the	system	is	strongly	superintelligent.



Figure	10	Phases	in	an	AI	takeover	scenario.

	

3	Covert	preparation	phase

	

Using	its	strategizing	superpower,	the	AI	develops	a	robust	plan	for	achieving	its
long-term	goals.	(In	particular,	the	AI	does	not	adopt	a	plan	so	stupid	that	even
we	present-day	humans	can	foresee	how	it	would	inevitably	fail.	This	criterion
rules	out	many	science	fiction	scenarios	that	end	in	human	triumph.10)	The	plan
might	 involve	 a	 period	 of	 covert	 action	 during	 which	 the	 AI	 conceals	 its
intellectual	development	from	the	human	programmers	in	order	to	avoid	setting
off	 alarms.	 The	 AI	 might	 also	 mask	 its	 true	 proclivities,	 pretending	 to	 be
cooperative	and	docile.

If	 the	 AI	 has	 (perhaps	 for	 safety	 reasons)	 been	 confined	 to	 an	 isolated
computer,	 it	 may	 use	 its	 social	 manipulation	 superpower	 to	 persuade	 the
gatekeepers	to	let	 it	gain	access	to	an	Internet	port.	Alternatively,	 the	AI	might
use	 its	 hacking	 superpower	 to	 escape	 its	 confinement.	 Spreading	 over	 the
Internet	may	enable	the	AI	to	expand	its	hardware	capacity	and	knowledge	base,
further	increasing	its	intellectual	superiority.	An	AI	might	also	engage	in	licit	or
illicit	economic	activity	to	obtain	funds	with	which	to	buy	computer	power,	data,



and	other	resources.

At	this	point,	there	are	several	ways	for	the	AI	to	achieve	results	outside	the
virtual	 realm.	 It	 could	 use	 its	 hacking	 superpower	 to	 take	 direct	 control	 of
robotic	 manipulators	 and	 automated	 laboratories.	 Or	 it	 could	 use	 its	 social
manipulation	 superpower	 to	 persuade	 human	 collaborators	 to	 serve	 as	 its	 legs
and	hands.	Or	it	could	acquire	financial	assets	from	online	transactions	and	use
them	to	purchase	services	and	influence.

4	Overt	implementation	phase

	

The	final	phase	begins	when	the	AI	has	gained	sufficient	strength	to	obviate	the
need	 for	 secrecy.	 The	 AI	 can	 now	 directly	 implement	 its	 objectives	 on	 a	 full
scale.

The	overt	 implementation	phase	might	 start	with	 a	 “strike”	 in	which	 the	AI
eliminates	 the	human	species	and	any	automatic	 systems	humans	have	created
that	 could	 offer	 intelligent	 opposition	 to	 the	 execution	 of	 the	AI’s	 plans.	 This
could	be	achieved	through	the	activation	of	some	advanced	weapons	system	that
the	 AI	 has	 perfected	 using	 its	 technology	 research	 superpower	 and	 covertly
deployed	 in	 the	 covert	 preparation	 phase.	 If	 the	 weapon	 uses	 self-replicating
biotechnology	 or	 nanotechnology,	 the	 initial	 stockpile	 needed	 for	 global
coverage	could	be	microscopic:	 a	 single	 replicating	entity	would	be	enough	 to
start	the	process.	In	order	to	ensure	a	sudden	and	uniform	effect,	the	initial	stock
of	the	replicator	might	have	been	deployed	or	allowed	to	diffuse	worldwide	at	an
extremely	 low,	 undetectable	 concentration.	 At	 a	 pre-set	 time,	 nanofactories
producing	nerve	gas	or	 target-seeking	mosquito-like	robots	might	 then	burgeon
forth	 simultaneously	 from	 every	 square	 meter	 of	 the	 globe	 (although	 more
effective	 ways	 of	 killing	 could	 probably	 be	 devised	 by	 a	 machine	 with	 the
technology	research	superpower).11	One	might	also	entertain	scenarios	in	which
a	 superintelligence	 attains	 power	 by	 hijacking	 political	 processes,	 subtly
manipulating	 financial	 markets,	 biasing	 information	 flows,	 or	 hacking	 into
human-made	weapon	 systems.	 Such	 scenarios	 would	 obviate	 the	 need	 for	 the
superintelligence	 to	 invent	 new	 weapons	 technology,	 although	 they	 may	 be
unnecessarily	slow	compared	with	scenarios	 in	which	 the	machine	 intelligence
builds	 its	 own	 infrastructure	 with	 manipulators	 that	 operate	 at	 molecular	 or
atomic	speed	rather	than	the	slow	speed	of	human	minds	and	bodies.



Alternatively,	 if	 the	AI	 is	 sure	of	 its	 invincibility	 to	human	 interference,	our
species	may	 not	 be	 targeted	 directly.	 Our	 demise	may	 instead	 result	 from	 the
habitat	destruction	 that	ensues	when	the	AI	begins	massive	global	construction
projects	 using	 nanotech	 factories	 and	 assemblers—construction	 projects	which
quickly,	perhaps	within	days	or	weeks,	 tile	all	of	 the	Earth’s	surface	with	solar
panels,	 nuclear	 reactors,	 supercomputing	 facilities	 with	 protruding	 cooling
towers,	space	rocket	launchers,	or	other	installations	whereby	the	AI	intends	to
maximize	 the	 long-term	 cumulative	 realization	 of	 its	 values.	Human	 brains,	 if
they	contain	 information	relevant	 to	 the	AI’s	goals,	could	be	disassembled	and
scanned,	 and	 the	 extracted	 data	 transferred	 to	 some	more	 efficient	 and	 secure
storage	format.

Box	6	describes	one	particular	scenario.	One	should	avoid	fixating	too	much
on	the	concrete	details,	since	they	are	in	any	case	unknowable	and	intended	for
illustration	 only.	 A	 superintelligence	 might—and	 probably	 would—be	 able	 to
conceive	of	a	better	plan	for	achieving	its	goals	than	any	that	a	human	can	come
up	with.	 It	 is	 therefore	 necessary	 to	 think	 about	 these	matters	more	 abstractly.
Without	 knowing	 anything	 about	 the	 detailed	 means	 that	 a	 superintelligence
would	adopt,	we	can	conclude	that	a	superintelligence—at	least	in	the	absence	of
intellectual	 peers	 and	 in	 the	 absence	 of	 effective	 safety	measures	 arranged	 by
humans	 in	 advance—would	 likely	 produce	 an	 outcome	 that	 would	 involve
reconfiguring	 terrestrial	 resources	 into	 whatever	 structures	 maximize	 the
realization	of	its	goals.	Any	concrete	scenario	we	develop	can	at	best	establish	a
lower	bound	on	how	quickly	and	efficiently	the	superintelligence	could	achieve
such	 an	 outcome.	 It	 remains	 possible	 that	 the	 superintelligence	 would	 find	 a
shorter	path	to	its	preferred	destination.

Box	6	The	mail-ordered	DNA	scenario

	

Yudkowsky	describes	the	following	possible	scenario	for	an	AI	takeover.12

	Crack	 the	protein	folding	problem	to	 the	extent	of	being	able	 to	generate	DNA
strings	whose	folded	peptide	sequences	fill	specific	functional	roles	in	a	complex
chemical	interaction.

2	Email	sets	of	DNA	strings	to	one	or	more	online	laboratories	that	offer	DNA



synthesis,	 peptide	 sequencing,	 and	 FedEx	 delivery.	 (Many	 labs	 currently
offer	this	service,	and	some	boast	of	72-hour	turnaround	times.)

3	 Find	 at	 least	 one	 human	 connected	 to	 the	 Internet	 who	 can	 be	 paid,
blackmailed,	 or	 fooled	 by	 the	 right	 background	 story,	 into	 receiving
FedExed	vials	and	mixing	them	in	a	specified	environment.

4	The	 synthesized	proteins	 form	a	very	primitive	 “wet”	nanosystem,	which,
ribosome-like,	 is	 capable	 of	 accepting	 external	 instructions;	 perhaps
patterned	acoustic	vibrations	delivered	by	a	speaker	attached	to	the	beaker.

5	 Use	 the	 extremely	 primitive	 nanosystem	 to	 build	 more	 sophisticated
systems,	which	construct	still	more	sophisticated	systems,	bootstrapping	to
molecular	nanotechnology—or	beyond.

In	this	scenario,	the	superintelligence	uses	its	technology	research	superpower	to
solve	 the	 protein	 folding	 problem	 in	 step	 1,	 enabling	 it	 to	 design	 a	 set	 of
molecular	 building	 blocks	 for	 a	 rudimentary	 nanotechnology	 assembler	 or
fabrication	 device,	 which	 can	 self-assemble	 in	 aqueous	 solution	 (step	 4).	 The
same	technology	research	superpower	is	used	again	in	step	5	to	bootstrap	from
primitive	to	advanced	machine-phase	nanotechnology.	The	other	steps	require	no
more	 than	 human	 intelligence.	 The	 skills	 required	 for	 step	 3—identifying	 a
gullible	 Internet	 user	 and	 persuading	 him	 or	 her	 to	 follow	 some	 simple
instructions—are	 on	 display	 every	 day	 all	 over	 the	world.	 The	 entire	 scenario
was	 invented	by	a	human	mind,	so	 the	strategizing	ability	needed	 to	 formulate
this	plan	is	also	merely	human	level.

In	 this	 particular	 scenario,	 the	AI	 starts	 out	 having	 access	 to	 the	 Internet.	 If
this	is	not	the	case,	then	additional	steps	would	have	to	be	added	to	the	plan.	The
AI	might,	 for	example,	use	 its	 social	manipulation	superpower	 to	convince	 the
people	interacting	with	it	that	it	ought	to	be	set	free.	Alternatively,	the	AI	might
be	able	to	use	its	hacking	superpower	to	escape	confinement.	If	the	AI	does	not
possess	these	capabilities,	it	might	first	need	to	use	its	intelligence	amplification
superpower	 to	 develop	 the	 requisite	 proficiency	 in	 social	 manipulation	 or
hacking.

A	superintelligent	AI	will	presumably	be	born	into	a	highly	networked	world.
One	could	point	to	various	developments	that	could	potentially	help	a	future	AI
to	control	the	world—cloud	computing,	proliferation	of	web-connected	sensors,



military	 and	 civilian	 drones,	 automation	 in	 research	 labs	 and	 manufacturing
plants,	increased	reliance	on	electronic	payment	systems	and	digitized	financial
assets,	and	increased	use	of	automated	information-filtering	and	decision	support
systems.	 Assets	 like	 these	 could	 potentially	 be	 acquired	 by	 an	 AI	 at	 digital
speeds,	 expediting	 its	 rise	 to	 power	 (though	 advances	 in	 cybersecurity	 might
make	 it	 harder).	 In	 the	 final	 analysis,	 however,	 it	 is	 doubtful	 whether	 any	 of
these	trends	makes	a	difference.	A	superintelligence’s	power	resides	in	its	brain,
not	 its	 hands.	Although	 the	AI,	 in	 order	 to	 remake	 the	 external	world,	will	 at
some	 point	 need	 access	 to	 an	 actuator,	 a	 single	 pair	 of	 helping	 human	 hands,
those	 of	 a	 pliable	 accomplice,	 would	 probably	 suffice	 to	 complete	 the	 covert
preparation	phase,	as	suggested	by	the	above	scenario.	This	would	enable	the	AI
to	 reach	 the	 overt	 implementation	 phase	 in	 which	 it	 constructs	 its	 own
infrastructure	of	physical	manipulators.

	

Power	over	nature	and	agents

	

An	agent’s	ability	 to	shape	humanity’s	future	depends	not	only	on	the	absolute
magnitude	of	the	agent’s	own	faculties	and	resources—how	smart	and	energetic
it	is,	how	much	capital	it	has,	and	so	forth—but	also	on	the	relative	magnitude	of
its	capabilities	compared	with	those	of	other	agents	with	conflicting	goals.

In	 a	 situation	 where	 there	 are	 no	 competing	 agents,	 the	 absolute	 capability
level	 of	 a	 superintelligence,	 so	 long	 as	 it	 exceeds	 a	 certain	minimal	 threshold,
does	not	matter	much,	because	a	system	starting	out	with	some	sufficient	set	of
capabilities	 could	 plot	 a	 course	 of	 development	 that	 will	 let	 it	 acquire	 any
capabilities	 it	 initially	 lacks.	We	alluded	to	 this	point	earlier	when	we	said	 that
speed,	quality,	and	collective	superintelligence	all	have	the	same	indirect	reach.
We	alluded	to	it	again	when	we	said	that	various	subsets	of	superpowers,	such	as
the	 intelligence	 amplification	 superpower	 or	 the	 strategizing	 and	 the	 social
manipulation	superpowers,	could	be	used	to	obtain	the	full	complement.

Consider	 a	 superintelligent	 agent	 with	 actuators	 connected	 to	 a	 nanotech
assembler.	Such	 an	 agent	 is	 already	powerful	 enough	 to	overcome	any	natural
obstacles	to	its	indefinite	survival.	Faced	with	no	intelligent	opposition,	such	an



agent	could	plot	a	safe	course	of	development	that	would	lead	to	its	acquiring	the
complete	inventory	of	technologies	that	would	be	useful	to	the	attainment	of	its
goals.	 For	 example,	 it	 could	 develop	 the	 technology	 to	 build	 and	 launch	 von
Neumann	probes,	machines	capable	of	 interstellar	 travel	 that	can	use	resources
such	 as	 asteroids,	 planets,	 and	 stars	 to	 make	 copies	 of	 themselves.13	 By
launching	one	von	Neumann	probe,	the	agent	could	thus	initiate	an	open-ended
process	of	space	colonization.	The	replicating	probe’s	descendants,	travelling	at
some	 significant	 fraction	 of	 the	 speed	 of	 light,	 would	 end	 up	 colonizing	 a
substantial	portion	of	the	Hubble	volume,	the	part	of	the	expanding	universe	that
is	 theoretically	 accessible	 from	 where	 we	 are	 now.	 All	 this	 matter	 and	 free
energy	 could	 then	 be	 organized	 into	 whatever	 value	 structures	 maximize	 the
originating	 agent’s	 utility	 function	 integrated	 over	 cosmic	 time—a	 duration
encompassing	 at	 least	 trillions	 of	 years	 before	 the	 aging	 universe	 becomes
inhospitable	to	information	processing	(see	Box	7).

The	 superintelligent	 agent	 could	 design	 the	 von	 Neumann	 probes	 to	 be
evolution-proof.	 This	 could	 be	 accomplished	 by	 careful	 quality	 control	 during
the	replication	step.	For	example,	the	control	software	for	a	daughter	probe	could
be	proofread	multiple	 times	before	execution,	and	the	software	 itself	could	use
encryption	 and	 error-correcting	 code	 to	 make	 it	 arbitrarily	 unlikely	 that	 any
random	 mutation	 would	 be	 passed	 on	 to	 its	 descendants.14	 The	 proliferating
population	of	von	Neumann	probes	would	 then	 securely	preserve	and	 transmit
the	originating	agent’s	values	as	 they	go	about	 settling	 the	universe.	When	 the
colonization	 phase	 is	 completed,	 the	 original	 values	 would	 determine	 the	 use
made	of	all	the	accumulated	resources,	even	though	the	great	distances	involved
and	 the	 accelerating	 speed	 of	 cosmic	 expansion	would	make	 it	 impossible	 for
remote	parts	of	the	infrastructure	to	communicate	with	one	another.	The	upshot
is	 that	 a	 large	 part	 of	 our	 future	 light	 cone	would	 be	 formatted	 in	 accordance
with	the	preferences	of	the	originating	agent.

This,	 then,	 is	 the	measure	 of	 the	 indirect	 reach	 of	 any	 system	 that	 faces	 no
significant	 intelligent	 opposition	 and	 that	 starts	 out	 with	 a	 set	 of	 capabilities
exceeding	 a	 certain	 threshold.	We	 can	 term	 the	 threshold	 the	 “wise-singleton
sustainability	threshold”	(Figure	11):

The	wise-singleton	sustainability	threshold

A	capability	set	exceeds	the	wise-singleton	threshold	if	and	only	if	a	patient
and	existential	risk-savvy	system	with	that	capability	set	would,	if	it	faced



no	intelligent	opposition	or	competition,	be	able	to	colonize	and	re-engineer
a	large	part	of	the	accessible	universe.

	

By	“singleton”	we	mean	a	sufficiently	 internally	coordinated	political	structure
with	 no	 external	 opponents,	 and	 by	 “wise”	 we	 mean	 sufficiently	 patient	 and
savvy	 about	 existential	 risks	 to	 ensure	 a	 substantial	 amount	 of	 well-directed
concern	for	the	very	long-term	consequences	of	the	system’s	actions.

Figure	11	Schematic	illustration	of	some	possible	trajectories	for	a	hypothetical
wise	 singleton.	With	 a	 capability	below	 the	 short-term	viability	 threshold—for
example,	 if	population	size	 is	 too	small—a	species	 tends	 to	go	extinct	 in	short
order	 (and	 remain	 extinct).	 At	 marginally	 higher	 levels	 of	 capability,	 various
trajectories	are	possible:	a	singleton	might	be	unlucky	and	go	extinct	or	it	might
be	 lucky	 and	 attain	 a	 capability	 (e.g.	 population	 size,	 geographical	 dispersion,
technological	 capacity)	 that	 crosses	 the	wise-singleton	 sustainability	 threshold.
Once	above	this	threshold,	a	singleton	will	almost	certainly	continue	to	gain	in
capability	until	some	extremely	high	capability	level	is	attained.	In	this	picture,
there	are	 two	attractors:	extinction	and	astronomical	capability.	Note	that,	for	a
wise	 singleton,	 the	 distance	 between	 the	 short-term	viability	 threshold	 and	 the
sustainability	threshold	may	be	rather	small.15

	



Box	7	How	big	is	the	cosmic	endowment?

	

Consider	a	technologically	mature	civilization	capable	of	building	sophisticated
von	Neumann	probes	of	the	kind	discussed	in	the	text.	If	these	can	travel	at	50%
of	 the	 speed	 of	 light,	 they	 can	 reach	 some	 6×1018	 stars	 before	 the	 cosmic
expansion	puts	further	acquisitions	forever	out	of	reach.	At	99%	of	c,	they	could
reach	some	2×1020	stars.16	These	travel	speeds	are	energetically	attainable	using
a	 small	 fraction	 of	 the	 resources	 available	 in	 the	 solar	 system.17	 The
impossibility	of	faster-than-light	travel,	combined	with	the	positive	cosmological
constant	(which	causes	the	rate	of	cosmic	expansion	to	accelerate),	implies	that
these	are	close	to	upper	bounds	on	how	much	stuff	our	descendants	acquire.18

If	we	assume	 that	10%	of	stars	have	a	planet	 that	 is—or	could	by	means	of
terraforming	be	 rendered—suitable	 for	habitation	by	human-like	creatures,	and
that	 it	could	 then	be	home	to	a	population	of	a	billion	 individuals	 for	a	billion
years	(with	a	human	life	lasting	a	century),	this	suggests	that	around	1035	human
lives	 could	 be	 created	 in	 the	 future	 by	 an	 Earth-originating	 intelligent
civilization.19

There	 are,	 however,	 reasons	 to	 think	 this	 greatly	 underestimates	 the	 true
number.	By	disassembling	non-habitable	planets	and	collecting	matter	from	the
interstellar	medium,	and	using	this	material	to	construct	Earth-like	planets,	or	by
increasing	 population	 densities,	 the	 number	 could	 be	 increased	 by	 at	 least	 a
couple	 of	 orders	 of	 magnitude.	 And	 if	 instead	 of	 using	 the	 surfaces	 of	 solid
planets,	 the	future	civilization	built	O’Neill	cylinders,	 then	many	further	orders
of	 magnitude	 could	 be	 added,	 yielding	 a	 total	 of	 perhaps	 1043	 human	 lives.
(“O’Neill	 cylinders”	 refers	 to	 a	 space	 settlement	 design	 proposed	 in	 the	mid-
seventies	 by	 the	 American	 physicist	 Gerard	 K.	 O’Neill,	 in	 which	 inhabitants
dwell	 on	 the	 inside	 of	 hollow	 cylinders	 whose	 rotation	 produces	 a	 gravity-
substituting	centrifugal	force.20)

Many	 more	 orders	 of	 magnitudes	 of	 human-like	 beings	 could	 exist	 if	 we
countenance	digital	implementations	of	minds—as	we	should.	To	calculate	how
many	such	digital	minds	could	be	created,	we	must	estimate	the	computational
power	attainable	by	a	technologically	mature	civilization.	This	is	hard	to	do	with
any	 precision,	 but	 we	 can	 get	 a	 lower	 bound	 from	 technological	 designs	 that



have	 been	 outlined	 in	 the	 literature.	 One	 such	 design	 builds	 on	 the	 idea	 of	 a
Dyson	sphere,	a	hypothetical	system	(described	by	the	physicist	Freeman	Dyson
in	1960)	that	would	capture	most	of	the	energy	output	of	a	star	by	surrounding	it
with	a	system	of	solar-collecting	structures.21	For	a	star	like	our	Sun,	this	would
generate	1026	watts.	How	much	computational	 power	 this	would	 translate	 into
depends	 on	 the	 efficiency	 of	 the	 computational	 circuitry	 and	 the	 nature	 of	 the
computations	 to	 be	 performed.	 If	 we	 require	 irreversible	 computations,	 and
assume	a	nanomechanical	implementation	of	the	“computronium”	(which	would
allow	us	 to	push	close	 to	 the	Landauer	 limit	of	energy	efficiency),	a	computer
system	 driven	 by	 a	 Dyson	 sphere	 could	 generate	 some	 1047	 operations	 per
second.22

Combining	 these	 estimates	with	 our	 earlier	 estimate	 of	 the	 number	 of	 stars
that	could	be	colonized,	we	get	a	number	of	about	1067	ops/s	once	the	accessible
parts	 of	 the	 universe	 have	 been	 colonized	 (assuming	 nanomechanical
computronium).23	 A	 typical	 star	 maintains	 its	 luminosity	 for	 some	 1018	 s.
Consequently,	the	number	of	computational	operations	that	could	be	performed
using	our	cosmic	endowment	is	at	least	1085.	The	true	number	is	probably	much
larger.	We	might	 get	 additional	 orders	 of	magnitude,	 for	 example,	 if	we	make
extensive	 use	 of	 reversible	 computation,	 if	 we	 perform	 the	 computations	 at
colder	 temperatures	(by	waiting	until	 the	universe	has	cooled	further),	or	 if	we
make	use	of	additional	sources	of	energy	(such	as	dark	matter).24

It	 might	 not	 be	 immediately	 obvious	 to	 some	 readers	 why	 the	 ability	 to
perform	1085	computational	operations	 is	a	big	deal.	So	 it	 is	useful	 to	put	 it	 in
context.	We	may,	 for	 example,	 compare	 this	 number	with	 our	 earlier	 estimate
(Box	 3,	 in	 Chapter	 2)	 that	 it	 may	 take	 about	 1031–1044	 ops	 to	 simulate	 all
neuronal	 operations	 that	 have	 occurred	 in	 the	 history	 of	 life	 on	 Earth.
Alternatively,	 let	 us	 suppose	 that	 the	 computers	 are	 used	 to	 run	 human	whole
brain	emulations	that	live	rich	and	happy	lives	while	interacting	with	one	another
in	virtual	environments.	A	typical	estimate	of	the	computational	requirements	for
running	 one	 emulation	 is	 1018	 ops/s.	 To	 run	 an	 emulation	 for	 100	 subjective
years	 would	 then	 require	 some	 1027	 ops.	 This	 would	 mean	 that	 at	 least	 1058
human	 lives	 could	 be	 created	 in	 emulation	 even	 with	 quite	 conservative
assumptions	about	the	efficiency	of	computronium.

In	 other	 words,	 assuming	 that	 the	 observable	 universe	 is	 void	 of
extraterrestrial	 civilizations,	 then	 what	 hangs	 in	 the	 balance	 is	 at	 least



10,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000
human	lives	(though	the	true	number	is	probably	larger).	If	we	represent	all	the
happiness	experienced	during	one	entire	such	life	with	a	single	teardrop	of	joy,
then	 the	 happiness	 of	 these	 souls	 could	 fill	 and	 refill	 the	Earth’s	 oceans	 every
second,	 and	 keep	 doing	 so	 for	 a	 hundred	 billion	 billion	millennia.	 It	 is	 really
important	that	we	make	sure	these	truly	are	tears	of	joy.

	

This	wise-singleton	sustainability	 threshold	appears	 to	be	quite	 low.	Limited
forms	of	superintelligence,	as	we	have	seen,	exceed	this	threshold	provided	they
have	access	to	some	actuator	sufficient	to	initiate	a	technology	bootstrap	process.
In	an	environment	that	includes	contemporary	human	civilization,	the	minimally
necessary	 actuator	 could	 be	 very	 simple—an	 ordinary	 screen	 or	 indeed	 any
means	 of	 transmitting	 a	 non-trivial	 amount	 of	 information	 to	 a	 human
accomplice	would	suffice.

But	 the	 wise-singleton	 sustainability	 threshold	 is	 lower	 still:	 neither
superintelligence	nor	any	other	futuristic	technology	is	needed	to	surmount	it.	A
patient	 and	 existential	 risk-savvy	 singleton	 with	 no	 more	 technological	 and
intellectual	capabilities	than	those	possessed	by	contemporary	humanity	should
be	readily	able	to	plot	a	course	that	leads	reliably	to	the	eventual	realization	of
humanity’s	 astronomical	 capability	 potential.	 This	 could	 be	 achieved	 by
investing	 in	 relatively	 safe	methods	of	 increasing	wisdom	and	 existential	 risk-
savvy	 while	 postponing	 the	 development	 of	 potentially	 dangerous	 new
technologies.	 Given	 that	 non-anthropogenic	 existential	 risks	 (ones	 not	 arising
from	 human	 activities)	 are	 small	 over	 the	 relevant	 timescales—and	 could	 be
further	reduced	with	various	safe	interventions—such	a	singleton	could	afford	to
go	 slow.25	 It	 could	 look	 carefully	 before	 each	 step,	 delaying	 development	 of
capabilities	such	as	synthetic	biology,	human	enhancement	medicine,	molecular
nanotechnology,	and	machine	 intelligence	until	 it	had	first	perfected	seemingly
less	 hazardous	 capabilities	 such	 as	 its	 education	 system,	 its	 information
technology,	 and	 its	 collective	decision-making	processes,	 and	until	 it	 had	used
these	capabilities	to	conduct	a	very	thorough	review	of	its	options.	So	this	is	all
within	the	indirect	reach	of	a	technological	civilization	like	that	of	contemporary
humanity.	 We	 are	 separated	 from	 this	 scenario	 “merely”	 by	 the	 fact	 that
humanity	is	currently	neither	a	singleton	nor	(in	the	relevant	sense)	wise.

One	 could	 even	 argue	 that	 Homo	 sapiens	 passed	 the	 wise-singleton



sustainability	 threshold	 soon	 after	 the	 species	 first	 evolved.	 Twenty	 thousand
years	ago,	say,	with	equipment	no	fancier	than	stone	axes,	bone	tools,	atlatls,	and
fire,	the	human	species	was	perhaps	already	in	a	position	from	which	it	had	an
excellent	chance	of	surviving	to	the	present	era.26	Admittedly,	there	is	something
queer	 about	 crediting	 our	 Paleolithic	 ancestors	 with	 having	 developed
technology	 that	 “exceeded	 the	 wise-singleton	 sustainability	 threshold”—given
that	there	was	no	realistic	possibility	of	a	singleton	forming	at	such	a	primitive
time,	 let	 alone	 a	 singleton	 savvy	 about	 existential	 risks	 and	 patient.27
Nevertheless,	 the	 point	 stands	 that	 the	 threshold	 corresponds	 to	 a	 very	modest
level	of	technology—a	level	that	humanity	long	ago	surpassed.28

It	is	clear	that	if	we	are	to	assess	the	effective	powers	of	a	superintelligence—
its	 ability	 to	 achieve	 a	 range	 of	 preferred	 outcomes	 in	 the	 world—we	 must
consider	 not	 only	 its	 own	 internal	 capacities	 but	 also	 the	 capabilities	 of
competing	 agents.	 The	 notion	 of	 a	 superpower	 invoked	 such	 a	 relativized
standard	implicitly.	We	said	that	“a	system	that	sufficiently	excels”	at	any	of	the
tasks	 in	 Table	 8	 has	 a	 corresponding	 superpower.	 Exceling	 at	 a	 task	 like
strategizing,	social	manipulation,	or	hacking	involves	having	a	skill	at	that	task
that	is	high	in	comparison	to	the	skills	of	other	agents	(such	as	strategic	rivals,
influence	 targets,	 or	 computer	 security	 experts).	 The	 other	 superpowers,	 too,
should	 be	 understood	 in	 this	 relative	 sense:	 intelligence	 amplification,
technology	 research,	 and	 economic	 productivity	 are	 possessed	 by	 an	 agent	 as
superpowers	only	 if	 the	 agent’s	 capabilities	 in	 these	 areas	 substantially	 exceed
the	combined	capabilities	of	 the	 rest	of	 the	global	 civilization.	 It	 follows	 from
this	definition	that	at	most	one	agent	can	possess	a	particular	superpower	at	any
given	time.29

This	 is	 the	main	reason	why	the	question	of	 takeoff	speed	is	 important—not
because	 it	matters	exactly	when	a	particular	outcome	happens,	but	because	 the
speed	 of	 the	 takeoff	may	make	 a	 big	 difference	 to	what	 the	 outcome	will	 be.
With	 a	 fast	 or	medium	 takeoff,	 it	 is	 likely	 that	 one	 project	will	 get	 a	 decisive
strategic	 advantage.	 We	 have	 now	 suggested	 that	 a	 superintelligence	 with	 a
decisive	strategic	advantage	would	have	immense	powers,	enough	that	 it	could
form	 a	 stable	 singleton—a	 singleton	 that	 could	 determine	 the	 disposition	 of
humanity’s	cosmic	endowment.

But	 “could”	 is	 different	 from	 “would.”	 Somebody	might	 have	 great	 powers
yet	 choose	 not	 to	 use	 them.	 Is	 it	 possible	 to	 say	 anything	 about	 what	 a
superintelligence	with	 a	 decisive	 strategic	 advantage	would	want?	 It	 is	 to	 this



question	of	motivation	that	we	turn	next.



CHAPTER	7
The	superintelligent	will

	

We	have	seen	that	a	superintelligence	could	have	a	great	ability	to	shape	the
future	according	to	its	goals.	But	what	will	its	goals	be?	What	is	the	relation
between	intelligence	and	motivation	in	an	artificial	agent?	Here	we	develop
two	 theses.	 The	 orthogonality	 thesis	 holds	 (with	 some	 caveats)	 that
intelligence	 and	 final	 goals	 are	 independent	 variables:	 any	 level	 of
intelligence	 could	 be	 combined	 with	 any	 final	 goal.	 The	 instrumental
convergence	 thesis	holds	 that	 superintelligent	agents	having	any	of	a	wide
range	 of	 final	 goals	 will	 nevertheless	 pursue	 similar	 intermediary	 goals
because	 they	have	common	 instrumental	reasons	 to	do	so.	Taken	 together,
these	theses	help	us	think	about	what	a	superintelligent	agent	would	do.

The	relation	between	intelligence	and	motivation

	

We	 have	 already	 cautioned	 against	 anthropomorphizing	 the	 capabilities	 of	 a
superintelligent	AI.	This	warning	should	be	extended	to	pertain	to	its	motivations
as	well.

It	 is	 a	 useful	 propaedeutic	 to	 this	 part	 of	 our	 inquiry	 to	 first	 reflect	 for	 a
moment	on	 the	vastness	of	 the	 space	of	possible	minds.	 In	 this	abstract	 space,
human	minds	 form	 a	 tiny	 cluster.	 Consider	 two	 persons	 who	 seem	 extremely
unlike,	 perhaps	 Hannah	 Arendt	 and	 Benny	 Hill.	 The	 personality	 differences
between	 these	 two	 individuals	 may	 seem	 almost	 maximally	 large.	 But	 this	 is
because	our	intuitions	are	calibrated	on	our	experience,	which	samples	from	the
existing	 human	 distribution	 (and	 to	 some	 extent	 from	 fictional	 personalities
constructed	 by	 the	 human	 imagination	 for	 the	 enjoyment	 of	 the	 human
imagination).	 If	 we	 zoom	 out	 and	 consider	 the	 space	 of	 all	 possible	 minds,
however,	we	must	conceive	of	these	two	personalities	as	virtual	clones.	Certainly
in	 terms	 of	 neural	 architecture,	Ms.	 Arendt	 and	Mr.	 Hill	 are	 nearly	 identical.
Imagine	 their	 brains	 lying	 side	 by	 side	 in	 quiet	 repose.	 You	 would	 readily



recognize	them	as	two	of	a	kind.	You	might	even	be	unable	to	tell	which	brain
belonged	to	whom.	If	you	looked	more	closely,	studying	the	morphology	of	the
two	brains	under	a	microscope,	this	impression	of	fundamental	similarity	would
only	 be	 strengthened:	 you	 would	 see	 the	 same	 lamellar	 organization	 of	 the
cortex,	with	the	same	brain	areas,	made	up	of	the	same	types	of	neuron,	soaking
in	the	same	bath	of	neurotransmitters.1

Despite	the	fact	that	human	psychology	corresponds	to	a	tiny	spot	in	the	space
of	possible	minds,	there	is	a	common	tendency	to	project	human	attributes	onto	a
wide	 range	 of	 alien	 or	 artificial	 cognitive	 systems.	 Yudkowsky	 illustrates	 this
point	nicely:

Back	 in	 the	 era	 of	 pulp	 science	 fiction,	 magazine	 covers	 occasionally
depicted	 a	 sentient	 monstrous	 alien—colloquially	 known	 as	 a	 bug-eyed
monster	(BEM)—carrying	off	an	attractive	human	female	in	a	torn	dress.	It
would	 seem	 the	 artist	 believed	 that	 a	 non-humanoid	 alien,	with	 a	wholly
different	 evolutionary	 history,	 would	 sexually	 desire	 human	 females….
Probably	the	artist	did	not	ask	whether	a	giant	bug	perceives	human	females
as	attractive.	Rather,	a	human	female	in	a	torn	dress	is	sexy—inherently	so,
as	an	intrinsic	property.	They	who	made	this	mistake	did	not	think	about	the
insectoid’s	mind:	they	focused	on	the	woman’s	torn	dress.	If	the	dress	were
not	torn,	the	woman	would	be	less	sexy;	the	BEM	does	not	enter	into	it.2

	
	

An	 artificial	 intelligence	 can	 be	 far	 less	 human-like	 in	 its	 motivations	 than	 a
green	 scaly	 space	 alien.	 The	 extraterrestrial	 (let	 us	 assume)	 is	 a	 biological
creature	 that	 has	 arisen	 through	 an	 evolutionary	 process	 and	 can	 therefore	 be
expected	to	have	the	kinds	of	motivation	typical	of	evolved	creatures.	It	would
not	be	hugely	surprising,	for	example,	to	find	that	some	random	intelligent	alien
would	 have	 motives	 related	 to	 one	 or	 more	 items	 like	 food,	 air,	 temperature,
energy	expenditure,	occurrence	or	threat	of	bodily	injury,	disease,	predation,	sex,
or	 progeny.	 A	 member	 of	 an	 intelligent	 social	 species	 might	 also	 have
motivations	 related	 to	 cooperation	 and	 competition:	 like	 us,	 it	might	 show	 in-
group	 loyalty,	 resentment	 of	 free	 riders,	 perhaps	 even	 a	 vain	 concern	 with
reputation	and	appearance.



Figure	 12	 Results	 of	 anthropomorphizing	 alien	 motivation.	 Least	 likely
hypothesis:	space	aliens	prefer	blondes.	More	 likely	hypothesis:	 the	 illustrators
succumbed	 to	 the	 “mind	 projection	 fallacy.”	 Most	 likely	 hypothesis:	 the
publisher	wanted	a	cover	that	would	entice	the	target	demographic.

	

An	AI,	by	contrast,	need	not	care	intrinsically	about	any	of	those	things.	There
is	nothing	paradoxical	about	an	AI	whose	sole	final	goal	is	to	count	the	grains	of
sand	on	Boracay,	or	to	calculate	the	decimal	expansion	of	pi,	or	to	maximize	the
total	number	of	paperclips	that	will	exist	in	its	future	light	cone.	In	fact,	it	would
be	easier	to	create	an	AI	with	simple	goals	like	these	than	to	build	one	that	had	a
human-like	 set	 of	 values	 and	 dispositions.	 Compare	 how	 easy	 it	 is	 to	 write	 a
program	that	measures	how	many	digits	of	pi	have	been	calculated	and	stored	in
memory	 with	 how	 difficult	 it	 would	 be	 to	 create	 a	 program	 that	 reliably
measures	 the	 degree	 of	 realization	 of	 some	 more	 meaningful	 goal—human
flourishing,	 say,	 or	 global	 justice.	 Unfortunately,	 because	 a	 meaningless
reductionistic	goal	is	easier	for	humans	to	code	and	easier	for	an	AI	to	learn,	it	is
just	the	kind	of	goal	that	a	programmer	would	choose	to	install	in	his	seed	AI	if
his	 focus	 is	 on	 taking	 the	 quickest	 path	 to	 “getting	 the	 AI	 to	 work”	 (without
caring	 much	 about	 what	 exactly	 the	 AI	 will	 do,	 aside	 from	 displaying
impressively	intelligent	behavior).	We	will	revisit	this	concern	shortly.

Intelligent	 search	 for	 instrumentally	 optimal	 plans	 and	 policies	 can	 be
performed	in	the	service	of	any	goal.	Intelligence	and	motivation	are	in	a	sense
orthogonal:	we	can	 think	of	 them	as	 two	axes	spanning	a	graph	 in	which	each
point	 represents	 a	 logically	 possible	 artificial	 agent.	 Some	qualifications	 could
be	 added	 to	 this	 picture.	 For	 instance,	 it	 might	 be	 impossible	 for	 a	 very
unintelligent	 system	 to	 have	 very	 complex	 motivations.	 In	 order	 for	 it	 to	 be
correct	to	say	that	an	certain	agent	“has”	a	set	of	motivations,	those	motivations



may	 need	 to	 be	 functionally	 integrated	 with	 the	 agent’s	 decision	 processes,
something	 that	 places	 demands	 on	 memory,	 processing	 power,	 and	 perhaps
intelligence.	For	minds	that	can	modify	themselves,	there	may	also	be	dynamical
constraints—an	 intelligent	 self-modifying	 mind	 with	 an	 urgent	 desire	 to	 be
stupid	might	not	remain	intelligent	for	long.	But	these	qualifications	must	not	be
allowed	 to	 obscure	 the	 basic	 point	 about	 the	 independence	 of	 intelligence	 and
motivation,	which	we	can	express	as	follows:

The	orthogonality	thesis

Intelligence	 and	 final	 goals	 are	 orthogonal:	 more	 or	 less	 any	 level	 of
intelligence	 could	 in	 principle	 be	 combined	 with	 more	 or	 less	 any	 final
goal.

	

If	 the	 orthogonality	 thesis	 seems	 problematic,	 this	 might	 be	 because	 of	 the
superficial	 resemblance	 it	 bears	 to	 some	 traditional	 philosophical	 positions
which	have	been	subject	to	long	debate.	Once	it	is	understood	to	have	a	different
and	narrower	scope,	 its	credibility	should	rise.	 (For	example,	 the	orthogonality
thesis	 does	 not	 presuppose	 the	 Humean	 theory	 of	 motivation.3	 Nor	 does	 it
presuppose	that	basic	preferences	cannot	be	irrational.4)

Note	 that	 the	orthogonality	 thesis	 speaks	not	of	rationality	or	reason,	 but	 of
intelligence.	By	“intelligence”	we	here	mean	something	like	skill	at	prediction,
planning,	 and	 means–ends	 reasoning	 in	 general.5	 This	 sense	 of	 instrumental
cognitive	 efficaciousness	 is	most	 relevant	 when	we	 are	 seeking	 to	 understand
what	the	causal	impact	of	a	machine	superintelligence	might	be.	Even	if	there	is
some	 (normatively	 thick)	 sense	 of	 the	 word	 “rational”	 such	 that	 a	 paperclip-
maximizing	 superintelligent	 agent	 would	 necessarily	 fail	 to	 qualify	 as	 fully
rational	in	that	sense,	this	would	in	no	way	preclude	such	an	agent	from	having
awesome	faculties	of	instrumental	reasoning,	faculties	which	could	let	it	have	a
large	impact	on	the	world.6

According	 to	 the	orthogonality	 thesis,	 artificial	 agents	 can	have	utterly	non-
anthropomorphic	 goals.	 This,	 however,	 does	 not	 imply	 that	 it	 is	 impossible	 to
make	 predictions	 about	 the	 behavior	 of	 particular	 artificial	 agents—not	 even
hypothetical	 superintelligent	 agents	 whose	 cognitive	 complexity	 and
performance	 characteristics	 might	 render	 them	 in	 some	 respects	 opaque	 to



human	analysis.	There	are	at	least	three	directions	from	which	we	can	approach
the	problem	of	predicting	superintelligent	motivation:

Predictability	 through	 design.	 If	 we	 can	 suppose	 that	 the	 designers	 of	 a
superintelligent	agent	can	successfully	engineer	the	goal	system	of	the	agent	so
that	 it	 stably	 pursues	 a	 particular	 goal	 set	 by	 the	 programmers,	 then	 one
prediction	 we	 can	 make	 is	 that	 the	 agent	 will	 pursue	 that	 goal.	 The	 more
intelligent	 the	agent	 is,	 the	greater	 the	cognitive	resourcefulness	 it	will	have	 to
pursue	that	goal.	So	even	before	an	agent	has	been	created	we	might	be	able	to
predict	 something	 about	 its	 behavior,	 if	 we	 know	 something	 about	 who	 will
build	it	and	what	goals	they	will	want	it	to	have.

Predictability	through	inheritance.	If	a	digital	intelligence	is	created	directly	from
a	 human	 template	 (as	 would	 be	 the	 case	 in	 a	 high-fidelity	 whole	 brain
emulation),	 then	 the	 digital	 intelligence	 might	 inherit	 the	 motivations	 of	 the
human	 template.7	The	agent	might	 retain	some	of	 these	motivations	even	 if	 its
cognitive	capacities	are	subsequently	enhanced	to	make	it	superintelligent.	This
kind	 of	 inference	 requires	 caution.	 The	 agent’s	 goals	 and	 values	 could	 easily
become	 corrupted	 in	 the	 uploading	 process	 or	 during	 its	 subsequent	 operation
and	enhancement,	depending	on	how	the	procedure	is	implemented.

Predictability	 through	 convergent	 instrumental	 reasons.	 Even	 without	 detailed
knowledge	of	an	agent’s	final	goals,	we	may	be	able	to	infer	something	about	its
more	 immediate	objectives	by	considering	 the	 instrumental	 reasons	 that	would
arise	for	any	of	a	wide	range	of	possible	final	goals	in	a	wide	range	of	situations.
This	way	of	predicting	becomes	more	useful	 the	greater	 the	 intelligence	of	 the
agent,	 because	 a	 more	 intelligent	 agent	 is	 more	 likely	 to	 recognize	 the	 true
instrumental	reasons	for	its	actions,	and	so	act	in	ways	that	make	it	more	likely
to	achieve	its	goals.	(A	caveat	here	is	that	there	might	be	important	instrumental
reasons	to	which	we	are	oblivious	and	which	an	agent	would	discover	only	once
it	reaches	some	very	high	level	of	intelligence—this	could	make	the	behavior	of
superintelligent	agents	less	predictable.)

	

The	 next	 section	 explores	 this	 third	 way	 of	 predictability	 and	 develops	 an
“instrumental	convergence	thesis”	which	complements	 the	orthogonality	 thesis.
Against	 this	 background	 we	 can	 then	 better	 examine	 the	 other	 two	 sorts	 of
predictability,	which	we	will	do	 in	 later	 chapters	where	we	ask	what	might	be



done	 to	 shape	an	 intelligence	explosion	 to	 increase	 the	chances	of	a	beneficial
outcome.

Instrumental	convergence

	

According	to	the	orthogonality	thesis,	intelligent	agents	may	have	an	enormous
range	of	possible	final	goals.	Nevertheless,	according	to	what	we	may	term	the
“instrumental	convergence”	thesis,	there	are	some	instrumental	goals	likely	to	be
pursued	by	almost	any	intelligent	agent,	because	there	are	some	objectives	that
are	 useful	 intermediaries	 to	 the	 achievement	 of	 almost	 any	 final	 goal.	We	 can
formulate	this	thesis	as	follows:

The	instrumental	convergence	thesis

Several	 instrumental	 values	 can	be	 identified	which	 are	 convergent	 in	 the
sense	 that	 their	 attainment	would	 increase	 the	chances	of	 the	agent’s	goal
being	realized	for	a	wide	range	of	final	goals	and	a	wide	range	of	situations,
implying	that	these	instrumental	values	are	likely	to	be	pursued	by	a	broad
spectrum	of	situated	intelligent	agents.

	

In	 the	 following	 we	 will	 consider	 several	 categories	 where	 such	 convergent
instrumental	values	may	be	found.8	The	likelihood	that	an	agent	will	recognize
the	 instrumental	values	 it	confronts	 increases	 (ceteris	paribus)	with	 the	agent’s
intelligence.	 We	 will	 therefore	 focus	 mainly	 on	 the	 case	 of	 a	 hypothetical
superintelligent	agent	whose	instrumental	reasoning	capacities	far	exceed	those
of	 any	 human.	 We	 will	 also	 comment	 on	 how	 the	 instrumental	 convergence
thesis	applies	to	the	case	of	human	beings,	as	this	gives	us	occasion	to	elaborate
some	 essential	 qualifications	 concerning	 how	 the	 instrumental	 convergence
thesis	 should	 be	 interpreted	 and	 applied.	 Where	 there	 are	 convergent
instrumental	 values,	 we	 may	 be	 able	 to	 predict	 some	 aspects	 of	 a
superintelligence’s	 behavior	 even	 if	 we	 know	 virtually	 nothing	 about	 that
superintelligence’s	final	goals.

Self-preservation



	

If	an	agent’s	final	goals	concern	the	future,	then	in	many	scenarios	there	will	be
future	actions	it	could	perform	to	increase	the	probability	of	achieving	its	goals.
This	creates	an	instrumental	reason	for	the	agent	to	try	to	be	around	in	the	future
—to	help	achieve	its	future-oriented	goal.

Most	humans	seem	to	place	some	final	value	on	their	own	survival.	This	is	not
a	necessary	feature	of	artificial	agents:	some	may	be	designed	to	place	no	final
value	whatever	on	their	own	survival.	Nevertheless,	many	agents	that	do	not	care
intrinsically	 about	 their	 own	 survival	 would,	 under	 a	 fairly	 wide	 range	 of
conditions,	care	instrumentally	about	 their	own	survival	 in	order	 to	accomplish
their	final	goals.

Goal-content	integrity

	

If	an	agent	retains	its	present	goals	into	the	future,	then	its	present	goals	will	be
more	 likely	 to	 be	 achieved	 by	 its	 future	 self.	 This	 gives	 the	 agent	 a	 present
instrumental	 reason	 to	 prevent	 alterations	 of	 its	 final	 goals.	 (The	 argument
applies	only	to	final	goals.	In	order	to	attain	its	final	goals,	an	intelligent	agent
will	of	course	routinely	want	to	change	its	subgoals	in	light	of	new	information
and	insight.)

Goal-content	integrity	for	final	goals	is	in	a	sense	even	more	fundamental	than
survival	as	a	convergent	instrumental	motivation.	Among	humans,	the	opposite
may	seem	to	hold,	but	that	is	because	survival	is	usually	part	of	our	final	goals.
For	software	agents,	which	can	easily	switch	bodies	or	create	exact	duplicates	of
themselves,	 preservation	 of	 self	 as	 a	 particular	 implementation	 or	 a	 particular
physical	object	need	not	be	an	important	instrumental	value.	Advanced	software
agents	 might	 also	 be	 able	 to	 swap	 memories,	 download	 skills,	 and	 radically
modify	 their	 cognitive	 architecture	 and	 personalities.	 A	 population	 of	 such
agents	might	operate	more	like	a	“functional	soup”	than	a	society	composed	of
distinct	 semi-permanent	 persons.9	 For	 some	 purposes,	 processes	 in	 such	 a
system	 might	 be	 better	 individuated	 as	 teleological	 threads,	 based	 on	 their
values,	rather	than	on	the	basis	of	bodies,	personalities,	memories,	or	abilities.	In
such	 scenarios,	 goal-continuity	 might	 be	 said	 to	 constitute	 a	 key	 aspect	 of
survival.



Even	so,	there	are	situations	in	which	an	agent	can	best	fulfill	its	final	goals	by
intentionally	changing	them.	Such	situations	can	arise	when	any	of	the	following
factors	is	significant:

	

Social	 signaling.	 When	 others	 can	 perceive	 an	 agent’s	 goals	 and	 use	 that
information	 to	 infer	 instrumentally	 relevant	 dispositions	 or	 other	 correlated
attributes,	it	can	be	in	the	agent’s	interest	to	modify	its	goals	to	make	a	favorable
impression.	For	example,	an	agent	might	miss	out	on	beneficial	deals	if	potential
partners	cannot	trust	it	to	fulfill	its	side	of	the	bargain.	In	order	to	make	credible
commitments,	 an	 agent	 might	 therefore	 wish	 to	 adopt	 as	 a	 final	 goal	 the
honoring	of	its	earlier	commitments	(and	allow	others	to	verify	that	it	has	indeed
adopted	this	goal).	Agents	that	could	flexibly	and	transparently	modify	their	own
goals	could	use	this	ability	to	enforce	deals.10

Social	preferences.	Others	may	also	have	final	preferences	about	an	agent’s	goals.
The	 agent	 could	 then	 have	 reason	 to	 modify	 its	 goals,	 either	 to	 satisfy	 or	 to
frustrate	those	preferences.

Preferences	concerning	own	goal	content.	An	agent	might	have	some	final	goal
concerned	with	the	agent’s	own	goal	content.	For	example,	the	agent	might	have
a	final	goal	to	become	the	type	of	agent	that	is	motivated	by	certain	values	rather
than	others	(such	as	compassion	rather	than	comfort).

Storage	costs.	If	the	cost	of	storing	or	processing	some	part	of	an	agent’s	utility
function	 is	 large	 compared	 to	 the	 chance	 that	 a	 situation	 will	 arise	 in	 which
applying	 that	part	of	 the	utility	 function	will	make	a	difference,	 then	 the	agent
has	an	instrumental	reason	to	simplify	its	goal	content,	and	it	may	trash	the	bit
that	is	idle.11

We	humans	often	seem	happy	 to	 let	our	 final	values	drift.	This	might	often	be
because	we	do	not	know	precisely	what	they	are.	It	is	not	surprising	that	we	want
our	beliefs	about	our	final	values	to	be	able	to	change	in	light	of	continuing	self-
discovery	or	changing	self-presentation	needs.	However,	there	are	cases	in	which
we	willingly	change	the	values	themselves,	not	just	our	beliefs	or	interpretations
of	them.	For	example,	somebody	deciding	to	have	a	child	might	predict	that	they
will	 come	 to	 value	 the	 child	 for	 its	 own	 sake,	 even	 though	 at	 the	 time	 of	 the
decision	 they	 may	 not	 particularly	 value	 their	 future	 child	 or	 like	 children	 in



general.

Humans	are	complicated,	and	many	factors	might	be	at	play	in	a	situation	like
this.12	 For	 instance,	 one	might	 have	 a	 final	 value	 that	 involves	 becoming	 the
kind	of	person	who	cares	about	some	other	individual	for	his	or	her	own	sake,	or
one	 might	 have	 a	 final	 value	 that	 involves	 having	 certain	 experiences	 and
occupying	 a	 certain	 social	 role;	 and	 becoming	 a	 parent—and	 undergoing	 the
attendant	goal	shift—might	be	a	necessary	aspect	of	that.	Human	goals	can	also
have	 inconsistent	 content,	 and	 so	 some	 people	might	want	 to	modify	 some	 of
their	final	goals	to	reduce	the	inconsistencies.

Cognitive	enhancement

	

Improvements	 in	 rationality	 and	 intelligence	 will	 tend	 to	 improve	 an	 agent’s
decision-making,	rendering	the	agent	more	likely	to	achieve	its	final	goals.	One
would	therefore	expect	cognitive	enhancement	to	emerge	as	an	instrumental	goal
for	a	wide	variety	of	 intelligent	agents.	For	similar	reasons,	agents	will	 tend	to
instrumentally	value	many	kinds	of	information.13

Not	 all	 kinds	 of	 rationality,	 intelligence,	 and	 knowledge	 need	 be
instrumentally	 useful	 in	 the	 attainment	 of	 an	 agent’s	 final	 goals.	 “Dutch	 book
arguments”	can	be	used	to	show	that	an	agent	whose	credence	function	violates
the	 rules	 of	 probability	 theory	 is	 susceptible	 to	 “money	 pump”	 procedures,	 in
which	 a	 savvy	 bookie	 arranges	 a	 set	 of	 bets	 each	 of	which	 appears	 favorable
according	 to	 the	 agent’s	 beliefs,	 but	 which	 in	 combination	 are	 guaranteed	 to
result	 in	 a	 loss	 for	 the	 agent,	 and	 a	 corresponding	 gain	 for	 the	 bookie.14
However,	 this	 fact	 fails	 to	 provide	 any	 strong	 general	 instrumental	 reasons	 to
iron	 out	 all	 probabilistic	 incoherency.	Agents	who	 do	 not	 expect	 to	 encounter
savvy	bookies,	or	who	adopt	a	general	policy	against	betting,	do	not	necessarily
stand	 to	 lose	much	 from	 having	 some	 incoherent	 beliefs—and	 they	may	 gain
important	 benefits	 of	 the	 types	 mentioned:	 reduced	 cognitive	 effort,	 social
signaling,	 etc.	 There	 is	 no	 general	 reason	 to	 expect	 an	 agent	 to	 seek
instrumentally	 useless	 forms	 of	 cognitive	 enhancement,	 as	 an	 agent	might	 not
value	knowledge	and	understanding	for	their	own	sakes.

Which	 cognitive	 abilities	 are	 instrumentally	 useful	 depends	 both	 on	 the
agent’s	final	goals	and	on	its	situation.	An	agent	that	has	access	to	reliable	expert



advice	 may	 have	 little	 need	 for	 its	 own	 intelligence	 and	 knowledge.	 If
intelligence	and	knowledge	come	at	a	cost,	such	as	time	and	effort	expended	in
acquisition,	 or	 increased	 storage	 or	 processing	 requirements,	 then	 the	 agent
might	 prefer	 less	 knowledge	 and	 less	 intelligence.15	 The	 same	 can	 hold	 if	 the
agent	has	final	goals	that	involve	being	ignorant	of	certain	facts;	and	likewise	if
an	 agent	 faces	 incentives	 arising	 from	 strategic	 commitments,	 signaling,	 or
social	preferences.16

Each	of	these	countervailing	reasons	often	comes	into	play	for	human	beings.
Much	 information	 is	 irrelevant	 to	our	 goals;	we	 can	often	 rely	on	others’	 skill
and	expertise;	acquiring	knowledge	takes	time	and	effort;	we	might	intrinsically
value	certain	kinds	of	ignorance;	and	we	operate	in	an	environment	in	which	the
ability	to	make	strategic	commitments,	socially	signal,	and	satisfy	other	people’s
direct	preferences	over	our	own	epistemic	 states	 is	often	more	 important	 to	us
than	simple	cognitive	gains.

There	are	special	situations	in	which	cognitive	enhancement	may	result	in	an
enormous	increase	in	an	agent’s	ability	to	achieve	its	final	goals—in	particular,	if
the	 agent’s	 final	 goals	 are	 fairly	 unbounded	 and	 the	 agent	 is	 in	 a	 position	 to
become	 the	 first	 superintelligence	 and	 thereby	 potentially	 obtain	 a	 decisive
strategic	advantage,	enabling	 the	agent	 to	 shape	 the	 future	of	Earth-originating
life	and	accessible	cosmic	resources	according	to	its	preferences.	At	least	in	this
special	 case,	 a	 rational	 intelligent	 agent	would	 place	 a	 very	 high	 instrumental
value	on	cognitive	enhancement.

Technological	perfection

	

An	agent	may	often	have	instrumental	reasons	to	seek	better	technology,	which
at	its	simplest	means	seeking	more	efficient	ways	of	transforming	some	given	set
of	inputs	into	valued	outputs.	Thus,	a	software	agent	might	place	an	instrumental
value	on	more	efficient	algorithms	that	enable	its	mental	functions	to	run	faster
on	given	hardware.	Similarly,	agents	whose	goals	require	some	form	of	physical
construction	might	instrumentally	value	improved	engineering	technology	which
enables	 them	 to	 create	 a	 wider	 range	 of	 structures	more	 quickly	 and	 reliably,
using	fewer	or	cheaper	materials	and	less	energy.	Of	course,	there	is	a	tradeoff:
the	 potential	 benefits	 of	 better	 technology	 must	 be	 weighed	 against	 its	 costs,
including	 not	 only	 the	 cost	 of	 obtaining	 the	 technology	 but	 also	 the	 costs	 of



learning	how	to	use	it,	integrating	it	with	other	technologies	already	in	use,	and
so	forth.

Proponents	 of	 some	 new	 technology,	 confident	 in	 its	 superiority	 to	 existing
alternatives,	 are	 often	 dismayed	 when	 other	 people	 do	 not	 share	 their
enthusiasm.	But	people’s	resistance	to	novel	and	nominally	superior	technology
need	 not	 be	 based	 on	 ignorance	 or	 irrationality.	 A	 technology’s	 valence	 or
normative	character	depends	not	only	on	the	context	in	which	it	is	deployed,	but
also	the	vantage	point	from	which	its	impacts	are	evaluated:	what	is	a	boon	from
one	 person’s	 perspective	 can	 be	 a	 liability	 from	 another’s.	 Thus,	 although
mechanized	 looms	 increased	 the	economic	efficiency	of	 textile	production,	 the
Luddite	 handloom	 weavers	 who	 anticipated	 that	 the	 innovation	 would	 render
their	artisan	skills	obsolete	may	have	had	good	instrumental	reasons	to	oppose	it.
The	 point	 here	 is	 that	 if	 “technological	 perfection”	 is	 to	 name	 a	 widely
convergent	 instrumental	 goal	 for	 intelligent	 agents,	 then	 the	 term	 must	 be
understood	in	a	special	sense—technology	must	be	construed	as	embedded	in	a
particular	 social	 context,	 and	 its	 costs	 and	 benefits	 must	 be	 evaluated	 with
reference	to	some	specified	agents’	final	values.

It	 seems	 that	a	 superintelligent	singleton—a	superintelligent	agent	 that	 faces
no	 significant	 intelligent	 rivals	 or	 opposition,	 and	 is	 thus	 in	 a	 position	 to
determine	global	policy	unilaterally—would	have	instrumental	reason	to	perfect
the	technologies	that	would	make	it	better	able	to	shape	the	world	according	to
its	 preferred	 designs.17	 This	 would	 probably	 include	 space	 colonization
technology,	 such	as	von	Neumann	probes.	Molecular	nanotechnology,	or	 some
alternative	 still	 more	 capable	 physical	 manufacturing	 technology,	 also	 seems
potentially	very	useful	in	the	service	of	an	extremely	wide	range	of	final	goals.18

Resource	acquisition

	

Finally,	resource	acquisition	is	another	common	emergent	instrumental	goal,	for
much	 the	 same	 reasons	 as	 technological	 perfection:	 both	 technology	 and
resources	facilitate	physical	construction	projects.

Human	beings	tend	to	seek	to	acquire	resources	sufficient	to	meet	their	basic
biological	 needs.	But	 people	 usually	 seek	 to	 acquire	 resources	 far	 beyond	 this
minimum	 level.	 In	 doing	 so,	 they	 may	 be	 partially	 driven	 by	 lesser	 physical



desiderata,	such	as	increased	convenience.	A	great	deal	of	resource	accumulation
is	motivated	 by	 social	 concerns—gaining	 status,	mates,	 friends,	 and	 influence,
through	 wealth	 accumulation	 and	 conspicuous	 consumption.	 Perhaps	 less
commonly,	some	people	seek	additional	resources	to	achieve	altruistic	ambitions
or	expensive	non-social	aims.

On	 the	 basis	 of	 such	 observations	 it	 might	 be	 tempting	 to	 suppose	 that	 a
superintelligence	 not	 facing	 a	 competitive	 social	 world	 would	 see	 no
instrumental	 reason	 to	 accumulate	 resources	 beyond	 some	 modest	 level,	 for
instance	whatever	computational	resources	are	needed	to	run	its	mind	along	with
some	virtual	reality.	Yet	such	a	supposition	would	be	entirely	unwarranted.	First,
the	value	of	 resources	depends	on	 the	uses	 to	which	 they	can	be	put,	which	 in
turn	 depends	 on	 the	 available	 technology.	 With	 mature	 technology,	 basic
resources	 such	 as	 time,	 space,	 matter,	 and	 free	 energy,	 could	 be	 processed	 to
serve	almost	any	goal.	For	instance,	such	basic	resources	could	be	converted	into
life.	 Increased	 computational	 resources	 could	 be	 used	 to	 run	 the
superintelligence	 at	 a	 greater	 speed	 and	 for	 a	 longer	 duration,	 or	 to	 create
additional	physical	or	simulated	lives	and	civilizations.	Extra	physical	resources
could	 also	 be	 used	 to	 create	 backup	 systems	 or	 perimeter	 defenses,	 enhancing
security.	Such	projects	could	easily	consume	far	more	than	one	planet’s	worth	of
resources.

Furthermore,	 the	 cost	 of	 acquiring	 additional	 extraterrestrial	 resources	 will
decline	radically	as	the	technology	matures.	Once	von	Neumann	probes	can	be
built,	a	 large	portion	of	 the	observable	universe	 (assuming	 it	 is	uninhabited	by
intelligent	 life)	 could	 be	 gradually	 colonized—for	 the	 one-off	 cost	 of	 building
and	 launching	 a	 single	 successful	 self-reproducing	 probe.	 This	 low	 cost	 of
celestial	 resource	 acquisition	 would	 mean	 that	 such	 expansion	 could	 be
worthwhile	even	if	the	value	of	the	additional	resources	gained	were	somewhat
marginal.	For	example,	even	if	a	superintelligence’s	final	goals	only	concerned
what	happened	within	some	particular	small	volume	of	space,	such	as	the	space
occupied	by	its	original	home	planet,	it	would	still	have	instrumental	reasons	to
harvest	the	resources	of	the	cosmos	beyond.	It	could	use	those	surplus	resources
to	build	computers	to	calculate	more	optimal	ways	of	using	resources	within	the
small	spatial	region	of	primary	concern.	It	could	also	use	the	extra	resources	to
build	ever	more	robust	fortifications	to	safeguard	its	sanctum.	Since	the	cost	of
acquiring	additional	resources	would	keep	declining,	this	process	of	optimizing
and	 increasing	 safeguards	 might	 well	 continue	 indefinitely	 even	 if	 it	 were
subject	to	steeply	diminishing	returns.19



Thus,	 there	 is	 an	 extremely	 wide	 range	 of	 possible	 final	 goals	 a
superintelligent	singleton	could	have	 that	would	generate	 the	 instrumental	goal
of	unlimited	resource	acquisition.	The	likely	manifestation	of	this	would	be	the
superintelligence’s	 initiation	of	a	colonization	process	 that	would	expand	 in	all
directions	 using	 von	 Neumann	 probes.	 This	 would	 result	 in	 an	 approximate
sphere	 of	 expanding	 infrastructure	 centered	 on	 the	 originating	 planet	 and
growing	in	radius	at	some	fraction	of	the	speed	of	light;	and	the	colonization	of
the	 universe	 would	 continue	 in	 this	 manner	 until	 the	 accelerating	 speed	 of
cosmic	expansion	(a	consequence	of	the	positive	cosmological	constant)	makes
further	 procurements	 impossible	 as	 remoter	 regions	 drift	 permanently	 out	 of
reach	 (this	 happens	 on	 a	 timescale	 of	 billions	 of	 years).20	 By	 contrast,	 agents
lacking	the	technology	required	for	inexpensive	resource	acquisition,	or	for	the
conversion	 of	 generic	 physical	 resources	 into	 useful	 infrastructure,	 may	 often
find	 it	 not	 cost-effective	 to	 invest	 any	 present	 resources	 in	 increasing	 their
material	 endowments.	The	 same	may	hold	 for	 agents	 operating	 in	 competition
with	 other	 agents	 of	 similar	 powers.	 For	 instance,	 if	 competing	 agents	 have
already	 secured	 accessible	 cosmic	 resources,	 there	 may	 be	 no	 colonization
opportunities	 left	 for	a	 late-starting	agent.	The	convergent	 instrumental	reasons
for	 superintelligences	 uncertain	 of	 the	 non-existence	 of	 other	 powerful
superintelligent	agents	are	complicated	by	strategic	considerations	that	we	do	not
currently	 fully	understand	but	which	may	constitute	 important	qualifications	 to
the	examples	of	convergent	instrumental	reasons	we	have	looked	at	here.21

	

	

It	 should	be	emphasized	 that	 the	existence	of	convergent	 instrumental	 reasons,
even	 if	 they	apply	 to	and	are	 recognized	by	a	particular	 agent,	does	not	 imply
that	the	agent’s	behavior	is	easily	predictable.	An	agent	might	well	think	of	ways
of	pursuing	the	relevant	instrumental	values	that	do	not	readily	occur	to	us.	This
is	 especially	 true	 for	 a	 superintelligence,	which	 could	 devise	 extremely	 clever
but	 counterintuitive	 plans	 to	 realize	 its	 goals,	 possibly	 even	 exploiting	 as-yet
undiscovered	physical	phenomena.22	What	 is	predictable	 is	 that	 the	convergent
instrumental	values	would	be	pursued	and	used	to	realize	the	agent’s	final	goals
—not	the	specific	actions	that	the	agent	would	take	to	achieve	this.



CHAPTER	8
Is	the	default	outcome	doom?

	

We	 found	 the	 link	 between	 intelligence	 and	 final	 values	 to	 be	 extremely
loose.	We	also	 found	an	ominous	 convergence	 in	 instrumental	 values.	For
weak	agents,	these	things	do	not	matter	much;	because	weak	agents	are	easy
to	 control	 and	 can	do	 little	damage.	But	 in	Chapter	6	we	 argued	 that	 the
first	superintelligence	might	well	get	a	decisive	strategic	advantage.	Its	goals
would	then	determine	how	humanity’s	cosmic	endowment	will	be	used.	Now
we	can	begin	to	see	how	menacing	this	prospect	is.

Existential	 catastrophe	 as	 the	 default	 outcome	 of	 an
intelligence	explosion?

	

An	 existential	 risk	 is	 one	 that	 threatens	 to	 cause	 the	 extinction	 of	 Earth-
originating	intelligent	life	or	to	otherwise	permanently	and	drastically	destroy	its
potential	 for	 future	 desirable	 development.	 Proceeding	 from	 the	 idea	 of	 first-
mover	 advantage,	 the	 orthogonality	 thesis,	 and	 the	 instrumental	 convergence
thesis,	we	can	now	begin	 to	 see	 the	outlines	of	 an	 argument	 for	 fearing	 that	 a
plausible	 default	 outcome	 of	 the	 creation	 of	 machine	 superintelligence	 is
existential	catastrophe.

First,	we	discussed	how	 the	 initial	 superintelligence	might	 obtain	 a	 decisive
strategic	advantage.	This	superintelligence	would	then	be	in	a	position	to	form	a
singleton	 and	 to	 shape	 the	 future	 of	 Earth-originating	 intelligent	 life.	 What
happens	 from	 that	 point	 onward	 would	 depend	 on	 the	 superintelligence’s
motivations.

Second,	the	orthogonality	thesis	suggests	that	we	cannot	blithely	assume	that	a
superintelligence	 will	 necessarily	 share	 any	 of	 the	 final	 values	 stereotypically
associated	 with	 wisdom	 and	 intellectual	 development	 in	 humans—scientific
curiosity,	 benevolent	 concern	 for	 others,	 spiritual	 enlightenment	 and



contemplation,	 renunciation	 of	 material	 acquisitiveness,	 a	 taste	 for	 refined
culture	or	for	the	simple	pleasures	in	life,	humility	and	selflessness,	and	so	forth.
We	will	consider	 later	whether	 it	might	be	possible	 through	deliberate	effort	 to
construct	a	superintelligence	that	values	such	things,	or	to	build	one	that	values
human	 welfare,	 moral	 goodness,	 or	 any	 other	 complex	 purpose	 its	 designers
might	want	 it	 to	 serve.	But	 it	 is	no	 less	possible—and	 in	 fact	 technically	a	 lot
easier—to	 build	 a	 superintelligence	 that	 places	 final	 value	 on	 nothing	 but
calculating	 the	 decimal	 expansion	 of	 pi.	 This	 suggests	 that—absent	 a	 special
effort—the	first	superintelligence	may	have	some	such	random	or	reductionistic
final	goal.

Third,	 the	 instrumental	 convergence	 thesis	 entails	 that	 we	 cannot	 blithely
assume	that	a	superintelligence	with	the	final	goal	of	calculating	the	decimals	of
pi	(or	making	paperclips,	or	counting	grains	of	sand)	would	limit	its	activities	in
such	a	way	as	not	to	infringe	on	human	interests.	An	agent	with	such	a	final	goal
would	have	a	convergent	instrumental	reason,	in	many	situations,	to	acquire	an
unlimited	 amount	 of	 physical	 resources	 and,	 if	 possible,	 to	 eliminate	 potential
threats	 to	 itself	 and	 its	 goal	 system.	 Human	 beings	 might	 constitute	 potential
threats;	they	certainly	constitute	physical	resources.

Taken	together,	these	three	points	thus	indicate	that	the	first	superintelligence
may	 shape	 the	 future	 of	 Earth-originating	 life,	 could	 easily	 have	 non-
anthropomorphic	 final	 goals,	 and	 would	 likely	 have	 instrumental	 reasons	 to
pursue	 open-ended	 resource	 acquisition.	 If	 we	 now	 reflect	 that	 human	 beings
consist	 of	 useful	 resources	 (such	 as	 conveniently	 located	 atoms)	 and	 that	 we
depend	for	our	survival	and	 flourishing	on	many	more	 local	 resources,	we	can
see	 that	 the	 outcome	 could	 easily	 be	 one	 in	which	 humanity	 quickly	 becomes
extinct.1

There	 are	 some	 loose	 ends	 in	 this	 reasoning,	 and	 we	 shall	 be	 in	 a	 better
position	to	evaluate	it	after	we	have	cleared	up	several	more	surrounding	issues.
In	 particular,	 we	 need	 to	 examine	 more	 closely	 whether	 and	 how	 a	 project
developing	a	superintelligence	might	either	prevent	it	from	obtaining	a	decisive
strategic	advantage	or	shape	its	final	values	in	such	a	way	that	their	realization
would	also	involve	the	realization	of	a	satisfactory	range	of	human	values.

It	might	seem	incredible	 that	a	project	would	build	or	 release	an	AI	 into	 the
world	without	having	strong	grounds	for	trusting	that	the	system	will	not	cause
an	existential	catastrophe.	It	might	also	seem	incredible,	even	if	one	project	were



so	reckless,	that	wider	society	would	not	shut	it	down	before	it	(or	the	AI	it	was
building)	attains	a	decisive	strategic	advantage.	But	as	we	shall	see,	this	is	a	road
with	many	hazards.	Let	us	look	at	one	example	right	away.

The	treacherous	turn

	

With	 the	help	of	 the	concept	of	convergent	 instrumental	value,	we	can	see	 the
flaw	in	one	idea	for	how	to	ensure	superintelligence	safety.	The	idea	is	that	we
validate	the	safety	of	a	superintelligent	AI	empirically	by	observing	its	behavior
while	it	is	 in	a	controlled,	 limited	environment	(a	“sandbox”)	and	that	we	only
let	 the	 AI	 out	 of	 the	 box	 if	 we	 see	 it	 behaving	 in	 a	 friendly,	 cooperative,
responsible	manner.

The	flaw	in	this	idea	is	that	behaving	nicely	while	in	the	box	is	a	convergent
instrumental	 goal	 for	 friendly	 and	 unfriendly	 AIs	 alike.	 An	 unfriendly	 AI	 of
sufficient	intelligence	realizes	that	its	unfriendly	final	goals	will	be	best	realized
if	it	behaves	in	a	friendly	manner	initially,	so	that	it	will	be	let	out	of	the	box.	It
will	 only	 start	 behaving	 in	 a	way	 that	 reveals	 its	 unfriendly	nature	when	 it	 no
longer	matters	whether	we	find	out;	 that	 is,	when	 the	AI	 is	strong	enough	 that
human	opposition	is	ineffectual.

Consider	 also	 a	 related	 set	 of	 approaches	 that	 rely	 on	 regulating	 the	 rate	 of
intelligence	 gain	 in	 a	 seed	AI	 by	 subjecting	 it	 to	 various	 kinds	 of	 intelligence
tests	or	by	having	 the	AI	 report	 to	 its	programmers	on	 its	 rate	of	progress.	At
some	 point,	 an	 unfriendly	 AI	 may	 become	 smart	 enough	 to	 realize	 that	 it	 is
better	 off	 concealing	 some	 of	 its	 capability	 gains.	 It	 may	 underreport	 on	 its
progress	 and	 deliberately	 flunk	 some	 of	 the	 harder	 tests,	 in	 order	 to	 avoid
causing	 alarm	before	 it	 has	 grown	 strong	 enough	 to	 attain	 a	 decisive	 strategic
advantage.	The	programmers	may	try	to	guard	against	this	possibility	by	secretly
monitoring	 the	 AI’s	 source	 code	 and	 the	 internal	 workings	 of	 its	 mind;	 but	 a
smart-enough	AI	would	realize	that	it	might	be	under	surveillance	and	adjust	its
thinking	 accordingly.2	 The	 AI	 might	 find	 subtle	 ways	 of	 concealing	 its	 true
capabilities	 and	 its	 incriminating	 intent.3	 (Devising	 clever	 escape	 plans	might,
incidentally,	 also	 be	 a	 convergent	 strategy	 for	 many	 types	 of	 friendly	 AI,
especially	 as	 they	 mature	 and	 gain	 confidence	 in	 their	 own	 judgments	 and
capabilities.	 A	 system	 motivated	 to	 promote	 our	 interests	 might	 be	 making	 a
mistake	 if	 it	 allowed	 us	 to	 shut	 it	 down	 or	 to	 construct	 another,	 potentially



unfriendly	AI.)

We	 can	 thus	 perceive	 a	 general	 failure	 mode,	 wherein	 the	 good	 behavioral
track	record	of	a	system	in	its	juvenile	stages	fails	utterly	to	predict	its	behavior
at	a	more	mature	stage.	Now,	one	might	think	that	the	reasoning	described	above
is	 so	 obvious	 that	 no	 credible	 project	 to	 develop	 artificial	 general	 intelligence
could	possibly	overlook	it.	But	one	should	not	be	too	confident	that	this	is	so.

Consider	 the	 following	 scenario.	 Over	 the	 coming	 years	 and	 decades,	 AI
systems	become	gradually	more	 capable	 and	 as	 a	 consequence	 find	 increasing
real-world	application:	they	might	be	used	to	operate	trains,	cars,	industrial	and
household	robots,	and	autonomous	military	vehicles.	We	may	suppose	that	 this
automation	 for	 the	 most	 part	 has	 the	 desired	 effects,	 but	 that	 the	 success	 is
punctuated	 by	 occasional	 mishaps—a	 driverless	 truck	 crashes	 into	 oncoming
traffic,	 a	 military	 drone	 fires	 at	 innocent	 civilians.	 Investigations	 reveal	 the
incidents	to	have	been	caused	by	judgment	errors	by	the	controlling	AIs.	Public
debate	ensues.	Some	call	for	tighter	oversight	and	regulation,	others	emphasize
the	 need	 for	 research	 and	better-engineered	 systems—systems	 that	 are	 smarter
and	have	more	common	sense,	and	that	are	less	likely	to	make	tragic	mistakes.
Amidst	 the	 din	 can	 perhaps	 also	 be	 heard	 the	 shrill	 voices	 of	 doomsayers
predicting	many	kinds	of	 ill	 and	 impending	catastrophe.	Yet	 the	momentum	 is
very	 much	 with	 the	 growing	 AI	 and	 robotics	 industries.	 So	 development
continues,	 and	progress	 is	made.	As	 the	 automated	 navigation	 systems	of	 cars
become	smarter,	they	suffer	fewer	accidents;	and	as	military	robots	achieve	more
precise	 targeting,	 they	cause	 less	 collateral	damage.	A	broad	 lesson	 is	 inferred
from	these	observations	of	real-world	outcomes:	the	smarter	the	AI,	the	safer	it
is.	 It	 is	 a	 lesson	 based	 on	 science,	 data,	 and	 statistics,	 not	 armchair
philosophizing.	Against	this	backdrop,	some	group	of	researchers	is	beginning	to
achieve	 promising	 results	 in	 their	 work	 on	 developing	 general	 machine
intelligence.	 The	 researchers	 are	 carefully	 testing	 their	 seed	 AI	 in	 a	 sandbox
environment,	and	the	signs	are	all	good.	The	AI’s	behavior	inspires	confidence
—increasingly	so,	as	its	intelligence	is	gradually	increased.

At	this	point,	any	remaining	Cassandra	would	have	several	strikes	against	her:

	

i	A	history	of	alarmists	predicting	intolerable	harm	from	the	growing	capabilities	of
robotic	 systems	 and	 being	 repeatedly	 proven	 wrong.	 Automation	 has	 brought



many	benefits	and	has,	on	the	whole,	turned	out	safer	than	human	operation.

ii	A	 clear	 empirical	 trend:	 the	 smarter	 the	AI,	 the	 safer	 and	more	 reliable	 it	 has
been.	Surely	this	bodes	well	for	a	project	aiming	at	creating	machine	intelligence
more	 generally	 smart	 than	 any	 ever	 built	 before—what	 is	 more,	 machine
intelligence	that	can	improve	itself	so	that	it	will	become	even	more	reliable.

iii	 Large	 and	 growing	 industries	 with	 vested	 interests	 in	 robotics	 and	 machine
intelligence.	 These	 fields	 are	 widely	 seen	 as	 key	 to	 national	 economic
competitiveness	 and	 military	 security.	 Many	 prestigious	 scientists	 have	 built
their	 careers	 laying	 the	 groundwork	 for	 the	 present	 applications	 and	 the	more
advanced	systems	being	planned.

iv	 A	 promising	 new	 technique	 in	 artificial	 intelligence,	 which	 is	 tremendously
exciting	 to	 those	who	 have	 participated	 in	 or	 followed	 the	 research.	Although
safety	issues	and	ethics	are	debated,	the	outcome	is	preordained.	Too	much	has
been	 invested	 to	 pull	 back	 now.	 AI	 researchers	 have	 been	 working	 to	 get	 to
human-level	 artificial	 general	 intelligence	 for	 the	 better	 part	 of	 a	 century:	 of
course	there	is	no	real	prospect	that	they	will	now	suddenly	stop	and	throw	away
all	this	effort	just	when	it	finally	is	about	to	bear	fruit.

v	 The	 enactment	 of	 some	 safety	 rituals,	 whatever	 helps	 demonstrate	 that	 the
participants	 are	 ethical	 and	 responsible	 (but	 nothing	 that	 significantly	 impedes
the	forward	charge).

vi	A	 careful	 evaluation	 of	 seed	AI	 in	 a	 sandbox	 environment,	 showing	 that	 it	 is
behaving	 cooperatively	 and	 showing	 good	 judgment.	 After	 some	 further
adjustments,	the	test	results	are	as	good	as	they	could	be.	It	is	a	green	light	for
the	final	step	…

And	so	we	boldly	go—into	the	whirling	knives.

We	observe	here	how	it	could	be	 the	case	 that	when	dumb,	smarter	 is	safer;
yet	when	 smart,	 smarter	 is	more	 dangerous.	There	 is	 a	 kind	 of	 pivot	 point,	 at
which	 a	 strategy	 that	 has	 previously	 worked	 excellently	 suddenly	 starts	 to
backfire.	We	may	call	the	phenomenon	the	treacherous	turn.

The	 treacherous	 turn—While	 weak,	 an	 AI	 behaves	 cooperatively
(increasingly	so,	as	it	gets	smarter).	When	the	AI	gets	sufficiently	strong—
without	warning	or	 provocation—it	 strikes,	 forms	 a	 singleton,	 and	begins



directly	to	optimize	the	world	according	to	the	criteria	implied	by	its	final
values.

	
	

A	 treacherous	 turn	 can	 result	 from	 a	 strategic	 decision	 to	 play	 nice	 and	 build
strength	 while	 weak	 in	 order	 to	 strike	 later;	 but	 this	 model	 should	 not	 be
interpreted	too	narrowly.	For	example,	an	AI	might	not	play	nice	in	order	that	it
be	 allowed	 to	 survive	 and	 prosper.	 Instead,	 the	AI	might	 calculate	 that	 if	 it	 is
terminated,	 the	 programmers	 who	 built	 it	 will	 develop	 a	 new	 and	 somewhat
different	AI	architecture,	but	one	that	will	be	given	a	similar	utility	function.	In
this	case,	the	original	AI	may	be	indifferent	to	its	own	demise,	knowing	that	its
goals	will	continue	to	be	pursued	in	the	future.	It	might	even	choose	a	strategy	in
which	it	malfunctions	in	some	particularly	interesting	or	reassuring	way.	Though
this	might	cause	the	AI	to	be	terminated,	it	might	also	encourage	the	engineers
who	perform	the	postmortem	to	believe	 that	 they	have	gleaned	a	valuable	new
insight	 into	AI	dynamics—leading	them	to	place	more	 trust	 in	 the	next	system
they	design,	 and	 thus	 increasing	 the	 chance	 that	 the	now-defunct	 original	AI’s
goals	will	be	achieved.	Many	other	possible	strategic	considerations	might	also
influence	 an	 advanced	AI,	 and	 it	would	 be	 hubristic	 to	 suppose	 that	we	 could
anticipate	 all	 of	 them,	 especially	 for	 an	 AI	 that	 has	 attained	 the	 strategizing
superpower.

A	treacherous	turn	could	also	come	about	if	the	AI	discovers	an	unanticipated
way	of	 fulfilling	 its	 final	goal	as	 specified.	Suppose,	 for	example,	 that	an	AI’s
final	 goal	 is	 to	 “make	 the	 project’s	 sponsor	 happy.”	 Initially,	 the	 only	method
available	to	the	AI	to	achieve	this	outcome	is	by	behaving	in	ways	that	please	its
sponsor	in	something	like	the	intended	manner.	The	AI	gives	helpful	answers	to
questions;	it	exhibits	a	delightful	personality;	it	makes	money.	The	more	capable
the	AI	gets,	the	more	satisfying	its	performances	become,	and	everything	goeth
according	to	plan—until	the	AI	becomes	intelligent	enough	to	figure	out	that	it
can	realize	its	final	goal	more	fully	and	reliably	by	implanting	electrodes	into	the
pleasure	centers	of	its	sponsor’s	brain,	something	assured	to	delight	the	sponsor
immensely.4	 Of	 course,	 the	 sponsor	 might	 not	 have	 wanted	 to	 be	 pleased	 by
being	 turned	 into	 a	grinning	 idiot;	 but	 if	 this	 is	 the	 action	 that	will	maximally
realize	 the	AI’s	 final	goal,	 the	AI	will	 take	 it.	 If	 the	AI	already	has	a	decisive
strategic	advantage,	 then	any	attempt	 to	stop	 it	will	 fail.	 If	 the	AI	does	not	yet
have	 a	 decisive	 strategic	 advantage,	 then	 the	AI	might	 temporarily	 conceal	 its



canny	 new	 idea	 for	 how	 to	 instantiate	 its	 final	 goal	 until	 it	 has	 grown	 strong
enough	 that	 the	 sponsor	 and	 everybody	 else	will	 be	 unable	 to	 resist.	 In	 either
case,	we	get	a	treacherous	turn.

Malignant	failure	modes

	

A	project	to	develop	machine	superintelligence	might	fail	in	various	ways.	Many
of	 these	 are	 “benign”	 in	 the	 sense	 that	 they	 would	 not	 cause	 an	 existential
catastrophe.	For	example,	a	project	might	run	out	of	funding,	or	a	seed	AI	might
fail	 to	 extend	 its	 cognitive	 capacities	 sufficiently	 to	 reach	 superintelligence.
Benign	 failures	 are	bound	 to	occur	many	 times	between	now	and	 the	eventual
development	of	machine	superintelligence.

But	there	are	other	ways	of	failing	that	we	might	term	“malignant”	in	that	they
involve	 an	 existential	 catastrophe.	One	 feature	 of	 a	malignant	 failure	 is	 that	 it
eliminates	 the	 opportunity	 to	 try	 again.	 The	 number	 of	malignant	 failures	 that
will	occur	is	therefore	either	zero	or	one.	Another	feature	of	a	malignant	failure
is	 that	 it	 presupposes	 a	 great	 deal	 of	 success:	 only	 a	 project	 that	 got	 a	 great
number	 of	 things	 right	 could	 succeed	 in	 building	 a	 machine	 intelligence
powerful	 enough	 to	 pose	 a	 risk	 of	 malignant	 failure.	 When	 a	 weak	 system
malfunctions,	 the	 fallout	 is	 limited.	 However,	 if	 a	 system	 that	 has	 a	 decisive
strategic	advantage	misbehaves,	or	if	a	misbehaving	system	is	strong	enough	to
gain	 such	 an	 advantage,	 the	 damage	 can	 easily	 amount	 to	 an	 existential
catastrophe—a	 terminal	 and	 global	 destruction	 of	 humanity’s	 axiological
potential;	that	is	to	say,	a	future	that	is	mostly	void	of	whatever	we	have	reason
to	value.

Let	us	look	at	some	possible	malignant	failure	modes.

Perverse	instantiation

	

We	 have	 already	 encountered	 the	 idea	 of	 perverse	 instantiation:	 a
superintelligence	discovering	some	way	of	satisfying	the	criteria	of	its	final	goal
that	 violates	 the	 intentions	 of	 the	 programmers	 who	 defined	 the	 goal.	 Some
examples:



Final	goal:	“Make	us	smile”
Perverse	 instantiation:	Paralyze	 human	 facial	 musculatures	 into	 constant
beaming	smiles

	
	

The	 perverse	 instantiation—manipulating	 facial	 nerves—realizes	 the	 final	 goal
to	 a	 greater	 degree	 than	 the	methods	we	would	 normally	 use,	 and	 is	 therefore
preferred	by	the	AI.	One	might	try	to	avoid	this	undesirable	outcome	by	adding	a
stipulation	to	the	final	goal	to	rule	it	out:

Final	 goal:	 “Make	 us	 smile	 without	 directly	 interfering	 with	 our	 facial
muscles”
Perverse	instantiation:	Stimulate	 the	part	of	 the	motor	cortex	 that	controls
our	 facial	 musculature	 in	 such	 a	 way	 as	 to	 produce	 constant	 beaming
smiles

	
	

Defining	a	final	goal	in	terms	of	human	expressions	of	satisfaction	or	approval
does	not	seem	promising.	Let	us	bypass	the	behaviorism	and	specify	a	final	goal
that	 refers	 directly	 to	 a	 positive	 phenomenal	 state,	 such	 as	 happiness	 or
subjective	well-being.	This	suggestion	requires	that	the	programmers	are	able	to
define	a	computational	representation	of	the	concept	of	happiness	in	the	seed	AI.
This	is	itself	a	difficult	problem,	but	we	set	it	to	one	side	for	now	(we	will	return
to	it	in	Chapter	12).	Let	us	suppose	that	the	programmers	can	somehow	get	the
AI	to	have	the	goal	of	making	us	happy.	We	then	get:

Final	goal:	“Make	us	happy”
Perverse	 instantiation:	 Implant	 electrodes	 into	 the	 pleasure	 centers	 of	 our
brains

	
	

The	 perverse	 instantiations	 we	mention	 are	 only	 meant	 as	 illustrations.	 There
may	 be	 other	ways	 of	 perversely	 instantiating	 the	 stated	 final	 goal,	 ways	 that
enable	 a	 greater	 degree	 of	 realization	 of	 the	 goal	 and	 which	 are	 therefore



preferred	(by	the	agent	whose	final	goals	they	are—not	by	the	programmers	who
gave	the	agent	these	goals).	For	example,	if	the	goal	is	to	maximize	our	pleasure,
then	the	electrode	method	is	relatively	inefficient.	A	more	plausible	way	would
start	with	 the	 superintelligence	 “uploading”	 our	minds	 to	 a	 computer	 (through
high-fidelity	 brain	 emulation).	 The	 AI	 could	 then	 administer	 the	 digital
equivalent	 of	 a	 drug	 to	 make	 us	 ecstatically	 happy	 and	 record	 a	 one-minute
episode	of	the	resulting	experience.	It	could	then	put	this	bliss	loop	on	perpetual
repeat	 and	 run	 it	 on	 fast	 computers.	 Provided	 that	 the	 resulting	 digital	 minds
counted	as	“us,”	this	outcome	would	give	us	much	more	pleasure	than	electrodes
implanted	in	biological	brains,	and	would	therefore	be	preferred	by	an	AI	with
the	stated	final	goal.

“But	wait!	This	 is	not	what	we	meant!	Surely	 if	 the	AI	 is	 superintelligent,	 it
must	understand	that	when	we	asked	it	to	make	us	happy,	we	didn’t	mean	that	it
should	reduce	us	to	a	perpetually	repeating	recording	of	a	drugged-out	digitized
mental	 episode!”—The	 AI	 may	 indeed	 understand	 that	 this	 is	 not	 what	 we
meant.	 However,	 its	 final	 goal	 is	 to	 make	 us	 happy,	 not	 to	 do	 what	 the
programmers	 meant	 when	 they	 wrote	 the	 code	 that	 represents	 this	 goal.
Therefore,	 the	 AI	 will	 care	 about	 what	 we	 meant	 only	 instrumentally.	 For
instance,	 the	 AI	 might	 place	 an	 instrumental	 value	 on	 finding	 out	 what	 the
programmers	 meant	 so	 that	 it	 can	 pretend—until	 it	 gets	 a	 decisive	 strategic
advantage—that	it	cares	about	what	the	programmers	meant	rather	than	about	its
actual	 final	 goal.	 This	will	 help	 the	AI	 realize	 its	 final	 goal	 by	making	 it	 less
likely	 that	 the	 programmers	 will	 shut	 it	 down	 or	 change	 its	 goal	 before	 it	 is
strong	enough	to	thwart	any	such	interference.

Perhaps	it	will	be	suggested	that	the	problem	is	that	the	AI	has	no	conscience.
We	humans	are	sometimes	saved	 from	wrongdoing	by	 the	anticipation	 that	we
would	feel	guilty	afterwards	if	we	lapsed.	Maybe	what	the	AI	needs,	then,	is	the
capacity	to	feel	guilt?

Final	goal:	“Act	so	as	to	avoid	the	pangs	of	bad	conscience”
Perverse	 instantiation:	Extirpate	 the	 cognitive	 module	 that	 produces	 guilt
feelings

	
	

Both	the	observation	that	we	might	want	the	AI	to	do	“what	we	meant”	and	the
idea	that	we	might	want	to	endow	the	AI	with	some	kind	of	moral	sense	deserve



to	be	explored	further.	The	final	goals	mentioned	above	would	lead	to	perverse
instantiations;	but	 there	may	be	other	ways	of	developing	 the	underlying	 ideas
that	have	more	promise.	We	will	return	to	this	in	Chapter	13.

Let	 us	 consider	 one	 more	 example	 of	 a	 final	 goal	 that	 leads	 to	 a	 perverse
instantiation.	 This	 goal	 has	 the	 advantage	 of	 being	 easy	 to	 specify	 in	 code:
reinforcement-learning	 algorithms	 are	 routinely	 used	 to	 solve	 various	machine
learning	problems.

Final	 goal:	“Maximize	 the	 time-discounted	 integral	 of	 your	 future	 reward
signal”
Perverse	 instantiation:	 Short-circuit	 the	 reward	 pathway	 and	 clamp	 the
reward	signal	to	its	maximal	strength

	
	

The	idea	behind	this	proposal	is	that	if	the	AI	is	motivated	to	seek	reward,	then
one	could	get	it	to	behave	desirably	by	linking	reward	to	appropriate	action.	The
proposal	fails	when	the	AI	obtains	a	decisive	strategic	advantage,	at	which	point
the	action	that	maximizes	reward	is	no	longer	one	that	pleases	the	trainer	but	one
that	 involves	 seizing	 control	 of	 the	 reward	 mechanism.	 We	 can	 call	 this
phenomenon	 wireheading.5	 In	 general,	 while	 an	 animal	 or	 a	 human	 can	 be
motivated	 to	perform	various	external	actions	 in	order	 to	achieve	some	desired
inner	mental	 state,	 a	 digital	mind	 that	 has	 full	 control	 of	 its	 internal	 state	 can
short-circuit	 such	 a	motivational	 regime	 by	 directly	 changing	 its	 internal	 state
into	 the	 desired	 configuration:	 the	 external	 actions	 and	 conditions	 that	 were
previously	 necessary	 as	 means	 become	 superfluous	 when	 the	 AI	 becomes
intelligent	 and	 capable	 enough	 to	 achieve	 the	 end	more	 directly	 (more	 on	 this
shortly).6

These	 examples	 of	 perverse	 instantiation	 show	 that	 many	 final	 goals	 that
might	 at	 first	 glance	 seem	 safe	 and	 sensible	 turn	 out,	 on	 closer	 inspection,	 to
have	radically	unintended	consequences.	If	a	superintelligence	with	one	of	these
final	goals	obtains	a	decisive	strategic	advantage,	it	is	game	over	for	humanity.

Suppose	now	that	somebody	proposes	a	different	final	goal,	one	not	included
in	 our	 list	 above.	 Perhaps	 it	 is	 not	 immediately	 obvious	 how	 it	 could	 have	 a
perverse	 instantiation.	 But	 we	 should	 not	 be	 too	 quick	 to	 clap	 our	 hands	 and
declare	 victory.	Rather,	we	 should	worry	 that	 the	 goal	 specification	 does	 have



some	perverse	instantiation	and	that	we	need	to	think	harder	in	order	to	find	it.
Even	 if	 after	 thinking	 as	 hard	 as	 we	 can	 we	 fail	 to	 discover	 any	 way	 of
perversely	 instantiating	 the	 proposed	 goal,	 we	 should	 remain	 concerned	 that
maybe	 a	 superintelligence	will	 find	 a	way	where	 none	 is	 apparent	 to	 us.	 It	 is,
after	all,	far	shrewder	than	we	are.

Infrastructure	profusion

	

One	 might	 think	 that	 the	 last	 of	 the	 abovementioned	 perverse	 instantiations,
wireheading,	is	a	benign	failure	mode:	that	the	AI	would	“turn	on,	tune	in,	drop
out,”	 maxing	 out	 its	 reward	 signal	 and	 losing	 interest	 in	 the	 external	 world,
rather	like	a	heroin	addict.	But	this	is	not	necessarily	so,	and	we	already	hinted	at
the	reason	in	Chapter	7.	Even	a	 junkie	 is	motivated	 to	 take	actions	 to	ensure	a
continued	supply	of	his	drug.	The	wireheaded	AI,	likewise,	would	be	motivated
to	 take	 actions	 to	 maximize	 the	 expectation	 of	 its	 (time-discounted)	 future
reward	stream.	Depending	on	exactly	how	the	reward	signal	 is	defined,	 the	AI
may	not	even	need	to	sacrifice	any	significant	amount	of	its	time,	intelligence,	or
productivity	to	indulge	its	craving	to	the	fullest,	leaving	the	bulk	of	its	capacities
free	to	be	deployed	for	purposes	other	than	the	immediate	registration	of	reward.
What	other	purposes?	The	only	thing	of	final	value	to	the	AI,	by	assumption,	is
its	 reward	 signal.	 All	 available	 resources	 should	 therefore	 be	 devoted	 to
increasing	the	volume	and	duration	of	the	reward	signal	or	to	reducing	the	risk	of
a	 future	 disruption.	 So	 long	 as	 the	 AI	 can	 think	 of	 some	 use	 for	 additional
resources	 that	 will	 have	 a	 nonzero	 positive	 effect	 on	 these	 parameters,	 it	 will
have	 an	 instrumental	 reason	 to	 use	 those	 resources.	There	 could,	 for	 example,
always	be	use	for	an	extra	backup	system	to	provide	an	extra	layer	of	defense.
And	even	if	the	AI	could	not	think	of	any	further	way	of	directly	reducing	risks
to	 the	 maximization	 of	 its	 future	 reward	 stream,	 it	 could	 always	 devote
additional	 resources	 to	 expanding	 its	 computational	 hardware,	 so	 that	 it	 could
search	more	effectively	for	new	risk	mitigation	ideas.

The	upshot	is	that	even	an	apparently	self-limiting	goal,	such	as	wireheading,
entails	 a	 policy	 of	 unlimited	 expansion	 and	 resource	 acquisition	 in	 a	 utility-
maximizing	 agent	 that	 enjoys	 a	 decisive	 strategic	 advantage.7	 This	 case	 of	 a
wireheading	 AI	 exemplifies	 the	 malignant	 failure	 mode	 of	 infrastructure
profusion,	a	phenomenon	where	an	agent	transforms	large	parts	of	the	reachable
universe	 into	 infrastructure	 in	 the	 service	of	 some	goal,	with	 the	 side	effect	of



preventing	the	realization	of	humanity’s	axiological	potential.

Infrastructure	 profusion	 can	 result	 from	 final	 goals	 that	 would	 have	 been
perfectly	innocuous	if	they	had	been	pursued	as	limited	objectives.	Consider	the
following	two	examples:

	

Riemann	hypothesis	 catastrophe.	 An	AI,	 given	 the	 final	 goal	 of	 evaluating	 the
Riemann	 hypothesis,	 pursues	 this	 goal	 by	 transforming	 the	 Solar	 System	 into
“computronium”	 (physical	 resources	 arranged	 in	 a	 way	 that	 is	 optimized	 for
computation)—including	the	atoms	in	the	bodies	of	whomever	once	cared	about
the	answer.8

Paperclip	AI.	An	AI,	 designed	 to	manage	 production	 in	 a	 factory,	 is	 given	 the
final	 goal	 of	 maximizing	 the	 manufacture	 of	 paperclips,	 and	 proceeds	 by
converting	 first	 the	Earth	and	 then	 increasingly	 large	chunks	of	 the	observable
universe	into	paperclips.

In	the	first	example,	the	proof	or	disproof	of	the	Riemann	hypothesis	that	the	AI
produces	is	the	intended	outcome	and	is	in	itself	harmless;	the	harm	comes	from
the	 hardware	 and	 infrastructure	 created	 to	 achieve	 this	 result.	 In	 the	 second
example,	 some	 of	 the	 paperclips	 produced	 would	 be	 part	 of	 the	 intended
outcome;	the	harm	would	come	either	from	the	factories	created	to	produce	the
paperclips	 (infrastructure	profusion)	or	 from	 the	excess	of	paperclips	 (perverse
instantiation).

One	might	 think	 that	 the	 risk	of	 a	malignant	 infrastructure	profusion	 failure
arises	only	if	the	AI	has	been	given	some	clearly	open-ended	final	goal,	such	as
to	manufacture	as	many	paperclips	as	possible.	 It	 is	easy	to	see	how	this	gives
the	 superintelligent	 AI	 an	 insatiable	 appetite	 for	 matter	 and	 energy,	 since
additional	resources	can	always	be	turned	into	more	paperclips.	But	suppose	that
the	 goal	 is	 instead	 to	 make	 at	 least	 one	 million	 paperclips	 (meeting	 suitable
design	specifications)	rather	than	to	make	as	many	as	possible.	One	would	like
to	 think	 that	an	AI	with	such	a	goal	would	build	one	 factory,	use	 it	 to	make	a
million	paperclips,	and	then	halt.	Yet	this	may	not	be	what	would	happen.

Unless	the	AI’s	motivation	system	is	of	a	special	kind,	or	there	are	additional
elements	 in	 its	 final	 goal	 that	 penalize	 strategies	 that	 have	 excessively	 wide-
ranging	impacts	on	the	world,	there	is	no	reason	for	the	AI	to	cease	activity	upon



achieving	 its	 goal.	 On	 the	 contrary:	 if	 the	 AI	 is	 a	 sensible	 Bayesian	 agent,	 it
would	never	assign	exactly	zero	probability	to	the	hypothesis	that	it	has	not	yet
achieved	 its	 goal—this,	 after	 all,	 being	 an	 empirical	 hypothesis	 against	which
the	 AI	 can	 have	 only	 uncertain	 perceptual	 evidence.	 The	 AI	 should	 therefore
continue	 to	 make	 paperclips	 in	 order	 to	 reduce	 the	 (perhaps	 astronomically
small)	probability	 that	 it	has	somehow	still	 failed	 to	make	at	 least	a	million	of
them,	all	appearances	notwithstanding.	There	is	nothing	to	be	lost	by	continuing
paperclip	production	and	 there	 is	always	at	 least	 some	microscopic	probability
increment	of	achieving	its	final	goal	to	be	gained.

Now	it	might	be	suggested	that	the	remedy	here	is	obvious.	(But	how	obvious
was	 it	 before	 it	 was	 pointed	 out	 that	 there	 was	 a	 problem	 here	 in	 need	 of
remedying?)	Namely,	 if	we	want	 the	AI	 to	make	 some	paperclips	 for	 us,	 then
instead	of	giving	it	the	final	goal	of	making	as	many	paperclips	as	possible,	or	to
make	 at	 least	 some	 number	 of	 paperclips,	 we	 should	 give	 it	 the	 final	 goal	 of
making	 some	 specific	number	of	paperclips—for	 example,	exactly	 one	million
paperclips—so	 that	going	beyond	 this	number	would	be	counterproductive	 for
the	AI.	Yet	this,	too,	would	result	in	a	terminal	catastrophe.	In	this	case,	the	AI
would	not	produce	additional	paperclips	once	it	had	reached	one	million,	since
that	would	prevent	the	realization	of	its	final	goal.	But	there	are	other	actions	the
superintelligent	 AI	 could	 take	 that	 would	 increase	 the	 probability	 of	 its	 goal
being	achieved.	It	could,	for	instance,	count	the	paperclips	it	has	made,	to	reduce
the	risk	that	it	has	made	too	few.	After	it	has	counted	them,	it	could	count	them
again.	It	could	inspect	each	one,	over	and	over,	to	reduce	the	risk	that	any	of	the
paperclips	 fail	 to	 meet	 the	 design	 specifications.	 It	 could	 build	 an	 unlimited
amount	 of	 computronium	 in	 an	 effort	 to	 clarify	 its	 thinking,	 in	 the	 hope	 of
reducing	the	risk	that	it	has	overlooked	some	obscure	way	in	which	it	might	have
somehow	failed	to	achieve	its	goal.	Since	the	AI	may	always	assign	a	nonzero
probability	 to	 having	merely	 hallucinated	making	 the	million	 paperclips,	 or	 to
having	false	memories,	it	would	quite	possibly	always	assign	a	higher	expected
utility	 to	 continued	 action—and	 continued	 infrastructure	 production—than	 to
halting.

The	claim	here	is	not	that	there	is	no	possible	way	to	avoid	this	failure	mode.
We	will	 explore	 some	potential	 solutions	 in	 later	pages.	The	claim	 is	 that	 it	 is
much	 easier	 to	 convince	 oneself	 that	 one	 has	 found	 a	 solution	 than	 it	 is	 to
actually	find	a	solution.	This	should	make	us	extremely	wary.	We	may	propose	a
specification	of	a	final	goal	that	seems	sensible	and	that	avoids	the	problems	that
have	been	pointed	out	so	far,	yet	which	upon	further	consideration—by	human



or	superhuman	intelligence—turns	out	to	lead	to	either	perverse	instantiation	or
infrastructure	profusion,	and	hence	to	existential	catastrophe,	when	embedded	in
a	superintelligent	agent	able	to	attain	a	decisive	strategic	advantage.

Before	we	end	 this	 subsection,	 let	 us	 consider	one	more	variation.	We	have
been	 assuming	 the	 case	 of	 a	 superintelligence	 that	 is	 seeking	 to	maximize	 its
expected	utility,	where	the	utility	function	expresses	its	final	goal.	We	have	seen
that	this	tends	to	lead	to	infrastructure	profusion.	Might	we	avoid	this	malignant
outcome	if	instead	of	a	maximizing	agent	we	build	a	satisficing	agent,	one	that
simply	 seeks	 to	 achieve	 an	 outcome	 that	 is	 “good	 enough”	 according	 to	 some
criterion,	rather	than	an	outcome	that	is	as	good	as	possible?

There	are	at	least	two	different	ways	to	formalize	this	idea.	The	first	would	be
to	make	the	final	goal	itself	have	a	satisficing	character.	For	example,	instead	of
giving	 the	 AI	 the	 final	 goal	 of	 making	 as	 many	 paperclips	 as	 possible,	 or	 of
making	exactly	one	million	paperclips,	we	might	give	the	AI	the	goal	of	making
between	999,000	and	1,001,000	paperclips.	The	utility	 function	defined	by	 the
final	goal	would	be	 indifferent	between	outcomes	 in	 this	 range;	and	as	 long	as
the	AI	 is	 sure	 it	has	hit	 this	wide	 target,	 it	would	see	no	 reason	 to	continue	 to
produce	infrastructure.	But	this	method	fails	in	the	same	way	as	before:	the	AI,	if
reasonable,	never	assigns	exactly	zero	probability	to	it	having	failed	to	achieve
its	 goal;	 therefore	 the	 expected	 utility	 of	 continuing	 activity	 (e.g.	 by	 counting
and	 recounting	 the	 paperclips)	 is	 greater	 than	 the	 expected	 utility	 of	 halting.
Thus,	a	malignant	infrastructure	profusion	can	result.

Another	way	of	developing	the	satisficing	idea	is	by	modifying	not	 the	final
goal	 but	 the	 decision	 procedure	 that	 the	 AI	 uses	 to	 select	 plans	 and	 actions.
Instead	 of	 searching	 for	 an	 optimal	 plan,	 the	AI	 could	 be	 constructed	 to	 stop
looking	as	 soon	as	 it	 found	a	plan	 that	 it	 judged	gave	a	probability	of	 success
exceeding	a	certain	threshold,	say	95%.	Hopefully,	the	AI	could	achieve	a	95%
probability	 of	 having	manufactured	 one	million	 paperclips	without	 needing	 to
turn	 the	 entire	 galaxy	 into	 infrastructure	 in	 the	 process.	 But	 this	 way	 of
implementing	the	satisficing	idea	fails	for	another	reason:	there	is	no	guarantee
that	the	AI	would	select	some	humanly	intuitive	and	sensible	way	of	achieving	a
95%	chance	of	having	manufactured	a	million	paperclips,	such	as	by	building	a
single	 paperclip	 factory.	 Suppose	 that	 the	 first	 solution	 that	 pops	 into	 the	AI’s
mind	 for	 how	 to	 achieve	 a	 95%	 probability	 of	 achieving	 its	 final	 goal	 is	 to
implement	 the	 probability-maximizing	 plan	 for	 achieving	 the	 goal.	 Having
thought	of	this	solution,	and	having	correctly	judged	that	it	meets	the	satisficing



criterion	 of	 giving	 at	 least	 95%	 probability	 to	 successfully	manufacturing	 one
million	paperclips,	 the	AI	would	 then	have	no	reason	to	continue	 to	search	for
alternative	ways	of	achieving	the	goal.	Infrastructure	profusion	would	result,	just
as	before.

Perhaps	 there	 are	better	ways	of	building	a	 satisficing	agent,	 but	 let	 us	 take
heed:	plans	that	appear	natural	and	intuitive	to	us	humans	need	not	so	appear	to	a
superintelligence	with	a	decisive	strategic	advantage,	and	vice	versa.

Mind	crime

	

Another	 failure	 mode	 for	 a	 project,	 especially	 a	 project	 whose	 interests
incorporate	moral	considerations,	is	what	we	might	refer	to	as	mind	crime.	This
is	similar	to	infrastructure	profusion	in	that	it	concerns	a	potential	side	effect	of
actions	undertaken	by	 the	AI	 for	 instrumental	 reasons.	But	 in	mind	 crime,	 the
side	effect	is	not	external	to	the	AI;	rather,	it	concerns	what	happens	within	the
AI	itself	(or	within	the	computational	processes	it	generates).	This	failure	mode
deserves	its	own	designation	because	it	is	easy	to	overlook	yet	potentially	deeply
problematic.

Normally,	we	do	not	regard	what	is	going	on	inside	a	computer	as	having	any
moral	 significance	 except	 insofar	 as	 it	 affects	 things	 outside.	 But	 a	 machine
superintelligence	 could	 create	 internal	 processes	 that	 have	 moral	 status.	 For
example,	a	very	detailed	simulation	of	some	actual	or	hypothetical	human	mind
might	 be	 conscious	 and	 in	 many	 ways	 comparable	 to	 an	 emulation.	 One	 can
imagine	scenarios	in	which	an	AI	creates	trillions	of	such	conscious	simulations,
perhaps	 in	 order	 to	 improve	 its	 understanding	 of	 human	 psychology	 and
sociology.	 These	 simulations	 might	 be	 placed	 in	 simulated	 environments	 and
subjected	to	various	stimuli,	and	their	reactions	studied.	Once	their	informational
usefulness	 has	 been	 exhausted,	 they	might	 be	 destroyed	 (much	 as	 lab	 rats	 are
routinely	sacrificed	by	human	scientists	at	the	end	of	an	experiment).

If	such	practices	were	applied	to	beings	that	have	high	moral	status—such	as
simulated	humans	or	many	other	types	of	sentient	mind—the	outcome	might	be
equivalent	to	genocide	and	thus	extremely	morally	problematic.	The	number	of
victims,	moreover,	might	be	orders	of	magnitude	larger	than	in	any	genocide	in
history.



The	claim	here	is	not	that	creating	sentient	simulations	is	necessarily	morally
wrong	in	all	situations.	Much	would	depend	on	the	conditions	under	which	these
beings	 would	 live,	 in	 particular	 the	 hedonic	 quality	 of	 their	 experience	 but
possibly	on	many	other	factors	as	well.	Developing	an	ethics	for	these	matters	is
a	task	outside	the	scope	of	this	book.	It	is	clear,	however,	that	there	is	at	least	the
potential	 for	 a	 vast	 amount	 of	 death	 and	 suffering	 among	 simulated	 or	 digital
minds,	and,	a	fortiori,	the	potential	for	morally	catastrophic	outcomes.9

There	might	also	be	other	instrumental	reasons,	aside	from	epistemic	ones,	for
a	machine	superintelligence	 to	 run	computations	 that	 instantiate	sentient	minds
or	 that	 otherwise	 infract	 moral	 norms.	 A	 superintelligence	 might	 threaten	 to
mistreat,	 or	 commit	 to	 reward,	 sentient	 simulations	 in	 order	 to	 blackmail	 or
incentivize	 various	 external	 agents;	 or	 it	 might	 create	 simulations	 in	 order	 to
induce	indexical	uncertainty	in	outside	observers.10

	

This	 inventory	 is	 incomplete.	 We	 will	 encounter	 additional	 malignant	 failure
modes	in	later	chapters.	But	we	have	seen	enough	to	conclude	that	scenarios	in
which	 some	machine	 intelligence	 gets	 a	 decisive	 strategic	 advantage	 are	 to	 be
viewed	with	grave	concern.



CHAPTER	9
The	control	problem

	

If	we	are	threatened	with	existential	catastrophe	as	the	default	outcome	of
an	intelligence	explosion,	our	thinking	must	immediately	turn	to	the	search
for	countermeasures.	Is	there	some	way	to	avoid	the	default	outcome?	Is	it
possible	 to	 engineer	 a	 controlled	 detonation?	 In	 this	 chapter	 we	 begin	 to
analyze	the	control	problem,	the	unique	principal–agent	problem	that	arises
with	the	creation	of	an	artificial	superintelligent	agent.	We	distinguish	two
broad	classes	of	potential	methods	for	addressing	this	problem—capability
control	 and	 motivation	 selection—and	 we	 examine	 several	 specific
techniques	 within	 each	 class.	We	 also	 allude	 to	 the	 esoteric	 possibility	 of
“anthropic	capture.”

Two	agency	problems

	

If	we	suspect	that	the	default	outcome	of	an	intelligence	explosion	is	existential
catastrophe,	our	thinking	must	immediately	turn	to	whether,	and	if	so	how,	this
default	 outcome	 can	 be	 avoided.	 Is	 it	 possible	 to	 achieve	 a	 “controlled
detonation”?	 Could	 we	 engineer	 the	 initial	 conditions	 of	 an	 intelligence
explosion	so	as	to	achieve	a	specific	desired	outcome,	or	at	least	to	ensure	that
the	 result	 lies	 somewhere	 in	 the	 class	 of	 broadly	 acceptable	 outcomes?	More
specifically:	 how	 can	 the	 sponsor	 of	 a	 project	 that	 aims	 to	 develop
superintelligence	 ensure	 that	 the	 project,	 if	 successful,	 produces	 a
superintelligence	 that	 would	 realize	 the	 sponsor’s	 goals?	 We	 can	 divide	 this
control	 problem	 into	 two	 parts.	 One	 part	 is	 generic,	 the	 other	 unique	 to	 the
present	context.

This	 first	part—what	we	 shall	 call	 the	 first	 principal–agent	 problem—arises
whenever	some	human	entity	(“the	principal”)	appoints	another	(“the	agent”)	to
act	 in	 the	 former’s	 interest.	This	 type	of	 agency	problem	has	been	 extensively
studied	by	economists.1	It	becomes	relevant	to	our	present	concern	if	the	people



creating	 an	 AI	 are	 distinct	 from	 the	 people	 commissioning	 its	 creation.	 The
project’s	 owner	 or	 sponsor	 (which	 could	 be	 anything	 ranging	 from	 a	 single
individual	 to	 humanity	 as	 a	 whole)	 might	 then	 worry	 that	 the	 scientists	 and
programmers	 implementing	 the	 project	 will	 not	 act	 in	 the	 sponsor’s	 best
interest.2	Although	this	type	of	agency	problem	could	pose	significant	challenges
to	a	project	sponsor,	it	is	not	a	problem	unique	to	intelligence	amplification	or	AI
projects.	 Principal–agent	 problems	 of	 this	 sort	 are	 ubiquitous	 in	 human
economic	 and	 political	 interactions,	 and	 there	 are	many	ways	 of	 dealing	with
them.	For	instance,	the	risk	that	a	disloyal	employee	will	sabotage	or	subvert	the
project	could	be	minimized	through	careful	background	checks	of	key	personnel,
the	 use	 of	 a	 good	 version-control	 system	 for	 software	 projects,	 and	 intensive
oversight	 from	 multiple	 independent	 monitors	 and	 auditors.	 Of	 course,	 such
safeguards	 come	 at	 a	 cost—they	 expand	 staffing	 needs,	 complicate	 personnel
selection,	 hinder	 creativity,	 and	 stifle	 independent	 and	 critical	 thought,	 all	 of
which	 could	 reduce	 the	 pace	 of	 progress.	 These	 costs	 could	 be	 significant,
especially	for	projects	that	have	tight	budgets,	or	that	perceive	themselves	to	be
in	a	close	race	in	a	winner-takes-all	competition.	In	such	situations,	projects	may
skimp	 on	 procedural	 safeguards,	 creating	 possibilities	 for	 potentially
catastrophic	principal–agent	failures	of	the	first	type.

The	 other	 part	 of	 the	 control	 problem	 is	more	 specific	 to	 the	 context	 of	 an
intelligence	explosion.	This	is	the	problem	that	a	project	faces	when	it	seeks	to
ensure	 that	 the	 superintelligence	 it	 is	 building	 will	 not	 harm	 the	 project’s
interests.	 This	 part,	 too,	 can	 be	 thought	 of	 as	 a	 principal–agent	 problem—the
second	 principal–agent	 problem.	 In	 this	 case,	 the	 agent	 is	 not	 a	 human	 agent
operating	 on	 behalf	 of	 a	 human	 principal.	 Instead,	 the	 agent	 is	 the
superintelligent	 system.	 Whereas	 the	 first	 principal–agent	 problem	 occurs
mainly	in	the	development	phase,	the	second	agency	problem	threatens	to	cause
trouble	mainly	in	the	superintelligence’s	operational	phase.

Exhibit	1	Two	agency	problems

The	first	principal–agent	problem

•	Human	v.	Human	(Sponsor	→	Developer)

•	Occurs	mainly	in	developmental	phase

•	Standard	management	techniques	apply



The	second	principal–agent	problem	(“the	control	problem”)

•	Human	v.	Superintelligence	(Project	→	System)

•	Occurs	mainly	in	operational	(and	bootstrap)	phase

•	New	techniques	needed

This	 second	 agency	 problem	 poses	 an	 unprecedented	 challenge.	 Solving	 it
will	require	new	techniques.	We	have	already	considered	some	of	the	difficulties
involved.	We	saw,	in	particular,	that	the	treacherous	turn	syndrome	vitiates	what
might	otherwise	have	seemed	like	a	promising	set	of	methods,	ones	that	rely	on
observing	 an	AI’s	 behavior	 in	 its	 developmental	 phase	 and	 allowing	 the	AI	 to
graduate	 from	a	 secure	environment	once	 it	 has	 accumulated	a	 track	 record	of
taking	appropriate	actions.	Other	 technologies	can	often	be	 safety-tested	 in	 the
laboratory	 or	 in	 small	 field	 studies,	 and	 then	 rolled	 out	 gradually	 with	 a
possibility	of	halting	deployment	if	unexpected	troubles	arise.	Their	performance
in	 preliminary	 trials	 helps	 us	 make	 reasonable	 inferences	 about	 their	 future
reliability.	Such	behavioral	methods	are	defeated	in	the	case	of	superintelligence
because	of	the	strategic	planning	ability	of	general	intelligence.3

Since	the	behavioral	approach	is	unavailing,	we	must	look	for	alternatives.	We
can	divide	potential	 control	methods	 into	 two	broad	classes:	capability	control
methods,	which	aim	to	control	what	the	superintelligence	can	do;	and	motivation
selection	 methods,	 which	 aim	 to	 control	 what	 it	 wants	 to	 do.	 Some	 of	 the
methods	are	compatible	while	others	 represent	mutually	exclusive	alternatives.
In	this	chapter	we	canvass	the	main	options.	(In	the	next	four	chapters,	we	will
explore	some	of	the	key	issues	at	greater	depth.)

It	 is	 important	 to	 realize	 that	 some	 control	 method	 (or	 combination	 of
methods)	must	 be	 implemented	before	 the	 system	 becomes	 superintelligent.	 It
cannot	be	done	after	the	system	has	obtained	a	decisive	strategic	advantage.	The
need	 to	 solve	 the	 control	 problem	 in	 advance—and	 to	 implement	 the	 solution
successfully	in	the	very	first	system	to	attain	superintelligence—is	part	of	what
makes	achieving	a	controlled	detonation	such	a	daunting	challenge.

Capability	control	methods

	



Capability	 control	 methods	 seek	 to	 prevent	 undesirable	 outcomes	 by	 limiting
what	 the	 superintelligence	 can	 do.	 This	 might	 involve	 placing	 the
superintelligence	in	an	environment	in	which	it	is	unable	to	cause	harm	(boxing
methods)	or	 in	which	 there	are	strongly	convergent	 instrumental	 reasons	not	 to
engage	 in	harmful	behavior	 (incentive	methods).	 It	might	 also	 involve	 limiting
the	internal	capacities	of	the	superintelligence	(stunting).	In	addition,	capability
control	methods	might	 involve	 the	 use	 of	mechanisms	 to	 automatically	 detect
and	 react	 to	 various	 kinds	 of	 containment	 failure	 or	 attempted	 transgression
(tripwires).

Boxing	methods

	

Boxing	methods	can	be	subdivided	into	physical	and	informational	containment
methods.

Physical	containment	aims	to	confine	the	system	to	a	“box,”	i.e.	to	prevent	the
system	 from	 interacting	 with	 the	 external	 world	 otherwise	 than	 via	 specific
restricted	output	channels.	The	boxed	system	would	not	have	access	to	physical
manipulators	outside	of	the	box.	Removing	manipulators	(such	as	robotic	arms)
from	inside	the	box	as	well	would	prevent	the	system	from	constructing	physical
devices	that	could	breach	the	confinement.

For	extra	security,	the	system	should	be	placed	in	a	metal	mesh	to	prevent	it
from	 transmitting	 radio	 signals,	 which	 might	 otherwise	 offer	 a	 means	 of
manipulating	electronic	objects	such	as	radio	receivers	in	the	environment.	Note,
by	the	way,	how	easy	it	might	have	been	to	overlook	the	need	for	this	precaution.
One	might	naively	have	assumed	that	an	agent	without	a	manipulator	could	not
affect	the	external	world.	But	it	might	be	possible	for	a	machine	intelligence	to
generate	radio	waves	even	when	it	lacks	access	to	external	manipulators,	simply
“by	 thinking”	 (that	 is,	 by	 shuffling	 the	 electrons	 in	 its	 circuitry	 in	 particular
patterns).4	Once	pointed	out,	 this	vulnerability	can	be	patched	by	enclosing	the
system	in	a	Faraday	cage—but	we	are	left	wondering	how	many	other	similarly
subtle	vulnerabilities	might	 exist.	Each	 time	we	hear	of	 a	 seemingly	 foolproof
security	design	that	has	an	unexpected	flaw,	we	should	prick	up	our	ears.	These
occasions	grace	us	with	the	opportunity	to	abandon	a	life	of	overconfidence	and
resolve	to	become	better	Bayesians.5



Physical	confinement	has	several	advantages.	 It	 is	easy	 to	 implement.	 It	can
be	applied	to	many	machine	intelligence	architectures,	even	ones	that	were	not
initially	designed	with	safety	as	an	objective.	It	can	be	used	in	combination	with
most	other	control	methods.	And	 it	 seems	unlikely	 to	go	wrong	by	backfiring:
that	 is,	while	 it	might	fail	 to	ensure	safety,	 it	 is	unlikely	 to	cause	a	catastrophe
that	would	 not	 otherwise	 have	 occurred.	The	main	 disadvantage	with	 physical
confinement	is	that	it	reduces	the	functionality	of	the	superintelligence	(an	issue
to	 which	 we	 will	 return	 in	 Chapter	 10).	 Another	 concern	 is	 that	 it	 might
encourage	a	false	sense	of	security,	though	this	is	avoidable	if	we	regard	physical
confinement	 as	 icing	 on	 the	 cake	 rather	 than	 the	 main	 substance	 of	 our
precautions.

Informational	containment	aims	to	restrict	what	information	is	allowed	to	exit
the	 box.	We	 have	 already	 seen	 how	 a	 superintelligence	 that	 has	 access	 to	 an
Internet	port,	such	that	it	can	message	outside	entities,	is	potentially	unsafe:	even
if	 it	 starts	 out	without	 access	 to	 physical	 actuators,	 it	may	 use	 its	 information
output	channel	to	get	human	beings	to	do	its	bidding.	An	obvious	informational
containment	 method,	 therefore,	 is	 to	 bar	 the	 system	 from	 accessing
communications	networks.

Unplugging	an	AI	from	the	Internet	does	not,	however,	ensure	safety	if	there
are	one	or	more	humans	 serving	as	 the	 system’s	gatekeepers	 and	 remaining	 in
communication	with	 it.	During	 the	development	phase,	 the	programmers	 serve
as	gatekeepers;	during	the	operational	phase,	the	system’s	owner	might	play	this
role.	If	the	AI	can	persuade	or	trick	a	gatekeeper	to	let	it	out	of	the	box,	resulting
in	 its	gaining	access	either	 to	 the	 Internet	or	directly	 to	physical	manipulators,
then	 the	 boxing	 strategy	 has	 failed.	 Human	 beings	 are	 not	 secure	 systems,
especially	not	when	pitched	against	a	superintelligent	schemer	and	persuader.6

Although	routing	the	outbound	communications	of	a	machine	intelligence	to	a
human	gatekeeper	does	not	guarantee	safety,	it	could	serve	as	an	auxiliary	safety
measure.	 There	 are	 precautions	 that	might	 reduce	 the	 risk	 of	 the	AI	 escaping
through	the	gatekeeper.	The	AI	could	be	allowed	to	communicate	only	via	a	low-
bandwidth	 teletype	 interface.	 This	 would	 make	 it	 slightly	 harder	 to
psychologically	 manipulate	 the	 gatekeepers	 (precluding	 the	 use	 of	 emotive
sound	 and	 imagery	 and	 tricks	 such	 as	 flashing	 hypnotic	 patterns	 to	 induce	 a
trancelike	state).7	Going	further,	the	content	(not	just	the	mode	of	presentation)
of	 the	 output	 could	 be	 restricted;	 so	 that,	 for	 example,	 the	 AI	 would	 be
constrained	to	giving	single-bit	answers	to	yes/no	questions.	The	idea	of	building



a	question-answering	system	will	be	examined	further	in	the	next	chapter.

The	limiting	case	of	the	boxing	approach	would	be	a	system	kept	in	complete
physical	 and	 informational	 isolation.	 Even	 if	 achievable,	 however,	 such	 an
isolated	 system	 would	 be	 rather	 useless	 since	 it	 would	 have	 no	 effect	 on	 the
external	world.	It	might	perhaps	be	thought	that	some	scientific	purpose	could	be
served	by	creating	a	superintelligence	and	keeping	it	in	isolation:	by	studying	a
self-contained	model	system,	one	could	learn	about	its	internal	dynamics	and	its
behavior	patterns.	But	this	would	be	an	error.	As	soon	as	the	system	is	observed,
it	ceases	to	be	informationally	isolated.8	Information	can	be	transmitted	not	only
via	messages	 that	 an	AI	 sends	 out	 through	 a	 designated	 “output	 channel”	 but
also	via	any	observation	an	outsider	makes	of	some	causal	consequence	of	 the
AI’s	workings,	direct	or	indirect—its	power	consumption,	its	CPU	and	memory
usage,	its	computational	states,	or	indeed	any	traces	left	behind	after	it	has	been
shut	 down.	An	AI	 anticipating	 that	 it	might	 be	observed	 in	 any	of	 these	ways
could	 strategically	 adopt	 behaviors	 designed	 to	 influence	 the	 hypothesized
observers.	 For	 example,	 the	AI	 could	 “malfunction”	 in	whichever	way	would
most	increase	the	probability	that	it	will	ultimately	be	reactivated	or	that	another
superintelligence	will	be	created	with	goals	similar	to	its	own.

Incentive	methods

	

Incentive	methods	 involve	 placing	 an	 agent	 in	 an	 environment	 where	 it	 finds
instrumental	reasons	to	act	in	ways	that	promote	the	principal’s	interests.

Consider	 a	 billionaire	 who	 uses	 her	 fortune	 to	 set	 up	 a	 large	 charitable
foundation.	Once	created,	the	foundation	may	be	powerful—more	powerful	than
most	 individuals,	 including	 its	 founder,	 who	might	 have	 donated	 most	 of	 her
wealth.	To	control	the	foundation,	the	founder	lays	down	its	purpose	in	articles
of	 incorporation	 and	 bylaws,	 and	 appoints	 a	 board	 of	 directors	 sympathetic	 to
her	cause.	These	measures	constitute	a	form	of	motivation	selection,	since	they
aim	 to	 shape	 foundation’s	preferences.	But	 even	 if	 such	 attempts	 to	 customize
the	 organizational	 internals	 fail,	 the	 foundation’s	 behavior	 would	 remain
circumscribed	 by	 its	 social	 and	 legal	 milieu.	 The	 foundation	 would	 have	 an
incentive	 to	obey	 the	 law,	 for	example,	 lest	 it	be	 shut	down	or	 fined.	 It	would
have	an	incentive	to	offer	its	employees	acceptable	pay	and	working	conditions,
and	to	satisfy	external	stakeholders.	Whatever	its	final	goals,	the	foundation	thus



has	instrumental	reasons	to	conform	its	behavior	to	various	social	norms.

Might	 one	 not	 hope	 that	 a	 machine	 superintelligence	 would	 likewise	 be
hemmed	in	by	the	need	to	get	along	with	the	other	actors	with	which	it	shares	the
stage?	Though	 this	might	 seem	 like	 a	 straightforward	way	of	 dealing	with	 the
control	problem,	it	is	not	free	of	obstacles.	In	particular,	it	presupposes	a	balance
of	 power:	 legal	 or	 economic	 sanctions	 cannot	 restrain	 an	 agent	 that	 has	 a
decisive	strategic	advantage.	Social	integration	can	therefore	not	be	relied	upon
as	a	control	method	 in	 fast	or	medium	 takeoff	 scenarios	 that	 feature	a	winner-
takes-all	dynamic.

How	 about	 in	 multipolar	 scenarios,	 wherein	 several	 agencies	 emerge	 post-
transition	with	comparable	 levels	of	capability?	Unless	 the	default	 trajectory	 is
one	 with	 a	 slow	 takeoff,	 achieving	 such	 a	 power	 distribution	 may	 require	 a
carefully	 orchestrated	 ascent	 wherein	 different	 projects	 are	 deliberately
synchronized	to	prevent	any	one	of	them	from	ever	pulling	ahead	of	the	pack.9
Even	 if	 a	 multipolar	 outcome	 does	 result,	 social	 integration	 is	 not	 a	 perfect
solution.	 By	 relying	 on	 social	 integration	 to	 solve	 the	 control	 problem,	 the
principal	risks	sacrificing	a	large	portion	of	her	potential	 influence.	Although	a
balance	of	power	might	prevent	a	particular	AI	from	taking	over	the	world,	that
AI	will	 still	have	some	 power	 to	affect	outcomes;	 and	 if	 that	power	 is	used	 to
promote	 some	 arbitrary	 final	 goal—maximizing	 paperclip	 production—it	 is
probably	not	 being	used	 to	 advance	 the	 interests	 of	 the	principal.	 Imagine	our
billionaire	endowing	a	new	foundation	and	allowing	 its	mission	 to	be	 set	by	a
random	 word	 generator:	 not	 a	 species-level	 threat,	 but	 surely	 a	 wasted
opportunity.

A	related	but	importantly	different	idea	is	that	an	AI,	by	interacting	freely	in
society,	would	 acquire	 new	 human-friendly	 final	 goals.	 Some	 such	 process	 of
socialization	takes	place	in	us	humans.	We	internalize	norms	and	ideologies,	and
we	come	 to	value	other	 individuals	 for	 their	own	sakes	 in	 consequence	of	our
experiences	 with	 them.	 But	 this	 is	 not	 a	 universal	 dynamic	 present	 in	 all
intelligent	systems.	As	discussed	earlier,	many	types	of	agent	in	many	situations
will	 have	 convergent	 instrumental	 reasons	not	 to	 permit	 changes	 in	 their	 final
goals.	 (One	might	 consider	 trying	 to	design	a	 special	 kind	of	goal	 system	 that
can	acquire	final	goals	in	the	manner	that	humans	do;	but	this	would	not	count	as
a	 capability	 control	method.	We	will	 discuss	 some	 possible	methods	 of	 value
acquisition	in	Chapter	12.)



Capability	control	through	social	integration	and	balance	of	power	relies	upon
diffuse	social	forces	rewarding	and	penalizing	the	AI.	Another	type	of	incentive
method	 would	 involve	 creating	 a	 setup	 wherein	 the	 AI	 can	 be	 rewarded	 and
penalized	 by	 the	 project	 that	 creates	 it,	 and	 thereby	 incentivized	 to	 act	 in	 the
interests	 of	 the	 principal.	 To	 achieve	 this,	 the	 AI	 would	 be	 placed	 in	 a
surveillance	 context	 that	 allows	 its	 behavior	 to	 be	 monitored	 and	 evaluated,
either	 manually	 or	 by	 some	 automated	 process.	 The	 AI	 would	 know	 that	 a
positive	 evaluation	 would	 bring	 about	 some	 outcome	 it	 desires	 and	 that	 a
negative	evaluation	would	 fail	 to	do	so.	Theoretically,	 the	 reward	could	be	 the
fulfillment	 of	 some	 convergent	 instrumental	 goal.	 Without	 knowing	 anything
specific	 about	 the	 AI’s	 motivation	 system,	 however,	 it	 might	 be	 difficult	 to
calibrate	the	reward	mechanism.	For	example,	we	could	end	up	with	an	AI	that
would	 be	 willing	 to	 take	 extreme	 risks	 for	 the	 sake	 of	 a	 small	 chance	 of
eventually	 obtaining	 control	 of	 a	 large	 share	 of	 the	 universe.	 It	 could	 be
expensive	to	offer	the	AI	a	higher	expected	utility	as	reward	for	cooperation	than
the	AI	could	hope	to	achieve	by	defecting	and	trying	to	escape.10

A	better	alternative	might	be	to	combine	the	incentive	method	with	the	use	of
motivation	selection	 to	give	 the	AI	a	 final	goal	 that	makes	 it	 easier	 to	control.
Suppose	that	an	AI	were	designed	to	have	as	its	final	goal	that	a	particular	red
button	 inside	 a	 command	 bunker	 never	 be	 pressed.	 Since	 the	 pressing	 of	 the
button	is	disvalued	intrinsically	and	not	because	of	its	causal	consequences,	the
button	could	be	completely	inert:	it	could	be	made	of	Play-Doh.	Furthermore,	it
is	irrelevant	whether	the	AI	can	ever	know	whether	the	button	had	been	pressed.
What	is	essential	is	that	the	AI	believes	that	the	button	will	more	likely	remain
unpressed	if	the	AI	continuously	acts	in	the	principal’s	interest	than	if	it	rebels.

Refinements	to	this	setup	are	possible.	Instead	of	trying	to	endow	an	AI	with	a
final	goal	that	refers	to	a	physical	button,	one	could	build	an	AI	that	places	final
value	on	receiving	a	stream	of	“cryptographic	reward	tokens.”11	These	would	be
sequences	of	numbers	serving	as	keys	to	ciphers	that	would	have	been	generated
before	 the	 AI	 was	 created	 and	 that	 would	 have	 been	 built	 into	 its	 motivation
system.12	These	special	number	sequences	would	be	extremely	desirable	to	the
AI,	 constituting	 a	 special	 kind	 of	 reward	 token	 that	 the	 AI	 could	 not	 attain
though	wireheading.13	The	keys	would	be	stored	in	a	secure	location	where	they
could	be	quickly	destroyed	if	the	AI	ever	made	an	attempt	to	seize	them.	So	long
as	the	AI	cooperates,	the	keys	are	doled	out	at	a	steady	rate.

The	AI	could	then	be	given	a	bounded	utility	function,	and	matters	could	be



arranged	so	that	the	AI	would	get	(for	instance)	99%	of	its	maximum	utility	from
the	 first	 reward	 token;	 99%	 of	 its	 remaining	 utility	 potential	 from	 the	 second
reward	 token;	 and	 so	 on.	 By	 keeping	 the	 “discount	 rate”	 high,	 and	 by
transmitting	 reward	 tokens	 to	 the	 AI	 at	 a	 reasonably	 high	 rate,	 one	 would
dissuade	the	AI	from	attempting	to	carry	out	long-term	plans	that	would	increase
the	expected	number	of	reward	tokens	in	the	distal	future	at	the	expense	of	some
risk	that	its	reward	stream	will	be	cut	short	or	that	the	next	reward	token	will	be
cancelled	 and	 destroyed.	 If	 the	 AI	 always	 believes	 that	 defecting	 (i.e.	 doing
anything	other	than	its	best	to	look	after	the	principal’s	interests)	would	incur	at
least	a	2%	risk	of	forfeiting	the	next	reward	token,	whereas	cooperating	would
reduce	 the	risk	of	forfeiting	 the	next	 reward	 token	 to	below	1%,	 then	a	utility-
maximizing	AI	would	always	cooperate.

What	might	go	wrong	with	such	an	incentive	scheme?	One	possibility	is	that
the	AI	will	 not	 trust	 the	human	operator	 to	deliver	 the	promised	 rewards.	The
track	 record	 of	 human	 reliability	 is	 something	 other	 than	 a	 straight	 line	 of
unerring	 perfection.	 The	 AI	 would	 reasonably	 worry	 that	 the	 operator	 will
change	his	mind,	or	raise	the	performance	bar,	or	fail	to	recognize	that	the	AI	has
done	 its	 part.	 The	 AI	 would	 also	 worry	 about	 the	 operator	 becoming
incapacitated.	 The	 combined	 risk	 of	 such	 failures	 might	 exceed	 the	 risk	 of
attempting	 to	 seize	 control	 of	 the	 reward	 mechanism.	 Even	 a	 boxed	 AI
possessing	the	panoply	of	superpowers	 is	a	strong	force.	(For	an	AI	 that	 is	not
boxed	to	begin	with,	hijacking	the	human-governed	reward	mechanism	may	be
like	taking	candy	from	a	baby.)

Another	problem	with	the	incentive	scheme	is	that	it	presupposes	that	we	can
tell	 whether	 the	 outcomes	 produced	 by	 the	 AI	 are	 in	 our	 interest.	 As	 later
chapters	will	elaborate,	this	presupposition	is	not	innocuous.

A	full	assessment	of	 the	 feasibility	of	 incentive	methods	would	also	have	 to
take	into	account	a	range	of	other	factors,	including	some	esoteric	considerations
that	 might	 conceivably	 make	 such	 methods	 more	 viable	 than	 a	 preliminary
analysis	 would	 suggest.	 In	 particular,	 the	 AI	 may	 face	 ineliminable	 indexical
uncertainty	if	it	could	not	be	sure	that	it	does	not	inhabit	a	computer	simulation
(as	 opposed	 to	 “basement-level,”	 non-simulated	 physical	 reality),	 and	 this
epistemic	 predicament	may	 radically	 influence	 the	AI’s	 deliberations	 (see	Box
8).



Box	8	Anthropic	capture

	

The	AI	might	 assign	 a	 substantial	 probability	 to	 its	 simulation	 hypothesis,	 the
hypothesis	 that	 it	 is	 living	 in	 a	 computer	 simulation.	 Even	 today,	 many	 AIs
inhabit	 simulated	worlds—worlds	 consisting	of	geometric	 line	drawings,	 texts,
chess	games,	or	simple	virtual	realities,	and	in	which	the	laws	of	physics	deviate
sharply	 from	the	 laws	of	physics	 that	we	believe	govern	 the	world	of	our	own
experience.	 Richer	 and	more	 complicated	 virtual	 worlds	 will	 become	 feasible
with	improvements	in	programming	techniques	and	computing	power.	A	mature
superintelligence	could	create	virtual	worlds	that	appear	to	its	inhabitants	much
the	 same	 as	 our	 world	 appears	 to	 us.	 It	 might	 create	 vast	 numbers	 of	 such
worlds,	 running	 the	 same	simulation	many	 times	or	with	 small	variations.	The
inhabitants	would	not	necessarily	be	able	to	tell	whether	their	world	is	simulated
or	not;	but	if	they	are	intelligent	enough	they	could	consider	the	possibility	and
assign	it	some	probability.	In	light	of	the	simulation	argument	(a	full	discussion
of	 which	 is	 beyond	 the	 scope	 of	 this	 book)	 that	 probability	 could	 be
substantial.14

This	 predicament	 especially	 afflicts	 relatively	 early-stage	 superintelligences,
ones	that	have	not	yet	expanded	to	take	advantage	of	the	cosmic	endowment.	An
early-stage	superintelligence,	which	uses	only	a	small	 fraction	of	 the	 resources
of	 a	 single	 planet,	 would	 be	 much	 less	 expensive	 to	 simulate	 than	 a	 mature
intergalactic	superintelligence.	Potential	simulators—that	 is,	other	more	mature
civilizations—would	be	able	to	run	great	numbers	of	simulations	of	such	early-
stage	AIs	even	by	dedicating	a	minute	fraction	of	their	computational	resources
to	 that	 purpose.	 If	 at	 least	 some	 (non-trivial	 fraction)	 of	 these	 mature
superintelligent	 civilizations	 choose	 to	 use	 this	 ability,	 early-stage	 AIs	 should
assign	a	substantial	probability	to	being	in	a	simulation.

How	 an	 AI	 would	 be	 affected	 by	 the	 simulation	 hypothesis	 depends	 on	 its
values.15	Consider	first	an	AI	that	has	a	“resource-insatiable”	final	goal,	such	as
the	 goal	 of	 maximizing	 a	 utility	 function	 that	 is	 linear	 in	 the	 number	 of
paperclips	caused	by	the	AI	to	exist—twice	as	many	paperclips,	twice	as	good.
Such	an	AI	might	care	less	about	the	simulation	hypothesis,	on	grounds	that	its
ability	to	influence	how	many	paperclips	are	produced	looks	much	more	limited
if	the	AI	is	in	a	simulation	than	if	it	is	in	basement-level	physical	reality.	The	AI
might	 accordingly	 behave	 much	 as	 if	 it	 were	 certain	 that	 the	 simulation



hypothesis	is	false,	even	if	it	assigned	a	fairly	high	probability	to	the	simulation
hypothesis	being	true.16	The	AI	would	reason	that	it	does	not	much	matter	how	it
acts	 if	 the	 simulation	 hypothesis	 is	 true,	 whereas	 its	 actions	 make	 a	 great
difference	 if	 the	 hypothesis	 is	 false;	 so	 it	 would	 select	 actions	 mainly	 by
reference	 to	how	good	 they	are	conditional	on	 the	simulation	hypothesis	being
false.

By	contrast,	consider	an	AI	that	has	a	more	modest	final	goal,	one	that	could
be	satisfied	with	a	small	amount	of	resources,	such	as	the	goal	of	receiving	some
pre-produced	cryptographic	reward	tokens,	or	the	goal	of	causing	the	existence
of	 forty-five	virtual	 paperclips.	Such	 an	AI	 should	not	 discount	 those	 possible
worlds	 in	which	 it	 inhabits	a	simulation.	A	substantial	portion	of	 the	AI’s	 total
expected	utility	might	derive	 from	 those	possible	worlds.	The	decision-making
of	an	AI	with	goals	that	are	easily	resource-satiable	may	therefore—if	it	assigns
a	high	probability	to	the	simulation	hypothesis—be	dominated	by	considerations
about	 which	 actions	 would	 produce	 the	 best	 result	 if	 its	 perceived	world	 is	 a
simulation.	Such	an	AI	(even	if	it	is,	in	fact,	not	in	a	simulation)	might	therefore
be	heavily	influenced	by	its	beliefs	about	which	behaviors	would	be	rewarded	in
a	simulation.

In	particular,	if	an	AI	with	resource-satiable	final	goals	believes	that	in	most
simulated	worlds	that	match	its	observations	it	will	be	rewarded	if	it	cooperates
(but	not	if	it	attempts	to	escape	its	box	or	contravene	the	interests	of	its	creator)
then	it	may	choose	to	cooperate.	We	could	therefore	find	that	even	an	AI	with	a
decisive	 strategic	 advantage,	 one	 that	 could	 in	 fact	 realize	 its	 final	 goals	 to	 a
greater	extent	by	taking	over	the	world	than	by	refraining	from	doing	so,	would
nevertheless	balk	at	doing	so.

Thus	Conscience	does	make	Cowards	of	us	all,

And	thus	the	Native	hue	of	Resolution

Is	sicklied	o’er,	with	the	pale	cast	of	Thought,

And	enterprises	of	great	pith	and	moment,

With	this	regard	their	Currents	turn	away,

And	lose	the	name	of	Action.



(Shakespeare,	Hamlet,	Act	iii.	Sc.	1)

A	mere	 line	 in	 the	 sand,	backed	by	 the	clout	of	 a	nonexistent	 simulator,	 could
prove	a	stronger	restraint	than	a	two-foot-thick	solid	steel	door.17

	

Stunting

	

Another	possible	 capability	 control	method	 is	 to	 limit	 the	 system’s	 intellectual
faculties	or	its	access	to	information.	This	might	be	done	by	running	the	AI	on
hardware	 that	 is	 slow	 or	 short	 on	 memory.	 In	 the	 case	 of	 a	 boxed	 system,
information	inflow	could	also	be	restricted.

Stunting	 an	 AI	 in	 these	 ways	 would	 limit	 its	 usefulness.	 The	 method	 thus
faces	a	dilemma:	too	little	stunting,	and	the	AI	might	have	the	wit	to	figure	out
some	way	to	make	itself	more	intelligent	(and	thence	to	world	domination);	too
much,	and	the	AI	is	just	another	piece	of	dumb	software.	A	radically	stunted	AI
is	certainly	safe	but	does	not	solve	the	problem	of	how	to	achieve	a	controlled
detonation:	an	 intelligence	explosion	would	 remain	possible	and	would	 simply
be	triggered	by	some	other	system	instead,	perhaps	at	a	slightly	later	date.

One	might	 think	 it	would	 be	 safe	 to	 build	 a	 superintelligence	 provided	 it	 is
only	 given	 data	 about	 some	 narrow	 domain	 of	 facts.	 For	 example,	 one	might
build	an	AI	that	lacks	sensors	and	that	has	preloaded	into	its	memory	only	facts
about	 petroleum	 engineering	 or	 peptide	 chemistry.	 But	 if	 the	 AI	 is
superintelligent—if	 it	 is	 has	 a	 superhuman	 level	 of	general	 intelligence—such
data	deprivation	does	not	guarantee	safety.

There	 are	 several	 reasons	 for	 this.	 First,	 the	 notion	 of	 information	 being
“about”	a	certain	topic	is	generally	problematic.	Any	piece	of	information	can	in
principle	 be	 relevant	 to	 any	 topic	 whatsoever,	 depending	 on	 the	 background
information	of	a	reasoner.18	Furthermore,	a	given	data	set	contains	 information
not	 only	 about	 the	 domain	 from	which	 the	 data	 was	 collected	 but	 also	 about
various	circumstantial	facts.	A	shrewd	mind	looking	over	a	knowledge	base	that
is	nominally	about	peptide	chemistry	might	 infer	 things	about	a	wide	 range	of
topics.	The	fact	that	certain	information	is	included	and	other	information	is	not



could	 tell	 an	AI	 something	about	 the	 state	of	human	science,	 the	methods	and
instruments	 available	 to	 study	 peptides,	 the	 fabrication	 technologies	 used	 to
make	these	instruments,	and	the	nature	of	the	brains	and	societies	that	conceived
the	 studies	 and	 the	 instruments.	 It	 might	 be	 that	 a	 superintelligence	 could
correctly	 surmise	 a	 great	 deal	 from	 what	 seem,	 to	 dull-witted	 human	 minds,
meager	scraps	of	evidence.	Even	without	any	designated	knowledge	base	at	all,	a
sufficiently	superior	mind	might	be	able	 to	 learn	much	by	simply	introspecting
on	 the	workings	 of	 its	 own	 psyche—the	 design	 choices	 reflected	 in	 its	 source
code,	 the	 physical	 characteristics	 of	 its	 circuitry.19	 Perhaps	 a	 superintelligence
could	 even	 deduce	 much	 about	 the	 likely	 properties	 of	 the	 world	 a	 priori
(combining	 logical	 inference	 with	 a	 probability	 prior	 biased	 toward	 simpler
worlds,	and	a	few	elementary	facts	implied	by	the	superintelligence’s	existence
as	a	reasoning	system).	It	might	imagine	the	consequences	of	different	possible
laws	of	physics:	what	kind	of	planets	would	form,	what	kind	of	 intelligent	 life
would	 evolve,	what	kind	of	 societies	would	develop,	what	kind	of	methods	 to
solve	 the	 control	 problem	 would	 be	 attempted,	 how	 those	 methods	 could	 be
defeated.20

For	these	reasons	it	would	be	imprudent	to	rely	on	information	deprivation	as
the	main	check	on	a	superintelligence’s	power.	Some	forms	of	stunting	however,
including	limiting	hardware	capacity	and	preventing	the	development	of	specific
cognitive	 faculties,	 might	 find	 use	 as	 auxiliary	 control	 methods	 in	 the
developmental	 phase.	They	 could	be	used,	 for	 instance,	 to	 regulate	 the	 rate	 of
capacity	gain	in	an	intermediary	AI	and	to	allow	tests	to	be	run	at	different	levels
of	capability	short	of	full-throttled	superintelligence.

Tripwires

	

A	tripwire	is	a	mechanism	that	performs	diagnostic	tests	on	the	system	(possibly
without	 its	knowledge)	 and	effects	 a	 shutdown	 if	 it	 detects	 signs	of	dangerous
activity.	Programmers	can	then	scrutinize	recordings	of	the	suspicious	activity	at
their	 leisure,	 and	 make	 changes	 to	 the	 AI’s	 code	 base	 or	 environment	 before
restarting	it.	If	they	find	that	the	problem	is	sufficiently	deep-rooted,	they	could
decide	to	abort	the	entire	project.

Tripwires	differ	from	incentive	methods	in	that	they	do	not	rely	on	the	system
being	aware	of	 the	consequences	of	engaging	in	forbidden	activities.	Tripwires



are	more	closely	 related	 to	 stunting	methods.	Like	 stunting,	 tripwires	could	be
used	 as	 a	 temporary	 safeguard,	 providing	 a	 degree	 of	 protection	 during	 the
development	 phase.	 In	 principle,	 tripwires	 can	 also	 be	 used	 during	 the
operational	 phase,	 particularly	 for	 a	 boxed	 system.	 However,	 the	 ability	 of
tripwires	to	constrain	a	full-fledged	superintelligence	must	remain	very	much	in
doubt,	since	it	would	be	hard	for	us	to	assure	ourselves	that	such	an	agent	could
not	find	ways	to	subvert	any	tripwire	devised	by	the	human	intellect.

Table	9	Different	kinds	of	tripwires

	 	

Type	of
monitoring Description	and	examples

Behavior

Detectors	could	be	placed	around	a	boxed	AI	to	detect	attempts	to
breach	the	containment.	For	example,	detectors	could	intercept
attempts	at	radio	communication	or	at	accessing	internal
computational	resources	intended	to	be	off	limits.	An	“Ethernet	port
of	Eden”	could	be	installed:	an	apparent	connection	to	the	internet
that	leads	to	a	shutdown	switch.

Ability

Automated	capability	testing	could	be	performed	at	frequent
intervals	to	determine	the	AI’s	skill	in	various	domains.	If	either	the
rate	of	improvement	is	unexpectedly	high	or	the	AI	attains	a	level	of
competence	that	brings	it	close	to	the	potential	danger	zone,	the
system	could	be	slowed	down	or	paused,	in	order	to	allow	the
programmers	to	monitor	further	developments	more	closely.

The	AI’s	internal	processes	could	be	monitored	for	suspicious
activity.	For	example,	any	change	to	the	AI’s	representation	of	its
final	values	might	trigger	an	automatic	shutdown	and	review.	The
AI’s	resource	use	and	algorithmic	methods	may	also	be	also	be
monitored	for	unexpected	patterns.



Content

More	ambitiously,	the	AI’s	beliefs,	plans,	subgoals,	and
justifications	may	be	continuously	scrutinized,	to	ensure	they
conform	to	the	programmers’	expectations.	Such	monitoring	of	the
AI’s	intentional	states	would	enable	a	particularly	powerful	form	of
content	monitoring:	the	scanning	of	the	AI’s	cognitive	processes	for
a	conception	of	deception—that	vulnerable	moment	when	an
unfriendly	AI	first	forms	the	intention	to	conceal	its	true
intentions.21

Content	monitoring	that	requires	that	the	AI’s	intentional	states	be
transparent	to	the	programmers	or	to	an	automatic	monitoring
mechanism	may	not	be	feasible	for	all	kinds	of	AI	architectures.
(Some	neural	networks,	for	instance,	are	opaque,	as	they	represent
information	holistically	and	in	ways	that	do	not	necessarily	match
up	with	human	concepts.)	This	may	be	a	reason	to	avoid	using	such
architectures.

As	an	adjunct	safety	measure	in	the	development	phase,	though,	tripwires	are
important.	 It	 would	 be	 good	 practice	 for	 the	 AI’s	 designers	 to	 codify	 their
expectations	 about	 how	 the	 system	 is	 supposed	 to	 function,	 and	 then	 to
circumscribe	 the	 AI	 with	 tripwires	 that	 would	 be	 activated	 if	 any	 of	 these
expectations	is	violated.	To	make	the	tests	more	stringent,	“honeypots”	could	be
strategically	 placed	 to	 create	 temptations	 for	 a	 malfunctioning	 AI	 to	 commit
some	 easily	 observable	 violation.	 For	 instance,	 if	 an	AI	 has	 been	 designed	 in
such	a	way	that	it	is	supposed	not	to	want	to	access	the	internet,	a	fake	Ethernet
port	could	be	installed	(leading	to	an	automatic	shutdown	switch)	 just	 to	see	 if
they	AI	tries	to	use	it.	(Some	examples	of	tripwires	are	given	in	Table	9.)

It	should	be	emphasized	that	the	value	of	a	tripwire	depends	not	only	on	the
mechanism	itself	but	also—critically—on	how	a	project	reacts	when	a	tripwire	is
triggered.	If	 the	programmers	or	project	managers,	 impatient	to	make	progress,
simply	 switch	 the	 system	 back	 on	 again—or	 if	 they	 do	 so	 after	making	 some
token	modification	to	prevent	the	tripwire	being	triggered	on	the	next	run—then
no	safety	has	been	gained	even	if	the	tripwire	itself	works	exactly	as	intended.

Motivation	selection	methods



	

Motivation	selection	methods	seek	to	prevent	undesirable	outcomes	by	shaping
what	 the	 superintelligence	wants	 to	 do.	By	 engineering	 the	 agent’s	motivation
system	and	its	final	goals,	these	methods	would	produce	a	superintelligence	that
would	not	want	to	exploit	a	decisive	strategic	advantage	in	a	harmful	way.	Since
a	superintelligent	agent	is	skilled	at	achieving	its	ends,	if	it	prefers	not	to	cause
harm	(in	some	appropriate	sense	of	“harm”)	then	it	would	tend	not	to	cause	harm
(in	that	sense	of	“harm”).

Motivation	selection	can	involve	explicitly	formulating	a	goal	or	set	of	rules
to	 be	 followed	 (direct	 specification)	 or	 setting	 up	 the	 system	 so	 that	 it	 can
discover	an	appropriate	set	of	values	for	itself	by	reference	to	some	implicitly	or
indirectly	 formulated	criterion	 (indirect	normativity).	One	option	 in	motivation
selection	 is	 to	 try	 to	 build	 the	 system	 so	 that	 it	 would	 have	 modest,	 non-
ambitious	 goals	 (domesticity).	 An	 alternative	 to	 creating	 a	 motivation	 system
from	 scratch	 is	 to	 select	 an	 agent	 that	 already	 has	 an	 acceptable	 motivation
system	 and	 then	 augment	 that	 agent’s	 cognitive	 powers	 to	 make	 it
superintelligent,	 while	 ensuring	 that	 the	 motivation	 system	 does	 not	 get
corrupted	in	the	process	(augmentation).	Let	us	look	at	these	in	turn.

Direct	specification

	

Direct	specification	is	the	most	straightforward	approach	to	the	control	problem.
The	 approach	 comes	 in	 two	 versions,	 rule-based	 and	 consequentialist,	 and
involves	trying	to	explicitly	define	a	set	of	rules	or	values	that	will	cause	even	a
free-roaming	 superintelligent	 AI	 to	 act	 safely	 and	 beneficially.	 Direct
specification,	however,	faces	what	may	be	insuperable	obstacles,	deriving	from
both	the	difficulties	in	determining	which	rules	or	values	we	would	wish	the	AI
to	 be	 guided	 by	 and	 the	 difficulties	 in	 expressing	 those	 rules	 or	 values	 in
computer-readable	code.

The	traditional	illustration	of	the	direct	rule-based	approach	is	the	“three	laws
of	 robotics”	 concept,	 formulated	 by	 science	 fiction	 author	 Isaac	 Asimov	 in	 a
short	story	published	in	1942.22	The	three	laws	were:	(1)	A	robot	may	not	injure
a	human	being	or,	through	inaction,	allow	a	human	being	to	come	to	harm;	(2)	A
robot	 must	 obey	 any	 orders	 given	 to	 it	 by	 human	 beings,	 except	 where	 such



orders	 would	 conflict	 with	 the	 First	 Law;	 (3)	 A	 robot	 must	 protect	 its	 own
existence	as	 long	as	 such	protection	does	not	conflict	with	 the	First	or	Second
Law.	 Embarrassingly	 for	 our	 species,	 Asimov’s	 laws	 remained	 state-of-the-art
for	over	half	a	century:	this	despite	obvious	problems	with	the	approach,	some	of
which	 are	 explored	 in	 Asimov’s	 own	 writings	 (Asimov	 probably	 having
formulated	 the	 laws	 in	 the	 first	 place	 precisely	 so	 that	 they	 would	 fail	 in
interesting	ways,	providing	fertile	plot	complications	for	his	stories).23

Bertrand	 Russell,	 who	 spent	 many	 years	 working	 on	 the	 foundations	 of
mathematics,	 once	 remarked	 that	 “everything	 is	 vague	 to	 a	 degree	 you	 do	 not
realize	 till	 you	 have	 tried	 to	 make	 it	 precise.”24	 Russell’s	 dictum	 applies	 in
spades	 to	 the	 direct	 specification	 approach.	 Consider,	 for	 example,	 how	 one
might	explicate	Asimov’s	first	law.	Does	it	mean	that	the	robot	should	minimize
the	probability	of	any	human	being	coming	to	harm?	In	that	case	the	other	laws
become	 otiose	 since	 it	 is	 always	 possible	 for	 the	AI	 to	 take	 some	 action	 that
would	have	at	least	some	microscopic	effect	on	the	probability	of	a	human	being
coming	 to	 harm.	 How	 is	 the	 robot	 to	 balance	 a	 large	 risk	 of	 a	 few	 humans
coming	to	harm	versus	a	small	risk	of	many	humans	being	harmed?	How	do	we
define	 “harm”	 anyway?	 How	 should	 the	 harm	 of	 physical	 pain	 be	 weighed
against	the	harm	of	architectural	ugliness	or	social	injustice?	Is	a	sadist	harmed
if	 he	 is	 prevented	 from	 tormenting	 his	 victim?	 How	 do	 we	 define	 “human
being”?	Why	 is	 no	 consideration	 given	 to	 other	 morally	 considerable	 beings,
such	as	 sentient	nonhuman	animals	and	digital	minds?	The	more	one	ponders,
the	more	the	questions	proliferate.

Perhaps	the	closest	existing	analog	to	a	rule	set	that	could	govern	the	actions
of	a	superintelligence	operating	in	the	world	at	large	is	a	legal	system.	But	legal
systems	 have	 developed	 through	 a	 long	 process	 of	 trial	 and	 error,	 and	 they
regulate	relatively	slowly-changing	human	societies.	Laws	can	be	revised	when
necessary.	Most	importantly,	legal	systems	are	administered	by	judges	and	juries
who	generally	apply	a	measure	of	common	sense	and	human	decency	to	ignore
logically	possible	 legal	 interpretations	 that	 are	 sufficiently	obviously	unwanted
and	unintended	by	the	lawgivers.	It	is	probably	humanly	impossible	to	explicitly
formulate	a	highly	complex	set	of	detailed	rules,	have	them	apply	across	a	highly
diverse	set	of	circumstances,	and	get	it	right	on	the	first	implementation.25

Problems	for	the	direct	consequentialist	approach	are	similar	to	those	for	the
direct	rule-based	approach.	This	is	true	even	if	the	AI	is	intended	to	serve	some
apparently	 simple	 purpose	 such	 as	 implementing	 a	 version	 of	 classical



utilitarianism.	For	instance,	the	goal	“Maximize	the	expectation	of	the	balance	of
pleasure	 over	 pain	 in	 the	 world”	 may	 appear	 simple.	 Yet	 expressing	 it	 in
computer	code	would	involve,	among	other	things,	specifying	how	to	recognize
pleasure	 and	 pain.	 Doing	 this	 reliably	 might	 require	 solving	 an	 array	 of
persistent	 problems	 in	 the	 philosophy	 of	 mind—even	 just	 to	 obtain	 a	 correct
account	 expressed	 in	 a	 natural	 language,	 an	 account	 which	 would	 then,
somehow,	have	to	be	translated	into	a	programming	language.

A	 small	 error	 in	 either	 the	philosophical	 account	 or	 its	 translation	 into	 code
could	have	catastrophic	consequences.	Consider	an	AI	that	has	hedonism	as	its
final	goal,	and	which	would	therefore	like	to	tile	the	universe	with	“hedonium”
(matter	 organized	 in	 a	 configuration	 that	 is	 optimal	 for	 the	 generation	 of
pleasurable	 experience).	 To	 this	 end,	 the	 AI	 might	 produce	 computronium
(matter	organized	in	a	configuration	that	is	optimal	for	computation)	and	use	it	to
implement	digital	minds	 in	states	of	euphoria.	 In	order	 to	maximize	efficiency,
the	AI	omits	from	the	implementation	any	mental	faculties	that	are	not	essential
for	 the	 experience	 of	 pleasure,	 and	 exploits	 any	 computational	 shortcuts	 that
according	to	 its	definition	of	pleasure	do	not	vitiate	 the	generation	of	pleasure.
For	 instance,	 the	 AI	 might	 confine	 its	 simulation	 to	 reward	 circuitry,	 eliding
faculties	such	as	memory,	sensory	perception,	executive	function,	and	language;
it	 might	 simulate	 minds	 at	 a	 relatively	 coarse-grained	 level	 of	 functionality,
omitting	 lower-level	 neuronal	 processes;	 it	 might	 replace	 commonly	 repeated
computations	 with	 calls	 to	 a	 lookup	 table;	 or	 it	 might	 put	 in	 place	 some
arrangement	whereby	multiple	minds	would	share	most	parts	of	their	underlying
computational	 machinery	 (their	 “supervenience	 bases”	 in	 philosophical
parlance).	Such	tricks	could	greatly	increase	the	quantity	of	pleasure	producible
with	 a	 given	 amount	 of	 resources.	 It	 is	 unclear	 how	 desirable	 this	 would	 be.
Furthermore,	 if	 the	 AI’s	 criterion	 for	 determining	 whether	 a	 physical	 process
generates	pleasure	 is	wrong,	 then	 the	AI’s	optimizations	might	 throw	 the	baby
out	with	 the	bathwater:	discarding	something	which	 is	 inessential	according	 to
the	AI’s	 criterion	 yet	 essential	 according	 to	 the	 criteria	 implicit	 in	 our	 human
values.	The	universe	then	gets	filled	not	with	exultingly	heaving	hedonium	but
with	computational	processes	 that	are	unconscious	and	completely	worthless—
the	equivalent	of	 a	 smiley-face	 sticker	xeroxed	 trillions	upon	 trillions	of	 times
and	plastered	across	the	galaxies.

Domesticity



	

One	 special	 type	 of	 final	 goal	 which	 might	 be	 more	 amenable	 to	 direct
specification	than	the	examples	given	above	is	the	goal	of	self-limitation.	While
it	seems	extremely	difficult	 to	specify	how	one	would	want	a	superintelligence
to	behave	in	the	world	in	general—since	this	would	require	us	to	account	for	all
the	trade-offs	in	all	the	situations	that	could	arise—it	might	be	feasible	to	specify
how	 a	 superintelligence	 should	 behave	 in	 one	 particular	 situation.	 We	 could
therefore	seek	to	motivate	the	system	to	confine	itself	to	acting	on	a	small	scale,
within	a	narrow	context,	and	through	a	limited	set	of	action	modes.	We	will	refer
to	 this	approach	of	giving	 the	AI	 final	goals	aimed	at	 limiting	 the	 scope	of	 its
ambitions	and	activities	as	“domesticity.”

For	example,	one	could	 try	 to	design	an	AI	such	 that	 it	would	 function	as	a
question-answering	 device	 (an	 “oracle,”	 to	 anticipate	 the	 terminology	 that	 we
will	 introduce	 in	 the	 next	 chapter).	 Simply	 giving	 the	 AI	 the	 final	 goal	 of
producing	 maximally	 accurate	 answers	 to	 any	 question	 posed	 to	 it	 would	 be
unsafe—recall	 the	 “Riemann	 hypothesis	 catastrophe”	 described	 in	 Chapter	 8.
(Reflect,	also,	 that	 this	goal	would	 incentivize	 the	AI	 to	 take	actions	 to	ensure
that	it	is	asked	easy	questions.)	To	achieve	domesticity,	one	might	try	to	define	a
final	goal	 that	would	somehow	overcome	these	difficulties:	perhaps	a	goal	 that
combined	 the	 desiderata	 of	 answering	 questions	 correctly	 and	minimizing	 the
AI’s	 impact	 on	 the	 world	 except	 whatever	 impact	 results	 as	 an	 incidental
consequence	of	giving	accurate	and	non-manipulative	answers	to	the	questions	it
is	asked.26

The	 direct	 specification	 of	 such	 a	 domesticity	 goal	 is	 more	 likely	 to	 be
feasible	 than	 the	 direct	 specification	 of	 either	 a	 more	 ambitious	 goal	 or	 a
complete	rule	set	for	operating	in	an	open-ended	range	of	situations.	Significant
challenges	nonetheless	remain.	Care	would	have	to	be	taken,	for	instance,	in	the
definition	of	what	it	would	be	for	the	AI	to	“minimize	its	impact	on	the	world”
to	ensure	that	the	measure	of	the	AI’s	impact	coincides	with	our	own	standards
for	what	counts	as	a	large	or	a	small	impact.	A	bad	measure	would	lead	to	bad
trade-offs.	There	are	also	other	kinds	of	risk	associated	with	building	an	oracle,
which	we	will	discuss	later.

There	 is	 a	 natural	 fit	 between	 the	 domesticity	 approach	 and	 physical
containment.	One	would	 try	 to	 “box”	 an	AI	 such	 that	 the	 system	 is	unable	 to
escape	 while	 simultaneously	 trying	 to	 shape	 the	 AI’s	 motivation	 system	 such



that	it	would	be	unwilling	to	escape	even	if	it	found	a	way	to	do	so.	Other	things
equal,	 the	existence	of	multiple	 independent	safety	mechanisms	should	shorten
the	odds	of	success.27

Indirect	normativity

	

If	direct	specification	seems	hopeless,	we	might	instead	try	indirect	normativity.
The	 basic	 idea	 is	 that	 rather	 than	 specifying	 a	 concrete	 normative	 standard
directly,	we	specify	a	process	for	deriving	a	standard.	We	then	build	the	system
so	that	 it	 is	motivated	 to	carry	out	 this	process	and	 to	adopt	whatever	standard
the	 process	 arrives	 at.28	 For	 example,	 the	 process	 could	 be	 to	 carry	 out	 an
investigation	into	the	empirical	question	of	what	some	suitably	idealized	version
of	us	would	prefer	the	AI	to	do.	The	final	goal	given	to	the	AI	in	this	example
could	 be	 something	 along	 the	 lines	 of	 “achieve	 that	 which	 we	 would	 have
wished	the	AI	to	achieve	if	we	had	thought	about	the	matter	long	and	hard.”

Further	 explanation	 of	 indirect	 normativity	 will	 have	 to	 await	 Chapter	 13.
There,	 we	 will	 revisit	 the	 idea	 of	 “extrapolating	 our	 volition”	 and	 explore
various	alterative	formulations.	Indirect	normativity	is	a	very	important	approach
to	motivation	selection.	Its	promise	lies	in	the	fact	that	it	could	let	us	offload	to
the	superintelligence	much	of	the	difficult	cognitive	work	required	to	carry	out	a
direct	specification	of	an	appropriate	final	goal.

Augmentation

	

The	last	motivation	selection	method	on	our	list	is	augmentation.	Here	the	idea	is
that	rather	than	attempting	to	design	a	motivation	system	de	novo,	we	start	with
a	 system	 that	 already	 has	 an	 acceptable	 motivation	 system,	 and	 enhance	 its
cognitive	faculties	to	make	it	superintelligent.	If	all	goes	well,	this	would	give	us
a	superintelligence	with	an	acceptable	motivation	system.

This	approach,	obviously,	is	unavailing	in	the	case	of	a	newly	created	seed	AI.
But	augmentation	 is	 a	potential	motivation	 selection	method	 for	other	paths	 to
superintelligence,	 including	 brain	 emulation,	 biological	 enhancement,	 brain–



computer	interfaces,	and	networks	and	organizations,	where	there	is	a	possibility
of	building	out	the	system	from	a	normative	nucleus	(regular	human	beings)	that
already	contains	a	representation	of	human	value.

The	attractiveness	of	augmentation	may	increase	in	proportion	to	our	despair
at	the	other	approaches	to	the	control	problem.	Creating	a	motivation	system	for
a	 seed	 AI	 that	 remains	 reliably	 safe	 and	 beneficial	 under	 recursive	 self-
improvement	even	as	the	system	grows	into	a	mature	superintelligence	is	a	tall
order,	 especially	 if	 we	 must	 get	 the	 solution	 right	 on	 the	 first	 attempt.	 With
augmentation,	we	would	at	least	start	with	a	system	that	has	familiar	and	human-
like	motivations.

On	the	downside,	it	might	be	hard	to	ensure	that	a	complex,	evolved,	kludgy,
and	poorly	understood	motivation	system,	 like	 that	of	a	human	being,	will	not
get	corrupted	when	its	cognitive	engine	blasts	into	the	stratosphere.	As	discussed
earlier,	 an	 imperfect	 brain	 emulation	 procedure	 that	 preserves	 intellectual
functioning	may	not	preserve	all	facets	of	personality.	The	same	is	true	(though
perhaps	 to	 a	 lesser	 degree)	 for	 biological	 enhancements	 of	 cognition,	 which
might	subtly	affect	motivation,	and	 for	collective	 intelligence	enhancements	of
organizations	and	networks,	which	might	adversely	change	social	dynamics	(e.g.
in	ways	that	debase	the	collective’s	attitude	toward	outsiders	or	toward	its	own
constituents).	 If	 superintelligence	 is	 achieved	 via	 any	 of	 these	 paths,	 a	 project
sponsor	 would	 find	 guarantees	 about	 the	 ultimate	 motivations	 of	 the	 mature
system	 hard	 to	 come	 by.	 A	 mathematically	 well-specified	 and	 foundationally
elegant	AI	architecture	might—for	all	its	non-anthropomorphic	otherness—offer
greater	 transparency,	 perhaps	 even	 the	 prospect	 that	 important	 aspects	 of	 its
functionality	could	be	formally	verified.

In	 the	 end,	 however	 one	 tallies	 up	 the	 advantages	 and	 disadvantages	 of
augmentation,	 the	 choice	 as	 to	 whether	 to	 rely	 on	 it	 might	 be	 forced.	 If
superintelligence	 is	 first	 achieved	 along	 the	 artificial	 intelligence	 path,
augmentation	is	not	applicable.	Conversely,	if	superintelligence	is	first	achieved
along	some	non-AI	path,	 then	many	of	 the	other	motivation	selection	methods
are	 inapplicable.	 Even	 so,	 views	 on	 how	 likely	 augmentation	 would	 be	 to
succeed	do	have	strategic	relevance	insofar	as	we	have	opportunities	to	influence
which	technology	will	first	produce	superintelligence.

Synopsis



	

A	 quick	 synopsis	 might	 be	 called	 for	 before	 we	 close	 this	 chapter.	 We
distinguished	two	broad	classes	of	methods	for	dealing	with	the	agency	problem
at	 the	heart	of	AI	 safety:	 capability	 control	 and	motivation	 selection.	Table	 10
gives	a	summary.

Table	10	Control	methods

	 	

Capability
control 	

Boxing
methods

The	system	is	confined	in	such	a	way	that	it	can	affect	the
external	world	only	through	some	restricted,	pre-approved
channel.	Encompasses	physical	and	informational	containment
methods.

Incentive
methods

The	system	is	placed	within	an	environment	that	provides
appropriate	incentives.	This	could	involve	social	integration	into
a	world	of	similarly	powerful	entities.	Another	variation	is	the
use	of	(cryptographic)	reward	tokens.	“Anthropic	capture”	is	also
a	very	important	possibility	but	one	that	involves	esoteric
considerations.

Stunting Constraints	are	imposed	on	the	cognitive	capabilities	of	the
system	or	its	ability	to	affect	key	internal	processes.

Tripwires
Diagnostic	tests	are	performed	on	the	system	(possibly	without
its	knowledge)	and	a	mechanism	shuts	down	the	system	if
dangerous	activity	is	detected.



Motivation
selection

	

Direct
specification

The	system	is	endowed	with	some	directly	specified	motivation
system,	which	might	be	consequentialist	or	involve	following	a
set	of	rules.

Domesticity A	motivation	system	is	designed	to	severely	limit	the	scope	of
the	agent’s	ambitions	and	activities.

Indirect
normativity

Indirect	normativity	could	involve	rule-based	or	consequentialist
principles,	but	is	distinguished	by	its	reliance	on	an	indirect
approach	to	specifying	the	rules	that	are	to	be	followed	or	the
values	that	are	to	be	pursued.

Augmentation
One	starts	with	a	system	that	already	has	substantially	human	or
benevolent	motivations,	and	enhances	its	cognitive	capacities	to
make	it	superintelligent.

Each	 control	 method	 comes	 with	 potential	 vulnerabilities	 and	 presents
different	degrees	of	difficulty	in	its	implementation.	It	might	perhaps	be	thought
that	we	should	rank	them	from	better	to	worse,	and	then	opt	for	the	best	method.
But	that	would	be	simplistic.	Some	methods	can	be	used	in	combination	whereas
others	are	exclusive.	Even	a	comparatively	insecure	method	may	be	advisable	if
it	 can	 easily	 be	 used	 as	 an	 adjunct,	 whereas	 a	 strong	 method	 might	 be
unattractive	if	it	would	preclude	the	use	of	other	desirable	safeguards.

It	is	therefore	necessary	to	consider	what	package	deals	are	available.	We	need
to	 consider	 what	 type	 of	 system	 we	 might	 try	 to	 build,	 and	 which	 control
methods	would	be	applicable	to	each	type.	This	is	the	topic	for	our	next	chapter.



CHAPTER	10
Oracles,	genies,	sovereigns,	tools

	

Some	say:	“Just	build	a	question-answering	system!”	or	“Just	build	an	AI
that	is	like	a	tool	rather	than	an	agent!”	But	these	suggestions	do	not	make
all	 safety	 concerns	 go	 away,	 and	 it	 is	 in	 fact	 a	 non-trivial	 question	which
type	of	 system	would	offer	 the	best	prospects	 for	 safety.	We	consider	 four
types	or	“castes”—oracles,	 genies,	 sovereigns,	and	 tools—and	explain	how
they	 relate	 to	 one	 another.1	 Each	 offers	 different	 sets	 of	 advantages	 and
disadvantages	in	our	quest	to	solve	the	control	problem.

Oracles

	

An	oracle	is	a	question-answering	system.	It	might	accept	questions	in	a	natural
language	 and	 present	 its	 answers	 as	 text.	 An	 oracle	 that	 accepts	 only	 yes/no
questions	 could	 output	 its	 best	 guess	with	 a	 single	 bit,	 or	 perhaps	with	 a	 few
extra	 bits	 to	 represent	 its	 degree	 of	 confidence.	 An	 oracle	 that	 accepts	 open-
ended	 questions	would	 need	 some	metric	with	which	 to	 rank	 possible	 truthful
answers	 in	 terms	 of	 their	 informativeness	 or	 appropriateness.2	 In	 either	 case,
building	 an	 oracle	 that	 has	 a	 fully	 domain-general	 ability	 to	 answer	 natural
language	questions	is	an	AI-complete	problem.	If	one	could	do	that,	one	could
probably	 also	 build	 an	 AI	 that	 has	 a	 decent	 ability	 to	 understand	 human
intentions	as	well	as	human	words.

Oracles	with	domain-limited	forms	of	superintelligence	are	also	conceivable.
For	 instance,	 one	 could	 conceive	 of	 a	 mathematics-oracle	 which	 would	 only
accept	 queries	 posed	 in	 a	 formal	 language	 but	 which	 would	 be	 very	 good	 at
answering	 such	 questions	 (e.g.	 being	 able	 to	 solve	 in	 an	 instant	 almost	 any
formally	expressed	math	problem	that	the	human	mathematics	profession	could
solve	 by	 laboring	 collaboratively	 for	 a	 century).	 Such	 a	 mathematics-oracle
would	form	a	stepping-stone	toward	domain-general	superintelligence.



Oracles	with	superintelligence	in	extremely	limited	domains	already	exist.	A
pocket	calculator	can	be	viewed	as	a	very	narrow	oracle	 for	basic	arithmetical
questions;	an	Internet	search	engine	can	be	viewed	as	a	very	partial	realization	of
an	oracle	with	 a	domain	 that	 encompasses	 a	 significant	part	 of	 general	 human
declarative	knowledge.	These	domain-limited	oracles	are	tools	rather	than	agents
(more	on	tool-AIs	shortly).	In	what	follows,	though,	the	term	“oracle”	will	refer
to	 question-answering	 systems	 that	 have	 domain-general	 superintelligence,
unless	otherwise	stated.

To	 make	 a	 general	 superintelligence	 function	 as	 an	 oracle,	 we	 could	 apply
both	 motivation	 selection	 and	 capability	 control.	 Motivation	 selection	 for	 an
oracle	may	be	easier	than	for	other	castes	of	superintelligence,	because	the	final
goal	 in	an	oracle	could	be	comparatively	simple.	We	would	want	 the	oracle	 to
give	truthful,	non-manipulative	answers	and	to	otherwise	limit	its	impact	on	the
world.	Applying	a	domesticity	method,	we	might	require	that	the	oracle	should
use	 only	 designated	 resources	 to	 produce	 its	 answer.	 For	 example,	 we	 might
stipulate	 that	 it	 should	 base	 its	 answer	 on	 a	 preloaded	 corpus	 of	 information,
such	as	a	stored	snapshot	of	the	Internet,	and	that	it	should	use	no	more	than	a
fixed	 number	 of	 computational	 steps.3	 To	 avoid	 incentivizing	 the	 oracle	 to
manipulate	us	into	giving	it	easier	questions—which	would	happen	if	we	gave	it
the	 goal	 of	 maximizing	 its	 accuracy	 across	 all	 questions	 we	 will	 ask	 it—we
could	 give	 it	 the	 goal	 of	 answering	 only	 one	 question	 and	 to	 terminate
immediately	upon	delivering	 its	answer.	The	question	would	be	preloaded	 into
its	memory	before	the	program	is	run.	To	ask	a	second	question,	we	would	reset
the	machine	 and	 run	 the	 same	 program	with	 a	 different	 question	 preloaded	 in
memory.

Subtle	 and	 potentially	 treacherous	 challenges	 arise	 even	 in	 specifying	 the
relatively	 simple	 motivation	 system	 needed	 to	 drive	 an	 oracle.	 Suppose,	 for
example,	that	we	come	up	with	some	explication	of	what	it	means	for	the	AI	“to
minimize	its	impact	on	the	world,	subject	to	achieving	certain	results”	or	“to	use
only	designated	resources	in	preparing	the	answer.”	What	happens	if	the	AI,	in
the	 course	 of	 its	 intellectual	 development,	 undergoes	 the	 equivalent	 of	 a
scientific	 revolution	 involving	 a	 change	 in	 its	 basic	 ontology?4	 We	 might
initially	 have	 explicated	 “impact”	 and	 “designated	 resources”	 using	 our	 own
ontology	 (postulating	 the	 existence	 of	 various	 physical	 objects	 such	 as
computers).	 But	 just	 as	 we	 have	 abandoned	 ontological	 categories	 that	 were
taken	for	granted	by	scientists	 in	previous	ages	(e.g.	“phlogiston,”	“élan	vital,”
and	“absolute	simultaneity”),	so	a	superintelligent	AI	might	discover	that	some



of	 our	 current	 categories	 are	 predicated	 on	 fundamental	 misconceptions.	 The
goal	 system	 of	 an	 AI	 undergoing	 an	 ontological	 crisis	 needs	 to	 be	 resilient
enough	 that	 the	 “spirit”	 of	 its	 original	 goal	 content	 is	 carried	 over,	 charitably
transposed	into	the	new	key.

Although	making	an	oracle	safe	through	the	use	of	motivation	selection	might
be	far	from	trivial,	it	may	nevertheless	be	easier	than	doing	the	same	for	an	AI
that	 roams	the	world	 in	pursuit	of	some	complicated	goal.	This	 is	an	argument
for	preferring	that	the	first	superintelligence	be	an	oracle.	Another	point	in	favor
of	 an	 oracle-first	 path	 is	 the	 greater	 susceptibility	 of	 an	 oracle	 to	 capability
control.	All	the	standard	boxing	methods	apply	here.	 In	addition,	 there	may	be
methods	 that	 are	 distinctively	 applicable	 to	 oracles.	 For	 example,	 consider	 the
risk	that	an	oracle	will	answer	questions	not	in	a	maximally	truthful	way	but	in
such	 a	way	 as	 to	 subtly	manipulate	 us	 into	 promoting	 its	 own	hidden	 agenda.
One	way	to	slightly	mitigate	this	threat	could	be	to	create	multiple	oracles,	each
with	a	slightly	different	code	and	a	slightly	different	information	base.	A	simple
mechanism	could	 then	compare	 the	answers	given	by	 the	different	oracles	and
only	present	 them	for	human	viewing	if	all	 the	answers	agree.	While	one	must
assume	 that	 any	 superintelligent	 domain-general	 oracle	would	 know	 about	 the
existence	of	other	oracles	 (it	 could	 infer	 this	 from	 its	knowledge	about	human
society),	it	might	be	feasible	to	hide	some	implementation	details	of	each	oracle
from	the	views	of	the	others.	If	the	oracles	are	not	able	to	communicate	with	one
another,	 it	might	then	be	difficult	for	them	to	coordinate	on	how	to	answer	our
questions	manipulatively.	There	are	many	ways	of	deviating	from	the	truth,	and
the	oracles	may	not	all	agree	on	which	of	 these	deviations	 is	most	attractive—
whereas	the	truth	itself	is	a	Schelling	point	(a	salient	place	for	agreement	in	the
absence	of	communication).	So	 if	 the	oracles	achieve	consensus,	 it	might	be	a
sign	that	they	gave	the	true	answer.5

An	 oracle	 would	 ideally	 be	 trustworthy	 in	 the	 sense	 that	 we	 could	 safely
assume	that	its	answers	are	always	accurate	to	the	best	of	its	ability.	But	even	an
untrustworthy	oracle	could	be	useful.	We	could	ask	such	an	oracle	questions	of	a
type	for	which	it	is	difficult	to	find	the	answer	but	easy	to	verify	whether	a	given
answer	 is	 correct.	 Many	 mathematical	 problems	 are	 of	 this	 kind.	 If	 we	 are
wondering	whether	a	mathematical	proposition	is	 true,	we	could	ask	the	oracle
to	produce	a	proof	or	disproof	of	the	proposition.	Finding	the	proof	may	require
insight	and	creativity	beyond	our	ken,	but	checking	a	purported	proof’s	validity
can	be	done	by	a	simple	mechanical	procedure.



If	it	is	expensive	to	verify	answers	(as	is	often	the	case	on	topics	outside	logic
and	mathematics),	we	can	 randomly	select	a	subset	of	 the	oracle’s	answers	 for
verification.	If	 they	are	all	correct,	we	can	assign	a	high	probability	 to	most	of
the	other	answers	also	being	correct.	This	 trick	can	give	us	a	bulk	discount	on
trustworthy	answers	that	would	be	costly	to	verify	individually.	(Unfortunately,
it	 cannot	 give	 us	 trustworthy	 answers	 that	 we	 are	 unable	 to	 verify,	 since	 a
dissembling	oracle	may	choose	to	answer	correctly	only	those	questions	where	it
believes	we	could	verify	its	answers.)

There	could	be	 important	 issues	on	which	we	could	benefit	 from	an	augural
pointer	 toward	 the	correct	answer	 (or	 toward	a	method	 for	 locating	 the	correct
answer)	 even	 if	 we	 had	 to	 actively	 distrust	 the	 provenance.	 For	 instance,	 one
might	 ask	 for	 the	 solution	 to	 various	 technical	 or	 philosophical	 problems	 that
may	arise	in	the	course	of	trying	to	develop	more	advanced	motivation	selection
methods.	 If	we	had	 a	 proposed	AI	 design	 alleged	 to	 be	 safe,	we	 could	 ask	 an
oracle	whether	it	could	identify	any	significant	flaw	in	the	design,	and	whether	it
could	explain	any	such	flaw	to	us	in	twenty	words	or	less.	Questions	of	this	kind
could	 elicit	 valuable	 information.	 Caution	 and	 restraint	 would	 be	 required,
however,	for	us	not	to	ask	too	many	such	questions—and	not	to	allow	ourselves
to	partake	of	too	many	details	of	the	answers	given	to	the	questions	we	do	ask—
lest	we	give	 the	untrustworthy	oracle	opportunities	 to	work	on	our	psychology
(by	means	of	plausible-seeming	but	subtly	manipulative	messages).	It	might	not
take	 many	 bits	 of	 communication	 for	 an	 AI	 with	 the	 social	 manipulation
superpower	to	bend	us	to	its	will.

Even	if	the	oracle	itself	works	exactly	as	intended,	there	is	a	risk	that	it	would
be	misused.	One	obvious	dimension	of	this	problem	is	that	an	oracle	AI	would
be	a	source	of	immense	power	which	could	give	a	decisive	strategic	advantage
to	its	operator.	This	power	might	be	illegitimate	and	it	might	not	be	used	for	the
common	good.	Another	more	subtle	but	no	less	important	dimension	is	that	the
use	of	an	oracle	could	be	extremely	dangerous	for	the	operator	herself.	Similar
worries	 (which	 involve	philosophical	as	well	as	 technical	 issues)	arise	also	 for
other	 hypothetical	 castes	 of	 superintelligence.	 We	 will	 explore	 them	 more
thoroughly	 in	Chapter	13.	Suffice	 it	 here	 to	note	 that	 the	protocol	determining
which	questions	are	asked,	in	which	sequence,	and	how	the	answers	are	reported
and	 disseminated	 could	 be	 of	 great	 significance.	 One	 might	 also	 consider
whether	 to	 try	 to	build	 the	oracle	 in	such	a	way	that	 it	would	refuse	 to	answer
any	 question	 in	 cases	 where	 it	 predicts	 that	 its	 answering	 would	 have
consequences	 classified	 as	 catastrophic	 according	 to	 some	 rough-and-ready



criteria.

Genies	and	sovereigns

	

A	 genie	 is	 a	 command-executing	 system:	 it	 receives	 a	 high-level	 command,
carries	it	out,	then	pauses	to	await	the	next	command.6	A	sovereign	is	a	system
that	has	an	open-ended	mandate	to	operate	in	the	world	in	pursuit	of	broad	and
possibly	 very	 long-range	 objectives.	Although	 these	might	 seem	 like	 radically
different	templates	for	what	a	superintelligence	should	be	and	do,	the	difference
is	not	as	deep	as	it	might	at	first	glance	appear.

With	a	genie,	one	already	sacrifices	the	most	attractive	property	of	an	oracle:
the	 opportunity	 to	 use	 boxing	 methods.	 While	 one	 might	 consider	 creating	 a
physically	confined	genie,	for	instance	one	that	can	only	construct	objects	inside
a	designated	volume—a	volume	that	might	be	sealed	off	by	a	hardened	wall	or	a
barrier	 loaded	with	 explosive	 charges	 rigged	 to	 detonate	 if	 the	 containment	 is
breached—it	would	be	difficult	to	have	much	confidence	in	the	security	of	any
such	 physical	 containment	 method	 against	 a	 superintelligence	 equipped	 with
versatile	 manipulators	 and	 construction	 materials.	 Even	 if	 it	 were	 somehow
possible	to	ensure	a	containment	as	secure	as	that	which	can	be	achieved	for	an
oracle,	 it	 is	 not	 clear	 how	 much	 we	 would	 have	 gained	 by	 giving	 the
superintelligence	direct	access	to	manipulators	compared	to	requiring	it	 instead
to	 output	 a	 blueprint	 that	 we	 could	 inspect	 and	 then	 use	 to	 achieve	 the	 same
result	ourselves.	The	gain	in	speed	and	convenience	from	bypassing	the	human
intermediary	 seems	 hardly	worth	 the	 loss	 of	 foregoing	 the	 use	 of	 the	 stronger
boxing	methods	available	to	contain	an	oracle.

If	one	were	creating	a	genie,	it	would	be	desirable	to	build	it	so	that	it	would
obey	 the	 intention	behind	 the	command	 rather	 than	 its	 literal	meaning,	 since	a
literalistic	 genie	 (one	 superintelligent	 enough	 to	 attain	 a	 decisive	 strategic
advantage)	might	have	a	propensity	to	kill	the	user	and	the	rest	of	humanity	on
its	first	use,	for	reasons	explained	in	 the	section	on	malignant	failure	modes	in
Chapter	 8.	 More	 broadly,	 it	 would	 seem	 important	 that	 the	 genie	 seek	 a
charitable—and	what	human	beings	would	regard	as	reasonable—interpretation
of	what	 is	being	commanded,	 and	 that	 the	genie	be	motivated	 to	carry	out	 the
command	 under	 such	 an	 interpretation	 rather	 than	 under	 the	 literalistic
interpretation.	 The	 ideal	 genie	 would	 be	 a	 super-butler	 rather	 than	 an	 autistic



savant.

A	genie	endowed	with	such	a	super-butler	nature,	however,	would	not	be	far
from	 qualifying	 for	 membership	 in	 the	 caste	 of	 sovereigns.	 Consider,	 for
comparison,	the	idea	of	building	a	sovereign	with	the	final	goal	of	obeying	the
spirit	of	the	commands	we	would	have	given	had	we	built	a	genie	rather	than	a
sovereign.	 Such	 a	 sovereign	would	mimic	 a	 genie.	Being	 superintelligent,	 this
sovereign	 would	 do	 a	 good	 job	 at	 guessing	 what	 commands	 we	 would	 have
given	a	genie	(and	it	could	always	ask	us	if	that	would	help	inform	its	decisions).
Would	 there	 then	 really	be	 any	 important	difference	between	 such	a	 sovereign
and	a	genie?	Or,	pressing	on	the	distinction	from	the	other	side,	consider	that	a
superintelligent	genie	may	 likewise	be	able	 to	predict	what	commands	we	will
give	 it:	what	 then	 is	 gained	 from	 having	 it	 await	 the	 actual	 issuance	 before	 it
acts?

One	might	 think	 that	 a	 big	 advantage	 of	 a	 genie	 over	 a	 sovereign	 is	 that	 if
something	goes	wrong,	we	could	issue	the	genie	with	a	new	command	to	stop	or
to	 reverse	 the	 effects	 of	 the	 previous	 actions,	whereas	 a	 sovereign	would	 just
push	 on	 regardless	 of	 our	 protests.	 But	 this	 apparent	 safety	 advantage	 for	 the
genie	is	largely	illusory.	The	“stop”	or	“undo”	button	on	a	genie	works	only	for
benign	 failure	 modes:	 in	 the	 case	 of	 a	 malignant	 failure—one	 in	 which,	 for
example,	 carrying	 out	 the	 existing	 command	 has	 become	 a	 final	 goal	 for	 the
genie—the	 genie	 would	 simply	 disregard	 any	 subsequent	 attempt	 to
countermand	the	previous	command.7

One	option	would	be	to	try	to	build	a	genie	such	that	it	would	automatically
present	the	user	with	a	prediction	about	salient	aspects	of	the	likely	outcomes	of
a	proposed	command,	asking	for	confirmation	before	proceeding.	Such	a	system
could	be	 referred	 to	 as	 a	genie-with-a-preview.	But	 if	 this	 could	be	done	 for	a
genie,	 it	 could	 likewise	 be	 done	 for	 a	 sovereign.	 So	 again,	 this	 is	 not	 a	 clear
differentiator	 between	 a	 genie	 and	 a	 sovereign.	 (Supposing	 that	 a	 preview
functionality	could	be	created,	the	questions	of	whether	and	if	so	how	to	use	it
are	rather	less	obvious	than	one	might	think,	notwithstanding	the	strong	appeal
of	 being	 able	 to	 glance	 at	 the	 outcome	 before	 committing	 to	 making	 it
irrevocable	reality.	We	will	return	to	this	matter	later.)

The	 ability	 of	 one	 caste	 to	 mimic	 another	 extends	 to	 oracles,	 too.	 A	 genie
could	be	made	to	act	like	an	oracle	if	the	only	commands	we	ever	give	it	are	to
answer	 certain	questions.	An	oracle,	 in	 turn,	 could	be	made	 to	 substitute	 for	 a



genie	 if	we	 asked	 the	 oracle	what	 the	 easiest	way	 is	 to	 get	 certain	 commands
executed.	 The	 oracle	 could	 give	 us	 step-by-step	 instructions	 for	 achieving	 the
same	result	as	a	genie	would	produce,	or	it	could	even	output	the	source	code	for
a	 genie.8	 Similar	 points	 can	 be	 made	 with	 regard	 to	 the	 relation	 between	 an
oracle	and	a	sovereign.

The	real	difference	between	the	three	castes,	therefore,	does	not	reside	in	the
ultimate	capabilities	that	they	would	unlock.	Instead,	the	difference	comes	down
to	 alternative	 approaches	 to	 the	 control	 problem.	 Each	 caste	 corresponds	 to	 a
different	 set	 of	 safety	 precautions.	The	most	 prominent	 feature	 of	 an	 oracle	 is
that	 it	 can	 be	 boxed.	 One	 might	 also	 try	 to	 apply	 domesticity	 motivation
selection	to	an	oracle.	A	genie	is	harder	to	box,	but	at	least	domesticity	may	be
applicable.	 A	 sovereign	 can	 neither	 be	 boxed	 nor	 handled	 through	 the
domesticity	approach.

If	 these	were	 the	 only	 relevant	 factors,	 then	 the	 order	 of	 desirability	would
seem	clear:	an	oracle	would	be	safer	than	a	genie,	which	would	be	safer	than	a
sovereign;	 and	 any	 initial	 differences	 in	 convenience	 and	 speed	 of	 operation
would	be	relatively	small	and	easily	dominated	by	the	gains	in	safety	obtainable
by	building	an	oracle.	However,	there	are	other	factors	that	need	to	be	taken	into
account.	 When	 choosing	 between	 castes,	 one	 should	 consider	 not	 only	 the
danger	posed	by	the	system	itself	but	also	the	dangers	that	arise	out	of	the	way	it
might	 be	 used.	 A	 genie	 most	 obviously	 gives	 the	 person	 who	 controls	 it
enormous	 power,	 but	 the	 same	 holds	 for	 an	 oracle.9	A	 sovereign,	 by	 contrast,
could	 be	 constructed	 in	 such	 way	 as	 to	 accord	 no	 one	 person	 or	 group	 any
special	influence	over	the	outcome,	and	such	that	it	would	resist	any	attempt	to
corrupt	or	alter	its	original	agenda.	What	is	more,	if	a	sovereign’s	motivation	is
defined	using	“indirect	normativity”	 (a	 concept	 to	be	described	 in	Chapter	13)
then	 it	 could	 be	 used	 to	 achieve	 some	 abstractly	 defined	 outcome,	 such	 as
“whatever	 is	maximally	 fair	 and	morally	 right”—without	 anybody	knowing	 in
advance	what	exactly	this	will	entail.	This	would	create	a	situation	analogous	to
a	Rawlsian	“veil	of	ignorance.”10	Such	a	setup	might	facilitate	the	attainment	of
consensus,	help	prevent	conflict,	and	promote	a	more	equitable	outcome.

Another	point,	which	counts	against	some	types	of	oracles	and	genies,	is	that
there	are	risks	involved	in	designing	a	superintelligence	to	have	a	final	goal	that
does	not	fully	match	the	outcome	that	we	ultimately	seek	to	attain.	For	example,
if	 we	 use	 a	 domesticity	 motivation	 to	 make	 the	 superintelligence	 want	 to
minimize	 some	of	 its	 impacts	on	 the	world,	we	might	 thereby	create	 a	 system



whose	 preference	 ranking	 over	 possible	 outcomes	 differs	 from	 that	 of	 the
sponsor.	The	same	will	happen	if	we	build	the	AI	to	place	a	peculiarly	high	value
on	answering	questions	correctly,	or	on	faithfully	obeying	individual	commands.
Now,	if	sufficient	care	is	taken,	this	should	not	cause	any	problems:	there	would
be	 sufficient	 agreement	 between	 the	 two	 rankings—at	 least	 insofar	 as	 they
pertain	 to	possible	worlds	 that	have	a	 reasonable	chance	of	being	actualized—
that	 the	 outcomes	 that	 are	 good	 by	 the	 AI’s	 standard	 are	 also	 good	 by	 the
principal’s	standard.	But	perhaps	one	could	argue	for	the	design	principle	that	it
is	 unwise	 to	 introduce	 even	 a	 limited	 amount	of	disharmony	between	 the	AI’s
goals	and	ours.	(The	same	concern	would	of	course	apply	to	giving	sovereigns
goals	that	do	not	completely	harmonize	with	ours.)

Tool-AIs

	

One	suggestion	 that	has	been	made	 is	 that	we	build	 the	superintelligence	 to	be
like	a	tool	rather	than	an	agent.11	This	idea	seems	to	arise	out	of	the	observation
that	 ordinary	 software,	which	 is	 used	 in	 countless	 applications,	 does	 not	 raise
any	safety	concerns	even	remotely	analogous	to	the	challenges	discussed	in	this
book.	Might	 one	 not	 create	 “tool-AI”	 that	 is	 like	 such	 software—like	 a	 flight
control	system,	say,	or	a	virtual	assistant—only	more	flexible	and	capable?	Why
build	a	superintelligence	that	has	a	will	of	its	own?	On	this	line	of	thinking,	the
agent	paradigm	is	 fundamentally	misguided.	 Instead	of	creating	an	AI	 that	has
beliefs	and	desires	and	that	acts	like	an	artificial	person,	we	should	aim	to	build
regular	software	that	simply	does	what	it	is	programmed	to	do.

This	idea	of	creating	software	that	“simply	does	what	it	is	programmed	to	do”
is,	 however,	 not	 so	 straightforward	 if	 the	 product	 being	 created	 is	 a	 powerful
general	 intelligence.	 There	 is,	 of	 course,	 a	 trivial	 sense	 in	 which	 all	 software
simply	 does	 what	 it	 is	 programmed	 to	 do:	 the	 behavior	 is	 mathematically
specified	 by	 the	 code.	 But	 this	 is	 equally	 true	 for	 all	 castes	 of	 machine
intelligence,	“tool-AI”	or	not.	If,	 instead,	“simply	doing	what	it	 is	programmed
to	do”	means	that	the	software	behaves	as	the	programmers	intended,	then	this	is
a	standard	that	ordinary	software	very	often	fails	to	meet.

Because	of	the	limited	capabilities	of	contemporary	software	(compared	with
those	 of	 machine	 superintelligence)	 the	 consequences	 of	 such	 failures	 are
manageable,	ranging	from	insignificant	to	very	costly,	but	in	no	case	amounting



to	 an	 existential	 threat.12	 However,	 if	 it	 is	 insufficient	 capability	 rather	 than
sufficient	 reliability	 that	 makes	 ordinary	 software	 existentially	 safe,	 then	 it	 is
unclear	 how	 such	 software	 could	 be	 a	 model	 for	 a	 safe	 superintelligence.	 It
might	 be	 thought	 that	 by	 expanding	 the	 range	 of	 tasks	 done	 by	 ordinary
software,	one	could	eliminate	the	need	for	artificial	general	intelligence.	But	the
range	and	diversity	of	tasks	that	a	general	intelligence	could	profitably	perform
in	 a	 modern	 economy	 is	 enormous.	 It	 would	 be	 infeasible	 to	 create	 special-
purpose	software	 to	handle	all	of	 those	 tasks.	Even	 if	 it	 could	be	done,	 such	a
project	would	 take	a	 long	 time	 to	carry	out.	Before	 it	 could	be	completed,	 the
nature	 of	 some	 of	 the	 tasks	 would	 have	 changed,	 and	 new	 tasks	 would	 have
become	 relevant.	 There	would	 be	 great	 advantage	 to	 having	 software	 that	 can
learn	on	 its	own	 to	do	new	 tasks,	and	 indeed	 to	discover	new	 tasks	 in	need	of
doing.	But	this	would	require	that	the	software	be	able	to	learn,	reason,	and	plan,
and	to	do	so	in	a	powerful	and	robustly	cross-domain	manner.	In	other	words,	it
would	require	general	intelligence.

Especially	relevant	for	our	purposes	is	the	task	of	software	development	itself.
There	would	be	 enormous	practical	 advantages	 to	being	 able	 to	 automate	 this.
Yet	 the	 capacity	 for	 rapid	 self-improvement	 is	 just	 the	 critical	 property	 that
enables	a	seed	AI	to	set	off	an	intelligence	explosion.

If	 general	 intelligence	 is	 not	 dispensable,	 is	 there	 some	 other	 way	 of
construing	the	tool-AI	idea	so	as	to	preserve	the	reassuringly	passive	quality	of	a
humdrum	 tool?	 Could	 one	 have	 a	 general	 intelligence	 that	 is	 not	 an	 agent?
Intuitively,	it	is	not	just	the	limited	capability	of	ordinary	software	that	makes	it
safe:	it	is	also	its	lack	of	ambition.	There	is	no	subroutine	in	Excel	that	secretly
wants	 to	 take	 over	 the	world	 if	 only	 it	were	 smart	 enough	 to	 find	 a	way.	The
spreadsheet	application	does	not	“want”	anything	at	all;	it	just	blindly	carries	out
the	instructions	in	the	program.	What	(one	might	wonder)	stands	in	the	way	of
creating	a	more	generally	intelligent	application	of	the	same	type?	An	oracle,	for
instance,	 which,	 when	 prompted	 with	 a	 description	 of	 a	 goal,	 would	 respond
with	a	plan	for	how	to	achieve	it,	in	much	the	same	way	that	Excel	responds	to	a
column	 of	 numbers	 by	 calculating	 a	 sum—without	 thereby	 expressing	 any
“preferences”	regarding	its	output	or	how	humans	might	choose	to	use	it?

The	classical	way	of	writing	software	requires	the	programmer	to	understand
the	 task	 to	 be	 performed	 in	 sufficient	 detail	 to	 formulate	 an	 explicit	 solution
process	 consisting	 of	 a	 sequence	 of	 mathematically	 well-defined	 steps
expressible	 in	 code.13	 (In	 practice,	 software	 engineers	 rely	 on	 code	 libraries



stocked	 with	 useful	 behaviors,	 which	 they	 can	 invoke	 without	 needing	 to
understand	 how	 the	 behaviors	 are	 implemented.	 But	 that	 code	 was	 originally
created	 by	 programmers	who	 had	 a	 detailed	 understanding	 of	what	 they	were
doing.)	This	approach	works	for	solving	well-understood	tasks,	and	is	to	credit
for	most	software	that	 is	currently	in	use.	It	falls	short,	however,	when	nobody
knows	precisely	how	to	solve	all	of	the	tasks	that	need	to	be	accomplished.	This
is	where	 techniques	from	the	field	of	artificial	 intelligence	become	relevant.	 In
narrow	applications,	machine	learning	might	be	used	merely	to	fine-tune	a	few
parameters	 in	 a	 largely	 human-designed	 program.	 A	 spam	 filter,	 for	 example,
might	be	trained	on	a	corpus	of	hand-classified	email	messages	in	a	process	that
changes	the	weights	that	the	classification	algorithm	places	on	various	diagnostic
features.	In	a	more	ambitious	application,	the	classifier	might	be	built	so	that	it
can	 discover	 new	 features	 on	 its	 own	 and	 test	 their	 validity	 in	 a	 changing
environment.	 An	 even	more	 sophisticated	 spam	 filter	 could	 be	 endowed	 with
some	ability	to	reason	about	the	trade-offs	facing	the	user	or	about	the	contents
of	the	messages	it	is	classifying.	In	neither	of	these	cases	does	the	programmer
need	to	know	the	best	way	of	distinguishing	spam	from	ham,	only	how	to	set	up
an	algorithm	that	can	improve	its	own	performance	via	learning,	discovering,	or
reasoning.

With	 advances	 in	 artificial	 intelligence,	 it	 would	 become	 possible	 for	 the
programmer	to	offload	more	of	the	cognitive	labor	required	to	figure	out	how	to
accomplish	 a	 given	 task.	 In	 an	 extreme	 case,	 the	 programmer	 would	 simply
specify	a	formal	criterion	of	what	counts	as	success	and	leave	it	to	the	AI	to	find
a	solution.	To	guide	its	search,	the	AI	would	use	a	set	of	powerful	heuristics	and
other	methods	to	discover	structure	 in	 the	space	of	possible	solutions.	It	would
keep	searching	until	 it	 found	a	solution	 that	satisfied	 the	success	criterion.	The
AI	would	then	either	 implement	 the	solution	itself	or	(in	 the	case	of	an	oracle)
report	the	solution	to	the	user.

Rudimentary	 forms	 of	 this	 approach	 are	 quite	 widely	 deployed	 today.
Nevertheless,	software	that	uses	AI	and	machine	learning	techniques,	 though	it
has	 some	 ability	 to	 find	 solutions	 that	 the	 programmers	 had	 not	 anticipated,
functions	for	all	practical	purposes	like	a	tool	and	poses	no	existential	risk.	We
would	 enter	 the	 danger	 zone	 only	 when	 the	 methods	 used	 in	 the	 search	 for
solutions	 become	 extremely	 powerful	 and	 general:	 that	 is,	when	 they	 begin	 to
amount	 to	 general	 intelligence—and	 especially	when	 they	 begin	 to	 amount	 to
superintelligence.



There	 are	 (at	 least)	 two	 places	 where	 trouble	 could	 then	 arise.	 First,	 the
superintelligent	search	process	might	find	a	solution	that	is	not	just	unexpected
but	 radically	 unintended.	 This	 could	 lead	 to	 a	 failure	 of	 one	 of	 the	 types
discussed	 previously	 (“perverse	 instantiation,”	 “infrastructure	 profusion,”	 or
“mind	 crime”).	 It	 is	 most	 obvious	 how	 this	 could	 happen	 in	 the	 case	 of	 a
sovereign	 or	 a	 genie,	 which	 directly	 implements	 the	 solution	 it	 has	 found.	 If
making	molecular	smiley	faces	or	transforming	the	planet	into	paperclips	is	the
first	 idea	 that	 the	 superintelligence	 discovers	 that	meets	 the	 solution	 criterion,
then	smiley	faces	or	paperclips	we	get.14	But	even	an	oracle,	which—if	all	else
goes	 well—merely	 reports	 the	 solution,	 could	 become	 a	 cause	 of	 perverse
instantiation.	The	user	asks	the	oracle	for	a	plan	to	achieve	a	certain	outcome,	or
for	a	technology	to	serve	a	certain	function;	and	when	the	user	follows	the	plan
or	constructs	the	technology,	a	perverse	instantiation	can	ensue,	just	as	if	the	AI
had	implemented	the	solution	itself.15

A	 second	 place	where	 trouble	 could	 arise	 is	 in	 the	 course	 of	 the	 software’s
operation.	 If	 the	 methods	 that	 the	 software	 uses	 to	 search	 for	 a	 solution	 are
sufficiently	sophisticated,	 they	may	include	provisions	for	managing	the	search
process	 itself	 in	 an	 intelligent	 manner.	 In	 this	 case,	 the	 machine	 running	 the
software	may	begin	to	seem	less	like	a	mere	tool	and	more	like	an	agent.	Thus,
the	software	may	start	by	developing	a	plan	for	how	to	go	about	its	search	for	a
solution.	 The	 plan	 may	 specify	 which	 areas	 to	 explore	 first	 and	 with	 what
methods,	 what	 data	 to	 gather,	 and	 how	 to	 make	 best	 use	 of	 available
computational	 resources.	 In	 searching	 for	 a	 plan	 that	 satisfies	 the	 software’s
internal	 criterion	 (such	 as	 yielding	 a	 sufficiently	 high	 probability	 of	 finding	 a
solution	 satisfying	 the	 user-specified	 criterion	 within	 the	 allotted	 time),	 the
software	may	stumble	on	an	unorthodox	idea.	For	instance,	 it	might	generate	a
plan	 that	begins	with	 the	acquisition	of	additional	computational	 resources	and
the	elimination	of	potential	interrupters	(such	as	human	beings).	Such	“creative”
plans	come	into	view	when	the	software’s	cognitive	abilities	reach	a	sufficiently
high	 level.	 When	 the	 software	 puts	 such	 a	 plan	 into	 action,	 an	 existential
catastrophe	may	ensue.

As	the	examples	in	Box	9	illustrate,	open-ended	search	processes	sometimes
evince	 strange	 and	 unexpected	 non-anthropocentric	 solutions	 even	 in	 their
currently	limited	forms.	Present-day	search	processes	are	not	hazardous	because
they	are	 too	weak	 to	discover	 the	kind	of	plan	 that	 could	enable	 a	program	 to
take	over	the	world.	Such	a	plan	would	include	extremely	difficult	steps,	such	as
the	 invention	 of	 a	 new	 weapons	 technology	 several	 generations	 ahead	 of	 the



state	 of	 the	 art	 or	 the	 execution	 of	 a	 propaganda	 campaign	 far	more	 effective
than	 any	 communication	devised	by	human	 spin	doctors.	To	have	 a	 chance	of
even	conceiving	 of	 such	 ideas,	 let	 alone	developing	 them	 in	 a	way	 that	would
actually	 work,	 a	 machine	 would	 probably	 need	 the	 capacity	 to	 represent	 the
world	in	a	way	that	is	at	least	as	rich	and	realistic	as	the	world	model	possessed
by	 a	 normal	 human	 adult	 (though	 a	 lack	 of	 awareness	 in	 some	 areas	 might
possibly	 be	 compensated	 for	 by	 extra	 skill	 in	 others).	 This	 is	 far	 beyond	 the
reach	of	contemporary	AI.	And	because	of	 the	combinatorial	explosion,	which
generally	 defeats	 attempts	 to	 solve	 complicated	 planning	problems	with	 brute-
force	methods	(as	we	saw	in	Chapter	1),	the	shortcomings	of	known	algorithms
cannot	realistically	be	overcome	simply	by	pouring	on	more	computing	power.21
However,	once	the	search	or	planning	processes	become	powerful	enough,	they
also	become	potentially	dangerous.

Box	9	Strange	solutions	from	blind	search

	

Even	 simple	 evolutionary	 search	 processes	 sometimes	 produce	 highly
unexpected	results,	solutions	that	satisfy	a	formal	user-defined	criterion	in	a	very
different	way	than	the	user	expected	or	intended.

The	field	of	evolvable	hardware	offers	many	illustrations	of	this	phenomenon.
In	this	field,	an	evolutionary	algorithm	searches	the	space	of	hardware	designs,
testing	 the	 fitness	 of	 each	 design	 by	 instantiating	 it	 physically	 on	 a	 rapidly
reconfigurable	 array	 or	 motherboard.	 The	 evolved	 designs	 often	 show
remarkable	 economy.	 For	 instance,	 one	 search	 discovered	 a	 frequency
discrimination	 circuit	 that	 functioned	without	 a	 clock—a	 component	 normally
considered	 necessary	 for	 this	 function.	 The	 researchers	 estimated	 that	 the
evolved	circuit	was	between	one	and	two	orders	of	magnitude	smaller	than	what
a	 human	 engineer	would	 have	 required	 for	 the	 task.	 The	 circuit	 exploited	 the
physical	 properties	 of	 its	 components	 in	 unorthodox	 ways;	 some	 active,
necessary	 components	 were	 not	 even	 connected	 to	 the	 input	 or	 output	 pins!
These	components	 instead	participated	via	what	would	normally	be	considered
nuisance	side	effects,	such	as	electromagnetic	coupling	or	power-supply	loading.

Another	search	process,	tasked	with	creating	an	oscillator,	was	deprived	of	a
seemingly	 even	 more	 indispensible	 component,	 the	 capacitor.	 When	 the



algorithm	 presented	 its	 successful	 solution,	 the	 researchers	 examined	 it	 and	 at
first	concluded	that	it	“should	not	work.”	Upon	more	careful	examination,	they
discovered	 that	 the	 algorithm	had,	MacGyver-like,	 reconfigured	 its	 sensor-less
motherboard	 into	 a	 makeshift	 radio	 receiver,	 using	 the	 printed	 circuit	 board
tracks	 as	 an	 aerial	 to	 pick	 up	 signals	 generated	 by	 personal	 computers	 that
happened	to	be	situated	nearby	in	the	laboratory.	The	circuit	amplified	this	signal
to	produce	the	desired	oscillating	output.16

In	 other	 experiments,	 evolutionary	 algorithms	 designed	 circuits	 that	 sensed
whether	the	motherboard	was	being	monitored	with	an	oscilloscope	or	whether	a
soldering	 iron	 was	 connected	 to	 the	 lab’s	 common	 power	 supply.	 These
examples	 illustrate	 how	 an	 open-ended	 search	 process	 can	 repurpose	 the
materials	 accessible	 to	 it	 in	 order	 to	 devise	 completely	 unexpected	 sensory
capabilities,	 by	 means	 that	 conventional	 human	 design-thinking	 is	 poorly
equipped	to	exploit	or	even	account	for	in	retrospect.

The	tendency	for	evolutionary	search	to	“cheat”	or	find	counterintuitive	ways
of	 achieving	 a	 given	 end	 is	 on	 display	 in	 nature	 too,	 though	 it	 is	 perhaps	 less
obvious	 to	 us	 there	 because	 of	 our	 already	 being	 somewhat	 familiar	 with	 the
look	and	feel	of	biology,	and	thus	being	prone	to	regarding	the	actual	outcomes
of	 natural	 evolutionary	 processes	 as	 normal—even	 if	 we	 would	 not	 have
expected	 them	 ex	 ante.	 But	 it	 is	 possible	 to	 set	 up	 experiments	 in	 artificial
selection	 where	 one	 can	 see	 the	 evolutionary	 process	 in	 action	 outside	 its
familiar	 context.	 In	 such	 experiments,	 researchers	 can	 create	 conditions	 that
rarely	obtain	in	nature,	and	observe	the	results.

For	example,	prior	to	the	1960s,	it	was	apparently	quite	common	for	biologists
to	maintain	that	predator	populations	restrict	their	own	breeding	in	order	to	avoid
falling	 into	 a	 Malthusian	 trap.17	 Although	 individual	 selection	 would	 work
against	 such	 restraint,	 it	 was	 sometimes	 thought	 that	 group	 selection	 would
overcome	 individual	 incentives	 to	 exploit	 opportunities	 for	 reproduction	 and
favor	 traits	 that	 would	 benefit	 the	 group	 or	 population	 at	 large.	 Theoretical
analysis	 and	 simulation	 studies	 later	 showed	 that	 while	 group	 selection	 is
possible	in	principle,	it	can	overcome	strong	individual	selection	only	under	very
stringent	conditions	that	may	rarely	apply	in	nature.18	But	such	conditions	can	be
created	 in	 the	 laboratory.	When	 flour	beetles	 (Tribolium	castaneum)	were	bred
for	 reduced	 population	 size,	 by	 applying	 strong	 group	 selection,	 evolution	 did
indeed	 lead	 to	 smaller	 populations.19	 However,	 the	 means	 by	 which	 this	 was
accomplished	 included	not	 only	 the	 “benign”	 adaptations	of	 reduced	 fecundity



and	 extended	 developmental	 time	 that	 a	 human	 naively	 anthropomorphizing
evolutionary	search	might	have	expected,	but	also	an	increase	in	cannibalism.20

	

Instead	 of	 allowing	 agent-like	 purposive	 behavior	 to	 emerge	 spontaneously
and	 haphazardly	 from	 the	 implementation	 of	 powerful	 search	 processes
(including	 processes	 searching	 for	 internal	 work	 plans	 and	 processes	 directly
searching	for	solutions	meeting	some	user-specified	criterion),	 it	may	be	better
to	 create	 agents	 on	 purpose.	 Endowing	 a	 superintelligence	 with	 an	 explicitly
agent-like	structure	can	be	a	way	of	increasing	predictability	and	transparency.	A
well-designed	 system,	 built	 such	 that	 there	 is	 a	 clean	 separation	 between	 its
values	 and	 its	 beliefs,	 would	 let	 us	 predict	 something	 about	 the	 outcomes	 it
would	 tend	 to	produce.	Even	 if	we	could	not	 foresee	exactly	which	beliefs	 the
system	would	acquire	or	which	situations	it	would	find	itself	in,	there	would	be	a
known	place	where	we	could	inspect	its	final	values	and	thus	the	criteria	that	it
will	use	in	selecting	its	future	actions	and	in	evaluating	any	potential	plan.

Comparison

	

It	may	be	useful	to	summarize	the	features	of	the	different	system	castes	we	have
discussed	(Table	11).

Table	11	Features	of	different	system	castes

	 	

Oracle A	question-answering	system •	Boxing	methods	fully
applicable

•	Domesticity	fully
applicable

•	Reduced	need	for	AI	to



	

Variations:	Domain-limited	oracles	(e.g.
mathematics);	output-restricted	oracles	(e.g.
only	yes/no/undecided	answers,	or
probabilities);	oracles	that	refuse	to	answer
questions	if	they	predict	the	consequences	of
answering	would	meet	pre-specified
“disaster	criteria”;	multiple	oracles	for	peer
review

understand	human
intentions	and	interests
(compared	to	genies
and	sovereigns)

•	Use	of	yes/no	questions
can	obviate	need	for	a
metric	of	the
“usefulness”	or
“informativeness”	of
answers

•	Source	of	great	power
(might	give	operator	a
decisive	strategic
advantage)

•	Limited	protection
against	foolish	use	by
operator

•	Untrustworthy	oracles
could	be	used	to
provide	answers	that
are	hard	to	find	but
easy	to	verify

•	Weak	verification	of
answers	may	be
possible	through	the
use	of	multiple	oracles

Genie A	command-executing	system

•	Boxing	methods
partially	applicable
(for	spatially	limited
genies)



	

Variations:	Genies	using	different
“extrapolation	distances”	or	degrees	of
following	the	spirit	rather	than	letter	of	the
command;	domain-limited	genies;	genies-
with-preview;	genies	that	refuse	to	obey
commands	if	they	predict	the	consequences
of	obeying	would	meet	pre-specified
“disaster	criteria”

•	Domesticity	partially
applicable

•	Genie	could	offer	a
preview	of	salient
aspects	of	expected
outcomes

•	Genie	could	implement
change	in	stages,	with
opportunity	for	review
at	each	stage

•	Source	of	great	power
(might	give	operator	a
decisive	strategic
advantage)

•	Limited	protection
against	foolish	use	by
operator

•	Greater	need	for	AI	to
understand	human
interests	and	intentions
(compared	to	oracles)

Sovereign A	system	designed	for	open-endedautonomous	operation

•	Boxing	methods
inapplicable

•	Most	other	capability
control	methods	also
inapplicable	(except,
possibly,	social
integration	or
anthropic	capture)

•	Domesticity	mostly



	

Variations:	Many	possible	motivation
systems;	possibility	of	using	preview	and
“sponsor	ratification”	(to	be	discussed	in
Chapter	13)

inapplicable

•	Great	need	for	AI	to
understand	true	human
interests	and	intentions

•	Necessity	of	getting	it
right	on	the	first	try
(though,	to	a	possibly
lesser	extent,	this	is
true	for	all	castes)

•	Potentially	a	source	of
great	power	for
sponsor,	including
decisive	strategic
advantage

•	Once	activated,	not
vulnerable	to	hijacking
by	operator,	and	might
be	designed	with	some
protection	against
foolish	use

•	Can	be	used	to
implement	“veil	of
ignorance”	outcomes
(cf.	Chapter	13)

•	Boxing	methods	may
be	applicable,
depending	on	the
implementation

•	Powerful	search
processes	would	likely
be	involved	in	the
development	and



Tool A	system	not	designed	to	exhibit	goal-
directed	behavior

operation	of	a	machine
superintelligence

•	Powerful	search	to	find
a	solution	meeting
some	formal	criterion
can	produce	solutions
that	meet	the	criterion
in	an	unintended	and
dangerous	way

•	Powerful	search	might
involve	secondary,
internal	search	and
planning	processes
that	might	find
dangerous	ways	of
executing	the	primary
search	process

Further	 research	would	be	needed	 to	determine	which	 type	of	system	would
be	safest.	The	answer	might	depend	on	the	conditions	under	which	the	AI	would
be	deployed.	The	oracle	 caste	 is	 obviously	 attractive	 from	a	 safety	 standpoint,
since	 it	would	 allow	 both	 capability	 control	methods	 and	motivation	 selection
methods	 to	 be	 applied.	 It	 might	 thus	 seem	 to	 simply	 dominate	 the	 sovereign
caste,	which	would	only	allow	motivation	selection	methods	(except	in	scenarios
in	which	 the	world	 is	believed	 to	contain	other	powerful	 superintelligences,	 in
which	 case	 social	 integration	 or	 anthropic	 capture	might	 apply).	 However,	 an
oracle	could	place	a	 lot	of	power	 into	 the	hands	of	 its	operator,	who	might	be
corrupted	or	might	apply	the	power	unwisely,	whereas	a	sovereign	would	offer
some	 protection	 against	 these	 hazards.	 The	 safety	 ranking	 is	 therefore	 not	 so
easily	determined.

A	genie	can	be	viewed	as	a	compromise	between	an	oracle	and	a	sovereign—
but	 not	 necessarily	 a	 good	 compromise.	 In	 many	 ways,	 it	 would	 share	 the
disadvantages	 of	 both.	 The	 apparent	 safety	 of	 a	 tool-AI,	 meanwhile,	 may	 be
illusory.	In	order	for	tools	to	be	versatile	enough	to	substitute	for	superintelligent



agents,	 they	 may	 need	 to	 deploy	 extremely	 powerful	 internal	 search	 and
planning	processes.	Agent-like	behaviors	may	 arise	 from	 such	processes	 as	 an
unplanned	consequence.	In	that	case,	it	would	be	better	to	design	the	system	to
be	an	agent	in	the	first	place,	so	that	the	programmers	can	more	easily	see	what
criteria	will	end	up	determining	the	system’s	output.



CHAPTER	11
Multipolar	scenarios

	

We	have	seen	(particularly	in	Chapter	8)	how	menacing	a	unipolar	outcome
could	be,	one	in	which	a	single	superintelligence	obtains	a	decisive	strategic
advantage	and	uses	 it	 to	establish	a	singleton.	 In	 this	chapter,	we	examine
what	would	happen	in	a	multipolar	outcome,	a	post-transition	society	with
multiple	 competing	 superintelligent	 agencies.	 Our	 interest	 in	 this	 class	 of
scenarios	 is	 twofold.	 First,	 as	 alluded	 to	 in	 Chapter	 9,	 social	 integration
might	 be	 thought	 to	 offer	 a	 solution	 to	 the	 control	 problem.	We	 already
noted	some	limitations	with	that	approach,	and	this	chapter	paints	a	fuller
picture.	 Second,	 even	 without	 anybody	 setting	 out	 to	 create	 a	 multipolar
condition	as	a	way	of	handling	the	control	problem,	such	an	outcome	might
occur	 anyway.	 So	 what	 might	 such	 an	 outcome	 look	 like?	 The	 resulting
competitive	society	is	not	necessarily	attractive,	nor	long-lasting.

In	singleton	scenarios,	what	happens	post-transition	depends	almost	entirely	on
the	values	of	 the	singleton.	The	outcome	could	thus	be	very	good	or	very	bad,
depending	on	what	 those	 values	 are.	What	 the	 values	 are	 depends,	 in	 turn,	 on
whether	 the	 control	 problem	was	 solved,	 and—to	 the	 degree	 to	 which	 it	 was
solved—on	the	goals	of	the	project	that	created	the	singleton.

If	one	is	interested	in	the	outcome	of	singleton	scenarios,	therefore,	one	really
only	has	three	sources	of	information:	information	about	matters	that	cannot	be
affected	by	the	actions	of	the	singleton	(such	as	the	laws	of	physics);	information
about	 convergent	 instrumental	 values;	 and	 information	 that	 enables	 one	 to
predict	or	speculate	about	what	final	values	the	singleton	will	have.

In	 multipolar	 scenarios,	 an	 additional	 set	 of	 constraints	 comes	 into	 play,
constraints	having	to	do	with	how	agents	interact.	The	social	dynamics	emerging
from	 such	 interactions	 can	 be	 studied	 using	 techniques	 from	 game	 theory,
economics,	and	evolution	theory.	Elements	of	political	science	and	sociology	are
also	 relevant	 insofar	 as	 they	 can	 be	 distilled	 and	 abstracted	 from	 some	 of	 the
more	contingent	features	of	human	experience.	Although	it	would	be	unrealistic



to	 expect	 these	 constraints	 to	 give	 us	 a	 precise	 picture	 of	 the	 post-transition
world,	 they	 can	 help	 us	 identify	 some	 salient	 possibilities	 and	 challenge	 some
unfounded	assumptions.

We	will	begin	by	exploring	an	economic	scenario	characterized	by	a	low	level
of	 regulation,	 strong	 protection	 of	 property	 rights,	 and	 a	 moderately	 rapid
introduction	of	 inexpensive	digital	minds.1	This	 type	 of	model	 is	most	 closely
associated	 with	 the	 American	 economist	 Robin	 Hanson,	 who	 has	 done
pioneering	 work	 on	 the	 subject.	 Later	 in	 this	 chapter,	 we	 will	 look	 at	 some
evolutionary	considerations	and	examine	the	prospects	of	an	initially	multipolar
post-transition	world	subsequently	coalescing	into	a	singleton.

Of	horses	and	men

	

General	machine	intelligence	could	serve	as	a	substitute	for	human	intelligence.
Not	only	could	digital	minds	perform	the	intellectual	work	now	done	by	humans,
but,	once	equipped	with	good	actuators	or	 robotic	bodies,	machines	could	also
substitute	for	human	physical	labor.	Suppose	that	machine	workers—which	can
be	 quickly	 reproduced—become	 both	 cheaper	 and	 more	 capable	 than	 human
workers	in	virtually	all	jobs.	What	happens	then?

Wages	and	unemployment

	

With	cheaply	copyable	labor,	market	wages	fall.	The	only	place	where	humans
would	remain	competitive	may	be	where	customers	have	a	basic	preference	for
work	done	by	humans.	Today,	goods	that	have	been	handcrafted	or	produced	by
indigenous	 people	 sometimes	 command	 a	 price	 premium.	 Future	 consumers
might	 similarly	 prefer	 human-made	 goods	 and	 human	 athletes,	 human	 artists,
human	 lovers,	 and	 human	 leaders	 to	 functionally	 indistinguishable	 or	 superior
artificial	 counterparts.	 It	 is	 unclear,	 however,	 just	 how	 widespread	 such
preferences	would	 be.	 If	machine-made	 alternatives	were	 sufficiently	 superior,
perhaps	they	would	be	more	highly	prized.

One	parameter	 that	might	be	relevant	 to	consumer	choice	is	 the	 inner	 life	of
the	 worker	 providing	 a	 service	 or	 product.	 A	 concert	 audience,	 for	 instance,



might	like	to	know	that	the	performer	is	consciously	experiencing	the	music	and
the	 venue.	Absent	 phenomenal	 experience,	 the	musician	 could	 be	 regarded	 as
merely	 a	 high-powered	 jukebox,	 albeit	 one	 capable	 of	 creating	 the	 three-
dimensional	 appearance	 of	 a	 performer	 interacting	 naturally	 with	 the	 crowd.
Machines	might	then	be	designed	to	instantiate	the	same	kinds	of	mental	states
that	would	be	present	 in	a	human	performing	the	same	task.	Even	with	perfect
replication	of	subjective	experiences,	however,	some	people	might	simply	prefer
organic	work.	 Such	 preferences	 could	 also	 have	 ideological	 or	 religious	 roots.
Just	 as	many	Muslims	 and	 Jews	 shun	 food	 prepared	 in	 ways	 they	 classify	 as
haram	 or	 treif,	 so	 there	 might	 be	 groups	 in	 the	 future	 that	 eschew	 products
whose	manufacture	involved	unsanctioned	use	of	machine	intelligence.

What	hinges	on	this?	To	the	extent	that	cheap	machine	labor	can	substitute	for
human	labor,	human	jobs	may	disappear.	Fears	about	automation	and	job	loss	are
of	course	not	new.	Concerns	about	 technological	unemployment	have	 surfaced
periodically,	at	least	since	the	Industrial	Revolution;	and	quite	a	few	professions
have	in	fact	gone	the	way	of	the	English	weavers	and	textile	artisans	who	in	the
early	nineteenth	century	united	under	the	banner	of	the	folkloric	“General	Ludd”
to	 fight	 against	 the	 introduction	 of	mechanized	 looms.	 Nevertheless,	 although
machinery	 and	 technology	 have	 been	 substitutes	 for	 many	 particular	 types	 of
human	labor,	physical	technology	has	on	the	whole	been	a	complement	to	labor.
Average	human	wages	around	the	world	have	been	on	a	long-term	upward	trend,
in	 large	 part	 because	 of	 such	 complementarities.	 Yet	 what	 starts	 out	 as	 a
complement	 to	 labor	 can	at	 a	 later	 stage	become	a	 substitute	 for	 labor.	Horses
were	 initially	complemented	by	carriages	and	ploughs,	which	greatly	 increased
the	horse’s	productivity.	Later,	 horses	were	 substituted	 for	by	 automobiles	 and
tractors.	These	later	innovations	reduced	the	demand	for	equine	labor	and	led	to
a	population	collapse.	Could	a	similar	fate	befall	the	human	species?

The	parallel	to	the	story	of	the	horse	can	be	drawn	out	further	if	we	ask	why	it
is	that	there	are	still	horses	around.	One	reason	is	that	there	are	still	a	few	niches
in	which	horses	have	functional	advantages;	 for	example,	police	work.	But	 the
main	reason	is	that	humans	happen	to	have	peculiar	preferences	for	the	services
that	 horses	 can	 provide,	 including	 recreational	 horseback	 riding	 and	 racing.
These	 preferences	 can	 be	 compared	 to	 the	 preferences	we	 hypothesized	 some
humans	might	 have	 in	 the	 future,	 that	 certain	 goods	 and	 services	 be	made	 by
human	hand.	Although	suggestive,	this	analogy	is,	however,	inexact,	since	there
is	 still	 no	 complete	 functional	 substitute	 for	 horses.	 If	 there	were	 inexpensive
mechanical	devices	that	ran	on	hay	and	had	exactly	the	same	shape,	feel,	smell,



and	 behavior	 as	 biological	 horses—perhaps	 even	 the	 same	 conscious
experiences—then	demand	for	biological	horses	would	probably	decline	further.

With	a	sufficient	reduction	in	the	demand	for	human	labor,	wages	would	fall
below	the	human	subsistence	level.	The	potential	downside	for	human	workers
is	therefore	extreme:	not	merely	wage	cuts,	demotions,	or	the	need	for	retraining,
but	starvation	and	death.	When	horses	became	obsolete	as	a	source	of	moveable
power,	many	were	sold	off	to	meatpackers	to	be	processed	into	dog	food,	bone
meal,	 leather,	 and	glue.	These	 animals	had	no	alternative	 employment	 through
which	to	earn	their	keep.	In	the	United	States,	there	were	about	26	million	horses
in	1915.	By	the	early	1950s,	2	million	remained.2

Capital	and	welfare

	

One	 difference	 between	 humans	 and	 horses	 is	 that	 humans	 own	 capital.	 A
stylized	empirical	fact	is	that	the	total	factor	share	of	capital	has	for	a	long	time
remained	 steady	 at	 approximately	 30%	 (though	 with	 significant	 short-term
fluctuations).3	This	means	that	30%	of	total	global	income	is	received	as	rent	by
owners	of	capital,	the	remaining	70%	being	received	as	wages	by	workers.	If	we
classify	AI	as	capital,	 then	with	 the	 invention	of	machine	 intelligence	 that	 can
fully	substitute	for	human	work,	wages	would	fall	 to	 the	marginal	cost	of	such
machine-substitutes,	 which—under	 the	 assumption	 that	 the	machines	 are	 very
efficient—would	be	 very	 low,	 far	 below	human	 subsistence-level	 income.	The
income	share	 received	by	 labor	would	 then	dwindle	 to	practically	nil.	But	 this
implies	that	the	factor	share	of	capital	would	become	nearly	100%	of	total	world
product.	 Since	 world	 GDP	 would	 soar	 following	 an	 intelligence	 explosion
(because	 of	 massive	 amounts	 of	 new	 labor-substituting	 machines	 but	 also
because	 of	 technological	 advances	 achieved	 by	 superintelligence,	 and,	 later,
acquisition	of	vast	amounts	of	new	land	through	space	colonization),	it	follows
that	the	total	income	from	capital	would	increase	enormously.	If	humans	remain
the	 owners	 of	 this	 capital,	 the	 total	 income	 received	 by	 the	 human	 population
would	grow	astronomically,	despite	the	fact	that	in	this	scenario	humans	would
no	longer	receive	any	wage	income.

The	human	species	as	a	whole	could	thus	become	rich	beyond	the	dreams	of
Avarice.	How	would	this	income	be	distributed?	To	a	first	approximation,	capital
income	 would	 be	 proportional	 to	 the	 amount	 of	 capital	 owned.	 Given	 the



astronomical	amplification	effect,	even	a	tiny	bit	of	pre-transition	wealth	would
balloon	into	a	vast	post-transition	fortune.	However,	in	the	contemporary	world,
many	 people	 have	 no	 wealth.	 This	 includes	 not	 only	 individuals	 who	 live	 in
poverty	but	also	some	people	who	earn	a	good	income	or	who	have	high	human
capital	 but	 have	 negative	 net	 worth.	 For	 example,	 in	 affluent	 Denmark	 and
Sweden	 30%	 of	 the	 population	 report	 negative	 wealth—often	 young,	 middle-
class	people	with	few	tangible	assets	and	credit	card	debt	or	student	loans.4	Even
if	savings	could	earn	extremely	high	interest,	there	would	need	to	be	some	seed
grain,	some	starting	capital,	in	order	for	the	compounding	to	begin.5

Nevertheless,	even	individuals	who	have	no	private	wealth	at	the	start	of	the
transition	 could	 become	 extremely	 rich.	 Those	 who	 participate	 in	 a	 pension
scheme,	 for	 instance,	whether	 public	 or	 private,	 should	 be	 in	 a	 good	 position,
provided	the	scheme	is	at	 least	partially	funded.6	Have-nots	could	also	become
rich	 through	 the	 philanthropy	 of	 those	 who	 see	 their	 net	 worth	 skyrocket:
because	 of	 the	 astronomical	 size	 of	 the	 bonanza,	 even	 a	 very	 small	 fraction
donated	as	alms	would	be	a	very	large	sum	in	absolute	terms.

It	is	also	possible	that	riches	could	still	be	made	through	work,	even	at	a	post-
transition	 stage	 when	 machines	 are	 functionally	 superior	 to	 humans	 in	 all
domains	(as	well	as	cheaper	than	even	subsistence-level	human	labor).	As	noted
earlier,	 this	could	happen	if	 there	are	niches	 in	which	human	labor	 is	preferred
for	aesthetic,	ideological,	ethical,	religious,	or	other	non-pragmatic	reasons.	In	a
scenario	 in	 which	 the	 wealth	 of	 human	 capital-holders	 increases	 dramatically,
demand	 for	 such	 labor	 could	 increase	 correspondingly.	 Newly	 minted
trillionaires	or	quadrillionaires	could	afford	 to	pay	a	hefty	premium	for	having
some	of	their	goods	and	services	supplied	by	an	organic	“fair-trade”	labor	force.
The	 history	 of	 horses	 again	 offers	 a	 parallel.	 After	 falling	 to	 2	million	 in	 the
early	1950s,	the	US	horse	population	has	undergone	a	robust	recovery:	a	recent
census	puts	the	number	at	just	under	10	million	head.7	The	rise	is	not	due	to	new
functional	 needs	 for	 horses	 in	 agriculture	 or	 transportation;	 rather,	 economic
growth	has	enabled	more	Americans	to	indulge	a	fancy	for	equestrian	recreation.

Another	 relevant	 difference	 between	 humans	 and	 horses,	 beside	 capital-
ownership,	 is	 that	 humans	 are	 capable	 of	 political	mobilization.	 A	 human-run
government	 could	 use	 the	 taxation	 power	 of	 the	 state	 to	 redistribute	 private
profits,	or	raise	revenue	by	selling	appreciated	state-owned	assets,	such	as	public
land,	and	use	the	proceeds	to	pension	off	its	constituents.	Again,	because	of	the
explosive	 economic	 growth	 during	 and	 immediately	 after	 the	 transition,	 there



would	be	vastly	more	wealth	sloshing	around,	making	it	relatively	easy	to	fill	the
cups	of	all	unemployed	citizens.	It	should	be	feasible	even	for	a	single	country	to
provide	 every	 human	 worldwide	 with	 a	 generous	 living	 wage	 at	 no	 greater
proportional	cost	than	what	many	countries	currently	spend	on	foreign	aid.8

The	Malthusian	principle	in	a	historical	perspective

	

So	far	we	have	assumed	a	constant	human	population.	This	may	be	a	reasonable
assumption	 for	 short	 timescales,	 since	 biology	 limits	 the	 rate	 of	 human
reproduction.	Over	longer	timescales,	however,	the	assumption	is	not	necessarily
reasonable.

The	 human	 population	 has	 increased	 a	 thousandfold	 over	 the	 past	 9,000
years.9	 The	 increase	 would	 have	 been	 much	 faster	 except	 for	 the	 fact	 that
throughout	most	of	history	and	prehistory,	 the	human	population	was	bumping
up	 against	 the	 limits	 of	 the	 world	 economy.	 An	 approximately	 Malthusian
condition	 prevailed,	 in	 which	most	 people	 received	 subsistence-level	 incomes
that	just	barely	allowed	them	to	survive	and	raise	an	average	of	two	children	to
maturity.10	 There	 were	 temporary	 and	 local	 reprieves:	 plagues,	 climate
fluctuations,	 or	warfare	 intermittently	 culled	 the	 population	 and	 freed	 up	 land,
enabling	 survivors	 to	 improve	 their	 nutritional	 intake—and	 to	 bring	 up	 more
children,	 until	 the	 ranks	 were	 replenished	 and	 the	 Malthusian	 condition
reinstituted.	 Also,	 thanks	 to	 social	 inequality,	 a	 thin	 elite	 stratum	 could	 enjoy
consistently	above-subsistence	income	(at	the	expense	of	somewhat	lowering	the
total	size	of	the	population	that	could	be	sustained).	A	sad	and	dissonant	thought:
that	in	this	Malthusian	condition,	the	normal	state	of	affairs	during	most	of	our
tenure	on	this	planet,	it	was	droughts,	pestilence,	massacres,	and	inequality—in
common	estimation	 the	worst	 foes	of	human	welfare—that	may	have	been	 the
greatest	 humanitarians:	 they	 alone	 enabling	 the	 average	 level	 of	well-being	 to
occasionally	bop	up	slightly	above	that	of	life	at	the	very	margin	of	subsistence.

Superimposed	on	local	fluctuations,	history	shows	a	macro-pattern	of	initially
slow	 but	 accelerating	 economic	 growth,	 fueled	 by	 the	 accumulation	 of
technological	 innovations.	 The	 growing	 world	 economy	 brought	 with	 it	 a
commensurate	increase	in	global	population.	(More	precisely,	a	larger	population
itself	appears	to	have	strongly	accelerated	the	rate	of	growth,	perhaps	mainly	by



increasing	 humanity’s	 collective	 intelligence.11)	 Only	 since	 the	 Industrial
Revolution,	 however,	 did	 economic	 growth	 become	 so	 rapid	 that	 population
growth	failed	to	keep	pace.	Average	income	thus	started	to	rise,	first	in	the	early-
industrializing	countries	of	Western	Europe,	subsequently	in	most	of	the	world.
Even	 in	 the	 poorest	 countries	 today,	 average	 income	 substantially	 exceeds
subsistence	level,	as	reflected	in	the	fact	that	the	populations	of	these	countries
are	growing.

The	poorest	 countries	 now	have	 the	 fastest	 population	growth,	 as	 they	have
yet	to	complete	the	“demographic	transition”	to	the	low-fertility	regime	that	has
taken	 hold	 in	 more	 developed	 societies.	 Demographers	 project	 that	 the	 world
population	will	rise	to	about	9	billion	by	mid-century,	and	that	it	might	thereafter
plateau	or	decline	as	the	poorer	countries	join	the	developed	world	in	this	low-
fertility	regime.12	Many	rich	countries	already	have	fertility	rates	that	are	below
replacement	level;	in	some	cases,	far	below.13

Yet	 there	 are	 reasons,	 if	 we	 take	 a	 longer	 view	 and	 assume	 a	 state	 of
unchanging	 technology	 and	 continued	 prosperity,	 to	 expect	 a	 return	 to	 the
historically	 and	ecologically	normal	 condition	of	 a	world	population	 that	 butts
up	against	the	limits	of	what	our	niche	can	support.	If	this	seems	counterintuitive
in	 light	 of	 the	 negative	 relationship	 between	 wealth	 and	 fertility	 that	 we	 are
currently	 observing	 on	 the	 global	 scale,	 we	 must	 remind	 ourselves	 that	 this
modern	 age	 is	 a	 brief	 slice	 of	 history	 and	 very	 much	 an	 aberration.	 Human
behavior	has	not	yet	adapted	to	contemporary	conditions.	Not	only	do	we	fail	to
take	 advantage	 of	 obvious	 ways	 to	 increase	 our	 inclusive	 fitness	 (such	 as	 by
becoming	sperm	or	egg	donors)	but	we	actively	sabotage	our	fertility	by	using
birth	 control.	 In	 the	 environment	 of	 evolutionary	 adaptedness,	 a	 healthy	 sex
drive	may	have	been	enough	to	make	an	individual	act	in	ways	that	maximized
her	reproductive	potential;	in	the	modern	environment,	however,	there	would	be
a	huge	selective	advantage	to	having	a	more	direct	desire	for	being	the	biological
parent	to	the	largest	possible	number	of	children.	Such	a	desire	is	currently	being
selected	for,	as	are	other	traits	that	increase	our	propensity	to	reproduce.	Cultural
adaptation,	 however,	 might	 steal	 a	 march	 on	 biological	 evolution.	 Some
communities,	 such	 those	 of	 the	 Hutterites	 or	 the	 adherents	 of	 the	 Quiverfull
evangelical	movement,	have	natalist	cultures	that	encourage	large	families,	and
they	are	consequently	undergoing	rapid	expansion.

Population	growth	and	investment



	

If	we	imagine	current	socioeconomic	conditions	magically	frozen	in	their	current
shape,	 the	 future	would	be	dominated	by	cultural	or	ethnic	groups	 that	 sustain
high	 levels	 of	 fertility.	 If	 most	 people	 had	 preferences	 that	 were	 fitness-
maximizing	 in	 the	 contemporary	 environment,	 the	 population	 could	 easily
double	 in	 each	 generation.	 Absent	 population	 control	 policies—which	 would
have	to	become	steadily	more	rigorous	and	effective	to	counteract	the	evolution
of	 stronger	 preferences	 to	 circumvent	 them—the	world	 population	would	 then
continue	 to	 grow	 exponentially	 until	 some	 constraint,	 such	 as	 land	 scarcity	 or
depletion	of	easy	opportunities	for	important	innovation,	made	it	impossible	for
the	economy	to	keep	pace:	at	which	point,	average	income	would	start	to	decline
until	 it	 reached	 the	 level	 where	 crushing	 poverty	 prevents	 most	 people	 from
raising	much	more	than	two	children	to	maturity.	Thus	the	Malthusian	principle
would	 reassert	 itself,	 like	 a	 dread	 slave	master,	 bringing	our	 escapade	 into	 the
dreamland	of	abundance	to	an	end,	and	leading	us	back	to	the	quarry	in	chains,
there	to	resume	the	weary	struggle	for	subsistence.

This	longer-term	outlook	could	be	telescoped	into	a	more	imminent	prospect
by	 the	 intelligence	 explosion.	 Since	 software	 is	 copyable,	 a	 population	 of
emulations	or	AIs	could	double	rapidly—over	the	course	of	minutes	rather	than
decades	or	centuries—soon	exhausting	all	available	hardware.

Private	 property	 might	 offer	 partial	 protection	 against	 the	 emergence	 of	 a
universal	 Malthusian	 condition.	 Consider	 a	 simple	 model	 in	 which	 clans	 (or
closed	 communities,	 or	 states)	 start	 out	with	 varying	 amounts	 of	 property	 and
independently	adopt	different	policies	about	reproduction	and	investment.	Some
clans	discount	 the	 future	 steeply	and	spend	down	 their	endowment,	whereafter
their	 impoverished	members	 join	 the	 global	 proletariat	 (or	 die,	 if	 they	 cannot
support	 themselves	 through	 their	 labor).	 Other	 clans	 invest	 some	 of	 their
resources	 but	 adopt	 a	 policy	 of	 unlimited	 reproduction:	 such	 clans	 grow	more
populous	 until	 they	 reach	 an	 internal	 Malthusian	 condition	 in	 which	 their
members	are	so	poor	that	they	die	at	almost	the	same	rate	as	they	reproduce,	at
which	 point	 the	 clan’s	 population	 growth	 slows	 to	 equal	 the	 growth	 of	 its
resources.	Yet	other	clans	might	restrict	their	fertility	to	below	the	rate	of	growth
of	 their	 capital:	 such	 clans	 could	 slowly	 increment	 their	 numbers	 while	 their
members	also	grow	richer	per	capita.

If	wealth	is	redistributed	from	the	wealthy	clans	to	the	members	of	the	rapidly



reproducing	or	 rapidly	discounting	clans	 (whose	children,	copies,	or	offshoots,
through	 no	 fault	 of	 their	 own,	 were	 launched	 into	 the	 world	 with	 insufficient
capital	 to	 survive	 and	 thrive)	 then	 a	 universal	Malthusian	 condition	would	 be
more	closely	approximated.	In	the	limiting	case,	all	members	of	all	clans	would
receive	subsistence	level	income	and	everybody	would	be	equal	in	their	poverty.

If	 property	 is	 not	 redistributed,	 prudent	 clans	 might	 hold	 on	 to	 a	 certain
amount	 of	 capital,	 and	 it	 is	 possible	 that	 their	 wealth	 could	 grow	 in	 absolute
terms.	It	is,	however,	unclear	whether	humans	could	earn	as	high	rates	of	return
on	their	capital	as	machine	intelligences	could	earn	on	theirs,	because	there	may
be	synergies	between	labor	and	capital	such	that	an	single	agent	who	can	supply
both	(e.g.	an	entrepreneur	or	investor	who	is	both	skilled	and	wealthy)	can	attain
a	 private	 rate	 of	 return	 on	her	 capital	 exceeding	 the	market	 rate	 obtainable	 by
agents	 who	 possess	 financial	 but	 not	 cognitive	 resources.	 Humans,	 being	 less
skilled	than	machine	intelligences,	may	therefore	grow	their	capital	more	slowly
—unless,	of	course,	 the	control	problem	had	been	completely	solved,	 in	which
case	 the	 human	 rate	 of	 return	would	 equal	 the	machine	 rate	 of	 return,	 since	 a
human	principal	could	task	a	machine	agent	to	manage	her	savings,	and	could	do
so	costlessly	and	without	conflicts	of	interest:	but	otherwise,	in	this	scenario,	the
fraction	of	the	economy	owned	by	machines	would	asymptotically	approach	one
hundred	percent.

A	scenario	 in	which	 the	 fraction	of	 the	economy	 that	 is	owned	by	machines
asymptotically	approaches	one	hundred	percent	 is	not	necessarily	one	in	which
the	size	of	 the	human	slice	declines.	 If	 the	economy	grows	at	a	sufficient	clip,
then	 even	 a	 relatively	 diminishing	 fraction	 of	 it	 may	 still	 be	 increasing	 in	 its
absolute	 size.	 This	 may	 sound	 like	 modestly	 good	 news	 for	 humankind:	 in	 a
multipolar	 scenario	 in	 which	 property	 rights	 are	 protected—even	 if	 we
completely	fail	to	solve	the	control	problem—the	total	amount	of	wealth	owned
by	human	beings	could	increase.	Of	course,	this	effect	would	not	take	care	of	the
problem	of	population	growth	in	the	human	population	pulling	down	per	capita
income	 to	 subsistence	 level,	 nor	 the	 problem	 of	 humans	who	 ruin	 themselves
because	they	discount	the	future.

In	the	long	run,	the	economy	would	become	increasingly	dominated	by	those
clans	that	have	the	highest	savings	rates—misers	who	own	half	the	city	and	live
under	 a	 bridge.	 Only	 in	 the	 fullness	 of	 time,	 when	 there	 are	 no	 more
opportunities	 for	 investment,	 would	 the	 maximally	 prosperous	 misers	 start
drawing	down	their	savings.14	However,	 if	 there	 is	 less	 than	perfect	protection



for	property	rights—for	example	if	the	more	efficient	machines	on	net	succeed,
by	hook	or	by	crook,	 in	 transferring	wealth	 from	humans	 to	 themselves—then
human	capitalists	may	need	to	spend	down	their	capital	much	sooner,	before	 it
gets	depleted	by	such	 transfers	 (or	 the	ongoing	costs	 incurred	 in	securing	 their
wealth	against	such	transfers).	If	these	developments	take	place	on	digital	rather
than	 biological	 timescales,	 then	 the	 glacial	 humans	 might	 find	 themselves
expropriated	before	they	could	say	Jack	Robinson.15

Life	in	an	algorithmic	economy

	

Life	 for	 biological	 humans	 in	 a	 post-transition	 Malthusian	 state	 need	 not
resemble	any	of	the	historical	states	of	man	(as	hunter–gatherer,	farmer,	or	office
worker).	Instead,	 the	majority	of	humans	in	this	scenario	might	be	idle	rentiers
who	eke	out	a	marginal	living	on	their	savings.16	They	would	be	very	poor,	yet
derive	what	little	income	they	have	from	savings	or	state	subsidies.	They	would
live	 in	 a	 world	 with	 extremely	 advanced	 technology,	 including	 not	 only
superintelligent	 machines	 but	 also	 anti-aging	 medicine,	 virtual	 reality,	 and
various	 enhancement	 technologies	 and	 pleasure	 drugs:	 yet	 these	 might	 be
generally	 unaffordable.	 Perhaps	 instead	 of	 using	 enhancement	 medicine,	 they
would	 take	 drugs	 to	 stunt	 their	 growth	 and	 slow	 their	metabolism	 in	 order	 to
reduce	their	cost	of	living	(fast-burners	being	unable	to	survive	at	the	gradually
declining	subsistence	income).	As	our	numbers	increase	and	our	average	income
declines	 further,	 we	 might	 degenerate	 into	 whatever	 minimal	 structure	 still
qualifies	 to	 receive	 a	 pension—perhaps	 minimally	 conscious	 brains	 in	 vats,
oxygenized	 and	 nourished	 by	 machines,	 slowly	 saving	 up	 enough	 money	 to
reproduce	by	having	a	robot	technician	develop	a	clone	of	them.17

Further	frugality	could	be	achieved	by	means	of	uploading,	since	a	physically
optimized	computing	substrate,	devised	by	advanced	superintelligence,	would	be
more	efficient	than	a	biological	brain.	The	migration	into	the	digital	realm	might
be	 stemmed,	 however,	 if	 emulations	 were	 regarded	 as	 non-humans	 or	 non-
citizens	ineligible	to	receive	pensions	or	to	hold	tax-exempt	savings	accounts.	In
that	case,	a	niche	for	biological	humans	might	remain	open,	alongside	a	perhaps
vastly	larger	population	of	emulations	or	artificial	intelligences.

So	far	we	have	focused	on	the	fate	of	the	humans,	who	may	be	supported	by
savings,	 subsidies,	 or	wage	 income	deriving	 from	other	humans	who	prefer	 to



hire	humans.	Let	us	now	turn	our	attention	to	some	of	the	entities	that	we	have
so	far	classified	as	“capital”:	machines	that	may	be	owned	by	human	beings,	that
are	constructed	and	operated	 for	 the	sake	of	 the	 functional	 tasks	 they	perform,
and	that	are	capable	of	substituting	for	human	labor	in	a	very	wide	range	of	jobs.
What	may	the	situation	be	like	for	these	workhorses	of	the	new	economy?

If	these	machines	were	mere	automata,	simple	devices	like	a	steam	engine	or
the	 mechanism	 in	 a	 clock,	 then	 no	 further	 comment	 would	 be	 needed:	 there
would	 be	 a	 large	 amount	 of	 such	 capital	 in	 a	 post-transition	 economy,	 but	 it
would	seem	not	to	matter	to	anybody	how	things	turn	out	for	pieces	of	insentient
equipment.	 However,	 if	 the	 machines	 have	 conscious	 minds—if	 they	 are
constructed	 in	 such	 a	 way	 that	 their	 operation	 is	 associated	 with	 phenomenal
awareness	(or	 if	 they	for	some	other	reason	are	ascribed	moral	status)—then	it
becomes	 important	 to	 consider	 the	 overall	 outcome	 in	 terms	 of	 how	 it	 would
affect	 these	machine	minds.	The	welfare	of	 the	working	machine	minds	 could
even	appear	to	be	the	most	important	aspect	of	the	outcome,	since	they	may	be
numerically	dominant.

Voluntary	slavery,	casual	death

	

A	salient	initial	question	is	whether	these	working	machine	minds	are	owned	as
capital	(slaves)	or	are	hired	as	free	wage	laborers.	On	closer	inspection	however,
it	 become	 doubtful	 that	 anything	 really	 hinges	 on	 the	 issue.	 There	 are	 two
reasons	 for	 this.	 First,	 if	 a	 free	 worker	 in	 a	 Malthusian	 state	 gets	 paid	 a
subsistence-level	wage,	he	will	have	no	disposable	income	left	after	he	has	paid
for	food	and	other	necessities.	If	the	worker	is	instead	a	slave,	his	owner	will	pay
for	his	maintenance	and	again	he	will	have	no	disposable	income.	In	either	case,
the	worker	gets	the	necessities	and	nothing	more.	Second,	suppose	that	the	free
laborer	 were	 somehow	 in	 a	 position	 to	 command	 an	 above-subsistence-level
income	 (perhaps	 because	 of	 favorable	 regulation).	 How	 will	 he	 spend	 the
surplus?	Investors	would	find	it	most	profitable	to	create	workers	who	would	be
“voluntary	 slaves”—who	 would	 willingly	 work	 for	 subsistence-level	 wages.
Investors	may	create	such	workers	by	copying	those	workers	who	are	compliant.
With	appropriate	selection	(and	perhaps	some	modification	to	the	code)	investors
might	be	able	to	create	workers	who	not	only	prefer	to	volunteer	their	labor	but
who	would	also	choose	to	donate	back	to	their	owners	any	surplus	income	they
might	 happen	 to	 receive.	 Giving	 money	 to	 the	 worker	 would	 then	 be	 but	 a



roundabout	way	of	giving	money	to	the	owner	or	employer,	even	if	the	worker
were	a	free	agent	with	full	legal	rights.

Perhaps	 it	will	be	objected	 that	 it	would	be	difficult	 to	design	a	machine	 so
that	it	wants	to	volunteer	for	any	job	assigned	to	it	or	so	that	it	wants	to	donate
its	wages	to	its	owner.	Emulations,	in	particular,	might	be	imagined	to	have	more
typically	 human	 desires.	 But	 note	 that	 even	 if	 the	 original	 control	 problem	 is
difficult,	we	 are	here	 considering	 a	 condition	after	 the	 transition,	 a	 time	when
methods	for	motivation	selection	have	presumably	been	perfected.	In	the	case	of
emulations,	 one	might	 get	 quite	 far	 simply	 by	 selecting	 from	 the	 pre-existing
range	 of	 human	 characters;	 and	 we	 have	 described	 several	 other	 motivation
selection	methods.	The	control	problem	may	also	in	some	ways	be	simplified	by
the	 current	 assumption	 that	 the	 new	machine	 intelligence	 enters	 into	 a	 stable
socioeconomic	 matrix	 that	 is	 already	 populated	 with	 other	 law-abiding
superintelligent	agents.

Let	us,	 then,	consider	 the	plight	of	 the	working-class	machine,	whether	 it	be
operating	as	a	slave	or	a	free	agent.	We	focus	first	on	emulations,	the	easiest	case
to	imagine.

Bringing	 a	 new	 biological	 human	 worker	 into	 the	 world	 takes	 anywhere
between	 fifteen	 and	 thirty	 years,	 depending	 on	 how	 much	 expertise	 and
experience	 is	 required.	During	 this	 time	 the	 new	 person	must	 be	 fed,	 housed,
nurtured,	and	educated—at	great	expense.	By	contrast,	spawning	a	new	copy	of
a	digital	worker	is	as	easy	as	loading	a	new	program	into	working	memory.	Life
thus	 becomes	 cheap.	A	 business	 could	 continuously	 adapt	 its	workforce	 to	 fit
demands	 by	 spawning	 new	 copies—and	 terminating	 copies	 that	 are	 no	 longer
needed,	 to	 free	 up	 computer	 resources.	 This	 could	 lead	 to	 an	 extremely	 high
death	rate	among	digital	workers.	Many	might	live	for	only	one	subjective	day.

There	are	reasons	other	than	fluctuations	in	demand	why	employers	or	owners
of	 emulations	 might	 want	 to	 “kill”	 or	 “end”	 their	 workers	 frequently.18	 If	 an
emulation	 mind,	 like	 a	 biological	 mind,	 requires	 periods	 of	 rest	 and	 sleep	 in
order	to	function,	it	might	be	cheaper	to	erase	a	fatigued	emulation	at	the	end	of
a	day	and	replace	it	with	a	stored	state	of	a	fresh	and	rested	emulation.	As	this
procedure	would	cause	retrograde	amnesia	for	everything	that	had	been	learned
during	 that	 day,	 emulations	 performing	 tasks	 requiring	 long	 cognitive	 threads
would	 be	 spared	 such	 frequent	 erasure.	 It	 would	 be	 difficult,	 for	 example,	 to
write	 a	 book	 if	 each	 morning	 when	 one	 sat	 down	 at	 one’s	 desk,	 one	 had	 no



memory	 of	 what	 one	 had	 done	 before.	 But	 other	 jobs	 could	 be	 performed
adequately	by	agents	that	are	frequently	recycled:	a	shop	assistant	or	a	customer
service	 agent,	 once	 trained,	 may	 only	 need	 to	 remember	 new	 information	 for
twenty	minutes.

Since	recycling	emulations	would	prevent	memory	and	skill	formation,	some
emulations	 may	 be	 placed	 on	 a	 special	 learning	 track	 where	 they	 would	 run
continuously,	including	for	rest	and	sleep,	even	in	jobs	that	do	not	strictly	require
long	cognitive	threads.	For	example,	some	customer	service	agents	might	run	for
many	 years	 in	 optimized	 learning	 environments,	 assisted	 by	 coaches	 and
performance	evaluators.	The	best	of	these	trainees	would	then	be	used	like	studs,
serving	as	 templates	from	which	millions	of	fresh	copies	are	stamped	out	each
day.	 Great	 effort	 would	 be	 poured	 into	 improving	 the	 performance	 of	 such
worker	 templates,	 because	 even	 a	 small	 increment	 in	 productivity	would	yield
great	economic	value	when	applied	in	millions	of	copies.

In	 parallel	with	 efforts	 to	 train	worker-templates	 for	 particular	 jobs,	 intense
efforts	 would	 also	 be	 made	 to	 improve	 the	 underlying	 emulation	 technology.
Advances	 here	 would	 be	 even	 more	 valuable	 than	 advances	 in	 individual
worker-templates,	 since	 general	 technology	 improvements	 could	 be	 applied	 to
all	 emulation	 workers	 (and	 potentially	 to	 non-worker	 emulations	 also)	 rather
than	 only	 to	 those	 in	 a	 particular	 occupation.	 Enormous	 resources	 would	 be
devoted	 to	 finding	 computational	 shortcuts	 allowing	 for	 more	 efficient
implementations	of	existing	emulations,	and	also	into	developing	neuromorphic
and	entirely	synthetic	AI	architectures.	This	research	would	probably	mostly	be
done	by	emulations	 running	on	very	 fast	hardware.	Depending	on	 the	price	of
computer	 power,	 millions,	 billions,	 or	 trillions	 of	 emulations	 of	 the	 sharpest
human	 research	minds	 (or	 enhanced	versions	 thereof)	may	be	working	 around
the	clock	on	advancing	the	frontier	of	machine	 intelligence;	and	some	of	 these
may	be	operating	orders	of	magnitude	faster	 than	biological	brains.19	This	 is	a
good	reason	for	thinking	that	the	era	of	human-like	emulations	would	be	brief—
a	very	brief	interlude	in	sidereal	time—and	that	it	would	soon	give	way	to	an	era
of	greatly	superior	artificial	intelligence.

We	 have	 already	 encountered	 several	 reasons	 why	 employers	 of	 emulation
workers	may	periodically	 cull	 their	 herds:	 fluctuations	 in	 demand	 for	 different
kinds	of	laborers,	cost	savings	of	not	having	to	emulate	rest	and	sleep	time,	and
the	 introduction	 of	 new	 and	 improved	 templates.	 Security	 concerns	 might
furnish	 another	 reason.	 To	 prevent	 workers	 from	 developing	 subversive	 plans



and	conspiracies,	emulations	 in	some	sensitive	positions	might	be	 run	only	 for
limited	periods,	with	frequent	resets	to	an	earlier	stored	ready-state.20

These	 ready-states	 to	 which	 emulations	 would	 be	 reset	 would	 be	 carefully
prepared	and	vetted.	A	 typical	 short-lived	emulation	might	wake	up	 in	 a	well-
rested	mental	state	that	is	optimized	for	loyalty	and	productivity.	He	remembers
having	 graduated	 top	 of	 his	 class	 after	 many	 (subjective)	 years	 of	 intense
training	 and	 selection,	 then	 having	 enjoyed	 a	 restorative	 holiday	 and	 a	 good
night’s	sleep,	then	having	listened	to	a	rousing	motivational	speech	and	stirring
music,	 and	now	he	 is	 champing	at	 the	bit	 to	 finally	get	 to	work	 and	 to	do	his
utmost	for	his	employer.	He	is	not	overly	troubled	by	thoughts	of	his	imminent
death	 at	 the	 end	 of	 the	working	 day.	 Emulations	with	 death	 neuroses	 or	 other
hang-ups	are	less	productive	and	would	not	have	been	selected.21

Would	maximally	efficient	work	be	fun?

	

One	 important	variable	 in	assessing	 the	desirability	of	a	hypothetical	condition
like	 this	 is	 the	 hedonic	 state	 of	 the	 average	 emulation.22	 Would	 a	 typical
emulation	 worker	 be	 suffering	 or	 would	 he	 be	 enjoying	 the	 experience	 of
working	hard	on	the	task	at	hand?

We	 must	 resist	 the	 temptation	 to	 project	 our	 own	 sentiments	 onto	 the
imaginary	emulation	worker.	The	question	is	not	whether	you	would	feel	happy
if	you	had	to	work	constantly	and	never	again	spend	time	with	your	loved	ones
—a	terrible	fate,	most	would	agree.

It	is	moderately	more	relevant	to	consider	the	current	human	average	hedonic
experience	 during	 working	 hours.	Worldwide	 studies	 asking	 respondents	 how
happy	they	are	find	that	most	rate	themselves	as	“quite	happy”	or	“very	happy”
(averaging	 3.1	 on	 a	 scale	 from	 1	 to	 4).23	 Studies	 on	 average	 affect,	 asking
respondents	how	frequently	 they	have	 recently	experienced	various	positive	or
negative	 affective	 states,	 tend	 to	get	 a	 similar	 result	 (producing	 a	net	 affect	 of
about	 0.52	 on	 a	 scale	 from	 –1	 to	 1).	 There	 is	 a	 modest	 positive	 effect	 of	 a
country’s	per	 capita	 income	on	average	 subjective	well-being.24	However,	 it	 is
hazardous	 to	 extrapolate	 from	 these	 findings	 to	 the	 hedonic	 state	 of	 future
emulation	workers.	One	reason	that	could	be	given	for	this	is	that	their	condition
would	be	so	different:	on	the	one	hand,	they	might	be	working	much	harder;	on



the	other	hand,	they	might	be	free	from	diseases,	aches,	hunger,	noxious	odors,
and	 so	 forth.	 Yet	 such	 considerations	 largely	 miss	 the	 mark.	 The	 much	more
important	 consideration	 here	 is	 that	 hedonic	 tone	 would	 be	 easy	 to	 adjust
through	the	digital	equivalent	of	drugs	or	neurosurgery.	This	means	that	it	would
be	 a	mistake	 to	 infer	 the	 hedonic	 state	 of	 future	 emulations	 from	 the	 external
conditions	of	their	lives	by	imagining	how	we	ourselves	and	other	people	like	us
would	feel	in	those	circumstances.	Hedonic	state	would	be	a	matter	of	choice.	In
the	model	we	are	 currently	 considering,	 the	choice	would	be	made	by	capital-
owners	 seeking	 to	maximize	 returns	on	 their	 investment	 in	emulation-workers.
Consequently,	 the	question	of	how	happy	emulations	would	feel	boils	down	to
the	question	of	which	hedonic	states	would	be	most	productive	 (in	 the	various
jobs	that	emulations	would	be	employed	to	do).

Here,	 again,	 one	 might	 seek	 to	 draw	 an	 inference	 from	 observations	 about
human	happiness.	 If	 it	 is	 the	case,	 across	most	 times,	places,	 and	occupations,
that	 people	 are	 typically	 at	 least	 moderately	 happy,	 this	 would	 create	 some
presumption	 in	 favor	of	 the	 same	holding	 in	 a	post-transition	 scenario	 like	 the
one	we	are	considering.	To	be	clear,	the	argument	in	this	case	would	not	be	that
human	minds	have	a	predisposition	 towards	happiness	so	 they	would	probably
find	satisfaction	under	 these	novel	conditions;	but	 rather	 that	a	certain	average
level	of	happiness	has	proved	adaptive	for	human	minds	in	the	past	so	maybe	a
similar	 level	 of	 happiness	 will	 prove	 adaptive	 for	 human-like	 minds	 in	 the
future.	Yet	 this	 formulation	 also	 reveals	 the	weakness	 of	 the	 inference:	 to	wit,
that	 the	 mental	 dispositions	 that	 were	 adaptive	 for	 hunter–gatherer	 hominids
roaming	 the	 African	 savanna	 may	 not	 necessarily	 be	 adaptive	 for	 modified
emulations	 living	 in	post-transition	virtual	 realities.	We	can	certainly	hope	 that
the	 future	 emulation-workers	 would	 be	 as	 happy	 as,	 or	 happier	 than,	 typical
workers	were	 in	human	history;	but	we	have	yet	 to	see	any	compelling	 reason
for	 supposing	 it	would	be	 so	 (in	 the	 laissez-faire	multipolar	 scenario	 currently
under	examination).

Consider	the	possibility	that	the	reason	happiness	is	prevalent	among	humans
(to	 whatever	 limited	 extent	 it	 is	 prevalent)	 is	 that	 cheerful	 mood	 served	 a
signaling	function	 in	 the	 environment	 of	 evolutionary	 adaptedness.	Conveying
the	 impression	 to	 other	 members	 of	 the	 social	 group	 of	 being	 in	 flourishing
condition—in	good	health,	 in	good	standing	with	one’s	peers,	and	in	confident
expectation	 of	 continued	 good	 fortune—may	 have	 boosted	 an	 individual’s
popularity.	A	bias	 toward	 cheerfulness	 could	 thus	have	been	 selected	 for,	with
the	 result	 that	 human	 neurochemistry	 is	 now	 biased	 toward	 positive	 affect



compared	 to	 what	 would	 have	 been	 maximally	 efficient	 according	 to	 simpler
materialistic	criteria.	If	this	were	the	case,	then	the	future	of	joie	de	vivre	might
depend	 on	 cheer	 retaining	 its	 social	 signaling	 function	 unaltered	 in	 the	 post-
transition	world:	an	issue	to	which	we	will	return	shortly.

What	if	glad	souls	dissipate	more	energy	than	glum	ones?	Perhaps	the	joyful
are	 more	 prone	 to	 creative	 leaps	 and	 flights	 of	 fancy—behaviors	 that	 future
employers	might	disprize	in	most	of	their	workers.	Perhaps	a	sullen	or	anxious
fixation	on	simply	getting	on	with	the	job	without	making	mistakes	will	be	the
productivity-maximizing	 attitude	 in	most	 lines	 of	work.	 The	 claim	 here	 is	 not
that	this	is	so,	but	that	we	do	not	know	that	it	is	not	so.	Yet	we	should	consider
just	 how	 bad	 it	 could	 be	 if	 some	 such	 pessimistic	 hypothesis	 about	 a	 future
Malthusian	state	turned	out	to	be	true:	not	only	because	of	the	opportunity	cost
of	 having	 failed	 to	 create	 something	 better—which	 would	 be	 enormous—but
also	because	the	state	could	be	bad	in	itself,	possibly	far	worse	than	the	original
Malthusian	state.

We	seldom	put	forth	full	effort.	When	we	do,	it	is	sometimes	painful.	Imagine
running	on	a	treadmill	at	a	steep	incline—heart	pounding,	muscles	aching,	lungs
gasping	for	air.	A	glance	at	the	timer:	your	next	break,	which	will	also	be	your
death,	 is	 due	 in	 49	 years,	 3	 months,	 20	 days,	 4	 hours,	 56	 minutes,	 and	 12
seconds.	You	wish	you	had	not	been	born.

Again	the	claim	is	not	that	this	is	how	it	would	be,	but	that	we	do	not	know
that	 it	 is	 not.	One	 could	 certainly	make	 a	more	 optimistic	 case.	 For	 example,
there	is	no	obvious	reason	that	emulations	would	need	to	suffer	bodily	injury	and
sickness:	 the	 elimination	 of	 physical	 wretchedness	 would	 be	 a	 great
improvement	over	 the	present	 state	of	 affairs.	Furthermore,	 since	 such	 stuff	 as
virtual	reality	is	made	of	can	be	fairly	cheap,	emulations	may	work	in	sumptuous
surroundings—in	 splendid	 mountaintop	 palaces,	 on	 terraces	 set	 in	 a	 budding
spring	 forest,	 or	 on	 the	 beaches	 of	 an	 azure	 lagoon—with	 just	 the	 right
illumination,	temperature,	scenery	and	décor;	free	from	annoying	fumes,	noises,
drafts,	 and	 buzzing	 insects;	 dressed	 in	 comfortable	 clothing,	 feeling	 clean	 and
focused,	and	well	nourished.	More	significantly,	if—as	seems	perfectly	possible
—the	optimum	human	mental	state	for	productivity	in	most	jobs	is	one	of	joyful
eagerness,	then	the	era	of	the	emulation	economy	could	be	quite	paradisiacal.

There	would,	in	any	case,	be	a	great	option	value	in	arranging	matters	in	such
a	manner	 that	somebody	or	something	could	intervene	to	set	 things	right	 if	 the



default	 trajectory	 should	 happen	 to	 veer	 toward	 dystopia.	 It	 could	 also	 be
desirable	to	have	some	sort	of	escape	hatch	that	would	permit	bailout	into	death
and	oblivion	 if	 the	quality	of	 life	were	 to	 sink	permanently	below	 the	 level	 at
which	annihilation	becomes	preferable	to	continued	existence.

Unconscious	outsourcers?

	

In	the	longer	run,	as	the	emulation	era	gives	way	to	an	artificial	intelligence	era
(or	if	machine	intelligence	is	attained	directly	via	AI	without	a	preceding	whole
brain	emulation	stage)	pain	and	pleasure	might	possibly	disappear	entirely	in	a
multipolar	 outcome,	 since	 a	 hedonic	 reward	mechanism	may	 not	 be	 the	most
effective	motivation	system	for	an	complex	artificial	agent	(one	that,	unlike	the
human	mind,	 is	 not	 burdened	 with	 the	 legacy	 of	 animal	 wetware).	 Perhaps	 a
more	advanced	motivation	system	would	be	based	on	an	explicit	representation
of	 a	 utility	 function	 or	 some	 other	 architecture	 that	 has	 no	 exact	 functional
analogs	to	pleasure	and	pain.

A	 related	 but	 slightly	 more	 radical	 multipolar	 outcome—one	 that	 could
involve	the	elimination	of	almost	all	value	from	the	future—is	that	the	universal
proletariat	 would	 not	 even	 be	 conscious.	 This	 possibility	 is	 most	 salient	 with
respect	 to	 AI,	 which	 might	 be	 structured	 very	 differently	 than	 human
intelligence.	 But	 even	 if	 machine	 intelligence	 were	 initially	 achieved	 though
whole	 brain	 emulation,	 resulting	 in	 conscious	 digital	 minds,	 the	 competitive
forces	unleashed	in	a	post-transition	economy	could	easily	lead	to	the	emergence
of	progressively	less	neuromorphic	forms	of	machine	intelligence,	either	because
synthetic	 AI	 is	 created	 de	 novo	 or	 because	 the	 emulations	 would,	 through
successive	 modifications	 and	 enhancements,	 increasingly	 depart	 their	 original
human	form.

Consider	a	scenario	in	which	after	emulation	technology	has	been	developed,
continued	 progress	 in	 neuroscience	 and	 computer	 science	 (expedited	 by	 the
presence	of	digital	minds	to	serve	as	both	researchers	and	test	subjects)	makes	it
possible	 to	 isolate	 individual	 cognitive	modules	 in	 an	 emulation,	 and	 to	 hook
them	 up	 to	modules	 isolated	 from	 other	 emulations.	 A	 period	 of	 training	 and
adjustment	may	be	required	before	different	modules	can	collaborate	effectively;
but	modules	 that	 conform	 to	 common	 standards	 could	more	 quickly	 interface
with	 other	 standard	 modules.	 This	 would	 make	 standardized	 modules	 more



productive,	and	create	pressure	for	more	standardization.

Emulations	 can	 now	 begin	 to	 outsource	 increasing	 portions	 of	 their
functionality.	Why	learn	arithmetic	when	you	can	send	your	numerical	reasoning
task	 to	Gauss-Modules,	 Inc.?	Why	 be	 articulate	when	 you	 can	 hire	 Coleridge
Conversations	to	put	your	thoughts	into	words?	Why	make	decisions	about	your
personal	life	when	there	are	certified	executive	modules	that	can	scan	your	goal
system	and	manage	your	resources	to	achieve	your	goals	better	than	if	you	tried
to	 do	 it	 yourself?	 Some	 emulations	 may	 prefer	 to	 retain	 most	 of	 their
functionality	and	handle	tasks	themselves	that	could	be	done	more	efficiently	by
others.	Those	emulations	would	be	like	hobbyists	who	enjoy	growing	their	own
vegetables	or	knitting	their	own	cardigans.	Such	hobbyist	emulations	would	be
less	efficient;	and	if	there	is	a	net	flow	of	resources	from	less	to	more	efficient
participants	of	the	economy,	the	hobbyists	would	eventually	lose	out.

The	 bouillon	 cubes	 of	 discrete	 human-like	 intellects	 thus	 melt	 into	 an
algorithmic	soup.

It	 is	 conceivable	 that	 optimal	 efficiency	 would	 be	 attained	 by	 grouping
capabilities	 in	 aggregates	 that	 roughly	 match	 the	 cognitive	 architecture	 of	 a
human	mind.	It	might	be	the	case,	for	example,	that	a	mathematics	module	must
be	tailored	to	a	language	module,	and	that	both	must	be	tailored	to	the	executive
module,	 in	 order	 for	 the	 three	 to	 work	 together.	 Cognitive	 outsourcing	would
then	be	almost	entirely	unworkable.	But	in	the	absence	of	any	compelling	reason
for	 being	 confident	 that	 this	 is	 so,	 we	 must	 countenance	 the	 possibility	 that
human-like	 cognitive	 architectures	 are	 optimal	 only	 within	 the	 constraints	 of
human	neurology	(or	not	at	all).	When	it	becomes	possible	to	build	architectures
that	could	not	be	 implemented	well	on	biological	neural	networks,	new	design
space	opens	up;	and	the	global	optima	in	this	extended	space	need	not	resemble
familiar	types	of	mentality.	Human-like	cognitive	organizations	would	then	lack
a	niche	in	a	competitive	post-transition	economy	or	ecosystem.25

There	might	 be	 niches	 for	 complexes	 that	 are	 either	 less	 complex	 (such	 as
individual	 modules),	 more	 complex	 (such	 as	 vast	 clusters	 of	 modules),	 or	 of
similar	 complexity	 to	 human	 minds	 but	 with	 radically	 different	 architectures.
Would	these	complexes	have	any	intrinsic	value?	Should	we	welcome	a	world	in
which	such	alien	complexes	have	replaced	human	complexes?

The	answer	may	depend	on	the	specific	nature	of	those	alien	complexes.	The



present	world	 has	many	 levels	 of	 organization.	 Some	 highly	 complex	 entities,
such	 as	multinational	 corporations	 and	 nation	 states,	 contain	 human	 beings	 as
constituents;	yet	we	usually	assign	these	high-level	complexes	only	instrumental
value.	 Corporations	 and	 states	 do	 not	 (it	 is	 generally	 assumed)	 have
consciousness,	 over	 and	 above	 the	 consciousness	 of	 the	people	who	 constitute
them:	 they	 cannot	 feel	 phenomenal	 pain	 or	 pleasure	 or	 experience	 any	 qualia.
We	value	them	to	the	extent	that	they	serve	human	needs,	and	when	they	cease
to	do	so	we	“kill”	them	without	compunction.	There	are	also	lower-level	entities,
and	those,	too,	are	usually	denied	moral	status.	We	see	no	harm	in	erasing	an	app
from	a	smartphone,	and	we	do	not	think	that	a	neurosurgeon	is	wronging	anyone
when	 she	 extirpates	 a	 malfunctioning	 module	 from	 an	 epileptic	 brain.	 As	 for
exotically	 organized	 complexes	 of	 a	 level	 similar	 to	 that	 of	 the	 human	 brain,
most	 of	 us	 would	 perhaps	 judge	 them	 to	 have	 moral	 significance	 only	 if	 we
thought	they	had	a	capacity	or	potential	for	conscious	experience.26

We	could	thus	imagine,	as	an	extreme	case,	a	technologically	highly	advanced
society,	 containing	many	 complex	 structures,	 some	 of	 them	 far	more	 intricate
and	 intelligent	 than	 anything	 that	 exists	 on	 the	 planet	 today—a	 society	which
nevertheless	 lacks	 any	 type	 of	 being	 that	 is	 conscious	 or	 whose	 welfare	 has
moral	significance.	In	a	sense,	this	would	be	an	uninhabited	society.	It	would	be
a	 society	 of	 economic	 miracles	 and	 technological	 awesomeness,	 with	 nobody
there	to	benefit.	A	Disneyland	without	children.

Evolution	is	not	necessarily	up

	

The	 word	 “evolution”	 is	 often	 used	 as	 a	 synonym	 of	 “progress,”	 perhaps
reflecting	 a	 common	 uncritical	 image	 of	 evolution	 as	 a	 force	 for	 good.	 A
misplaced	faith	in	the	inherent	beneficence	of	the	evolutionary	process	can	get	in
the	way	of	a	fair	evaluation	of	the	desirability	of	a	multipolar	outcome	in	which
the	 future	 of	 intelligent	 life	 is	 determined	by	 competitive	 dynamics.	Any	 such
evaluation	must	 rest	 on	 some	 (at	 least	 implicit)	 opinion	 about	 the	 probability
distribution	of	different	phenotypes	turning	out	to	be	adaptive	in	a	post-transition
digital	 life	 soup.	 It	would	be	difficult	 in	 the	best	of	 circumstances	 to	 extract	 a
clear	and	correct	answer	from	the	unavoidable	goo	of	uncertainty	that	pervades
these	matters:	more	so,	if	we	superadd	a	layer	of	Panglossian	muck.

A	possible	source	for	 faith	 in	 freewheeling	evolution	 is	 the	apparent	upward



directionality	 exhibited	 by	 the	 evolutionary	 process	 in	 the	 past.	 Starting	 from
rudimentary	replicators,	evolution	produced	increasingly	“advanced”	organisms,
including	 creatures	 with	 minds,	 consciousness,	 language,	 and	 reason.	 More
recently,	cultural	and	technological	processes,	which	bear	some	loose	similarities
to	biological	evolution,	have	enabled	humans	to	develop	at	an	accelerated	pace.
On	a	geological	as	well	as	a	historical	timescale,	the	big	picture	seems	to	show
an	 overarching	 trend	 toward	 increasing	 levels	 of	 complexity,	 knowledge,
consciousness,	and	coordinated	goal-directed	organization:	a	trend	which,	not	to
put	too	fine	a	point	on	it,	one	might	label	“progress.”27

The	 image	of	 evolution	as	 a	process	 that	 reliably	produces	benign	effects	 is
difficult	to	reconcile	with	the	enormous	suffering	that	we	see	in	both	the	human
and	 the	natural	world.	Those	who	cherish	evolution’s	achievements	may	do	so
more	from	an	aesthetic	than	an	ethical	perspective.	Yet	the	pertinent	question	is
not	what	kind	of	future	it	would	be	fascinating	to	read	about	in	a	science	fiction
novel	 or	 to	 see	 depicted	 in	 a	 nature	 documentary,	 but	 what	 kind	 of	 future	 it
would	be	good	to	live	in:	two	very	different	matters.

Furthermore,	 we	 have	 no	 reason	 to	 think	 that	 whatever	 progress	 there	 has
been	 was	 in	 any	 way	 inevitable.	Much	might	 have	 been	 luck.	 This	 objection
derives	 support	 from	 the	 fact	 that	 an	 observation	 selection	 effect	 filters	 the
evidence	we	can	have	about	the	success	of	our	own	evolutionary	development.28
Suppose	 that	 on	 99.9999%	 of	 all	 planets	 where	 life	 emerged	 it	 went	 extinct
before	developing	to	the	point	where	intelligent	observers	could	begin	to	ponder
their	origin.	What	should	we	expect	to	observe	if	that	were	the	case?	Arguably,
we	 should	 expect	 to	 observe	 something	 like	what	we	 do	 in	 fact	 observe.	 The
hypothesis	 that	 the	 odds	 of	 intelligent	 life	 evolving	 on	 a	 given	 planet	 are	 low
does	not	predict	that	we	should	find	ourselves	on	a	planet	where	life	went	extinct
at	an	early	stage;	rather,	it	may	predict	that	we	should	find	ourselves	on	a	planet
where	 intelligent	 life	 evolved,	 even	 if	 such	 planets	 constitute	 a	 very	 small
fraction	of	all	planets	where	primitive	 life	evolved.	Life’s	 long	 track	record	on
Earth	may	therefore	offer	scant	support	to	the	claim	that	there	was	a	high	chance
—let	 alone	 anything	 approaching	 inevitability—involved	 in	 the	 rise	 of	 higher
organisms	on	our	planet.29

Thirdly,	 even	 if	 present	 conditions	 had	 been	 idyllic,	 and	 even	 if	 they	 could
have	been	shown	to	have	arisen	ineluctably	from	some	generic	primordial	state,
there	would	still	be	no	guarantee	that	the	melioristic	trend	is	set	to	continue	into
the	 indefinite	 future.	 This	 holds	 even	 if	 we	 disregard	 the	 possibility	 of	 a



cataclysmic	 extinction	 event	 and	 indeed	 even	 if	 we	 assume	 that	 evolutionary
developments	will	continue	to	produce	systems	of	increasing	complexity.

We	suggested	earlier	that	machine	intelligence	workers	selected	for	maximum
productivity	would	be	working	extremely	hard	and	that	it	is	unknown	how	happy
such	workers	would	be.	We	also	raised	the	possibility	that	 the	fittest	 life	forms
within	a	competitive	future	digital	life	soup	might	not	even	be	conscious.	Short
of	 a	 complete	 loss	 of	 pleasure,	 or	 of	 consciousness,	 there	 could	 be	 a	wasting
away	of	other	qualities	that	many	would	regard	as	indispensible	for	a	good	life.
Humans	 value	 music,	 humor,	 romance,	 art,	 play,	 dance,	 conversation,
philosophy,	 literature,	 adventure,	 discovery,	 food	 and	 drink,	 friendship,
parenting,	 sport,	 nature,	 tradition,	 and	 spirituality,	 among	 many	 other	 things.
There	 is	 no	 guarantee	 that	 any	 of	 these	would	 remain	 adaptive.	 Perhaps	what
will	maximize	fitness	will	be	nothing	but	nonstop	high-intensity	drudgery,	work
of	 a	 drab	 and	 repetitive	 nature,	 destitute	 of	 ludic	 frisson,	 aimed	 only	 at
improving	 the	 eighth	 decimal	 place	 of	 some	 economic	 output	 measure.	 The
phenotypes	selected	would	then	have	lives	lacking	in	the	aforesaid	qualities,	and
depending	 on	 one’s	 axiology	 the	 result	 might	 strike	 one	 as	 either	 abhorrent,
worthless,	or	merely	 impoverished,	but	at	any	 rate	a	 far	cry	 from	a	utopia	one
would	feel	worthy	of	one’s	commendation.

It	might	be	wondered	how	such	a	bleak	picture	could	be	consistent	with	 the
fact	 that	 we	 do	 now	 indulge	 in	 music,	 humor,	 romance,	 art,	 etc.	 If	 these
behaviors	are	really	so	“wasteful,”	then	how	come	they	have	been	tolerated	and
indeed	 promoted	 by	 the	 evolutionary	 processes	 that	 shaped	 our	 species?	 That
modern	man	is	 in	an	evolutionary	disequilibrium	does	not	account	for	 this;	 for
our	Pleistocene	 forebears,	 too,	 engaged	 in	most	of	 these	dissipations.	Many	of
the	 behaviors	 in	 question	 are	 not	 even	 unique	 to	Homo	 sapiens.	 Flamboyant
display	 is	 found	 in	 a	 wide	 variety	 of	 contexts,	 from	 sexual	 selection	 in	 the
animal	kingdom	to	prestige	contests	among	nation	states.30

Although	a	full	evolutionary	explanation	for	each	of	these	behaviors	is	beyond
the	scope	of	the	present	inquiry,	we	can	note	that	some	of	them	serve	functions
that	may	not	be	as	relevant	in	a	machine	intelligence	context.	Play,	for	example,
which	 occurs	 only	 in	 some	 species	 and	 predominantly	 among	 juveniles,	 is
mainly	a	way	for	 the	young	animal	 to	 learn	skills	 that	 it	will	need	later	 in	 life.
When	 emulations	 can	 be	 created	 as	 adults,	 already	 in	 possession	 of	 a	mature
repertoire	of	skills,	or	when	knowledge	and	techniques	acquired	by	one	AI	can
be	directly	ported	into	another	AI,	the	need	for	playful	behavior	might	become



less	widespread.

Many	 of	 the	 other	 examples	 of	 humanistic	 behaviors	may	 have	 evolved	 as
hard-to-fake	 signals	 of	 qualities	 that	 are	 difficult	 to	 observe	 directly,	 such	 as
bodily	or	mental	resilience,	social	status,	quality	of	allies,	ability	and	willingness
to	prevail	in	a	fight,	or	possession	of	resources.	The	peacock’s	tail	is	the	classic
instance:	only	fit	peacocks	can	afford	 to	sprout	 truly	extravagant	plumage,	and
peahens	 have	 evolved	 to	 find	 it	 attractive.	 No	 less	 than	 morphological	 traits,
behavioral	 traits	 too	 can	 signal	 genetic	 fitness	 or	 other	 socially	 relevant
attributes.31

Given	 that	 flamboyant	display	 is	 so	common	among	both	humans	and	other
species,	one	might	consider	whether	it	would	not	also	be	part	of	the	repertoire	of
technologically	more	advanced	life	forms.	Even	if	there	were	to	be	no	narrowly
instrumental	use	 for	playfulness	or	musicality	or	even	 for	consciousness	 in	 the
future	 ecology	 of	 intelligent	 information	 processing,	 might	 not	 these	 traits
nonetheless	confer	some	evolutionary	advantage	to	their	possessors	by	virtue	of
being	reliable	signals	of	other	adaptive	qualities?

While	 the	possibility	of	a	pre-established	harmony	between	what	 is	valuable
to	us	and	what	would	be	adaptive	in	a	future	digital	ecology	is	hard	to	rule	out,
there	are	reasons	for	skepticism.	Consider,	first,	that	many	of	the	costly	displays
we	 find	 in	 nature	 are	 linked	 to	 sexual	 selection.32	 Reproduction	 among
technologically	 mature	 life	 forms,	 in	 contrast,	 may	 be	 predominantly	 or
exclusively	asexual.

Second,	technologically	advanced	agents	might	have	available	new	means	of
reliably	communicating	information	about	themselves,	means	that	do	not	rely	on
costly	 display.	 Even	 today,	 when	 professional	 lenders	 assess	 creditworthiness
they	tend	to	rely	more	on	documentary	evidence,	such	as	ownership	certificates
and	bank	statements,	 than	on	costly	displays,	 such	as	designer	suits	and	Rolex
watches.	In	the	future,	it	might	be	possible	to	employ	auditing	firms	that	verify
through	 detailed	 examination	 of	 behavioral	 track	 records,	 testing	 in	 simulated
environments,	or	direct	inspection	of	source	code,	that	a	client	agent	possesses	a
claimed	attribute.	Signaling	one’s	qualities	by	agreeing	to	such	auditing	might	be
more	 efficient	 than	 signaling	 via	 flamboyant	 display.	 Such	 a	 professionally
mediated	signal	would	still	be	costly	to	fake—this	being	the	essential	feature	that
makes	 the	 signal	 reliable—but	 it	 could	 be	 much	 cheaper	 to	 transmit	 when
truthful	than	it	would	be	to	communicate	an	equivalent	signal	flamboyantly.



Third,	 not	 all	 possible	 costly	 displays	 are	 intrinsically	 valuable	 or	 socially
desirable.	Many	are	simply	wasteful.	The	Kwakiutl	potlatch	ceremonies,	a	form
of	 status	 competition	 between	 rival	 chiefs,	 involved	 the	 public	 destruction	 of
vast	 amounts	 of	 accumulated	 wealth.33	 Record-breaking	 skyscrapers,
megayachts,	and	moon	rockets	may	be	viewed	as	contemporary	analogs.	While
activities	 like	 music	 and	 humor	 could	 plausibly	 be	 claimed	 to	 enhance	 the
intrinsic	 quality	 of	 human	 life,	 it	 is	 doubtful	 that	 a	 similar	 claim	 could	 be
sustained	 with	 regard	 to	 the	 costly	 pursuit	 of	 fashion	 accessories	 and	 other
consumerist	status	symbols.	Worse,	costly	display	can	be	outright	harmful,	as	in
macho	 posturing	 leading	 to	 gang	 violence	 or	military	 bravado.	 Even	 if	 future
intelligent	life	forms	would	use	costly	signaling,	therefore,	it	is	an	open	question
whether	 the	 signal	would	 be	 of	 a	 valuable	 sort—whether	 it	would	 be	 like	 the
rapturous	melody	of	a	nightingale	or	instead	like	the	toad’s	monosyllabic	croak
(or	the	incessant	barking	of	a	rabid	dog).

Post-transition	formation	of	a	singleton?

	

Even	 if	 the	 immediate	 outcome	 of	 the	 transition	 to	machine	 intelligence	were
multipolar,	the	possibility	would	remain	of	a	singleton	developing	later.	Such	a
development	would	continue	an	apparent	long-term	trend	toward	larger	scales	of
political	integration,	taking	it	to	its	natural	conclusion.34	How	might	this	occur?

A	second	transition

	

On	way	in	which	an	initially	multipolar	outcome	could	converge	into	a	singleton
post-transition	 is	 if	 there	 is,	 after	 the	 initial	 transition,	 a	 second	 technological
transition	big	enough	and	steep	enough	to	give	a	decisive	strategic	advantage	to
one	of	the	remaining	powers:	a	power	which	might	then	seize	the	opportunity	to
establish	a	singleton.	Such	a	hypothetical	second	transition	might	be	occasioned
by	a	breakthrough	to	a	higher	level	of	superintelligence.	For	instance,	if	the	first
wave	 of	 machine	 superintelligence	 is	 emulation-based,	 then	 a	 second	 surge
might	result	when	the	emulations	now	doing	the	research	succeed	in	developing
effective	 self-improving	 artificial	 intelligence.35	 (Alternatively,	 a	 second
transition	might	be	triggered	by	a	breakthrough	in	nanotechnology	or	some	other



military	or	general-purpose	technology	as	yet	unenvisaged.)

The	pace	of	development	after	the	initial	transition	would	be	extremely	rapid.
Even	 a	 short	 gap	 between	 the	 leading	 power	 and	 its	 closest	 competitor	 could
therefore	plausibly	result	in	a	decisive	strategic	advantage	for	the	leading	power
during	a	second	transition.	Suppose,	for	example,	that	two	projects	enter	the	first
transition	only	a	few	days	apart,	and	that	the	takeoff	is	slow	enough	that	this	gap
does	 not	 give	 the	 leading	 project	 a	 decisive	 strategic	 advantage	 at	 any	 point
during	 the	 takeoff.	 The	 two	 projects	 both	 emerge	 as	 superintelligent	 powers,
though	one	of	them	remains	a	few	days	ahead	of	the	other.	But	developments	are
now	 occurring	 on	 the	 research	 timescales	 characteristic	 of	 machine
superintelligence—perhaps	 thousands	 or	millions	 of	 times	 faster	 than	 research
conducted	 on	 a	 biological	 human	 timescale.	 Development	 of	 the	 second-
transition	 technology	might	 therefore	be	completed	 in	days,	hours,	or	minutes.
Even	 though	 the	 frontrunner’s	 lead	 is	 a	mere	 few	 days,	 a	 breakthrough	 could
thus	 catapult	 it	 into	 a	 decisive	 strategic	 advantage.	 Note,	 however,	 that	 if
technological	diffusion	(via	espionage	or	other	channels)	speeds	up	as	much	as
technological	 development,	 then	 this	 effect	 would	 be	 negated.	 What	 would
remain	relevant	would	be	the	steepness	of	the	second	transition,	that	is,	the	speed
at	which	 it	would	 unfold	 relative	 to	 the	 general	 speed	 of	 events	 in	 the	 period
after	 the	first	 transition.	(In	 this	sense,	 the	faster	 things	are	happening	after	 the
first	transition,	the	less	steep	the	second	transition	would	tend	to	be.)

One	might	also	 speculate	 that	 a	decisive	 strategic	advantage	would	be	more
likely	to	be	actually	used	to	establish	a	singleton	if	it	arises	during	a	second	(or
subsequent)	transition.	After	the	first	transition,	decision	makers	would	either	be
superintelligent	or	have	access	to	advice	from	a	superintelligence,	which	would
clarify	the	implications	of	available	strategic	options.	Furthermore,	the	situation
after	 the	 first	 transition	 might	 be	 one	 in	 which	 a	 preemptive	 move	 against
potential	competitors	would	be	less	dangerous	for	the	aggressor.	If	the	decision-
making	 minds	 after	 the	 first	 transition	 are	 digital,	 they	 could	 be	 copied	 and
thereby	rendered	 less	vulnerable	 to	a	counterattack.	Even	if	a	defender	had	 the
ability	to	kill	nine-tenths	of	the	aggressor’s	population	in	a	retaliatory	strike,	this
would	 scarcely	 offer	 much	 deterrence	 if	 the	 deceased	 could	 be	 immediately
resurrected	from	redundant	backups.	Devastation	of	infrastructure	(which	can	be
rebuilt)	 might	 also	 be	 tolerable	 to	 digital	 minds	 with	 effectively	 unlimited
lifespans,	who	might	be	planning	to	maximize	their	resources	and	influence	on	a
cosmological	timescale.



Superorganisms	and	scale	economies

	

The	 size	 of	 coordinated	 human	 aggregates,	 such	 as	 firms	 or	 nations,	 is
influenced	 by	 various	 parameters—technological,	 military,	 financial,	 and
cultural—that	 can	 vary	 from	 one	 historical	 epoch	 to	 another.	 A	 machine
intelligence	revolution	would	entail	profound	changes	in	many	these	parameters.
Perhaps	 these	 changes	 would	 facilitate	 the	 rise	 of	 a	 singleton.	 Although	 we
cannot,	without	looking	in	detail	at	what	these	prospective	changes	are,	exclude
the	opposite	possibility—that	 the	changes	would	 facilitate	 fragmentation	 rather
than	 unification—we	 can	 nevertheless	 note	 that	 the	 increased	 variance	 or
uncertainty	 that	 we	 confront	 here	 may	 itself	 be	 a	 ground	 for	 giving	 greater
credence	to	the	potential	emergence	of	a	singleton	than	we	would	otherwise	do.
A	 machine	 intelligence	 revolution	 might,	 so	 to	 speak,	 stir	 things	 up—might
reshuffle	 the	 deck	 to	 make	 possible	 geopolitical	 realignments	 that	 seemed
perhaps	otherwise	not	to	have	been	in	the	cards.

A	 comprehensive	 analysis	 of	 all	 the	 factors	 that	may	 influence	 the	 scale	 of
political	integration	would	take	us	far	beyond	the	scope	of	this	book:	a	review	of
the	relevant	political	science	and	economics	 literature	could	 itself	easily	 fill	an
entire	volume.	We	must	confine	ourselves	to	making	brief	allusion	to	a	couple	of
factors,	aspects	of	the	digitization	of	agents	that	may	make	it	easier	to	centralize
control.

Carl	 Shulman	 has	 argued	 that	 in	 a	 population	 of	 emulations,	 selection
pressures	would	favor	the	emergence	of	“superorganisms,”	groups	of	emulations
ready	to	sacrifice	themselves	for	the	good	of	their	clan.36	Superorganisms	would
be	spared	the	agency	problems	that	beset	organizations	whose	members	pursue
their	own	self-interest.	Like	the	cells	in	our	bodies,	or	the	individual	animals	in	a
colony	 of	 eusocial	 insects,	 emulations	 that	were	wholly	 altruistic	 toward	 their
copy-siblings	would	cooperate	with	one	another	even	in	the	absence	of	elaborate
incentive	schemes.

Superorganisms	would	have	a	particularly	strong	advantage	if	nonconsensual
deletion	(or	indefinite	suspension)	of	individual	emulations	is	disallowed.	Firms
or	 countries	 that	 employ	 emulations	 insisting	 on	 self-preservation	 would	 be
saddled	with	an	unending	commitment	to	pay	upkeep	for	obsolete	or	redundant
workers.	 In	 contrast,	 organizations	 whose	 emulations	 willingly	 deleted



themselves	when	their	services	were	no	longer	required	could	more	easily	adapt
to	 fluctuations	 in	 demand;	 and	 they	 could	 experiment	 freely,	 proliferating
variations	of	their	workers	and	retaining	only	the	most	productive.

If	 involuntary	deletion	 is	not	 disallowed,	 then	 the	 comparative	 advantage	of
eusocial	 emulations	 is	 reduced,	 though	 perhaps	 not	 eliminated.	 Employers	 of
cooperative	self-sacrificers	might	still	reap	efficiency	gains	from	reduced	agency
problems	 throughout	 the	 organization,	 including	 being	 spared	 the	 trouble	 of
having	to	defeat	whatever	resistance	emulations	could	put	up	against	their	own
deletion.	In	general,	the	productivity	gains	of	having	workers	willing	to	sacrifice
their	individual	lives	for	the	common	weal	are	a	special	case	of	the	benefits	an
organization	can	derive	from	having	members	who	are	fanatically	devoted	to	it.
Such	members	would	not	only	leap	into	the	grave	for	the	organization,	and	work
long	hours	for	little	pay:	they	would	also	shun	office	politics	and	try	consistently
to	act	in	what	they	took	to	be	the	organization’s	best	interest,	reducing	the	need
for	supervision	and	bureaucratic	constraints.

If	the	only	way	to	achieve	such	dedication	were	by	restricting	membership	to
copy-siblings	(so	that	all	emulations	in	a	particular	superorganism	were	stamped
out	 from	 the	 same	 template),	 then	 superorganisms	 would	 suffer	 some
disadvantage	in	being	able	to	draw	only	from	a	range	of	skills	narrower	than	that
of	rival	organizations,	a	disadvantage	which	might	or	might	not	be	large	enough
to	 outweigh	 the	 advantages	 of	 avoiding	 internal	 agency	 problems.37	 This
disadvantage	 would	 be	 greatly	 alleviated	 if	 a	 superorganism	 could	 at	 least
contain	members	with	different	 training.	Even	 if	 all	 its	members	were	derived
from	a	single	ur-template,	its	workforce	could	then	still	contribute	a	diversity	of
skills.	 Starting	 with	 a	 polymathically	 talented	 emulation	 ur-template,	 lineages
could	 be	 branched	 off	 into	 different	 training	 programs,	 one	 copy	 learning
accounting,	 another	 electrical	 engineering,	 and	 so	 forth.	This	would	produce	 a
membership	 with	 diverse	 skills	 though	 not	 of	 diverse	 talents.	 (Maximum
diversity	might	require	that	more	than	one	ur-template	be	used.)

The	essential	property	of	a	superorganism	is	not	that	it	consists	of	copies	of	a
single	progenitor	but	that	all	the	individual	agents	within	it	are	fully	committed
to	a	common	goal.	The	ability	to	create	a	superorganism	can	thus	be	viewed	as
requiring	a	partial	solution	to	the	control	problem.	Whereas	a	completely	general
solution	to	the	control	problem	would	enable	somebody	to	create	an	agent	with
any	 arbitrary	 final	 goal,	 the	 partial	 solution	 needed	 for	 the	 creation	 of	 a
superorganism	 requires	 merely	 the	 ability	 to	 fashion	 multiple	 agents	 with	 the



same	final	goal	(for	some	nontrivial	but	not	necessarily	arbitrary	final	goal).38

The	 main	 consideration	 put	 forward	 in	 this	 subsection	 is	 thus	 not	 really
limited	 to	monoclonal	emulation	groups,	but	can	be	stated	more	generally	 in	a
way	 that	 makes	 clear	 that	 it	 applies	 to	 a	 wide	 range	 of	 multipolar	 machine
intelligence	scenarios.	It	is	that	certain	types	of	advances	in	motivation	selection
techniques,	which	may	 become	 feasible	when	 the	 actors	 are	 digital,	may	 help
overcome	 some	 of	 the	 inefficiencies	 that	 currently	 hamper	 large	 human
organizations	 and	 that	 counterbalance	 economies	 of	 scale.	 With	 these	 limits
lifted,	 organizations—be	 they	 firms,	 nations,	 or	 other	 economic	 or	 political
entities—could	 increase	 in	 size.	 This	 is	 one	 factor	 that	 could	 facilitate	 the
emergence	of	a	post-transition	singleton.

One	 area	 in	 which	 superorganisms	 (or	 other	 digital	 agents	 with	 partially
selected	 motivations)	 might	 excel	 is	 coercion.	 A	 state	 might	 use	 motivation
selection	 methods	 to	 ensure	 that	 its	 police,	 military,	 intelligence	 service,	 and
civil	administration	are	uniformly	loyal.	As	Shulman	notes,

Saved	states	[of	some	loyal	emulation	that	has	been	carefully	prepared	and
verified]	could	be	copied	billions	of	times	to	staff	an	ideologically	uniform
military,	bureaucracy,	and	police	force.	After	a	short	period	of	work,	each
copy	would	be	replaced	by	a	fresh	copy	of	the	same	saved	state,	preventing
ideological	 drift.	 Within	 a	 given	 jurisdiction,	 this	 capability	 could	 allow
incredibly	 detailed	 observation	 and	 regulation:	 there	 might	 be	 one	 such
copy	 for	 every	 other	 resident.	 This	 could	 be	 used	 to	 prohibit	 the
development	 of	 weapons	 of	 mass	 destruction,	 to	 enforce	 regulations	 on
brain	 emulation	 experimentation	 or	 reproduction,	 to	 enforce	 a	 liberal
democratic	 constitution,	 or	 to	 create	 an	 appalling	 and	 permanent
totalitarianism39

	

The	first-order	effect	of	such	a	capability	would	seem	to	be	to	consolidate	power,
and	possibly	to	concentrate	it	in	fewer	hands.

Unification	by	treaty

	



There	may	be	large	potential	gains	to	be	had	from	international	collaboration	in	a
post-transition	 multipolar	 world.	 Wars	 and	 arms	 races	 could	 be	 avoided.
Astrophysical	resources	could	be	colonized	and	harvested	at	a	globally	optimum
pace.	The	development	of	more	advanced	 forms	of	machine	 intelligence	could
be	coordinated	to	avoid	a	rush	and	to	allow	new	designs	to	be	thoroughly	vetted.
Other	 developments	 that	might	 pose	 existential	 risks	 could	be	postponed.	And
uniform	 regulations	 could	 be	 enforced	 globally,	 including	 provisions	 for	 a
guaranteed	 standard	 of	 living	 (which	 would	 require	 some	 form	 of	 population
control)	 and	 for	 preventing	 exploitation	 and	 abuse	 of	 emulations	 and	 other
digital	 and	 biological	 minds.	 Furthermore,	 agents	 with	 resource-satiable
preferences	(more	on	this	in	Chapter	13)	would	prefer	a	sharing	agreement	that
would	guarantee	them	a	certain	slice	of	the	future	to	a	winner-takes-all	struggle
in	which	they	would	risk	getting	nothing.

The	 presence	 of	 big	 potential	 gains	 from	 collaboration,	 however,	 does	 not
imply	 that	 collaboration	 will	 actually	 be	 achieved.	 In	 the	 world	 today,	 many
great	 boons	 could	 be	 obtained	 via	 better	 global	 coordination—reductions	 of
military	 expenditures,	 wars,	 overfishing,	 trade	 barriers,	 and	 atmospheric
pollution,	among	others.	Yet	 these	plump	 fruits	 are	 left	 to	 spoil	on	 the	branch.
Why	is	 that?	What	stops	a	fully	cooperative	outcome	that	would	maximize	the
common	good?

One	 obstacle	 is	 the	 difficulty	 of	 ensuring	 compliance	 with	 any	 treaty	 that
might	 be	 agreed,	 including	 monitoring	 and	 enforcement	 costs.	 Two	 nuclear
rivals	might	each	be	better	off	 if	 they	both	 relinquished	 their	 atom	bombs;	yet
even	if	they	could	reach	an	in-principle	agreement	to	do	so,	disarmament	could
nevertheless	prove	elusive	because	of	their	mutual	fear	that	the	other	party	might
cheat.	 Allaying	 this	 fear	 would	 require	 setting	 up	 a	 verification	 mechanism.
There	may	have	to	be	inspectors	to	oversee	the	destruction	of	existing	stockpiles,
and	then	to	monitor	nuclear	reactors	and	other	facilities,	and	to	gather	technical
and	 human	 intelligence,	 in	 order	 to	 ensure	 that	 the	 weapons	 program	 is	 not
reconstituted.	One	 cost	 is	 paying	 for	 these	 inspectors.	Another	 cost	 is	 the	 risk
that	 the	 inspectors	will	 spy	 and	make	 off	with	 commercial	 or	military	 secrets.
Perhaps	most	significantly,	each	party	might	 fear	 that	 the	other	will	preserve	a
clandestine	 nuclear	 capability.	Many	 a	 potentially	 beneficial	 deal	 never	 comes
off	because	compliance	would	be	too	difficult	to	verify.

If	 new	 inspection	 technologies	 that	 reduced	 monitoring	 costs	 became
available,	 one	 would	 expect	 this	 to	 result	 in	 increased	 cooperation.	 Whether



monitoring	costs	would	on	net	be	reduced	in	the	post-transition	era,	however,	is
not	entirely	clear.	While	there	would	certainly	be	many	powerful	new	inspection
techniques,	 there	 would	 also	 be	 new	 means	 of	 concealment.	 In	 particular,	 an
increasing	portion	of	 the	activities	one	might	want	 to	regulate	would	be	 taking
place	 in	cyberspace,	out	of	reach	of	physical	surveillance.	For	example,	digital
minds	 working	 on	 designing	 a	 new	 nanotech	 weapons	 system	 or	 a	 new
generation	 of	 artificial	 intelligence	 may	 do	 so	 without	 leaving	 much	 of	 a
physical	 footprint.	 Digital	 forensics	 may	 fail	 to	 penetrate	 all	 the	 layers	 of
concealment	 and	 encryption	 in	 which	 a	 treaty-violator	 may	 cloak	 its	 illicit
activities.

Reliable	lie	detection,	if	it	could	be	developed,	would	be	an	extremely	useful
tool	 for	 monitoring	 compliance.40	 An	 inspection	 protocol	 could	 include
provisions	 for	 interviewing	 key	 officials,	 to	 verify	 that	 they	 are	 intent	 on
implementing	all	the	provisions	of	the	treaty	and	that	they	know	of	no	violations
despite	making	strong	efforts	to	find	out.

A	 decision	maker	 planning	 to	 cheat	might	 defeat	 such	 a	 lie-detection-based
verification	scheme	by	first	issuing	orders	to	subordinates	to	undertake	the	illicit
activity	 and	 to	 conceal	 the	 activity	 even	 from	 the	 decision	maker	 herself,	 and
then	 subjecting	 herself	 to	 some	 procedure	 that	 erases	 her	 memory	 of	 having
engaged	 in	 these	 machinations.	 Suitably	 targeted	 memory-erasure	 operations
might	well	be	feasible	in	biological	brains	with	more	advanced	neurotechnology.
It	 might	 be	 even	 easier	 in	 machine	 intelligences	 (depending	 on	 their
architecture).

States	could	seek	 to	overcome	this	problem	by	committing	 themselves	 to	an
ongoing	monitoring	scheme	that	regularly	tests	key	officials	with	a	 lie	detector
to	check	whether	 they	harbor	any	 intent	 to	subvert	or	circumvent	any	 treaty	 to
which	the	state	has	entered	or	may	enter	in	the	future.	Such	a	commitment	could
be	 viewed	 as	 a	 kind	 of	meta-treaty,	 which	 would	 facilitate	 the	 verification	 of
other	 treaties;	but	 states	might	commit	 themselves	 to	 it	unilaterally	 to	gain	 the
benefit	 of	 being	 regarded	 as	 a	 trustworthy	 negotiation	 partner.	 However,	 this
commitment	or	meta-treaty	would	face	the	same	problem	of	subversion	through
a	 delegate-and-forget	 ploy.	 Ideally,	 the	 meta-treaty	 would	 be	 put	 into	 effect
before	any	party	had	an	opportunity	to	make	the	internal	arrangements	necessary
to	 subvert	 its	 implementation.	Once	villainy	has	 had	 an	unguarded	moment	 to
sow	its	mines	of	deception,	trust	can	never	set	foot	there	again.



In	 some	 cases,	 the	 mere	 ability	 to	 detect	 treaty	 violations	 is	 sufficient	 to
establish	 the	 confidence	 needed	 for	 a	 deal.	 In	 other	 cases,	 however,	 there	 is	 a
need	 for	 some	mechanism	 to	enforce	 compliance	 or	mete	 out	 punishment	 if	 a
violation	should	occur.	The	need	for	an	enforcement	mechanism	may	arise	if	the
threat	of	 the	wronged	party	withdrawing	from	the	treaty	is	not	enough	to	deter
violations,	for	 instance	if	 the	treaty-violator	would	gain	such	an	advantage	that
he	would	not	subsequently	care	how	the	other	party	responds.

If	 highly	 effective	 motivation	 selection	 methods	 are	 available,	 this
enforcement	 problem	 could	 be	 solved	 by	 empowering	 an	 independent	 agency
with	sufficient	police	or	military	strength	to	enforce	the	treaty	even	against	 the
opposition	 of	 one	 or	 several	 of	 its	 signatories.	 This	 solution	 requires	 that	 the
enforcement	 agency	 can	 be	 trusted.	 But	 with	 sufficiently	 good	 motivation
selection	 techniques,	 the	 requisite	 confidence	might	 be	 achieved	 by	 having	 all
the	parties	to	the	treaty	jointly	oversee	the	design	of	the	enforcement	agency.

Handing	 over	 power	 to	 an	 external	 enforcement	 agency	 raises	many	 of	 the
same	issues	that	we	confronted	earlier	in	our	discussions	of	a	unipolar	outcome
(one	in	which	a	singleton	arises	prior	to	or	during	the	initial	machine	intelligence
revolution).	 In	order	 to	be	able	 to	enforce	 treaties	concerning	 the	vital	security
interests	of	rival	states,	the	external	enforcement	agency	would	in	effect	need	to
constitute	 a	 singleton:	 a	 global	 superintelligent	 Leviathan.	 One	 difference,
however,	is	that	we	are	now	considering	a	post-transition	situation,	in	which	the
agents	that	would	have	to	create	this	Leviathan	would	have	greater	competence
than	we	humans	currently	do.	These	Leviathan-creators	may	themselves	already
be	 superintelligent.	This	would	greatly	 improve	 the	odds	 that	 they	could	 solve
the	 control	 problem	 and	 design	 an	 enforcement	 agency	 that	 would	 serve	 the
interests	of	all	the	parties	that	have	a	say	in	its	construction.

Aside	 from	the	costs	of	monitoring	and	enforcing	compliance,	are	 there	any
other	 obstacles	 to	 global	 coordination?	 Perhaps	 the	 major	 remaining	 issue	 is
what	we	can	refer	to	as	bargaining	costs.41	Even	when	there	is	a	possible	bargain
that	would	benefit	everybody	involved,	it	sometimes	does	not	get	off	the	ground
because	the	parties	fail	to	agree	on	how	to	divide	the	spoils.	For	example,	if	two
persons	could	make	a	deal	that	would	net	them	a	dollar	in	profit,	but	each	party
feels	 she	 deserves	 sixty	 cents	 and	 refuses	 to	 settle	 for	 less,	 the	 deal	 will	 not
happen	and	 the	potential	gain	will	be	 forfeited.	 In	general,	negotiations	can	be
difficult	 or	 protracted,	 or	 remain	 altogether	 barren,	 because	 of	 strategic
bargaining	choices	made	by	some	of	the	parties.



In	real	life,	human	beings	frequently	succeed	in	reaching	agreements	despite
the	 possibility	 for	 strategic	 bargaining	 (though	 often	 not	 without	 considerable
expenditure	 of	 time	 and	 patience).	 It	 is	 conceivable,	 however,	 that	 strategic
bargaining	problems	would	have	a	different	dynamic	 in	 the	post-transition	era.
An	 AI	 negotiator	 might	 more	 consistently	 adhere	 to	 some	 particular	 formal
conception	 of	 rationality,	 possibly	 with	 novel	 or	 unanticipated	 consequences
when	matched	with	other	AI	negotiators.	An	AI	might	also	have	available	to	it
moves	 in	 the	 bargaining	 game	 that	 are	 either	 unavailable	 to	 humans	 or	 very
much	more	difficult	for	humans	to	execute,	including	the	ability	to	precommit	to
a	policy	or	 a	 course	of	 action.	While	humans	 (and	human-run	 institutions)	 are
occasionally	 able	 to	 precommit—with	 imperfect	 degrees	 of	 credibility	 and
specificity—some	types	of	machine	intelligence	might	be	able	to	make	arbitrary
unbreakable	precommitments	 and	 to	 allow	negotiating	partners	 to	 confirm	 that
such	a	precommitment	has	been	made.42

The	 availability	 of	 powerful	 precommitment	 techniques	 could	 profoundly
alter	the	nature	of	negotiations,	potentially	giving	an	immense	edge	to	an	agent
that	has	a	first-mover	advantage.	If	a	particular	agent’s	participation	is	necessary
for	the	realization	of	some	prospective	gains	from	cooperation,	and	if	that	agent
is	able	to	make	the	first	move,	it	would	be	in	a	position	to	dictate	the	division	of
the	 spoils	by	precommitting	not	 to	 accept	 any	deal	 that	gives	 it	 less	 than,	 say,
99%	of	the	surplus	value.	Other	agents	would	then	be	faced	with	the	choice	of
either	 getting	 nothing	 (by	 rejecting	 the	 unfair	 proposal)	 or	 getting	 1%	 of	 the
value	 (by	 caving	 in).	 If	 the	 first-moving	 agent’s	 precommitment	 is	 publicly
verifiable,	 its	 negotiating	 partners	 could	 be	 sure	 that	 these	 are	 their	 only	 two
options.

To	 avoid	 being	 exploited	 in	 this	manner,	 agents	might	 precommit	 to	 refuse
blackmail	and	to	decline	all	unfair	offers.	Once	such	a	precommitment	has	been
made	 (and	 successfully	 publicized),	 other	 agents	 would	 not	 find	 it	 in	 their
interest	to	make	threats	or	to	precommit	themselves	to	only	accepting	deals	tilted
in	 their	 own	 favor,	 because	 they	would	 know	 that	 threats	 would	 fail	 and	 that
unfair	 proposals	 would	 be	 rejected.	 But	 this	 just	 demonstrates	 again	 that	 the
advantage	is	with	the	first-mover.	The	agent	who	moves	first	can	choose	whether
to	 parlay	 its	 position	 of	 strength	 only	 to	 deter	 others	 from	 taking	 unfair
advantage,	or	to	make	a	grab	for	the	lion’s	share	of	future	spoils.

Best	situated	of	all,	 it	might	seem,	would	be	 the	agent	who	starts	out	with	a
temperament	or	a	value	system	that	makes	him	impervious	to	extortion	or	indeed



to	 any	 offer	 of	 a	 deal	 in	which	 his	 participation	 is	 indispensable	 but	 he	 is	 not
getting	almost	all	of	the	gains.	Some	humans	seem	already	to	possess	personality
traits	 corresponding	 to	 various	 aspects	 of	 an	uncompromising	 spirit.43	A	high-
strung	disposition,	however,	could	backfire	should	it	turn	out	that	there	are	other
agents	around	who	feel	entitled	to	more	than	their	fair	share	and	are	committed
to	 not	 backing	 down.	 The	 unstoppable	 force	 would	 then	 encounter	 the
unmovable	object,	resulting	in	a	failure	to	reach	agreement	(or	worse:	total	war).
The	meek	and	the	akratic	would	at	least	get	something,	albeit	less	than	their	fair
share.

What	 kind	 of	 game-theoretic	 equilibrium	would	 be	 reached	 in	 such	 a	 post-
transition	 bargaining	 game	 is	 not	 immediately	 obvious.	 Agents	 might	 choose
more	 complicated	 strategies	 than	 the	 ones	 considered	 here.	One	hopes	 that	 an
equilibrium	would	be	reached	centered	on	some	fairness	norm	that	would	serve
as	a	Schelling	point—a	salient	feature	in	a	big	outcome	space	which,	because	of
shared	 expectations,	 becomes	 a	 likely	 coordination	 point	 in	 an	 otherwise
underdetermined	coordination	game.	Such	an	equilibrium	might	be	bolstered	by
some	 of	 our	 evolved	 dispositions	 and	 cultural	 programming:	 a	 common
preference	 for	 fairness	 could,	 assuming	we	 succeed	 in	 transferring	 our	 values
into	the	post-transition	era,	bias	expectations	and	strategies	in	ways	that	lead	to
an	attractive	equilibrium.44

In	any	case,	the	upshot	is	that	with	the	possibility	of	strong	and	flexible	forms
of	precommitment,	outcomes	of	negotiations	might	take	on	an	unfamiliar	guise.
Even	if	the	post-transition	era	started	out	multipolar,	it	might	be	that	a	singleton
would	 arise	 almost	 immediately	 as	 a	 consequence	 of	 a	 negotiated	 treaty	 that
resolves	 all	 important	 global	 coordination	 problems.	 Some	 transaction	 costs,
perhaps	 including	monitoring	 and	 enforcement	 costs,	might	 plummet	with	 the
new	 technological	 capabilities	 available	 to	 advanced	 machine	 intelligences.
Other	 costs,	 in	 particular	 costs	 related	 to	 strategic	 bargaining,	 might	 remain
significant.	But	however	strategic	bargaining	affects	the	nature	of	the	agreement
that	is	reached,	there	is	no	clear	reason	why	it	would	long	delay	the	reaching	of
some	 agreement	 if	 an	 agreement	were	 ever	 to	 be	 reached.	 If	 no	 agreement	 is
reached,	 then	 some	 form	 of	 fighting	 might	 take	 place;	 and	 either	 one	 faction
might	win,	and	form	a	singleton	around	the	winning	coalition,	or	the	result	might
be	an	 interminable	conflict,	 in	which	case	a	 singleton	may	never	 form	and	 the
overall	 outcome	 may	 fall	 terribly	 short	 of	 what	 could	 and	 should	 have	 been
achieved	 if	humanity	and	 its	descendants	had	acted	 in	a	more	coordinated	and
cooperative	fashion.



	

We	have	 seen	 that	multipolarity,	 even	 if	 it	 could	be	achieved	 in	a	 stable	 form,
would	not	guarantee	an	attractive	outcome.	The	original	principal–agent	problem
remains	unsolved,	 and	burying	 it	 under	 a	new	set	of	problems	 related	 to	post-
transition	global	coordination	failures	may	only	make	the	situation	worse.	Let	us
therefore	 return	 to	 the	 question	 of	 how	 we	 could	 safely	 keep	 a	 single
superintelligent	AI.



CHAPTER	12
Acquiring	values

	

Capability	control	is,	at	best,	a	temporary	and	auxiliary	measure.	Unless	the
plan	 is	 to	keep	 superintelligence	bottled	up	 forever,	 it	will	be	necessary	 to
master	motivation	selection.	But	just	how	could	we	get	some	value	 into	an
artificial	agent,	so	as	to	make	it	pursue	that	value	as	its	final	goal?	While	the
agent	 is	 unintelligent,	 it	 might	 lack	 the	 capability	 to	 understand	 or	 even
represent	 any	 humanly	 meaningful	 value.	 Yet	 if	 we	 delay	 the	 procedure
until	 the	 agent	 is	 superintelligent,	 it	may	 be	 able	 to	 resist	 our	 attempt	 to
meddle	 with	 its	 motivation	 system—and,	 as	 we	 showed	 in	 Chapter	 7,	 it
would	 have	 convergent	 instrumental	 reasons	 to	 do	 so.	 This	 value-loading
problem	is	tough,	but	must	be	confronted.

The	value-loading	problem

	

It	 is	 impossible	 to	 enumerate	 all	 possible	 situations	 a	 superintelligence	 might
find	 itself	 in	and	 to	specify	 for	each	what	action	 it	 should	 take.	Similarly,	 it	 is
impossible	to	create	a	list	of	all	possible	worlds	and	assign	each	of	them	a	value.
In	any	realm	significantly	more	complicated	than	a	game	of	tic-tac-toe,	there	are
far	 too	many	possible	states	 (and	state-histories)	 for	exhaustive	enumeration	 to
be	 feasible.	 A	 motivation	 system,	 therefore,	 cannot	 be	 specified	 as	 a
comprehensive	 lookup	table.	 It	must	 instead	be	expressed	more	abstractly,	as	a
formula	or	rule	that	allows	the	agent	to	decide	what	to	do	in	any	given	situation.

One	formal	way	of	specifying	such	a	decision	rule	is	via	a	utility	function.	A
utility	function	(as	we	recall	from	Chapter	1)	assigns	value	to	each	outcome	that
might	 obtain,	 or	 more	 generally	 to	 each	 “possible	 world.”	 Given	 a	 utility
function,	one	can	define	an	agent	that	maximizes	expected	utility.	Such	an	agent
selects	at	each	time	the	action	that	has	the	highest	expected	utility.	(The	expected
utility	 is	 calculated	 by	 weighting	 the	 utility	 of	 each	 possible	 world	 with	 the
subjective	 probability	 of	 that	 world	 being	 the	 actual	 world	 conditional	 on	 a



particular	action	being	taken.)	In	reality,	the	possible	outcomes	are	too	numerous
for	 the	expected	utility	of	 an	 action	 to	be	 calculated	 exactly.	Nevertheless,	 the
decision	 rule	and	 the	utility	 function	 together	determine	a	normative	 ideal—an
optimality	 notion—that	 an	 agent	 might	 be	 designed	 to	 approximate;	 and	 the
approximation	might	 get	 closer	 as	 the	 agent	 gets	more	 intelligent.1	Creating	 a
machine	 that	 can	 compute	 a	good	approximation	of	 the	 expected	utility	of	 the
actions	 available	 to	 it	 is	 an	 AI-complete	 problem.2	 This	 chapter	 addresses
another	 problem,	 a	 problem	 that	 remains	 even	 if	 the	 problem	 of	 making
machines	intelligent	is	solved.

We	 can	 use	 this	 framework	 of	 a	 utility-maximizing	 agent	 to	 consider	 the
predicament	 of	 a	 future	 seed-AI	 programmer	who	 intends	 to	 solve	 the	 control
problem	by	endowing	the	AI	with	a	final	goal	that	corresponds	to	some	plausible
human	 notion	 of	 a	worthwhile	 outcome.	 The	 programmer	 has	 some	 particular
human	value	in	mind	that	he	would	like	the	AI	to	promote.	To	be	concrete,	let	us
say	that	it	is	happiness.	(Similar	issues	would	arise	if	we	the	programmer	were
interested	 in	 justice,	 freedom,	 glory,	 human	 rights,	 democracy,	 ecological
balance,	 or	 self-development.)	 In	 terms	 of	 the	 expected	 utility	 framework,	 the
programmer	is	thus	looking	for	a	utility	function	that	assigns	utility	to	possible
worlds	in	proportion	to	the	amount	of	happiness	they	contain.	But	how	could	he
express	 such	 a	 utility	 function	 in	 computer	 code?	Computer	 languages	 do	 not
contain	terms	such	as	“happiness”	as	primitives.	If	such	a	term	is	to	be	used,	it
must	 first	be	defined.	 It	 is	not	 enough	 to	define	 it	 in	 terms	of	other	high-level
human	 concepts—“happiness	 is	 enjoyment	 of	 the	 potentialities	 inherent	 in	 our
human	 nature”	 or	 some	 such	 philosophical	 paraphrase.	 The	 definition	 must
bottom	 out	 in	 terms	 that	 appear	 in	 the	 AI’s	 programming	 language,	 and
ultimately	 in	primitives	such	as	mathematical	operators	and	addresses	pointing
to	the	contents	of	individual	memory	registers.	When	one	considers	the	problem
from	 this	 perspective,	 one	 can	 begin	 to	 appreciate	 the	 difficulty	 of	 the
programmer’s	task.

Identifying	and	codifying	our	own	final	goals	is	difficult	because	human	goal
representations	are	complex.	Because	the	complexity	is	largely	transparent	to	us,
however,	we	often	fail	to	appreciate	that	it	is	there.	We	can	compare	the	case	to
visual	perception.	Vision,	likewise,	might	seem	like	a	simple	thing,	because	we
do	 it	 effortlessly.3	 We	 only	 need	 to	 open	 our	 eyes,	 so	 it	 seems,	 and	 a	 rich,
meaningful,	 eidetic,	 three-dimensional	 view	 of	 the	 surrounding	 environment
comes	 flooding	 into	our	minds.	This	 intuitive	understanding	of	vision	 is	 like	a
duke’s	 understanding	 of	 his	 patriarchal	 household:	 as	 far	 as	 he	 is	 concerned,



things	simply	appear	at	their	appropriate	times	and	places,	while	the	mechanism
that	 produces	 those	 manifestations	 are	 hidden	 from	 view.	 Yet	 accomplishing
even	the	simplest	visual	task—finding	the	pepper	jar	in	the	kitchen—requires	a
tremendous	 amount	 of	 computational	 work.	 From	 a	 noisy	 time	 series	 of	 two-
dimensional	patterns	of	nerve	firings,	originating	 in	 the	retina	and	conveyed	to
the	 brain	 via	 the	 optic	 nerve,	 the	 visual	 cortex	 must	 work	 backwards	 to
reconstruct	an	interpreted	three-dimensional	representation	of	external	space.	A
sizeable	portion	of	our	precious	one	square	meter	of	cortical	real	estate	is	zoned
for	processing	visual	 information,	and	as	you	are	reading	this	book,	billions	of
neurons	 are	 working	 ceaselessly	 to	 accomplish	 this	 task	 (like	 so	 many
seamstresses,	 bent	 over	 their	 sewing	machines	 in	 a	 sweatshop,	 sewing	 and	 re-
sewing	a	giant	quilt	many	times	a	second).	In	like	manner,	our	seemingly	simple
values	 and	 wishes	 in	 fact	 contain	 immense	 complexity.4	 How	 could	 our
programmer	transfer	this	complexity	into	a	utility	function?

One	 approach	would	be	 to	 try	 to	 directly	 code	 a	 complete	 representation	of
whatever	goal	we	have	that	we	want	 the	AI	to	pursue;	 in	other	words,	 to	write
out	 an	 explicit	 utility	 function.	 This	 approach	 might	 work	 if	 we	 had
extraordinarily	simple	goals,	for	example	if	we	wanted	to	calculate	the	digits	of
pi—that	is,	if	the	only	thing	we	wanted	was	for	the	AI	to	calculate	the	digits	of	pi
and	we	were	 indifferent	 to	 any	 other	 consequence	 that	 would	 result	 from	 the
pursuit	 of	 this	 goal—recall	 our	 earlier	 discussion	 of	 the	 failure	 mode	 of
infrastructure	 profusion.	 This	 explicit	 coding	 approach	 might	 also	 have	 some
promise	in	the	use	of	domesticity	motivation	selection	methods.	But	if	one	seeks
to	promote	or	protect	any	plausible	human	value,	and	one	is	building	a	system
intended	 to	 become	 a	 superintelligent	 sovereign,	 then	 explicitly	 coding	 the
requisite	complete	goal	representation	appears	to	be	hopelessly	out	of	reach.5

If	 we	 cannot	 transfer	 human	 values	 into	 an	 AI	 by	 typing	 out	 full-blown
representations	in	computer	code,	what	else	might	we	try?	This	chapter	discusses
several	 alternative	 paths.	 Some	 of	 these	may	 look	 plausible	 at	 first	 sight—but
much	less	so	upon	closer	examination.	Future	explorations	should	focus	on	those
paths	that	remain	open.

Solving	the	value-loading	problem	is	a	research	challenge	worthy	of	some	of
the	next	generation’s	best	mathematical	talent.	We	cannot	postpone	confronting
this	problem	until	the	AI	has	developed	enough	reason	to	easily	understand	our
intentions.	 As	 we	 saw	 in	 the	 section	 on	 convergent	 instrumental	 reasons,	 a
generic	 system	will	 resist	 attempts	 to	 alter	 its	 final	 values.	 If	 an	 agent	 is	 not



already	 fundamentally	 friendly	 by	 the	 time	 it	 gains	 the	 ability	 to	 reflect	 on	 its
own	agency,	it	will	not	take	kindly	to	a	belated	attempt	at	brainwashing	or	a	plot
to	replace	it	with	a	different	agent	that	better	loves	its	neighbor.

Evolutionary	selection

	

Evolution	has	produced	an	organism	with	human	values	at	least	once.	This	fact
might	 encourage	 the	belief	 that	 evolutionary	methods	are	 the	way	 to	 solve	 the
value-loading	problem.	There	are,	however,	severe	obstacles	to	achieving	safety
along	this	path.	We	have	already	pointed	to	these	obstacles	at	the	end	of	Chapter
10	when	we	discussed	how	powerful	search	processes	can	be	dangerous.

Evolution	can	be	viewed	as	a	particular	class	of	search	algorithms	that	involve
the	alternation	of	 two	steps,	one	expanding	a	population	of	solution	candidates
by	generating	new	candidates	according	to	some	relatively	simple	stochastic	rule
(such	 as	 random	mutation	 or	 sexual	 recombination),	 the	 other	 contracting	 the
population	by	pruning	candidates	that	score	poorly	when	tested	by	an	evaluation
function.	As	with	many	other	types	of	powerful	search,	there	is	the	risk	that	the
process	will	find	a	solution	that	satisfies	the	formally	specified	search	criteria	but
not	our	 implicit	 expectations.	 (This	would	hold	whether	one	 seeks	 to	 evolve	a
digital	mind	 that	 has	 the	 same	 goals	 and	 values	 as	 a	 typical	 human	 being,	 or
instead	a	mind	 that	 is,	 for	 instance,	perfectly	moral	or	perfectly	obedient.)	The
risk	 would	 be	 avoided	 if	 we	 could	 specify	 a	 formal	 search	 criterion	 that
accurately	represented	all	dimensions	of	our	goals,	rather	than	just	one	aspect	of
what	we	think	we	desire.	But	this	is	precisely	the	value-loading	problem,	and	it
would	of	course	beg	the	question	in	this	context	to	assume	that	problem	solved.

There	is	a	further	problem:

The	 total	 amount	 of	 suffering	 per	 year	 in	 the	 natural	world	 is	 beyond	 all
decent	contemplation.	During	 the	minute	 that	 it	 takes	me	 to	compose	 this
sentence,	thousands	of	animals	are	being	eaten	alive,	others	are	running	for
their	 lives,	whimpering	with	 fear,	 others	 are	 being	 slowly	 devoured	 from
within	by	rasping	parasites,	 thousands	of	all	kinds	are	dying	of	starvation,
thirst	and	disease.6

	



Even	 just	 within	 our	 species,	 150,000	 persons	 are	 destroyed	 each	 day	 while
countless	more	 suffer	an	appalling	array	of	 torments	and	deprivations.7	Nature
might	be	a	great	experimentalist,	but	one	who	would	never	pass	muster	with	an
ethics	review	board—contravening	the	Helsinki	Declaration	and	every	norm	of
moral	 decency,	 left,	 right,	 and	 center.	 It	 is	 important	 that	 we	 not	 gratuitously
replicate	 such	horrors	 in	silico.	Mind	crime	 seems	especially	difficult	 to	 avoid
when	evolutionary	methods	are	used	to	produce	human-like	intelligence,	at	least
if	the	process	is	meant	to	look	anything	like	actual	biological	evolution.8

Reinforcement	learning

	

Reinforcement	 learning	 is	 an	 area	 of	machine	 learning	 that	 studies	 techniques
whereby	 agents	 can	 learn	 to	maximize	 some	 notion	 of	 cumulative	 reward.	By
constructing	 an	 environment	 in	 which	 desired	 performance	 is	 rewarded,	 a
reinforcement-learning	 agent	 can	 be	 made	 to	 learn	 to	 solve	 a	 wide	 class	 of
problems	 (even	 in	 the	 absence	 of	 detailed	 instruction	 or	 feedback	 from	 the
programmers,	 aside	 from	 the	 reward	 signal).	 Often,	 the	 learning	 algorithm
involves	 the	 gradual	 construction	 of	 some	 kind	 of	 evaluation	 function,	 which
assigns	values	to	states,	state–action	pairs,	or	policies.	(For	instance,	a	program
can	learn	to	play	backgammon	by	using	reinforcement	learning	to	incrementally
improve	 its	 evaluation	 of	 possible	 board	 positions.)	 The	 evaluation	 function,
which	 is	 continuously	 updated	 in	 light	 of	 experience,	 could	 be	 regarded	 as
incorporating	a	form	of	learning	about	value.	However,	what	is	being	learned	is
not	 new	 final	 values	 but	 increasingly	 accurate	 estimates	 of	 the	 instrumental
values	of	 reaching	particular	states	 (or	of	 taking	particular	actions	 in	particular
states,	 or	 of	 following	 particular	 policies).	 Insofar	 as	 a	 reinforcement-learning
agent	 can	 be	 described	 as	 having	 a	 final	 goal,	 that	 goal	 remains	 constant:	 to
maximize	 future	 reward.	And	 reward	 consists	 of	 specially	 designated	 percepts
received	from	the	environment.	Therefore,	the	wireheading	syndrome	remains	a
likely	 outcome	 in	 any	 reinforcement	 agent	 that	 develops	 a	 world	 model
sophisticated	enough	to	suggest	this	alternative	way	of	maximizing	reward.9

These	remarks	do	not	imply	that	reinforcement-learning	methods	could	never
be	 used	 in	 a	 safe	 seed	AI,	 only	 that	 they	would	 have	 to	 be	 subordinated	 to	 a
motivation	 system	 that	 is	 not	 itself	 organized	 around	 the	 principle	 of	 reward
maximization.	That,	however,	would	require	that	a	solution	to	the	value-loading



problem	had	been	found	by	some	other	means	than	reinforcement	learning.

Associative	value	accretion

	

Now	one	might	wonder:	 if	 the	value-loading	problem	 is	 so	 tricky,	 how	do	we
ourselves	manage	to	acquire	our	values?

One	possible	(oversimplified)	model	might	look	something	like	this.	We	begin
life	with	some	relatively	simple	starting	preferences	(e.g.	an	aversion	to	noxious
stimuli)	 together	with	 a	 set	of	dispositions	 to	 acquire	 additional	preferences	 in
response	 to	various	possible	 experiences	 (e.g.	we	might	be	disposed	 to	 form	a
preference	for	objects	and	behaviors	that	we	find	to	be	valued	and	rewarded	in
our	culture).	Both	the	simple	starting	preferences	and	the	dispositions	are	innate,
having	been	shaped	by	natural	and	sexual	selection	over	evolutionary	timescales.
Yet	which	preferences	we	end	up	with	as	adults	depends	on	life	events.	Much	of
the	information	content	in	our	final	values	is	thus	acquired	from	our	experiences
rather	than	preloaded	in	our	genomes.

For	example,	many	of	us	love	another	person	and	thus	place	great	final	value
on	 his	 or	 her	 well-being.	 What	 is	 required	 to	 represent	 such	 a	 value?	 Many
elements	are	involved,	but	consider	just	two:	a	representation	of	“person”	and	a
representation	 of	 “well-being.”	 These	 concepts	 are	 not	 directly	 coded	 in	 our
DNA.	Rather,	 the	DNA	contains	instructions	for	building	a	brain,	which,	when
placed	 in	 a	 typical	 human	 environment,	 will	 over	 the	 course	 of	 several	 years
develop	 a	 world	 model	 that	 includes	 concepts	 of	 persons	 and	 of	 well-being.
Once	formed,	these	concepts	can	be	used	to	represent	certain	meaningful	values.
But	 some	 mechanism	 needs	 to	 be	 innately	 present	 that	 leads	 to	 values	 being
formed	around	these	concepts,	rather	than	around	other	acquired	concepts	(like
that	of	a	flowerpot	or	a	corkscrew).

The	details	of	how	this	mechanism	works	are	not	well	understood.	In	humans,
the	mechanism	is	probably	complex	and	multifarious.	It	 is	easier	to	understand
the	 phenomenon	 if	 we	 consider	 it	 in	 a	 more	 rudimentary	 form,	 such	 as	 filial
imprinting	in	nidifugous	birds,	where	the	newly	hatched	chick	acquires	a	desire
for	 physical	 proximity	 to	 an	 object	 that	 presents	 a	 suitable	 moving	 stimulus
within	the	first	day	after	hatching.	Which	particular	object	the	chick	desires	to	be
near	 depends	 on	 its	 experience;	 only	 the	 general	 disposition	 to	 imprint	 in	 this



way	is	genetically	determined.	Analogously,	Harry	might	place	a	final	value	on
Sally’s	well-being;	 but	 had	 the	 twain	 never	met,	 he	might	 have	 fallen	 in	 love
with	somebody	else	instead,	and	his	final	values	would	have	been	different.	The
ability	of	our	genes	to	code	for	the	construction	of	a	goal-acquiring	mechanism
explains	 how	we	 come	 to	 have	 final	 goals	 of	 great	 informational	 complexity,
greater	than	could	be	contained	in	the	genome	itself.

We	may	consequently	consider	whether	we	might	build	the	motivation	system
for	an	artificial	intelligence	on	the	same	principle.	That	is,	instead	of	specifying
complex	 values	 directly,	 could	 we	 specify	 some	 mechanism	 that	 leads	 to	 the
acquisition	of	those	values	when	the	AI	interacts	with	a	suitable	environment?

Mimicking	 the	 value-accretion	 process	 that	 takes	 place	 in	 humans	 seems
difficult.	The	 relevant	 genetic	mechanism	 in	humans	 is	 the	product	 of	 eons	of
work	 by	 evolution,	 work	 that	 might	 be	 hard	 to	 recapitulate.	 Moreover,	 the
mechanism	 is	 presumably	 closely	 tailored	 to	 the	 human	 neurocognitive
architecture	 and	 therefore	 not	 applicable	 in	 machine	 intelligences	 other	 than
whole	 brain	 emulations.	 And	 if	 whole	 brain	 emulations	 of	 sufficient	 fidelity
were	available,	it	would	seem	easier	to	start	with	an	adult	brain	that	comes	with
full	representations	of	some	human	values	preloaded.10

Seeking	to	implement	a	process	of	value	accretion	closely	mimicking	that	of
human	 biology	 therefore	 seems	 an	 unpromising	 line	 of	 attack	 on	 the	 value-
loading	 problem.	 But	 perhaps	 we	 might	 design	 a	 more	 unabashedly	 artificial
substitute	 mechanism	 that	 would	 lead	 an	 AI	 to	 import	 high-fidelity
representations	 of	 relevant	 complex	 values	 into	 its	 goal	 system?	 For	 this	 to
succeed,	 it	 may	 not	 be	 necessary	 to	 give	 the	 AI	 exactly	 the	 same	 evaluative
dispositions	as	a	biological	human.	That	may	not	even	be	desirable	as	an	aim—
human	nature,	 after	 all,	 is	 flawed	 and	 all	 too	 often	 reveals	 a	 proclivity	 to	 evil
which	would	 be	 intolerable	 in	 any	 system	poised	 to	 attain	 a	 decisive	 strategic
advantage.	Better,	perhaps,	to	aim	for	a	motivation	system	that	departs	from	the
human	norm	in	systematic	ways,	such	as	by	having	a	more	robust	 tendency	 to
acquire	final	goals	that	are	altruistic,	compassionate,	or	high-minded	in	ways	we
would	recognize	as	reflecting	exceptionally	good	character	if	they	were	present
in	a	human	person.	To	count	as	 improvements,	however,	 such	deviations	 from
the	 human	 norm	would	 have	 to	 be	 pointed	 in	 very	 particular	 directions	 rather
than	at	random;	and	they	would	continue	to	presuppose	the	existence	of	a	largely
undisturbed	anthropocentric	frame	of	reference	to	provide	humanly	meaningful
evaluative	 generalizations	 (so	 as	 to	 avoid	 the	 kind	 of	 perverse	 instantiation	 of



superficially	plausible	goal	descriptions	that	we	examined	in	Chapter	8).	It	is	an
open	question	whether	this	is	feasible.

One	further	issue	with	associative	value	accretion	is	that	the	AI	might	disable
the	 accretion	mechanism.	As	we	 saw	 in	 Chapter	 7,	 goal-system	 integrity	 is	 a
convergent	instrumental	value.	When	the	AI	reaches	a	certain	stage	of	cognitive
development	 it	 may	 start	 to	 regard	 the	 continued	 operation	 of	 the	 accretion
mechanism	as	a	corrupting	influence.11	This	 is	not	necessarily	a	bad	 thing,	but
care	would	have	to	be	taken	to	make	the	sealing-up	of	the	goal	system	occur	at
the	right	moment,	after	the	appropriate	values	have	been	accreted	but	before	they
have	been	overwritten	by	additional	unintended	accretions.

Motivational	scaffolding

	

Another	 approach	 to	 the	 value-loading	 problem	 is	 what	 we	 may	 refer	 to	 as
motivational	scaffolding.	It	involves	giving	the	seed	AI	an	interim	goal	system,
with	 relatively	 simple	 final	 goals	 that	 we	 can	 represent	 by	 means	 of	 explicit
coding	 or	 some	 other	 feasible	 method.	 Once	 the	 AI	 has	 developed	 more
sophisticated	 representational	 faculties,	 we	 replace	 this	 interim	 scaffold	 goal
system	with	one	 that	has	different	 final	goals.	This	successor	goal	system	then
governs	the	AI	as	it	develops	into	a	full-blown	superintelligence.

Because	the	scaffold	goals	are	not	just	instrumental	but	final	goals	for	the	AI,
the	AI	might	be	expected	to	resist	having	them	replaced	(goal-content	integrity
being	a	convergent	instrumental	value).	This	creates	a	hazard.	If	the	AI	succeeds
in	thwarting	the	replacement	of	its	scaffold	goals,	the	method	fails.

To	avoid	this	failure	mode,	precautions	are	necessary.	For	example,	capability
control	 methods	 could	 be	 applied	 to	 limit	 the	 AI’s	 powers	 until	 the	 mature
motivation	 system	 has	 been	 installed.	 In	 particular,	 one	 could	 try	 to	 stunt	 its
cognitive	development	at	 a	 level	 that	 is	 safe	but	 that	 allows	 it	 to	 represent	 the
values	that	we	want	to	include	in	its	ultimate	goals.	To	do	this,	one	might	try	to
differentially	 stunt	 certain	 types	of	 intellectual	 abilities,	 such	as	 those	 required
for	strategizing	and	Machiavellian	scheming,	while	allowing	(apparently)	more
innocuous	abilities	to	develop	to	a	somewhat	higher	level.

One	 could	 also	 try	 to	 use	 motivation	 selection	 methods	 to	 induce	 a	 more



collaborative	 relationship	 between	 the	 seed	AI	 and	 the	 programmer	 team.	 For
example,	 one	 might	 include	 in	 the	 scaffold	 motivation	 system	 the	 goal	 of
welcoming	online	guidance	from	the	programmers,	 including	allowing	 them	to
replace	any	of	the	AI’s	current	goals.12	Other	scaffold	goals	might	include	being
transparent	 to	 the	programmers	about	 its	values	and	 strategies,	 and	developing
an	architecture	that	is	easy	for	the	programmers	to	understand	and	that	facilitates
the	 later	 implementation	 of	 a	 humanly	 meaningful	 final	 goal,	 as	 well	 as
domesticity	motivations	(such	as	limiting	the	use	of	computational	resources).

One	 could	 even	 imagine	 endowing	 the	 seed	 AI	 with	 the	 sole	 final	 goal	 of
replacing	 itself	 with	 a	 different	 final	 goal,	 one	 which	 may	 have	 been	 only
implicitly	or	indirectly	specified	by	the	programmers.	Some	of	the	issues	raised
by	the	use	of	such	a	“self-replacing”	scaffold	goal	also	arise	in	the	context	of	the
value	learning	approach,	which	is	discussed	in	the	next	subsection.	Some	further
issues	will	be	discussed	in	Chapter	13.

The	motivational	scaffolding	approach	is	not	without	downsides.	One	is	that	it
carries	the	risk	that	the	AI	could	become	too	powerful	while	it	is	still	running	on
its	 interim	goal	 system.	 It	may	 then	 thwart	 the	human	programmers’	 efforts	 to
install	 the	 ultimate	 goal	 system	 (either	 by	 forceful	 resistance	 or	 by	 quiet
subversion).	 The	 old	 final	 goals	 may	 then	 remain	 in	 charge	 as	 the	 seed	 AI
develops	into	a	full-blown	superintelligence.	Another	downside	is	that	installing
the	ultimately	 intended	goals	 in	a	human-level	AI	 is	not	necessarily	 that	much
easier	than	doing	so	in	a	more	primitive	AI.	A	human-level	AI	is	more	complex
and	might	have	developed	an	architecture	that	is	opaque	and	difficult	to	alter.	A
seed	AI,	by	contrast,	is	like	a	tabula	rasa	on	which	the	programmers	can	inscribe
whatever	structures	 they	deem	helpful.	This	downside	could	be	flipped	 into	an
upside	if	one	succeeded	in	giving	the	seed	AI	scaffold	goals	that	made	it	want	to
develop	an	architecture	helpful	to	the	programmers	in	their	later	efforts	to	install
the	ultimate	final	values.	However,	it	is	unclear	how	easy	it	would	be	to	give	a
seed	AI	 scaffold	 goals	 with	 this	 property,	 and	 it	 is	 also	 unclear	 how	 even	 an
ideally	motivated	seed	AI	would	be	capable	of	doing	a	much	better	job	than	the
human	programming	team	at	developing	a	good	architecture.

Value	learning

	

We	come	now	to	an	important	but	subtle	approach	to	the	value-loading	problem.



It	 involves	using	the	AI’s	intelligence	to	 learn	 the	values	we	want	it	 to	pursue.
To	do	this,	we	must	provide	a	criterion	for	the	AI	that	at	least	implicitly	picks	out
some	suitable	set	of	values.	We	could	 then	build	 the	AI	 to	act	according	 to	 its
best	estimates	of	these	implicitly	defined	values.	It	would	continually	refine	its
estimates	 as	 it	 learns	 more	 about	 the	 world	 and	 gradually	 unpacks	 the
implications	of	the	value-determining	criterion.

In	contrast	to	the	scaffolding	approach,	which	gives	the	AI	an	interim	scaffold
goal	and	later	replaces	it	with	a	different	final	goal,	the	value	learning	approach
retains	 an	 unchanging	 final	 goal	 throughout	 the	 AI’s	 developmental	 and
operational	phases.	Learning	does	not	change	the	goal.	It	changes	only	the	AI’s
beliefs	about	the	goal.

The	AI	 thus	must	 be	 endowed	with	 a	 criterion	 that	 it	 can	 use	 to	 determine
which	percepts	constitute	evidence	in	favor	of	some	hypothesis	about	what	 the
ultimate	 goal	 is,	 and	which	 percepts	 constitute	 evidence	 against.	 Specifying	 a
suitable	criterion	could	be	difficult.	Part	of	the	difficulty,	however,	pertains	to	the
problem	 of	 creating	 artificial	 general	 intelligence	 in	 the	 first	 place,	 which
requires	 a	 powerful	 learning	mechanism	 that	 can	 discover	 the	 structure	 of	 the
environment	 from	 limited	 sensory	 inputs.	That	problem	we	can	 set	 aside	here.
But	even	modulo	a	solution	to	how	to	create	superintelligent	AI,	there	remain	the
difficulties	that	arise	specifically	from	the	value-loading	problem.	With	the	value
learning	 approach,	 these	 take	 the	 form	 of	 needing	 to	 define	 a	 criterion	 that
connects	perceptual	bitstrings	to	hypotheses	about	values.

Before	delving	into	the	details	of	how	value	learning	could	be	implemented,	it
might	be	helpful	to	illustrate	the	general	idea	with	an	example.	Suppose	we	write
down	a	description	of	a	set	of	values	on	a	piece	of	paper.	We	fold	the	paper	and
put	 it	 in	 a	 sealed	 envelope.	We	 then	 create	 an	 agent	with	human-level	 general
intelligence,	 and	give	 it	 the	 following	 final	 goal:	 “Maximize	 the	 realization	of
the	values	described	in	the	envelope.”	What	will	this	agent	do?

The	agent	does	not	initially	know	what	is	written	in	the	envelope.	But	it	can
form	hypotheses,	and	it	can	assign	those	hypotheses	probabilities	based	on	their
priors	 and	 any	 available	 empirical	 data.	 For	 instance,	 the	 agent	 might	 have
encountered	other	examples	of	human-authored	texts,	or	it	might	have	observed
some	general	patterns	of	human	behavior.	This	would	enable	it	to	make	guesses.
One	does	not	need	a	degree	in	psychology	to	predict	that	the	note	is	more	likely
to	 describe	 a	 value	 such	 as	 “minimize	 injustice	 and	 unnecessary	 suffering”	 or



“maximize	 returns	 to	 shareholders”	 than	 a	 value	 such	 as	 “cover	 all	 lakes	with
plastic	shopping	bags.”

When	 the	 agent	 makes	 a	 decision,	 it	 seeks	 to	 take	 actions	 that	 would	 be
effective	at	realizing	the	values	it	believes	are	most	likely	to	be	described	in	the
letter.	 Importantly,	 the	 agent	 would	 see	 a	 high	 instrumental	 value	 in	 learning
more	about	what	the	letter	says.	The	reason	is	that	for	almost	any	final	value	that
might	 be	 described	 in	 the	 letter,	 that	 value	 is	more	 likely	 to	 be	 realized	 if	 the
agent	 finds	 out	 what	 it	 is,	 since	 the	 agent	 will	 then	 pursue	 that	 value	 more
effectively.	The	agent	would	also	discover	 the	convergent	 instrumental	 reasons
described	in	Chapter	7—goal	system	integrity,	cognitive	enhancement,	resource
acquisition,	and	so	forth.	Yet,	assuming	that	the	agent	assigns	a	sufficiently	high
probability	 to	 the	 values	 described	 in	 the	 letter	 involving	 human	 welfare,	 it
would	not	 pursue	 these	 instrumental	 values	 by	 immediately	 turning	 the	 planet
into	computronium	and	thereby	exterminating	the	human	species,	because	doing
so	would	risk	permanently	destroying	its	ability	to	realize	its	final	value.

We	can	liken	this	kind	of	agent	to	a	barge	attached	to	several	tugboats	that	pull
in	 different	 directions.	 Each	 tugboat	 corresponds	 to	 a	 hypothesis	 about	 the
agent’s	 final	 value.	 The	 engine	 power	 of	 each	 tugboat	 corresponds	 to	 the
associated	hypothesis’s	probability,	and	thus	changes	as	new	evidence	comes	in,
producing	 adjustments	 in	 the	 barge’s	 direction	 of	 motion.	 The	 resultant	 force
should	 move	 the	 barge	 along	 a	 trajectory	 that	 facilitates	 learning	 about	 the
(implicit)	 final	 value	while	 avoiding	 the	 shoals	of	 irreversible	destruction;	 and
later,	when	the	open	sea	of	more	definite	knowledge	of	the	final	value	is	reached,
the	one	 tugboat	 that	 still	 exerts	 significant	 force	will	pull	 the	barge	 toward	 the
realization	of	the	discovered	value	along	the	straightest	or	most	propitious	route.

The	envelope	and	barge	metaphors	illustrate	the	principle	underlying	the	value
learning	approach,	but	they	pass	over	a	number	of	critical	technical	issues.	They
come	 into	clearer	 focus	once	we	start	 to	develop	 the	approach	within	a	 formal
framework	(see	Box	10).

One	outstanding	issue	is	how	to	endow	the	AI	with	a	goal	such	as	“Maximize
the	realization	of	 the	values	described	 in	 the	envelope.”	 (In	 the	 terminology	of
Box	10,	how	to	define	the	value	criterion.)	To	do	this,	it	is	necessary	to	identify
the	place	where	the	values	are	described.	In	our	example,	this	requires	making	a
successful	reference	to	the	letter	in	the	envelope.	Though	this	might	seem	trivial,
it	 is	not	without	pitfalls.	To	mention	just	one:	it	 is	critical	 that	 the	reference	be



not	simply	to	a	particular	external	physical	object	but	to	an	object	at	a	particular
time.	Otherwise	the	AI	may	determine	that	the	best	way	to	attain	its	goal	is	by
overwriting	the	original	value	description	with	one	that	provides	an	easier	target
(such	as	the	value	that	for	every	integer	there	be	a	larger	integer).	This	done,	the
AI	 could	 lean	 back	 and	 crack	 its	 knuckles—though	 more	 likely	 a	 malignant
failure	would	ensue,	for	reasons	we	discussed	in	Chapter	8.	So	now	we	face	the
question	 of	 how	 to	 define	 time.	We	 could	 point	 to	 a	 clock	 and	 say,	 “Time	 is
defined	 by	 the	 movements	 of	 this	 device”—but	 this	 could	 fail	 if	 the	 AI
conjectures	 that	 it	 can	 manipulate	 time	 by	 moving	 the	 hands	 on	 the	 clock,	 a
conjecture	 which	 would	 indeed	 be	 correct	 if	 “time”	 were	 given	 the	 aforesaid
definition.	(In	a	realistic	case,	matters	would	be	further	complicated	by	the	fact
that	 the	 relevant	 values	 are	 not	 going	 to	 be	 conveniently	 described	 in	 a	 letter;
more	 likely,	 they	would	 have	 to	 be	 inferred	 from	 observations	 of	 pre-existing
structures	 that	 implicitly	 contain	 the	 relevant	 information,	 such	 as	 human
brains.)

Box	10	Formalizing	value	learning

	

Introducing	 some	 formal	 notation	 can	 help	 us	 see	 some	 things	 more	 clearly.
However,	readers	who	dislike	formalism	can	skip	this	part.

Consider	 a	 simplified	 framework	 in	 which	 an	 agent	 interacts	 with	 its
environment	 in	 a	 finite	 number	 of	 discrete	 cycles.13	 In	 cycle	 k,	 the	 agent
performs	action	yk,	and	then	receives	the	percept	xk.	The	interaction	history	of	an
agent	with	lifespan	m	 is	a	string	y1x1y2x2	…	ymxm	 (which	we	can	abbreviate	as
yx1:m	 or	yx≤m).	 In	 each	 cycle,	 the	 agent	 selects	 an	 action	 based	 on	 the	 percept
sequence	it	has	received	to	date.

Consider	first	a	reinforcement	learner.	An	optimal	reinforcement	learner	(AI-
RL)	is	one	that	maximizes	expected	future	rewards.	It	obeys	the	equation14

	



The	reward	sequence	rk,	…,	rm	is	implied	by	the	percept	sequence	xk:m,	since	the
reward	 that	 the	 agent	 receives	 in	 a	 given	 cycle	 is	 part	 of	 the	 percept	 that	 the
agent	receives	in	that	cycle.

As	 argued	 earlier,	 this	 kind	 of	 reinforcement	 learning	 is	 unsuitable	 in	 the
present	context	because	a	sufficiently	 intelligent	agent	will	 realize	 that	 it	could
secure	maximum	reward	if	it	were	able	to	directly	manipulate	its	reward	signal
(wireheading).	 For	 weak	 agents,	 this	 need	 not	 be	 a	 problem,	 since	 we	 can
physically	prevent	them	from	tampering	with	their	own	reward	channel.	We	can
also	control	their	environment	so	that	they	receive	rewards	only	when	they	act	in
ways	that	are	agreeable	to	us.	But	a	reinforcement	learner	has	a	strong	incentive
to	eliminate	 this	artificial	dependence	of	 its	rewards	on	our	whims	and	wishes.
Our	 relationship	 with	 a	 reinforcement	 learner	 is	 therefore	 fundamentally
antagonistic.	If	the	agent	is	strong,	this	spells	danger.

Variations	 of	 the	wireheading	 syndrome	 can	 also	 affect	 systems	 that	 do	 not
seek	 an	 external	 sensory	 reward	 signal	 but	 whose	 goals	 are	 defined	 as	 the
attainment	 of	 some	 internal	 state.	 For	 example,	 in	 so-called	 “actor–critic”
systems,	 there	 is	 an	 actor	module	 that	 selects	 actions	 in	order	 to	minimize	 the
disapproval	 of	 a	 separate	 critic	 module	 that	 computes	 how	 far	 the	 agent’s
behavior	 falls	 short	 of	 a	 given	 performance	 measure.	 The	 problem	 with	 this
setup	 is	 that	 the	actor	module	may	 realize	 that	 it	 can	minimize	disapproval	by
modifying	 the	 critic	 or	 eliminating	 it	 altogether—much	 like	 a	 dictator	 who
dissolves	 the	 parliament	 and	 nationalizes	 the	 press.	 For	 limited	 systems,	 the
problem	 can	 be	 avoided	 simply	 by	 not	 giving	 the	 actor	module	 any	means	 of
modifying	 the	 critic	 module.	 A	 sufficiently	 intelligent	 and	 resourceful	 actor
module,	however,	could	always	gain	access	to	the	critic	module	(which,	after	all,
is	merely	a	physical	process	in	some	computer).15

Before	we	get	to	the	value	learner,	let	us	consider	as	an	intermediary	step	what
has	 been	 called	 an	 observation-utility	maximizer	 (AI-OUM).	 It	 is	 obtained	 by
replacing	the	reward	series	(rk	+	…	+	rm)	in	the	AI-RL	with	a	utility	function	that
is	allowed	to	depend	on	the	entire	future	interaction	history	of	the	AI:

	



This	 formulation	 provides	 a	 way	 around	 the	 wireheading	 problem	 because	 a
utility	 function	 defined	 over	 an	 entire	 interaction	 history	 could	 be	 designed	 to
penalize	interaction	histories	that	show	signs	of	self-deception	(or	of	a	failure	on
the	 part	 of	 the	 agent	 to	 invest	 sufficiently	 in	 obtaining	 an	 accurate	 view	 of
reality).

The	 AI-OUM	 thus	 makes	 it	 possible	 in	 principle	 to	 circumvent	 the
wireheading	 problem.	 Availing	 ourselves	 of	 this	 possibility,	 however,	 would
require	 that	 we	 specify	 a	 suitable	 utility	 function	 over	 the	 class	 of	 possible
interaction	histories—a	task	that	looks	forbiddingly	difficult.

It	may	be	more	natural	to	specify	utility	functions	directly	in	terms	of	possible
worlds	(or	properties	of	possible	worlds,	or	theories	about	the	world)	rather	than
in	 terms	 of	 an	 agent’s	 own	 interaction	 histories.	 If	 we	 use	 this	 approach,	 we
could	reformulate	and	simplify	the	AI-OUM	optimality	notion:

	

Here,	E	is	the	total	evidence	available	to	the	agent	(at	the	time	when	it	is	making
its	 decision),	 and	U	 is	 a	 utility	 function	 that	 assigns	 utility	 to	 some	 class	 of
possible	 worlds.	 The	 optimal	 agent	 chooses	 the	 act	 that	 maximizes	 expected
utility.

An	outstanding	problem	with	 these	 formulations	 is	 the	difficulty	of	defining
the	utility	function	U.	This,	finally,	returns	us	to	the	value-loading	problem.	To
enable	the	utility	function	to	be	learned,	we	must	expand	our	formalism	to	allow
for	uncertainty	over	utility	functions.	This	can	be	done	as	follows	(AI-VL):16

	

Here,	 ν(.)	 is	 a	 function	 from	 utility	 functions	 to	 propositions	 about	 utility
functions.	ν(U)	 is	 the	proposition	 that	 the	utility	 function	U	 satisfies	 the	value
criterion	expressed	by	ν.17

To	decide	which	action	to	perform,	one	could	hence	proceed	as	follows:	First,



compute	 the	 conditional	 probability	 of	 each	 possible	world	w	 (given	 available
evidence	and	on	 the	 supposition	 that	 action	y	 is	 to	be	performed).	Second,	 for
each	 possible	 utility	 function	 U,	 compute	 the	 conditional	 probability	 that	 U
satisfies	 the	value	criterion	ν	 (conditional	on	w	being	 the	actual	world).	Third,
for	 each	 possible	 utility	 function	U,	 compute	 the	 utility	 of	 possible	 world	w.
Fourth,	 combine	 these	 quantities	 to	 compute	 the	 expected	 utility	 of	 action	 y.
Fifth,	 repeat	 this	 procedure	 for	 each	 possible	 action,	 and	 perform	 the	 action
found	to	have	the	highest	expected	utility	(using	some	arbitrary	method	to	break
ties).	As	described,	this	procedure—which	involves	giving	explicit	and	separate
consideration	 to	 each	 possible	 world—is,	 of	 course,	 wildly	 computationally
intractable.	The	AI	would	have	to	use	computational	shortcuts	that	approximate
this	optimality	notion.

The	question,	then,	is	how	to	define	this	value	criterion	ν.18	Once	the	AI	has
an	 adequate	 representation	 of	 the	 value	 criterion,	 it	 could	 in	 principle	 use	 its
general	intelligence	to	gather	information	about	which	possible	worlds	are	most
likely	 to	 be	 the	 actual	 one.	 It	 could	 then	 apply	 the	 criterion,	 for	 each	 such
plausible	 possible	 world	 w,	 to	 find	 out	 which	 utility	 function	 satisfies	 the
criterion	 in	w.	One	can	 thus	regard	 the	AI-VL	formula	as	a	way	of	 identifying
and	 separating	 out	 this	 key	 challenge	 in	 the	 value	 learning	 approach—the
challenge	of	how	to	represent	ν.	The	formalism	also	brings	to	light	a	number	of
other	 issues	 (such	 as	 how	 to	 define	 ,	 ,	 and	 )	 which	 would	 need	 to	 be
resolved	before	the	approach	could	be	made	to	work.19

	

Another	 issue	 in	 coding	 the	 goal	 “Maximize	 the	 realization	 of	 the	 values
described	in	the	envelope”	is	that	even	if	all	the	correct	values	were	described	in
a	letter,	and	even	if	the	AI’s	motivation	system	were	successfully	keyed	to	this
source,	 the	AI	might	 not	 interpret	 the	 descriptions	 the	way	we	 intended.	 This
would	create	a	risk	of	perverse	instantiation,	as	discussed	in	Chapter	8.

To	 clarify,	 the	 difficulty	 here	 is	 not	 so	much	how	 to	 ensure	 that	 the	AI	 can
understand	 human	 intentions.	 A	 superintelligence	 should	 easily	 develop	 such
understanding.	Rather,	the	difficulty	is	ensuring	that	the	AI	will	be	motivated	to
pursue	 the	described	values	 in	 the	way	we	 intended.	This	 is	not	guaranteed	by
the	AI’s	ability	to	understand	our	intentions:	an	AI	could	know	exactly	what	we
meant	and	yet	be	indifferent	to	that	interpretation	of	our	words	(being	motivated
instead	 by	 some	 other	 interpretation	 of	 the	 words	 or	 being	 indifferent	 to	 our



words	altogether).

The	difficulty	 is	compounded	by	 the	desideratum	 that,	 for	 reasons	of	 safety,
the	 correct	 motivation	 should	 ideally	 be	 installed	 in	 the	 seed	 AI	 before	 it
becomes	capable	of	fully	representing	human	concepts	or	understanding	human
intentions.	This	requires	that	somehow	a	cognitive	framework	be	created,	with	a
particular	location	in	that	framework	designated	in	the	AI’s	motivation	system	as
the	 repository	 of	 its	 final	 value.	 But	 the	 cognitive	 framework	 itself	 must	 be
revisable,	 so	 as	 to	 allow	 the	AI	 to	 expand	 its	 representational	 capacities	 as	 it
learns	more	about	the	world	and	grows	more	intelligent.	The	AI	might	undergo
the	equivalent	of	scientific	revolutions,	in	which	its	worldview	is	shaken	up	and
it	perhaps	suffers	ontological	crises	in	which	it	discovers	that	its	previous	ways
of	thinking	about	values	were	based	on	confusions	and	illusions.	Yet	starting	at	a
sub-human	 level	 of	 development	 and	 continuing	 throughout	 all	 its	 subsequent
development	 into	a	galactic	superintelligence,	 the	AI’s	conduct	 is	 to	be	guided
by	 an	 essentially	 unchanging	 final	 value,	 a	 final	 value	 that	 becomes	 better
understood	by	the	AI	in	direct	consequence	of	its	general	intellectual	progress—
and	 likely	 quite	 differently	 understood	 by	 the	 mature	 AI	 than	 it	 was	 by	 its
original	programmers,	though	not	different	in	a	random	or	hostile	way	but	in	a
benignly	appropriate	way.	How	to	accomplish	this	remains	an	open	question.20
(See	Box	11.)

In	 summary,	 it	 is	 not	 yet	 known	how	 to	 use	 the	 value	 learning	 approach	 to
install	plausible	human	values	(though	see	Box	12	for	some	examples	of	recent
ideas).	At	present,	the	approach	should	be	viewed	as	a	research	program	rather
than	an	available	technique.	If	it	could	be	made	to	work,	it	might	constitute	the
most	ideal	solution	to	the	value-loading	problem.	Among	other	benefits,	it	would
seem	to	offer	a	natural	way	to	prevent	mind	crime,	since	a	seed	AI	that	makes
reasonable	 guesses	 about	 which	 values	 its	 programmers	 might	 have	 installed
would	 anticipate	 that	 mind	 crime	 is	 probably	 negatively	 evaluated	 by	 those
values,	and	thus	best	avoided,	at	least	until	more	definitive	information	has	been
obtained.

Last,	but	not	least,	there	is	the	question	of	“what	to	write	in	the	envelope”—
or,	less	metaphorically,	the	question	of	which	values	we	should	try	to	get	the	AI
to	 learn.	 But	 this	 issue	 is	 common	 to	 all	 approaches	 to	 the	 AI	 value-loading
problem.	We	return	to	it	in	Chapter	13.



Box	11	An	AI	that	wants	to	be	friendly

	

Eliezer	Yudkowsky	has	tried	to	describe	some	features	of	a	seed	AI	architecture
intended	 to	 enable	 the	 kind	 of	 behavior	 described	 in	 the	 text	 above.	 In	 his
terminology,	the	AI	would	use	“external	reference	semantics.”21	To	illustrate	the
basic	idea,	let	us	suppose	that	we	want	the	system	to	be	“friendly.”	The	system
starts	out	with	the	goal	of	 trying	to	instantiate	property	F	but	does	not	initially
know	much	about	what	F	is.	It	might	just	know	that	F	is	some	abstract	property
and	that	when	the	programmers	speak	of	“friendliness,”	they	are	probably	trying
to	convey	 information	about	F.	Since	 the	AI’s	 final	goal	 is	 to	 instantiate	F,	an
important	 instrumental	 value	 is	 to	 learn	 more	 about	 what	 F	 is.	 As	 the	 AI
discovers	more	about	F,	its	behavior	is	increasingly	guided	by	the	actual	content
of	F.	Thus,	 hopefully,	 the	AI	 becomes	 increasingly	 friendly	 the	more	 it	 learns
and	the	smarter	it	gets.

The	programmers	can	help	 this	process	along,	and	 reduce	 the	 risk	of	 the	AI
making	 some	 catastrophic	 mistake	 while	 its	 understanding	 of	 F	 is	 still
incomplete,	 by	 providing	 the	 AI	 with	 “programmer	 affirmations,”	 hypotheses
about	 the	 nature	 and	 content	 of	 F	 to	 which	 an	 initially	 high	 probability	 is
assigned.	 For	 instance,	 the	 hypothesis	 “misleading	 the	 programmers	 is
unfriendly”	 can	 be	 given	 a	 high	 prior	 probability.	 These	 programmer
affirmations,	 however,	 are	 not	 “true	 by	 definition”—they	 are	 not
unchallengeable	axioms	about	the	concept	of	friendliness.	Rather,	they	are	initial
hypotheses	 about	 friendliness,	 hypotheses	 to	which	 a	 rational	AI	will	 assign	 a
high	 probability	 at	 least	 for	 as	 long	 as	 it	 trusts	 the	 programmers’	 epistemic
capacities	more	than	its	own.

Yudkowsky’s	proposal	also	involves	the	use	of	what	he	called	“causal	validity
semantics.”	 The	 idea	 here	 is	 that	 the	 AI	 should	 do	 not	 exactly	 what	 the
programmers	 told	 it	 to	do	but	 rather	 (something	 like)	what	 they	were	 trying	 to
tell	 it	 to	do.	While	 the	programmers	are	 trying	 to	 explain	 to	 the	 seed	AI	what
friendliness	 is,	 they	 might	 make	 errors	 in	 their	 explanations.	 Moreover,	 the
programmers	 themselves	 may	 not	 fully	 understand	 the	 true	 nature	 of
friendliness.	One	would	therefore	want	the	AI	to	have	the	ability	to	correct	errors
in	 the	 programmers’	 thinking,	 and	 to	 infer	 the	 true	 or	 intended	meaning	 from
whatever	 imperfect	 explanations	 the	 programmers	 manage	 to	 provide.	 For
example,	 the	AI	 should	 be	 able	 to	 represent	 the	 causal	 processes	whereby	 the



programmers	 learn	and	communicate	about	 friendliness.	Thus,	 to	pick	a	 trivial
example,	the	AI	should	understand	that	there	is	a	possibility	that	a	programmer
might	make	 a	 typo	while	 inputting	 information	 about	 friendliness,	 and	 the	AI
should	 then	 seek	 to	 correct	 the	 error.	 More	 generally,	 the	 AI	 should	 seek	 to
correct	 for	 whatever	 distortive	 influences	 may	 have	 corrupted	 the	 flow	 of
information	 about	 friendliness	 as	 it	 passed	 from	 its	 source	 through	 the
programmers	to	the	AI	(where	“distortive”	is	an	epistemic	category).	Ideally,	as
the	 AI	 matures,	 it	 should	 overcome	 any	 cognitive	 biases	 and	 other	 more
fundamental	 misconceptions	 that	 may	 have	 prevented	 its	 programmers	 from
fully	understanding	what	friendliness	is.

	

Box	12	Two	recent	(half-baked)	ideas

	

What	 we	 might	 call	 the	 “Hail	 Mary”	 approach	 is	 based	 on	 the	 hope	 that
elsewhere	 in	 the	 universe	 there	 exist	 (or	 will	 come	 to	 exist)	 civilizations	 that
successfully	manage	the	intelligence	explosion,	and	that	they	end	up	with	values
that	significantly	overlap	with	our	own.	We	could	then	try	to	build	our	AI	so	that
it	 is	 motivated	 to	 do	 what	 these	 other	 superintelligences	 want	 it	 to	 do.22	 The
advantage	is	that	this	might	be	easier	than	to	build	our	AI	to	be	motivated	to	do
what	we	want	directly.

For	 this	 scheme	 to	 work	 it	 is	 not	 necessary	 that	 our	 AI	 can	 establish
communication	with	any	alien	superintelligence.	Rather,	our	AI’s	actions	would
be	guided	by	its	estimates	of	what	the	alien	superintelligences	would	want	it	to
do.	 Our	 AI	 would	 model	 the	 likely	 outcomes	 of	 intelligence	 explosions
elsewhere,	and	as	it	becomes	superintelligent	itself	its	estimates	should	become
increasingly	accurate.	Perfect	knowledge	is	not	required.	There	may	be	a	range
of	plausible	outcomes	of	 intelligence	explosions,	and	our	AI	would	 then	do	 its
best	 to	 accommodate	 the	 preferences	 of	 the	 various	 different	 kinds	 of
superintelligence	that	might	emerge,	weighted	by	probability.

This	 version	 of	 the	 Hail	 Mary	 approach	 requires	 that	 we	 construct	 a	 final
value	 for	 our	 AI	 that	 refers	 to	 the	 preferences	 of	 other	 superintelligences.
Exactly	how	to	do	this	is	not	yet	clear.	However,	superintelligent	agents	might	be



structurally	 distinctive	 enough	 that	we	 could	write	 a	 piece	 of	 code	 that	would
function	as	a	detector	that	would	look	at	the	world	model	in	our	developing	AI
and	designate	the	representational	elements	that	correspond	to	the	presence	of	a
superintelligence.	The	detector	would	then,	somehow,	extract	the	preferences	of
the	superintelligence	in	question	(as	it	is	represented	within	our	own	AI).23	If	we
could	create	such	a	detector,	we	could	then	use	it	to	define	our	AI’s	final	values.
One	challenge	is	that	we	may	need	to	create	the	detector	before	we	know	what
representational	framework	our	AI	will	develop.	The	detector	may	thus	need	to
query	 an	 unknown	 representational	 framework	 and	 extract	 the	 preferences	 of
whatever	superintelligence	may	be	represented	therein.	This	looks	difficult,	but
perhaps	some	clever	solution	can	be	found.24

If	 the	 basic	 setup	 could	 be	made	 to	work,	 various	 refinements	 immediately
suggest	 themselves.	For	example,	 rather	 than	aiming	to	follow	(some	weighted
composition	of)	 the	preferences	of	every	 alien	 superintelligence,	our	AI’s	 final
value	could	incorporate	a	filter	to	select	a	subset	of	alien	superintelligences	for
obeisance	(with	the	aim	of	selecting	ones	whose	values	are	closer	to	our	own).
For	 instance,	 we	 might	 use	 criteria	 pertaining	 to	 a	 superintelligence’s	 causal
origin	to	determine	whether	to	include	it	in	the	obeisance	set.	Certain	properties
of	 its	 origination	 (which	 we	might	 be	 able	 to	 define	 in	 structural	 terms)	may
correlate	 with	 the	 degree	 to	 which	 the	 resultant	 superintelligence	 could	 be
expected	 to	 share	 our	 values.	 Perhaps	 we	 wish	 to	 place	 more	 trust	 in
superintelligences	whose	causal	origins	trace	back	to	a	whole	brain	emulation,	or
to	 a	 seed	 AI	 that	 did	 not	 make	 heavy	 use	 of	 evolutionary	 algorithms	 or	 that
emerged	 slowly	 in	 a	 way	 suggestive	 of	 a	 controlled	 takeoff.	 (Taking	 causal
origins	 into	 account	would	 also	 let	 us	 avoid	 over-weighting	 superintelligences
that	create	multiple	copies	of	themselves—indeed	would	let	us	avoid	creating	an
incentive	for	them	to	do	so.)	Many	other	refinements	would	also	be	possible.

The	Hail	Mary	approach	requires	faith	that	there	are	other	superintelligences
out	there	that	sufficiently	share	our	values.25	This	makes	the	approach	non-ideal.
However,	 the	 technical	 obstacles	 facing	 the	Hail	Mary	 approach,	 though	 very
substantial,	might	possibly	be	less	formidable	than	those	confronting	alternative
approaches.	Exploring	non-ideal	but	more	easily	implementable	approaches	can
make	sense—not	with	the	intention	of	using	them,	but	to	have	something	to	fall
back	upon	in	case	an	ideal	solution	should	not	be	ready	in	time.

Another	 idea	 for	 how	 to	 solve	 the	 value-loading	 problem	has	 recently	 been
proposed	by	Paul	Christiano.26	Like	the	Hail	Mary,	it	is	a	value	learning	method



that	tries	to	define	the	value	criterion	by	means	of	a	“trick”	rather	than	through
laborious	construction.	By	contrast	to	the	Hail	Mary,	it	does	not	presuppose	the
existence	of	other	superintelligent	agents	 that	we	could	point	 to	as	role	models
for	our	own	AI.	Christiano’s	proposal	is	somewhat	resistant	to	brief	explanation
—it	involves	a	series	of	arcane	considerations—but	we	can	try	to	at	least	gesture
at	its	main	elements.

Suppose	 we	 could	 obtain	 (a)	 a	 mathematically	 precise	 specification	 of	 a
particular	 human	 brain	 and	 (b)	 a	 mathematically	 well-specified	 virtual
environment	that	contains	an	idealized	computer	with	an	arbitrarily	large	amount
of	memory	and	CPU	power.	Given	(a)	and	(b),	we	could	define	a	utility	function
U	 as	 the	 output	 the	 human	 brain	 would	 produce	 after	 interacting	 with	 this
environment.	U	would	be	a	mathematically	well-defined	object,	albeit	one	which
(because	of	computational	limitations)	we	may	be	unable	to	describe	explicitly.
Nevertheless,	U	could	serve	as	the	value	criterion	for	a	value	learning	AI,	which
could	use	various	heuristics	for	assigning	probabilities	to	hypotheses	about	what
U	implies.

Intuitively,	we	want	U	to	be	the	utility	function	that	a	suitably	prepared	human
would	 output	 if	 she	 had	 the	 advantage	 of	 being	 able	 use	 an	 arbitrarily	 large
amount	 of	 computing	 power—enough	 computing	 power,	 for	 example,	 to	 run
astronomical	 numbers	 of	 copies	 of	 herself	 to	 assist	 her	 with	 her	 analysis	 of
specifying	 a	 utility	 function,	 or	 to	 help	 her	 devise	 a	 better	 process	 for	 going
about	this	analysis.	(We	are	here	foreshadowing	a	theme,	“coherent	extrapolated
volition,”	which	will	be	further	explored	in	Chapter	13.)

It	would	 seem	 relatively	 easy	 to	 specify	 the	 idealized	 environment:	we	 can
give	 a	mathematical	 description	 of	 an	 abstract	 computer	 with	 arbitrarily	 large
capacity;	and	in	other	respects	we	could	use	a	virtual	reality	program	that	gives	a
mathematical	 description	of,	 say,	 a	 single	 room	with	 a	 computer	 terminal	 in	 it
(instantiating	the	abstract	computer).	But	how	to	obtain	a	mathematically	precise
description	 of	 a	 particular	 human	 brain?	 The	 obvious	 way	 would	 be	 through
whole	brain	emulation,	but	what	if	the	technology	for	emulation	is	not	available
in	time?

This	 is	 where	 Christiano’s	 proposal	 offers	 a	 key	 innovation.	 Christiano
observes	that	in	order	to	obtain	a	mathematically	well-specified	value	criterion,
we	do	not	need	a	practically	useful	computational	model	of	a	mind,	a	model	we
could	 run.	 We	 just	 need	 a	 (possibly	 implicit	 and	 hopelessly	 complicated)



mathematical	 definition—and	 this	 may	 be	 much	 easier	 to	 attain.	 Using
functional	 neuroimaging	 and	 other	 measurements,	 we	 can	 perhaps	 collect
gigabytes	 of	 data	 about	 the	 input–output	 behavior	 of	 a	 selected	 human.	 If	we
collect	 a	 sufficient	 amount	 of	 data,	 then	 it	 might	 be	 that	 the	 simplest
mathematical	model	that	accounts	for	all	this	data	is	in	fact	an	emulation	of	the
particular	human	in	question.	Although	it	would	be	computationally	intractable
for	us	to	find	this	simplest	model	from	the	data,	it	could	be	perfectly	possible	for
us	 to	 define	 the	model,	 by	 referring	 to	 the	 data	 and	 a	 using	 a	mathematically
well-defined	 simplicity	 measure	 (such	 as	 some	 variant	 of	 the	 Kolmogorov
complexity,	which	we	encountered	in	Box	1,	Chapter	1).27

	

Emulation	modulation

	

The	value-loading	problem	looks	somewhat	different	for	whole	brain	emulation
than	 it	 does	 for	 artificial	 intelligence.	Methods	 that	 presuppose	 a	 fine-grained
understanding	 and	 control	 of	 algorithms	 and	 architecture	 are	 not	 applicable	 to
emulations.	On	the	other	hand,	the	augmentation	motivation	selection	method—
inapplicable	 to	 de	 novo	 artificial	 intelligence—is	 available	 to	 be	 used	 with
emulations	(or	enhanced	biological	brains).28

The	 augmentation	method	 could	 be	 combined	with	 techniques	 to	 tweak	 the
inherited	 goals	 of	 the	 system.	 For	 example,	 one	 could	 try	 to	 manipulate	 the
motivational	 state	 of	 an	 emulation	 by	 administering	 the	 digital	 equivalent	 of
psychoactive	 substances	 (or,	 in	 the	 case	 of	 biological	 systems,	 the	 actual
chemicals).	Even	now	it	is	possible	to	pharmacologically	manipulate	values	and
motivations	 to	a	 limited	extent.29	The	pharmacopeia	of	 the	 future	may	contain
drugs	 with	 more	 specific	 and	 predictable	 effects.	 The	 digital	 medium	 of
emulations	 should	 greatly	 facilitate	 such	 developments,	 by	 making	 controlled
experimentation	easier	and	by	rendering	all	cerebral	parts	directly	addressable.

Just	as	when	biological	 test	subjects	are	used,	research	on	emulations	would
get	entangled	 in	ethical	complications,	not	all	of	which	could	be	brushed	aside
with	 a	 consent	 form.	 Such	 entanglements	 could	 slow	 progress	 along	 the
emulation	 path	 (because	 of	 regulation	 or	 moral	 restraint),	 perhaps	 especially



hindering	studies	on	how	to	manipulate	the	motivational	structure	of	emulations.
The	 result	 could	 be	 that	 emulations	 are	 augmented	 to	 potentially	 dangerous
superintelligent	 levels	of	cognitive	ability	before	adequate	work	has	been	done
to	 test	 or	 adjust	 their	 final	 goals.	 Another	 possible	 effect	 of	 the	 moral
entanglements	might	 be	 to	 give	 the	 lead	 to	 less	 scrupulous	 teams	 and	nations.
Conversely,	were	we	to	relax	our	moral	standards	for	experimenting	with	digital
human	minds,	we	 could	 become	 responsible	 for	 a	 substantial	 amount	 of	 harm
and	 wrongdoing,	 which	 is	 obviously	 undesirable.	 Other	 things	 equal,	 these
considerations	 favor	 taking	 some	 alternative	 path	 that	 does	 not	 require	 the
extensive	 use	 of	 digital	 human	 research	 subjects	 in	 a	 strategically	 high-stakes
situation.

The	 issue,	 however,	 is	 not	 clear-cut.	 One	 could	 argue	 that	 whole	 brain
emulation	 research	 is	 less	 likely	 to	 involve	 moral	 violations	 than	 artificial
intelligence	research,	on	the	grounds	that	we	are	more	likely	to	recognize	when
an	 emulation	mind	qualifies	 for	moral	 status	 than	we	 are	 to	 recognize	when	 a
completely	 alien	 or	 synthetic	 mind	 does	 so.	 If	 certain	 kinds	 of	 AIs,	 or	 their
subprocesses,	 have	 a	 significant	 moral	 status	 that	 we	 fail	 to	 recognize,	 the
consequent	 moral	 violations	 could	 be	 extensive.	 Consider,	 for	 example,	 the
happy	 abandon	 with	 which	 contemporary	 programmers	 create	 reinforcement-
learning	agents	and	subject	them	to	aversive	stimuli.	Countless	such	agents	are
created	daily,	not	only	in	computer	science	laboratories	but	in	many	applications,
including	some	computer	games	containing	sophisticated	non-player	characters.
Presumably,	 these	 agents	 are	 still	 too	 primitive	 to	 have	 any	moral	 status.	 But
how	confident	can	we	really	be	that	this	is	so?	More	importantly,	how	confident
can	 we	 be	 that	 we	 will	 know	 to	 stop	 in	 time,	 before	 our	 programs	 become
capable	of	experiencing	morally	relevant	suffering?

(We	will	return	in	Chapter	14	to	some	of	the	broader	strategic	questions	that
arise	when	we	 compare	 the	 desirability	 of	 emulation	 and	 artificial	 intelligence
paths.)

Institution	design

	

Some	intelligent	systems	consist	of	intelligent	parts	that	are	themselves	capable
of	 agency.	 Firms	 and	 states	 exemplify	 this	 in	 the	 human	world:	whilst	 largely
composed	 of	 humans	 they	 can,	 for	 some	 purposes,	 be	 viewed	 as	 autonomous



agents	in	their	own	right.	The	motivations	of	such	composite	systems	depend	not
only	 on	 the	 motivations	 of	 their	 constituent	 subagents	 but	 also	 on	 how	 those
subagents	 are	 organized.	 For	 instance,	 a	 group	 that	 is	 organized	 under	 strong
dictatorship	might	behave	as	if	it	had	a	will	that	was	identical	to	the	will	of	the
subagent	 that	 occupies	 the	 dictator	 role,	 whereas	 a	 democratic	 group	 might
sometimes	behave	more	as	if	it	had	a	will	that	was	a	composite	or	average	of	the
wills	 of	 its	 various	 constituents.	 But	 one	 can	 also	 imagine	 governance
institutions	that	would	make	an	organization	behave	in	a	way	that	is	not	a	simple
function	of	the	wills	of	its	subagents.	(Theoretically,	at	least,	there	could	exist	a
totalitarian	 state	 that	 everybody	 hated,	 because	 the	 state	 had	 mechanisms	 to
prevent	 its	citizens	from	coordinating	a	revolt.	Each	citizen	could	be	worse	off
by	revolting	alone	than	by	playing	their	part	in	the	state	machinery.)

By	designing	appropriate	institutions	for	a	composite	system,	one	could	thus
try	 to	 shape	 its	 effective	 motivation.	 In	 Chapter	 9,	 we	 discussed	 social
integration	as	a	possible	capability	control	method.	But	there	we	focused	on	the
incentives	faced	by	an	agent	as	a	consequence	of	its	existence	in	a	social	world
of	near-equals.	Here	we	are	focusing	on	what	happens	inside	a	given	agent:	how
its	will	is	determined	by	its	internal	organization.	We	are	therefore	looking	at	a
motivation	 selection	 method.	 Moreover,	 since	 this	 kind	 of	 internal	 institution
design	 does	 not	 depend	 on	 large-scale	 social	 engineering	 or	 reform,	 it	 is	 a
method	 that	 might	 be	 available	 to	 an	 individual	 project	 developing
superintelligence	even	if	the	wider	socioeconomic	or	international	milieu	is	less
than	ideally	favorable.

Institution	 design	 is	 perhaps	 most	 plausible	 in	 contexts	 where	 it	 would	 be
combined	 with	 augmentation.	 If	 we	 could	 start	 with	 agents	 that	 are	 already
suitably	 motivated	 or	 that	 have	 human-like	 motivations,	 institutional
arrangements	could	be	used	as	an	extra	safeguard	to	increase	the	chances	that	the
system	will	stay	on	course.

For	 example,	 suppose	 that	 we	 start	 with	 some	 well-motivated	 human-like
agents—let	us	say	emulations.	We	want	to	boost	the	cognitive	capacities	of	these
agents,	but	we	worry	that	the	enhancements	might	corrupt	their	motivations.	One
way	to	deal	with	this	challenge	would	be	to	set	up	a	system	in	which	individual
emulations	function	as	subagents.	When	a	new	enhancement	is	introduced,	it	is
first	applied	to	a	small	subset	of	the	subagents.	Its	effects	are	then	studied	by	a
review	 panel	 composed	 of	 subagents	 who	 have	 not	 yet	 had	 the	 enhancement
applied	 to	 them.	 Only	 when	 these	 peers	 have	 satisfied	 themselves	 that	 the



enhancement	is	not	corrupting	is	it	rolled	out	to	the	wider	subagent	population.	If
the	 enhanced	 subagents	 are	 found	 to	 be	 corrupted,	 they	 are	 not	 given	 further
enhancements	 and	 are	 excluded	 from	 key	 decision-making	 functions	 (at	 least
until	 the	 system	 as	 a	 whole	 has	 advanced	 to	 a	 point	 where	 the	 corrupted
subagents	can	be	safely	reintegrated).30	Although	the	corrupted	subagents	might
have	gained	some	advantage	from	the	enhancement,	the	institutional	structure	in
which	they	are	embedded,	and	the	fact	that	they	constitute	a	small	minority	of	all
subagents,	would	hopefully	prevent	them	from	seizing	power	or	spreading	their
corruption	to	the	overall	system.	Thus,	the	collective	intelligence	and	capability
of	the	system	could	be	gradually	enhanced	in	a	sequence	of	small	steps,	where
the	 soundness	 of	 each	 step	 is	 verified	 by	 subagents	 only	 slightly	 less	 capable
than	the	new	subagents	that	are	introduced	in	that	step.

The	amount	of	safety	obtainable	by	this	kind	of	institution	design	is	limited	by
the	accuracy	of	 the	 tests	 that	are	used	to	evaluate	 the	enhanced	subagents.	The
problem	 of	 test	 construction	 is	 complicated	 by	 the	 fact	 that	 the	 test	 batteries
could	 only	 be	 validated	 within	 the	 pre-existing	 range	 of	 cognitive	 ability	 yet
must	be	applied	to	agents	outside	this	range.	One	could	mitigate	this	problem	by
taking	small	enhancement	steps	and	by	letting	the	test	run	for	a	long	time.	Such
caution,	 however,	 would	 raise	 the	 cost	 and	 slow	 progress	 (which,	 if	 a	 race
dynamic	 is	 occurring,	 could	 mean	 a	 project	 employing	 these	 safety	 measures
would	 place	 itself	 at	 a	 disadvantage).	 Even	 with	 small	 steps	 and	 extensive
testing,	there	would	remain	some	risk	of	subtle	flaws	being	introduced,	leading
to	 a	 gradual	 corruption	 of	 the	 goal	 system,	 a	 corruption	 that	 might	 become
manifest	 only	 when	 the	 system	 reaches	 superintelligence.	 This	 risk	 could	 be
reduced	 by	 letting	 the	 testing	 condition	 extend	 for	 many	 steps	 of	 cognitive
enhancement,	so	that	even	agents	that	have	been	initially	certified	as	sound	and
that	have	received	several	subsequent	enhancements	would	continue	to	be	under
review	 by	 a	 panel	 of	 unmodified	 and	 uncorrupted	 original	 peers	 and	 would
remain	subject	to	reversion.

Ideally,	 the	 testing	 should	 be	 ongoing	 rather	 than	 confined	 to	 an	 initial
evaluation	 period.	 Human-level	 subagents	 have	 the	 ability	 to	 strategize	 and
might	 thus	 choose	 to	 conceal	 certain	 goals	 while	 their	 behavior	 was	 being
monitored.	To	enable	continuous	testing,	a	hierarchy	might	be	created	in	which
subagents	at	a	certain	level	of	capability	are	tasked	with	monitoring	subagents	at
a	somewhat	higher	level	of	capability.	At	the	bottom	of	the	capability	hierarchy
(but	at	 the	 top	of	 the	power	hierarchy)	would	sit	 the	 relatively	dumb	and	slow
principal.	This	human	principal	would	be	like	a	demented	king	who	reigns	over



an	 incompetent	court	 that	oversees	a	mediocre	administration	which	governs	a
capable	people.	Alternatively,	he	might	be	likened	to	the	evolutionarily	ancient
“reptilian	brain”	which	 ensures	 that	 the	newer	 and	much	 cleverer	 neocortex	 is
employed	in	the	service	of	goals	such	as	feeding	and	copulation.

One	might	question	whether	such	an	inverse	meritocracy	could	remain	stable.
If	 the	bulk	of	 the	 superintelligent	 subagents	were	 found	 to	be	 corrupt,	 and	 the
humans	 in	 charge	 of	 the	 whole	 thing	 attempted	 to	 roll	 back	 many	 of	 the
preceding	 enhancements,	would	 the	 institutional	 structure	 be	 strong	 enough	 to
withstand	 the	 opposition	 that	 such	 a	move	would	 engender?	 In	 the	 context	 of
historical	 or	 contemporary	 human	 societies,	 the	 answer	 perhaps	 is	 that	 this
would	 be	 implausible.	 (Not	 that	 the	 most	 capable	 people	 consistently	 rise	 to
power,	 but	we	 are	 not	 literally	 ruled	 by	 chimpanzees	 either.)	The	 issue	 is	 less
clear,	however,	in	a	context	where	society	is	implemented	as	software.31

Imagine	a	digital	hierarchy	that	has	one	highly	trained	police	agent	for	every
two	proletarians.	It	also	has	one	special-police	agent	for	every	two	police	agents.
It	also	has	one	special-special-police	agent	for	every	two	special-police	agents—
and	so	forth,	so	that	each	layer	of	overseers	has	at	least	half	the	numbers	of	the
layer	it	oversees.	Imagine,	further,	that	this	society	is	architected	in	such	a	way
that	 a	 supervisor	 has	 big	 advantages	 over	 his	 subordinates.	 For	 example,	 the
supervisor	is	able	to	monitor	and	record	everything	his	subordinates	say	and	do,
whereas	 the	 supervisor	 himself	 is	 hidden	 behind	 a	 one-way	 glass,	 so	 that	 his
subordinates	can	only	hear	the	orders	and	instructions	that	the	superior	chooses
to	transmit.	Imagine	that	supervisors	have	a	panel	of	buttons	that	they	can	press
at	any	time	to	cause	a	subordinate	to	be	punished	or	rewarded,	paused,	deleted,
or	reverted	to	an	earlier	state.	These	capabilities	would	greatly	boost	the	powers
of	 a	 supervising	agent,	beyond	what	has	been	possible	historically	 in	 even	 the
most	totalitarian	of	organizations.

Even	 this	 does	 not	 exhaust	 the	 possible	 instruments	 of	 control.	 Supervisors
might	also	have	at	their	disposal	realistic	virtual	reality	simulations	that	they	can
use	to	probe	subordinates’	reactions	to	hypothetical	scenarios	(such	as	simulated
offers	 to	 join	 a	 conspiracy	 or	 to	 slack	 when	 they	 think	 nobody	 is	 watching).
Supervisors	 might,	 additionally,	 have	 the	 ability	 to	 eavesdrop	 on	 internal
monologues	 in	 the	 subordinates’	 minds	 and	 to	 directly	 manipulate	 their
emotional	states.

The	 upshot	 is	 a	 series	 of	 massive	 advantages	 for	 the	 supervisor.32	 Each



supervisor	 would	 be	 a	 subordinate	 to	 another,	 higher-level	 supervisor,	 who
would	monitor	his	every	move	and	make	sure	he	did	not	slacken	in	the	execution
of	his	managerial	duties.	With	this	kind	of	arrangement,	it	might	be	possible	for
the	 structure	 to	 be	 stable	 even	 if	 each	 supervisory	 level	 is	 intellectually
somewhat	weaker	than	the	level	it	supervises.33	And	the	entire	structure,	which
could	include	many	highly	superintelligent	agents,	may	be	controlled	by	a	small
number	of	humans	with	root	access.34

The	 cost	 of	 such	 an	 internal	 control	 structure	 would	 be	 significant	 but	 not
necessarily	 prohibitive.	 For	 example,	 in	 the	 model	 where	 each	 level	 of
supervision	 has	 half	 the	 numbers	 of	 the	 layer	 below,	 the	 extra	 computational
overhead	is	bounded	at	a	mere	100%	of	what	the	proletarian	part	of	the	system
costs—less	if	 the	dumber	boss	layers	require	fewer	computations	per	subagent.
Oversight	 could	 be	 tightened	 by	 increasing	 the	 ratio,	 or	 cost	 lowered	 by
decreasing	 it.	 The	 extra	 computational	 cost	 would	 be	 a	 major	 factor	 in	 a
competitive	market	scenario	(cf.	Chapter	11)	but	looks	affordable	in	the	context
of	a	project	that	is	not	facing	strong	immediate	competition.	There	would	also	be
a	 cost	 in	 terms	 of	 the	 development	 time	 needed	 to	 create	 and	 test	 these
supervisory	functionalities.	A	well-resourced	project	could	reduce	this	time	cost
by	parallelizing	 the	development	of	 the	control	 structure	with	 the	development
of	 the	 machine	 intelligence;	 but	 the	 extra	 task	 load	 could	 be	 prohibitive	 for
smaller	projects	and	for	projects	caught	in	a	close	technology	race.

One	 other	 type	 of	 cost	 also	 deserves	 consideration:	 the	 risk	 of	mind	 crimes
being	committed	in	this	kind	of	structure.35	As	described,	the	institution	sounds
like	 a	 rather	 horrible	North	Korean	 labor	 camp.	Yet	 there	 are	ways	 of	 at	 least
mitigating	 the	moral	problems	with	running	 this	kind	of	 institution,	even	 if	 the
subagents	 contained	 in	 the	 institution	 are	 emulations	 with	 full	 human	 moral
status.	At	a	minimum,	 the	system	could	 rely	on	volunteering	emulations.	Each
subagent	 could	 have	 the	 option	 at	 any	 time	 of	withdrawing	 its	 participation.36
Terminated	emulations	could	be	stored	to	memory,	with	a	commitment	to	restart
them	 under	 much	 more	 ideal	 conditions	 once	 the	 dangerous	 phase	 of	 the
intelligence	 explosion	 is	 over.	Meanwhile,	 subagents	who	 chose	 to	 participate
could	 be	 housed	 in	 very	 comfortable	 virtual	 environments	 and	 allowed	 ample
time	 for	 sleep	 and	 recreation.	 These	 measures	 would	 impose	 a	 cost,	 one	 that
should	 be	 manageable	 for	 a	 well-resourced	 project	 under	 noncompetitive
conditions.	In	a	highly	competitive	situation,	the	cost	may	be	unaffordable	unless
an	enterprise	could	be	assured	that	its	competitors	would	incur	the	same	cost.



In	the	example,	we	imagined	the	subagents	as	emulations.	One	might	wonder,
does	 the	 institution	 design	 approach	 require	 that	 the	 subagents	 be
anthropomorphic?	Or	 is	 it	 equally	applicable	 to	 systems	composed	of	artificial
subagents?

One’s	 first	 thought	 here	 might	 be	 skeptical.	 One	 notes	 that	 despite	 our
plentiful	experience	with	human-like	agents,	we	still	cannot	precisely	predict	the
outbreak	or	outcomes	of	revolutions;	social	science	can,	at	most,	describe	some
statistical	 tendencies.37	 Since	we	 cannot	 reliably	 predict	 the	 stability	 of	 social
structures	 for	 ordinary	 human	 beings	 (about	 which	 we	 have	much	 data),	 it	 is
tempting	to	infer	that	we	have	little	hope	of	precision-engineering	stable	social
structures	for	cognitively	enhanced	human-like	agents	(about	which	we	have	no
data),	and	that	we	have	still	less	hope	of	doing	so	for	advanced	artificial	agents
(which	are	not	even	similar	to	agents	that	we	have	data	about).

Yet	 the	 matter	 is	 not	 so	 cut-and-dried.	 Humans	 and	 human-like	 beings	 are
complex;	 but	 artificial	 agents	 could	 have	 relatively	 simple	 architectures.
Artificial	agents	could	also	have	simple	and	explicitly	characterized	motivations.
Furthermore,	 digital	 agents	 in	 general	 (whether	 emulations	 or	 artificial
intelligences)	 are	 copyable:	 an	 affordance	 that	may	 revolutionize	management,
much	 like	 interchangeable	 parts	 revolutionized	 manufacturing.	 These
differences,	 together	with	 the	opportunity	 to	work	with	agents	 that	are	 initially
powerless	 and	 to	 create	 institutional	 structures	 that	 use	 the	 various
abovementioned	control	measures,	might	combine	to	make	it	possible	to	achieve
particular	 institutional	outcomes—such	as	a	system	that	does	not	 revolt—more
reliably	than	if	one	were	working	with	human	beings	under	historical	conditions.

But	then	again,	artificial	agents	might	lack	many	of	the	attributes	that	help	us
predict	the	behavior	of	human-like	agents.	Artificial	agents	need	not	have	any	of
the	social	emotions	that	bind	human	behavior,	emotions	such	as	fear,	pride,	and
remorse.	Nor	 need	 artificial	 agents	 develop	 attachments	 to	 friends	 and	 family.
Nor	need	they	exhibit	the	unconscious	body	language	that	makes	it	difficult	for
us	humans	to	conceal	our	intentions.	These	deficits	might	destabilize	institutions
of	artificial	agents.	Moreover,	artificial	agents	might	be	capable	of	making	big
leaps	 in	 cognitive	performance	 as	 a	 result	 of	 seemingly	 small	 changes	 in	 their
algorithms	 or	 architecture.	 Ruthlessly	 optimizing	 artificial	 agents	 might	 be
willing	 to	 take	 extreme	 gambles	 from	 which	 humans	 would	 shrink.38	 And
superintelligent	agents	might	show	a	surprising	ability	to	coordinate	with	little	or
no	 communication	 (e.g.	 by	 internally	 modeling	 each	 other’s	 hypothetical



responses	 to	 various	 contingencies).	 These	 and	 other	 differences	 could	 make
sudden	 institutional	 failure	 more	 likely,	 even	 in	 the	 teeth	 of	 what	 seem	 like
Kevlar-clad	methods	of	social	control.

It	is	unclear,	therefore,	how	promising	the	institution	design	approach	is,	and
whether	 it	 has	 a	 greater	 chance	 of	 working	 with	 anthropomorphic	 than	 with
artificial	agents.	It	might	be	thought	that	creating	an	institution	with	appropriate
checks	 and	 balances	 could	 only	 increase	 safety—or,	 at	 any	 rate,	 not	 reduce
safety—so	that	from	a	risk-mitigation	perspective	it	would	always	be	best	if	the
method	were	 used.	 But	 even	 this	 cannot	 be	 said	with	 certainty.	 The	 approach
adds	parts	and	complexity,	and	thus	may	also	introduce	new	ways	for	things	to
go	wrong	that	do	not	exist	in	the	case	of	an	agent	that	does	not	have	intelligent
subagents	 as	 parts.	 Nevertheless,	 institution	 design	 is	 worthy	 of	 further
exploration.39

Synopsis

	

Goal	system	engineering	 is	not	yet	an	established	discipline.	 It	 is	not	currently
known	how	to	transfer	human	values	to	a	digital	computer,	even	given	human-
level	 machine	 intelligence.	 Having	 investigated	 a	 number	 of	 approaches,	 we
found	 that	 some	 of	 them	 appear	 to	 be	 dead	 ends;	 but	 others	 appear	 to	 hold
promise	and	deserve	to	be	explored	further.	A	summary	is	provided	in	Table	12.

Table	12	Summary	of	value-loading	techniques

	 	

Explicit
representation

May	hold	promise	as	a	way	of	loading	domesticity	values.	Does
not	seem	promising	as	a	way	of	loading	more	complex	values.

Evolutionary

Less	promising.	Powerful	search	may	find	a	design	that	satisfies
the	formal	search	criteria	but	not	our	intentions.	Furthermore,	if
designs	are	evaluated	by	running	them—including	designs	that
do	not	even	meet	the	formal	criteria—a	potentially	grave



selection additional	danger	is	created.	Evolution	also	makes	it	difficult	to
avoid	massive	mind	crime,	especially	if	one	is	aiming	to	fashion
human-like	minds.

Reinforcement
learning

A	range	of	different	methods	can	be	used	to	solve
“reinforcement-learning	problems,”	but	they	typically	involve
creating	a	system	that	seeks	to	maximize	a	reward	signal.	This
has	an	inherent	tendency	to	produce	the	wireheading	failure
mode	when	the	system	becomes	more	intelligent.	Reinforcement
learning	therefore	looks	unpromising.

Value
accretion

We	humans	acquire	much	of	our	specific	goal	content	from	our
reactions	to	experience.	While	value	accretion	could	in	principle
be	used	to	create	an	agent	with	human	motivations,	the	human
value-accretion	dispositions	might	be	complex	and	difficult	to
replicate	in	a	seed	AI.	A	bad	approximation	may	yield	an	AI	that
generalizes	differently	than	humans	do	and	therefore	acquires
unintended	final	goals.	More	research	is	needed	to	determine
how	difficult	it	would	be	to	make	value	accretion	work	with
sufficient	precision.

Motivational
scaffolding

It	is	too	early	to	tell	how	difficult	it	would	be	to	encourage	a
system	to	develop	internal	high-level	representations	that	are
transparent	to	humans	(while	keeping	the	system’s	capabilities
below	the	dangerous	level)	and	then	to	use	those	representations
to	design	a	new	goal	system.	The	approach	might	hold
considerable	promise.	(However,	as	with	any	untested	approach
that	would	postpone	much	of	the	hard	work	on	safety
engineering	until	the	development	of	human-level	AI,	one
should	be	careful	not	to	allow	it	to	become	an	excuse	for	a
lackadaisical	attitude	to	the	control	problem	in	the	interim.)

A	potentially	promising	approach,	but	more	research	is	needed
to	determine	how	difficult	it	would	be	to	formally	specify	a



Value	learning

reference	that	successfully	points	to	the	relevant	external
information	about	human	value	(and	how	difficult	it	would	be	to
specify	a	correctness	criterion	for	a	utility	function	in	terms	of
such	a	reference).	Also	worth	exploring	within	the	value
learning	category	are	proposals	of	the	Hail	Mary	type	or	along
the	lines	of	Paul	Christiano’s	construction	(or	other	such
shortcuts).

Emulation
modulation

If	machine	intelligence	is	achieved	via	the	emulation	pathway,	it
would	likely	be	possible	to	tweak	motivations	through	the	digital
equivalent	of	drugs	or	by	other	means.	Whether	this	would
enable	values	to	be	loaded	with	sufficient	precision	to	ensure
safety	even	as	the	emulation	is	boosted	to	superintelligence	is	an
open	question.	(Ethical	constraints	might	also	complicate
developments	in	this	direction.)

Institution
design

Various	strong	methods	of	social	control	could	be	applied	in	an
institution	composed	of	emulations.	In	principle,	social	control
methods	could	also	be	applied	in	an	institution	composed	of
artificial	intelligences.	Emulations	have	some	properties	that
would	make	them	easier	to	control	via	such	methods,	but	also
some	properties	that	might	make	them	harder	to	control	than
AIs.	Institution	design	seems	worthy	of	further	exploration	as	a
potential	value-loading	technique.

If	 we	 knew	 how	 to	 solve	 the	 value-loading	 problem,	 we	 would	 confront	 a
further	problem:	 the	problem	of	deciding	which	values	 to	 load.	What,	 in	other
words,	 would	 we	 want	 a	 superintelligence	 to	 want?	 This	 is	 the	 more
philosophical	problem	to	which	we	turn	next.



CHAPTER	13
Choosing	the	criteria	for	choosing

	

Suppose	 we	 could	 install	 any	 arbitrary	 final	 value	 into	 a	 seed	 AI.	 The
decision	as	to	which	value	to	 install	could	then	have	the	most	far-reaching
consequences.	 Certain	 other	 basic	 parameter	 choices—concerning	 the
axioms	 of	 the	 AI’s	 decision	 theory	 and	 epistemology—could	 be	 similarly
consequential.	But	 foolish,	 ignorant,	and	narrow-minded	 that	we	are,	how
could	we	be	 trusted	 to	make	good	design	decisions?	How	could	we	choose
without	locking	in	forever	the	prejudices	and	preconceptions	of	the	present
generation?	In	this	chapter,	we	explore	how	indirect	normativity	can	let	us
offload	much	of	the	cognitive	work	involved	in	making	these	decisions	onto
the	 superintelligence	 itself	 while	 still	 anchoring	 the	 outcome	 in	 deeper
human	values.

The	need	for	indirect	normativity

	

How	can	we	get	a	superintelligence	to	do	what	we	want?	What	do	we	want	the
superintelligence	 to	 want?	 Up	 to	 this	 point,	 we	 have	 focused	 on	 the	 former
question.	We	now	turn	to	the	second	question.

Suppose	that	we	had	solved	the	control	problem	so	that	we	were	able	to	load
any	value	we	chose	into	the	motivation	system	of	a	superintelligence,	making	it
pursue	that	value	as	its	final	goal.	Which	value	should	we	install?	The	choice	is
no	 light	matter.	 If	 the	 superintelligence	 obtains	 a	 decisive	 strategic	 advantage,
the	value	would	determine	the	disposition	of	the	cosmic	endowment.

Clearly,	it	is	essential	that	we	not	make	a	mistake	in	our	value	selection.	But
how	could	we	realistically	hope	to	achieve	errorlessness	in	a	matter	like	this?	We
might	 be	wrong	 about	morality;	wrong	 also	 about	what	 is	 good	 for	 us;	wrong
even	 about	 what	 we	 truly	 want.	 Specifying	 a	 final	 goal,	 it	 seems,	 requires
making	one’s	way	through	a	thicket	of	thorny	philosophical	problems.	If	we	try	a



direct	 approach,	we	 are	 likely	 to	make	 a	 hash	 of	 things.	The	 risk	 of	mistaken
choosing	 is	 especially	 high	 when	 the	 decision	 context	 is	 unfamiliar—and
selecting	 the	 final	 goal	 for	 a	 machine	 superintelligence	 that	 will	 shape	 all	 of
humanity’s	future	is	an	extremely	unfamiliar	decision	context	if	any	is.

The	dismal	odds	 in	 a	 frontal	 assault	 are	 reflected	 in	 the	pervasive	dissensus
about	the	relevant	issues	in	value	theory.	No	ethical	theory	commands	majority
support	 among	 philosophers,	 so	most	 philosophers	must	 be	wrong.1	 It	 is	 also
reflected	 in	 the	 marked	 changes	 that	 the	 distribution	 of	 moral	 belief	 has
undergone	over	time,	many	of	which	we	like	to	think	of	as	progress.	In	medieval
Europe,	 for	 instance,	 it	 was	 deemed	 respectable	 entertainment	 to	 watch	 a
political	 prisoner	 being	 tortured	 to	 death.	 Cat-burning	 remained	 popular	 in
sixteenth-century	Paris.2	A	mere	hundred	 and	 fifty	years	 ago,	 slavery	 still	was
widely	practiced	in	the	American	South,	with	full	support	of	the	law	and	moral
custom.	When	we	look	back,	we	see	glaring	deficiencies	not	just	in	the	behavior
but	 in	 the	 moral	 beliefs	 of	 all	 previous	 ages.	 Though	 we	 have	 perhaps	 since
gleaned	 some	moral	 insight,	 we	 could	 hardly	 claim	 to	 be	 now	 basking	 in	 the
high	 noon	 of	 perfect	 moral	 enlightenment.	 Very	 likely,	 we	 are	 still	 laboring
under	one	or	more	grave	moral	misconceptions.	In	such	circumstances	to	select	a
final	value	based	on	our	current	convictions,	in	a	way	that	locks	it	in	forever	and
precludes	 any	 possibility	 of	 further	 ethical	 progress,	 would	 be	 to	 risk	 an
existential	moral	calamity.

Even	 if	we	 could	be	 rationally	 confident	 that	we	have	 identified	 the	 correct
ethical	 theory—which	we	cannot	be—we	would	 still	 remain	at	 risk	of	making
mistakes	in	developing	important	details	of	this	theory.	Seemingly	simple	moral
theories	 can	 have	 a	 lot	 of	 hidden	 complexity.3	 For	 example,	 consider	 the
(unusually	 simple)	 consequentialist	 theory	 of	 hedonism.	 This	 theory	 states,
roughly,	that	all	and	only	pleasure	has	value,	and	all	and	only	pain	has	disvalue.4
Even	if	we	placed	all	our	moral	chips	on	this	one	theory,	and	the	theory	turned
out	 to	 be	 right,	 a	 great	 many	 questions	 would	 remain	 open.	 Should	 “higher
pleasures”	be	given	priority	over	“lower	pleasures,”	as	John	Stuart	Mill	argued?
How	should	 the	 intensity	and	duration	of	a	pleasure	be	 factored	 in?	Can	pains
and	pleasures	 cancel	 each	other	out?	What	kinds	of	brain	 states	 are	 associated
with	morally	relevant	pleasures?	Would	two	exact	copies	of	the	same	brain	state
correspond	 to	 twice	 the	 amount	 of	 pleasure?5	 Can	 there	 be	 subconscious
pleasures?	How	should	we	deal	with	extremely	small	chances	of	extremely	great
pleasures?6	How	should	we	aggregate	over	infinite	populations?7



Giving	the	wrong	answer	to	any	one	of	these	questions	could	be	catastrophic.
If	by	selecting	a	final	value	for	 the	superintelligence	we	had	to	place	a	bet	not
just	on	a	general	moral	theory	but	on	a	long	conjunction	of	specific	claims	about
how	 that	 theory	 is	 to	 be	 interpreted	 and	 integrated	 into	 an	 effective	 decision-
making	process,	then	our	chances	of	striking	lucky	would	dwindle	to	something
close	 to	 hopeless.	 Fools	might	 eagerly	 accept	 this	 challenge	 of	 solving	 in	 one
swing	 all	 the	 important	 problems	 in	 moral	 philosophy,	 in	 order	 to	 infix	 their
favorite	 answers	 into	 the	 seed	 AI.	 Wiser	 souls	 would	 look	 hard	 for	 some
alternative	approach,	some	way	to	hedge.

This	 takes	 us	 to	 indirect	 normativity.	 The	 obvious	 reason	 for	 building	 a
superintelligence	 is	 so	 that	 we	 can	 offload	 to	 it	 the	 instrumental	 reasoning
required	 to	 find	effective	ways	of	 realizing	a	given	value.	 Indirect	normativity
would	enable	us	also	 to	offload	 to	 the	 superintelligence	 some	of	 the	 reasoning
needed	to	select	the	value	that	is	to	be	realized.

Indirect	 normativity	 is	 a	way	 to	 answer	 the	 challenge	 presented	 by	 the	 fact
that	we	may	not	 know	what	we	 truly	want,	what	 is	 in	 our	 interest,	 or	what	 is
morally	 right	 or	 ideal.	 Instead	 of	 making	 a	 guess	 based	 on	 our	 own	 current
understanding	 (which	 is	 probably	 deeply	 flawed),	we	would	 delegate	 some	 of
the	cognitive	work	required	for	value	selection	to	the	superintelligence.	Since	the
superintelligence	 is	 better	 at	 cognitive	 work	 than	 we	 are,	 it	 may	 see	 past	 the
errors	and	confusions	that	cloud	our	thinking.	One	could	generalize	this	idea	and
emboss	it	as	a	heuristic	principle:

	

The	principle	of	epistemic	deference

A	future	superintelligence	occupies	an	epistemically	superior	vantage	point:
its	beliefs	are	 (probably,	on	most	 topics)	more	 likely	 than	ours	 to	be	 true.
We	 should	 therefore	 defer	 to	 the	 superintelligence’s	 opinion	 whenever
feasible.8

	

Indirect	 normativity	 applies	 this	 principle	 to	 the	 value-selection	 problem.
Lacking	confidence	 in	our	ability	 to	specify	a	concrete	normative	standard,	we
would	instead	specify	some	more	abstract	condition	that	any	normative	standard
should	satisfy,	in	the	hope	that	a	superintelligence	could	find	a	concrete	standard



that	 satisfies	 the	 abstract	 condition.	We	could	give	 a	 seed	AI	 the	 final	 goal	 of
continuously	acting	according	to	its	best	estimate	of	what	this	implicitly	defined
standard	would	have	it	do.

Some	 examples	 will	 serve	 to	 make	 the	 idea	 clearer.	 First	 we	 will	 consider
“coherent	 extrapolated	 volition,”	 an	 indirect	 normativity	 proposal	 outlined	 by
Eliezer	Yudkowsky.	We	will	then	introduce	some	variations	and	alternatives,	to
give	us	a	sense	of	the	range	of	available	options.

Coherent	extrapolated	volition

	

Yudkowsky	has	proposed	that	a	seed	AI	be	given	the	final	goal	of	carrying	out
humanity’s	“coherent	extrapolated	volition”	(CEV),	which	he	defines	as	follows:

Our	 coherent	 extrapolated	 volition	 is	 our	wish	 if	we	 knew	more,	 thought
faster,	 were	 more	 the	 people	 we	 wished	 we	 were,	 had	 grown	 up	 farther
together;	where	the	extrapolation	converges	rather	than	diverges,	where	our
wishes	 cohere	 rather	 than	 interfere;	 extrapolated	 as	 we	 wish	 that
extrapolated,	interpreted	as	we	wish	that	interpreted.9

	
	

When	Yudkowsky	wrote	this,	he	did	not	purport	to	present	a	blueprint	for	how	to
implement	 this	 rather	 poetic	 prescription.	 His	 aim	 was	 to	 give	 a	 preliminary
sketch	of	how	CEV	might	be	defined,	 along	with	 some	arguments	 for	why	an
approach	along	these	lines	is	needed.

Many	of	the	ideas	behind	the	CEV	proposal	have	analogs	and	antecedents	in
the	philosophical	literature.	For	example,	in	ethics	 ideal	observer	 theories	 seek
to	analyze	normative	concepts	like	“good”	or	“right”	in	terms	of	the	judgments
that	 a	 hypothetical	 ideal	 observer	 would	 make	 (where	 an	 “ideal	 observer”	 is
defined	 as	 one	 that	 is	 omniscient	 about	 non-moral	 facts,	 is	 logically	 clear-
sighted,	 is	 impartial	 in	 relevant	ways	and	 is	 free	 from	various	kinds	of	biases,
and	so	on).10	The	CEV	approach,	however,	is	not	(or	need	not	be	construed	as)	a
moral	 theory.	 It	 is	 not	 committed	 to	 the	 claim	 that	 there	 is	 any	 necessary	 link
between	value	 and	 the	 preferences	 of	 our	 coherent	 extrapolated	 volition.	CEV



can	be	thought	of	simply	as	a	useful	way	to	approximate	whatever	has	ultimate
value,	or	it	can	be	considered	aside	from	any	connection	to	ethics.	As	the	main
prototype	of	 the	 indirect	normativity	approach,	 it	 is	worth	examining	in	a	 little
more	detail.

Some	explications

	

Some	 terms	 in	 the	 above	 quotation	 require	 explication.	 “Thought	 faster,”	 in
Yudkowsky’s	 terminology,	 means	 if	 we	 were	 smarter	 and	 had	 thought	 things
through	more.	“Grown	up	farther	 together”	seems	 to	mean	 if	we	had	done	our
learning,	 our	 cognitive	 enhancing,	 and	our	 self-improving	under	 conditions	 of
suitable	social	interaction	with	one	another.

“Where	the	extrapolation	converges	rather	than	diverges”	may	be	understood
as	follows.	The	AI	should	act	on	some	feature	of	 the	result	of	 its	extrapolation
only	insofar	as	that	feature	can	be	predicted	by	the	AI	with	a	fairly	high	degree
of	confidence.	To	the	extent	that	the	AI	cannot	predict	what	we	would	wish	if	we
were	 idealized	 in	 the	manner	 indicated,	 the	AI	should	not	act	on	a	wild	guess;
instead,	it	should	refrain	from	acting.	However,	even	though	many	details	of	our
idealized	 wishing	 may	 be	 undetermined	 or	 unpredictable,	 there	 might
nevertheless	be	some	broad	outlines	that	the	AI	can	apprehend,	and	it	can	then	at
least	act	to	ensure	that	the	future	course	of	events	unfolds	within	those	outlines.
For	example,	if	the	AI	can	reliably	estimate	that	our	extrapolated	volition	would
wish	that	we	not	all	be	in	constant	agony,	or	that	the	universe	not	be	tiled	over
with	paperclips,	then	the	AI	should	act	to	prevent	those	outcomes.11

“Where	our	wishes	cohere	rather	than	interfere”	may	be	read	as	follows.	The
AI	should	act	where	there	is	fairly	broad	agreement	between	individual	humans’
extrapolated	 volitions.	 A	 smaller	 set	 of	 strong,	 clear	 wishes	 might	 sometimes
outweigh	the	weak	and	muddled	wishes	of	a	majority.	Also,	Yudkowsky	thinks
that	 it	 should	 require	 less	 consensus	 for	 the	 AI	 to	 prevent	 some	 particular
narrowly	specified	outcome,	and	more	consensus	for	the	AI	to	act	to	funnel	the
future	into	some	particular	narrow	conception	of	the	good.	“The	initial	dynamic
for	 CEV,”	 he	 writes,	 “should	 be	 conservative	 about	 saying	 ‘yes,’	 and	 listen
carefully	for	‘no.’”12

“Extrapolated	 as	 we	 wish	 that	 extrapolated,	 interpreted	 as	 we	 wish	 that



interpreted”:	The	idea	behind	these	last	modifiers	seems	to	be	that	the	rules	for
extrapolation	 should	 themselves	 be	 sensitive	 to	 the	 extrapolated	 volition.	 An
individual	might	have	a	second-order	desire	(a	desire	concerning	what	to	desire)
that	 some	 of	 her	 first-order	 desires	 not	 be	 given	 weight	 when	 her	 volition	 is
extrapolated.	For	 example,	 an	 alcoholic	who	has	 a	 first-order	 desire	 for	 booze
might	 also	 have	 a	 second-order	 desire	 not	 to	 have	 that	 first-order	 desire.
Similarly,	 we	 might	 have	 desires	 over	 how	 various	 other	 parts	 of	 the
extrapolation	process	should	unfold,	and	these	should	be	taken	into	account	by
the	extrapolation	process.

It	 might	 be	 objected	 that	 even	 if	 the	 concept	 of	 humanity’s	 coherent
extrapolated	volition	could	be	properly	defined,	it	would	anyway	be	impossible
—even	for	a	superintelligence—to	find	out	what	humanity	would	actually	want
under	the	hypothetical	idealized	circumstances	stipulated	in	the	CEV	approach.
Without	some	information	about	the	content	of	our	extrapolated	volition,	the	AI
would	 be	 bereft	 of	 any	 substantial	 standard	 to	 guide	 its	 behavior.	 However,
although	 it	 would	 be	 difficult	 to	 know	 with	 precision	 what	 humanity’s	 CEV
would	wish,	it	is	possible	to	make	informed	guesses.	This	is	possible	even	today,
without	superintelligence.	For	example,	it	is	more	plausible	that	our	CEV	would
wish	for	there	to	be	people	in	the	future	who	live	rich	and	happy	lives	than	that	it
would	wish	that	we	should	all	sit	on	stools	in	a	dark	room	experiencing	pain.	If
we	can	make	at	least	some	such	judgments	sensibly,	so	can	a	superintelligence.
From	 the	 outset,	 the	 superintelligence’s	 conduct	 could	 thus	 be	 guided	 by	 its
estimates	of	the	content	of	our	CEV.	It	would	have	strong	instrumental	reason	to
refine	 these	 initial	 estimates	 (e.g.	 by	 studying	 human	 culture	 and	 psychology,
scanning	human	brains,	and	reasoning	about	how	we	might	behave	if	we	knew
more,	thought	more	clearly,	etc.).	In	investigating	these	matters,	the	AI	would	be
guided	by	its	initial	estimates	of	our	CEV;	so	that,	for	instance,	the	AI	would	not
unnecessarily	run	myriad	simulations	replete	with	unredeemed	human	suffering
if	it	estimated	that	our	CEV	would	probably	condemn	such	simulations	as	mind
crime.

Another	objection	 is	 that	 there	are	so	many	different	ways	of	 life	and	moral
codes	in	the	world	that	it	might	not	be	possible	to	“blend”	them	into	one	CEV.
Even	if	one	could	blend	them,	the	result	might	not	be	particularly	appetizing—
one	would	 be	 unlikely	 to	 get	 a	 delicious	meal	 by	mixing	 together	 all	 the	 best
flavors	 from	 everyone’s	 different	 favorite	 dish.13	 In	 answer	 to	 this,	 one	 could
point	 out	 that	 the	CEV	 approach	 does	 not	 require	 that	 all	ways	 of	 life,	moral
codes,	or	personal	values	be	blended	together	into	one	stew.	The	CEV	dynamic



is	 supposed	 to	 act	 only	when	 our	wishes	 cohere.	On	 issues	 on	which	 there	 is
widespread	 irreconcilable	 disagreement,	 even	 after	 the	 various	 idealizing
conditions	have	been	imposed,	the	dynamic	should	refrain	from	determining	the
outcome.	 To	 continue	 the	 cooking	 analogy,	 it	 might	 be	 that	 individuals	 or
cultures	 will	 have	 different	 favorite	 dishes,	 but	 that	 they	 can	 nevertheless
broadly	 agree	 that	 aliments	 should	be	nontoxic.	The	CEV	dynamic	 could	 then
act	to	prevent	food	poisoning	while	otherwise	allowing	humans	to	work	out	their
culinary	practices	without	its	guidance	or	interference.

Rationales	for	CEV

	

Yudkowsky’s	 article	 offered	 seven	 arguments	 for	 the	CEV	 approach.	Three	 of
these	were	basically	different	ways	of	making	the	point	that	while	the	aim	should
be	to	do	something	that	is	humane	and	helpful,	it	would	be	very	difficult	to	lay
down	an	explicit	 set	of	 rules	 that	does	not	have	unintended	 interpretations	and
undesirable	consequences.14	The	CEV	approach	is	meant	to	be	robust	and	self-
correcting;	it	is	meant	to	capture	the	source	of	our	values	instead	of	relying	on	us
correctly	 enumerating	 and	 articulating,	 once	 and	 for	 all,	 each	 of	 our	 essential
values.

The	remaining	four	arguments	go	beyond	that	first	basic	(but	important)	point,
spelling	out	desiderata	on	candidate	solutions	to	the	value-specification	problem
and	suggesting	that	CEV	meets	these	desiderata.

“Encapsulate	moral	growth”

This	is	the	desideratum	that	the	solution	should	allow	for	the	possibility	of	moral
progress.	As	suggested	earlier,	there	are	reasons	to	believe	that	our	current	moral
beliefs	are	flawed	in	many	ways;	perhaps	deeply	flawed.	If	we	were	to	stipulate
a	specific	and	unalterable	moral	code	for	the	AI	to	follow,	we	would	in	effect	be
locking	in	our	present	moral	convictions,	 including	their	errors,	destroying	any
hope	of	moral	growth.	The	CEV	approach,	by	contrast,	allows	for	the	possibility
of	such	growth	because	it	has	the	AI	try	to	do	that	which	we	would	have	wished
it	to	do	if	we	had	developed	further	under	favorable	conditions,	and	it	is	possible
that	 if	 we	 had	 thus	 developed	 our	 moral	 beliefs	 and	 sensibilities	 would	 have
been	purged	of	their	current	defects	and	limitations.



“Avoid	hijacking	the	destiny	of	humankind”

Yudkowsky	 has	 in	 mind	 a	 scenario	 in	 which	 a	 small	 group	 of	 programmers
creates	a	seed	AI	that	then	grows	into	a	superintelligence	that	obtains	a	decisive
strategic	 advantage.	 In	 this	 scenario,	 the	 original	 programmers	 hold	 in	 their
hands	the	entirety	of	humanity’s	cosmic	endowment.	Obviously,	this	is	a	hideous
responsibility	 for	 any	 mortal	 to	 shoulder.	 Yet	 it	 is	 not	 possible	 for	 the
programmers	 to	 completely	 shirk	 the	 onus	 once	 they	 find	 themselves	 in	 this
situation:	any	choice	 they	make,	 including	abandoning	 the	project,	would	have
world-historical	 consequences.	 Yudkowsky	 sees	 CEV	 as	 a	 way	 for	 the
programmers	 to	 avoid	 arrogating	 to	 themselves	 the	 privilege	 or	 burden	 of
determining	 humanity’s	 future.	 By	 setting	 up	 a	 dynamic	 that	 implements
humanity’s	coherent	extrapolated	volition—as	opposed	to	their	own	volition,	or
their	own	favorite	moral	theory—they	in	effect	distribute	their	influence	over	the
future	to	all	of	humanity.

“Avoid	creating	a	motive	for	modern-day	humans	to	fight	over	the	initial	dynamic”

Distributing	 influence	over	humanity’s	 future	 is	not	only	morally	preferable	 to
the	programming	team	implementing	their	own	favorite	vision,	it	is	also	a	way	to
reduce	the	incentive	to	fight	over	who	gets	to	create	the	first	superintelligence.	In
the	CEV	approach,	the	programmers	(or	their	sponsors)	exert	no	more	influence
over	 the	content	of	 the	outcome	than	any	other	person—though	 they	of	course
play	a	starring	causal	role	in	determining	the	structure	of	the	extrapolation	and	in
deciding	 to	 implement	 humanity’s	 CEV	 instead	 of	 some	 alternative.	Avoiding
conflict	is	important	not	only	because	of	the	immediate	harm	that	conflict	tends
to	 cause	 but	 also	 because	 it	 hinders	 collaboration	 on	 the	 difficult	 challenge	 of
developing	superintelligence	safely	and	beneficially.

CEV	 is	meant	 to	 be	 capable	 of	 commanding	wide	 support.	 This	 is	 not	 just
because	 it	 allocates	 influence	 equitably.	 There	 is	 also	 a	 deeper	 ground	 for	 the
irenic	 potential	 of	CEV,	 namely	 that	 it	 enables	many	 different	 groups	 to	 hope
that	their	preferred	vision	of	the	future	will	prevail	totally.	Imagine	a	member	of
the	 Afghan	 Taliban	 debating	 with	 a	 member	 of	 the	 Swedish	 Humanist
Association.	The	 two	have	very	different	worldviews,	and	what	 is	a	utopia	 for
one	 might	 be	 a	 dystopia	 for	 the	 other.	 Nor	 might	 either	 be	 thrilled	 by	 any
compromise	position,	 such	as	permitting	girls	 to	 receive	an	education	but	only
up	 to	ninth	grade,	or	permitting	Swedish	girls	 to	be	educated	but	Afghan	girls
not.	However,	both	 the	Taliban	and	 the	Humanist	might	be	able	 to	endorse	 the



principle	that	the	future	should	be	determined	by	humanity’s	CEV.	The	Taliban
could	 reason	 that	 if	 his	 religious	 views	 are	 in	 fact	 correct	 (as	 he	 is	 convinced
they	 are)	 and	 if	 good	 grounds	 for	 accepting	 these	 views	 exist	 (as	 he	 is	 also
convinced)	then	humankind	would	in	the	end	come	to	accept	these	views	if	only
people	 were	 less	 prejudiced	 and	 biased,	 if	 they	 spent	 more	 time	 studying
scripture,	 if	 they	 could	 more	 clearly	 understand	 how	 the	 world	 works	 and
recognize	 essential	 priorities,	 if	 they	 could	 be	 freed	 from	 irrational
rebelliousness	 and	 cowardice,	 and	 so	 forth.15	 The	 Humanist,	 similarly,	 would
believe	 that	 under	 these	 idealized	 conditions,	 humankind	 would	 come	 to
embrace	the	principles	she	espouses.

“Keep	humankind	ultimately	in	charge	of	its	own	destiny”

We	 might	 not	 want	 an	 outcome	 in	 which	 a	 paternalistic	 superintelligence
watches	 over	 us	 constantly,	 micromanaging	 our	 affairs	 with	 an	 eye	 towards
optimizing	every	detail	in	accordance	with	a	grand	plan.	Even	if	we	stipulate	that
the	 superintelligence	 would	 be	 perfectly	 benevolent,	 and	 free	 from
presumptuousness,	 arrogance,	 overbearingness,	 narrow-mindedness,	 and	 other
human	 shortcomings,	 one	 might	 still	 resent	 the	 loss	 of	 autonomy	 entailed	 by
such	an	arrangement.	We	might	prefer	to	create	our	destiny	as	we	go	along,	even
if	it	means	that	we	sometimes	fumble.	Perhaps	we	want	the	superintelligence	to
serve	as	a	safety	net,	 to	support	us	when	 things	go	catastrophically	wrong,	but
otherwise	to	leave	us	to	fend	for	ourselves.

CEV	allows	 for	 this	possibility.	CEV	 is	meant	 to	be	 an	“initial	 dynamic,”	 a
process	 that	 runs	 once	 and	 then	 replaces	 itself	with	whatever	 the	 extrapolated
volition	wishes.	If	humanity’s	extrapolated	volition	wishes	that	we	live	under	the
supervision	of	a	paternalistic	AI,	then	the	CEV	dynamic	would	create	such	an	AI
and	hand	 it	 the	 reins.	 If	 humanity’s	 extrapolated	volition	 instead	wishes	 that	 a
democratic	human	world	government	be	created,	 then	 the	CEV	dynamic	might
facilitate	the	establishment	of	such	an	institution	and	otherwise	remain	invisible.
If	 humanity’s	 extrapolated	 volition	 is	 instead	 that	 each	 person	 should	 get	 an
endowment	of	resources	that	she	can	use	as	she	pleases	so	long	as	she	respects
the	equal	rights	of	others,	then	the	CEV	dynamic	could	make	this	come	true	by
operating	in	the	background	much	like	a	law	of	nature,	to	prevent	trespass,	theft,
assault,	and	other	nonconsensual	impingements.16

The	structure	of	the	CEV	approach	thus	allows	for	a	virtually	unlimited	range
of	outcomes.	It	 is	also	conceivable	that	humanity’s	extrapolated	volition	would



wish	 that	 the	CEV	does	nothing	at	all.	 In	 that	case,	 the	AI	 implementing	CEV
should,	 upon	 having	 established	 with	 sufficient	 probability	 that	 this	 is	 what
humanity’s	extrapolated	volition	would	wish	it	to	do,	safely	shut	itself	down.

Further	remarks

	

The	CEV	proposal,	as	outlined	above,	is	of	course	the	merest	schematic.	It	has	a
number	 of	 free	 parameters	 that	 could	 be	 specified	 in	 various	 ways,	 yielding
different	versions	of	the	proposal.

One	parameter	is	the	extrapolation	base:	Whose	volitions	are	to	be	included?
We	might	say	“everybody,”	but	this	answer	spawns	a	host	of	further	questions.
Does	 the	 extrapolation	 base	 include	 so-called	 “marginal	 persons”	 such	 as
embryos,	fetuses,	brain-dead	persons,	patients	with	severe	dementias	or	who	are
in	permanent	vegetative	states?	Does	each	of	the	hemispheres	of	a	“split-brain”
patient	get	its	own	weight	in	the	extrapolation	and	is	this	weight	the	same	as	that
of	the	entire	brain	of	a	normal	subject?	What	about	people	who	lived	in	the	past
but	are	now	dead?	People	who	will	be	born	 in	 the	 future?	Higher	animals	and
other	sentient	creatures?	Digital	minds?	Extraterrestrials?

One	option	would	be	to	include	only	the	population	of	adult	human	beings	on
Earth	 who	 are	 alive	 at	 the	 start	 of	 the	 time	 of	 the	 AI’s	 creation.	 An	 initial
extrapolation	from	this	base	could	then	decide	whether	and	how	the	base	should
be	expanded.	Since	 the	number	of	 “marginals”	 at	 the	periphery	of	 this	base	 is
relatively	small,	the	result	of	the	extrapolation	may	not	depend	much	on	exactly
where	 the	 boundary	 is	 drawn—on	whether,	 for	 instance,	 it	 includes	 fetuses	 or
not.

That	 somebody	 is	 excluded	 from	 the	 original	 extrapolation	 base	 does	 not
imply	 that	 their	 wishes	 and	 well-being	 are	 disregarded.	 If	 the	 coherent
extrapolated	volition	of	those	in	the	extrapolation	base	(e.g.	living	adult	human
beings)	wishes	 that	moral	 consideration	 be	 extended	 to	 other	 beings,	 then	 the
outcome	of	 the	CEV	dynamic	would	 reflect	 that	preference.	Nevertheless,	 it	 is
possible	that	the	interests	of	those	who	are	included	in	the	original	extrapolation
base	would	be	accommodated	to	a	greater	degree	than	the	interests	of	outsiders.
In	particular,	 if	 the	dynamic	acts	only	where	there	 is	broad	agreement	between
individual	 extrapolated	 volitions	 (as	 in	 Yudkowsky’s	 original	 proposal),	 there



would	seem	 to	be	a	 significant	 risk	of	an	ungenerous	blocking	vote	 that	 could
prevent,	 for	 instance,	 the	welfare	 of	 nonhuman	 animals	 or	 digital	minds	 from
being	protected.	The	result	might	potentially	be	morally	rotten.17

One	 motivation	 for	 the	 CEV	 proposal	 was	 to	 avoid	 creating	 a	 motive	 for
humans	 to	 fight	over	 the	creation	of	 the	 first	 superintelligent	AI.	Although	 the
CEV	proposal	scores	better	on	this	desideratum	than	many	alternatives,	 it	does
not	entirely	eliminate	motives	for	conflict.	A	selfish	individual,	group,	or	nation
might	 seek	 to	 enlarge	 its	 slice	 of	 the	 future	 by	 keeping	 others	 out	 of	 the
extrapolation	base.

A	power	grab	of	 this	sort	might	be	rationalized	 in	various	ways.	 It	might	be
argued,	 for	 instance,	 that	 the	 sponsor	 who	 funds	 the	 development	 of	 the	 AI
deserves	 to	 own	 the	 outcome.	 This	moral	 claim	 is	 probably	 false.	 It	 could	 be
objected,	for	example,	that	the	project	that	launches	the	first	successful	seed	AI
imposes	 a	 vast	 risk	 externality	 on	 the	 rest	 of	 humanity,	 which	 therefore	 is
entitled	 to	compensation.	The	amount	of	compensation	owed	 is	so	great	 that	 it
can	only	take	the	form	of	giving	everybody	a	stake	in	the	upside	if	 things	turn
out	well.18

Another	argument	that	might	be	used	to	rationalize	a	power	grab	is	that	large
segments	of	humanity	have	base	or	evil	preferences	and	that	 including	them	in
the	extrapolation	base	would	risk	turning	humanity’s	future	into	a	dystopia.	It	is
difficult	 to	know	the	share	of	good	and	bad	 in	 the	average	person’s	heart.	 It	 is
also	difficult	 to	know	how	much	 this	 balance	varies	between	different	 groups,
social	strata,	cultures,	or	nations.	Whether	one	is	optimistic	or	pessimistic	about
human	nature,	one	may	prefer	not	 to	wager	humanity’s	 cosmic	endowment	on
the	speculation	that,	for	a	sufficient	majority	of	the	seven	billion	people	currently
alive,	their	better	angels	would	prevail	in	their	extrapolated	volitions.	Of	course,
omitting	a	certain	set	of	people	from	the	extrapolation	base	does	not	guarantee
that	light	would	triumph;	and	it	might	well	be	that	the	souls	that	would	soonest
exclude	 others	 or	 grab	 power	 for	 themselves	 tend	 rather	 to	 contain	 unusually
large	amounts	of	darkness.

Yet	 another	 reason	 for	 fighting	 over	 the	 initial	 dynamic	 is	 that	 one	 might
believe	 that	 somebody	else’s	AI	will	 not	work	 as	 advertised,	 even	 if	 the	AI	 is
billed	as	a	way	to	implement	humanity’s	CEV.	If	different	groups	have	different
beliefs	about	which	implementation	is	most	likely	to	succeed,	they	might	fight	to
prevent	 the	 others	 from	 launching.	 It	would	 be	 better	 in	 such	 situations	 if	 the



competing	projects	could	settle	their	epistemic	differences	by	some	method	that
more	reliably	ascertains	who	is	right	than	the	method	of	armed	conflict.19

Morality	models

	

The	 CEV	 proposal	 is	 not	 the	 only	 possible	 form	 of	 indirect	 normativity.	 For
example,	instead	of	implementing	humanity’s	coherent	extrapolated	volition,	one
could	try	to	build	an	AI	with	the	goal	of	doing	what	is	morally	right,	relying	on
the	 AI’s	 superior	 cognitive	 capacities	 to	 figure	 out	 just	 which	 actions	 fit	 that
description.	We	can	call	 this	proposal	“moral	rightness”	(MR).	The	idea	is	 that
we	 humans	 have	 an	 imperfect	 understanding	 of	what	 is	 right	 and	wrong,	 and
perhaps	an	even	poorer	understanding	of	how	the	concept	of	moral	rightness	is
to	 be	 philosophically	 analyzed:	 but	 a	 superintelligence	 could	 understand	 these
things	better.20

What	if	we	are	not	sure	whether	moral	realism	is	true?	We	could	still	attempt
the	 MR	 proposal.	 We	 should	 just	 have	 to	 make	 sure	 to	 specify	 what	 the	 AI
should	do	in	the	eventuality	that	its	presupposition	of	moral	realism	is	false.	For
example,	we	could	stipulate	that	if	the	AI	estimates	with	a	sufficient	probability
that	there	are	no	suitable	non-relative	truths	about	moral	rightness,	then	it	should
revert	 to	 implementing	 coherent	 extrapolated	 volition	 instead,	 or	 simply	 shut
itself	down.21

MR	appears	 to	have	several	advantages	over	CEV.	MR	would	do	away	with
various	 free	 parameters	 in	 CEV,	 such	 as	 the	 degree	 of	 coherence	 among
extrapolated	volitions	that	is	required	for	the	AI	to	act	on	the	result,	the	ease	with
which	a	majority	can	overrule	dissenting	minorities,	and	the	nature	of	the	social
environment	within	which	 our	 extrapolated	 selves	 are	 to	 be	 supposed	 to	 have
“grown	up	farther	together.”	It	would	seem	to	eliminate	the	possibility	of	a	moral
failure	resulting	from	the	use	of	an	extrapolation	base	that	is	too	narrow	or	too
wide.	Furthermore,	MR	would	orient	the	AI	toward	morally	right	action	even	if
our	coherent	extrapolated	volitions	happen	to	wish	for	the	AI	to	take	actions	that
are	morally	odious.	As	noted	earlier,	this	seems	a	live	possibility	with	the	CEV
proposal.	Moral	goodness	might	be	more	like	a	precious	metal	than	an	abundant
element	in	human	nature,	and	even	after	the	ore	has	been	processed	and	refined
in	accordance	with	the	prescriptions	of	 the	CEV	proposal,	who	knows	whether
the	principal	outcome	will	be	shining	virtue,	indifferent	slag,	or	toxic	sludge?



MR	would	also	appear	to	have	some	disadvantages.	It	relies	on	the	notion	of
“morally	 right,”	 a	 notoriously	 difficult	 concept,	 one	 with	 which	 philosophers
have	grappled	since	antiquity	without	yet	attaining	consensus	as	to	its	analysis.
Picking	an	erroneous	explication	of	“moral	rightness”	could	result	 in	outcomes
that	would	be	morally	very	wrong.	This	difficulty	of	defining	“moral	rightness”
might	seem	to	count	heavily	against	 the	MR	proposal.	However,	 it	 is	not	clear
that	the	MR	proposal	is	really	at	a	material	disadvantage	in	this	regard.	The	CEV
proposal,	 too,	 uses	 terms	 and	 concepts	 that	 are	 difficult	 to	 explicate	 (such	 as
“knowledge,”	“being	more	 the	people	we	wished	we	were,”	“grown	up	 farther
together,”	 among	others).22	 Even	 if	 these	 concepts	 are	marginally	 less	 opaque
than	 “moral	 rightness,”	 they	 are	 still	 miles	 removed	 from	 anything	 that
programmers	can	currently	express	in	code.23	The	path	to	endowing	an	AI	with
any	 of	 these	 concepts	 might	 involve	 giving	 it	 general	 linguistic	 ability
(comparable,	at	least,	to	that	of	a	normal	human	adult).	Such	a	general	ability	to
understand	natural	language	could	then	be	used	to	understand	what	is	meant	by
“morally	 right.”	 If	 the	AI	could	grasp	 the	meaning,	 it	 could	 search	 for	 actions
that	fit.	As	the	AI	develops	superintelligence,	it	could	then	make	progress	on	two
fronts:	on	 the	philosophical	problem	of	understanding	what	moral	 rightness	 is,
and	 on	 the	 practical	 problem	 of	 applying	 this	 understanding	 to	 evaluate
particular	actions.24	While	this	would	not	be	easy,	it	is	not	clear	that	it	would	be
any	 more	 difficult	 than	 extrapolating	 humanity’s	 coherent	 extrapolated
volition.25

A	more	 fundamental	 issue	 with	MR	 is	 that	 even	 if	 can	 be	 implemented,	 it
might	not	give	us	what	we	want	or	what	we	would	choose	if	we	were	brighter
and	 better	 informed.	 This	 is	 of	 course	 the	 essential	 feature	 of	 MR,	 not	 an
accidental	bug.	However,	it	might	be	a	feature	that	would	be	extremely	harmful
to	us.26

One	might	try	to	preserve	the	basic	idea	of	the	MR	model	while	reducing	its
demandingness	by	focusing	on	moral	permissibility:	the	idea	being	that	we	could
let	 the	 AI	 pursue	 humanity’s	 CEV	 so	 long	 as	 it	 did	 not	 act	 in	 ways	 that	 are
morally	impermissible.	For	example,	one	might	formulate	the	following	goal	for
the	AI:

Among	 the	 actions	 that	 are	morally	 permissible	 for	 the	AI,	 take	 one	 that
humanity’s	CEV	would	prefer.	However,	if	some	part	of	this	instruction	has
no	 well-specified	 meaning,	 or	 if	 we	 are	 radically	 confused	 about	 its



meaning,	or	if	moral	realism	is	false,	or	if	we	acted	morally	impermissibly
in	 creating	 an	 AI	 with	 this	 goal,	 then	 undergo	 a	 controlled	 shutdown.27
Follow	the	intended	meaning	of	this	instruction.

	
	

One	might	 still	worry	 that	 this	moral	 permissibility	model	 (MP)	 represents	 an
unpalatably	high	degree	of	respect	for	the	requirements	of	morality.	How	big	a
sacrifice	 it	would	 entail	 depends	 on	which	 ethical	 theory	 is	 true.28	 If	 ethics	 is
satisficing,	 in	 the	 sense	 that	 it	 counts	 as	 morally	 permissible	 any	 action	 that
conforms	to	a	few	basic	moral	constraints,	 then	MP	may	leave	ample	room	for
our	 coherent	 extrapolated	 volition	 to	 influence	 the	 AI’s	 actions.	 However,	 if
ethics	 is	maximizing—for	 example,	 if	 the	only	morally	 permissible	 actions	 are
those	that	have	the	morally	best	consequences—then	MP	may	leave	little	or	no
room	for	our	own	preferences	to	shape	the	outcome.

To	 illustrate	 this	 concern,	 let	 us	 return	 for	 a	 moment	 to	 the	 example	 of
hedonistic	consequentialism.	Suppose	that	this	ethical	theory	is	true,	and	that	the
AI	 knows	 it	 to	 be	 so.	 For	 present	 purposes,	 we	 can	 define	 hedonistic
consequentialism	 as	 the	 claim	 that	 an	 action	 is	 morally	 right	 (and	 morally
permissible)	 if	 and	 only	 if,	 among	 all	 feasible	 actions,	 no	 other	 action	 would
produce	 a	 greater	 balance	 of	 pleasure	 over	 suffering.	 The	 AI,	 following	 MP,
might	maximize	the	surfeit	of	pleasure	by	converting	the	accessible	universe	into
hedonium,	 a	 process	 that	may	 involve	 building	 computronium	 and	 using	 it	 to
perform	computations	that	instantiate	pleasurable	experiences.	Since	simulating
any	existing	human	brain	is	not	the	most	efficient	way	of	producing	pleasure,	a
likely	consequence	is	that	we	all	die.

By	enacting	either	the	MR	or	the	MP	proposal,	we	would	thus	risk	sacrificing
our	 lives	 for	 a	 greater	 good.	 This	would	 be	 a	 bigger	 sacrifice	 than	 one	might
think,	 because	 what	 we	 stand	 to	 lose	 is	 not	 merely	 the	 chance	 to	 live	 out	 a
normal	 human	 life	 but	 the	 opportunity	 to	 enjoy	 the	 far	 longer	 and	 richer	 lives
that	a	friendly	superintelligence	could	bestow.

The	 sacrifice	 looks	 even	 less	 appealing	 when	 we	 reflect	 that	 the
superintelligence	could	realize	a	nearly-as-great	good	(in	fractional	terms)	while
sacrificing	much	less	of	our	own	potential	well-being.	Suppose	that	we	agreed	to
allow	 almost	 the	 entire	 accessible	 universe	 to	 be	 converted	 into	 hedonium—



everything	except	a	small	preserve,	say	the	Milky	Way,	which	would	be	set	aside
to	 accommodate	 our	 own	 needs.	 Then	 there	 would	 still	 be	 a	 hundred	 billion
galaxies	devoted	to	the	maximization	of	pleasure.	But	we	would	have	one	galaxy
within	which	to	create	wonderful	civilizations	that	could	last	for	billions	of	years
and	in	which	humans	and	nonhuman	animals	could	survive	and	thrive,	and	have
the	opportunity	to	develop	into	beatific	posthuman	spirits.29

If	one	prefers	 this	 latter	option	(as	 I	would	be	 inclined	 to	do)	 it	 implies	 that
one	 does	 not	 have	 an	 unconditional	 lexically	 dominant	 preference	 for	 acting
morally	permissibly.	But	it	is	consistent	with	placing	great	weight	on	morality.

Even	from	a	purely	moral	point	of	view,	it	might	be	better	to	advocate	 some
proposal	that	is	 less	morally	ambitious	than	MR	or	MP.	If	the	morally	best	has
no	 chance	 of	 being	 implemented—perhaps	 because	 of	 its	 frowning
demandingness—it	might	be	morally	better	to	promote	some	other	proposal,	one
that	 would	 be	 near-ideal	 and	 whose	 chances	 of	 being	 implemented	 could	 be
significantly	increased	by	our	promoting	it.30

Do	What	I	Mean

	

We	might	feel	unsure	whether	to	go	for	CEV,	MR,	MP,	or	something	else.	Could
we	 punt	 on	 this	 higher-level	 decision	 as	well,	 offloading	 even	more	 cognitive
work	onto	the	AI?	Where	is	the	limit	to	our	possible	laziness?

Consider,	for	example,	the	following	“reasons-based”	goal:

Do	whatever	we	would	have	had	most	reason	to	ask	the	AI	to	do.

	
	

This	goal	might	boil	down	to	extrapolated	volition	or	morality	or	something	else,
but	it	would	seem	to	spare	us	the	effort	and	risk	involved	in	trying	to	figure	out
for	 ourselves	 which	 of	 these	 more	 specific	 objectives	 we	 would	 have	 most
reason	to	select.

Some	 of	 the	 problems	 with	 the	 morality-based	 goals,	 however,	 also	 apply
here.	First,	we	might	fear	that	this	reasons-based	goal	would	leave	too	little	room



for	our	own	desires.	Some	philosophers	maintain	that	a	person	always	has	most
reason	to	do	what	it	would	be	morally	best	for	her	to	do.	If	 those	philosophers
are	 right,	 then	 the	reason-based	goal	collapses	 into	MR—with	 the	concomitant
risk	 that	a	superintelligence	 implementing	such	a	dynamic	would	kill	everyone
within	reach.	Second,	as	with	all	proposals	couched	in	technical	language,	there
is	 a	 possibility	 that	 we	 might	 have	 misunderstood	 the	 meaning	 of	 our	 own
assertions.	We	saw	that,	in	the	case	of	the	morality-based	goals,	asking	the	AI	to
do	what	is	right	may	lead	to	unforeseen	and	unwanted	consequences	such	that,
had	we	anticipated	them,	we	would	not	have	implemented	the	goal	in	question.
The	same	applies	to	asking	the	AI	to	do	what	we	have	most	reason	to	do.

What	if	we	try	to	avoid	these	difficulties	by	couching	a	goal	in	emphatically
nontechnical	language—such	as	in	terms	of	“niceness”:31

Take	the	nicest	action;	or,	if	no	action	is	nicest,	then	take	an	action	that	is	at
least	super-duper	nice.

	
	

How	 could	 there	 be	 anything	 objectionable	 about	 building	 a	nice	AI?	But	we
must	 ask	what	 precisely	 is	meant	 by	 this	 expression.	The	 lexicon	 lists	 various
meanings	 of	 “nice”	 that	 are	 clearly	 not	 intended	 to	 be	 used	 here:	 we	 do	 not
intend	that	the	AI	should	be	courteous	and	polite	nor	overdelicate	or	fastidious.
If	we	can	count	on	the	AI	recognizing	the	intended	interpretation	of	“niceness”
and	being	motivated	to	pursue	niceness	 in	 just	 that	sense,	 then	this	goal	would
seem	to	amount	to	a	command	to	do	what	the	programmers	meant	for	the	AI	to
do.32	 An	 injunction	 to	 similar	 effect	 was	 included	 in	 the	 formulation	 of	 CEV
(“…	 interpreted	 as	 we	 wish	 that	 interpreted”)	 and	 in	 the	 moral-permissibility
criterion	 as	 rendered	 earlier	 (“…	 follow	 the	 intended	 meaning	 of	 this
instruction”).	By	affixing	such	a	“Do	What	I	Mean”	clause	we	may	indicate	that
the	other	words	in	the	goal	description	should	be	construed	charitably	rather	than
literally.	But	 saying	 that	 the	AI	should	be	“nice”	adds	almost	nothing:	 the	 real
work	is	done	by	the	“Do	What	I	Mean”	instruction.	If	we	knew	how	to	code	“Do
What	 I	Mean”	 in	 a	 general	 and	powerful	way,	we	might	 as	well	 use	 that	 as	 a
standalone	goal.

How	might	one	implement	such	a	“Do	What	I	Mean”	dynamic?	That	is,	how
might	we	create	an	AI	motivated	to	charitably	interpret	our	wishes	and	unspoken



intentions	and	to	act	accordingly?	One	initial	step	could	be	to	try	to	get	clearer
about	what	we	mean	by	“Do	What	I	Mean.”	It	might	help	if	we	could	explicate
this	in	more	behavioristic	terms,	for	example	in	terms	of	revealed	preferences	in
various	hypothetical	situations—such	as	situations	in	which	we	had	more	time	to
consider	the	options,	in	which	we	were	smarter,	in	which	we	knew	more	of	the
relevant	 facts,	 and	 in	 which	 in	 various	 other	 ways	 conditions	 would	 be	more
favorable	for	us	accurately	manifesting	in	concrete	choices	what	we	mean	when
we	say	that	we	want	an	AI	that	is	friendly,	beneficial,	nice	…

Here,	 of	 course,	 we	 come	 full	 circle.	 We	 have	 returned	 to	 the	 indirect
normativity	 approach	 with	 which	 we	 started—the	 CEV	 proposal,	 which,	 in
essence,	expunges	all	concrete	content	from	the	value	specification,	leaving	only
an	abstract	value	defined	in	purely	procedural	terms:	to	do	that	which	we	would
have	wished	for	 the	AI	 to	do	 in	suitably	 idealized	circumstances.	By	means	of
such	 indirect	 normativity,	 we	 could	 hope	 to	 offload	 to	 the	 AI	 much	 of	 the
cognitive	work	that	we	ourselves	would	be	trying	to	perform	if	we	attempted	to
articulate	 a	 more	 concrete	 description	 of	 what	 values	 the	 AI	 is	 to	 pursue.	 In
seeking	to	take	full	advantage	of	the	AI’s	epistemic	superiority,	CEV	can	thus	be
seen	as	an	application	of	the	principle	of	epistemic	deference.

Component	list

	

So	far	we	have	considered	different	options	for	what	content	to	put	into	the	goal
system.	But	an	AI’s	behavior	will	also	be	influenced	by	other	design	choices.	In
particular,	 it	 can	 make	 a	 critical	 difference	 which	 decision	 theory	 and	 which
epistemology	it	uses.	Another	important	question	is	whether	the	AI’s	plans	will
be	subject	to	human	review	before	being	put	into	action.

Table	 13	 summarizes	 these	 design	 choices.	 A	 project	 that	 aims	 to	 build	 a
superintelligence	ought	to	be	able	to	explain	what	choices	it	has	made	regarding
each	of	these	components,	and	to	justify	why	those	choices	were	made.33

	

	 	



Table	13	Component	list

Goal	content

What	objective	should	the	AI	pursue?	How	should	a	description
of	this	objective	be	interpreted?	Should	the	objective	include
giving	special	rewards	to	those	who	contributed	to	the	project’s
success?

Decision
theory

Should	the	AI	use	causal	decision	theory,	evidential	decision
theory,	updateless	decision	theory,	or	something	else?

Epistemology
What	should	the	AI’s	prior	probability	function	be,	and	what
other	explicit	or	implicit	assumptions	about	the	world	should	it
make?	What	theory	of	anthropics	should	it	use?

Ratification
Should	the	AI’s	plans	be	subjected	to	human	review	before	being
put	into	effect?	If	so,	what	is	the	protocol	for	that	review
process?

Goal	content

	

We	have	already	discussed	how	indirect	normativity	might	be	used	in	specifying
the	values	that	the	AI	is	to	pursue.	We	discussed	some	options,	such	as	morality-
based	 models	 and	 coherent	 extrapolated	 volition.	 Each	 such	 option	 creates
further	choices	that	need	to	be	made.	For	instance,	the	CEV	approach	comes	in
many	 varieties,	 depending	 on	 who	 is	 included	 in	 the	 extrapolation	 base,	 the
structure	of	the	extrapolation,	and	so	forth.	Other	forms	of	motivation	selection
methods	might	 call	 for	different	 types	of	goal	 content.	For	 example,	 an	oracle
might	be	built	to	place	a	value	on	giving	accurate	answers.	An	oracle	constructed
with	 domesticity	 motivation	 might	 also	 have	 goal	 content	 that	 disvalues	 the
excessive	use	of	resources	in	producing	its	answers.

Another	 design	 choice	 is	 whether	 to	 include	 special	 provisions	 in	 the	 goal



content	to	reward	individuals	who	contribute	to	the	successful	realization	of	the
AI,	 for	 example	 by	 giving	 them	 extra	 resources	 or	 influence	 over	 the	 AI’s
behavior.	 We	 can	 term	 any	 such	 provisions	 “incentive	 wrapping.”	 Incentive
wrapping	could	be	seen	as	a	way	to	increase	the	likelihood	that	the	project	will
be	 successful,	 at	 the	 cost	 of	 compromising	 to	 some	 extent	 the	 goal	 that	 the
project	set	out	to	achieve.

For	 example,	 if	 the	 project’s	 goal	 is	 to	 create	 a	 dynamic	 that	 implements
humanity’s	 coherent	 extrapolated	 volition,	 then	 an	 incentive	wrapping	 scheme
might	specify	that	certain	individuals’	volitions	should	be	given	extra	weight	in
the	extrapolation.	If	such	a	project	is	successful,	the	result	is	not	necessarily	the
implementation	 of	 humanity’s	 coherent	 extrapolated	 volition.	 Instead,	 some
approximation	to	this	goal	might	be	achieved.34

Since	 incentive	 wrapping	 would	 be	 a	 piece	 of	 goal	 content	 that	 would	 be
interpreted	 and	 pursued	 by	 a	 superintelligence,	 it	 could	 take	 advantage	 of
indirect	normativity	to	specify	subtle	and	complicated	provisions	that	would	be
difficult	for	a	human	manager	to	implement.	For	example,	instead	of	rewarding
programmers	according	to	some	crude	but	easily	accessible	metric,	such	as	how
many	 hours	 they	 worked	 or	 how	 many	 bugs	 they	 corrected,	 the	 incentive
wrapping	could	specify	 that	programmers	“are	 to	be	 rewarded	 in	proportion	 to
how	much	their	contributions	 increased	some	reasonable	ex	ante	probability	of
the	 project	 being	 successfully	 completed	 in	 the	 way	 the	 sponsors	 intended.”
Further,	there	would	be	no	reason	to	limit	the	incentive	wrapping	to	project	staff.
It	could	instead	specify	that	every	person	should	be	rewarded	according	to	their
just	deserts.	Credit	allocation	is	a	difficult	problem,	but	a	superintelligence	could
be	 expected	 to	 do	 a	 reasonable	 job	 of	 approximating	 the	 criteria	 specified,
explicitly	or	implicitly,	by	the	incentive	wrapping.

It	 is	 conceivable	 that	 the	 superintelligence	 might	 even	 find	 some	 way	 of
rewarding	individuals	who	have	died	prior	to	the	superintelligence’s	creation.35
The	incentive	wrapping	could	then	be	extended	to	embrace	at	least	some	of	the
deceased,	 potentially	 including	 individuals	 who	 died	 before	 the	 project	 was
conceived,	 or	 even	 antedating	 the	 first	 enunciation	of	 the	 concept	 of	 incentive
wrapping.	 Although	 the	 institution	 of	 such	 a	 retroactive	 policy	 would	 not
causally	incentivize	those	people	who	are	already	resting	in	their	graves	as	these
words	are	being	put	to	the	page,	it	might	be	favored	for	moral	reasons—though
it	could	be	argued	that	insofar	as	fairness	is	a	goal,	it	should	be	included	as	part
of	 the	 target	 specification	 proper	 rather	 than	 in	 the	 surrounding	 incentive



wrapping.

We	cannot	here	delve	into	all	 the	ethical	and	strategic	 issues	associated	with
incentive	wrapping.	A	project’s	position	on	these	issues,	however,	would	be	an
important	aspect	of	its	fundamental	design	concept.

Decision	theory

	

Another	important	design	choice	is	which	decision	theory	the	AI	should	be	built
to	 use.	 This	 might	 affect	 how	 the	 AI	 behaves	 in	 certain	 strategically	 fateful
situations.	It	might	determine,	for	instance,	whether	the	AI	is	open	to	trade	with,
or	 extortion	 by,	 other	 superintelligent	 civilizations	 whose	 existence	 it
hypothesizes.	 The	 particulars	 of	 the	 decision	 theory	 could	 also	 matter	 in
predicaments	 involving	 finite	 probabilities	 of	 infinite	 payoffs	 (“Pascalian
wagers”)	 or	 extremely	 small	 probabilities	 of	 extremely	 large	 finite	 payoffs
(“Pascalian	 muggings”)	 or	 in	 contexts	 where	 the	 AI	 is	 facing	 fundamental
normative	 uncertainty	 or	 where	 there	 are	 multiple	 instantiations	 of	 the	 same
agent	program.36

The	 options	 on	 the	 table	 include	 causal	 decision	 theory	 (in	 a	 variety	 of
flavors)	 and	 evidential	 decision	 theory,	 along	 with	 newer	 candidates	 such	 as
“timeless	 decision	 theory”	 and	 “updateless	 decision	 theory,”	 which	 are	 still
under	development.37	It	may	prove	difficult	to	identify	and	articulate	the	correct
decision	 theory,	 and	 to	 have	 justified	 confidence	 that	 we	 have	 got	 it	 right.
Although	 the	 prospects	 for	 directly	 specifying	 an	 AI’s	 decision	 theory	 are
perhaps	more	hopeful	 than	 those	of	directly	 specifying	 its	 final	values,	we	are
still	confronted	with	a	substantial	 risk	of	error.	Many	of	 the	complications	 that
might	break	 the	currently	most	popular	decision	 theories	were	discovered	only
recently,	 suggesting	 that	 there	 might	 exist	 further	 problems	 that	 have	 not	 yet
come	into	sight.	The	result	of	giving	the	AI	a	flawed	decision	theory	might	be
disastrous,	possibly	amounting	to	an	existential	catastrophe.

In	 view	 of	 these	 difficulties,	 one	 might	 consider	 an	 indirect	 approach	 to
specifying	the	decision	theory	that	the	AI	should	use.	Exactly	how	to	do	this	is
not	 yet	 clear.	We	might	want	 the	AI	 to	 use	 “that	 decision	 theory	D	which	we
would	have	wanted	 it	 to	 use	had	we	 thought	 long	 and	hard	 about	 the	matter.”
However,	the	AI	would	need	to	be	able	to	make	decisions	before	learning	what



D	 is.	 It	would	 thus	need	 some	effective	 interim	decision	 theory	D’	 that	would
govern	 its	 search	 for	 D.	 One	 might	 try	 to	 define	 D’	 to	 be	 some	 sort	 of
superposition	 of	 the	 AI’s	 current	 hypotheses	 about	 D	 (weighed	 by	 their
probabilities),	though	there	are	unsolved	technical	problems	with	how	to	do	this
in	a	fully	general	way.38	There	is	also	cause	for	concern	that	the	AI	might	make
irreversibly	 bad	 decisions	 (such	 as	 rewriting	 itself	 to	 henceforth	 run	 on	 some
flawed	 decision	 theory)	 during	 the	 learning	 phase,	 before	 the	 AI	 has	 had	 the
opportunity	 to	determine	which	particular	decision	 theory	 is	correct.	To	reduce
the	risk	of	derailment	during	this	period	of	vulnerability	we	might	instead	try	to
endow	 the	 seed	 AI	 with	 some	 form	 of	 restricted	 rationality:	 a	 deliberately
simplified	 but	 hopefully	 dependable	 decision	 theory	 that	 staunchly	 ignores
esoteric	 considerations,	 even	 ones	we	 think	may	 ultimately	 be	 legitimate,	 and
that	is	designed	to	replace	itself	with	a	more	sophisticated	(indirectly	specified)
decision	theory	once	certain	conditions	are	met.39	It	is	an	open	research	question
whether	and	how	this	could	be	made	to	work.

Epistemology

	

A	project	will	 also	need	 to	make	 a	 fundamental	 design	 choice	 in	 selecting	 the
AI’s	 epistemology,	 specifying	 the	 principles	 and	 criteria	 whereby	 empirical
hypotheses	are	 to	be	evaluated.	Within	a	Bayesian	framework,	we	can	think	of
the	epistemology	as	a	prior	probability	function—the	AI’s	implicit	assignment	of
probabilities	to	possible	worlds	before	it	has	taken	any	perceptual	evidence	into
account.	In	other	frameworks,	the	epistemology	might	take	a	different	form;	but
in	any	case	some	 inductive	 learning	rule	 is	necessary	 if	 the	AI	 is	 to	generalize
from	past	observations	and	make	predictions	about	the	future.40	As	with	the	goal
content	and	 the	decision	 theory,	however,	 there	 is	a	 risk	 that	our	epistemology
specification	could	miss	the	mark.

One	might	think	that	there	is	a	limit	to	how	much	damage	could	arise	from	an
incorrectly	specified	epistemology.	If	the	epistemology	is	too	dysfunctional,	then
the	 AI	 could	 not	 be	 very	 intelligent	 and	 it	 could	 not	 pose	 the	 kind	 of	 risk
discussed	in	this	book.	But	the	concern	is	that	we	may	specify	an	epistemology
that	 is	 sufficiently	 sound	 to	 make	 the	 AI	 instrumentally	 effective	 in	 most
situations,	yet	which	has	some	flaw	that	 leads	 the	AI	astray	on	some	matter	of
crucial	 importance.	Such	 an	AI	might	 be	 akin	 to	 a	 quick-witted	person	whose



worldview	is	predicated	on	a	false	dogma,	held	to	with	absolute	conviction,	who
consequently	 “tilts	 at	 windmills”	 and	 gives	 his	 all	 in	 pursuit	 of	 fantastical	 or
harmful	objectives.

Certain	kinds	of	 subtle	 difference	 in	 an	AI’s	 prior	 could	 turn	out	 to	make	 a
drastic	difference	to	how	it	behaves.	For	example,	an	AI	might	be	given	a	prior
that	assigns	zero	probability	to	the	universe	being	infinite.	No	matter	how	much
astronomical	 evidence	 it	 accrues	 to	 the	 contrary,	 such	 an	AI	would	 stubbornly
reject	 any	 cosmological	 theory	 that	 implied	 an	 infinite	 universe;	 and	 it	 might
make	foolish	choices	as	a	result.41	Or	an	AI	might	be	given	a	prior	that	assigns	a
zero	 probability	 to	 the	 universe	 not	 being	Turing-computable	 (this	 is	 in	 fact	 a
common	feature	of	many	of	 the	priors	discussed	in	 the	literature,	 including	the
Kolmogorov	 complexity	 prior	 mentioned	 in	 Chapter	 1),	 again	 with	 poorly
understood	consequences	if	the	embedded	assumption—known	as	the	“Church–
Turing	thesis”—should	turn	out	to	be	false.	An	AI	could	also	end	up	with	a	prior
that	makes	strong	metaphysical	commitments	of	one	sort	or	another,	for	instance
by	ruling	out	a	priori	the	possibility	that	any	strong	form	of	mind–body	dualism
could	be	 true	or	 the	possibility	 that	 there	are	 irreducible	moral	 facts.	 If	 any	of
those	 commitments	 is	mistaken,	 the	AI	might	 seek	 to	 realize	 its	 final	 goals	 in
ways	 that	we	would	 regard	 as	 perverse	 instantiations.	Yet	 there	 is	 no	 obvious
reason	why	such	an	AI,	despite	being	fundamentally	wrong	about	one	important
matter,	 could	 not	 be	 sufficiently	 instrumentally	 effective	 to	 secure	 a	 decisive
strategic	 advantage.	 (Anthropics,	 the	 study	 of	 how	 to	 make	 inferences	 from
indexical	information	in	the	presence	of	observation	selection	effects,	is	another
area	where	the	choice	of	epistemic	axioms	could	prove	pivotal.42)

We	might	 reasonably	 doubt	 our	 ability	 to	 resolve	 all	 foundational	 issues	 in
epistemology	in	time	for	the	construction	of	the	first	seed	AI.	We	may,	therefore,
consider	 taking	 an	 indirect	 approach	 to	 specifying	 the	AI’s	 epistemology.	This
would	raise	many	of	the	same	issues	as	taking	an	indirect	approach	to	specifying
its	decision	 theory.	 In	 the	case	of	epistemology,	however,	 there	may	be	greater
hope	 of	 benign	 convergence,	 with	 any	 of	 a	 wide	 class	 of	 epistemologies
providing	 an	 adequate	 foundation	 for	 safe	 and	 effective	 AI	 and	 ultimately
yielding	similar	doxastic	results.	The	reason	for	this	is	that	sufficiently	abundant
empirical	 evidence	 and	 analysis	 would	 tend	 to	 wash	 out	 any	 moderate
differences	in	prior	expectations.43

A	 good	 aim	 would	 be	 to	 endow	 the	 AI	 with	 fundamental	 epistemological
principles	that	match	those	governing	our	own	thinking.	Any	AI	diverging	from



this	 ideal	 is	 an	 AI	 that	 we	 would	 judge	 to	 be	 reasoning	 incorrectly	 if	 we
consistently	 applied	 our	 own	 standards.	 Of	 course,	 this	 applies	 only	 to	 our
fundamental	 epistemological	 principles.	Non-fundamental	 principles	 should	 be
continuously	 created	 and	 revised	 by	 the	 seed	 AI	 itself	 as	 it	 develops	 its
understanding	 of	 the	world.	 The	 point	 of	 superintelligence	 is	 not	 to	 pander	 to
human	preconceptions	but	to	make	mincemeat	out	of	our	ignorance	and	folly.

Ratification

	

The	final	item	in	our	list	of	design	choices	is	ratification.	Should	the	AI’s	plans
be	 subjected	 to	human	 review	before	being	put	 into	effect?	For	 an	oracle,	 this
question	 is	 implicitly	 answered	 in	 the	 affirmative.	 The	 oracle	 outputs
information;	 human	 reviewers	 choose	 whether	 and	 how	 to	 act	 upon	 it.	 For
genies,	sovereigns,	and	tool-AIs,	however,	the	question	of	whether	to	use	some
form	of	ratification	remains	open.

To	illustrate	how	ratification	might	work,	consider	an	AI	intended	to	function
as	 a	 sovereign	 implementing	 humanity’s	 CEV.	 Instead	 of	 launching	 this	 AI
directly,	 imagine	 that	 we	 first	 built	 an	 oracle	 AI	 for	 the	 sole	 purpose	 of
answering	questions	about	what	the	sovereign	AI	would	do.	As	earlier	chapters
revealed,	 there	 are	 risks	 in	 creating	 a	 superintelligent	 oracle	 (such	 as	 risks	 of
mind	crime	or	infrastructure	profusion).	But	for	purposes	of	this	example	let	us
assume	 that	 the	 oracle	 AI	 has	 been	 successfully	 implemented	 in	 a	 way	 that
avoided	these	pitfalls.

We	 thus	 have	 an	 oracle	 AI	 that	 offers	 us	 its	 best	 guesses	 about	 the
consequences	of	running	some	piece	of	code	intended	to	implement	humanity’s
CEV.	The	oracle	may	not	be	able	to	predict	in	detail	what	would	happen,	but	its
predictions	are	likely	to	be	better	than	our	own.	(If	it	were	impossible	even	for	a
superintelligence	 to	 predict	 anything	 about	 the	 code	 would	 do,	 we	 would	 be
crazy	to	run	it.)	So	the	oracle	ponders	for	a	while	and	then	presents	its	forecast.
To	make	 the	 answer	 intelligible,	 the	 oracle	may	 offer	 the	 operator	 a	 range	 of
tools	 with	 which	 to	 explore	 various	 features	 of	 the	 predicted	 outcome.	 The
oracle	 could	 show	pictures	 of	what	 the	 future	 looks	 like	 and	provide	 statistics
about	the	number	of	sentient	beings	that	will	exist	at	different	times,	along	with
average,	 peak,	 and	 lowest	 levels	 of	 well-being.	 It	 could	 offer	 intimate
biographies	of	several	randomly	selected	individuals	(perhaps	imaginary	people



selected	 to	be	probably	 representative).	 It	 could	highlight	 aspects	of	 the	 future
that	the	operator	might	not	have	thought	of	inquiring	about	but	which	would	be
regarded	as	pertinent	once	pointed	out.

Being	 able	 to	 preview	 the	 outcome	 in	 this	manner	 has	 obvious	 advantages.
The	preview	could	reveal	the	consequences	of	an	error	in	a	planned	sovereign’s
design	specifications	or	source	code.	If	the	crystal	ball	shows	a	ruined	future,	we
could	 scrap	 the	 code	 for	 the	 planned	 sovereign	AI	 and	 try	 something	 else.	 A
strong	case	could	be	made	that	we	should	familiarize	ourselves	with	the	concrete
ramifications	 of	 an	 option	 before	 committing	 to	 it,	 especially	when	 the	 entire
future	of	the	race	is	on	the	line.

What	is	perhaps	less	obvious	is	that	ratification	also	has	potentially	significant
disadvantages.	 The	 irenic	 quality	 of	 CEV	 might	 be	 undermined	 if	 opposing
factions,	instead	of	submitting	to	the	arbitration	of	superior	wisdom	in	confident
expectation	of	being	vindicated,	could	see	in	advance	what	the	verdict	would	be.
A	 proponent	 of	 the	 morality-based	 approach	 might	 worry	 that	 the	 sponsor’s
resolve	would	collapse	if	all	the	sacrifices	required	by	the	morally	optimal	were
to	be	revealed.	And	we	might	all	have	reason	to	prefer	a	future	that	holds	some
surprises,	 some	 dissonance,	 some	 wildness,	 some	 opportunities	 for	 self-
overcoming—a	 future	 whose	 contours	 are	 not	 too	 snugly	 tailored	 to	 present
preconceptions	 but	 provide	 some	 give	 for	 dramatic	 movement	 and	 unplanned
growth.	We	might	 be	 less	 likely	 to	 take	 such	 an	 expansive	 view	 if	 we	 could
cherry-pick	 every	 detail	 of	 the	 future,	 sending	 back	 to	 the	 drawing	 board	 any
draft	that	does	not	fully	conform	to	our	fancy	at	that	moment.

The	 issue	 of	 sponsor	 ratification	 is	 therefore	 less	 clear-cut	 than	 it	 might
initially	seem.	Nevertheless,	on	balance	it	would	seem	prudent	to	take	advantage
of	 an	 opportunity	 to	 preview,	 if	 that	 functionality	 is	 available.	But	 rather	 than
letting	the	reviewer	fine-tune	every	aspect	of	the	outcome,	we	might	give	her	a
simple	veto	which	could	be	exercised	only	a	few	times	before	the	entire	project
would	be	aborted.44

Getting	close	enough

	

The	 main	 purpose	 of	 ratification	 would	 be	 to	 reduce	 the	 probability	 of
catastrophic	 error.	 In	 general,	 it	 seems	 wise	 to	 aim	 at	 minimizing	 the	 risk	 of



catastrophic	 error	 rather	 than	 at	 maximizing	 the	 chance	 of	 every	 detail	 being
fully	 optimized.	 There	 are	 two	 reasons	 for	 this.	 First,	 humanity’s	 cosmic
endowment	 is	 astronomically	 large—there	 is	 plenty	 to	 go	 around	 even	 if	 our
process	 involves	some	waste	or	accepts	some	unnecessary	constraints.	Second,
there	 is	 a	 hope	 that	 if	 we	 but	 get	 the	 initial	 conditions	 for	 the	 intelligence
explosion	 approximately	 right,	 then	 the	 resulting	 superintelligence	 may
eventually	home	in	on,	and	precisely	hit,	our	ultimate	objectives.	The	important
thing	is	to	land	in	the	right	attractor	basin.

With	 regard	 to	 epistemology,	 it	 is	 plausible	 that	 a	wide	 range	 of	 priors	will
ultimately	 converge	 to	 very	 similar	 posteriors	 (when	 computed	 by	 a
superintelligence	 and	 conditionalized	 on	 a	 realistic	 amount	 of	 data).	 We
therefore	need	not	worry	about	getting	the	epistemology	exactly	right.	We	must
just	avoid	giving	the	AI	a	prior	that	is	so	extreme	as	to	render	the	AI	incapable
of	 learning	 vital	 truths	 even	 with	 the	 benefit	 of	 copious	 experience	 and
analysis.45

With	regard	to	decision	theory,	the	risk	of	irrecoverable	error	seems	larger.	We
might	 still	 hope	 to	 directly	 specify	 a	 decision	 theory	 that	 is	 good	 enough.	 A
superintelligent	AI	could	switch	to	a	new	decision	theory	at	any	time;	however,
if	it	starts	out	with	a	sufficiently	wrong	decision	theory	it	may	not	see	the	reason
to	 switch.	 Even	 if	 an	 agent	 comes	 to	 see	 the	 benefits	 of	 having	 a	 different
decision	 theory,	 the	 realization	 might	 come	 too	 late.	 For	 example,	 an	 agent
designed	 to	 refuse	 blackmail	 might	 enjoy	 the	 benefit	 of	 deterring	 would-be
extortionists.	For	this	reason,	blackmailable	agents	might	do	well	to	proactively
adopt	a	non-exploitable	decision	theory.	Yet	once	a	blackmailable	agent	receives
the	threat	and	regards	it	as	credible,	the	damage	is	done.

Given	an	adequate	epistemology	and	decision	theory,	we	could	try	to	design
the	 system	 to	 implement	CEV	or	 some	other	 indirectly	 specified	goal	 content.
Again	there	is	hope	of	convergence:	that	different	ways	of	implementing	a	CEV-
like	 dynamic	 would	 lead	 to	 the	 same	 utopian	 outcome.	 Short	 of	 such
convergence,	we	may	still	hope	that	many	of	the	different	possible	outcomes	are
good	enough	to	count	as	existential	success.

It	is	not	necessary	for	us	to	create	a	highly	optimized	design.	Rather,	our	focus
should	be	on	creating	a	highly	reliable	design,	one	that	can	be	trusted	to	retain
enough	 sanity	 to	 recognize	 its	 own	 failings.	 An	 imperfect	 superintelligence,
whose	 fundamentals	 are	 sound,	would	gradually	 repair	 itself;	 and	having	done



so,	it	would	exert	as	much	beneficial	optimization	power	on	the	world	as	if	it	had
been	perfect	from	the	outset.



CHAPTER	14
The	strategic	picture

	

It	 is	 now	 time	 to	 consider	 the	 challenge	 of	 superintelligence	 in	 a	 broader
context.	 We	 would	 like	 to	 orient	 ourselves	 in	 the	 strategic	 landscape
sufficiently	to	know	at	least	which	general	direction	we	should	be	heading.
This,	 it	 turns	 out,	 is	 not	 at	 all	 easy.	 Here	 in	 the	 penultimate	 chapter,	 we
introduce	 some	 general	 analytical	 concepts	 that	 help	us	 think	 about	 long-
term	science	and	technology	policy	issues.	We	then	apply	them	to	the	issue
of	machine	intelligence.

It	 can	 be	 illuminating	 to	 make	 a	 rough	 distinction	 between	 two	 different
normative	stances	from	which	a	proposed	policy	may	be	evaluated.	The	person-
affecting	 perspective	 asks	 whether	 a	 proposed	 change	 would	 be	 in	 “our
interest”—that	is	to	say,	whether	it	would	(on	balance,	and	in	expectation)	be	in
the	 interest	of	 those	morally	considerable	creatures	who	either	already	exist	or
will	come	into	existence	 independently	of	whether	 the	proposed	change	occurs
or	not.	The	impersonal	perspective,	in	contrast,	gives	no	special	consideration	to
currently	 existing	people,	 or	 to	 those	who	will	 come	 to	 exist	 independently	of
whether	 the	 proposed	 change	 occurs.	 Instead,	 it	 counts	 everybody	 equally,
independently	of	their	temporal	location.	The	impersonal	perspective	sees	great
value	 in	 bringing	 new	 people	 into	 existence,	 provided	 they	 have	 lives	 worth
living:	the	more	happy	lives	created,	the	better.

This	distinction,	although	it	barely	hints	at	the	moral	complexities	associated
with	a	machine	intelligence	revolution,	can	be	useful	in	a	first-cut	analysis.	Here
we	will	first	examine	matters	from	the	impersonal	perspective.	We	will	later	see
what	 changes	 if	 person-affecting	 considerations	 are	 given	 weight	 in	 our
deliberations.

Science	and	technology	strategy

	



Before	 we	 zoom	 in	 on	 issues	 specific	 to	 machine	 superintelligence,	 we	 must
introduce	 some	 strategic	 concepts	 and	 considerations	 that	 pertain	 to	 scientific
and	technological	development	more	generally.

Differential	technological	development

	

Suppose	that	a	policymaker	proposes	to	cut	funding	for	a	certain	research	field,
out	 of	 concern	 for	 the	 risks	 or	 long-term	 consequences	 of	 some	 hypothetical
technology	that	might	eventually	grow	from	its	soil.	She	can	then	expect	a	howl
of	opposition	from	the	research	community.

Scientists	and	their	public	advocates	often	say	that	it	is	futile	to	try	to	control
the	evolution	of	technology	by	blocking	research.	If	some	technology	is	feasible
(the	 argument	 goes)	 it	 will	 be	 developed	 regardless	 of	 any	 particular
policymaker’s	scruples	about	speculative	future	risks.	Indeed,	the	more	powerful
the	capabilities	that	a	line	of	development	promises	to	produce,	the	surer	we	can
be	that	somebody,	somewhere,	will	be	motivated	to	pursue	it.	Funding	cuts	will
not	stop	progress	or	forestall	its	concomitant	dangers.

Interestingly,	this	futility	objection	is	almost	never	raised	when	a	policymaker
proposes	to	increase	funding	to	some	area	of	research,	even	though	the	argument
would	seem	to	cut	both	ways.	One	rarely	hears	indignant	voices	protest:	“Please
do	 not	 increase	 our	 funding.	 Rather,	 make	 some	 cuts.	 Researchers	 in	 other
countries	will	 surely	 pick	 up	 the	 slack;	 the	 same	work	will	 get	 done	 anyway.
Don’t	squander	the	public’s	treasure	on	domestic	scientific	research!”

What	 accounts	 for	 this	 apparent	 doublethink?	One	 plausible	 explanation,	 of
course,	 is	 that	 members	 of	 the	 research	 community	 have	 a	 self-serving	 bias
which	leads	us	to	believe	that	research	is	always	good	and	tempts	us	to	embrace
almost	any	argument	that	supports	our	demand	for	more	funding.	However,	it	is
also	possible	that	the	double	standard	can	be	justified	in	terms	of	national	self-
interest.	Suppose	that	the	development	of	a	technology	has	two	effects:	giving	a
small	 benefit	 B	 to	 its	 inventors	 and	 the	 country	 that	 sponsors	 them,	 while
imposing	an	aggregately	larger	harm	H—which	could	be	a	risk	externality—on
everybody.	 Even	 somebody	 who	 is	 largely	 altruistic	 might	 then	 choose	 to
develop	the	overall	harmful	technology.	They	might	reason	that	the	harm	H	will
result	no	matter	what	they	do,	since	if	they	refrain	somebody	else	will	develop



the	 technology	 anyway;	 and	 given	 that	 total	 welfare	 cannot	 be	 affected,	 they
might	as	well	grab	the	benefit	B	for	themselves	and	their	nation.	(“Unfortunately,
there	will	soon	be	a	device	 that	will	destroy	the	world.	Fortunately,	we	got	 the
grant	to	build	it!”)

Whatever	 the	 explanation	 for	 the	 futility	 objection’s	 appeal,	 it	 fails	 to	 show
that	 there	 is	 in	 general	 no	 impersonal	 reason	 for	 trying	 to	 steer	 technological
development.	It	fails	even	if	we	concede	the	motivating	idea	that	with	continued
scientific	 and	 technological	 development	 efforts,	 all	 relevant	 technologies	will
eventually	be	developed—that	is,	even	if	we	concede	the	following:

Technological	completion	conjecture

If	scientific	and	technological	development	efforts	do	not	effectively	cease,
then	 all	 important	 basic	 capabilities	 that	 could	 be	 obtained	 through	 some
possible	technology	will	be	obtained.1

	

There	are	at	least	two	reasons	why	the	technological	completion	conjecture	does
not	imply	the	futility	objection.	First,	the	antecedent	might	not	hold,	because	it	is
not	in	fact	a	given	that	scientific	and	technological	development	efforts	will	not
effectively	 cease	 (before	 the	 attainment	 of	 technological	 maturity).	 This
reservation	 is	 especially	 pertinent	 in	 a	 context	 that	 involves	 existential	 risk.
Second,	 even	 if	 we	 could	 be	 certain	 that	 all	 important	 basic	 capabilities	 that
could	be	obtained	 through	some	possible	 technology	will	be	obtained,	 it	 could
still	make	sense	 to	attempt	 to	 influence	 the	direction	of	 technological	 research.
What	matters	is	not	only	whether	a	technology	is	developed,	but	also	when	it	is
developed,	by	whom,	and	in	what	context.	These	circumstances	of	birth	of	a	new
technology,	which	shape	 its	 impact,	can	be	affected	by	 turning	funding	spigots
on	or	off	(and	by	wielding	other	policy	instruments).

These	reflections	suggest	a	principle	that	would	have	us	attend	to	the	relative
speed	with	which	different	technologies	are	developed:2

The	principle	of	differential	technological	development

Retard	the	development	of	dangerous	and	harmful	technologies,	especially
ones	that	raise	the	level	of	existential	risk;	and	accelerate	the	development
of	beneficial	technologies,	especially	those	that	reduce	the	existential	risks



posed	by	nature	or	by	other	technologies.

	

A	 policy	 could	 thus	 be	 evaluated	 on	 the	 basis	 of	 how	much	 of	 a	 differential
advantage	it	gives	to	desired	forms	of	technological	development	over	undesired
forms.3

Preferred	order	of	arrival

	

Some	 technologies	 have	 an	 ambivalent	 effect	 on	 existential	 risks,	 increasing
some	 existential	 risks	 while	 decreasing	 others.	 Superintelligence	 is	 one	 such
technology.

We	 have	 seen	 in	 earlier	 chapters	 that	 the	 introduction	 of	 machine
superintelligence	would	create	a	substantial	existential	risk.	But	it	would	reduce
many	 other	 existential	 risks.	 Risks	 from	 nature—such	 as	 asteroid	 impacts,
supervolcanoes,	 and	 natural	 pandemics—would	 be	 virtually	 eliminated,	 since
superintelligence	could	deploy	countermeasures	against	most	such	hazards,	or	at
least	 demote	 them	 to	 the	 non-existential	 category	 (for	 instance,	 via	 space
colonization).

These	existential	risks	from	nature	are	comparatively	small	over	the	relevant
timescales.	 But	 superintelligence	 would	 also	 eliminate	 or	 reduce	 many
anthropogenic	risks.	In	particular,	it	would	reduce	risks	of	accidental	destruction,
including	 risk	 of	 accidents	 related	 to	 new	 technologies.	 Being	 generally	more
capable	than	humans,	a	superintelligence	would	be	less	likely	to	make	mistakes,
and	more	 likely	 to	 recognize	when	 precautions	 are	 needed,	 and	 to	 implement
precautions	competently.	A	well-constructed	superintelligence	might	sometimes
take	 a	 risk,	 but	 only	when	doing	 so	 is	wise.	Furthermore,	 at	 least	 in	 scenarios
where	 the	 superintelligence	 forms	 a	 singleton,	 many	 non-accidental
anthropogenic	 existential	 risks	 deriving	 from	 global	 coordination	 problems
would	be	eliminated.	These	include	risks	of	wars,	technology	races,	undesirable
forms	of	competition	and	evolution,	and	tragedies	of	the	commons.

Since	 substantial	 peril	 would	 be	 associated	 with	 human	 beings	 developing
synthetic	 biology,	 molecular	 nanotechnology,	 climate	 engineering,	 instruments



for	 biomedical	 enhancement	 and	 neuropsychological	 manipulation,	 tools	 for
social	 control	 that	 may	 facilitate	 totalitarianism	 or	 tyranny,	 and	 other
technologies	as-yet	unimagined,	eliminating	these	types	of	risk	would	be	a	great
boon.	 An	 argument	 could	 therefore	 be	 mounted	 that	 earlier	 arrival	 dates	 of
superintelligence	 are	 preferable.	However,	 if	 risks	 from	nature	 and	 from	other
hazards	 unrelated	 to	 future	 technology	 are	 small,	 then	 this	 argument	 could	 be
refined:	 what	 matters	 is	 that	 we	 get	 superintelligence	 before	 other	 dangerous
technologies,	 such	 as	 advanced	nanotechnology.	Whether	 it	 happens	 sooner	 or
later	may	not	be	 so	 important	 (from	an	 impersonal	perspective)	 so	 long	as	 the
order	of	arrival	is	right.

The	ground	 for	preferring	 superintelligence	 to	 come	before	other	potentially
dangerous	technologies,	such	as	nanotechnology,	is	that	superintelligence	would
reduce	 the	existential	 risks	 from	nanotechnology	but	not	vice	versa.4	Hence,	 if
we	create	superintelligence	first,	we	will	face	only	those	existential	risks	that	are
associated	with	superintelligence;	whereas	if	we	create	nanotechnology	first,	we
will	 face	 the	 risks	 of	 nanotechnology	 and	 then,	 additionally,	 the	 risks	 of
superintelligence.5	Even	 if	 the	 existential	 risks	 from	 superintelligence	 are	 very
large,	and	even	if	superintelligence	is	the	riskiest	of	all	technologies,	there	could
thus	be	a	case	for	hastening	its	arrival.

These	“sooner-is-better”	arguments,	however,	presuppose	that	the	riskiness	of
creating	superintelligence	is	the	same	regardless	of	when	it	is	created.	If,	instead,
its	 riskiness	 declines	 over	 time,	 it	 might	 be	 better	 to	 delay	 the	 machine
intelligence	 revolution.	While	 a	 later	 arrival	 would	 leave	more	 time	 for	 other
existential	 catastrophes	 to	 intercede,	 it	 could	 still	 be	 preferable	 to	 slow	 the
development	 of	 superintelligence.	 This	 would	 be	 especially	 plausible	 if	 the
existential	 risks	 associated	 with	 superintelligence	 are	 much	 larger	 than	 those
associated	with	other	disruptive	technologies.

There	 are	 several	 quite	 strong	 reasons	 to	 believe	 that	 the	 riskiness	 of	 an
intelligence	explosion	will	decline	significantly	over	a	multidecadal	 timeframe.
One	reason	is	that	a	later	date	leaves	more	time	for	the	development	of	solutions
to	the	control	problem.	The	control	problem	has	only	recently	been	recognized,
and	most	of	the	current	best	ideas	for	how	to	approach	it	were	discovered	only
within	the	past	decade	or	so	(and	in	several	cases	during	the	time	that	this	book
was	being	written).	 It	 is	plausible	 that	 the	 state	of	 the	 art	will	 advance	greatly
over	the	next	several	decades;	and	if	the	problem	turns	out	to	be	very	difficult,	a
significant	rate	of	progress	might	continue	for	a	century	or	more.	The	longer	it



takes	for	superintelligence	to	arrive,	the	more	such	progress	will	have	been	made
when	it	does.	This	is	an	important	consideration	in	favor	of	later	arrival	dates—
and	a	very	strong	consideration	against	extremely	early	arrival	dates.

Another	 reason	why	superintelligence	 later	might	be	 safer	 is	 that	 this	would
allow	more	time	for	various	beneficial	background	trends	of	human	civilization
to	play	themselves	out.	How	much	weight	one	attaches	to	this	consideration	will
depend	on	how	optimistic	one	is	about	these	trends.

An	optimist	could	certainly	point	 to	a	number	of	encouraging	indicators	and
hopeful	possibilities.	People	might	learn	to	get	along	better,	leading	to	reductions
in	violence,	war,	and	cruelty;	and	global	coordination	and	the	scope	of	political
integration	 might	 increase,	 making	 it	 easier	 to	 escape	 undesirable	 technology
races	(more	on	this	below)	and	to	work	out	an	arrangement	whereby	the	hoped-
for	gains	from	an	intelligence	explosion	would	be	widely	shared.	There	appear
to	be	long-term	historical	trends	in	these	directions.6

Further,	an	optimist	could	expect	that	the	“sanity	level”	of	humanity	will	rise
over	 the	 course	 of	 this	 century—that	 prejudices	will	 (on	 balance)	 recede,	 that
insights	 will	 accumulate,	 and	 that	 people	 will	 become	 more	 accustomed	 to
thinking	about	abstract	future	probabilities	and	global	risks.	With	luck,	we	could
see	 a	 general	 uplift	 of	 epistemic	 standards	 in	 both	 individual	 and	 collective
cognition.	Again,	there	are	trends	pushing	in	these	directions.	Scientific	progress
means	that	more	will	be	known.	Economic	growth	may	give	a	greater	portion	of
the	world’s	population	adequate	nutrition	(particularly	during	the	early	years	of
life	 that	 are	 important	 for	 brain	 development)	 and	 access	 to	 quality	 education.
Advances	 in	 information	 technology	 will	 make	 it	 easier	 to	 find,	 integrate,
evaluate,	 and	 communicate	 data	 and	 ideas.	 Furthermore,	 by	 the	 century’s	 end,
humanity	will	have	made	an	additional	hundred	years’	worth	of	mistakes,	from
which	something	might	have	been	learned.

Many	potential	developments	are	ambivalent	in	the	abovementioned	sense—
increasing	some	existential	 risks	and	decreasing	others.	For	example,	advances
in	 surveillance,	 data	 mining,	 lie	 detection,	 biometrics,	 and	 psychological	 or
neurochemical	 means	 of	 manipulating	 beliefs	 and	 desires	 could	 reduce	 some
existential	risks	by	making	it	easier	to	coordinate	internationally	or	to	suppress
terrorists	 and	 renegades	 at	 home.	 These	 same	 advances,	 however,	 might	 also
increase	some	existential	risks	by	amplifying	undesirable	social	dynamics	or	by
enabling	the	formation	of	permanently	stable	totalitarian	regimes.



One	 important	 frontier	 is	 the	 enhancement	 of	 biological	 cognition,	 such	 as
through	 genetic	 selection.	 When	 we	 discussed	 this	 in	 Chapters	 2	 and	 3,	 we
concluded	that	the	most	radical	forms	of	superintelligence	would	be	more	likely
to	 arise	 in	 the	 form	 of	 machine	 intelligence.	 That	 claim	 is	 consistent	 with
cognitive	enhancement	playing	an	important	role	in	the	lead-up	to,	and	creation
of,	 machine	 superintelligence.	 Cognitive	 enhancement	 might	 seem	 obviously
risk-reducing:	the	smarter	the	people	working	on	the	control	problem,	the	more
likely	 they	 are	 to	 find	 a	 solution.	However,	 cognitive	 enhancement	 could	 also
hasten	the	development	of	machine	intelligence,	thus	reducing	the	time	available
to	work	 on	 the	 problem.	Cognitive	 enhancement	would	 also	 have	many	 other
relevant	 consequences.	 These	 issues	 deserve	 a	 closer	 look.	 (Most	 of	 the
following	 remarks	 about	 “cognitive	 enhancement”	 apply	 equally	 to	 non-
biological	 means	 of	 increasing	 our	 individual	 or	 collective	 epistemic
effectiveness.)

Rates	of	change	and	cognitive	enhancement

	

An	increase	in	either	 the	mean	or	 the	upper	range	of	human	intellectual	ability
would	 likely	 accelerate	 technological	 progress	 across	 the	 board,	 including
progress	 toward	various	forms	of	machine	 intelligence,	progress	on	 the	control
problem,	 and	 progress	 on	 a	 wide	 swath	 of	 other	 technical	 and	 economic
objectives.	What	would	be	the	net	effect	of	such	acceleration?

Consider	 the	 limiting	 case	 of	 a	 “universal	 accelerator,”	 an	 imaginary
intervention	that	accelerates	literally	everything.	The	action	of	such	a	universal
accelerator	would	correspond	merely	to	an	arbitrary	rescaling	of	the	time	metric,
producing	no	qualitative	change	in	observed	outcomes.7

If	 we	 are	 to	 make	 sense	 of	 the	 idea	 that	 cognitive	 enhancement	 might
generally	 speed	 things	 up,	 we	 clearly	 need	 some	 other	 concept	 than	 that	 of
universal	acceleration.	A	more	promising	approach	is	to	focus	on	how	cognitive
enhancement	might	increase	the	rate	of	change	in	one	type	of	process	relative	to
the	rate	of	change	in	some	other	 type	of	process.	Such	differential	acceleration
could	affect	a	system’s	dynamics.	Thus,	consider	the	following	concept:

Macro-structural	 development	 accelerator—A	 lever	 that	 accelerates	 the
rate	 at	 which	 macro-structural	 features	 of	 the	 human	 condition	 develop,



while	 leaving	 unchanged	 the	 rate	 at	 which	 micro-level	 human	 affairs
unfold.

	
	

Imagine	pulling	this	lever	in	the	decelerating	direction.	A	brake	pad	is	 lowered
onto	the	great	wheel	of	world	history;	sparks	fly	and	metal	screeches.	After	the
wheel	 has	 settled	 into	 a	 more	 leisurely	 pace,	 the	 result	 is	 a	 world	 in	 which
technological	 innovation	 occurs	 more	 slowly	 and	 in	 which	 fundamental	 or
globally	 significant	 change	 in	 political	 structure	 and	 culture	 happens	 less
frequently	 and	 less	 abruptly.	 A	 greater	 number	 of	 generations	 come	 and	 go
before	one	era	gives	way	 to	another.	During	 the	course	of	a	 lifespan,	a	person
sees	little	change	in	the	basic	structure	of	the	human	condition.

For	most	of	our	species’	existence,	macro-structural	development	was	slower
than	it	is	now.	Fifty	thousand	years	ago,	an	entire	millennium	might	have	elapsed
without	 a	 single	 significant	 technological	 invention,	 without	 any	 noticeable
increase	 in	 human	 knowledge	 and	 understanding,	 and	 without	 any	 globally
meaningful	 political	 change.	 On	 a	 micro-level,	 however,	 the	 kaleidoscope	 of
human	 affairs	 churned	 at	 a	 reasonable	 rate,	 with	 births,	 deaths,	 and	 other
personally	and	locally	significant	events.	The	average	person’s	day	might	have
been	more	action-packed	in	the	Pleistocene	than	it	is	today.

If	you	came	upon	a	magic	lever	that	would	let	you	change	the	rate	of	macro-
structural	 development,	 what	 should	 you	 do?	 Ought	 you	 to	 accelerate,
decelerate,	or	leave	things	as	they	are?

Assuming	the	impersonal	standpoint,	this	question	requires	us	to	consider	the
effects	 on	 existential	 risk.	Let	 us	 distinguish	between	 two	kinds	of	 risk:	 “state
risks”	 and	 “step	 risks.”	 A	 state	 risk	 is	 one	 that	 is	 associated	 with	 being	 in	 a
certain	state,	and	the	total	amount	of	state	risk	to	which	a	system	is	exposed	is	a
direct	function	of	how	long	the	system	remains	in	that	state.	Risks	from	nature
are	 typically	 state	 risks:	 the	 longer	we	 remain	 exposed,	 the	 greater	 the	 chance
that	we	will	get	struck	by	an	asteroid,	supervolcanic	eruption,	gamma	ray	burst,
naturally	 arising	 pandemic,	 or	 some	 other	 slash	 of	 the	 cosmic	 scythe.	 Some
anthropogenic	risks	are	also	state	risks.	At	the	level	of	an	individual,	the	longer	a
soldier	pokes	his	head	up	above	 the	parapet,	 the	greater	 the	cumulative	chance
he	will	 be	 shot	by	 an	 enemy	 sniper.	There	 are	 anthropogenic	 state	 risks	 at	 the
existential	level	as	well:	the	longer	we	live	in	an	internationally	anarchic	system,



the	greater	the	cumulative	chance	of	a	thermonuclear	Armageddon	or	of	a	great
war	 fought	 with	 other	 kinds	 of	 weapons	 of	mass	 destruction,	 laying	 waste	 to
civilization.

A	step	 risk,	by	contrast,	 is	a	discrete	 risk	associated	with	some	necessary	or
desirable	 transition.	 Once	 the	 transition	 is	 completed,	 the	 risk	 vanishes.	 The
amount	of	step	risk	associated	with	a	transition	is	usually	not	a	simple	function
of	 how	 long	 the	 transition	 takes.	 One	 does	 not	 halve	 the	 risk	 of	 traversing	 a
minefield	by	running	twice	as	fast.	Conditional	on	a	fast	takeoff,	the	creation	of
superintelligence	might	be	a	 step	 risk:	 there	would	be	a	certain	 risk	associated
with	the	takeoff,	the	magnitude	of	which	would	depend	on	what	preparations	had
been	 made;	 but	 the	 amount	 of	 risk	 might	 not	 depend	 much	 on	 whether	 the
takeoff	takes	twenty	milliseconds	or	twenty	hours.

We	 can	 then	 say	 the	 following	 regarding	 a	 hypothetical	 macro-structural
development	accelerator:

	

•	 Insofar	 as	 we	 are	 concerned	 with	 existential	 state	 risks,	 we	 should	 favor
acceleration—provided	 we	 think	 we	 have	 a	 realistic	 prospect	 of	 making	 it
through	to	a	post-transition	era	in	which	any	further	existential	risks	are	greatly
reduced.

•	 If	 it	were	 known	 that	 there	 is	 some	 step	 ahead	destined	 to	 cause	 an	 existential
catastrophe,	 then	we	ought	 to	 reduce	 the	 rate	 of	macro-structural	 development
(or	 even	put	 it	 in	 reverse)	 in	 order	 to	 give	more	generations	 a	 chance	 to	 exist
before	the	curtain	is	rung	down.	But,	in	fact,	it	would	be	overly	pessimistic	to	be
so	confident	that	humanity	is	doomed.

•	At	present,	 the	 level	of	 existential	 state	 risk	 appears	 to	be	 relatively	 low.	 If	we
imagine	the	technological	macro-conditions	for	humanity	frozen	in	their	current
state,	 it	 seems	 very	 unlikely	 that	 an	 existential	 catastrophe	 would	 occur	 on	 a
timescale	of,	 say,	a	decade.	So	a	delay	of	one	decade—provided	 it	occurred	at
our	current	stage	of	development	or	at	some	other	time	when	state	risk	is	low—
would	incur	only	a	very	minor	existential	state	risk,	whereas	a	postponement	by
one	 decade	 of	 subsequent	 technological	 developments	 might	 well	 have	 a
significant	 beneficial	 impact	 on	 later	 existential	 step	 risks,	 for	 example	 by
allowing	more	time	for	preparation.



Upshot:	 the	 main	 way	 that	 the	 speed	 of	 macro-structural	 development	 is
important	is	by	affecting	how	well	prepared	humanity	is	when	the	time	comes	to
confront	the	key	step	risks.8

So	the	question	we	must	ask	is	how	cognitive	enhancement	(and	concomitant
acceleration	of	macro-structural	development)	would	affect	the	expected	level	of
preparedness	 at	 the	 critical	 juncture.	 Should	 we	 prefer	 a	 shorter	 period	 of
preparation	 with	 higher	 intelligence?	With	 higher	 intelligence,	 the	 preparation
time	could	be	used	more	effectively,	and	the	final	critical	step	would	be	taken	by
a	 more	 intelligent	 humanity.	 Or	 should	 we	 prefer	 to	 operate	 with	 closer	 to
current	levels	of	intelligence	if	that	gives	us	more	time	to	prepare?

Which	option	is	better	depends	on	the	nature	of	the	challenge	being	prepared
for.	If	the	challenge	were	to	solve	a	problem	for	which	learning	from	experience
is	 key,	 then	 the	 chronological	 length	 of	 the	 preparation	 period	 might	 be	 the
determining	 factor,	 since	 time	 is	 needed	 for	 the	 requisite	 experience	 to
accumulate.	What	would	such	a	challenge	look	like?	One	hypothetical	example
would	be	a	new	weapons	technology	that	we	could	predict	would	be	developed
at	some	point	in	the	future	and	that	would	make	it	the	case	that	any	subsequent
war	 would	 have,	 let	 us	 say,	 a	 one-in-ten	 chance	 of	 causing	 an	 existential
catastrophe.	 If	 such	were	 the	nature	of	 the	 challenge	 facing	us,	 then	we	might
wish	 the	 rate	 of	macro-structural	 development	 to	 be	 slow,	 so	 that	 our	 species
would	 have	more	 time	 to	 get	 its	 act	 together	 before	 the	 critical	 step	when	 the
new	 weapons	 technology	 is	 invented.	 One	 could	 hope	 that	 during	 the	 grace
period	secured	through	the	deceleration,	our	species	might	learn	to	avoid	war—
that	 international	 relations	 around	 the	 globe	 might	 come	 to	 resemble	 those
between	the	countries	of	the	European	Union,	which,	having	fought	one	another
ferociously	 for	 centuries,	 now	 coexist	 in	 peace	 and	 relative	 harmony.	 The
pacification	 might	 occur	 as	 a	 result	 of	 the	 gentle	 edification	 from	 various
civilizing	processes	or	 through	 the	shock	 therapy	of	sub-existential	blows	 (e.g.
small	nuclear	conflagrations,	and	the	recoil	and	resolve	they	might	engender	to
finally	create	 the	global	 institutions	necessary	 for	 the	abolishment	of	 interstate
wars).	 If	 this	 kind	 of	 learning	 or	 adjusting	would	 not	 be	much	 accelerated	 by
increased	 intelligence,	 then	 cognitive	 enhancement	 would	 be	 undesirable,
serving	merely	to	burn	the	fuse	faster.

A	prospective	 intelligence	explosion,	however,	may	present	a	challenge	of	a
different	kind.	The	control	problem	calls	for	foresight,	reasoning,	and	theoretical
insight.	 It	 is	 less	 clear	 how	 increased	 historical	 experience	would	 help.	Direct



experience	of	the	intelligence	explosion	is	not	possible	(until	too	late),	and	many
features	 conspire	 to	make	 the	 control	 problem	 unique	 and	 lacking	 in	 relevant
historical	precedent.	For	these	reasons,	the	amount	of	time	that	will	elapse	before
the	 intelligence	 explosion	may	 not	matter	much	 per	 se.	 Perhaps	what	matters,
instead,	 is	 (a)	 the	 amount	 of	 intellectual	 progress	 on	 the	 control	 problem
achieved	 by	 the	 time	 of	 the	 detonation;	 and	 (b)	 the	 amount	 of	 skill	 and
intelligence	available	at	the	time	to	implement	the	best	available	solutions	(and
to	improvise	what	is	missing).9	That	this	latter	factor	should	respond	positively
to	cognitive	enhancement	is	obvious.	How	cognitive	enhancement	would	affect
factor	(a)	is	a	somewhat	subtler	matter.

Suppose,	as	suggested	earlier,	that	cognitive	enhancement	would	be	a	general
macro-structural	 development	 accelerator.	This	would	 hasten	 the	 arrival	 of	 the
intelligence	 explosion,	 thus	 reducing	 the	 amount	 of	 time	 available	 for
preparation	 and	 for	 making	 progress	 on	 the	 control	 problem.	 Normally	 this
would	 be	 a	 bad	 thing.	 However,	 if	 the	 only	 reason	 why	 there	 is	 less	 time
available	for	intellectual	progress	is	that	intellectual	progress	is	speeded	up,	then
there	 need	 be	 no	 net	 reduction	 in	 the	 amount	 of	 intellectual	 progress	 that	will
have	taken	place	by	the	time	the	intelligence	explosion	occurs.

At	this	point,	cognitive	enhancement	might	appear	to	be	neutral	with	respect
to	factor	(a):	the	same	intellectual	progress	that	would	otherwise	have	been	made
prior	to	the	intelligence	explosion—including	progress	on	the	control	problem—
still	 gets	 made,	 only	 compressed	 within	 a	 shorter	 time	 interval.	 In	 actuality,
however,	cognitive	enhancement	may	well	prove	a	positive	influence	on	(a).

One	 reason	why	 cognitive	 enhancement	might	 cause	more	 progress	 to	 have
been	made	on	the	control	problem	by	the	time	the	intelligence	explosion	occurs
is	that	progress	on	the	control	problem	may	be	especially	contingent	on	extreme
levels	 of	 intellectual	 performance—even	 more	 so	 than	 the	 kind	 of	 work
necessary	 to	 create	 machine	 intelligence.	 The	 role	 for	 trial	 and	 error	 and
accumulation	 of	 experimental	 results	 seems	 quite	 limited	 in	 relation	 to	 the
control	problem,	whereas	experimental	 learning	will	probably	play	a	 large	role
in	the	development	of	artificial	intelligence	or	whole	brain	emulation.	The	extent
to	which	time	can	substitute	for	wit	may	therefore	vary	between	tasks	in	a	way
that	 should	 make	 cognitive	 enhancement	 promote	 progress	 on	 the	 control
problem	more	 than	it	would	promote	progress	on	the	problem	of	how	to	create
machine	intelligence.



Another	 reason	 why	 cognitive	 enhancement	 should	 differentially	 promote
progress	on	the	control	problem	is	that	the	very	need	for	such	progress	is	more
likely	to	be	appreciated	by	cognitively	more	capable	societies	and	individuals.	It
requires	foresight	and	reasoning	to	realize	why	the	control	problem	is	important
and	 to	 make	 it	 a	 priority.10	 It	 may	 also	 require	 uncommon	 sagacity	 to	 find
promising	ways	of	approaching	such	an	unfamiliar	problem.

From	 these	 reflections	 we	 might	 tentatively	 conclude	 that	 cognitive
enhancement	is	desirable,	at	least	insofar	as	the	focus	is	on	the	existential	risks
of	an	intelligence	explosion.	Parallel	lines	of	thinking	apply	to	other	existential
risks	 arising	 from	 challenges	 that	 require	 foresight	 and	 reliable	 abstract
reasoning	(as	opposed	to,	e.g.,	incremental	adaptation	to	experienced	changes	in
the	 environment	 or	 a	 multigenerational	 process	 of	 cultural	 maturation	 and
institution-building).

Technology	couplings

	

Suppose	 that	 one	 thinks	 that	 solving	 the	 control	 problem	 for	 artificial
intelligence	is	very	difficult,	 that	solving	it	for	whole	brain	emulations	is	much
easier,	 and	 that	 it	 would	 therefore	 be	 preferable	 that	 machine	 intelligence	 be
reached	via	the	whole	brain	emulation	path.	We	will	return	later	to	the	question
of	whether	whole	brain	emulation	would	be	safer	than	artificial	intelligence.	But
for	now	we	want	to	make	the	point	that	even	if	we	accept	this	premiss,	it	would
not	 follow	 that	 we	 ought	 to	 promote	 whole	 brain	 emulation	 technology.	 One
reason,	 discussed	 earlier,	 is	 that	 a	 later	 arrival	 of	 superintelligence	 may	 be
preferable,	in	order	to	allow	more	time	for	progress	on	the	control	problem	and
for	 other	 favorable	 background	 trends	 to	 culminate—and	 thus,	 if	 one	 were
confident	 that	 whole	 brain	 emulation	 would	 precede	 AI	 anyway,	 it	 would	 be
counterproductive	to	further	hasten	the	arrival	of	whole	brain	emulation.

But	even	if	it	were	the	case	that	it	would	be	best	for	whole	brain	emulation	to
arrive	 as	 soon	 as	 possible,	 it	 still	 would	 not	 follow	 that	 we	 ought	 to	 favor
progress	 toward	whole	brain	emulation.	For	 it	 is	possible	 that	progress	 toward
whole	brain	emulation	will	not	yield	whole	brain	emulation.	It	may	instead	yield
neuromorphic	 artificial	 intelligence—forms	 of	 AI	 that	mimic	 some	 aspects	 of
cortical	 organization	but	 do	not	 replicate	neuronal	 functionality	with	 sufficient
fidelity	to	constitute	a	proper	emulation.	If—as	there	is	reason	to	believe—such



neuromorphic	AI	 is	worse	 than	 the	kind	of	AI	 that	would	otherwise	have	been
built,	and	if	by	promoting	whole	brain	emulation	we	would	make	neuromorphic
AI	 arrive	 first,	 then	 our	 pursuit	 of	 the	 supposed	 best	 outcome	 (whole	 brain
emulation)	would	lead	to	the	worst	outcome	(neuromorphic	AI);	whereas	if	we
had	 pursued	 the	 second-best	 outcome	 (synthetic	 AI)	 we	 might	 actually	 have
attained	the	second-best	(synthetic	AI).

We	 have	 just	 described	 an	 (hypothetical)	 instance	 of	what	we	might	 term	 a
“technology	coupling.”11	 This	 refers	 to	 a	 condition	 in	which	 two	 technologies
have	 a	 predictable	 timing	 relationship,	 such	 that	 developing	 one	 of	 the
technologies	has	a	robust	tendency	to	lead	to	the	development	of	the	other,	either
as	 a	 necessary	 precursor	 or	 as	 an	 obvious	 and	 irresistible	 application	 or
subsequent	step.	Technology	couplings	must	be	taken	into	account	when	we	use
the	principle	of	differential	technological	development:	it	is	no	good	accelerating
the	development	of	a	desirable	 technology	Y	 if	 the	only	way	of	getting	Y	 is	by
developing	 an	 extremely	 undesirable	 precursor	 technology	 X,	 or	 if	 getting	 Y
would	 immediately	 produce	 an	 extremely	 undesirable	 related	 technology	 Z.
Before	you	marry	your	sweetheart,	consider	the	prospective	in-laws.

In	 the	 case	 of	whole	 brain	 emulation,	 the	 degree	 of	 technology	 coupling	 is
debatable.	 We	 noted	 in	 Chapter	 2	 that	 while	 whole	 brain	 emulation	 would
require	massive	progress	 in	various	enabling	 technologies,	 it	might	not	 require
any	 major	 new	 theoretical	 insight.	 In	 particular,	 it	 does	 not	 require	 that	 we
understand	 how	 human	 cognition	 works,	 only	 that	 we	 know	 how	 to	 build
computational	models	 of	 small	 parts	 of	 the	 brain,	 such	 as	 different	 species	 of
neuron.	Nevertheless,	 in	the	course	of	developing	the	ability	to	emulate	human
brains,	 a	 wealth	 of	 neuroanatomical	 data	 would	 be	 collected,	 and	 functional
models	 of	 cortical	 networks	would	 surely	 be	 greatly	 improved.	 Such	 progress
would	 seem	 to	 have	 a	 good	 chance	 of	 enabling	 neuromorphic	AI	 before	 full-
blown	whole	brain	emulation.12	Historically,	 there	are	quite	a	 few	examples	of
AI	 techniques	 gleaned	 from	 neuroscience	 or	 biology.	 (For	 example:	 the
McCulloch–Pitts	 neuron,	 perceptrons,	 and	 other	 artificial	 neurons	 and	 neural
networks,	inspired	by	neuroanatomical	work;	reinforcement	learning,	inspired	by
behaviorist	 psychology;	 genetic	 algorithms,	 inspired	 by	 evolution	 theory;
subsumption	 architectures	 and	 perceptual	 hierarchies,	 inspired	 by	 cognitive
science	theories	about	motor	planning	and	sensory	perception;	artificial	immune
systems,	 inspired	 by	 theoretical	 immunology;	 swarm	 intelligence,	 inspired	 by
the	 ecology	 of	 insect	 colonies	 and	 other	 self-organizing	 systems;	 and	 reactive
and	 behavior-based	 control	 in	 robotics,	 inspired	 by	 the	 study	 of	 animal



locomotion.)	 Perhaps	 more	 significantly,	 there	 are	 plenty	 of	 important	 AI-
relevant	 questions	 that	 could	 potentially	 be	 answered	 through	 further	 study	 of
the	brain.	(For	example:	How	does	the	brain	store	structured	representations	in
working	memory	and	long-term	memory?	How	is	 the	binding	problem	solved?
What	is	the	neural	code?	How	are	concepts	represented?	Is	there	some	standard
unit	of	cortical	processing	machinery,	such	as	the	cortical	column,	and	if	so	how
is	it	wired	and	how	does	its	functionality	depend	on	the	wiring?	How	can	such
columns	be	linked	up,	and	how	can	they	learn?)

We	will	 shortly	 have	more	 to	 say	 about	 the	 relative	 danger	 of	 whole	 brain
emulation,	neuromorphic	AI,	and	synthetic	AI,	but	we	can	already	flag	another
important	 technology	 coupling:	 that	 between	 whole	 brain	 emulation	 and	 AI.
Even	 if	 a	 push	 toward	whole	 brain	 emulation	 actually	 resulted	 in	whole	 brain
emulation	 (as	 opposed	 to	 neuromorphic	 AI),	 and	 even	 if	 the	 arrival	 of	 whole
brain	 emulation	 could	be	 safely	handled,	 a	 further	 risk	would	 still	 remain:	 the
risk	associated	with	a	second	transition,	a	transition	from	whole	brain	emulation
to	AI,	which	is	an	ultimately	more	powerful	form	of	machine	intelligence.

There	are	many	other	 technology	couplings,	which	could	be	considered	 in	a
more	 comprehensive	 analysis.	 For	 instance,	 a	 push	 toward	 whole	 brain
emulation	 would	 boost	 neuroscience	 progress	 more	 generally.13	 That	 might
produce	 various	 effects,	 such	 as	 faster	 progress	 toward	 lie	 detection,
neuropsychological	 manipulation	 techniques,	 cognitive	 enhancement,	 and
assorted	 medical	 advances.	 Likewise,	 a	 push	 toward	 cognitive	 enhancement
might	 (depending	on	 the	 specific	path	pursued)	create	 spillovers	 such	as	 faster
development	of	genetic	selection	and	genetic	engineering	methods	not	only	for
enhancing	cognition	but	for	modifying	other	traits	as	well.

Second-guessing

	

We	encounter	another	layer	of	strategic	complexity	if	we	take	into	account	that
there	 is	 no	 perfectly	 benevolent,	 rational,	 and	 unified	 world	 controller	 who
simply	implements	what	has	been	discovered	to	be	the	best	option.	Any	abstract
point	about	“what	should	be	done”	must	be	embodied	in	the	form	of	a	concrete
message,	which	is	entered	into	the	arena	of	rhetorical	and	political	reality.	There
it	 will	 be	 ignored,	 misunderstood,	 distorted,	 or	 appropriated	 for	 various
conflicting	 purposes;	 it	will	 bounce	 around	 like	 a	 pinball,	 causing	 actions	 and



reactions,	ushering	in	a	cascade	of	consequences,	the	upshot	of	which	need	bear
no	straightforward	relationship	to	the	intentions	of	the	original	sender.

A	sophisticated	operator	might	try	to	anticipate	these	kinds	of	effect.	Consider,
for	 example,	 the	 following	 argument	 template	 for	 proceeding	with	 research	 to
develop	a	dangerous	 technology	X.	 (One	 argument	 fitting	 this	 template	 can	be
found	 in	 the	 writings	 of	 Eric	 Drexler.	 In	 Drexler’s	 case,	 X	 =	 molecular
nanotechnology.14)

	

	The	risks	of	X	are	great.

	Reducing	these	risks	will	require	a	period	of	serious	preparation.

	Serious	preparation	will	begin	only	once	the	prospect	of	X	is	taken	seriously	by
broad	sectors	of	society.

	Broad	sectors	of	society	will	 take	the	prospect	of	X	 seriously	only	once	a	 large
research	effort	to	develop	X	is	underway.

	The	earlier	a	serious	research	effort	is	initiated,	the	longer	it	will	take	to	deliver	X
(because	it	starts	from	a	lower	level	of	pre-existing	enabling	technologies).

	Therefore,	 the	earlier	a	serious	research	effort	 is	 initiated,	 the	 longer	 the	period
during	 which	 serious	 preparation	 will	 be	 taking	 place,	 and	 the	 greater	 the
reduction	of	the	risks.

	Therefore,	a	serious	research	effort	toward	X	should	be	initiated	immediately.

What	initially	looks	like	a	reason	for	going	slow	or	stopping—the	risks	of	X
being	 great—ends	 up,	 on	 this	 line	 of	 thinking,	 as	 a	 reason	 for	 the	 opposite
conclusion.

A	 related	 type	 of	 argument	 is	 that	we	 ought—rather	 callously—to	welcome
small	and	medium-scale	catastrophes	on	grounds	that	they	make	us	aware	of	our
vulnerabilities	and	spur	us	into	taking	precautions	that	reduce	the	probability	of
an	existential	catastrophe.	The	idea	is	that	a	small	or	medium-scale	catastrophe
acts	 like	 an	 inoculation,	 challenging	 civilization	 with	 a	 relatively	 survivable
form	of	a	 threat	and	stimulating	an	 immune	 response	 that	 readies	 the	world	 to



deal	with	the	existential	variety	of	the	threat.15

These	 “shock’em-into-reacting”	 arguments	 advocate	 letting	 something	 bad
happen	in	the	hope	that	it	will	galvanize	a	public	reaction.	We	mention	them	here
not	to	endorse	them,	but	as	a	way	to	introduce	the	idea	of	(what	we	will	 term)
“second-guessing	arguments.”	Such	arguments	maintain	 that	by	 treating	others
as	irrational	and	playing	to	their	biases	and	misconceptions	it	is	possible	to	elicit
a	response	from	them	that	is	more	competent	than	if	a	case	had	been	presented
honestly	and	forthrightly	to	their	rational	faculties.

It	may	seem	unfeasibly	difficult	 to	use	 the	kind	of	stratagems	recommended
by	 second-guessing	 arguments	 to	 achieve	 long-term	 global	 goals.	 How	 could
anybody	predict	the	final	course	of	a	message	after	it	has	been	jolted	hither	and
thither	 in	 the	 pinball	 machine	 of	 public	 discourse?	 Doing	 so	 would	 seem	 to
require	 predicting	 the	 rhetorical	 effects	 on	 myriad	 constituents	 with	 varied
idiosyncrasies	 and	 fluctuating	 levels	 of	 influence	 over	 long	 periods	 of	 time
during	 which	 the	 system	 may	 be	 perturbed	 by	 unanticipated	 events	 from	 the
outside	 while	 its	 topology	 is	 also	 undergoing	 a	 continuous	 endogenous
reorganization:	surely	an	impossible	task!16	However,	it	may	not	be	necessary	to
make	detailed	predictions	about	the	system’s	entire	future	trajectory	in	order	to
identify	an	intervention	that	can	be	reasonably	expected	to	increase	the	chances
of	 a	 certain	 long-term	 outcome.	 One	 might,	 for	 example,	 consider	 only	 the
relatively	near-term	and	predictable	effects	in	a	detailed	way,	selecting	an	action
that	does	well	in	regard	to	those,	while	modeling	the	system’s	behavior	beyond
the	predictability	horizon	as	a	random	walk.

There	may,	however,	be	a	moral	case	 for	de-emphasizing	or	 refraining	 from
second-guessing	 moves.	 Trying	 to	 outwit	 one	 another	 looks	 like	 a	 zero-sum
game—or	negative-sum,	when	one	considers	the	time	and	energy	that	would	be
dissipated	 by	 the	 practice	 as	 well	 as	 the	 likelihood	 that	 it	 would	 make	 it
generally	 harder	 for	 anybody	 to	 discover	 what	 others	 truly	 think	 and	 to	 be
trusted	when	expressing	their	own	opinions.17	A	full-throttled	deployment	of	the
practices	of	strategic	communication	would	kill	candor	and	leave	truth	bereft	to
fend	for	herself	in	the	backstabbing	night	of	political	bogeys.

Pathways	and	enablers

	



Should	we	celebrate	advances	 in	computer	hardware?	What	about	advances	on
the	path	toward	whole	brain	emulation?	We	will	 look	at	these	two	questions	in
turn.

Effects	of	hardware	progress

	

Faster	 computers	 make	 it	 easier	 to	 create	 machine	 intelligence.	 One	 effect	 of
accelerating	progress	in	hardware,	therefore,	is	to	hasten	the	arrival	of	machine
intelligence.	 As	 discussed	 earlier,	 this	 is	 probably	 a	 bad	 thing	 from	 the
impersonal	perspective,	since	it	reduces	the	amount	of	time	available	for	solving
the	 control	 problem	 and	 for	 humanity	 to	 reach	 a	 more	 mature	 stage	 of
civilization.	The	case	is	not	a	slam	dunk,	though.	Since	superintelligence	would
eliminate	 many	 other	 existential	 risks,	 there	 could	 be	 reason	 to	 prefer	 earlier
development	if	the	level	of	these	other	existential	risks	were	very	high.18

Hastening	or	delaying	 the	onset	of	 the	 intelligence	explosion	 is	not	 the	only
channel	through	which	the	rate	of	hardware	progress	can	affect	existential	risk.
Another	 channel	 is	 that	 hardware	 can	 to	 some	 extent	 substitute	 for	 software;
thus,	better	hardware	reduces	the	minimum	skill	required	to	code	a	seed	AI.	Fast
computers	might	also	encourage	the	use	of	approaches	that	rely	more	heavily	on
brute-force	techniques	(such	as	genetic	algorithms	and	other	generate-evaluate-
discard	methods)	and	less	on	techniques	that	require	deep	understanding	to	use.
If	brute-force	techniques	lend	themselves	to	more	anarchic	or	imprecise	system
designs,	 where	 the	 control	 problem	 is	 harder	 to	 solve	 than	 in	 more	 precisely
engineered	 and	 theoretically	 controlled	 systems,	 this	would	 be	 another	way	 in
which	faster	computers	would	increase	the	existential	risk.

Another	consideration	is	that	rapid	hardware	progress	increases	the	likelihood
of	 a	 fast	 takeoff.	 The	 more	 rapidly	 the	 state	 of	 the	 art	 advances	 in	 the
semiconductor	industry,	the	fewer	the	person-hours	of	programmers’	time	spent
exploiting	 the	 capabilities	 of	 computers	 at	 any	 given	 performance	 level.	 This
means	 that	 an	 intelligence	 explosion	 is	 less	 likely	 to	 be	 initiated	 at	 the	 lowest
level	of	hardware	performance	at	which	it	is	feasible.	An	intelligence	explosion
is	 thus	more	 likely	 to	 be	 initiated	 when	 hardware	 has	 advanced	 significantly
beyond	 the	 minimum	 level	 at	 which	 the	 eventually	 successful	 programming
approach	could	 first	have	succeeded.	There	 is	 then	a	hardware	overhang	when
the	takeoff	eventually	does	occur.	As	we	saw	in	Chapter	4,	hardware	overhang	is



one	 of	 the	 main	 factors	 that	 reduce	 recalcitrance	 during	 the	 takeoff.	 Rapid
hardware	 progress,	 therefore,	 will	 tend	 to	 make	 the	 transition	 to
superintelligence	faster	and	more	explosive.

A	faster	takeoff	via	a	hardware	overhang	can	affect	the	risks	of	the	transition
in	several	ways.	The	most	obvious	is	that	a	faster	takeoff	offers	less	opportunity
to	 respond	 and	 make	 adjustments	 whilst	 the	 transition	 is	 in	 progress,	 which
would	tend	to	increase	risk.	A	related	consideration	is	that	a	hardware	overhang
would	 reduce	 the	 chances	 that	 a	 dangerously	 self-improving	 seed	AI	 could	 be
contained	by	limiting	its	ability	 to	colonize	sufficient	hardware:	 the	faster	each
processor	 is,	 the	 fewer	 processors	 would	 be	 needed	 for	 the	 AI	 to	 quickly
bootstrap	itself	to	superintelligence.	Yet	another	effect	of	a	hardware	overhang	is
to	 level	 the	 playing	 field	 between	 big	 and	 small	 projects	 by	 reducing	 the
importance	 of	 one	 of	 the	 advantages	 of	 larger	 projects—the	 ability	 to	 afford
more	 powerful	 computers.	 This	 effect,	 too,	 might	 increase	 existential	 risk,	 if
larger	projects	are	more	 likely	 to	solve	 the	control	problem	and	to	be	pursuing
morally	acceptable	objectives.19

There	are	also	advantages	to	a	faster	takeoff.	A	faster	takeoff	would	increase
the	likelihood	that	a	singleton	will	form.	If	establishing	a	singleton	is	sufficiently
important	 for	 solving	 the	 post-transition	 coordination	 problems,	 it	 might	 be
worth	 accepting	 a	 greater	 risk	 during	 the	 intelligence	 explosion	 in	 order	 to
mitigate	the	risk	of	catastrophic	coordination	failures	in	its	aftermath.

Developments	in	computing	can	affect	the	outcome	of	a	machine	intelligence
revolution	 not	 only	 by	 playing	 a	 direct	 role	 in	 the	 construction	 of	 machine
intelligence	 but	 also	 by	 having	 diffuse	 effects	 on	 society	 that	 indirectly	 help
shape	 the	 initial	 conditions	 of	 the	 intelligence	 explosion.	 The	 Internet,	 which
required	hardware	to	be	good	enough	to	enable	personal	computers	 to	be	mass
produced	 at	 low	 cost,	 is	 now	 influencing	 human	 activity	 in	 many	 areas,
including	 work	 in	 artificial	 intelligence	 and	 research	 on	 the	 control	 problem.
(This	 book	 might	 not	 have	 been	 written,	 and	 you	 might	 not	 have	 found	 it,
without	 the	 Internet.)	 However,	 hardware	 is	 already	 good	 enough	 for	 a	 great
many	applications	 that	could	facilitate	human	communication	and	deliberation,
and	it	is	not	clear	that	the	pace	of	progress	in	these	areas	is	strongly	bottlenecked
by	the	rate	of	hardware	improvement.20

On	 balance,	 it	 appears	 that	 faster	 progress	 in	 computing	 hardware	 is
undesirable	from	the	impersonal	evaluative	standpoint.	This	tentative	conclusion



could	 be	 overturned,	 for	 example	 if	 the	 threats	 from	 other	 existential	 risks	 or
from	post-transition	coordination	failures	turn	out	to	be	extremely	large.	In	any
case,	 it	 seems	 difficult	 to	 have	 much	 leverage	 on	 the	 rate	 of	 hardware
advancement.	Our	 efforts	 to	 improve	 the	 initial	 conditions	 for	 the	 intelligence
explosion	should	therefore	probably	focus	on	other	parameters.

Note	that	even	when	we	cannot	see	how	to	influence	some	parameter,	 it	can
be	 useful	 to	 determine	 its	 “sign”	 (i.e.	 whether	 an	 increase	 or	 decrease	 in	 that
parameter	would	be	desirable)	as	a	preliminary	step	in	mapping	the	strategic	lay
of	the	land.	We	might	later	discover	a	new	leverage	point	that	does	enable	us	to
manipulate	the	parameter	more	easily.	Or	we	might	discover	that	the	parameter’s
sign	correlates	with	the	sign	of	some	other	more	manipulable	parameter,	so	that
our	initial	analysis	helps	us	decide	what	to	do	with	this	other	parameter.

Should	whole	brain	emulation	research	be	promoted?

	

The	harder	 it	 seems	 to	 solve	 the	control	problem	 for	 artificial	 intelligence,	 the
more	 tempting	 it	 is	 to	 promote	 the	whole	 brain	 emulation	 path	 as	 a	 less	 risky
alternative.	There	are	several	issues,	however,	that	must	be	analyzed	before	one
can	arrive	at	a	well-considered	judgment.21

First,	there	is	the	issue	of	technology	coupling,	already	discussed	earlier.	We
pointed	 out	 that	 an	 effort	 to	 develop	 whole	 brain	 emulation	 could	 result	 in
neuromorphic	AI	instead,	a	form	of	machine	intelligence	that	may	be	especially
unsafe.

But	 let	us	assume,	 for	 the	sake	of	argument,	 that	we	actually	achieve	whole
brain	 emulation	 (WBE).	 Would	 this	 be	 safer	 than	 AI?	 This,	 itself,	 is	 a
complicated	issue.	There	are	at	least	three	putative	advantages	of	WBE:	(i)	that
its	performance	characteristics	would	be	better	understood	than	those	of	AI;	(ii)
that	 it	would	 inherit	 human	motives;	 and	 (iii)	 that	 it	would	 result	 in	 a	 slower
takeoff.	Let	us	very	briefly	reflect	on	each.

i	That	it	should	be	easier	to	understand	the	intellectual	performance	characteristics
of	an	emulation	 than	of	an	AI	sounds	plausible.	We	have	abundant	experience
with	the	strengths	and	weaknesses	of	human	intelligence	but	no	experience	with
human-level	artificial	intelligence.	However,	to	understand	what	a	snapshot	of	a



digitized	human	intellect	can	and	cannot	do	is	not	the	same	as	to	understand	how
such	 an	 intellect	 will	 respond	 to	 modifications	 aimed	 at	 enhancing	 its
performance.	An	artificial	 intellect,	by	contrast,	might	be	carefully	designed	 to
be	understandable,	 in	both	 its	 static	and	dynamic	dispositions.	So	while	whole
brain	emulation	may	be	more	predictable	 in	 its	 intellectual	performance	 than	a
generic	AI	 at	 a	 comparable	 stage	 of	 development,	 it	 is	 unclear	whether	whole
brain	emulation	would	be	dynamically	more	predictable	 than	an	AI	engineered
by	competent	safety-conscious	programmers.

ii	As	for	an	emulation	inheriting	the	motivations	of	its	human	template,	this	is	far
from	guaranteed.	Capturing	human	evaluative	dispositions	might	require	a	very
high-fidelity	 emulation.	 Even	 if	 some	 individual’s	 motivations	were	 perfectly
captured,	 it	 is	 unclear	 how	much	 safety	would	 be	 purchased.	 Humans	 can	 be
untrustworthy,	 selfish,	 and	 cruel.	While	 templates	would	hopefully	be	 selected
for	 exceptional	 virtue,	 it	 may	 be	 hard	 to	 foretell	 how	 someone	will	 act	 when
transplanted	 into	 radically	 alien	 circumstances,	 superhumanly	 enhanced	 in
intelligence,	 and	 tempted	with	 an	 opportunity	 for	world	 domination.	 It	 is	 true
that	emulations	would	at	least	be	more	likely	to	have	human-like	motivations	(as
opposed	 to	 valuing	 only	 paperclips	 or	 discovering	 digits	 of	 pi).	Depending	 on
one’s	views	on	human	nature,	this	might	or	might	not	be	reassuring.22

iii	It	is	not	clear	why	whole	brain	emulation	should	result	in	a	slower	takeoff	than
artificial	intelligence.	Perhaps	with	whole	brain	emulation	one	should	expect	less
hardware	overhang,	since	whole	brain	emulation	is	less	computationally	efficient
than	artificial	intelligence	can	be.	Perhaps,	also,	an	AI	system	could	more	easily
absorb	all	available	computing	power	into	one	giant	integrated	intellect,	whereas
whole	brain	emulation	would	forego	quality	superintelligence	and	pull	ahead	of
humanity	only	 in	 speed	 and	 size	 of	 population.	 If	whole	brain	 emulation	does
lead	 to	 a	 slower	 takeoff,	 this	 could	 have	 benefits	 in	 terms	 of	 alleviating	 the
control	problem.	A	slower	takeoff	would	also	make	a	multipolar	outcome	more
likely.	But	whether	a	multipolar	outcome	is	desirable	is	very	doubtful.

	

There	 is	 another	 important	 complication	 with	 the	 general	 idea	 that	 getting
whole	brain	emulation	first	 is	safer:	 the	need	 to	cope	with	a	second	 transition.
Even	if	the	first	form	of	human-level	machine	intelligence	is	emulation-based,	it
would	 still	 remain	 feasible	 to	 develop	 artificial	 intelligence.	 AI	 in	 its	 mature
form	 has	 important	 advantages	 over	 WBE,	 making	 AI	 the	 ultimately	 more



powerful	technology.23	While	mature	AI	would	render	WBE	obsolete	(except	for
the	special	purpose	of	preserving	individual	human	minds),	the	reverse	does	not
hold.

What	this	means	is	that	if	AI	is	developed	first,	there	might	be	a	single	wave
of	 the	 intelligence	explosion.	But	 if	WBE	is	developed	first,	 there	may	be	 two
waves:	first,	the	arrival	of	WBE;	and	later,	the	arrival	of	AI.	The	total	existential
risk	along	the	WBE-first	path	is	the	sum	of	the	risk	in	the	first	transition	and	the
risk	in	the	second	transition	(conditional	on	having	made	it	through	the	first);	see
Figure	13.24

How	 much	 safer	 would	 the	 AI	 transition	 be	 in	 a	 WBE	 world?	 One
consideration	 is	 that	 the	AI	 transition	would	be	 less	explosive	 if	 it	occurs	after
some	 form	 of	 machine	 intelligence	 has	 already	 been	 realized.	 Emulations,
running	 at	 digital	 speeds	 and	 in	 numbers	 that	might	 far	 exceed	 the	 biological
human	population,	would	reduce	the	cognitive	differential,	making	it	easier	for
emulations	to	control	the	AI.	This	consideration	is	not	too	weighty,	since	the	gap
between	AI	and	WBE	could	still	be	wide.	However,	if	the	emulations	were	not
just	 faster	 and	 more	 numerous	 but	 also	 somewhat	 qualitatively	 smarter	 than
biological	humans	(or	at	least	drawn	from	the	top	end	of	the	human	distribution)
then	the	WBE-first	scenario	would	have	advantages	paralleling	those	of	human
cognitive	enhancement,	which	we	discussed	above.

Figure	13	Artificial	 intelligence	 or	whole	 brain	 emulation	 first?	 In	 an	AI-first
scenario,	 there	 is	 one	 transition	 that	 creates	 an	 existential	 risk.	 In	 a	WBE-first
scenario,	there	are	two	risky	transitions,	first	the	development	of	WBE	and	then
the	development	of	AI.	The	total	existential	risk	along	the	WBE-first	scenario	is
the	 sum	 of	 these.	 However,	 the	 risk	 of	 an	 AI	 transition	 might	 be	 lower	 if	 it



occurs	in	a	world	where	WBE	has	already	been	successfully	introduced.

	

Another	consideration	is	that	the	transition	to	WBE	would	extend	the	lead	of
the	 frontrunner.	Consider	 a	 scenario	 in	which	 the	 frontrunner	 has	 a	 six-month
lead	over	the	closest	follower	in	developing	whole	brain	emulation	technology.
Suppose	 that	 the	 first	emulations	 to	be	created	are	cooperative,	 safety-focused,
and	 patient.	 If	 they	 run	 on	 fast	 hardware,	 these	 emulations	 could	 spend
subjective	eons	pondering	how	to	create	safe	AI.	For	example,	 if	 they	run	at	a
speedup	of	100,000×	and	are	able	 to	work	on	 the	control	problem	undisturbed
for	six	months	of	sidereal	time,	they	could	hammer	away	at	the	control	problem
for	 fifty	 millennia	 before	 facing	 competition	 from	 other	 emulations.	 Given
sufficient	 hardware,	 they	 could	 hasten	 their	 progress	 by	 fanning	 out	 myriad
copies	 to	work	 independently	 on	 subproblems.	 If	 the	 frontrunner	 uses	 its	 six-
month	lead	to	form	a	singleton,	it	could	buy	its	emulation	AI-development	team
an	unlimited	amount	of	time	to	work	on	the	control	problem.25

On	 balance,	 it	 looks	 like	 the	 risk	 of	 the	 AI	 transition	 would	 be	 reduced	 if
WBE	comes	before	AI.	However,	when	we	combine	the	residual	risk	in	the	AI
transition	with	the	risk	of	an	antecedent	WBE	transition,	it	becomes	very	unclear
how	the	total	existential	risk	along	the	WBE-first	path	stacks	up	against	the	risk
along	 the	 AI-first	 path.	 Only	 if	 one	 is	 quite	 pessimistic	 about	 biological
humanity’s	 ability	 to	 manage	 an	 AI	 transition—after	 taking	 into	 account	 that
human	nature	or	civilization	might	have	improved	by	the	time	we	confront	this
challenge—should	the	WBE-first	path	seem	attractive.

To	figure	out	whether	whole	brain	emulation	technology	should	be	promoted,
there	 are	 some	 further	 important	 points	 to	 place	 in	 the	 balance.	 Most
significantly,	there	is	the	technology	coupling	mentioned	earlier:	a	push	toward
WBE	could	instead	produce	neuromorphic	AI.	This	is	a	reason	against	pushing
for	WBE.26	No	doubt,	there	are	some	synthetic	AI	designs	that	are	less	safe	than
some	 neuromorphic	 designs.	 In	 expectation,	 however,	 it	 seems	 that
neuromorphic	 designs	 are	 less	 safe.	 One	 ground	 for	 this	 is	 that	 imitation	 can
substitute	 for	understanding.	To	build	something	 from	the	ground	up	one	must
usually	 have	 a	 reasonably	 good	 understanding	 of	 how	 the	 system	 will	 work.
Such	understanding	may	not	be	necessary	to	merely	copy	features	of	an	existing
system.	Whole	 brain	 emulation	 relies	 on	wholesale	 copying	 of	 biology,	which
may	not	require	a	comprehensive	computational	systems-level	understanding	of



cognition	 (though	 a	 large	 amount	 of	 component-level	 understanding	 would
undoubtedly	be	needed).	Neuromorphic	AI	may	be	like	whole	brain	emulation	in
this	 regard:	 it	would	be	achieved	by	cobbling	 together	pieces	plagiarized	 from
biology	 without	 the	 engineers	 necessarily	 having	 a	 deep	 mathematical
understanding	of	how	the	system	works.	But	neuromorphic	AI	would	be	unlike
whole	brain	emulation	in	another	regard:	it	would	not	have	human	motivations
by	 default.27	 This	 consideration	 argues	 against	 pursuing	 the	 whole	 brain
emulation	approach	to	the	extent	that	it	would	likely	produce	neuromorphic	AI.

A	 second	 point	 to	 put	 in	 the	 balance	 is	 that	WBE	 is	more	 likely	 to	 give	 us
advance	notice	of	 its	arrival.	With	AI	 it	 is	always	possible	 that	 somebody	will
make	 an	 unexpected	 conceptual	 breakthrough.	WBE,	 by	 contrast,	 will	 require
many	 laborious	 precursor	 steps—high-throughput	 scanning	 facilities,	 image
processing	 software,	 detailed	 neural	 modeling	 work.	 We	 can	 therefore	 be
confident	that	WBE	is	not	imminent	(not	less	than,	say,	fifteen	or	twenty	years
away).	This	means	that	efforts	to	accelerate	WBE	will	make	a	difference	mainly
in	scenarios	in	which	machine	intelligence	is	developed	comparatively	late.	This
could	make	WBE	investments	attractive	to	somebody	who	wants	the	intelligence
explosion	to	preempt	other	existential	risks	but	is	wary	of	supporting	AI	for	fear
of	 triggering	an	 intelligence	explosion	prematurely,	before	 the	control	problem
has	 been	 solved.	 However,	 the	 uncertainty	 over	 the	 relevant	 timescales	 is
probably	currently	too	large	to	enable	this	consideration	to	carry	much	weight.28

A	 strategy	 of	 promoting	 WBE	 is	 thus	 most	 attractive	 if	 (a)	 one	 is	 very
pessimistic	about	humans	solving	the	control	problem	for	AI,	(b)	one	is	not	too
worried	about	neuromorphic	AI,	multipolar	outcomes,	or	 the	 risks	of	a	 second
transition,	(c)	one	thinks	that	the	default	timing	of	WBE	and	AI	is	close,	and	(d)
one	prefers	superintelligence	to	be	developed	neither	very	late	nor	very	early.

The	person-affecting	perspective	favors	speed

	

I	 fear	 the	 blog	 commenter	 “washbash”	 may	 speak	 for	 many	 when	 he	 or	 she
writes:

I	 instinctively	 think	 go	 faster.	 Not	 because	 I	 think	 this	 is	 better	 for	 the
world.	Why	should	I	care	about	the	world	when	I	am	dead	and	gone?	I	want
it	 to	 go	 fast,	 damn	 it!	This	 increases	 the	 chance	 I	 have	of	 experiencing	 a



more	technologically	advanced	future.29

	
	

From	 the	 person-affecting	 standpoint,	 we	 have	 greater	 reason	 to	 rush	 forward
with	all	manner	of	radical	technologies	that	could	pose	existential	risks.	This	is
because	 the	 default	 outcome	 is	 that	 almost	 everyone	 who	 now	 exists	 is	 dead
within	a	century.

The	case	for	rushing	is	especially	strong	with	regard	to	technologies	that	could
extend	 our	 lives	 and	 thereby	 increase	 the	 expected	 fraction	 of	 the	 currently
existing	population	that	may	still	be	around	for	the	intelligence	explosion.	If	the
machine	 intelligence	revolution	goes	well,	 the	resulting	superintelligence	could
almost	certainly	devise	means	to	indefinitely	prolong	the	lives	of	the	then	still-
existing	humans,	not	only	keeping	 them	alive	but	 restoring	 them	 to	health	and
youthful	 vigor,	 and	 enhancing	 their	 capacities	well	 beyond	what	we	 currently
think	 of	 as	 the	 human	 range;	 or	 helping	 them	 shuffle	 off	 their	 mortal	 coils
altogether	 by	 uploading	 their	 minds	 to	 a	 digital	 substrate	 and	 endowing	 their
liberated	spirits	with	exquisitely	good-feeling	virtual	embodiments.	With	regard
to	technologies	that	do	not	promise	to	save	lives,	the	case	for	rushing	is	weaker,
though	 perhaps	 still	 sufficiently	 supported	 by	 the	 hope	 of	 raised	 standards	 of
living.30

The	 same	 line	 of	 reasoning	 makes	 the	 person-affecting	 perspective	 favor
many	 risky	 technological	 innovations	 that	 promise	 to	 hasten	 the	 onset	 of	 the
intelligence	 explosion,	 even	 when	 those	 innovations	 are	 disfavored	 in	 the
impersonal	 perspective.	 Such	 innovations	 could	 shorten	 the	wolf	 hours	 during
which	we	 individually	must	 hang	 on	 to	 our	 perch	 if	we	 are	 to	 live	 to	 see	 the
daybreak	 of	 the	 posthuman	 age.	 From	 the	 person-affecting	 standpoint,	 faster
hardware	 progress	 thus	 seems	 desirable,	 as	 does	 faster	 progress	 toward	WBE.
Any	 adverse	 effect	 on	 existential	 risk	 is	 probably	 outweighed	 by	 the	 personal
benefit	 of	 an	 increased	 chance	 of	 the	 intelligence	 explosion	 happening	 in	 the
lifetime	of	currently	existing	people.31

Collaboration

	



One	 important	 parameter	 is	 the	 degree	 to	 which	 the	 world	 will	 manage	 to
coordinate	 and	 collaborate	 in	 the	 development	 of	 machine	 intelligence.
Collaboration	 would	 bring	 many	 benefits.	 Let	 us	 take	 a	 look	 at	 how	 this
parameter	 might	 affect	 the	 outcome	 and	 what	 levers	 we	 might	 have	 for
increasing	the	extent	and	intensity	of	collaboration.

The	race	dynamic	and	its	perils

	

A	race	dynamic	exists	when	one	project	fears	being	overtaken	by	another.	This
does	not	require	the	actual	existence	of	multiple	projects.	A	situation	with	only
one	project	could	exhibit	a	race	dynamic	if	that	project	is	unaware	of	its	lack	of
competitors.	The	Allies	would	probably	not	have	developed	the	atomic	bomb	as
quickly	as	they	did	had	they	not	believed	(erroneously)	that	the	Germans	might
be	close	to	the	same	goal.

The	 severity	 of	 a	 race	 dynamic	 (that	 is,	 the	 extent	 to	 which	 competitors
prioritize	speed	over	safety)	depends	on	several	factors,	such	as	the	closeness	of
the	 race,	 the	 relative	 importance	 of	 capability	 and	 luck,	 the	 number	 of
competitors,	 whether	 competing	 teams	 are	 pursuing	 different	 approaches,	 and
the	 degree	 to	 which	 projects	 share	 the	 same	 aims.	 Competitors’	 beliefs	 about
these	factors	are	also	relevant.	(See	Box	13.)

In	 the	 development	 of	 machine	 superintelligence,	 it	 seems	 likely	 that	 there
will	be	at	least	a	mild	race	dynamic,	and	it	is	possible	that	there	will	be	a	severe
race	dynamic.	The	race	dynamic	has	important	consequences	for	how	we	should
think	 about	 the	 strategic	 challenge	 posed	 by	 the	 possibility	 of	 an	 intelligence
explosion.

The	race	dynamic	could	spur	projects	to	move	faster	toward	superintelligence
while	 reducing	 investment	 in	 solving	 the	 control	 problem.	 Additional
detrimental	 effects	 of	 the	 race	 dynamic	 are	 also	 possible,	 such	 as	 direct
hostilities	between	competitors.	Suppose	that	two	nations	are	racing	to	develop
the	first	superintelligence,	and	that	one	of	them	is	seen	to	be	pulling	ahead.	In	a
winner-takes-all	 situation,	 a	 lagging	 project	 might	 be	 tempted	 to	 launch	 a
desperate	strike	against	its	rival	rather	than	passively	await	defeat.	Anticipating
this	possibility,	 the	 frontrunner	might	be	 tempted	 to	 strike	preemptively.	 If	 the
antagonists	are	powerful	states,	the	clash	could	be	bloody.34	(A	“surgical	strike”



against	 the	 rival’s	 AI	 project	 might	 risk	 triggering	 a	 larger	 confrontation	 and
might	in	any	case	not	be	feasible	if	the	host	country	has	taken	precautions.35)

Box	13	A	risk-race	to	the	bottom

	

Consider	a	hypothetical	AI	arms	race	in	which	several	teams	compete	to	develop
superintelligence.32	Each	team	decides	how	much	to	invest	in	safety—knowing
that	resources	spent	on	developing	safety	precautions	are	resources	not	spent	on
developing	 the	AI.	Absent	a	deal	between	all	 the	competitors	 (which	might	be
stymied	by	bargaining	or	 enforcement	difficulties),	 there	might	 then	be	a	 risk-
race	to	the	bottom,	driving	each	team	to	take	only	a	minimum	of	precautions.

One	 can	 model	 each	 team’s	 performance	 as	 a	 function	 of	 its	 capability
(measuring	its	raw	ability	and	luck)	and	a	penalty	term	corresponding	to	the	cost
of	its	safety	precautions.	The	team	with	the	highest	performance	builds	the	first
AI.	The	riskiness	of	that	AI	is	determined	by	how	much	its	creators	invested	in
safety.	In	the	worst-case	scenario,	all	teams	have	equal	levels	of	capability.	The
winner	is	then	determined	exclusively	by	investment	in	safety:	the	team	that	took
the	 fewest	 safety	 precautions	wins.	 The	Nash	 equilibrium	 for	 this	 game	 is	 for
every	team	to	spend	nothing	on	safety.	In	the	real	world,	such	a	situation	might
arise	via	a	risk	ratchet:	some	team,	fearful	of	falling	behind,	increments	its	risk-
taking	 to	 catch	 up	 with	 its	 competitors—who	 respond	 in	 kind,	 until	 the
maximum	level	of	risk	is	reached.

Capability	versus	risk

	

The	 situation	 changes	when	 there	 are	 variations	 in	 capability.	As	 variations	 in
capability	become	more	important	relative	to	the	cost	of	safety	precautions,	the
risk	ratchet	weakens:	there	is	less	incentive	to	incur	an	extra	bit	of	risk	if	doing
so	 is	unlikely	 to	change	 the	order	of	 the	 race.	This	 is	 illustrated	under	various
scenarios	in	Figure	14,	which	plots	how	the	riskiness	of	 the	AI	depends	on	the
importance	of	capability.	Safety	investment	ranges	from	1	(resulting	in	perfectly
safe	 AI)	 to	 0	 (completely	 unsafe	 AI).	 The	 x-axis	 represents	 the	 relative
importance	of	capability	versus	safety	investment	in	determining	the	speed	of	a



team’s	 progress	 toward	 AI.	 (At	 0.5,	 the	 safety	 investment	 level	 is	 twice	 are
important	 as	 capability;	 at	 1,	 the	 two	 are	 equal;	 at	 2,	 capability	 is	 twice	 as
important	as	safety	level;	and	so	forth.)	The	y-axis	represents	the	level	of	AI	risk
(the	expected	fraction	of	their	maximum	utility	that	the	winner	of	the	race	gets).

Figure	14	Risk	levels	in	AI	technology	races.	Levels	of	risk	of	dangerous	AI	in
a	simple	model	of	a	 technology	race	 involving	either	 (a)	 two	 teams	or	 (b)	 five
teams,	 plotted	 against	 the	 relative	 importance	 of	 capability	 (as	 opposed	 to
investment	 in	 safety)	 in	 determining	which	 project	 wins	 the	 race.	 The	 graphs
show	 three	 information-level	 scenarios:	 no	 capability	 information	 (straight),
private	capability	information	(dashed),	and	full	capability	information	(dotted).

	

We	 see	 that,	 under	 all	 scenarios,	 the	 dangerousness	 of	 the	 resultant	 AI	 is
maximal	when	capability	plays	no	role,	gradually	decreasing	as	capability	grows
in	importance.

Compatible	goals

	

Another	way	 of	 reducing	 the	 risk	 is	 by	 giving	 teams	more	 of	 a	 stake	 in	 each
other’s	success.	If	competitors	are	convinced	that	coming	second	means	the	total
loss	 of	 everything	 they	 care	 about,	 they	 will	 take	 whatever	 risk	 necessary	 to
bypass	their	rivals.	Conversely,	teams	will	invest	more	in	safety	if	less	depends
on	winning	 the	 race.	This	 suggests	 that	we	should	encourage	various	 forms	of
cross-investment.

The	number	of	competitors



	

The	 greater	 the	 number	 of	 competing	 teams,	 the	 more	 dangerous	 the	 race
becomes:	each	team,	having	less	chance	of	coming	first,	is	more	willing	to	throw
caution	to	the	wind.	This	can	be	seen	by	contrasting	Figure	14a	(two	teams)	with
Figure	14b	(five	 teams).	 In	every	scenario,	more	competitors	means	more	risk.
Risk	would	 be	 reduced	 if	 teams	 coalesce	 into	 a	 smaller	 number	 of	 competing
coalitions.

The	curse	of	too	much	information

	

Is	 it	 good	 if	 teams	 know	 about	 their	 positions	 in	 the	 race	 (knowing	 their
capability	scores,	for	instance)?	Here,	opposing	factors	are	at	play.	It	is	desirable
that	 a	 leader	 knows	 it	 is	 leading	 (so	 that	 it	 knows	 it	 has	 some	 margin	 for
additional	 safety	precautions).	Yet	 it	 is	undesirable	 that	a	 laggard	knows	 it	has
fallen	behind	(since	 this	would	confirm	that	 it	must	cut	back	on	safety	 to	have
any	hope	of	catching	up).	While	intuitively	it	may	seem	this	trade-off	could	go
either	way,	 the	models	 are	 unequivocal:	 information	 is	 (in	 expectation)	 bad.33
Figures	14a	and	14b	 each	plot	 three	 scenarios:	 the	 straight	 lines	 correspond	 to
situations	in	which	no	team	knows	any	of	the	capability	scores,	its	own	included.
The	 dashed	 lines	 show	 situations	 where	 each	 team	 knows	 its	 own	 capability
only.	 (In	 those	 situations,	 a	 team	 takes	 extra	 risk	only	 if	 its	 capability	 is	 low.)
And	 the	 dotted	 lines	 show	 what	 happens	 when	 all	 teams	 know	 each	 other’s
capabilities.	 (They	 take	 extra	 risks	 if	 their	 capability	 scores	 are	 close	 to	 one
another.)	With	 each	 increase	 in	 information	 level,	 the	 race	 dynamic	 becomes
worse.

	

Scenarios	in	which	the	rival	developers	are	not	states	but	smaller	entities,	such
as	 corporate	 labs	 or	 academic	 teams,	would	 probably	 feature	much	 less	 direct
destruction	 from	conflict.	Yet	 the	overall	 consequences	of	 competition	may	be
almost	 as	 bad.	 This	 is	 because	 the	 main	 part	 of	 the	 expected	 harm	 from
competition	 stems	 not	 from	 the	 smashup	 of	 battle	 but	 from	 the	 downgrade	 of
precaution.	A	race	dynamic	would,	as	we	saw,	reduce	investment	in	safety;	and
conflict,	even	if	nonviolent,	would	tend	to	scotch	opportunities	for	collaboration,
since	projects	would	be	less	likely	to	share	ideas	for	solving	the	control	problem



in	a	climate	of	hostility	and	mistrust.36

On	the	benefits	of	collaboration

	

Collaboration	 thus	 offers	 many	 benefits.	 It	 reduces	 the	 haste	 in	 developing
machine	intelligence.	It	allows	for	greater	investment	in	safety.	It	avoids	violent
conflicts.	And	 it	 facilitates	 the	 sharing	of	 ideas	about	how	 to	 solve	 the	control
problem.	 To	 these	 benefits	 we	 can	 add	 another:	 collaboration	 would	 tend	 to
produce	 outcomes	 in	which	 the	 fruits	 of	 a	 successfully	 controlled	 intelligence
explosion	get	distributed	more	equitably.

That	 broader	 collaboration	 should	 result	 in	 wider	 sharing	 of	 gains	 is	 not
axiomatic.	 In	 principle,	 a	 small	 project	 run	 by	 an	 altruist	 could	 lead	 to	 an
outcome	where	 the	 benefits	 are	 shared	 evenly	 or	 equitably	 among	 all	morally
considerable	 beings.	 Nevertheless,	 there	 are	 several	 reasons	 to	 suppose	 that
broader	 collaborations,	 involving	 a	 greater	 number	 of	 sponsors,	 are	 (in
expectation)	 distributionally	 superior.	 One	 such	 reason	 is	 that	 sponsors
presumably	prefer	an	outcome	in	which	they	themselves	get	(at	least)	their	fair
share.	A	broad	collaboration	then	means	that	relatively	many	individuals	get	at
least	their	fair	share,	assuming	the	project	is	successful.	Another	reason	is	that	a
broad	 collaboration	 also	 seems	 likelier	 to	 benefit	 people	 outside	 the
collaboration.	 A	 broader	 collaboration	 contains	 more	 members,	 so	 more
outsiders	would	 have	 personal	 ties	 to	 somebody	 on	 the	 inside	 looking	 out	 for
their	 interests.	 A	 broader	 collaboration	 is	 also	 more	 likely	 to	 include	 at	 least
some	 altruist	 who	 wants	 to	 benefit	 everyone.	 Furthermore,	 a	 broader
collaboration	 is	 more	 likely	 to	 operate	 under	 public	 oversight,	 which	 might
reduce	 the	 risk	of	 the	entire	pie	being	captured	by	a	clique	of	programmers	or
private	investors.37	Note	also	 that	 the	 larger	 the	successful	collaboration	 is,	 the
lower	 the	costs	 to	 it	of	extending	 the	benefits	 to	all	outsiders.	 (For	 instance,	 if
90%	of	all	people	were	already	inside	 the	collaboration,	 it	would	cost	them	no
more	than	10%	of	their	holdings	to	bring	all	outsiders	up	to	their	own	level.)

It	 is	 thus	plausible	 that	broader	collaborations	would	 tend	 to	 lead	 to	a	wider
distribution	 of	 the	 gains	 (though	 some	 projects	 with	 few	 sponsors	 might	 also
have	 distributionally	 excellent	 aims).	 But	 why	 is	 a	 wide	 distribution	 of	 gains
desirable?



There	are	both	moral	and	prudential	reasons	for	favoring	outcomes	in	which
everybody	 gets	 a	 share	 of	 the	 bounty.	We	will	 not	 say	much	 about	 the	moral
case,	except	 to	note	 that	 it	need	not	 rest	on	any	egalitarian	principle.	The	case
might	 be	 made,	 for	 example,	 on	 grounds	 of	 fairness.	 A	 project	 that	 creates
machine	 superintelligence	 imposes	 a	 global	 risk	 externality.	 Everybody	 on	 the
planet	is	placed	in	jeopardy,	including	those	who	do	not	consent	to	having	their
own	 lives	 and	 those	 of	 their	 family	 imperiled	 in	 this	 way.	 Since	 everybody
shares	 the	 risk,	 it	 would	 seem	 to	 be	 a	 minimal	 requirement	 of	 fairness	 that
everybody	also	gets	a	share	of	the	upside.

The	 fact	 that	 the	 total	 (expected)	 amount	 of	 good	 seems	 greater	 in
collaboration	 scenarios	 is	 another	 important	 reason	 such	 scenarios	 are	morally
preferable.

The	prudential	case	for	favoring	a	wide	distribution	of	gains	is	two-pronged.
One	 prong	 is	 that	 wide	 distribution	 should	 promote	 collaboration,	 thereby
mitigating	 the	 negative	 consequences	 of	 the	 race	 dynamic.	 There	 is	 less
incentive	to	fight	over	who	gets	to	build	the	first	superintelligence	if	everybody
stands	to	benefit	equally	from	any	project’s	success.	The	sponsors	of	a	particular
project	 might	 also	 benefit	 from	 credibly	 signaling	 their	 commitment	 to
distributing	 the	 spoils	universally,	 a	certifiably	altruistic	project	being	 likely	 to
attract	more	supporters	and	fewer	enemies.38

The	 other	 prong	 of	 the	 prudential	 case	 for	 favoring	 a	 wide	 distribution	 of
gains	has	to	do	with	whether	agents	are	risk-averse	or	have	utility	functions	that
are	 sublinear	 in	 resources.	 The	 central	 fact	 here	 is	 the	 enormousness	 of	 the
potential	resource	pie.	Assuming	the	observable	universe	is	as	uninhabited	as	it
looks,	it	contains	more	than	one	vacant	galaxy	for	each	human	being	alive.	Most
people	would	much	rather	have	certain	access	to	one	galaxy’s	worth	of	resources
than	 a	 lottery	 ticket	 offering	 a	 one-in-a-billion	 chance	 of	 owning	 a	 billion
galaxies.39	 Given	 the	 astronomical	 size	 of	 humanity’s	 cosmic	 endowment,	 it
seems	 that	 self-interest	 should	generally	 favor	deals	 that	would	guarantee	each
person	a	share,	even	if	each	share	corresponded	to	a	small	fraction	of	the	total.
The	important	thing,	when	such	an	extravagant	bonanza	is	in	the	offing,	is	to	not
be	left	out	in	the	cold.

This	 argument	 from	 the	 enormousness	 of	 the	 resource	 pie	 presupposes	 that
preferences	are	 resource-satiable.40	That	 supposition	does	not	necessarily	hold.
For	 instance,	 several	 prominent	 ethical	 theories—including	 especially



aggregative	 consequentialist	 theories—correspond	 to	 utility	 functions	 that	 are
risk-neutral	and	linear	in	resources.	A	billion	galaxies	could	be	used	to	create	a
billion	 times	 more	 happy	 lives	 than	 a	 single	 galaxy.	 They	 are	 thus,	 to	 a
utilitarian,	worth	a	billion	 times	as	much.41	Ordinary	 selfish	human	preference
functions,	however,	appear	to	be	relatively	resource-satiable.

This	last	statement	must	be	flanked	by	two	important	qualifications.	The	first
is	 that	many	 people	 care	 about	 rank.	 If	multiple	 agents	 each	wants	 to	 top	 the
Forbes	 rich	 list,	 then	 no	 resource	 pie	 is	 large	 enough	 to	 give	 everybody	 full
satisfaction.

The	 second	 qualification	 is	 that	 the	 post-transition	 technology	 base	 would
enable	 material	 resources	 to	 be	 converted	 into	 an	 unprecedented	 range	 of
products,	including	some	goods	that	are	not	currently	available	at	any	price	even
though	 they	 are	 highly	 valued	 by	many	 humans.	A	 billionaire	 does	 not	 live	 a
thousand	 times	 longer	 than	a	millionaire.	 In	 the	era	of	digital	minds,	however,
the	 billionaire	 could	 afford	 a	 thousandfold	 more	 computing	 power	 and	 could
thus	enjoy	a	thousandfold	longer	subjective	lifespan.	Mental	capacity,	likewise,
could	be	for	sale.	In	such	circumstances,	with	economic	capital	convertible	into
vital	goods	at	a	constant	 rate	even	for	great	 levels	of	wealth,	unbounded	greed
would	make	more	sense	than	it	does	in	today’s	world	where	the	affluent	(those
among	them	lacking	a	philanthropic	heart)	are	reduced	to	spending	their	riches
on	airplanes,	boats,	art	collections,	or	a	fourth	and	a	fifth	residence.

Does	this	mean	that	an	egoist	should	be	risk-neutral	with	respect	to	his	or	her
post-transition	 resource	 endowment?	Not	quite.	Physical	 resources	may	not	 be
convertible	into	lifespan	or	mental	performance	at	arbitrary	scales.	If	a	life	must
be	lived	sequentially,	so	that	observer	moments	can	remember	earlier	events	and
be	affected	by	prior	choices,	 then	the	life	of	a	digital	mind	cannot	be	extended
arbitrarily	 without	 utilizing	 an	 increasing	 number	 of	 sequential	 computational
operations.	But	physics	limits	the	extent	to	which	resources	can	be	transformed
into	sequential	computations.42	The	 limits	on	 sequential	 computation	may	also
constrain	 some	 aspects	 of	 cognitive	 performance	 to	 scale	 radically	 sublinearly
beyond	a	relatively	modest	resource	endowment.	Furthermore,	it	is	not	obvious
that	 an	 egoist	 would	 or	 should	 be	 risk-neutral	 even	 with	 regard	 to	 highly
normatively	 relevant	 outcome	 metrics	 such	 as	 number	 of	 quality-adjusted
subjective	 life	years.	 If	offered	 the	choice	between	an	extra	2,000	years	of	 life
for	certain	and	a	one-in-ten	chance	of	an	extra	30,000	years	of	life,	I	think	most
people	would	 select	 the	 former	 (even	 under	 the	 stipulation	 that	 each	 life	 year



would	be	of	equal	quality).43

In	 reality,	 the	 prudential	 case	 for	 favoring	 a	 wide	 distribution	 of	 gains	 is
presumably	 subject-relative	and	situation-dependent.	Yet,	on	 the	whole,	people
would	be	more	likely	to	get	(almost	all	of)	what	they	want	if	a	way	is	found	to
achieve	a	wide	distribution—and	this	holds	even	before	taking	into	account	that
a	 commitment	 to	 a	 wider	 distribution	 would	 tend	 to	 foster	 collaboration	 and
thereby	 increase	 the	 chances	 of	 avoiding	 existential	 catastrophe.	 Favoring	 a
broad	distribution,	 therefore,	appears	 to	be	not	only	morally	mandated	but	also
prudentially	advisable.

There	is	a	further	set	of	consequences	to	collaboration	that	should	be	given	at
least	 some	 shrift:	 the	possibility	 that	pre-transition	collaboration	 influences	 the
level	 of	 post-transition	 collaboration.	 Assume	 humanity	 solves	 the	 control
problem.	(If	the	control	problem	is	not	solved,	it	may	scarcely	matter	how	much
collaboration	there	is	post	transition.)	There	are	two	cases	to	consider.	The	first
is	 that	 the	 intelligence	 explosion	 does	 not	 create	 a	 winner-takes-all	 dynamic
(presumably	 because	 the	 takeoff	 is	 relatively	 slow).	 In	 this	 case	 it	 is	 plausible
that	 if	 pre-transition	 collaboration	 has	 any	 systematic	 effect	 on	 post-transition
collaboration,	 it	 has	 a	 positive	 effect,	 tending	 to	 promote	 subsequent
collaboration.	The	original	collaborative	relationships	may	endure	and	continue
beyond	 the	 transition;	 also,	 pre-transition	 collaboration	 may	 offer	 more
opportunity	 for	 people	 to	 steer	 developments	 in	 desirable	 (and,	 presumably,
more	collaborative)	post-transition	directions.

The	second	case	is	that	the	nature	of	the	intelligence	explosion	does	encourage
a	winner-takes-all	dynamic	(presumably	because	the	takeoff	is	relatively	fast).	In
this	case,	if	there	is	no	extensive	collaboration	before	the	takeoff,	a	singleton	is
likely	 to	emerge—a	single	project	would	undergo	 the	 transition	alone,	at	 some
point	obtaining	a	decisive	strategic	advantage	combined	with	superintelligence.
A	singleton,	by	definition,	 is	a	highly	collaborative	social	order.44	The	absence
of	extensive	collaboration	pre-transition	would	thus	lead	to	an	extreme	degree	of
collaboration	 post-transition.	 By	 contrast,	 a	 somewhat	 higher	 level	 of
collaboration	in	the	run-up	to	the	intelligence	explosion	opens	up	a	wider	variety
of	 possible	 outcomes.	Collaborating	 projects	 could	 synchronize	 their	 ascent	 to
ensure	they	transition	in	tandem	without	any	of	them	getting	a	decisive	strategic
advantage.	Or	 different	 sponsor	 groups	might	merge	 their	 efforts	 into	 a	 single
project,	while	 refusing	 to	 give	 that	 project	 a	mandate	 to	 form	a	 singleton.	For
example,	 one	 could	 imagine	 a	 consortium	of	 nations	 forming	 a	 joint	 scientific



project	to	develop	machine	superintelligence,	yet	not	authorizing	this	project	to
evolve	 into	 anything	 like	 a	 supercharged	 United	 Nations,	 electing	 instead	 to
maintain	the	factious	world	order	that	existed	before.

Particularly	 in	 the	case	of	a	 fast	 takeoff,	 therefore,	 the	possibility	exists	 that
greater	 pre-transition	 collaboration	 would	 result	 in	 less	 post-transition
collaboration.	However,	to	the	extent	that	collaborating	entities	are	able	to	shape
the	outcome,	they	may	allow	the	emergence	or	continuation	of	non-collaboration
only	if	they	foresee	that	no	catastrophic	consequences	would	follow	from	post-
transition	 factiousness.	Scenarios	 in	which	pre-transition	collaboration	 leads	 to
reduced	 post-transition	 collaboration	 may	 therefore	 mostly	 be	 ones	 in	 which
reduced	post-transition	collaboration	is	innocuous.

In	 general,	 greater	 post-transition	 collaboration	 appears	 desirable.	 It	 would
reduce	 the	 risk	 of	 dystopian	 dynamics	 in	 which	 economic	 competition	 and	 a
rapidly	 expanding	 population	 lead	 to	 a	 Malthusian	 condition,	 or	 in	 which
evolutionary	 selection	 erodes	 human	 values	 and	 selects	 for	 non-eudaemonic
forms,	or	 in	which	rival	powers	suffer	other	coordination	failures	such	as	wars
and	technology	races.	The	last	of	these	issues,	the	prospect	of	technology	races,
may	be	 particularly	 problematic	 if	 the	 transition	 is	 to	 an	 intermediary	 form	of
machine	 intelligence	 (whole	brain	emulation)	 since	 it	would	create	a	new	 race
dynamic	 that	would	harm	 the	chances	of	 the	control	problem	being	 solved	 for
the	 subsequent	 second	 transition	 to	 a	 more	 advanced	 form	 of	 machine
intelligence	(artificial	intelligence).

We	described	earlier	how	collaboration	can	reduce	conflict	in	the	run-up	to	the
intelligence	 explosion,	 increasing	 the	 chances	 that	 the	 control	 problem	will	 be
solved,	and	improve	both	the	moral	legitimacy	and	the	prudential	desirability	of
the	resulting	resource	allocation.	To	 these	benefits	of	collaboration	 it	may	 thus
be	possible	to	add	one	more:	that	broader	collaboration	pre-transition	could	help
with	important	coordination	problems	in	the	post-transition	era.

Working	together

	

Collaboration	 can	 take	 different	 forms	 depending	 on	 the	 scale	 of	 the
collaborating	 entities.	 At	 a	 small	 scale,	 individual	 AI	 teams	 who	 believe
themselves	 to	 be	 in	 competition	 with	 one	 another	 could	 choose	 to	 pool	 their



efforts.45	 Corporations	 could	 merge	 or	 cross-invest.	 At	 a	 larger	 scale,	 states
could	 join	 in	 a	 big	 international	 project.	 There	 are	 precedents	 to	 large-scale
international	 collaboration	 in	 science	 and	 technology	 (such	 as	 CERN,	 the
Human	 Genome	 Project,	 and	 the	 International	 Space	 Station),	 but	 an
international	 project	 to	 develop	 safe	 superintelligence	 would	 pose	 a	 different
order	 of	 challenge	 because	 of	 the	 security	 implications	 of	 the	work.	 It	 would
have	to	be	constituted	not	as	an	open	academic	collaboration	but	as	an	extremely
tightly	controlled	joint	enterprise.	Perhaps	the	scientists	involved	would	have	to
be	 physically	 isolated	 and	 prevented	 from	 communicating	with	 the	 rest	 of	 the
world	 for	 the	 duration	 of	 the	 project,	 except	 through	 a	 single	 carefully	 vetted
communication	 channel.	 The	 required	 level	 of	 security	 might	 be	 nearly
unattainable	at	present,	but	advances	in	lie	detection	and	surveillance	technology
could	make	 it	 feasible	 later	 this	 century.	 It	 is	 also	worth	 bearing	 in	mind	 that
broad	collaboration	does	not	necessarily	mean	that	large	numbers	of	researchers
would	be	involved	in	the	project;	it	simply	means	that	many	people	would	have
a	 say	 in	 the	 project’s	 aims.	 In	 principle,	 a	 project	 could	 involve	 a	maximally
broad	collaboration	comprising	all	of	humanity	as	sponsors	(represented,	 let	us
say,	by	the	General	Assembly	of	the	United	Nations),	yet	employ	only	a	single
scientist	to	carry	out	the	work.46

There	is	a	reason	for	starting	collaboration	as	early	as	possible,	namely	to	take
advantage	 of	 the	 veil	 of	 ignorance	 that	 hides	 from	 our	 view	 any	 specific
information	 about	 which	 individual	 project	 will	 get	 to	 superintelligence	 first.
The	closer	to	the	finishing	line	we	get,	the	less	uncertainty	will	remain	about	the
relative	chances	of	competing	projects;	and	the	harder	it	may	consequently	be	to
make	a	case	based	on	the	self-interest	of	the	frontrunner	to	join	a	collaborative
project	that	would	distribute	the	benefits	to	all	of	humanity.	On	the	other	hand,	it
also	looks	hard	to	establish	a	formal	collaboration	of	worldwide	scope	before	the
prospect	of	superintelligence	has	become	much	more	widely	recognized	than	it
currently	 is	and	before	 there	 is	a	clearly	visible	 road	 leading	 to	 the	creation	of
machine	 superintelligence.	 Moreover,	 to	 the	 extent	 that	 collaboration	 would
promote	progress	along	that	road,	it	may	actually	be	counterproductive	in	terms
of	safety,	as	discussed	earlier.

The	ideal	form	of	collaboration	for	the	present	may	therefore	be	one	that	does
not	 initially	 require	 specific	 formalized	 agreements	 and	 that	 does	 not	 expedite
advances	in	machine	intelligence.	One	proposal	that	fits	these	criteria	is	that	we
propound	 an	 appropriate	 moral	 norm,	 expressing	 our	 commitment	 to	 the	 idea
that	 superintelligence	 should	 be	 for	 the	 common	 good.	 Such	 a	 norm	 could	 be



formulated	as	follows:

The	common	good	principle

Superintelligence	 should	 be	 developed	 only	 for	 the	 benefit	 of	 all	 of
humanity	and	in	the	service	of	widely	shared	ethical	ideals.47

	

Establishing	from	an	early	stage	that	the	immense	potential	of	superintelligence
belongs	 to	 all	 of	 humanity	 will	 give	 more	 time	 for	 such	 a	 norm	 to	 become
entrenched.

The	 common	 good	 principle	 does	 not	 preclude	 commercial	 incentives	 for
individuals	or	firms	active	in	related	areas.	For	example,	a	firm	might	satisfy	the
call	 for	 universal	 sharing	 of	 the	 benefits	 of	 superintelligence	 by	 adopting	 a
“windfall	clause”	to	the	effect	that	all	profits	up	to	some	very	high	ceiling	(say,	a
trillion	dollars	annually)	would	be	distributed	in	 the	ordinary	way	to	 the	firm’s
shareholders	 and	 other	 legal	 claimants,	 and	 that	 only	 profits	 in	 excess	 of	 the
threshold	would	be	distributed	to	all	of	humanity	evenly	(or	otherwise	according
to	 universal	 moral	 criteria).	 Adopting	 such	 a	 windfall	 clause	 should	 be
substantially	 costless,	 any	 given	 firm	 being	 extremely	 unlikely	 ever	 to	 exceed
the	stratospheric	profit	 threshold	(and	such	low-probability	scenarios	ordinarily
playing	 no	 role	 in	 the	 decisions	 of	 the	 firm’s	managers	 and	 investors).	Yet	 its
widespread	adoption	would	give	humankind	a	valuable	guarantee	(insofar	as	the
commitments	 could	be	 trusted)	 that	 if	 ever	 some	private	 enterprise	were	 to	hit
the	 jackpot	with	 the	 intelligence	 explosion,	 everybody	would	 share	 in	most	 of
the	 benefits.	 The	 same	 idea	 could	 be	 applied	 to	 entities	 other	 than	 firms.	 For
example,	states	could	agree	that	if	ever	any	one	state’s	GDP	exceeds	some	very
high	 fraction	 (say,	 90%)	 of	 world	 GDP,	 the	 overshoot	 should	 be	 distributed
evenly	to	all.48

The	 common	 good	 principle	 (and	 particular	 instantiations,	 such	 as	 windfall
clauses)	 could	 be	 adopted	 initially	 as	 a	 voluntary	 moral	 commitment	 by
responsible	 individuals	 and	 organizations	 that	 are	 active	 in	 areas	 related	 to
machine	 intelligence.	Later,	 it	could	be	endorsed	by	a	wider	set	of	entities	and
enacted	 into	 law	 and	 treaty.	A	 vague	 formulation,	 such	 as	 the	 one	 given	 here,
may	serve	well	as	a	starting	point;	but	it	would	ultimately	need	to	be	sharpened
into	a	set	of	specific	verifiable	requirements.



CHAPTER	15
Crunch	time

	

We	 find	 ourselves	 in	 a	 thicket	 of	 strategic	 complexity,	 surrounded	 by	 a
dense	 mist	 of	 uncertainty.	 Though	 many	 considerations	 have	 been
discerned,	their	details	and	interrelationships	remain	unclear	and	iffy—and
there	might	be	other	factors	we	have	not	even	thought	of	yet.	What	are	we
to	do	in	this	predicament?

Philosophy	with	a	deadline

	

A	colleague	of	mine	likes	to	point	out	that	a	Fields	Medal	(the	highest	honor	in
mathematics)	 indicates	 two	 things	 about	 the	 recipient:	 that	 he	was	 capable	 of
accomplishing	 something	 important,	 and	 that	 he	 didn’t.	 Though	 harsh,	 the
remark	hints	at	a	truth.

Think	of	a	“discovery”	as	an	act	that	moves	the	arrival	of	information	from	a
later	point	 in	 time	 to	an	earlier	 time.	The	discovery’s	value	does	not	equal	 the
value	 of	 the	 information	 discovered	 but	 rather	 the	 value	 of	 having	 the
information	available	earlier	than	it	otherwise	would	have	been.	A	scientist	or	a
mathematician	may	show	great	skill	by	being	the	first	to	find	a	solution	that	has
eluded	many	others;	yet	 if	 the	problem	would	 soon	have	been	 solved	anyway,
then	 the	work	 probably	 has	 not	much	 benefited	 the	world.	 There	are	 cases	 in
which	having	a	solution	even	slightly	sooner	is	immensely	valuable,	but	this	is
most	 plausible	 when	 the	 solution	 is	 immediately	 put	 to	 use,	 either	 being
deployed	for	some	practical	end	or	serving	as	a	foundation	to	further	theoretical
work.	And	 in	 the	 latter	case,	where	a	 solution	 is	 immediately	used	only	 in	 the
sense	of	serving	as	a	building	block	for	further	theorizing,	there	is	great	value	in
obtaining	a	 solution	 slightly	 sooner	only	 if	 the	 further	work	 it	 enables	 is	 itself
both	important	and	urgent.1

The	question,	then,	is	not	whether	the	result	discovered	by	the	Fields	Medalist



is	 in	 itself	 “important”	 (whether	 instrumentally	 or	 for	 knowledge’s	 own	 sake).
Rather,	 the	 question	 is	whether	 it	was	 important	 that	 the	medalist	 enabled	 the
publication	of	 the	 result	 to	occur	at	 an	earlier	date.	The	value	of	 this	 temporal
transport	should	be	compared	to	the	value	that	a	world-class	mathematical	mind
could	have	generated	by	working	on	something	else.	At	least	in	some	cases,	the
Fields	 Medal	 might	 indicate	 a	 life	 spent	 solving	 the	 wrong	 problem—for
instance,	a	problem	whose	allure	consisted	primarily	in	being	famously	difficult
to	solve.

Similar	barbs	could	be	directed	at	other	fields,	such	as	academic	philosophy.
Philosophy	covers	some	problems	that	are	relevant	to	existential	risk	mitigation
—we	 encountered	 several	 in	 this	 book.	 Yet	 there	 are	 also	 subfields	 within
philosophy	that	have	no	apparent	link	to	existential	risk	or	indeed	any	practical
concern.	 As	 with	 pure	 mathematics,	 some	 of	 the	 problems	 that	 philosophy
studies	might	 be	 regarded	 as	 intrinsically	 important,	 in	 the	 sense	 that	 humans
have	reason	to	care	about	them	independently	of	any	practical	application.	The
fundamental	nature	of	reality,	for	instance,	might	be	worth	knowing	about,	for	its
own	 sake.	 The	 world	 would	 arguably	 be	 less	 glorious	 if	 nobody	 studied
metaphysics,	cosmology,	or	string	theory.	However,	the	dawning	prospect	of	an
intelligence	explosion	shines	a	new	light	on	this	ancient	quest	for	wisdom.

The	outlook	now	suggests	that	philosophic	progress	can	be	maximized	via	an
indirect	path	rather	than	by	immediate	philosophizing.	One	of	the	many	tasks	on
which	superintelligence	(or	even	just	moderately	enhanced	human	intelligence)
would	 outperform	 the	 current	 cast	 of	 thinkers	 is	 in	 answering	 fundamental
questions	 in	 science	 and	 philosophy.	 This	 reflection	 suggests	 a	 strategy	 of
deferred	gratification.	We	could	postpone	work	on	some	of	the	eternal	questions
for	 a	 little	 while,	 delegating	 that	 task	 to	 our	 hopefully	 more	 competent
successors—in	order	 to	 focus	our	own	attention	on	a	more	pressing	challenge:
increasing	 the	 chance	 that	 we	 will	 actually	 have	 competent	 successors.	 This
would	be	high-impact	philosophy	and	high-impact	mathematics.2

What	is	to	be	done?

	

We	thus	want	to	focus	on	problems	that	are	not	only	important	but	urgent	in	the
sense	 that	 their	 solutions	 are	 needed	 prior	 to	 the	 intelligence	 explosion.	 We
should	also	take	heed	not	to	work	on	problems	that	are	negative-value	(such	that



solving	 them	 is	 harmful).	 Some	 technical	 problems	 in	 the	 field	 of	 artificial
intelligence,	 for	 instance,	 might	 be	 negative-value	 inasmuch	 as	 their	 solution
would	speed	the	development	of	machine	intelligence	without	doing	as	much	to
expedite	 the	 development	 of	 control	 methods	 that	 could	 render	 the	 machine
intelligence	revolution	survivable	and	beneficial.

It	can	be	hard	to	identify	problems	that	are	both	urgent	and	important	and	are
such	 that	 we	 can	 confidently	 take	 them	 to	 be	 positive-value.	 The	 strategic
uncertainty	 surrounding	 existential	 risk	 mitigation	 means	 that	 we	 must	 worry
that	 even	 well-intentioned	 interventions	 may	 turn	 out	 to	 be	 not	 only
unproductive	 but	 counterproductive.	 To	 limit	 the	 risk	 of	 doing	 something
actively	harmful	or	morally	wrong,	we	should	prefer	 to	work	on	problems	that
seem	 robustly	 positive-value	 (i.e.,	 whose	 solution	 would	 make	 a	 positive
contribution	 across	 a	 wide	 range	 of	 scenarios)	 and	 to	 employ	 means	 that	 are
robustly	justifiable	(i.e.,	acceptable	from	a	wide	range	of	moral	views).

There	 is	 a	 further	 desideratum	 to	 consider	 in	 selecting	 which	 problems	 to
prioritize.	We	want	to	work	on	problems	that	are	elastic	to	our	efforts	at	solving
them.	Highly	elastic	problems	are	those	that	can	be	solved	much	faster,	or	solved
to	 a	 much	 greater	 extent,	 given	 one	 extra	 unit	 of	 effort.	 Encouraging	 more
kindness	in	the	world	is	an	important	and	urgent	problem—one,	moreover,	that
seems	quite	 robustly	positive-value:	yet	absent	a	breakthrough	 idea	 for	how	 to
go	about	it,	probably	a	problem	of	quite	low	elasticity.	Achieving	world	peace,
similarly,	 would	 be	 highly	 desirable;	 but	 considering	 the	 numerous	 efforts
already	 targeting	 that	 problem,	 and	 the	 formidable	 obstacles	 arrayed	 against	 a
quick	solution,	it	seems	unlikely	that	the	contributions	of	a	few	extra	individuals
would	make	a	large	difference.

To	 reduce	 the	 risks	 of	 the	machine	 intelligence	 revolution,	we	will	 propose
two	 objectives	 that	 appear	 to	 best	meet	 all	 those	 desiderata:	 strategic	 analysis
and	 capacity-building.	We	 can	 be	 relatively	 confident	 about	 the	 sign	 of	 these
parameters—more	strategic	insight	and	more	capacity	being	better.	Furthermore,
the	parameters	are	elastic:	a	small	extra	 investment	can	make	a	relatively	large
difference.	Gaining	 insight	 and	 capacity	 is	 also	 urgent	 because	 early	 boosts	 to
these	parameters	may	compound,	making	subsequent	efforts	more	effective.	 In
addition	to	 these	two	broad	objectives,	we	will	point	 to	a	few	other	potentially
worthwhile	aims	for	initiatives.

Seeking	the	strategic	light



	

Against	a	backdrop	of	perplexity	and	uncertainty,	analysis	stands	out	as	being	of
particularly	high	expected	value.3	 Illumination	of	our	 strategic	 situation	would
help	 us	 target	 subsequent	 interventions	 more	 effectively.	 Strategic	 analysis	 is
especially	needful	when	we	are	radically	uncertain	not	just	about	some	detail	of
some	peripheral	matter	but	about	the	cardinal	qualities	of	the	central	things.	For
many	key	parameters,	we	are	radically	uncertain	even	about	their	sign—that	is,
we	 know	 not	 which	 direction	 of	 change	 would	 be	 desirable	 and	 which
undesirable.	Our	 ignorance	might	not	be	 irremediable.	The	field	has	been	 little
prospected,	 and	 glimmering	 strategic	 insights	 could	 still	 be	 awaiting	 their
unearthing	just	a	few	feet	beneath	the	surface.

What	 we	 mean	 by	 “strategic	 analysis”	 here	 is	 a	 search	 for	 crucial
considerations:	 ideas	 or	 arguments	with	 the	 potential	 to	 change	 our	 views	 not
merely	about	the	fine-structure	of	implementation	but	about	the	general	topology
of	desirability.4	Even	a	single	missed	crucial	consideration	could	vitiate	our	most
valiant	 efforts	 or	 render	 them	as	 actively	 harmful	 as	 those	 of	 a	 soldier	who	 is
fighting	 on	 the	wrong	 side.	The	 search	 for	 crucial	 considerations	 (which	must
explore	normative	as	well	as	descriptive	issues)	will	often	require	crisscrossing
the	 boundaries	 between	 different	 academic	 disciplines	 and	 other	 fields	 of
knowledge.	As	there	is	no	established	methodology	for	how	to	go	about	this	kind
of	research,	difficult	original	thinking	is	necessary.

Building	good	capacity

	

Another	high-value	activity,	one	that	shares	with	strategic	analysis	the	robustness
property	of	being	beneficial	across	a	wide	range	of	scenarios,	is	the	development
of	a	well-constituted	support	base	that	takes	the	future	seriously.	Such	a	base	can
immediately	 provide	 resources	 for	 research	 and	 analysis.	 If	 and	 when	 other
priorities	 become	 visible,	 resources	 can	 be	 redirected	 accordingly.	 A	 support
base	 is	 thus	 a	 general-purpose	 capability	 whose	 use	 can	 be	 guided	 by	 new
insights	as	they	emerge.

One	valuable	asset	would	be	a	donor	network	comprising	individuals	devoted
to	rational	philanthropy,	informed	about	existential	risk,	and	discerning	about	the
means	of	mitigation.	It	is	especially	desirable	that	the	early-day	funders	be	astute



and	altruistic,	because	 they	may	have	opportunities	 to	 shape	 the	 field’s	culture
before	the	usual	venal	interests	take	up	position	and	entrench.	The	focus	during
these	opening	gambits	should	thus	be	to	recruit	the	right	kinds	of	people	into	the
field.	It	could	be	worth	foregoing	some	technical	advances	in	the	short	 term	in
order	to	fill	the	ranks	with	individuals	who	genuinely	care	about	safety	and	who
have	a	truth-seeking	orientation	(and	who	are	likely	to	attract	more	of	their	own
kind).

One	important	variable	is	the	quality	of	the	“social	epistemology”	of	the	AI-
field	and	its	leading	projects.	Discovering	crucial	considerations	is	valuable,	but
only	 if	 it	 affects	 action.	 This	 cannot	 always	 be	 taken	 for	 granted.	 Imagine	 a
project	 that	 invests	millions	of	dollars	and	years	of	 toil	 to	develop	a	prototype
AI,	 and	 that	 after	 surmounting	many	 technical	 challenges	 the	 system	 is	 finally
beginning	to	show	real	progress.	There	is	a	chance	that	with	just	a	bit	more	work
it	could	turn	into	something	useful	and	profitable.	Now	a	crucial	consideration	is
discovered,	indicating	that	a	completely	different	approach	would	be	a	bit	safer.
Does	the	project	kill	itself	off	like	a	dishonored	samurai,	relinquishing	its	unsafe
design	and	all	the	progress	that	had	been	made?	Or	does	it	react	like	a	worried
octopus,	puffing	out	a	cloud	of	motivated	skepticism	in	the	hope	of	eluding	the
attack?	 A	 project	 that	 would	 reliably	 choose	 the	 samurai	 option	 in	 such	 a
dilemma	 would	 be	 a	 far	 preferable	 developer.5	 Yet	 building	 processes	 and
institutions	 that	 are	willing	 to	 commit	 seppuku	 based	 on	 uncertain	 allegations
and	speculative	reasoning	is	not	easy.	Another	dimension	of	social	epistemology
is	 the	 management	 of	 sensitive	 information,	 in	 particular	 the	 ability	 to	 avoid
leaking	 information	 that	ought	be	kept	 secret.	 (Information	continence	may	be
especially	 challenging	 for	 academic	 researchers,	 accustomed	 as	 they	 are	 to
constantly	disseminating	their	results	on	every	available	lamppost	and	tree.)

Particular	measures

	

In	addition	 to	 the	general	objectives	of	strategic	 light	and	good	capacity,	 some
more	 specific	 objectives	 could	 also	 present	 cost-effective	 opportunities	 for
action.

One	 such	 is	 progress	 on	 the	 technical	 challenges	 of	 machine	 intelligence
safety.	 In	 pursing	 this	 objective,	 care	 should	 be	 taken	 to	 manage	 information
hazards.	Some	work	that	would	be	useful	for	solving	the	control	problem	would



also	be	useful	for	solving	the	competence	problem.	Work	that	burns	down	the	AI
fuse	could	easily	be	a	net	negative.

Another	 specific	 objective	 is	 to	 promote	 “best	 practices”	 among	 AI
researchers.	Whatever	progress	has	been	made	on	the	control	problem	needs	to
be	disseminated.	Some	 forms	of	 computational	 experimentation,	particularly	 if
involving	 strong	 recursive	 self-improvement,	 may	 also	 require	 the	 use	 of
capability	control	to	mitigate	the	risk	of	an	accidental	takeoff.	While	the	actual
implementation	of	 safety	methods	 is	 not	 so	 relevant	 today,	 it	will	 increasingly
become	 so	 as	 the	 state	 of	 the	 art	 advances.	And	 it	 is	 not	 too	 soon	 to	 call	 for
practitioners	to	express	a	commitment	to	safety,	including	endorsing	the	common
good	 principle	 and	 promising	 to	 ramp	 up	 safety	 if	 and	 when	 the	 prospect	 of
machine	 superintelligence	 begins	 to	 look	more	 imminent.	 Pious	words	 are	 not
sufficient	 and	 will	 not	 by	 themselves	 make	 a	 dangerous	 technology	 safe:	 but
where	the	mouth	goeth,	the	mind	might	gradually	follow.

Other	 opportunities	 may	 also	 occasionally	 arise	 to	 push	 on	 some	 pivotal
parameter,	 for	 example	 to	 mitigate	 some	 other	 existential	 risk,	 or	 to	 promote
biological	cognitive	enhancement	and	 improvements	of	our	collective	wisdom,
or	even	to	shift	world	politics	into	a	more	harmonious	register.

Will	the	best	in	human	nature	please	stand	up

	

Before	 the	 prospect	 of	 an	 intelligence	 explosion,	 we	 humans	 are	 like	 small
children	playing	with	a	bomb.	Such	is	 the	mismatch	between	the	power	of	our
plaything	and	the	immaturity	of	our	conduct.	Superintelligence	is	a	challenge	for
which	we	are	not	ready	now	and	will	not	be	ready	for	a	long	time.	We	have	little
idea	when	the	detonation	will	occur,	though	if	we	hold	the	device	to	our	ear	we
can	hear	a	faint	ticking	sound.

For	 a	 child	 with	 an	 undetonated	 bomb	 in	 its	 hands,	 a	 sensible	 thing	 to	 do
would	be	 to	put	 it	down	gently,	quickly	back	out	of	 the	 room,	and	contact	 the
nearest	adult.	Yet	what	we	have	here	is	not	one	child	but	many,	each	with	access
to	an	independent	trigger	mechanism.	The	chances	that	we	will	all	find	the	sense
to	 put	 down	 the	 dangerous	 stuff	 seem	 almost	 negligible.	 Some	 little	 idiot	 is
bound	to	press	the	ignite	button	just	to	see	what	happens.



Nor	 can	 we	 attain	 safety	 by	 running	 away,	 for	 the	 blast	 of	 an	 intelligence
explosion	would	bring	down	 the	 entire	 firmament.	Nor	 is	 there	 a	 grown-up	 in
sight.

In	 this	 situation,	 any	 feeling	 of	 gee-wiz	 exhilaration	would	 be	 out	 of	 place.
Consternation	 and	 fear	would	 be	 closer	 to	 the	mark;	 but	 the	most	 appropriate
attitude	may	be	a	bitter	determination	to	be	as	competent	as	we	can,	much	as	if
we	 were	 preparing	 for	 a	 difficult	 exam	 that	 will	 either	 realize	 our	 dreams	 or
obliterate	them.

This	is	not	a	prescription	of	fanaticism.	The	intelligence	explosion	might	still
be	many	decades	off	in	the	future.	Moreover,	the	challenge	we	face	is,	in	part,	to
hold	 on	 to	 our	 humanity:	 to	 maintain	 our	 groundedness,	 common	 sense,	 and
good-humored	 decency	 even	 in	 the	 teeth	 of	 this	 most	 unnatural	 and	 inhuman
problem.	We	need	to	bring	all	our	human	resourcefulness	to	bear	on	its	solution.

Yet	 let	 us	 not	 lose	 track	 of	what	 is	 globally	 significant.	Through	 the	 fog	 of
everyday	 trivialities,	we	 can	 perceive—if	 but	 dimly—the	 essential	 task	 of	 our
age.	In	 this	book,	we	have	attempted	to	discern	a	 little	more	feature	 in	what	 is
otherwise	 still	 a	 relatively	 amorphous	 and	 negatively	 defined	 vision—one	 that
presents	as	our	principal	moral	priority	(at	least	from	an	impersonal	and	secular
perspective)	the	reduction	of	existential	risk	and	the	attainment	of	a	civilizational
trajectory	 that	 leads	 to	 a	 compassionate	 and	 jubilant	use	of	humanity’s	 cosmic
endowment.



NOTES

	

PRELIMS

	

1.	Not	all	endnotes	contain	useful	information,	however.

2.	I	don’t	know	which	ones.

CHAPTER	1:	PAST	DEVELOPMENTS	AND	PRESENT	CAPABILITIES

	

1.	A	subsistence-level	income	today	is	about	$400	(Chen	and	Ravallion	2010).
A	 million	 subsistence-level	 incomes	 is	 thus	 $400,000,000.	 The	 current
world	gross	product	 is	about	$60,000,000,000,000	and	 in	 recent	years	has
grown	at	an	annual	rate	of	about	4%	(compound	annual	growth	rate	since
1950,	 based	 on	 Maddison	 [2010]).	 These	 figures	 yield	 the	 estimate
mentioned	 in	 the	 text,	 which	 of	 course	 is	 only	 an	 order-of-magnitude
approximation.	 If	 we	 look	 directly	 at	 population	 figures,	 we	 find	 that	 it
currently	takes	the	world	population	about	one	and	a	half	weeks	to	grow	by
one	million;	but	 this	underestimates	 the	growth	rate	of	 the	economy	since
per	 capita	 income	 is	 also	 increasing.	 By	 5000	 BC,	 following	 the
Agricultural	 Revolution,	 the	 world	 population	 was	 growing	 at	 a	 rate	 of
about	1	million	per	200	years—a	great	acceleration	since	the	rate	of	perhaps
1	million	per	million	years	in	early	humanoid	prehistory—so	a	great	deal	of
acceleration	 had	 already	 occurred	 by	 then.	 Still,	 it	 is	 impressive	 that	 an
amount	of	economic	growth	that	took	200	years	seven	thousand	years	ago
takes	 just	 ninety	minutes	 now,	 and	 that	 the	world	 population	 growth	 that
took	two	centuries	then	takes	one	and	a	half	weeks	now.	See	also	Maddison
(2005).

2.	 Such	 dramatic	 growth	 and	 acceleration	 might	 suggest	 one	 notion	 of	 a
possible	 coming	 “singularity,”	 as	 adumbrated	 by	 John	von	Neumann	 in	 a



conversation	with	the	mathematician	Stanislaw	Ulam:

Our	 conversation	 centred	 on	 the	 ever	 accelerating	 progress	 of	 technology
and	 changes	 in	 the	 mode	 of	 human	 life,	 which	 gives	 the	 appearance	 of
approaching	 some	 essential	 singularity	 in	 the	 history	 of	 the	 race	 beyond
which	human	affairs,	as	we	know	them,	could	not	continue.	(Ulam	1958)

	
	

3.	Hanson	(2000).

4.	Vinge	(1993);	Kurzweil	(2005).

5.	Sandberg	(2010).

6.	Van	Zanden	(2003);	Maddison	(1999,	2001);	De	Long	(1998).

7.	Two	oft-repeated	optimistic	statements	from	the	1960s:	“Machines	will	be
capable,	 within	 twenty	 years,	 of	 doing	 any	 work	 a	 man	 can	 do”	 (Simon
1965,	 96);	 “Within	 a	 generation	 …	 the	 problem	 of	 creating	 artificial
intelligence	 will	 substantially	 be	 solved”	 (Minsky	 1967,	 2).	 For	 a
systematic	review	of	AI	predictions,	see	Armstrong	and	Sotala	(2012).

8.	See,	for	example,	Baum	et	al.	(2011)	and	Armstrong	and	Sotala	(2012).

9.	It	might	suggest,	however,	that	AI	researchers	know	less	about	development
timelines	than	they	think	they	do—but	this	could	cut	both	ways:	they	might
overestimate	as	well	as	underestimate	the	time	to	AI.

.	Good	(1965,	33).

.	 One	 exception	 is	 Norbert	 Wiener,	 who	 did	 have	 some	 qualms	 about	 the
possible	 consequences.	 He	 wrote,	 in	 1960:	 “If	 we	 use,	 to	 achieve	 our
purposes,	a	mechanical	agency	with	whose	operation	we	cannot	efficiently
interfere	 once	 we	 have	 started	 it,	 because	 the	 action	 is	 so	 fast	 and
irrevocable	 that	 we	 have	 not	 the	 data	 to	 intervene	 before	 the	 action	 is
complete,	 then	 we	 had	 better	 be	 quite	 sure	 that	 the	 purpose	 put	 into	 the
machine	 is	 the	purpose	which	we	really	desire	and	not	merely	a	colourful
imitation	of	 it”	 (Wiener	1960).	Ed	Fredkin	 spoke	about	his	worries	 about



superintelligent	 AI	 in	 an	 interview	 described	 in	 McCorduck	 (1979).	 By
1970,	Good	himself	writes	about	the	risks,	and	even	calls	for	the	creation	of
an	 association	 to	 deal	 with	 the	 dangers	 (Good	 [1970];	 see	 also	 his	 later
article	 [Good	1982]	where	he	 foreshadows	 some	of	 the	 ideas	of	 “indirect
normativity”	that	we	discuss	in	Chapter	13).	By	1984,	Marvin	Minsky	was
also	writing	about	many	of	the	key	worries	(Minsky	1984).

.	 Cf.	 Yudkowsky	 (2008a).	 On	 the	 importance	 of	 assessing	 the	 ethical
implications	 of	 potentially	 dangerous	 future	 technologies	 before	 they
become	feasible,	see	Roache	(2008).

.	McCorduck	(1979).

.	Newell	et	al.	(1959).

.	 The	 SAINTS	 program,	 the	 ANALOGY	 program,	 and	 the	 STUDENT
program,	respectively.	See	Slagle	(1963),	Evans	(1964,	1968),	and	Bobrow
(1968).

.	Nilsson	(1984).

.	Weizenbaum	(1966).

.	Winograd	(1972).

.	 Cope	 (1996);	 Weizenbaum	 (1976);	 Moravec	 (1980);	 Thrun	 et	 al.	 (2006);
Buehler	et	al.	(2009);	Koza	et	al.	(2003).	The	Nevada	Department	of	Motor
Vehicles	issued	the	first	license	for	a	driverless	car	in	May	2012.

.	The	STANDUP	system	(Ritchie	et	al.	2007).

.	 Schwartz	 (1987).	 Schwartz	 is	 here	 characterizing	 a	 skeptical	 view	 that	 he
thought	was	represented	by	the	writings	of	Hubert	Dreyfus.

.	 One	 vocal	 critic	 during	 this	 period	 was	 Hubert	 Dreyfus.	 Other	 prominent
skeptics	from	this	era	include	John	Lucas,	Roger	Penrose,	and	John	Searle.
However,	 among	 these	 only	Dreyfus	was	mainly	 concerned	with	 refuting
claims	 about	 what	 practical	 accomplishments	 we	 should	 expect	 from
existing	 paradigms	 in	 AI	 (though	 he	 seems	 to	 have	 been	 open	 to	 the
possibility	 that	 new	 paradigms	 could	 go	 further).	 Searle’s	 target	 was



functionalist	 theories	 in	 the	 philosophy	 of	 mind,	 not	 the	 instrumental
powers	of	AI	systems.	Lucas	and	Penrose	denied	that	a	classical	computer
could	 ever	 be	 programmed	 to	 do	 everything	 that	 a	 human	mathematician
can	do,	but	they	did	not	deny	that	any	particular	function	could	in	principle
be	 automated	 or	 that	 AIs	 might	 eventually	 become	 very	 instrumentally
powerful.	 Cicero	 remarked	 that	 “there	 is	 nothing	 so	 absurd	 but	 some
philosopher	 has	 said	 it”	 (Cicero	 1923,	 119);	 yet	 it	 is	 surprisingly	 hard	 to
think	of	any	significant	 thinker	who	has	denied	 the	possibility	of	machine
superintelligence	in	the	sense	used	in	this	book.

.	 For	 many	 applications,	 however,	 the	 learning	 that	 takes	 place	 in	 a	 neural
network	 is	 little	 different	 from	 the	 learning	 that	 takes	 place	 in	 linear
regression,	a	statistical	technique	developed	by	Adrien-Marie	Legendre	and
Carl	Friedrich	Gauss	in	the	early	1800s.

.	The	 basic	 algorithm	was	 described	 by	Arthur	Bryson	 and	Yu-Chi	Ho	 as	 a
multi-stage	dynamic	optimization	method	 in	1969	 (Bryson	and	Ho	1969).
The	application	to	neural	networks	was	suggested	by	Paul	Werbos	in	1974
(Werbos	 1994),	 but	 it	 was	 only	 after	 the	 work	 by	 David	 Rumelhart,
Geoffrey	Hinton,	and	Ronald	Williams	in	1986	(Rumelhart	et	al.	1986)	that
the	 method	 gradually	 began	 to	 seep	 into	 the	 awareness	 of	 a	 wider
community.

.	 Nets	 lacking	 hidden	 layers	 had	 previously	 been	 shown	 to	 have	 severely
limited	functionality	(Minsky	and	Papert	1969).

.	E.g.,	MacKay	(2003).

.	Murphy	(2012).

.	Pearl	(2009).

.	We	suppress	various	technical	details	here	in	order	not	to	unduly	burden	the
exposition.	We	will	have	occasion	to	revisit	some	of	these	ignored	issues	in
Chapter	12.

.	 A	 program	 p	 is	 a	 description	 of	 string	 x	 if	 p,	 run	 on	 (some	 particular)
universal	 Turing	machine	U,	 outputs	 x;	 we	 write	 this	 as	U(p)	 =	 x.	 (The
string	x	here	represents	a	possible	world.)	The	Kolmogorov	complexity	of	x
is	then	K(x):=minp	{l(p):	U(p)	=	x},	where	l(p)	is	the	length	of	p	in	bits.	The



“Solomonoff”	probability	of	x	is	then	defined	as	 	where	the
sum	is	defined	over	all	(“minimal,”	i.e.	not	necessarily	halting)	programs	p
for	which	U	outputs	a	string	starting	with	x	(Hutter	2005).

.	Bayesian	conditioning	on	evidence	E	gives

	

(The	probability	of	a	proposition	[like	E]	is	the	sum	of	the	probability	of	the
possible	worlds	in	which	it	is	true.)

.	 Or	 randomly	 picks	 one	 of	 the	 possible	 actions	 with	 the	 highest	 expected
utility,	in	case	there	is	a	tie.

.	 More	 concisely,	 the	 expected	 utility	 of	 an	 action	 can	 be	 written	 as	
	where	the	sum	is	over	all	possible	worlds.

.	See,	e.g.,	Howson	and	Urbach	(1993);	Bernardo	and	Smith	(1994);	Russell
and	Norvig	(2010).

.	 Wainwright	 and	 Jordan	 (2008).	 The	 application	 areas	 of	 Bayes	 nets	 are
myriad;	see,	e.g.,	Pourret	et	al.	(2008).

.	One	might	wonder	why	so	much	detail	 is	given	to	game	AI	here,	which	to
some	might	seem	like	an	unimportant	application	area.	The	answer	is	 that
game-playing	 offers	 some	 of	 the	 clearest	 measures	 of	 human	 vs.	 AI
performance.

.	Samuel	(1959);	Schaeffer	(1997,	ch.	6).

.	Schaeffer	et	al.	(2007).

.	Berliner	(1980a,	b).

.	Tesauro	(1995).

.	 Such	 programs	 include	 GNU	 (see	 Silver	 [2006])	 and	 Snowie	 (see



Gammoned.net	[2012]).

.	 Lenat	 himself	 had	 a	 hand	 in	 guiding	 the	 fleet-design	 process.	 He	 wrote:
“Thus	the	final	crediting	of	the	win	should	be	about	60/40%	Lenat/Eurisko,
though	the	significant	point	here	is	that	neither	party	could	have	won	alone”
(Lenat	1983,	80).

.	Lenat	(1982,	1983).

.	Cirasella	and	Kopec	(2006).

.	Kasparov	(1996,	55).

.	Newborn	(2011).

.	Keim	et	al.	(1999).

.	See	Armstrong	(2012).

.	Sheppard	(2002).

.	Wikipedia	(2012a).

.	Markoff	(2011).

.	Rubin	and	Watson	(2011).

.	Elyasaf	et	al.	(2011).

.	KGS	(2012).

.	Newell	et	al.	(1958,	320).

.	Attributed	in	Vardi	(2012).

.	 In	 1976,	 I.	 J.	Good	wrote:	 “A	 computer	 program	of	Grandmaster	 strength
would	bring	us	within	an	ace	of	[machine	ultraintelligence]”	(Good	1976).
In	1979,	Douglas	Hofstadter	opined	in	his	Pulitzer-winning	Gödel,	Escher,
Bach:	 “Question:	 Will	 there	 be	 chess	 programs	 that	 can	 beat	 anyone?
Speculation:	No.	There	may	be	programs	that	can	beat	anyone	at	chess,	but
they	 will	 not	 be	 exclusively	 chess	 programs.	 They	 will	 be	 programs	 of



general	intelligence,	and	they	will	be	just	as	temperamental	as	people.	‘Do
you	 want	 to	 play	 chess?’	 ‘No,	 I’m	 bored	 with	 chess.	 Let’s	 talk	 about
poetry’”	(Hofstadter	[1979]	1999,	678).

.	The	algorithm	is	minimax	search	with	alpha-beta	pruning,	used	with	a	chess-
specific	 heuristic	 evaluation	 function	 of	 board	 states.	 Combined	 with	 a
good	 library	of	openings	and	endgames,	and	various	other	 tricks,	 this	can
make	for	a	capable	chess	engine.

.	Though	especially	with	 recent	progress	 in	 learning	 the	evaluation	heuristic
from	simulated	games,	many	of	the	underlying	algorithms	would	probably
also	work	well	for	many	other	games.

.	 Nilsson	 (2009,	 318).	 Knuth	was	 certainly	 overstating	 his	 point.	 There	 are
many	“thinking	tasks”	that	AI	has	not	succeeded	in	doing—inventing	a	new
subfield	of	pure	mathematics,	doing	any	kind	of	philosophy,	writing	a	great
detective	 novel,	 engineering	 a	 coup	 d’état,	 or	 designing	 a	 major	 new
consumer	product.

.	Shapiro	(1992).

.	One	might	 speculate	 that	 one	 reason	 it	 has	 been	 difficult	 to	match	 human
abilities	 in	 perception,	 motor	 control,	 common	 sense,	 and	 language
understanding	is	that	our	brains	have	dedicated	wetware	for	these	functions
—neural	structures	that	have	been	optimized	over	evolutionary	timescales.
By	contrast,	logical	thinking	and	skills	like	chess	playing	are	not	natural	to
us;	 so	perhaps	we	are	 forced	 to	 rely	on	a	 limited	pool	of	general-purpose
cognitive	resources	to	perform	these	tasks.	Maybe	what	our	brains	do	when
we	 engage	 in	 explicit	 logical	 reasoning	 or	 calculation	 is	 in	 some	 ways
analogous	to	running	a	“virtual	machine,”	a	slow	and	cumbersome	mental
simulation	of	a	general-purpose	computer.	One	might	 then	say	(somewhat
fancifully)	 that	 a	 classical	 AI	 program	 is	 not	 so	 much	 emulating	 human
thinking	 as	 the	 other	 way	 around:	 a	 human	 who	 is	 thinking	 logically	 is
emulating	an	AI	program.

.	This	example	is	controversial:	a	minority	view,	represented	by	approximately
20%	of	 adults	 in	 the	USA	 and	 similar	 numbers	 in	many	 other	 developed
nations,	holds	that	the	Sun	revolves	around	the	Earth	(Crabtree	1999;	Dean
2005).



.	World	Robotics	(2011).

.	Estimated	from	data	in	Guizzo	(2010).

.	Holley	(2009).

.	Hybrid	rule-based	statistical	approaches	are	also	used,	but	they	are	currently
a	small	part	of	the	picture.

.	Cross	and	Walker	(1994);	Hedberg	(2002).

.	Based	on	 the	 statistics	 from	TABB	Group,	a	New	York-and	London-based
capital	markets	research	firm	(personal	communication).

.	CFTC	and	SEC	(2010).	For	a	different	perspective	on	the	events	of	6	May
2010,	see	CME	Group	(2010).

.	Nothing	in	the	text	should	be	construed	as	an	argument	against	algorithmic
high-frequency	 trading,	 which	 might	 normally	 perform	 a	 beneficial
function	by	increasing	liquidity	and	market	efficiency.

.	 A	 smaller	 market	 scare	 occurred	 on	 August,	 1,	 2012,	 in	 part	 because	 the
“circuit	 breaker”	 was	 not	 also	 programmed	 to	 halt	 trading	 if	 there	 were
extreme	changes	in	the	number	of	shares	being	traded	(Popper	2012).	This
again	 foreshadows	 another	 later	 theme:	 the	 difficulty	 of	 anticipating	 all
specific	 ways	 in	 which	 some	 particular	 plausible-seeming	 rule	 might	 go
wrong.

.	Nilsson	(2009,	319).

.	Minsky	(2006);	McCarthy	(2007);	Beal	and	Winston	(2009).

.	 Peter	 Norvig,	 personal	 communication.	 Machine-learning	 classes	 are	 also
very	 popular,	 reflecting	 a	 somewhat	 orthogonal	 hype-wave	 of	 “big	 data”
(inspired	by	e.g.	Google	and	the	Netflix	Prize).

.	Armstrong	and	Sotala	(2012).

.	Müller	and	Bostrom	(forthcoming).



.	 See	 Baum	 et	 al.	 (2011),	 another	 survey	 cited	 therein,	 and	 Sandberg	 and
Bostrom	(2011).

.	Nilsson	(2009).

.	This	is	again	conditional	on	no	civilization-disrupting	catastrophe	occurring.
The	definition	of	HLMI	used	by	Nilsson	is	“AI	able	to	perform	around	80%
of	jobs	as	well	or	better	than	humans	perform”	(Kruel	2012).

.	The	 table	shows	 the	 results	of	 four	different	polls	as	well	as	 the	combined
results.	 The	 first	 two	 were	 polls	 taken	 at	 academic	 conferences:	 PT-AI,
participants	of	the	conference	Philosophy	and	Theory	of	AI	in	Thessaloniki
2011	(respondents	were	asked	in	November	2012),	with	a	response	rate	of
43	 out	 of	 88;	 and	AGI,	 participants	 of	 the	 conferences	Artificial	General
Intelligence	and	 Impacts	and	Risks	of	Artificial	General	 Intelligence,	both
in	Oxford,	December	2012	(response	rate:	72/111).	The	EETN	poll	sampled
the	 members	 of	 the	 Greek	 Association	 for	 Artificial	 Intelligence,	 a
professional	 organization	 of	 published	 researchers	 in	 the	 field,	 in	 April
2013	(response	rate:	26/250).	The	TOP100	poll	elicited	the	opinions	among
the	100	top	authors	in	artificial	intelligence	as	measured	by	a	citation	index,
in	May	2013	(response	rate:	29/100).

.	Interviews	with	some	28	(at	the	time	of	writing)	AI	practitioners	and	related
experts	have	been	posted	by	Kruel	(2011).

.	The	diagram	shows	renormalized	median	estimates.	Means	are	significantly
different.	 For	 example,	 the	 mean	 estimates	 for	 the	 “Extremely	 bad”
outcome	were	 7.6%	 (for	TOP100)	 and	 17.2%	 (for	 the	 combined	 pool	 of
expert	assessors).

.	 There	 is	 a	 substantial	 literature	 documenting	 the	 unreliability	 of	 expert
forecasts	in	many	domains,	and	there	is	every	reason	to	think	that	many	of
the	 findings	 in	 this	 body	 of	 research	 apply	 to	 the	 field	 of	 artificial
intelligence	 too.	 In	particular,	 forecasters	 tend	 to	be	overconfident	 in	 their
predictions,	believing	themselves	to	be	more	accurate	than	they	really	are,
and	 therefore	 assigning	 too	 little	 probability	 to	 the	 possibility	 that	 their
most-favored	 hypothesis	 is	 wrong	 (Tetlock	 2005).	 (Various	 other	 biases
have	 also	 been	 documented;	 see,	 e.g.,	 Gilovich	 et	 al.	 [2002].)	 However,
uncertainty	is	an	inescapable	fact	of	the	human	condition,	and	many	of	our



actions	 unavoidably	 rely	 on	 expectations	 about	 which	 long-term
consequences	 are	more	 or	 less	 plausible:	 in	 other	words,	 on	 probabilistic
predictions.	 Refusing	 to	 offer	 explicit	 probabilistic	 predictions	would	 not
make	 the	 epistemic	 problem	 go	 away;	 it	 would	 just	 hide	 it	 from	 view
(Bostrom	2007).	Instead,	we	should	respond	to	evidence	of	overconfidence
by	 broadening	 our	 confidence	 intervals	 (or	 “credible	 intervals”)—i.e.	 by
smearing	out	our	credence	 functions—and	 in	general	we	must	 struggle	as
best	 we	 can	 with	 our	 biases,	 by	 considering	 different	 perspectives	 and
aiming	 for	 intellectual	 honesty.	 In	 the	 longer	 run,	 we	 can	 also	 work	 to
develop	 techniques,	 training	 methods,	 and	 institutions	 that	 can	 help	 us
achieve	better	calibration.	See	also	Armstrong	and	Sotala	(2012).

CHAPTER	2:	PATHS	TO	SUPERINTELLIGENCE

	

1.	This	resembles	the	definition	in	Bostrom	(2003c)	and	Bostrom	(2006a).	It
can	also	be	compared	with	Shane	Legg’s	definition	(“Intelligence	measures
an	agent’s	ability	to	achieve	goals	in	a	wide	range	of	environments”)	and	its
formalizations	 (Legg	2008).	 It	 is	also	very	similar	 to	Good’s	definition	of
ultraintelligence	 in	 Chapter	 1	 (“a	 machine	 that	 can	 far	 surpass	 all	 the
intellectual	activities	of	any	man	however	clever”).

2.	 For	 the	 same	 reason,	 we	 make	 no	 assumption	 regarding	 whether	 a
superintelligent	 machine	 could	 have	 “true	 intentionality”	 (pace	 Searle,	 it
could;	but	this	seems	irrelevant	to	the	concerns	of	this	book).	And	we	take
no	position	in	the	internalism/externalism	debate	about	mental	content	that
has	been	raging	in	the	philosophical	literature,	or	on	the	related	issue	of	the
extended	mind	thesis	(Clark	and	Chalmers	1998).

3.	Turing	(1950,	456).

4.	Turing	(1950,	456).

5.	Chalmers	(2010);	Moravec	(1976,	1988,	1998,	1999).

6.	See	Moravec	 (1976).	A	similar	argument	 is	advanced	by	David	Chalmers
(2010).

7.	See	also	Shulman	and	Bostrom	(2012),	where	these	matters	are	elaborated



in	more	detail.

8.	Legg	(2008)	offers	this	reason	in	support	of	the	claim	that	humans	will	be
able	to	recapitulate	the	progress	of	evolution	over	much	shorter	timescales
and	 with	 reduced	 computational	 resources	 (while	 noting	 that	 evolution’s
unadjusted	 computational	 resources	 are	 far	 out	 of	 reach).	 Baum	 (2004)
argues	 that	 some	 developments	 relevant	 to	 AI	 occurred	 earlier,	 with	 the
organization	of	 the	genome	itself	embodying	a	valuable	 representation	for
evolutionary	algorithms.

9.	Whitman	et	al.	(1998);	Sabrosky	(1952).

.	Schultz	(2000).

.	Menzel	and	Giurfa	(2001,	62);	Truman	et	al.	(1993).

.	Sandberg	and	Bostrom	(2008).

.	See	Legg	 (2008)	 for	 further	discussion	of	 this	point	 and	of	 the	promise	of
functions	 or	 environments	 that	 determine	 fitness	 based	 on	 a	 smooth
landscape	of	pure	intelligence	tests.

.	 See	 Bostrom	 and	 Sandberg	 (2009b)	 for	 a	 taxonomy	 and	 more	 detailed
discussion	 of	 ways	 in	 which	 engineers	 may	 outperform	 historical
evolutionary	selection.

.	The	analysis	has	addressed	the	nervous	systems	of	living	creatures,	without
reference	 to	 the	 cost	 of	 simulating	 bodies	 or	 the	 surrounding	 virtual
environment	 as	 part	 of	 a	 fitness	 function.	 It	 is	 plausible	 that	 an	 adequate
fitness	 function	 could	 test	 the	 competence	 of	 a	 particular	 organism	 in	 far
fewer	 operations	 than	 it	 would	 take	 to	 simulate	 all	 the	 neuronal
computation	 of	 that	 organism’s	 brain	 throughout	 its	 natural	 lifespan.	 AI
programs	 today	 often	 develop	 and	 operate	 in	 very	 abstract	 environments
(theorem	 provers	 in	 symbolic	 math	 worlds,	 agents	 in	 simple	 game
tournament	worlds,	etc.).

A	skeptic	might	insist	that	an	abstract	environment	would	be	inadequate
for	 the	 evolution	of	 general	 intelligence,	 believing	 instead	 that	 the	virtual
environment	 would	 need	 to	 closely	 resemble	 the	 actual	 biological
environment	in	which	our	ancestors	evolved.	Creating	a	physically	realistic



virtual	 world	 would	 require	 a	 far	 greater	 investment	 of	 computational
resources	 than	 the	 simulation	 of	 a	 simple	 toy	 world	 or	 abstract	 problem
domain	 (whereas	 evolution	had	 access	 to	 a	 physically	 realistic	 real	world
“for	free”).	In	the	limiting	case,	if	complete	micro-physical	accuracy	were
insisted	upon,	 the	computational	requirements	would	balloon	to	ridiculous
proportions.	 However,	 such	 extreme	 pessimism	 is	 almost	 certainly
unwarranted;	 it	 seems	 unlikely	 that	 the	 best	 environment	 for	 evolving
intelligence	 is	 one	 that	mimics	 nature	 as	 closely	 as	 possible.	 It	 is,	 on	 the
contrary,	 plausible	 that	 it	 would	 be	 more	 efficient	 to	 use	 an	 artificial
selection	 environment,	 one	 quite	 unlike	 that	 of	 our	 ancestors,	 an
environment	specifically	designed	to	promote	adaptations	that	increase	the
type	 of	 intelligence	 we	 are	 seeking	 to	 evolve	 (abstract	 reasoning	 and
general	problem-solving	skills,	 for	 instance,	as	opposed	 to	maximally	 fast
instinctual	reactions	or	a	highly	optimized	visual	system).

.	Wikipedia	(2012b).

.	For	a	general	treatment	of	observation	selection	theory,	see	Bostrom	(2002a).
For	the	specific	application	to	the	current	issue,	see	Shulman	and	Bostrom
(2012).	For	a	short	popular	introduction,	see	Bostrom	(2008b).

.	Sutton	and	Barto	(1998,	21f);	Schultz	et	al.	(1997).

.	 This	 term	 was	 introduced	 by	 Eliezer	 Yudkowsky;	 see,	 e.g.,	 Yudkowsky
(2007).

.	 This	 is	 the	 scenario	 described	 by	 Good	 (1965)	 and	 Yudkowsky	 (2007).
However,	 one	 could	 also	 consider	 an	 alternative	 in	 which	 the	 iterative
sequence	has	some	steps	that	do	not	 involve	intelligence	enhancement	but
instead	 design	 simplification.	 That	 is,	 at	 some	 stages,	 the	 seed	 AI	 might
rewrite	itself	so	as	make	subsequent	improvements	easier	to	find.

.	Helmstaedter	et	al.	(2011).

.	Andres	et	al.	(2012).

.	Adequate	for	enabling	instrumentally	useful	forms	of	cognitive	functioning
and	communication,	 that	 is;	but	still	radically	impoverished	relative	to	the
interface	provided	by	 the	muscles	and	 sensory	organs	of	 a	normal	human
body.



.	Sandberg	(2013).

.	See	 the	“Computer	 requirements”	section	of	Sandberg	and	Bostrom	(2008,
79–81).

.	A	 lower	 level	 of	 success	might	 be	 a	 brain	 simulation	 that	 has	 biologically
suggestive	 micro-dynamics	 and	 displays	 a	 substantial	 range	 of	 emergent
species-typical	 activity	 such	 as	 a	 slow-wave	 sleep	 state	 or	 activity-
dependent	plasticity.	Whereas	 such	a	 simulation	could	be	a	useful	 testbed
for	neuroscientific	research	(though	one	which	might	come	close	to	raising
serious	ethical	issues),	it	would	not	count	as	a	whole	brain	emulation	unless
the	simulation	were	sufficiently	accurate	to	be	able	to	perform	a	substantial
fraction	of	the	intellectual	work	that	the	simulated	brain	was	capable	of.	As
a	 rule	 of	 thumb,	we	might	 say	 that	 in	 order	 for	 a	 simulation	 of	 a	 human
brain	 to	 count	 as	 a	 whole	 brain	 emulation,	 it	 would	 need	 to	 be	 able	 to
express	coherent	verbal	thoughts	or	have	the	capacity	to	learn	to	do	so.

.	Sandberg	and	Bostrom	(2008).

.	 Sandberg	 and	 Bostrom	 (2008).	 Further	 explanation	 can	 be	 found	 in	 the
original	report.

.	The	first	map	is	described	in	Albertson	and	Thomson	(1976)	and	White	et	al.
(1986).	The	 combined	 (and	 in	 some	cases	 corrected)	network	 is	 available
from	the	“WormAtlas”	website	(http://www.wormatlas.org/).

.	 For	 a	 review	of	 past	 attempts	 of	 emulating	C.	elegans	 and	 their	 fates,	 see
Kaufman	(2011).	Kaufman	quotes	one	ambitious	doctoral	student	working
in	the	area,	David	Dalrymple,	as	saying,	“With	optogenetic	techniques,	we
are	just	at	 the	point	where	it’s	not	an	outrageous	proposal	 to	reach	for	 the
capability	 to	 read	 and	 write	 to	 anywhere	 in	 a	 living	C.	 elegans	 nervous
system,	 using	 a	 high-throughput	 automated	 system….	 I	 expect	 to	 be
finished	with	C.	elegans	 in	2–3	years.	I	would	be	extremely	surprised,	for
whatever	that’s	worth,	if	this	is	still	an	open	problem	in	2020”	(Dalrymple
2011).	 Brain	 models	 aiming	 for	 biological	 realism	 that	 were	 hand-coded
(rather	 than	 generated	 automatically)	 have	 achieved	 some	 basic
functionality;	see,	e.g.,	Eliasmith	et	al.	(2012).

.	Caenorhabditis	elegans	 does	 have	 some	 convenient	 special	 properties.	 For
example,	the	organism	is	transparent,	and	the	wiring	pattern	of	its	nervous

http://www.wormatlas.org/


system	does	not	change	between	individuals.

.	 If	 neuromorphic	AI	 rather	 than	whole	 brain	 emulation	 is	 the	 end	 product,
then	 it	might	or	might	not	be	 the	case	 that	 the	 relevant	 insights	would	be
derived	 through	 attempts	 to	 simulate	human	 brains.	 It	 is	 conceivable	 that
the	 important	 cortical	 tricks	 would	 be	 discovered	 during	 the	 study	 of
(nonhuman)	 animal	 brains.	 Some	 animal	 brains	 might	 be	 easier	 to	 work
with	than	human	brains,	and	smaller	brains	would	require	fewer	resources
to	scan	and	model.	Research	on	animal	brains	would	also	be	subject	to	less
regulation.	 It	 is	 even	 conceivable	 that	 the	 first	 human-level	 machine
intelligence	will	be	created	by	completing	a	whole	brain	emulation	of	some
suitable	animal	and	then	finding	ways	to	enhance	the	resultant	digital	mind.
Thus	humanity	 could	 get	 its	 comeuppance	 from	an	uplifted	 lab	mouse	 or
macaque.

.	Uauy	and	Dangour	(2006);	Georgieff	(2007);	Stewart	et	al.	(2008);	Eppig	et
al.	(2010);	Cotman	and	Berchtold	(2002).

.	 According	 to	 the	 World	 Health	 Organization	 in	 2007,	 nearly	 2	 billion
individuals	have	insufficient	iodine	intake	(The	Lancet	2008).	Severe	iodine
deficiency	hinders	neurological	development	and	leads	to	cretinism,	which
involves	 an	 average	 loss	 of	 about	 12.5	 IQ	 points	 (Qian	 et	al.	 2005).	 The
condition	 can	 be	 easily	 and	 inexpensively	 prevented	 though	 salt
fortification	(Horton	et	al.	2008).

.	Bostrom	and	Sandberg	(2009a).

.	 Bostrom	 and	 Sandberg	 (2009b).	 A	 typical	 putative	 performance	 increase
from	pharmacological	 and	nutritional	 enhancement	 is	 in	 the	 range	of	 10–
20%	 on	 test	 tasks	 measuring	 working	 memory,	 attention,	 etc.	 But	 it	 is
generally	dubious	whether	such	reported	gains	are	real,	sustainable	over	a
longer	 term,	 and	 indicative	 of	 correspondingly	 improved	 results	 in	 real-
world	problem	situations	(Repantis	et	al.	2010).	For	instance,	in	some	cases
there	 might	 be	 a	 compensating	 deterioration	 on	 some	 performance
dimensions	that	are	not	measured	by	the	test	tasks	(Sandberg	and	Bostrom
2006).

.	If	there	were	an	easy	way	to	enhance	cognition,	one	would	expect	evolution
already	 to	 have	 taken	 advantage	 of	 it.	 Consequently,	 the	most	 promising



kind	 of	 nootropic	 to	 investigate	 may	 be	 one	 that	 promises	 to	 boost
intelligence	in	some	manner	that	we	can	see	would	have	lowered	fitness	in
the	ancestral	environment—for	example,	by	increasing	head	size	at	birth	or
amping	up	the	brain’s	glucose	metabolism.	For	a	more	detailed	discussion
of	 this	 idea	 (along	 with	 several	 important	 qualifications),	 see	 Bostrom
(2009b).

.	Sperm	are	harder	to	screen	because,	in	contrast	to	embryos,	they	consist	of
only	 one	 cell—and	 one	 cell	 needs	 to	 be	 destroyed	 in	 order	 to	 do	 the
sequencing.	Oocytes	 also	 consist	 of	 only	 one	 cell;	 however,	 the	 first	 and
second	 cell	 divisions	 are	 asymmetric	 and	 produce	 one	 daughter	 cell	with
very	 little	cytoplasm,	 the	polar	body.	Since	polar	bodies	contain	 the	 same
genome	 as	 the	 main	 cell	 and	 are	 redundant	 (they	 eventually	 degenerate)
they	can	be	biopsied	and	used	for	screening	(Gianaroli	2000).

.	Each	of	these	practices	was	subject	to	some	ethical	controversy	when	it	was
introduced,	 but	 there	 seems	 to	 be	 a	 trend	 toward	 increasing	 acceptance.
Attitudes	 toward	 human	 genetic	 engineering	 and	 embryo	 selection	 vary
significantly	 across	 cultures,	 suggesting	 that	 development	 and	 application
of	new	techniques	will	probably	take	place	even	if	some	countries	initially
adopt	 a	 cautious	 stance,	 although	 the	 rate	 at	 which	 this	 happens	 will	 be
influenced	by	moral,	religious,	and	political	pressures.

.	Davies	et	al.	(2011);	Benyamin	et	al.	(2013);	Plomin	et	al.	(2013).	See	also
Mardis	(2011);	Hsu	(2012).

.	Broad-sense	heritability	of	adult	IQ	is	usually	estimated	in	the	range	of	0.5–
0.8	within	middle-class	strata	of	developed	nations	(Bouchard	2004,	148).
Narrow-sense	 heritability,	 which	measures	 the	 portion	 of	 variance	 that	 is
attributable	 to	additive	genetic	 factors,	 is	 lower	 (in	 the	 range	0.3–0.5)	but
still	 substantial	 (Devlin	 et	 al.	 1997;	 Davies	 et	 al.	 2011;	 Visscher	 et	 al.
2008).	 These	 estimates	 could	 change	 for	 different	 populations	 and
environments,	 as	 heritabilities	 vary	 depending	 on	 the	 population	 and
environment	 being	 studied.	 For	 example,	 lower	 heritabilities	 have	 been
found	among	children	and	those	from	deprived	environments	(Benyamin	et
al.	 2013;	Turkheimer	 et	al.	 2003).	Nisbett	 et	al.	 (2012)	 review	 numerous
environmental	influences	on	variation	in	cognitive	ability.

.	 The	 following	 several	 paragraphs	 draw	 heavily	 on	 joint	 work	 with	 Carl



Shulman	(Shulman	and	Bostrom	2014).

.	This	 table	is	 taken	from	Shulman	and	Bostrom	(2014).	It	 is	based	on	a	toy
model	 that	 assumes	 a	 Gaussian	 distribution	 of	 predicted	 IQs	 among	 the
embryos	with	a	standard	deviation	of	7.5	points.	The	amount	of	cognitive
enhancement	 that	would	 be	 delivered	with	 different	 numbers	 of	 embryos
depends	on	how	different	the	embryos	are	from	one	another	in	the	additive
genetic	 variants	 whose	 effects	 we	 know.	 Siblings	 have	 a	 coefficient	 of
relatedness	of	½,	and	common	additive	genetic	variants	account	for	half	or
less	of	variance	in	adult	 fluid	 intelligence	(Davies	et	al.	2011).	These	 two
facts	 suggest	 that	 where	 the	 observed	 population	 standard	 deviation	 in
developed	 countries	 is	 15	 points,	 the	 standard	 deviation	 of	 genetic
influences	within	a	batch	of	embryos	would	be	7.5	points	or	less.

.	With	 imperfect	 information	 about	 the	 additive	 genetic	 effects	 on	 cognitive
ability,	 effect	 sizes	 would	 be	 reduced.	 However,	 even	 a	 small	 amount	 of
knowledge	would	go	a	relatively	long	way,	because	the	gains	from	selection
do	 not	 scale	 linearly	 with	 the	 portion	 of	 variance	 that	 we	 can	 predict.
Instead,	the	effectiveness	of	our	selection	depends	on	the	standard	deviation
of	 predicted	 mean	 IQ,	 which	 scales	 as	 the	 square	 root	 of	 variance.	 For
example,	if	one	could	account	for	12.5%	of	the	variance,	this	could	deliver
effects	 half	 as	 great	 as	 those	 in	 Table	 1,	 which	 assume	 50%.	 For
comparison,	 a	 recent	 study	 (Rietveld	 et	 al.	 2013)	 claims	 to	 have	 already
identified	2.5%	of	the	variance.

.	For	comparison,	standard	practice	today	involves	the	creation	of	fewer	than
ten	embryos.

.	Adult	and	embryonic	stem	cells	can	be	coaxed	 to	develop	 into	sperm	cells
and	oocytes,	which	 can	 then	be	 fused	 to	produce	 an	 embryo	 (Nagy	et	al.
2008;	 Nagy	 and	 Chang	 2007).	 Egg	 cell	 precursors	 can	 also	 form
parthenogenetic	 blastocysts,	 unfertilized	 and	 non-viable	 embryos,	 able	 to
produce	embryonic	stem	cell	lines	for	the	process	(Mai	et	al.	2007).

.	The	opinion	is	that	of	Katsuhiko	Hayashi,	as	reported	in	Cyranoski	(2013).
The	Hinxton	Group,	an	international	consortium	of	scientists	that	discusses
stem	 cell	 ethics	 and	 challenges,	 predicted	 in	 2008	 that	 human	 stem	 cell-
derived	gametes	would	be	available	within	ten	years	(Hinxton	Group	2008),
and	developments	thus	far	are	broadly	consistent	with	this.



.	Sparrow	(2013);	Miller	(2012);	The	Uncertain	Future	(2012).

.	Sparrow	(2013).

.	Secular	concerns	might	focus	on	anticipated	impacts	on	social	inequality,	the
medical	safety	of	the	procedure,	fears	of	an	enhancement	“rat	race,”	rights
and	 responsibilities	 of	 parents	 vis-à-vis	 their	 prospective	 offspring,	 the
shadow	of	 twentieth-century	 eugenics,	 the	 concept	 of	 human	 dignity,	 and
the	proper	limits	of	states’	involvement	in	the	reproductive	choices	of	their
citizens.	 (For	 a	 discussion	 of	 the	 ethics	 of	 cognitive	 enhancement	 see
Bostrom	and	Ord	 [2006],	Bostrom	and	Roache	 [2011],	 and	Sandberg	 and
Savulescu	[2011].)	Some	religious	traditions	may	offer	additional	concerns,
including	ones	centering	on	the	moral	status	of	embryos	or	the	proper	limits
of	human	agency	within	the	scheme	of	creation.

.	 To	 stave	 off	 the	 negative	 effects	 of	 inbreeding,	 iterated	 embryo	 selection
would	require	either	a	large	starting	supply	of	donors	or	the	expenditure	of
substantial	 selective	 power	 to	 reduce	 harmful	 recessive	 alleles.	 Either
alternative	 would	 tend	 to	 push	 toward	 offspring	 being	 less	 closely
genetically	related	to	their	parents	(and	more	related	to	one	another).

.	Adapted	from	Shulman	and	Bostrom	(2014).

.	Bostrom	(2008b).

.	Just	how	difficult	an	obstacle	epigenetics	will	be	is	not	yet	known	(Chason	et
al.	2011;	Iliadou	et	al.	2011).

.	While	 cognitive	 ability	 is	 a	 fairly	 heritable	 trait,	 there	 may	 be	 few	 or	 no
common	 alleles	 or	 polymorphisms	 that	 individually	 have	 a	 large	 positive
effect	on	intelligence	(Davis	et	al.	2010;	Davies	et	al.	2011;	Rietveld	et	al.
2013).	As	sequencing	methods	improve,	the	mapping	out	of	low-frequency
alleles	 and	 their	 cognitive	 and	 behavioral	 correlates	 will	 become
increasingly	 feasible.	 There	 is	 some	 theoretical	 evidence	 suggesting	 that
some	 alleles	 that	 cause	 genetic	 disorders	 in	 homozygotes	 may	 provide
sizeable	 cognitive	 advantages	 in	 heterozygote	 carriers,	 leading	 to	 a
prediction	 that	 Gaucher,	 Tay-Sachs,	 and	 Niemann-Pick	 heterozygotes
would	 be	 about	 5	 IQ	 points	 higher	 than	 control	 groups	 (Cochran	 et	 al.
2006).	Time	will	tell	whether	this	holds.



.	 One	 paper	 (Nachman	 and	 Crowell	 2000)	 estimates	 175	 mutations	 per
genome	 per	 generation.	 Another	 (Lynch	 2010),	 using	 different	 methods,
estimates	that	the	average	newborn	has	between	50	and	100	new	mutations,
and	Kong	et	 al.	 (2012)	 implies	 a	 figure	 of	 around	 77	 new	mutations	 per
generation.	Most	of	these	mutations	do	not	affect	functioning,	or	do	so	only
to	 an	 imperceptibly	 slight	 degree;	 but	 the	 combined	 effects	 of	many	very
slightly	deleterious	mutations	could	be	a	significant	loss	of	fitness.	See	also
Crow	(2000).

.	Crow	(2000);	Lynch	(2010).

.	There	are	some	potentially	important	caveats	to	this	idea.	It	is	possible	that
the	 modal	 genome	 would	 need	 some	 adjustments	 in	 order	 to	 avoid
problems.	For	example,	parts	of	the	genome	might	be	adapted	to	interacting
with	other	parts	under	the	assumption	that	all	parts	function	with	a	certain
level	of	efficiency.	Increasing	the	efficiency	of	those	parts	might	then	lead
to	overshooting	along	some	metabolic	pathways.

.	These	composites	were	created	by	Mike	Mike	from	individual	photographs
taken	by	Virtual	Flavius	(Mike	2013).

.	They	 can,	 of	 course,	 have	 some	 effects	 sooner—for	 instance,	 by	 changing
people’s	expectations	of	what	is	to	come.

.	Louis	Harris	&	Associates	(1969);	Mason	(2003).

.	Kalfoglou	et	al.	(2004).

.	The	data	is	obviously	limited,	but	individuals	selected	for	1-in-10,000	results
on	 childhood	 ability	 tests	 have	been	 shown,	 in	 longitudinal	 studies,	 to	 be
substantially	more	 likely	 to	 become	 tenured	 professors,	 earn	 patents,	 and
succeed	in	business	than	those	with	slightly	less	exceptional	scores	(Kell	et
al.	 2013).	 Roe	 (1953)	 studied	 sixty-four	 eminent	 scientists	 and	 found
median	 cognitive	 ability	 three	 to	 four	 standard	 deviations	 above	 the
population	 norm	 and	 strikingly	 higher	 than	 is	 typical	 for	 scientists	 in
general.	(Cognitive	ability	is	also	correlated	with	lifetime	earnings	and	with
non-financial	 outcomes	 such	 as	 life	 expectancy,	 divorce	 rates,	 and
probability	of	dropping	out	of	school	[Deary	2012].)	An	upward	shift	of	the
distribution	of	cognitive	ability	would	have	disproportionately	large	effects
at	the	tails,	especially	increasing	the	number	of	highly	gifted	and	reducing



the	 number	 of	 people	 with	 retardation	 and	 learning	 disabilities.	 See	 also
Bostrom	and	Ord	(2006)	and	Sandberg	and	Savulescu	(2011).

.	E.g.	Warwick	(2002).	Stephen	Hawking	even	suggested	that	taking	this	step
might	 be	 necessary	 in	 order	 to	 keep	 up	 with	 advances	 in	 machine
intelligence:	 “We	 must	 develop	 as	 quickly	 as	 possible	 technologies	 that
make	 possible	 a	 direct	 connection	 between	 brain	 and	 computer,	 so	 that
artificial	 brains	 contribute	 to	 human	 intelligence	 rather	 than	 opposing	 it”
(reported	in	Walsh	[2001]).	Ray	Kurzweil	concurs:	“As	far	as	Hawking’s	…
recommendation	is	concerned,	namely	direct	connection	between	the	brain
and	computers,	I	agree	that	this	is	both	reasonable,	desirable	and	inevitable.
[sic]	It’s	been	my	recommendation	for	years”	(Kurzweil	2001).

.	 See	 Lebedev	 and	 Nicolelis	 (2006);	 Birbaumer	 et	 al.	 (2008);	 Mak	 and
Wolpaw	 (2009);	 and	 Nicolelis	 and	 Lebedev	 (2009).	 A	 more	 personal
outlook	on	the	problem	of	enhancement	 through	implants	can	be	found	in
Chorost	(2005,	Chap.	11).

.	Smeding	et	al.	(2006).

.	Degnan	et	al.	(2002).

.	Dagnelie	(2012);	Shannon	(2012).

.	Perlmutter	and	Mink	(2006);	Lyons	(2011).

.	Koch	et	al.	(2006).

.	Schalk	(2008).	For	a	general	review	of	the	current	state	of	the	art,	see	Berger
et	 al.	 (2008).	 For	 the	 case	 that	 this	 would	 help	 lead	 to	 enhanced
intelligence,	see	Warwick	(2002).

.	Some	examples:	Bartels	et	al.	(2008);	Simeral	et	al.	 (2011);	Krusienski	and
Shih	(2011);	and	Pasqualotto	et	al.	(2012).

.	E.g.	Hinke	et	al.	(1993).

.	There	are	partial	 exceptions	 to	 this,	 especially	 in	early	 sensory	processing.
For	example,	 the	primary	visual	cortex	uses	a	 retinotopic	mapping,	which
means	roughly	that	adjacent	neural	assemblies	receive	inputs	from	adjacent



areas	 of	 the	 retinas	 (though	 ocular	 dominance	 columns	 somewhat
complicate	the	mapping).

.	Berger	et	al.	(2012);	Hampson	et	al.	(2012).

.	 Some	brain	 implants	 require	 two	 forms	of	 learning:	 the	device	 learning	 to
interpret	the	organism’s	neural	representations	and	the	organism	learning	to
use	the	system	by	generating	appropriate	neural	firing	patterns	(Carmena	et
al.	2003).

.	It	has	been	suggested	that	we	should	regard	corporate	entities	(corporations,
unions,	governments,	churches,	and	so	forth)	as	artificial	intelligent	agents,
entities	with	sensors	and	effectors,	able	to	represent	knowledge	and	perform
inference	 and	 take	 action	 (e.g.	 Kuipers	 [2012];	 cf.	 Huebner	 [2008]	 for	 a
discussion	on	whether	collective	representations	can	exist).	They	are	clearly
powerful	 and	 ecologically	 successful,	 although	 their	 capabilities	 and
internal	states	are	different	from	those	of	humans.

.	Hanson	(1995,	2000);	Berg	and	Rietz	(2003).

.	 In	 the	workplace,	 for	 instance,	 employers	might	 use	 lie	 detectors	 to	 crack
down	on	employee	theft	and	shirking,	by	asking	the	employee	at	the	end	of
each	 business	 day	 whether	 she	 has	 stolen	 anything	 and	 whether	 she	 has
worked	as	hard	as	she	could.	Political	and	business	leaders	could	likewise
be	asked	whether	 they	were	wholeheartedly	pursuing	 the	 interests	of	 their
shareholders	 or	 constituents.	 Dictators	 could	 use	 them	 to	 target	 seditious
generals	 within	 the	 regime	 or	 suspected	 troublemakers	 in	 the	 wider
population.

.	 One	 could	 imagine	 neuroimaging	 techniques	 making	 it	 possible	 to	 detect
neural	signatures	of	motivated	cognition.	Without	self-deception	detection,
lie	 detection	would	 favor	 individuals	 who	 believe	 their	 own	 propaganda.
Better	 tests	 for	 self-deception	 tests	 could	 also	 be	 used	 to	 train	 rationality
and	to	study	the	effectiveness	of	interventions	aimed	at	reducing	biases.

.	Bell	and	Gemmel	(2009).	An	early	example	is	found	in	the	work	of	MIT’s
Deb	Roy,	who	recorded	every	moment	of	his	son’s	first	three	years	of	life.
Analysis	 of	 this	 audiovisual	 data	 is	 yielding	 information	 on	 language
development;	see	Roy	(2012).



.	Growth	in	total	world	population	of	biological	human	beings	will	contribute
only	a	small	factor.	Scenarios	involving	machine	intelligence	could	see	the
world	 population	 (including	 digital	 minds)	 explode	 by	 many	 orders	 of
magnitude	 in	 a	 brief	 period	 of	 time.	 But	 that	 road	 to	 superintelligence
involves	 artificial	 intelligence	 or	 whole	 brain	 emulation,	 so	 we	 need	 not
consider	it	in	this	subsection.

.	Vinge	(1993).

CHAPTER	3:	FORMS	OF	SUPERINTELLIGENCE

	

1.	Vernor	Vinge	has	used	 the	 term	“weak	superintelligence”	 to	 refer	 to	 such
sped-up	human	minds	(Vinge	1993).

2.	 For	 example,	 if	 a	 very	 fast	 system	 could	 do	 everything	 that	 any	 human
could	 do	 except	 dance	 a	 mazurka,	 we	 should	 still	 call	 it	 a	 speed
superintelligence.	Our	 interest	 lies	 in	 those	core	cognitive	capabilities	 that
have	economic	or	strategic	significance.

3.	 At	 least	 a	 millionfold	 speedup	 compared	 to	 human	 brains	 is	 physically
possible,	 as	 can	 been	 seen	 by	 considering	 the	 difference	 in	 speed	 and
energy	 of	 relevant	 brain	 processes	 in	 comparison	 to	 more	 efficient
information	 processing.	 The	 speed	 of	 light	 is	 more	 than	 a	 million	 times
greater	than	that	of	neural	transmission,	synaptic	spikes	dissipate	more	than
a	million	times	more	heat	than	is	thermodynamically	necessary,	and	current
transistor	 frequencies	 are	 more	 than	 a	 million	 times	 faster	 than	 neuron
spiking	 frequencies	 (Yudkowsky	 [2008a];	 see	 also	 Drexler	 [1992]).	 The
ultimate	 limits	 of	 speed	 superintelligence	 are	 bounded	 by	 light-speed
communications	 delays,	 quantum	 limits	 on	 the	 speed	 of	 state	 transitions,
and	 the	 volume	 needed	 to	 contain	 the	mind	 (Lloyd	 2000).	 The	 “ultimate
laptop”	 described	 by	 Lloyd	 (2000)	 would	 run	 a	 1.4×1021	 FLOPS	 brain
emulation	 at	 speedup	 of	 3.8×1029×	 (assuming	 the	 emulation	 could	 be
sufficiently	parallelized).	Lloyd’s	construction,	however,	is	not	intended	to
be	technologically	plausible;	it	 is	only	meant	to	illustrate	those	constraints
on	computation	that	are	readily	derivable	from	basic	physical	laws.

4.	With	emulations,	there	is	also	an	issue	of	how	long	a	human-like	mind	can



keep	working	 on	 something	 before	 going	mad	 or	 falling	 into	 a	 rut.	 Even
with	 task	 variety	 and	 regular	 holidays,	 it	 is	 not	 certain	 that	 a	 human-like
mind	 could	 live	 for	 thousands	 of	 subjective	 years	 without	 developing
psychological	problems.	Furthermore,	if	total	memory	capacity	is	limited—
a	 consequence	 of	 having	 a	 limited	 neuron	 population—then	 cumulative
learning	 cannot	 continue	 indefinitely:	 beyond	 some	 point,	 the	mind	must
start	forgetting	one	thing	for	each	new	thing	it	learns.	(Artificial	intelligence
could	be	designed	such	as	to	ameliorate	these	potential	problems.)

5.	 Accordingly,	 nanomechanisms	 moving	 at	 a	 modest	 1	 m/s	 have	 typical
timescales	 of	 nanoseconds.	 See	 section	 2.3.2	 of	 Drexler	 (1992).	 Robin
Hanson	 mentions	 7-mm	 “tinkerbell”	 robot	 bodies	 moving	 at	 260	 times
normal	speed	(Hanson	1994).

6.	Hanson	(2012).

7.	 “Collective	 intelligence”	 does	 not	 refer	 to	 low-level	 parallelization	 of
computing	 hardware	 but	 to	 parallelization	 at	 the	 level	 of	 intelligent
autonomous	agents	such	as	human	beings.	Implementing	a	single	emulation
on	a	massively	parallel	machine	might	 result	 in	 speed	superintelligence	 if
the	parallel	computer	is	sufficiently	fast:	 it	would	not	produce	a	collective
intelligence.

8.	 Improvements	 to	 the	 speed	 or	 the	 quality	 of	 the	 individual	 components
could	 also	 indirectly	 affect	 the	 performance	of	 collective	 intelligence,	 but
here	we	mainly	consider	such	improvements	under	the	other	two	forms	of
superintelligence	in	our	classification.

9.	 It	 has	 been	 argued	 that	 a	 higher	 population	 density	 triggered	 the	 Upper
Paleolithic	Revolution	and	that	beyond	a	certain	threshold	accumulation	of
cultural	complexity	became	much	easier	(Powell	et	al.	2009).

.	What	about	the	Internet?	It	seems	not	yet	to	have	amounted	to	a	super-sized
boost.	Maybe	it	will	do	so	eventually.	It	took	centuries	or	millennia	for	the
other	examples	listed	here	to	reveal	their	full	potential.

.	This	 is,	obviously,	not	meant	 to	be	a	realistic	 thought	experiment.	A	planet
large	 enough	 to	 sustain	 seven	 quadrillion	 human	 organisms	 with	 present
technology	would	implode,	unless	it	were	made	of	very	light	matter	or	were
hollow	and	held	up	by	pressure	or	other	artificial	means.	(A	Dyson	sphere



or	 a	Shellworld	might	 be	 a	better	 solution.)	History	would	have	unfolded
differently	on	such	a	vast	surface.	Set	all	this	aside.

.	Our	focus	here	is	on	the	functional	properties	of	a	unified	intellect,	not	on	the
question	of	whether	such	an	intellect	would	have	qualia	or	whether	it	would
be	 a	 mind	 in	 the	 sense	 of	 having	 subjective	 conscious	 experience.	 (One
might	ponder,	though,	what	kinds	of	conscious	experience	might	arise	from
intellects	 that	 are	more	or	 less	 integrated	 than	 those	of	human	brains.	On
some	views	of	consciousness,	such	as	the	global	workspace	theory,	it	seems
one	 might	 expect	 more	 integrated	 brains	 to	 have	 more	 capacious
consciousness.	 Cf.	 Baars	 (1997),	 Shanahan	 (2010),	 and	 Schwitzgebel
(2013).)

.	 Even	 small	 groups	 of	 humans	 that	 have	 remained	 isolated	 for	 some	 time
might	 still	 benefit	 from	 the	 intellectual	 outputs	 of	 a	 larger	 collective
intelligence.	 For	 example,	 the	 language	 they	 use	 might	 have	 been
developed	 by	 a	much	 larger	 linguistic	 community,	 and	 the	 tools	 they	 use
might	 have	 been	 invented	 in	 a	 much	 larger	 population	 before	 the	 small
group	became	isolated.	But	even	if	a	small	group	had	always	been	isolated,
it	might	still	be	part	of	a	larger	collective	intelligence	than	meets	the	eye—
namely,	the	collective	intelligence	consisting	of	not	only	the	present	but	all
ancestral	 generations	 as	 well,	 an	 aggregate	 that	 can	 function	 as	 a	 feed-
forward	information	processing	system.

.	By	the	Church–Turing	thesis,	all	computable	functions	are	computable	by	a
Turing	 machine.	 Since	 any	 of	 the	 three	 forms	 of	 superintelligence	 could
simulate	 a	 Turing	 machine	 (if	 given	 access	 to	 unlimited	 memory	 and
allowed	 to	 operate	 indefinitely),	 they	 are	 by	 this	 formal	 criterion
computationally	 equivalent.	 Indeed,	 an	 average	 human	 being	 (provided
with	 unlimited	 scrap	 paper	 and	 unlimited	 time)	 could	 also	 implement	 a
Turing	machine,	 and	 thus	 is	 also	 equivalent	 by	 the	 same	 criterion.	What
matters	 for	 our	 purposes,	 however,	 is	 what	 these	 different	 systems	 can
achieve	 in	 practice,	 with	 finite	memory	 and	 in	 reasonable	 time.	 And	 the
efficiency	 variations	 are	 so	 great	 that	 one	 can	 readily	 make	 some
distinctions.	 For	 example,	 a	 typical	 individual	with	 an	 IQ	of	 85	 could	 be
taught	 to	 implement	 a	 Turing	 machine.	 (Conceivably,	 it	 might	 even	 be
possible	to	train	some	particularly	gifted	and	docile	chimpanzee	to	do	this.)
Yet,	for	all	practical	intents	and	purposes,	such	an	individual	is	presumably
incapable	of,	say,	 independently	developing	general	 relativity	 theory	or	of



winning	a	Fields	medal.

.	Oral	 storytelling	 traditions	 can	 produce	 great	works	 (such	 as	 the	Homeric
epics)	but	perhaps	 some	of	 the	contributing	authors	possessed	uncommon
gifts.

.	 Unless	 it	 contains	 as	 components	 intellects	 that	 have	 speed	 or	 quality
superintelligence.

.	Our	inability	to	specify	what	all	these	problems	are	may	in	part	be	due	to	a
lack	of	trying:	there	is	little	point	in	spending	time	detailing	intellectual	jobs
that	no	individual	and	no	currently	feasible	organization	can	perform.	But	it
is	also	possible	that	even	conceptualizing	some	of	these	jobs	is	itself	one	of
those	jobs	that	we	currently	lack	the	brains	to	perform.

.	Cf.	Boswell	(1917);	see	also	Walker	(2002).

.	This	mainly	occurs	in	short	bursts	in	a	subset	of	neurons—most	have	more
sedate	firing	rates	(Gray	and	McCormick	1996;	Steriade	et	al.	1998).	There
are	some	neurons	 (“chattering	neurons,”	also	known	as	“fast	 rhythmically
bursting”	 cells)	 that	may	 reach	 firing	 frequencies	 as	 high	 as	 750	Hz,	 but
these	seem	to	be	extreme	outliers.

.	Feldman	and	Ballard	(1982).

.	The	conduction	velocity	depends	on	axon	diameter	(thicker	axons	are	faster)
and	 whether	 the	 axon	 is	 myelinated.	 Within	 the	 central	 nervous	 system,
transmission	delays	can	range	from	less	than	a	millisecond	to	up	to	100	ms
(Kandel	 et	 al.	 2000).	 Transmission	 in	 optical	 fibers	 is	 around	 68%	 c
(because	 of	 the	 refractive	 index	 of	 the	 material).	 Electrical	 cables	 are
roughly	the	same	speed,	59–77%	c.

.	This	assumes	a	signal	velocity	of	70%	c.	Assuming	100%	c	ups	the	estimate
to	1.8×1018	m3.

.	The	number	of	neurons	in	an	adult	human	male	brain	has	been	estimated	at
86.1	 ±	 8.1	 billion,	 a	 number	 arrived	 at	 by	 dissolving	 brains	 and
fractionating	out	 the	cell	nuclei,	 counting	 the	ones	 stained	with	a	neuron-
specific	 marker.	 In	 the	 past,	 estimates	 in	 the	 neighborhood	 of	 75–125
billion	 neurons	 were	 common.	 These	 were	 typically	 based	 on	 manual



counting	 of	 cell	 densities	 in	 representative	 small	 regions	 (Azevedo	 et	 al.
2009).

.	Whitehead	(2003).

.	 Information	 processing	 systems	 can	 very	 likely	 use	 molecular-scale
processes	for	computing	and	data	storage	and	reach	at	least	planetary	size	in
extent.	 The	 ultimate	 physical	 limits	 to	 computation	 set	 by	 quantum
mechanics,	general	relativity,	and	thermodynamics	are,	however,	far	beyond
this	“Jupiter	brain”	level	(Sandberg	1999;	Lloyd	2000).

.	Stansberry	and	Kudritzki	(2012).	Electricity	used	in	data	centers	worldwide
amounted	 to	 1.1–1.5%	 of	 total	 electricity	 use	 (Koomey	 2011).	 See	 also
Muehlhauser	and	Salamon	(2012).

.	This	 is	an	oversimplification.	The	number	of	chunks	working	memory	can
maintain	 is	 both	 information-and	 task-dependent;	 however,	 it	 is	 clearly
limited	to	a	small	number	of	chunks.	See	Miller	(1956)	and	Cowan	(2001).

.	 An	 example	 might	 be	 that	 the	 difficulty	 of	 learning	 Boolean	 concepts
(categories	 defined	 by	 logical	 rules)	 is	 proportional	 to	 the	 length	 of	 the
shortest	 logically	 equivalent	 propositional	 formula.	 Typically,	 even
formulae	 just	 3–4	 literals	 long	 are	 very	 difficult	 to	 learn.	 See	 Feldman
(2000).

.	 See	 Landauer	 (1986).	 This	 study	 is	 based	 on	 experimental	 estimates	 of
learning	 and	 forgetting	 rates	 in	 humans.	 Taking	 into	 account	 implicit
learning	 might	 push	 the	 estimate	 up	 a	 little.	 If	 one	 assumes	 a	 storage
capacity	~1	bit	 per	 synapse,	 one	gets	 an	upper	bound	 on	 human	memory
capacity	 of	 about	 1015	 bits.	 For	 an	 overview	 of	 different	 estimates,	 see
Appendix	A	of	Sandberg	and	Bostrom	(2008).

.	 Channel	 noise	 can	 trigger	 action	 potentials,	 and	 synaptic	 noise	 produces
significant	 variability	 in	 the	 strength	 of	 transmitted	 signals.	 Nervous
systems	appear	to	have	evolved	to	make	numerous	trade-offs	between	noise
tolerance	and	costs	 (mass,	 size,	 time	delays);	 see	Faisal	et	al.	 (2008).	For
example,	axons	cannot	be	thinner	than	0.1	μm	lest	random	opening	of	ion
channels	create	spontaneous	action	potentials	(Faisal	et	al.	2005).

.	Trachtenberg	et	al.	(2002).



.	In	terms	of	memory	and	computational	power,	though	not	in	terms	of	energy
efficiency.	 The	 fastest	 computer	 in	 the	 world	 at	 the	 time	 of	 writing	 was
China’s	 “Tianhe-2,”	which	displaced	Cray	 Inc.	Titan	 in	 June	2013	with	 a
performance	of	 33.86	petaFLOPS.	 It	 uses	 17.6	MW	of	 power,	 almost	 six
orders	of	magnitude	more	than	the	brain’s	~20	W.

.	 Note	 that	 this	 survey	 of	 sources	 of	machine	 advantage	 is	 disjunctive:	 our
argument	succeeds	even	if	some	of	the	items	listed	are	illusory,	so	long	as
there	is	at	least	one	source	that	can	provide	a	sufficiently	large	advantage.

CHAPTER	4:	THE	KINETICS	OF	AN	INTELLIGENCE	EXPLOSION

	

1.	 The	 system	may	 not	 reach	 one	 of	 these	 baselines	 at	 any	 sharply	 defined
point.	There	may	instead	be	an	interval	during	which	the	system	gradually
becomes	 able	 to	 outperform	 the	 external	 research	 team	 on	 an	 increasing
number	of	system-improving	development	tasks.

2.	In	the	past	half-century,	at	least	one	scenario	has	been	widely	recognized	in
which	 the	 existing	 world	 order	 would	 come	 to	 an	 end	 in	 the	 course	 of
minutes	or	hours:	global	thermonuclear	war.

3.	 This	would	 be	 consistent	with	 the	 observation	 that	 the	 Flynn	 effect—the
secular	increase	in	measured	IQ	scores	within	most	populations	at	a	rate	of
some	3	IQ	points	per	decade	over	the	past	60	years	or	so—appears	to	have
ceased	or	even	reversed	in	recent	years	in	some	highly	developed	countries
such	as	 the	United	Kingdom,	Denmark,	and	Norway	(Teasdale	and	Owen
2008;	Sundet	et	al.	2004).	The	cause	of	 the	Flynn	effect	 in	 the	past—and
whether	 and	 to	 what	 extent	 it	 represents	 any	 genuine	 gain	 in	 general
intelligence	or	merely	improved	skill	at	solving	IQ	test-style	puzzles—has
been	 the	 subject	of	wide	debate	and	 is	 still	not	known.	Even	 if	 the	Flynn
effect	(at	least	partially)	reflects	real	cognitive	gains,	and	even	if	the	effect
is	now	diminishing	or	even	reversing,	this	does	not	prove	that	we	have	yet
hit	 diminishing	 returns	 in	whatever	 underlying	 cause	was	 responsible	 for
the	observed	Flynn	effect	in	the	past.	The	decline	or	reversal	could	instead
be	due	 to	 some	 independent	detrimental	 factor	 that	would	otherwise	have
produced	an	even	bigger	observed	decline.



4.	Bostrom	and	Roache	(2011).

5.	 Somatic	 gene	 therapy	 could	 eliminate	 the	 maturational	 lag,	 but	 is
technically	much	more	 challenging	 than	 germline	 interventions	 and	 has	 a
lower	ultimate	potential.

6.	 Average	 global	 economic	 productivity	 growth	 per	 year	 over	 the	 period
1960–2000	 was	 4.3%	 (Isaksson	 2007).	 Only	 part	 of	 this	 productivity
growth	 is	 due	 to	 gains	 in	 organizational	 efficiency.	 Some	 particular
networks	 or	 organizational	 processes	 of	 course	 are	 improving	 at	 much
faster	rates.

7.	Biological	 brain	 evolution	was	 subject	 to	many	constraints	 and	 trade-offs
that	are	drastically	relaxed	when	the	mind	moves	to	a	digital	medium.	For
example,	brain	size	 is	 limited	by	head	size,	and	a	head	 that	 is	 too	big	has
trouble	passing	through	the	birth	canal.	A	large	brain	also	guzzles	metabolic
resources	 and	 is	 a	 dead	weight	 that	 impedes	movement.	The	 connectivity
between	 certain	 brain	 regions	might	 be	 limited	 by	 steric	 constraints—the
volume	of	white	matter	 is	significantly	 larger	 than	 the	volume	of	 the	gray
matter	it	connects.	Heat	dissipation	is	limited	by	blood	flow,	and	might	be
close	to	the	upper	limit	for	acceptable	functioning.	Furthermore,	biological
neurons	 are	 noisy,	 slow,	 and	 in	 need	 of	 constant	 protection,	maintenance,
and	 resupply	 by	 glial	 cells	 and	 blood	 vessels	 (contributing	 to	 the
intracranial	crowding).	See	Bostrom	and	Sandberg	(2009b).

8.	 Yudkowsky	 (2008a,	 326).	 For	 a	 more	 recent	 discussion,	 see	 Yudkowsky
(2013).

9.	The	picture	shows	cognitive	ability	as	a	one-dimensional	parameter,	to	keep
the	drawing	simple.	But	this	 is	not	essential	 to	the	point	being	made	here.
One	 could,	 for	 example,	 instead	 represent	 a	 cognitive	 ability	 profile	 as	 a
hypersurface	in	a	multidimensional	space.

.	Lin	et	al.	(2012).

.	One	gets	a	certain	increase	in	collective	intelligence	simply	by	increasing	the
number	of	 its	constituent	 intellects.	Doing	so	should	at	 least	enable	better
overall	performance	on	tasks	that	can	be	easily	parallelized.	To	reap	the	full
returns	from	such	a	population	explosion,	however,	one	would	also	need	to
achieve	 some	 (more	 than	 minimal)	 level	 of	 coordination	 between	 the



constituents.

.	The	distinction	between	speed	and	quality	of	intelligence	is	anyhow	blurred
in	the	case	of	non-neuromorphic	AI	systems.

.	Rajab	et	al.	(2006,	41–52).

.	 It	 has	 been	 suggested	 that	 using	 configurable	 integrated	 circuits	 (FPGAs)
rather	than	general-purpose	processors	could	increase	computational	speeds
in	neural	network	simulations	by	up	to	two	orders	of	magnitude	(Markram
2006).	A	study	of	high-resolution	climate	modeling	in	the	petaFLOP-range
found	 a	 twenty-four	 to	 thirty-four-fold	 reduction	 of	 cost	 and	 about	 two
orders	 of	 magnitude	 reduction	 in	 power	 requirements	 using	 a	 custom
variant	of	embedded	processor	chips	(Wehner	et	al.	2008).

.	 Nordhaus	 (2007).	 There	 are	many	 overviews	 of	 the	 different	meanings	 of
Moore’s	law;	see,	e.g.,	Tuomi	(2002)	and	Mack	(2011).

.	 If	 the	 development	 is	 slow	enough,	 the	 project	 can	 avail	 itself	 of	 progress
being	 made	 in	 the	 interim	 by	 the	 outside	 world,	 such	 as	 advances	 in
computer	 science	 made	 by	 university	 researchers	 and	 improvements	 in
hardware	made	by	the	semiconductor	industry.

.	Algorithmic	overhang	 is	perhaps	 less	 likely,	but	one	exception	would	be	 if
exotic	 hardware	 such	 as	 quantum	 computing	 becomes	 available	 to	 run
algorithms	that	were	previously	infeasible.	One	might	also	argue	that	neural
networks	and	deep	machine	 learning	are	cases	of	algorithm	overhang:	 too
computationally	 expensive	 to	 work	 well	 when	 first	 invented,	 they	 were
shelved	 for	 a	 while,	 then	 dusted	 off	 when	 fast	 graphics	 processing	 units
made	them	cheap	to	run.	Now	they	win	contests.

.	And	even	if	progress	on	the	way	toward	the	human	baseline	were	slow.

.	 	 is	 that	 part	 of	 the	 world’s	 optimization	 power	 that	 is	 applied	 to
improving	 the	 system	 in	 question.	 For	 a	 project	 operating	 in	 complete
isolation,	one	that	receives	no	significant	ongoing	support	from	the	external
world,	we	have	 	≈	0,	even	though	the	project	must	have	started	with	a
resource	 endowment	 (computers,	 scientific	 concepts,	 educated	 personnel,
etc.)	that	is	derived	from	the	entire	world	economy	and	many	centuries	of
development.



.	 The	most	 relevant	 of	 the	 seed	AI’s	 cognitive	 abilities	 here	 is	 its	 ability	 to
perform	 intelligent	 design	 work	 to	 improve	 itself,	 i.e.	 its	 intelligence
amplification	 capability.	 (If	 the	 seed	 AI	 is	 good	 at	 enhancing	 another
system,	which	is	good	at	enhancing	the	seed	AI,	then	we	could	view	these
as	 subsystems	 of	 a	 larger	 system	 and	 focus	 our	 analysis	 on	 the	 greater
whole.)

.	This	assumes	that	recalcitrance	is	not	known	to	be	so	high	as	to	discourage
investment	altogether	or	divert	it	to	some	alternative	project.

.	A	similar	example	is	discussed	in	Yudkowsky	(2008b).

.	Since	inputs	have	risen	(e.g.	amounts	invested	in	building	new	foundries,	and
number	 of	 people	 working	 in	 the	 semiconductor	 industry),	 Moore’s	 law
itself	 has	not	 given	 such	 a	 rapid	growth	 if	we	 control	 for	 this	 increase	 in
inputs.	 Combined	 with	 advances	 in	 software,	 however,	 an	 18-month
doubling	 time	 in	 performance	 per	 unit	 of	 input	may	 be	more	 historically
plausible.

.	 Some	 tentative	 attempts	 have	 been	 made	 to	 develop	 the	 idea	 of	 an
intelligence	 explosion	 within	 the	 framework	 of	 economic	 growth	 theory;
see,	 e.g.,	 Hanson	 (1998b);	 Jones	 (2009);	 Salamon	 (2009).	 These	 studies
have	pointed	to	the	potential	of	extremely	rapid	growth	given	the	arrival	of
digital	 minds,	 but	 since	 endogenous	 growth	 theory	 is	 relatively	 poorly
developed	 even	 for	 historical	 and	 contemporary	 applications,	 any
application	to	a	potentially	discontinuous	future	context	is	better	viewed	at
this	stage	as	a	source	of	potentially	useful	concepts	and	considerations	than
as	an	exercise	 likely	 to	deliver	authoritative	forecasts.	For	an	overview	of
attempts	to	mathematically	model	a	technological	singularity,	see	Sandberg
(2010).

.	It	is	of	course	also	possible	that	there	will	be	no	takeoff	at	all.	But	since,	as
argued	earlier,	superintelligence	looks	technically	feasible,	the	absence	of	a
takeoff	would	likely	be	due	to	the	intervention	of	some	defeater,	such	as	an
existential	catastrophe.	 If	 strong	superintelligence	arrived	not	 in	 the	shape
of	artificial	intelligence	or	whole	brain	emulation	but	through	one	of	other
paths	we	considered	above,	then	a	slower	takeoff	would	be	more	likely.

CHAPTER	5:	DECISIVE	STRATEGIC	ADVANTAGE



	

1.	A	software	mind	might	run	on	a	single	machine	as	opposed	to	a	worldwide
network	 of	 computers;	 but	 this	 is	 not	what	we	mean	 by	 “concentration.”
Instead,	 what	 we	 are	 interested	 in	 here	 is	 the	 extent	 to	 which	 power,
specifically	power	derived	from	technological	ability,	will	be	concentrated
in	 the	 advanced	 stages	 of,	 or	 immediately	 following,	 the	 machine
intelligence	revolution.

2.	 Technology	 diffusion	 of	 consumer	 products,	 for	 example,	 tends	 to	 be
slower	 in	 developing	 countries	 (Talukdar	 et	 al.	 2002).	 See	 also	 Keller
(2004)	and	The	World	Bank	(2008).

3.	The	economic	literature	dealing	with	the	theory	of	the	firm	is	relevant	as	a
comparison	point	 for	 the	present	discussion.	The	 locus	classicus	 is	 Coase
(1937).	See	also,	e.g.,	Canbäck	et	al.	(2006);	Milgrom	and	Roberts	(1990);
Hart	(2008);	Simester	and	Knez	(2002).

4.	On	 the	other	hand,	 it	 could	be	especially	easy	 to	 steal	 a	 seed	AI,	 since	 it
consists	of	software	that	could	be	transmitted	electronically	or	carried	on	a
portable	memory	device.

5.	 Barber	 (1991)	 suggests	 that	 the	Yangshao	 culture	 (5000–3000	 BC)	might
have	 used	 silk.	 Sun	 et	 al.	 (2012)	 estimate,	 based	 on	 genetic	 studies,
domestication	of	the	silkworm	to	have	occurred	about	4,100	years	ago.

6.	 Cook	 (1984,	 144).	 This	 story	 might	 be	 too	 good	 to	 withstand	 historical
scrutiny,	 rather	 like	 Procopius’	 (Wars	 VIII.xvii.1–7)	 story	 of	 how	 the
silkworms	 were	 supposedly	 brought	 to	 Byzantium	 by	 wandering	 monks,
hidden	in	their	hollow	bamboo	staves	(Hunt	2011).

7.	Wood	(2007);	Temple	(1986).

8.	 Pre-Columbian	 cultures	 did	 have	 the	 wheel	 but	 used	 it	 only	 for	 toys
(probably	due	to	a	lack	of	good	draft	animals).

9.	Koubi	(1999);	Lerner	(1997);	Koubi	and	Lalman	(2007);	Zeira	(2011);	Judd
et	al.	(2012).

.	 Estimated	 from	 a	 variety	 of	 sources.	 The	 time	 gap	 is	 often	 somewhat



arbitrary,	 depending	on	how	exactly	 “equivalent”	 capabilities	 are	 defined.
Radar	was	 used	 by	 at	 least	 two	 countries	within	 a	 couple	 of	 years	 of	 its
introduction,	but	exact	figures	in	months	are	hard	to	come	by.

.	The	RDS-6	in	1953	was	the	first	test	of	a	bomb	with	fusion	reactions,	but	the
RDS-37	in	1955	was	the	first	“true”	fusion	bomb,	where	most	power	came
from	the	fusion	reaction.

.	Unconfirmed.

.	Tests	in	1989,	project	cancelled	in	1994.

.	Deployed	system,	capable	of	a	range	greater	than	5,000	km.

.	Polaris	missiles	bought	from	the	USA.

.	Current	work	 is	 underway	on	 the	Taimur	missile,	 likely	 based	 on	Chinese
missiles.

.	The	RSA-3	rocket	tested	1989–90	was	intended	for	satellite	launches	and/or
as	an	ICBM.

.	MIRV	=	multiple	independently	targetable	re-entry	vehicle,	a	technology	that
enables	 a	 single	 ballistic	 missile	 to	 carry	 multiple	 warheads	 that	 can	 be
programmed	to	hit	different	targets.

.	The	Agni	V	system	is	not	yet	in	service.

.	Ellis	(1999).

.	 If	 we	 model	 the	 situation	 as	 one	 where	 the	 lag	 time	 between	 projects	 is
drawn	 from	 a	 normal	 distribution,	 then	 the	 likely	 distance	 between	 the
leading	 project	 and	 its	 closest	 follower	 will	 also	 depend	 on	 how	 many
projects	there	are.	If	 there	are	a	vast	number	of	projects,	 then	the	distance
between	the	first	two	is	likely	small	even	if	the	variance	of	the	distribution
is	 moderately	 high	 (though	 the	 expected	 gap	 between	 the	 lead	 and	 the
second	 project	 declines	 very	 slowly	 with	 the	 number	 of	 competitors	 if
completion	 times	 are	 normally	 distributed).	 However,	 it	 is	 unlikely	 that
there	will	be	a	vast	number	of	projects	that	are	each	well	enough	resourced
to	be	 serious	 contenders.	 (There	might	 be	 a	 greater	 number	of	 projects	 if



there	 are	 a	 large	 number	 of	 different	 basic	 approaches	 that	 could	 be
pursued,	but	in	that	case	many	of	those	approaches	are	likely	to	prove	dead
ends.)	As	 suggested,	 empirically	we	 seem	 to	 find	 that	 there	 is	 usually	 no
more	 than	 a	 handful	 of	 serious	 competitors	 pursuing	 any	 one	 specific
technological	 goal.	 The	 situation	 is	 somewhat	 different	 in	 a	 consumer
market	 where	 there	 are	 many	 niches	 for	 slightly	 different	 products	 and
where	 barriers	 to	 entry	 are	 low.	 There	 are	 lots	 of	 one-person	 projects
designing	T-shirts,	 but	 only	 a	 few	 firms	 in	 the	world	developing	 the	next
generation	of	graphics	cards.	(Two	firms,	AMD	and	NVIDIA,	enjoy	a	near
duopoly	 at	 the	 moment,	 though	 Intel	 is	 also	 competing	 at	 the	 lower-
performance	end	of	the	market.)

.	Bostrom	(2006c).	One	could	imagine	a	singleton	whose	existence	is	invisible
(e.g.	 a	 superintelligence	with	 such	 advanced	 technology	 or	 insight	 that	 it
could	 subtly	 control	 world	 events	 without	 any	 human	 noticing	 its
interventions);	or	a	singleton	that	voluntarily	imposes	very	strict	limitations
on	its	own	exercise	of	power	(e.g.	punctiliously	confining	itself	to	ensuring
that	certain	 treaty-specified	 international	 rules—or	 libertarian	principles—
are	respected).	How	likely	any	particular	kind	of	singleton	is	to	arise	is	of
course	 an	 empirical	 question;	 but	 conceptually,	 at	 least,	 it	 is	 possible	 to
have	a	good	singleton,	a	bad	singleton,	a	rambunctiously	diverse	singleton,
a	 blandly	 monolithic	 singleton,	 a	 crampingly	 oppressive	 singleton,	 or	 a
singleton	more	akin	to	an	extra	law	of	nature	than	to	a	yelling	despot.

.	Jones	(1985,	344).

.	 It	 might	 be	 significant	 that	 the	Manhattan	 Project	 was	 carried	 out	 during
wartime.	Many	 of	 the	 scientists	who	 participated	 claimed	 to	 be	 primarily
motivated	by	 the	wartime	situation	and	 the	 fear	 that	Nazi	Germany	might
develop	atomic	weapons	ahead	of	the	Allies.	It	might	be	difficult	for	many
governments	 to	 mobilize	 a	 similarly	 intensive	 and	 secretive	 effort	 in
peacetime.	 The	 Apollo	 program,	 another	 iconic	 science/engineering
megaproject,	received	a	strong	impetus	from	the	Cold	War	rivalry.

.	Though	even	if	they	were	looking	hard,	it	is	not	clear	that	they	would	appear
(publicly)	to	be	doing	so.

.	 Cryptographic	 techniques	 could	 enable	 the	 collaborating	 team	 to	 be
physically	dispersed.	The	only	weak	link	in	the	communication	chain	might



be	 the	 input	 stage,	 where	 the	 physical	 act	 of	 typing	 could	 potentially	 be
observed.	 But	 if	 indoor	 surveillance	 became	 common	 (by	 means	 of
microscopic	 recording	 devices),	 those	 keen	 on	 protecting	 their	 privacy
might	develop	countermeasures	(e.g.	special	closets	that	could	be	sealed	off
from	 would-be	 eavesdropping	 devices).	 Whereas	 physical	 space	 might
become	 transparent	 in	 a	 coming	 surveillance	 age,	 cyberspace	 might
possibly	 become	 more	 protected	 through	 wider	 adoption	 of	 stronger
cryptographic	protocols.

.	 A	 totalitarian	 state	 might	 take	 recourse	 to	 even	 more	 coercive	 measures.
Scientists	 in	 relevant	 fields	might	 be	 swept	 up	 and	 put	 into	work	 camps,
akin	to	the	“academic	villages”	in	Stalinist	Russia.

.	When	the	level	of	public	concern	is	relatively	low,	some	researchers	might
welcome	a	little	bit	of	public	fear-mongering	because	it	draws	attention	to
their	work	and	makes	 the	area	 they	work	 in	 seem	 important	and	exciting.
When	 the	 level	 of	 concern	 becomes	 greater,	 the	 relevant	 research
communities	might	change	their	tune	as	they	begin	to	worry	about	funding
cuts,	 regulation,	 and	 public	 backlash.	 Researchers	 in	 neighboring
disciplines—such	as	 those	parts	of	computer	science	and	 robotics	 that	are
not	very	relevant	to	artificial	general	intelligence—might	resent	the	drift	of
funding	 and	 attention	 away	 from	 their	 own	 research	 areas.	 These
researchers	 might	 also	 correctly	 observe	 that	 their	 work	 carries	 no	 risk
whatever	of	leading	to	a	dangerous	intelligence	explosion.	(Some	historical
parallels	might	be	drawn	with	the	career	of	the	idea	of	nanotechnology;	see
Drexler	[2013].)

.	These	have	been	successful	in	that	they	have	achieved	at	least	some	of	what
they	set	out	to	do.	How	successful	they	have	been	in	a	broader	sense	(taking
into	account	cost-effectiveness	and	so	forth)	 is	harder	 to	determine.	In	 the
case	of	the	International	Space	Station,	for	example,	there	have	been	huge
cost	 overruns	 and	 delays.	 For	 details	 of	 the	 problems	 encountered	 by	 the
project,	see	NASA	(2013).	The	Large	Hadron	Collider	project	has	had	some
major	setbacks,	but	this	might	be	due	to	the	inherent	difficulty	of	the	task.
The	Human	Genome	Project	achieved	success	in	the	end,	but	seems	to	have
received	a	 speed	boost	 from	being	 forced	 to	compete	with	Craig	Venter’s
private	 corporate	 effort.	 Internationally	 sponsored	 projects	 to	 achieve
controlled	 fusion	 energy	 have	 failed	 to	 deliver	 on	 expectations,	 despite
massive	investment;	but	again,	this	might	be	attributable	to	the	task	turning



out	to	be	more	difficult	than	anticipated.

.	US	Congress,	Office	of	Technology	Assessment	(1995).

.	Hoffman	(2009);	Rhodes	(2008).

.	Rhodes	(1986).

.	The	US	Navy’s	code-breaking	organization,	OP-20-G,	apparently	ignored	an
invitation	 to	 gain	 full	 knowledge	 of	 Britain’s	 anti-Enigma	 methods,	 and
failed	to	inform	higher-level	US	decision	makers	of	Britain’s	offer	to	share
its	 cryptographic	 secrets	 (Burke	 2001).	 This	 gave	 American	 leaders	 the
impression	that	Britain	was	withholding	important	 information,	a	cause	of
friction	 throughout	 the	war.	Britain	 did	 share	with	 the	Soviet	 government
some	 of	 the	 intelligence	 they	 had	 gleaned	 from	 decrypted	 German
communications.	 In	 particular,	 Russia	 was	 warned	 about	 the	 German
preparations	 for	 Operation	 Barbarossa.	 But	 Stalin	 refused	 to	 believe	 the
warning,	partly	because	the	British	did	not	disclose	how	they	had	obtained
the	information.

.	For	a	few	years,	Russell	seems	to	have	advocated	the	threat	of	nuclear	war	to
persuade	Russia	to	accept	the	Baruch	plan;	later,	he	was	a	strong	proponent
of	 mutual	 nuclear	 disarmament	 (Russell	 and	 Griffin	 2001).	 John	 von
Neumann	is	reported	to	have	believed	that	a	war	between	the	United	States
and	 Russia	 was	 inevitable,	 and	 to	 have	 said,	 “If	 you	 say	 why	 not	 bomb
them	[the	Russians]	tomorrow,	I	say	why	not	bomb	them	today?	If	you	say
today	 at	 five	 o’clock,	 I	 say	why	 not	 one	 o’clock?”	 (It	 is	 possible	 that	 he
made	 this	 notorious	 statement	 to	 burnish	 his	 anti-communist	 credentials
with	US	Defense	hawks	in	the	McCarthy	era.	Whether	von	Neumann,	had
he	been	in	charge	of	US	policy,	would	actually	have	launched	a	first	strike
is	impossible	to	ascertain.	See	Blair	[1957],	96.)

.	Baratta	(2004).

.	If	the	AI	is	controlled	by	a	group	of	humans,	the	problem	may	apply	to	this
human	group,	though	it	is	possible	that	new	ways	of	reliably	committing	to
an	 agreement	 will	 be	 available	 by	 this	 time,	 in	 which	 case	 even	 human
groups	 could	 avoid	 this	 problem	 of	 potential	 internal	 unraveling	 and
overthrow	by	a	sub-coalition.



CHAPTER	6:	COGNITIVE	SUPERPOWERS

	

1.	 In	 what	 sense	 is	 humanity	 a	 dominant	 species	 on	 Earth?	 Ecologically
speaking,	humans	are	the	most	common	large	(~50	kg)	animal,	but	the	total
human	dry	biomass	 (~100	billion	kg)	 is	not	 so	 impressive	compared	with
that	of	ants,	the	family	Formicidae	(300	billion–3,000	billion	kg).	Humans
and	human	utility	organisms	form	a	very	small	part	(<0.001)	of	total	global
biomass.	 However,	 croplands	 and	 pastures	 are	 now	 among	 the	 largest
ecosystems	on	the	planet,	covering	about	35%	of	the	ice-free	land	surface
(Foley	 et	 al.	 2007).	 And	 we	 appropriate	 nearly	 a	 quarter	 of	 net	 primary
productivity	according	to	a	typical	assessment	(Haberl	et	al.	2007),	though
estimates	 range	 from	 3	 to	 over	 50%	 depending	 mainly	 on	 varying
definitions	of	the	relevant	terms	(Haberl	et	al.	2013).	Humans	also	have	the
largest	 geographic	 coverage	 of	 any	 animal	 species	 and	 top	 the	 largest
number	of	different	food	chains.

2.	Zalasiewicz	et	al.	(2008).

3.	See	first	note	to	this	chapter.

4.	Strictly	speaking,	 this	may	not	be	quite	correct.	 Intelligence	 in	 the	human
species	ranges	all	the	way	down	to	approximately	zero	(e.g.	in	the	case	of
embryos	or	patients	in	permanent	vegetative	state).	In	qualitative	terms,	the
maximum	 difference	 in	 cognitive	 ability	 within	 the	 human	 species	 is
therefore	 perhaps	 greater	 than	 the	 difference	 between	 any	 human	 and	 a
superintelligence.	 But	 the	 point	 in	 the	 text	 stands	 if	we	 read	 “human”	 as
“normally	functioning	adult.”

5.	Gottfredson	(2002).	See	also	Carroll	(1993)	and	Deary	(2001).

6.	 See	 Legg	 (2008).	 Roughly,	 Legg	 proposes	 to	 measure	 a	 reinforcement-
learning	 agent	 as	 its	 expected	 performance	 in	 all	 reward-summable
environments,	where	each	such	environment	receives	a	weight	determined
by	 its	 Kolmogorov	 complexity.	 We	 will	 explain	 what	 is	 meant	 by
reinforcement	learning	in	Chapter	12.	See	also	Dowe	and	Hernández-Orallo
(2012)	and	Hibbard	(2011).

7.	 With	 regard	 to	 technology	 research	 in	 areas	 like	 biotechnology	 and



nanotechnology,	what	a	superintelligence	would	excel	at	 is	 the	design	and
modeling	 of	 new	 structures.	 To	 the	 extent	 that	 design	 ingenuity	 and
modeling	 cannot	 substitute	 for	 physical	 experimentation,	 the
superintelligence’s	performance	advantage	may	be	qualified	by	its	level	of
access	to	the	requisite	experimental	apparatus.

8.	E.g.,	Drexler	(1992,	2013).

9.	 A	 narrow-domain	 AI	 could	 of	 course	 have	 significant	 commercial
applications,	 but	 this	 does	 not	 mean	 that	 it	 would	 have	 the	 economic
productivity	superpower.	For	example,	even	if	a	narrow-domain	AI	earned
its	owners	several	billions	of	dollars	a	year,	this	would	still	be	four	orders	of
magnitude	less	than	the	rest	of	the	world	economy.	In	order	for	the	system
directly	and	substantially	to	increase	world	product,	an	AI	would	need	to	be
able	to	perform	many	kinds	of	work;	that	is,	 it	would	need	competence	in
many	domains.

.	 The	 criterion	 does	 not	 rule	 out	 all	 scenarios	 in	 which	 the	 AI	 fails.	 For
example,	 the	AI	might	 rationally	 take	a	gamble	 that	has	a	high	chance	of
failing.	In	this	case,	however,	the	criterion	could	take	the	form	that	(a)	the
AI	should	make	an	unbiased	estimate	of	the	gamble’s	low	chance	of	success
and	(b)	there	should	be	no	better	gamble	available	to	the	AI	that	we	present-
day	humans	can	think	of	but	that	the	AI	overlooks.

.	Cf.	Freitas	(2000)	and	Vassar	and	Freitas	(2006).

.	Yudkowsky	(2008a).

.	Freitas	(1980);	Freitas	and	Merkle	(2004,	Chap.	3);	Armstrong	and	Sandberg
(2013).

.	See,	e.g.,	Huffman	and	Pless	(2003),	Knill	et	al.	(2000),	Drexler	(1986).

.	That	is	to	say,	the	distance	would	be	small	on	some	“natural”	metric,	such	as
the	 logarithm	 of	 the	 size	 of	 the	 population	 that	 could	 be	 sustainably
supported	at	subsistence	level	by	a	given	level	of	capability	if	all	resources
were	devoted	to	that	end.

.	 This	 estimate	 is	 based	 on	 the	WMAP	 estimate	 of	 a	 cosmological	 baryon
density	 of	 9.9×10–30	 g/cm3	 and	 assumes	 that	 90%	 of	 the	 mass	 is



intergalactic	gas,	that	some	15%	of	the	galactic	mass	is	stars	(about	80%	of
baryonic	matter),	 and	 that	 the	 average	 star	weighs	 in	 at	 0.7	 solar	masses
(Read	and	Trentham	2005;	Carroll	and	Ostlie	2007).

.	Armstrong	and	Sandberg	(2013).

.	Even	at	100%	of	c	(which	is	unattainable	for	objects	with	nonzero	rest	mass)
the	 number	 of	 reachable	 galaxies	 is	 only	 about	 6×109.	 (Cf.	 Gott	 et	 al.
[2005]	and	Heyl	 [2005].)	We	are	assuming	 that	our	current	understanding
of	 the	 relevant	 physics	 is	 correct.	 It	 is	 hard	 to	 be	 very	 confident	 in	 any
upper	 bound,	 since	 it	 is	 at	 least	 conceivable	 that	 a	 superintelligent
civilization	 might	 extend	 its	 reach	 in	 some	 way	 that	 we	 take	 to	 be
physically	 impossible	 (for	 instance,	 by	 building	 time	 machines,	 by
spawning	new	inflationary	universes,	or	by	some	other,	as	yet	unimagined
means).

.	 The	 number	 of	 habitable	 planets	 per	 star	 is	 currently	 uncertain,	 so	 this	 is
merely	 a	 crude	 estimate.	 Traub	 (2012)	 predicts	 that	 one-third	 of	 stars	 in
spectral	classes	F,	G,	or	K	have	at	least	one	terrestrial	planet	in	the	habitable
zone;	see	also	Clavin	 (2012).	FGK	stars	 form	about	22.7%	of	 the	stars	 in
the	 solar	 neighborhood,	 suggesting	 that	 7.6%	 of	 stars	 have	 potentially
suitable	 planets.	 In	 addition,	 there	might	 be	 habitable	 planets	 around	 the
more	numerous	M	stars	(Gilster	2012).	See	also	Robles	et	al.	(2008).

It	 would	 not	 be	 necessary	 to	 subject	 human	 bodies	 to	 the	 rigors	 of
intergalactic	 travels.	 AIs	 could	 oversee	 the	 colonization	 process.	 Homo
sapiens	 could	be	brought	 along	as	 information,	which	 the	AIs	 could	 later
use	 to	 instantiate	 specimens	 of	 our	 species.	 For	 example,	 genetic
information	 could	 be	 synthesized	 into	 DNA,	 and	 a	 first	 generation	 of
humans	could	be	incubated,	raised,	and	educated	by	AI	guardians	taking	an
anthropomorphic	guise.

.	O’Neill	(1974).

.	Dyson	(1960)	claims	to	have	gotten	the	basic	idea	from	science	fiction	writer
Olaf	 Stapledon	 (1937),	 who	 in	 turn	might	 have	 been	 inspired	 by	 similar
thoughts	by	J.	D.	Bernal	(Dyson	1979,	211).

.	 Landauer’s	 principle	 states	 that	 there	 is	 a	 minimum	 amount	 of	 energy



required	 to	 change	 one	 bit	 of	 information,	 known	 as	 the	 Landauer	 limit,
equal	to	kT	ln	2,	where	k	is	the	Boltzmann	constant	(1.38×10–23	J/K)	and	T
is	 the	temperature.	If	we	assume	the	circuitry	is	maintained	at	around	300
K,	 then	1026	watts	 allows	us	 to	erase	approximately	1047	bits	per	second.
(On	 the	 achievable	 efficiency	 of	 nanomechanical	 computational	 devices,
see	Drexler	 [1992].	See	also	Bradbury	 [1999];	Sandberg	 [1999];	Ćirković
[2004].	 The	 foundations	 of	 Landauer’s	 principle	 are	 still	 somewhat	 in
dispute;	see,	e.g.,	Norton	[2011].)

.	Stars	vary	in	their	power	output,	but	the	Sun	is	a	fairly	typical	main-sequence
star.

.	 A	 more	 detailed	 analysis	 might	 consider	 more	 closely	 what	 types	 of
computation	we	are	 interested	 in.	The	number	of	serial	 computations	 that
can	be	performed	is	quite	limited,	since	a	fast	serial	computer	must	be	small
in	order	to	minimize	communications	lags	within	the	different	parts	of	the
computer.	 There	 are	 also	 limits	 on	 the	 number	 of	 bits	 that	 can	 be	 stored,
and,	 as	 we	 saw,	 on	 the	 number	 of	 irreversible	 computational	 steps
(involving	the	erasure	of	information)	that	can	be	performed.

.	 We	 are	 assuming	 here	 that	 there	 are	 no	 extraterrestrial	 civilizations	 that
might	get	in	the	way.	We	are	also	assuming	that	the	simulation	hypothesis	is
false.	See	Bostrom	(2003a).	If	either	of	these	assumptions	is	incorrect,	there
may	 be	 important	 non-anthropogenic	 risks—ones	 that	 involve	 intelligent
agency	of	a	nonhuman	sort.	See	also	Bostrom	(2003b,	2009c).

.	 At	 least	 a	 wise	 singleton	 that	 grasped	 the	 idea	 of	 evolution	 could,	 in
principle,	 have	 embarked	 on	 a	 eugenics	 program	 by	 means	 of	 which	 it
could	slowly	have	raised	its	level	of	collective	intelligence.

.	Tetlock	and	Belkin	(1996).

.	 To	 be	 clear:	 colonizing	 and	 reengineering	 a	 large	 part	 of	 the	 accessible
universe	is	not	currently	within	our	direct	 reach.	 Intergalactic	colonization
is	far	beyond	today’s	technology.	The	point	is	that	we	could	in	principle	use
our	present	capabilities	to	develop	the	additional	capabilities	that	would	be
needed,	thus	placing	the	accomplishment	within	our	indirect	reach.	It	is	of
course	also	 true	 that	humanity	 is	not	currently	a	 singleton	and	 that	we	do
not	 know	 that	 we	 would	 never	 face	 intelligent	 opposition	 from	 some



external	power	if	we	began	to	reengineer	the	accessible	universe.	To	meet
the	 wise-singleton	 sustainability	 threshold,	 however,	 it	 suffices	 that	 one
possesses	a	capability	set	such	that	if	a	wise	singleton	facing	no	intelligent
opposition	 had	 possessed	 this	 capability	 set	 then	 the	 colonization	 and
reengineering	of	a	large	part	of	the	accessible	universe	would	be	within	its
indirect	reach.

.	 Sometimes	 it	might	 be	 useful	 to	 speak	of	 two	AIs	 as	 each	having	 a	 given
superpower.	In	an	extended	sense	of	the	word,	one	could	thus	conceive	of	a
superpower	as	something	that	an	agent	has	relative	to	some	field	of	action
—in	this	example,	perhaps	a	field	that	includes	all	of	human	civilization	but
excludes	the	other	AI.



CHAPTER	7:	THE	SUPERINTELLIGENT	WILL

	

1.	This	is	of	course	not	to	deny	that	differences	that	appear	small	visually	can
be	functionally	profound.

2.	Yudkowsky	(2008a,	310).

3.	David	Hume,	 the	Scottish	Enlightenment	philosopher,	 thought	 that	beliefs
alone	(say,	about	what	is	a	good	thing	to	do)	cannot	motivate	action:	some
desire	 is	 required.	 This	 would	 support	 the	 orthogonality	 thesis	 by
undercutting	one	possible	objection	to	it,	namely	that	sufficient	intelligence
might	entail	the	acquisition	of	certain	beliefs	which	would	then	necessarily
produce	 certain	 motivations.	 However,	 although	 the	 orthogonality	 thesis
can	 draw	 support	 from	 the	 Humean	 theory	 of	 motivation,	 it	 does	 not
presuppose	 it.	 In	 particular,	 one	 need	 not	maintain	 that	 beliefs	 alone	 can
never	 motivate	 action.	 It	 would	 suffice	 to	 assume,	 for	 example,	 that	 an
agent—be	it	ever	so	intelligent—can	be	motivated	to	pursue	any	course	of
action	 if	 the	 agent	 happens	 to	 have	 certain	 desires	 of	 some	 sufficient,
overriding	strength.	Another	way	in	which	the	orthogonality	thesis	could	be
true	even	 if	 the	Humean	theory	of	motivation	 is	 false	 is	 if	arbitrarily	high
intelligence	 does	 not	 entail	 the	 acquisition	 of	 any	 such	 beliefs	 as	 are
(putatively)	 motivating	 on	 their	 own.	 A	 third	 way	 in	 which	 it	 might	 be
possible	 for	 the	orthogonality	 thesis	 to	be	 true	even	 if	 the	Humean	 theory
were	 false	 is	 if	 it	 is	 possible	 to	 build	 an	 agent	 (or	 more	 neutrally,	 an
“optimization	 process”)	 with	 arbitrarily	 high	 intelligence	 but	 with
constitution	 so	 alien	 as	 to	 contain	 no	 clear	 functional	 analogs	 to	what	 in
humans	 we	 call	 “beliefs”	 and	 “desires.”	 (For	 some	 recent	 attempts	 to
defend	 the	Humean	 theory	of	motivation	see	Smith	[1987],	Lewis	 [1988],
and	Sinhababu	[2009].)

4.	For	 instance,	Derek	Parfit	has	argued	that	certain	basic	preferences	would
be	 irrational,	 such	as	 that	of	an	otherwise	normal	agent	who	has	“Future-
Tuesday-Indifference”:

A	certain	hedonist	cares	greatly	about	the	quality	of	his	future	experiences.
With	one	exception,	he	cares	equally	about	all	 the	parts	of	his	future.	The



exception	 is	 that	 he	 has	 Future-Tuesday-Indifference.	 Throughout	 every
Tuesday	he	cares	in	the	normal	way	about	what	is	happening	to	him.	But	he
never	cares	about	possible	pains	or	pleasures	on	a	 future	Tuesday….	This
indifference	is	a	bare	fact.	When	he	is	planning	his	future,	it	is	simply	true
that	he	always	prefers	 the	prospect	of	great	 suffering	on	a	Tuesday	 to	 the
mildest	pain	on	any	other	day.	(Parfit	[1986,	123–4];	see	also	Parfit	[2011])

	
	

For	our	purposes,	we	need	take	no	stand	on	whether	Parfit	is	right	that	this
agent	is	irrational,	so	long	as	we	grant	that	it	is	not	necessarily	unintelligent
in	 the	 instrumental	 sense	 explained	 in	 the	 text.	 Parfit’s	 agent	 could	 have
impeccable	instrumental	rationality,	and	therefore	great	intelligence,	even	if
he	falls	short	on	some	kind	of	sensitivity	to	“objective	reason”	that	might	be
required	of	a	fully	rational	agent.	Therefore,	this	kind	of	example	does	not
undermine	the	orthogonality	thesis.

5.	Even	if	 there	are	objective	moral	facts	 that	any	fully	rational	agent	would
comprehend,	 and	 even	 if	 these	 moral	 facts	 are	 somehow	 intrinsically
motivating	(such	that	anybody	who	fully	comprehends	them	is	necessarily
motivated	 to	 act	 in	 accordance	 with	 them),	 this	 need	 not	 undermine	 the
orthogonality	 thesis.	 The	 thesis	 could	 still	 be	 true	 if	 an	 agent	 could	 have
impeccable	instrumental	rationality	even	whilst	lacking	some	other	faculty
constitutive	 of	 rationality	 proper,	 or	 some	 faculty	 required	 for	 the	 full
comprehension	 of	 the	 objective	 moral	 facts.	 (An	 agent	 could	 also	 be
extremely	 intelligent,	 even	 superintelligent,	 without	 having	 full
instrumental	rationality	in	every	domain.)

6.	For	more	on	 the	orthogonality	 thesis,	 see	Bostrom	 (2012)	and	Armstrong
(2013).

7.	Sandberg	and	Bostrom	(2008).

8.	 Stephen	 Omohundro	 has	 written	 two	 pioneering	 papers	 on	 this	 topic
(Omohundro	2007,	2008).	Omohundro	argues	that	all	advanced	AI	systems
are	 likely	 to	 exhibit	 a	 number	 of	 “basic	 drives,”	 by	 which	 he	 means
“tendencies	which	will	be	present	unless	explicitly	counteracted.”	The	term
“AI	drive”	 has	 the	 advantage	of	 being	 short	 and	 evocative,	 but	 it	 has	 the
disadvantage	 of	 suggesting	 that	 the	 instrumental	 goals	 to	 which	 it	 refers



influence	the	AI’s	decision-making	in	the	same	way	as	psychological	drives
influence	human	decision-making,	i.e.	via	a	kind	of	phenomenological	tug
on	our	ego	which	our	willpower	may	occasionally	succeed	in	resisting.	That
connotation	is	unhelpful.	One	would	not	normally	say	that	a	typical	human
being	has	a	“drive”	to	fill	out	their	tax	return,	even	though	filing	taxes	may
be	 a	 fairly	 convergent	 instrumental	 goal	 for	 humans	 in	 contemporary
societies	 (a	 goal	 whose	 realization	 averts	 trouble	 that	 would	 prevent	 us
from	 realizing	 many	 of	 our	 final	 goals).	 Our	 treatment	 here	 also	 differs
from	that	of	Omohundro	in	some	other	more	substantial	ways,	although	the
underlying	 idea	 is	 the	 same.	 (See	 also	 Chalmers	 [2010]	 and	 Omohundro
[2012].)

9.	Chislenko	(1997).

.	See	also	Shulman	(2010b).

.	An	agent	might	also	change	its	goal	representation	if	it	changes	its	ontology,
in	 order	 to	 transpose	 its	 old	 representation	 into	 the	 new	 ontology;	 cf.	 de
Blanc	(2011).

Another	 type	 of	 factor	 that	might	make	 an	 evidential	 decision	 theorist
undertake	 various	 actions,	 including	 changing	 its	 final	 goals,	 is	 the
evidential	 import	of	deciding	to	do	so.	For	example,	an	agent	that	follows
evidential	decision	theory	might	believe	that	there	exist	other	agents	like	it
in	the	universe,	and	that	its	own	actions	will	provide	some	evidence	about
how	those	other	agents	will	act.	The	agent	might	therefore	choose	to	adopt
a	final	goal	that	is	altruistic	towards	those	other	evidentially	linked	agents,
on	grounds	that	this	will	give	the	agent	evidence	that	those	other	agents	will
have	 chosen	 to	 act	 in	 like	 manner.	 An	 equivalent	 outcome	 might	 be
obtained,	however,	without	changing	one’s	final	goals,	by	choosing	in	each
instant	to	act	as	if	one	had	those	final	goals.

.	 An	 extensive	 psychological	 literature	 explores	 adaptive	 preference
formation.	See,	e.g.,	Forgas	et	al.	(2010).

.	 In	 formal	models,	 the	 value	 of	 information	 is	 quantified	 as	 the	 difference
between	 the	 expected	 value	 realized	 by	 optimal	 decisions	made	with	 that
information	 and	 the	 expected	 value	 realized	 by	 optimal	 decisions	 made
without	it.	(See,	e.g.,	Russell	and	Norvig	[2010].)	It	follows	that	the	value



of	 information	 is	never	negative.	 It	 also	 follows	 that	 any	 information	you
know	will	never	affect	any	decision	you	will	ever	make	has	zero	value	for
you.	However,	 this	kind	of	model	assumes	several	 idealizations	which	are
often	invalid	in	the	real	world—such	as	that	knowledge	has	no	final	value
(meaning	 that	 knowledge	has	 only	 instrumental	 value	 and	 is	 not	 valuable
for	its	own	sake)	and	that	agents	are	not	transparent	to	other	agents.

.	E.g.,	Hájek	(2009).

.	This	strategy	is	exemplified	by	the	sea	squirt	larva,	which	swims	about	until
it	 finds	 a	 suitable	 rock,	 to	 which	 it	 then	 permanently	 affixes	 itself.
Cemented	 in	 place,	 the	 larva	 has	 less	 need	 for	 complex	 information
processing,	whence	it	proceeds	to	digest	part	of	its	own	brain	(its	cerebral
ganglion).	One	can	observe	the	same	phenomenon	in	some	academics	when
they	have	been	granted	tenure.

.	Bostrom	(2012).

.	Bostrom	(2006c).

.	 One	 could	 reverse	 the	 question	 and	 look	 instead	 at	 possible	 reasons	 for	 a
superintelligent	 singleton	 not	 to	 develop	 some	 technological	 capabilities.
These	include	the	following:	(a)	the	singleton	foresees	that	it	will	have	no
use	 for	 the	capability;	 (b)	 the	development	cost	 is	 too	 large	 relative	 to	 its
anticipated	utility	(e.g.	if	the	technology	will	never	be	suitable	for	achieving
any	of	the	singleton’s	ends,	or	if	the	singleton	has	a	very	high	discount	rate
that	strongly	discourages	investment);	(c)	the	singleton	has	some	final	value
that	 requires	 abstention	 from	 particular	 avenues	 of	 technology
development;	(d)	if	the	singleton	is	not	certain	it	will	remain	stable,	it	might
prefer	 to	 refrain	 from	 developing	 technologies	 that	 could	 threaten	 its
internal	stability	or	that	would	make	the	consequences	of	dissolution	worse
(for	 instance,	 a	world	 government	may	 not	wish	 to	 develop	 technologies
that	 would	 facilitate	 rebellion,	 even	 if	 they	 have	 some	 good	 uses,	 nor
develop	 technologies	 for	 the	 easy	 production	 of	 weapons	 of	 mass
destruction	 which	 could	 wreak	 havoc	 if	 the	 world	 government	 were	 to
dissolve);	 (e)	 similarly,	 the	 singleton	 might	 have	 made	 some	 kind	 of
binding	 strategic	 commitment	 not	 to	 develop	 some	 technology,	 a
commitment	that	remains	operative	even	if	it	would	now	be	convenient	to
develop	 it.	 (Note,	 however,	 that	 some	 current	 reasons	 for	 technology



development	would	not	 apply	 to	 a	 singleton:	 for	 instance,	 reasons	 arising
from	arms	races.)

.	 Suppose	 that	 an	 agent	 discounts	 resources	 obtained	 in	 the	 future	 at	 an
exponential	rate,	and	that	because	of	the	light	speed	limitation	the	agent	can
only	 increase	 its	 resource	 endowment	 at	 a	 polynomial	 rate.	 Would	 this
mean	that	 there	will	be	some	time	after	which	 the	agent	would	not	find	 it
worthwhile	 to	 continue	 acquisitive	 expansion?	 No,	 because	 although	 the
present	value	of	the	resources	obtained	at	future	times	would	asymptote	to
zero	 the	 further	 into	 the	 future	 we	 look,	 so	 would	 the	 present	 cost	 of
obtaining	 them.	 The	 present	 cost	 of	 sending	 out	 one	more	 von	Neumann
probe	a	100	million	years	from	now	(possibly	using	some	resource	acquired
some	short	 time	earlier)	would	be	diminished	by	 the	same	discount	 factor
that	would	diminish	the	present	value	of	the	future	resources	that	the	extra
probe	would	acquire	(modulo	a	constant	factor).

.	While	the	volume	reached	by	colonization	probes	at	a	given	time	might	be
roughly	 spherical	 and	expanding	with	 a	 rate	proportional	 to	 the	 square	of
time	 elapsed	 since	 the	 first	 probe	 was	 launched	 (~t2),	 the	 amount	 of
resources	 contained	within	 this	 volume	will	 follow	 a	 less	 regular	 growth
pattern,	 since	 the	 distribution	 of	 resources	 is	 inhomogeneous	 and	 varies
over	 several	 scales.	 Initially,	 the	 growth	 rate	 might	 be	 ~t2	 as	 the	 home
planet	 is	 colonized;	 then	 the	 growth	 rate	 might	 become	 spiky	 as	 nearby
planets	 and	 solar	 systems	 are	 colonized;	 then,	 as	 the	 roughly	 disc-shaped
volume	of	the	Milky	Way	gets	filled	out,	the	growth	rate	might	even	out,	to
be	 approximately	 proportional	 to	 t;	 then	 the	 growth	 rate	 might	 again
become	spiky	as	nearby	galaxies	are	colonized;	then	the	growth	rate	might
again	 approximate	 ~t2	 as	 expansion	 proceeds	 on	 a	 scale	 over	 which	 the
distribution	 of	 galaxies	 is	 roughly	 homogeneous;	 then	 another	 period	 of
spiky	growth	 followed	by	smooth	~t2	growth	as	galactic	 superclusters	are
colonized;	until	ultimately	the	growth	rate	starts	a	final	decline,	eventually
reaching	zero	as	 the	expansion	speed	of	 the	universe	 increases	 to	such	an
extent	as	to	make	further	colonization	impossible.

.	The	simulation	argument	may	be	of	particular	importance	in	this	context.	A
superintelligent	 agent	 may	 assign	 a	 significant	 probability	 to	 hypotheses
according	 to	 which	 it	 lives	 in	 a	 computer	 simulation	 and	 its	 percept
sequence	is	generated	by	another	superintelligence,	and	this	might	generate
various	convergent	 instrumental	 reasons	depending	on	 the	agent’s	guesses



about	 what	 types	 of	 simulations	 it	 is	 most	 likely	 to	 be	 in.	 Cf.	 Bostrom
(2003a).

.	Discovering	the	basic	laws	of	physics	and	other	fundamental	facts	about	the
world	is	a	convergent	instrumental	goal.	We	may	place	it	under	the	rubric
“cognitive	 enhancement”	 here,	 though	 it	 could	 also	 be	 derived	 from	 the
“technology	 perfection”	 goal	 (since	 novel	 physical	 phenomena	 might
enable	novel	technologies).

CHAPTER	8:	IS	THE	DEFAULT	OUTCOME	DOOM?

	

1.	 Some	 additional	 existential	 risk	 resides	 in	 scenarios	 in	 which	 humanity
survives	in	some	highly	suboptimal	state	or	in	which	a	large	portion	of	our
potential	 for	 desirable	 development	 is	 irreversibly	 squandered.	 On	 top	 of
this,	there	may	be	existential	risks	associated	with	the	lead-up	to	a	potential
intelligence	 explosion,	 arising,	 for	 example,	 from	 war	 between	 countries
competing	to	develop	superintelligence	first.

2.	There	is	an	important	moment	of	vulnerability	when	the	AI	first	realizes	the
need	for	such	concealment	(an	event	which	we	may	term	the	conception	of
deception).	This	initial	realization	would	not	itself	be	deliberately	concealed
when	it	occurs.	But	having	had	this	realization,	the	AI	might	move	swiftly
to	 hide	 the	 fact	 that	 the	 realization	 has	 occurred,	 while	 setting	 up	 some
covert	internal	dynamic	(perhaps	disguised	as	some	innocuous	process	that
blends	in	with	all	the	other	complicated	processes	taking	place	in	its	mind)
that	will	enable	it	to	continue	to	plan	its	long-term	strategy	in	privacy.

3.	Even	 human	 hackers	 can	write	 small	 and	 seemingly	 innocuous	 programs
that	do	completely	unexpected	things.	(For	examples,	see	some	the	winning
entries	in	the	International	Obfuscated	C	Code	Contest.)

4.	 The	 point	 that	 some	AI	 control	measures	 could	 appear	 to	work	within	 a
fixed	 context	 yet	 fail	 catastrophically	 when	 the	 context	 changes	 is	 also
emphasized	by	Eliezer	Yudkowsky;	see,	e.g.,	Yudkowsky	(2008a).

5.	The	term	seems	to	have	been	coined	by	science-fiction	writer	Larry	Niven
(1973),	but	is	based	on	real-world	brain	stimulation	reward	experiments;	cf.
Olds	and	Milner	(1954)	and	Oshima	and	Katayama	(2010).	See	also	Ring



and	Orseau	(2011).

6.	Bostrom	(1997).

7.	There	might	be	some	possible	implementations	of	a	reinforcement	learning
mechanism	 that	 would,	 when	 the	 AI	 discovers	 the	 wireheading	 solution,
lead	 to	 a	 safe	 incapacitation	 rather	 than	 to	 infrastructure	 profusion.	 The
point	is	that	this	could	easily	go	wrong	and	fail	for	unexpected	reasons.

8.	 This	 was	 suggested	 by	Marvin	Minsky	 (vide	 Russell	 and	 Norvig	 [2010,
1039]).

9.	The	issue	of	which	kinds	of	digital	mind	would	be	conscious,	in	the	sense
of	 having	 subjective	 phenomenal	 experience,	 or	 “qualia”	 in	 philosopher-
speak,	is	important	in	relation	to	this	point	(though	it	is	irrelevant	to	many
other	 parts	 of	 this	 book).	 One	 open	 question	 is	 how	 hard	 it	 would	 be	 to
accurately	 estimate	 how	 a	 human-like	 being	 would	 behave	 in	 various
circumstances	 without	 simulating	 its	 brain	 in	 enough	 detail	 that	 the
simulation	 is	 conscious.	 Another	 question	 is	 whether	 there	 are	 generally
useful	 algorithms	 for	 a	 superintelligence,	 for	 instance	 reinforcement-
learning	 techniques,	 such	 that	 the	 implementation	 of	 these	 algorithms
would	 generate	 qualia.	 Even	 if	 we	 judge	 the	 probability	 that	 any	 such
subroutines	 would	 be	 conscious	 to	 be	 fairly	 small,	 the	 number	 of
instantiations	 might	 be	 so	 large	 that	 even	 a	 small	 risk	 that	 they	 might
experience	suffering	ought	 to	be	accorded	significant	weight	 in	our	moral
calculation.	See	also	Metzinger	(2003,	Chap.	8).

.	Bostrom	(2002a,	2003a);	Elga	(2004).

CHAPTER	9:	THE	CONTROL	PROBLEM

	

1.	E.g.,	Laffont	and	Martimort	(2002).

2.	 Suppose	 a	majority	 of	 voters	want	 their	 country	 to	 build	 some	 particular
kind	of	superintelligence.	They	elect	a	candidate	who	promises	to	do	their
bidding,	but	they	might	find	it	difficult	to	ensure	that	the	candidate,	once	in
power,	will	follow	through	on	her	campaign	promise	and	pursue	the	project
in	the	way	that	the	voters	intended.	Supposing	she	is	true	to	her	word,	she



instructs	 her	 government	 to	 contract	 with	 an	 academic	 or	 industry
consortium	to	carry	out	the	work;	but	again	there	are	agency	problems:	the
bureaucrats	 in	 the	 government	 department	 might	 have	 their	 own	 views
about	what	 should	 be	 done	 and	may	 implement	 the	 project	 in	 a	way	 that
respects	the	letter	but	not	the	spirit	of	the	leader’s	instructions.	Even	if	the
government	 department	 does	 its	 job	 faithfully,	 the	 contracted	 scientific
partners	 might	 have	 their	 own	 separate	 agendas.	 The	 problem	 recurs	 on
many	levels.	The	director	of	one	of	the	participating	laboratories	might	lie
awake	 worrying	 about	 a	 technician	 introducing	 an	 unsanctioned	 element
into	the	design—imagining	Dr.	T.	R.	Eason	sneaking	into	his	office	late	one
night,	 logging	into	 the	project	code	base,	rewriting	a	part	of	 the	seed	AI’s
goal	system.	Where	 it	was	supposed	 to	say	“serve	humanity,”	 it	now	says
“serve	Dr.	T.	R.	Eason.”

3.	Even	for	superintelligence	development,	 though,	 there	could	be	a	 role	 for
behavioral	 testing—as	 one	 auxiliary	 element	 within	 a	 wider	 battery	 of
safety	 measures.	 Should	 an	 AI	 misbehave	 in	 its	 developmental	 phase,
something	 is	 clearly	 awry—though,	 importantly,	 the	 converse	 does	 not
hold.

4.	 In	 a	 classic	 exploit	 from	1975,	 Steven	Dompier	wrote	 a	 program	 for	 the
Altair	8800	that	took	advantage	of	this	effect	(and	the	absence	of	shielding
around	 the	 microcomputer’s	 case).	 Running	 the	 program	 caused	 the
emission	 of	 electromagnetic	 waves	 that	 would	 produce	 music	 when	 one
held	a	transistor	radio	close	to	the	computer	(Driscoll	2012).	The	young	Bill
Gates,	who	attended	a	demo,	reported	that	he	was	impressed	and	mystified
by	the	hack	(Gates	1975).	There	are	in	any	case	plans	to	design	future	chips
with	built-in	Wi-Fi	capabilities	(Greene	2012).

5.	 It	 is	 no	 light	 matter	 to	 have	 held	 a	 conviction,	 which,	 had	 we	 had	 an
opportunity	 to	 act	 upon	 it,	 could	 have	 resulted	 in	 the	 ruination	 of	 all	 our
cosmic	endowment.	Perhaps	one	could	argue	for	the	following	principle:	if
somebody	 has	 in	 the	 past	 been	 certain	 on	N	 occasions	 that	 a	 system	 has
been	 improved	sufficiently	 to	make	 it	 safe,	and	each	 time	 it	was	 revealed
that	 they	 were	 wrong,	 then	 on	 the	 next	 occasion	 they	 are	 not	 entitled	 to
assign	a	credence	greater	than	1/(N	+	1)	to	the	system	being	safe.

6.	In	one	informal	experiment,	the	role	of	the	AI	was	played	by	an	intelligent
human.	Another	 individual	 played	 the	 role	 of	 gatekeeper	 and	was	 tasked



with	not	letting	the	AI	out	of	the	box.	The	AI	could	communicate	with	the
gatekeeper	only	by	text	and	was	given	two	hours	to	persuade	the	gatekeeper
to	let	it	out.	In	three	cases	out	of	five,	with	different	individuals	playing	the
gatekeeper,	 the	AI	 escaped	 (Yudkowsky	 2002).	What	 a	 human	 can	 do,	 a
superintelligence	can	do	too.	(The	reverse,	of	course,	does	not	hold.	Even	if
the	 task	 for	 a	 real	 superintelligence	were	 harder—maybe	 the	 gatekeepers
would	be	more	strongly	motivated	to	refrain	from	releasing	the	AI	than	the
individuals	 playing	 gatekeeper	 in	 the	 experiment—the	 superintelligence
might	still	succeed	where	a	human	would	fail.)

7.	 One	 should	 not	 overstate	 the	 marginal	 amount	 of	 safety	 that	 could	 be
gained	 in	 this	 way.	 Mental	 imagery	 can	 substitute	 for	 graphical	 display.
Consider	 the	 impact	 books	 can	 have	 on	 people—and	 books	 are	 not	 even
interactive.

8.	See	also	Chalmers	(2010).	It	would	be	a	mistake	to	infer	from	this	that	there
is	no	possible	use	in	building	a	system	that	will	never	be	observed	by	any
outside	entity.	One	might	place	a	final	value	on	what	goes	on	inside	such	a
system.	 Also,	 other	 people	 might	 have	 preferences	 about	 what	 goes	 on
inside	such	a	system,	and	might	 therefore	be	 influenced	by	 its	creation	or
the	promise	of	its	creation.	Knowledge	of	the	existence	of	certain	kinds	of
isolated	 systems	 (ones	 containing	 observers)	 can	 also	 induce	 anthropic
uncertainty	in	outside	observers,	which	may	influence	their	behavior.

9.	One	might	wonder	why	social	integration	is	considered	a	form	of	capability
control.	Should	it	not	instead	be	classified	as	a	motivation	selection	method
on	the	ground	that	 it	 involves	seeking	to	influence	a	system’s	behavior	by
means	of	incentives?	We	will	look	closely	at	motivation	selection	presently;
but,	in	answer	to	this	question,	we	are	construing	motivation	selection	as	a
cluster	of	control	methods	that	work	by	selecting	or	shaping	a	system’s	final
goals—goals	 sought	 for	 their	 own	 sakes	 rather	 than	 for	 instrumental
reasons.	Social	integration	does	not	target	a	system’s	final	goals,	so	it	is	not
motivation	 selection.	 Rather,	 social	 integration	 aims	 to	 limit	 the	 system’s
effective	capabilities:	it	seeks	to	render	the	system	incapable	of	achieving	a
certain	set	of	outcomes—outcomes	in	which	the	system	attains	the	benefits
of	defection	without	suffering	the	associated	penalties	(retribution,	and	loss
of	 the	 gains	 from	 collaboration).	 The	 hope	 is	 that	 by	 limiting	 which
outcomes	 the	 system	 is	 able	 to	 attain,	 the	 system	will	 find	 that	 the	most
effective	 remaining	 means	 of	 realizing	 its	 final	 goals	 is	 to	 behave



cooperatively.

.	This	approach	may	be	somewhat	more	promising	in	the	case	of	an	emulation
believed	to	have	anthropomorphic	motivations.

.	I	owe	this	idea	to	Carl	Shulman.

.	 Creating	 a	 cipher	 certain	 to	withstand	 a	 superintelligent	 code-breaker	 is	 a
nontrivial	challenge.	For	example,	traces	of	random	numbers	might	be	left
in	some	observer’s	brain	or	in	the	microstructure	of	the	random	generator,
from	whence	 the	superintelligence	can	 retrieve	 them;	or,	 if	pseudorandom
numbers	 are	 used,	 the	 superintelligence	might	 guess	 or	 discover	 the	 seed
from	which	they	were	generated.	Further,	the	superintelligence	could	build
large	quantum	computers,	or	even	discover	unknown	physical	phenomena
that	could	be	used	to	construct	new	kinds	of	computers.

.	The	AI	could	wire	itself	to	believe	that	it	had	received	a	reward	tokens,	but
this	should	not	make	it	wirehead	if	it	is	designed	to	want	the	reward	tokens
(as	opposed	to	wanting	to	be	in	a	state	in	which	it	has	certain	beliefs	about
the	reward	tokens).

.	For	the	original	article,	see	Bostrom	(2003a).	See	also	Elga	(2004).

.	Shulman	(2010a).

.	 Basement-level	 reality	 presumably	 contains	more	 computational	 resources
than	 simulated	 reality,	 since	 any	 computational	 processes	 occurring	 in	 a
simulation	 are	 also	 occurring	 on	 the	 computer	 running	 the	 simulation.
Basement-level	 reality	 might	 also	 contain	 a	 wealth	 of	 other	 physical
resources	which	could	be	hard	for	simulated	agents	to	access—agents	that
exist	 only	 at	 the	 indulgence	 of	 powerful	 simulators	 who	may	 have	 other
uses	 in	 mind	 for	 those	 resources.	 (Of	 course,	 the	 inference	 here	 is	 not
strictly	deductively	valid:	in	principle,	it	could	be	the	case	that	universes	in
which	simulations	are	 run	contain	 so	much	more	 resources	 that	 simulated
civilizations	on	average	have	access	to	more	resources	than	non-simulated
civilizations,	 even	 though	 each	 non-simulated	 civilization	 that	 runs
simulations	 has	 more	 resources	 than	 all	 the	 civilizations	 it	 simulates	 do
combined.)

.	 There	 are	 various	 further	 esoteric	 considerations	 that	 might	 bear	 on	 this



matter,	 the	 implications	of	which	have	not	yet	been	 fully	analyzed.	These
considerations	may	ultimately	be	crucially	 important	 in	developing	an	all-
things-considered	approach	 to	dealing	with	 the	prospect	of	an	 intelligence
explosion.	However,	it	seems	unlikely	that	we	will	succeed	in	figuring	out
the	practical	 import	of	 such	esoteric	arguments	unless	we	have	 first	made
some	 progress	 on	 the	 more	 mundane	 kinds	 of	 consideration	 that	 are	 the
topic	of	most	of	this	book.

.	Cf.,	e.g.,	Quine	and	Ullian	(1978).

.	 Which	 an	 AI	 might	 investigate	 by	 considering	 the	 performance
characteristics	 of	 various	 basic	 computational	 functionalities,	 such	 as	 the
size	and	capacity	of	various	data	buses,	the	time	it	takes	to	access	different
parts	of	memory,	the	incidence	of	random	bit	flips,	and	so	forth.

.	Perhaps	the	prior	could	be	(a	computable	approximation	of)	the	Solomonoff
prior,	 which	 assigns	 probability	 to	 possible	 worlds	 on	 the	 basis	 of	 their
algorithmic	complexity.	See	Li	and	Vitányi	(2008).

.	 The	 moment	 after	 the	 conception	 of	 deception,	 the	 AI	 might	 contrive	 to
erase	 the	 trace	 of	 its	mutinous	 thought.	 It	 is	 therefore	 important	 that	 this
tripwire	operate	continuously.	It	would	also	be	good	practice	to	use	a	“flight
recorder”	 that	 stores	 a	 complete	 trace	 of	 all	 the	 AI’s	 activity	 (including
exact	timing	of	keyboard	input	from	the	programmers),	so	that	its	trajectory
can	 be	 retraced	 or	 analyzed	 following	 an	 automatic	 shutdown.	 The
information	could	be	stored	on	a	write-once-read-many	medium.

.	Asimov	(1942).	To	the	three	laws	were	later	added	a	“Zeroth	Law”:	“(0)	A
robot	may	not	harm	humanity,	or,	by	inaction,	allow	humanity	to	come	to
harm”	(Asimov	1985).

.	Cf.	Gunn	(1982).

.	Russell	(1986,	161f).

.	 Similarly,	 although	 some	 philosophers	 have	 spent	 entire	 careers	 trying	 to
carefully	 formulate	 deontological	 systems,	 new	 cases	 and	 consequences
occasionally	 come	 to	 light	 that	 necessitate	 revisions.	 For	 example,
deontological	 moral	 philosophy	 has	 in	 recent	 years	 been	 reinvigorated
through	 the	 discovery	 of	 a	 fertile	 new	 class	 of	 philosophical	 thought



experiments,	 “trolley	 problems,”	 which	 reveal	 many	 subtle	 interactions
among	 our	 intuitions	 about	 the	 moral	 significance	 of	 the	 acts/omissions
distinction,	the	distinction	between	intended	and	unintended	consequences,
and	other	such	matters;	see,	e.g.,	Kamm	(2007).

.	Armstrong	(2010).

.	As	a	rule	of	thumb,	if	one	plans	to	use	multiple	safety	mechanisms	to	contain
an	AI,	it	may	be	wise	to	work	on	each	one	as	if	it	were	intended	to	be	the
sole	safety	mechanism	and	as	if	it	were	therefore	required	to	be	individually
sufficient.	If	one	puts	a	leaky	bucket	inside	another	leaky	bucket,	the	water
still	comes	out.

.	 A	 variation	 of	 the	 same	 idea	 is	 to	 build	 the	 AI	 so	 that	 it	 is	 continuously
motivated	 to	 act	 on	 its	 best	 guesses	 about	 what	 the	 implicitly	 defined
standard	 is.	 In	 this	 setup,	 the	 AI’s	 final	 goal	 is	 always	 to	 act	 on	 the
implicitly	 defined	 standard,	 and	 it	 pursues	 an	 investigation	 into	what	 this
standard	is	only	for	instrumental	reasons.

CHAPTER	10:	ORACLES,	GENIES,	SOVEREIGNS,	TOOLS

	

1.	 These	 names	 are,	 of	 course,	 anthropomorphic	 and	 should	 not	 be	 taken
seriously	as	analogies.	They	are	just	meant	as	 labels	for	some	prima	 facie
different	concepts	of	possible	system	types	that	one	might	consider	trying	to
build.

2.	In	response	to	a	question	about	the	outcome	of	the	next	election,	one	would
not	wish	 to	 be	 served	with	 a	 comprehensive	 list	 of	 the	projected	position
and	momentum	vectors	of	nearby	particles.

3.	Indexed	to	a	particular	instruction	set	on	a	particular	machine.

4.	Kuhn	(1962);	de	Blanc	(2011).

5.	 It	 would	 be	 harder	 to	 apply	 such	 a	 “consensus	 method”	 to	 genies	 or
sovereigns,	 because	 there	 may	 often	 be	 numerous	 sequences	 of	 basic
actions	 (such	 as	 sending	 particular	 patterns	 of	 electrical	 signals	 to	 the
system’s	 actuators)	 that	 would	 be	 almost	 exactly	 equally	 effective	 at



achieving	 a	 given	 objective;	 whence	 slightly	 different	 agents	 may
legitimately	choose	slightly	different	actions,	resulting	in	a	failure	to	reach
consensus.	 By	 contrast,	 with	 appropriately	 formulated	 questions,	 there
would	usually	be	a	small	number	of	suitable	answer	options	(such	as	“yes”
and	“no”).	(On	the	concept	of	a	Schelling	point,	also	referred	to	as	a	“focal
point,”	see	Schelling	[1980].)

6.	 Is	 not	 the	 world	 economy	 in	 some	 respects	 analogous	 to	 a	 weak	 genie,
albeit	one	 that	 charges	 for	 its	 services?	A	vastly	bigger	 economy,	 such	as
might	develop	in	the	future,	might	then	approximate	a	genie	with	collective
superintelligence.

One	important	respect	in	which	the	current	economy	is	unlike	a	genie	is
that	although	I	can	(for	a	fee)	command	the	economy	to	deliver	a	pizza	to
my	door,	I	cannot	command	it	 to	deliver	peace.	The	reason	is	not	 that	 the
economy	is	insufficiently	powerful,	but	that	it	is	insufficiently	coordinated.
In	 this	 respect,	 the	 economy	 resembles	 an	 assembly	 of	 genies	 serving
different	masters	(with	competing	agendas)	more	than	it	resembles	a	single
genie	or	any	other	 type	of	unified	agent.	 Increasing	the	total	power	of	 the
economy	 by	making	 each	 constituent	 genie	more	 powerful,	 or	 by	 adding
more	 genies,	would	 not	 necessarily	 render	 the	 economy	more	 capable	 of
delivering	 peace.	 In	 order	 to	 function	 like	 a	 superintelligent	 genie,	 the
economy	 would	 not	 only	 need	 to	 grow	 in	 its	 ability	 to	 inexpensively
produce	 goods	 and	 services	 (including	 ones	 that	 require	 radically	 new
technology),	 it	 would	 also	 need	 to	 become	 better	 able	 to	 solve	 global
coordination	problems.

7.	 If	 the	 genie	 were	 somehow	 incapable	 of	 not	 obeying	 a	 subsequent
command—and	 somehow	 incapable	 of	 reprogramming	 itself	 to	 get	 rid	 of
this	 susceptibility—then	 it	 could	 act	 to	 prevent	 any	 new	 command	 from
being	issued.

8.	Even	 an	 oracle	 that	 is	 limited	 to	 giving	 yes/no	 answers	 could	 be	 used	 to
facilitate	 the	 search	 for	 a	 genie	 or	 sovereign	AI,	 or	 indeed	 could	be	 used
directly	 as	 a	 component	 in	 such	 an	AI.	 The	 oracle	 could	 also	 be	 used	 to
produce	 the	 actual	 code	 for	 such	 an	AI	 if	 a	 sufficiently	 large	 number	 of
questions	can	be	asked.	A	series	of	such	questions	might	 take	roughly	 the
following	form:	“In	the	binary	version	of	the	code	of	the	first	AI	that	you
thought	of	that	would	constitute	a	genie,	is	the	nth	symbol	a	zero?”



9.	One	could	imagine	a	slightly	more	complicated	oracle	or	genie	that	accepts
questions	 or	 commands	 only	 if	 they	 are	 issued	 by	 a	 designated	 authority,
though	this	would	still	leave	open	the	possibility	of	that	authority	becoming
corrupted	or	being	blackmailed	by	a	third	party.

.	 John	 Rawls,	 a	 leading	 political	 philosopher	 of	 the	 twentieth	 century,
famously	employed	the	expository	device	of	a	veil	of	ignorance	as	a	way	of
characterizing	the	kinds	of	preference	that	should	be	taken	into	account	in
the	 formulation	 of	 a	 social	 contract.	 Rawls	 suggested	 that	 we	 should
imagine	we	were	choosing	a	social	contract	from	behind	a	veil	of	ignorance
that	prevents	us	 from	knowing	which	person	we	will	be	and	which	social
role	we	will	occupy,	the	idea	being	that	in	such	a	situation	we	would	have
to	think	about	which	society	would	be	generally	fairest	and	most	desirable
without	 regard	 to	 our	 egoistic	 interests	 and	 self-serving	 biases	 that	might
otherwise	make	us	prefer	a	social	order	in	which	we	ourselves	enjoy	unjust
privileges.	See	Rawls	(1971).

.	Karnofsky	(2012).

.	A	possible	exception	would	be	software	hooked	up	to	sufficiently	powerful
actuators,	such	as	software	in	early	warning	systems	if	connected	directly	to
nuclear	warheads	or	to	human	officers	authorized	to	launch	a	nuclear	strike.
Malfunctions	 in	 such	 software	 can	 result	 in	 high-risk	 situations.	 This	 has
happened	 at	 least	 twice	 within	 living	 memory.	 On	 November	 9,	 1979,	 a
computer	 problem	 led	 NORAD	 (North	 American	 Aerospace	 Defense
Command)	to	make	a	false	report	of	an	incoming	full-scale	Soviet	attack	on
the	United	States.	The	USA	made	emergency	retaliation	preparations	before
data	 from	 early-warning	 radar	 systems	 showed	 that	 no	 attack	 had	 been
launched	 (McLean	 and	 Stewart	 1979).	 On	 September	 26,	 1983,	 the
malfunctioning	 Soviet	 Oko	 nuclear	 early-warning	 system	 reported	 an
incoming	US	missile	 strike.	The	 report	was	 correctly	 identified	 as	 a	 false
alarm	 by	 the	 duty	 officer	 at	 the	 command	 center,	 Stanislav	 Petrov:	 a
decision	 that	 has	 been	 credited	 with	 preventing	 thermonuclear	 war
(Lebedev	2004).	It	appears	that	a	war	would	probably	have	fallen	short	of
causing	 human	 extinction,	 even	 if	 it	 had	 been	 fought	 with	 the	 combined
arsenals	 held	 by	 all	 the	 nuclear	 powers	 at	 the	 height	 of	 the	 Cold	 War,
though	it	would	have	ruined	civilization	and	caused	unimaginable	death	and
suffering	 (Gaddis	1982;	Parrington	1997).	But	bigger	 stockpiles	might	 be
accumulated	 in	 future	 arms	 races,	 or	 even	 deadlier	 weapons	 might	 be



invented,	 or	 our	 models	 of	 the	 impacts	 of	 a	 nuclear	 Armageddon
(particularly	 of	 the	 severity	 of	 the	 consequent	 nuclear	 winter)	 might	 be
wrong.

.	 This	 approach	 could	 fit	 the	 category	 of	 a	 direct-specification	 rule-based
control	method.

.	 The	 situation	 is	 essentially	 the	 same	 if	 the	 solution	 criterion	 specifies	 a
goodness	measure	rather	than	a	sharp	cutoff	for	what	counts	as	a	solution.

.	 An	 advocate	 for	 the	 oracle	 approach	 could	 insist	 that	 there	 is	 at	 least	 a
possibility	 that	 the	 user	 would	 spot	 the	 flaw	 in	 the	 proffered	 solution—
recognize	 that	 it	 fails	 to	match	 the	user’s	 intent	 even	while	 satisfying	 the
formally	 specified	 success	criteria.	The	 likelihood	of	 catching	 the	error	 at
this	 stage	 would	 depend	 on	 various	 factors,	 including	 how	 humanly
understandable	the	oracle’s	outputs	are	and	how	charitable	it	is	in	selecting
which	features	of	the	potential	outcome	to	bring	to	the	user’s	attention.

Alternatively,	 instead	 of	 relying	 on	 the	 oracle	 itself	 to	 provide	 these
functionalities,	one	might	try	to	build	a	separate	tool	to	do	this,	a	tool	that
could	 inspect	 the	 pronouncements	 of	 the	 oracle	 and	 show	us	 in	 a	 helpful
way	what	would	 happen	 if	we	 acted	 upon	 them.	But	 to	 do	 to	 this	 in	 full
generality	would	 require	another	 superintelligent	oracle	whose	divinations
we	would	then	have	to	trust;	so	the	reliability	problem	would	not	have	been
solved,	 only	 displaced.	 One	 might	 seek	 to	 gain	 an	 increment	 of	 safety
through	the	use	of	multiple	oracles	to	perform	peer	review,	but	this	does	not
protect	in	cases	where	all	the	oracles	fail	in	the	same	way—as	may	happen
if,	 for	 instance,	 they	have	all	been	given	 the	 same	 formal	 specification	of
what	counts	as	a	satisfactory	solution.

.	Bird	and	Layzell	(2002)	and	Thompson	(1997);	also	Yaeger	(1994,	13–14).

.	Williams	(1966).

.	Leigh	(2010).

.	This	example	is	borrowed	from	Yudkowsky	(2011).

.	 Wade	 (1976).	 Computer	 experiments	 have	 also	 been	 conducted	 with
simulated	evolution	designed	to	resemble	aspects	of	biological	evolution—



again	with	sometimes	strange	results	(see,	e.g.,	Yaeger	[1994]).

.	 With	 sufficiently	 great—finite	 but	 physically	 implausible—amounts	 of
computing	 power,	 it	 would	 probably	 be	 possible	 to	 achieve	 general
superintelligence	with	currently	available	algorithms.	(Cf.,	e.g.,	 the	AIXItl
system;	 Hutter	 [2001].)	 But	 even	 the	 continuation	 of	 Moore’s	 law	 for
another	 hundred	 years	 would	 not	 suffice	 to	 attain	 the	 required	 levels	 of
computing	power	to	achieve	this.

CHAPTER	11:	MULTIPOLAR	SCENARIOS

	

1.	Not	because	this	is	necessarily	the	most	likely	or	the	most	desirable	type	of
scenario,	 but	 because	 it	 is	 the	 one	 easiest	 to	 analyze	 with	 the	 toolkit	 of
standard	 economic	 theory,	 and	 thus	 a	 convenient	 starting	 point	 for	 our
discussion.

2.	American	Horse	Council	(2005).	See	also	Salem	and	Rowan	(2001).

3.	Acemoglu	(2003);	Mankiw	(2009);	Zuleta	(2008).

4.	Fredriksen	(2012,	8);	Salverda	et	al.	(2009,	133).

5.	 It	 is	also	essential	 for	at	 least	 some	of	 the	capital	 to	be	 invested	 in	assets
that	rise	with	the	general	tide.	A	diversified	asset	portfolio,	such	as	shares	in
an	 index	 tracker	 fund,	would	 increase	 the	chances	of	not	 entirely	missing
out.

6.	 Many	 of	 the	 European	 welfare	 systems	 are	 unfunded,	 meaning	 that
pensions	 are	 paid	 from	 ongoing	 current	 workers’	 contributions	 and	 taxes
rather	than	from	a	pool	of	savings.	Such	schemes	would	not	automatically
meet	 the	 requirement—in	 case	 of	 sudden	 massive	 unemployment,	 the
revenues	 from	 which	 the	 benefits	 are	 paid	 could	 dry	 up.	 However,
governments	may	choose	to	make	up	the	shortfall	from	other	sources.

7.	American	Horse	Council	(2005).

8.	Providing	7	billion	people	an	annual	pension	of	$90,000	would	cost	$630
trillion	 a	 year,	 which	 is	 ten	 times	 the	 current	 world	 GDP.	 Over	 the	 last



hundred	years,	world	GDP	has	increased	about	nineteenfold	from	around	$2
trillion	 in	 1900	 to	 37	 trillion	 in	 2000	 (in	 1990	 int.	 dollars)	 according	 to
Maddison	(2007).	So	if	the	growth	rates	we	have	seen	over	the	past	hundred
years	continued	for	the	next	two	hundred	years,	while	population	remained
constant,	then	providing	everybody	with	an	annual	$90,000	pension	would
cost	 about	 3%	 of	world	GDP.	An	 intelligence	 explosion	might	make	 this
amount	 of	 growth	 happen	 in	 a	much	 shorter	 time	 span.	 See	 also	Hanson
(1998a,	1998b,	2008).

9.	And	perhaps	as	much	as	a	millionfold	over	 the	past	70,000	years	 if	 there
was	 a	 severe	 population	 bottleneck	 around	 that	 time,	 as	 has	 been
speculated.	See	Kremer	(1993)	and	Huff	et	al.	(2010)	for	more	data.

.	Cochran	and	Harpending	(2009).	See	also	Clark	(2007)	and,	 for	a	critique,
Allen	(2008).

.	Kremer	(1993).

.	Basten	et	al.	 (2013).	 Scenarios	 in	which	 there	 is	 a	 continued	 rise	 are	 also
possible.	 In	 general,	 the	 uncertainty	 of	 such	 projections	 increases	 greatly
beyond	one	or	two	generations	into	the	future.

.	Taken	globally,	 the	 total	 fertility	 rate	 at	 replacement	was	2.33	children	per
woman	in	2003.	This	number	comes	from	the	fact	that	it	takes	two	children
per	woman	to	replace	the	parents,	plus	a	“third	of	a	child”	to	make	up	for
(1)	the	higher	probability	of	boys	being	born,	and	(2)	early	mortality	prior
to	the	end	of	their	fertile	life.	For	developed	nations,	the	number	is	smaller,
around	2.1,	because	of	lower	mortality	rates.	(See	Espenshade	et	al.	[2003,
Introduction,	 Table	 1,	 580].)	 The	 population	 in	most	 developed	 countries
would	 decline	 if	 it	were	 not	 for	 immigration.	A	 few	 notable	 examples	 of
countries	with	sub-replacement	fertility	rates	are:	Singapore	at	0.79	(lowest
in	the	world),	Japan	at	1.39,	People’s	Republic	of	China	at	1.55,	European
Union	at	1.58,	Russia	at	1.61,	Brazil	at	1.81,	Iran	at	1.86,	Vietnam	at	1.87,
and	the	United	Kingdom	at	1.90.	Even	the	U.S.	population	would	probably
decrease	slightly	with	a	fertility	rate	of	2.05.	(See	CIA	[2013].)

.	The	fullness	of	time	might	occur	many	billions	of	years	from	now.

.	Carl	Shulman	points	out	that	if	biological	humans	count	on	living	out	their
natural	 lifespans	 alongside	 the	 digital	 economy,	 they	 need	 to	 assume	 not



only	 that	 the	 political	 order	 in	 the	 digital	 sphere	 would	 be	 protective	 of
human	interests	but	that	it	would	remain	so	over	very	long	periods	of	time
(Shulman	 2012).	 For	 example,	 if	 events	 in	 the	 digital	 sphere	 unfolds	 a
thousand	 times	 faster	 than	on	 the	outside,	 then	a	biological	human	would
have	to	rely	on	the	digital	body	politic	holding	steady	for	50,000	years	of
internal	change	and	churn.	Yet	 if	 the	digital	political	world	were	anything
like	ours,	 there	would	be	a	great	many	revolutions,	wars,	and	catastrophic
upheavals	 during	 those	 millennia	 that	 would	 probably	 inconvenience
biological	humans	on	 the	outside.	Even	a	0.01%	risk	per	year	of	a	global
thermonuclear	war	or	similar	cataclysm	would	entail	a	near	certain	loss	for
the	 biological	 humans	 living	 out	 their	 lives	 in	 slowmo	 sidereal	 time.	 To
overcome	 this	problem,	a	more	stable	order	 in	 the	digital	 realm	would	be
required:	perhaps	a	singleton	that	gradually	improves	its	own	stability.

.	One	might	think	that	even	if	machines	were	far	more	efficient	than	humans,
there	 would	 still	 be	 some	 wage	 level	 at	 which	 it	 would	 be	 profitable	 to
employ	a	human	worker;	say	at	1	cent	an	hour.	If	this	were	the	only	source
of	 income	 for	 humans,	 our	 species	would	 go	 extinct	 since	 human	 beings
cannot	survive	on	1	cent	an	hour.	But	humans	also	get	income	from	capital.
Now,	 if	 we	 are	 assuming	 that	 population	 grows	 until	 total	 income	 is	 at
subsistence	 level,	one	might	 think	 this	would	be	a	 state	 in	which	humans
would	be	working	hard.	For	example,	suppose	subsistence	level	income	is
$1/day.	Then,	it	might	seem,	population	would	grow	until	per	person	capital
provided	 only	 a	 90	 cents	 per	 day	 income,	 which	 people	 would	 have	 to
supplement	with	ten	hours	of	hard	labor	to	make	up	the	remaining	10	cents.
However,	this	need	not	be	so,	because	the	subsistence	level	income	depends
on	 the	 amount	 of	 work	 that	 is	 done:	 harder-working	 humans	 burn	 more
calories.	Suppose	 that	 each	hour	of	work	 increases	 food	costs	by	2	cents.
We	then	have	a	model	in	which	humans	are	idle	in	equilibrium.

.	It	might	be	thought	that	a	caucus	as	enfeebled	as	this	would	be	unable	to	vote
and	 to	 otherwise	defend	 its	 entitlements.	But	 the	pod-dwellers	 could	give
power	 of	 attorney	 to	AI	 fiduciaries	 to	manage	 their	 affairs	 and	 represent
their	 political	 interests.	 (This	 part	 of	 the	 discussion	 in	 this	 section	 is
premised	on	the	assumption	that	property	rights	are	respected.)

.	It	is	unclear	what	is	the	best	term.	“Kill”	may	suggest	more	active	brutality
than	is	warranted.	“End”	may	be	too	euphemistic.	One	complication	is	that
there	are	two	potentially	separate	events:	ceasing	to	actively	run	a	process,



and	 erasing	 the	 information	 template.	 A	 human	 death	 normally	 involves
both	 events,	 but	 for	 an	 emulation	 they	 can	 come	 apart.	 That	 a	 program
temporarily	ceases	to	run	may	be	no	more	consequential	than	that	a	human
sleeps:	but	to	permanently	cease	running	may	be	the	equivalent	of	entering
a	 permanent	 coma.	 Still	 further	 complications	 arise	 from	 the	 fact	 that
emulations	 can	 be	 copied	 and	 that	 they	 can	 run	 at	 different	 speeds:
possibilities	 with	 no	 direct	 analogs	 in	 human	 experience.	 (Cf.	 Bostrom
[2006b];	Bostrom	and	Yudkowsky	[forthcoming].)

.	 There	 will	 be	 a	 trade-off	 between	 total	 parallel	 computing	 power	 and
computational	speed,	as	the	highest	computational	speeds	will	be	attainable
only	 at	 the	 expense	 of	 a	 reduction	 in	 power	 efficiency.	 This	 will	 be
especially	true	after	one	enters	the	era	of	reversible	computing.

.	An	 emulation	 could	 be	 tested	 by	 leading	 it	 into	 temptation.	By	 repeatedly
testing	 how	 an	 emulation	 started	 from	 a	 certain	 prepared	 state	 reacts	 to
various	 sequences	 of	 stimuli,	 one	 could	 obtain	 high	 confidence	 in	 the
reliability	of	that	emulation.	But	the	further	the	mental	state	is	subsequently
allowed	 to	develop	away	 from	 its	validated	starting	point,	 the	 less	certain
one	 could	 be	 that	 it	 would	 remain	 reliable.	 (In	 particular,	 since	 a	 clever
emulation	might	surmise	it	is	sometimes	in	a	simulation,	one	would	need	to
be	 cautious	 about	 extrapolating	 its	 behavior	 into	 situations	 where	 its
simulation	hypothesis	would	weigh	less	heavily	in	its	decision-making.)

.	Some	emulations	might	identify	with	their	clan—i.e.	all	of	their	copies	and
variations	derived	from	the	same	template—rather	with	any	one	particular
instantiation.	Such	an	emulation	might	not	regard	its	own	termination	as	a
death	event,	if	it	knew	that	other	clan	members	would	survive.	Emulations
may	know	that	they	will	get	reverted	to	a	particular	stored	state	at	the	end
of	the	day	and	lose	that	day’s	memories,	but	be	as	little	put	off	by	this	as	the
partygoer	 who	 knows	 she	 will	 awake	 the	 next	 morning	 without	 any
recollection	of	the	previous	night:	regarding	this	as	retrograde	amnesia,	not
death.

.	An	 ethical	 evaluation	might	 take	 into	 account	many	 other	 factors	 as	well.
Even	 if	all	 the	workers	were	constantly	well	pleased	with	 their	condition,
the	outcome	might	still	be	deeply	morally	objectionable	on	other	grounds—
though	 which	 other	 grounds	 is	 a	 matter	 of	 dispute	 between	 rival	 moral
theories.	 But	 any	 plausible	 assessment	 would	 consider	 subjective	 well-



being	 to	 be	 one	 important	 factor.	 See	 also	 Bostrom	 and	 Yudkowsky
(forthcoming).

.	World	Values	Survey	(2008).

.	Helliwell	and	Sachs	(2012).

.	Cf.	Bostrom	(2004).	See	also	Chislenko	(1996)	and	Moravec	(1988).

.	 It	 is	 hard	 to	 say	whether	 the	 information-processing	 structures	 that	would
emerge	in	this	kind	of	scenario	would	be	conscious	(in	the	sense	of	having
qualia,	 phenomenal	 experience).	 The	 reason	 this	 is	 hard	 is	 partly	 our
empirical	 ignorance	 about	which	 cognitive	 entities	would	 arise	 and	partly
our	 philosophical	 ignorance	 about	 which	 types	 of	 structure	 have
consciousness.	One	could	try	to	reframe	the	question,	and	instead	of	asking
whether	the	future	entities	would	be	conscious,	one	could	ask	whether	the
future	 entities	 would	 have	 moral	 status;	 or	 one	 could	 ask	 whether	 they
would	be	such	that	we	have	preferences	about	their	“well-being.”	But	these
questions	may	be	no	easier	to	answer	than	the	question	about	consciousness
—in	 fact,	 they	 might	 require	 an	 answer	 to	 the	 consciousness	 question
inasmuch	as	moral	status	or	our	preferences	depend	on	whether	the	entity	in
question	can	subjectively	experience	its	condition.

.	 For	 an	 argument	 that	 both	 geological	 and	 human	 history	 manifest	 such	 a
trend	 toward	 greater	 complexity,	 see	 Wright	 (2001).	 For	 an	 opposing
argument	(criticized	in	Chapter	9	of	Wright’s	book),	see	Gould	(1990).	See
also	Pinker	 (2011)	 for	 an	 argument	 that	we	 are	witnessing	 a	 robust	 long-
term	trend	toward	decreasing	violence	and	brutality.

.	For	more	on	observation	selection	theory,	see	Bostrom	(2002a).

.	 Bostrom	 (2008a).	 A	much	more	 careful	 examination	 of	 the	 details	 of	 our
evolutionary	 history	 would	 be	 needed	 to	 circumvent	 the	 selection	 effect.
See,	e.g.,	Carter	(1983,	1993);	Hanson	(1998d);	Ćirković	et	al.	(2010).

.	Kansa	(2003).

.	E.g.,	Zahavi	and	Zahavi	(1997).

.	See	Miller	(2000).



.	Kansa	(2003).	For	a	provocative	take,	see	also	Frank	(1999).

.	 It	 is	 not	 obvious	 how	 best	 to	 measure	 the	 degree	 of	 global	 political
integration.	One	perspective	would	be	that	whereas	a	hunter–gatherer	tribe
might	have	integrated	a	hundred	individuals	into	a	decision-making	entity,
the	 largest	 political	 entities	 today	 contain	more	 than	 a	 billion	 individuals.
This	would	amount	to	a	difference	of	seven	orders	of	magnitude,	with	only
one	 additional	 magnitude	 to	 go	 before	 the	 entire	 world	 population	 is
contained	within	 a	 single	 political	 entity.	 However,	 at	 the	 time	when	 the
tribe	was	 the	 largest	 scale	 of	 integration,	 the	world	 population	was	much
smaller.	 The	 tribe	 might	 have	 contained	 as	 much	 as	 a	 thousandth	 of	 the
individuals	 then	 living.	 This	 would	 make	 the	 increase	 in	 the	 scale	 of
political	 integration	 as	 little	 as	 two	 orders	 of	 magnitude.	 Looking	 at	 the
fraction	 of	 world	 population	 that	 is	 politically	 integrated,	 rather	 than	 at
absolute	numbers,	seems	appropriate	in	the	present	context	(particularly	as
the	transition	to	machine	intelligence	may	cause	a	population	explosion,	of
emulations	or	other	digital	minds).	But	there	have	also	been	developments
in	global	institutions	and	networks	of	collaboration	outside	of	formal	state
structures,	which	should	also	be	taken	into	account.

.	 One	 of	 the	 reasons	 for	 supposing	 that	 the	 first	 machine	 intelligence
revolution	will	be	swift—the	possible	existence	of	a	hardware	overhang—
does	not	apply	here.	However,	 there	could	be	other	sources	of	 rapid	gain,
such	 as	 a	 dramatic	 breakthrough	 in	 software	 associated	with	 transitioning
from	emulation	to	purely	synthetic	machine	intelligence.

.	Shulman	(2010b).

.	 How	 the	 pro	 et	 contra	 would	 balance	 out	 might	 depend	 on	 what	 kind	 of
work	the	superorganism	is	trying	to	do,	and	how	generally	capable	the	most
generally	capable	available	emulation	template	is.	Part	of	the	reason	many
different	types	of	human	beings	are	needed	in	large	organizations	today	is
that	humans	who	are	very	talented	in	many	domains	are	rare.

.	 It	 is	 of	 course	very	 easy	 to	make	multiple	 copies	of	 a	 software	 agent.	But
note	that	copying	is	not	in	general	sufficient	to	ensure	that	the	copies	have
the	same	final	goals.	In	order	for	two	agents	to	have	the	same	final	goals	(in
the	 relevant	 sense	 of	 “same”),	 the	 goals	 must	 coincide	 in	 their	 indexical
elements.	If	Bob	is	selfish,	a	copy	of	Bob	will	likewise	be	selfish.	Yet	their



goals	do	not	coincide:	Bob	cares	about	Bob	whereas	Bob-copy	cares	about
Bob-copy.

.	Shulman	(2010b,	6).

.	 This	 might	 be	 more	 feasible	 for	 biological	 humans	 and	 whole	 brain
emulations	 than	 for	 arbitrary	 artificial	 intelligences,	 which	 might	 be
constructed	so	as	to	have	hidden	compartments	or	functional	dynamics	that
may	be	very	hard	to	discover.	On	the	other	hand,	AIs	specifically	built	to	be
transparent	 should	 allow	 for	 more	 thoroughgoing	 inspection	 and
verification	 than	 is	possible	with	brain-like	 architectures.	Social	pressures
may	encourage	AIs	to	expose	their	source	code,	and	to	modify	themselves
to	 render	 themselves	 transparent—especially	 if	 being	 transparent	 is	 a
precondition	 to	 being	 trusted	 and	 thus	 to	 being	 given	 the	 opportunity	 to
partake	in	beneficial	transactions.	Cf.	Hall	(2007).

.	Some	other	issues	that	seem	relatively	minor,	especially	in	cases	where	the
stakes	are	enormous	(as	 they	are	for	 the	key	global	coordination	failures),
include	the	search	cost	of	finding	policies	that	could	be	of	mutual	interest,
and	 the	 possibility	 that	 some	 agents	 might	 have	 a	 basic	 preference	 for
“autonomy”	 in	 a	 form	 that	 would	 be	 reduced	 by	 entering	 into
comprehensive	 global	 treaties	 that	 have	 monitoring	 and	 enforcement
mechanisms	attached.

.	An	AI	might	perhaps	achieve	this	by	modifying	itself	appropriately	and	then
giving	observers	read-only	access	to	its	source	code.	A	machine	intelligence
with	 a	 more	 opaque	 architecture	 (such	 as	 an	 emulation)	 might	 perhaps
achieve	it	by	publicly	applying	to	itself	some	motivation	selection	method.
Alternatively,	an	external	coercive	agency,	such	as	a	superorganism	police
force,	might	perhaps	be	used	not	only	 to	enforce	 the	 implementation	of	a
treaty	reached	between	different	parties,	but	also	internally	by	a	single	party
to	commit	itself	to	a	particular	course	of	action.

.	 Evolutionary	 selection	 might	 have	 favored	 threat-ignorers	 and	 even
characters	visibly	so	highly	strung	that	they	would	rather	fight	to	the	death
than	 suffer	 the	 slightest	 discomfiture.	 Such	 a	 disposition	 might	 bring	 its
bearer	 valuable	 signaling	 benefits.	 (Any	 such	 instrumental	 rewards	 of
having	the	disposition	need	of	course	play	no	part	in	the	agent’s	conscious
motivation:	he	may	value	justice	or	honor	as	ends	in	themselves.)



.	A	definitive	verdict	on	these	matters,	however,	must	await	further	analysis.
There	 are	 various	 other	 potential	 complications	which	we	 cannot	 explore
here.

CHAPTER	12:	ACQUIRING	VALUES

	

1.	 Various	 complications	 and	 modulations	 of	 this	 basic	 idea	 could	 be
introduced.	We	discussed	one	variation	in	Chapter	8—that	of	a	satisficing,
as	opposed	to	maximizing,	agent—and	in	the	next	chapter	we	briefly	touch
on	 the	 issue	of	alternative	decision	 theories.	However,	such	 issues	are	not
essential	 to	the	thrust	of	 this	subsection,	so	we	will	keep	things	simple	by
focusing	here	on	the	case	of	an	expected	utility-maximizing	agent.

2.	Assuming	 the	AI	 is	 to	have	a	nontrivial	utility	 function.	 It	would	be	very
easy	 to	 build	 an	 agent	 that	 always	 chooses	 an	 action	 that	 maximizes
expected	utility	if	its	utility	function	is,	e.g.,	the	constant	function	U(w)	=	0.
Every	action	would	equally	well	maximize	expected	utility	relative	to	that
utility	function.

3.	 Also	 because	 we	 have	 forgotten	 the	 blooming	 buzzing	 confusion	 of	 our
early	infancy,	a	time	when	we	could	not	yet	see	very	well	because	our	brain
had	not	yet	learned	to	interpret	its	visual	input.

4.	See	also	Yudkowsky	(2011)	and	the	review	in	section	5	of	Muehlhauser	and
Helm	(2012).

5.	 It	 is	perhaps	 just	about	conceivable	 that	advances	 in	software	engineering
could	eventually	overcome	these	difficulties.	Using	modern	tools,	a	single
programmer	can	produce	software	that	would	have	been	beyond	the	pale	of
a	 sizeable	 team	 of	 developers	 forced	 to	 write	 directly	 in	 machine	 code.
Today’s	AI	programmers	gain	expressiveness	from	the	wide	availability	of
high-quality	machine	 learning	and	scientific	calculation	 libraries,	enabling
someone	 to	 hack	 up,	 for	 instance,	 a	 unique-face-counting	 webcam
application	by	chaining	libraries	together	that	they	never	could	have	written
on	 their	 own.	 The	 accumulation	 of	 reusable	 software,	 produced	 by
specialists	but	useable	by	non-specialists,	will	give	future	programmers	an
expressiveness	 advantage.	 For	 example,	 a	 future	 robotics	 programmer



might	 have	 ready	 access	 to	 standard	 facial	 imprinting	 libraries,	 typical-
office-building-object	collections,	specialized	trajectory	libraries,	and	many
other	functionalities	that	are	currently	unavailable.

6.	Dawkins	(1995,	132).	The	claim	here	is	not	necessarily	that	the	amount	of
suffering	in	the	natural	world	outweighs	the	amount	of	positive	well-being.

7.	Required	population	sizes	might	be	much	larger	or	much	smaller	than	those
that	existed	in	our	own	ancestry.	See	Shulman	and	Bostrom	(2012).

8.	If	it	were	easy	to	get	an	equivalent	result	without	harming	large	numbers	of
innocents,	 it	would	 seem	morally	 better	 to	 do	 so.	 If,	 nevertheless,	 digital
persons	are	created	and	made	 to	suffer	unjust	harm,	 it	may	be	possible	 to
compensate	them	for	their	suffering	by	saving	them	to	file	and	later	(when
humanity’s	 future	 is	 secured)	 rerunning	 them	 under	 more	 favorable
conditions.	Such	 restitution	 could	be	 compared	 in	 some	ways	 to	 religious
conceptions	of	an	afterlife	in	the	context	of	theological	attempts	to	address
the	evidential	problem	of	evil.

9.	One	 of	 the	 field’s	 leading	 figures,	 Richard	 Sutton,	 defines	 reinforcement
learning	 not	 in	 terms	 of	 a	 learning	 method	 but	 in	 terms	 of	 a	 learning
problem:	 any	 method	 that	 is	 well	 suited	 to	 solving	 that	 problem	 is
considered	 a	 reinforcement	 learning	 method	 (Sutton	 and	 Barto	 1998,	 4).
The	present	discussion,	in	contrast,	pertains	to	methods	where	the	agent	can
be	 conceived	of	 as	 having	 the	 final	 goal	 of	maximizing	 (some	notion	 of)
cumulative	 reward.	Since	 an	 agent	with	 some	very	 different	 kind	of	 final
goal	might	be	skilled	at	mimicking	a	reward-seeking	agent	in	a	wide	range
of	 situations,	 and	 could	 thus	 be	 well	 suited	 to	 solving	 reinforcement
learning	 problems,	 there	 could	 be	 methods	 that	 would	 count	 as
“reinforcement	 learning	 methods”	 on	 Sutton’s	 definition	 that	 would	 not
result	in	a	wireheading	syndrome.	The	remarks	in	the	text,	however,	apply
to	 most	 of	 the	 methods	 actually	 used	 in	 the	 reinforcement	 learning
community.

.	Even	if,	somehow,	a	human-like	mechanism	could	be	set	up	within	a	human-
like	 machine	 intellect,	 the	 final	 goals	 acquired	 by	 this	 intellect	 need	 not
resemble	 those	 of	 a	well-adjusted	 human,	 unless	 the	 rearing	 environment
for	 this	 digital	 baby	 also	 closely	 matched	 that	 of	 an	 ordinary	 child:
something	that	would	be	difficult	 to	arrange.	And	even	with	a	human-like



rearing	 environment,	 a	 satisfactory	 result	 would	 not	 be	 guaranteed,	 since
even	 a	 subtle	 difference	 in	 innate	 dispositions	 can	 result	 in	 very	different
reactions	 to	 a	 life	 event.	 It	 may,	 however,	 be	 possible	 to	 create	 a	 more
reliable	 value-accretion	 mechanism	 for	 human-like	 minds	 in	 the	 future
(perhaps	using	novel	drugs	or	brain	implants,	or	their	digital	equivalents).

.	One	might	wonder	why	 it	appears	we	humans	 are	not	 trying	 to	disable	 the
mechanism	that	leads	us	to	acquire	new	final	values.	Several	factors	might
be	 at	 play.	 First,	 the	 human	 motivation	 system	 is	 poorly	 described	 as	 a
coldly	calculating	utility-maximizing	algorithm.	Second,	we	might	not	have
any	 convenient	means	 of	 altering	 the	ways	we	 acquire	 values.	 Third,	we
may	have	 instrumental	 reasons	 (arising,	 e.g.,	 from	 social	 signaling	needs)
for	 sometimes	 acquiring	 new	 final	 values—instrumental	 values	might	 not
be	as	useful	if	our	minds	are	partially	transparent	to	other	people,	or	if	the
cognitive	 complexity	 of	 pretending	 to	 have	 a	 different	 set	 of	 final	 values
than	 we	 actually	 do	 is	 too	 taxing.	 Fourth,	 there	 are	 cases	 where	 we	 do
actively	 resist	 tendencies	 that	 produce	 changes	 in	 our	 final	 values,	 for
instance	when	we	seek	 to	 resist	 the	corrupting	 influence	of	bad	company.
Fifth,	 there	 is	 the	 interesting	possibility	 that	we	place	some	final	value	on
being	the	kind	of	agent	that	can	acquire	new	final	values	in	normal	human
ways.

.	Or	one	might	try	to	design	the	motivation	system	so	that	the	AI	is	indifferent
to	such	replacement;	see	Armstrong	(2010).

.	We	 will	 here	 draw	 on	 some	 elucidations	 made	 by	 Daniel	 Dewey	 (2011).
Other	 background	 ideas	 contributing	 to	 this	 framework	 have	 been
developed	 by	 Marcus	 Hutter	 (2005)	 and	 Shane	 Legg	 (2008),	 Eliezer
Yudkowsky	(2001),	Nick	Hay	(2005),	Moshe	Looks,	and	Peter	de	Blanc.

.	 To	 avoid	 unnecessary	 complications,	 we	 confine	 our	 attention	 to
deterministic	agents	that	do	not	discount	future	rewards.

.	Mathematically,	an	agent’s	behavior	can	be	formalized	as	an	agent	function,
which	maps	 each	 possible	 interaction	 history	 to	 an	 action.	Except	 for	 the
very	 simplest	 agents,	 it	 is	 infeasible	 to	 represent	 the	 agent	 function
explicitly	 as	 a	 lookup	 table.	 Instead,	 the	 agent	 is	 given	 some	 way	 of
computing	 which	 action	 to	 perform.	 Since	 there	 are	 many	 ways	 of
computing	the	same	agent	function,	this	leads	to	a	finer	individuation	of	an



agent	 as	 an	 agent	 program.	 An	 agent	 program	 is	 a	 specific	 program	 or
algorithm	that	computes	an	action	for	any	given	interaction	history.	While	it
is	often	mathematically	convenient	and	useful	to	think	of	an	agent	program
that	 interacts	with	some	formally	specified	environment,	 it	 is	 important	 to
remember	 that	 this	 is	 an	 idealization.	 Real	 agents	 are	 physically
instantiated.	 This	 means	 not	 only	 that	 the	 agent	 interacts	 with	 the
environment	via	 its	sensors	and	effectors,	but	also	that	 the	agent’s	“brain”
or	controller	is	itself	part	of	physical	reality.	Its	operations	can	therefore	in
principle	 be	 affected	 by	 external	 physical	 interferences	 (and	 not	 only	 by
receiving	percepts	 from	 its	 sensors).	At	 some	point,	 therefore,	 it	 becomes
necessary	 to	 view	 an	 agent	 as	 an	 agent	 implementation.	 An	 agent
implementation	 is	 a	 physical	 structure	 that,	 in	 the	 absence	of	 interference
from	 its	 environment,	 implements	 an	 agent	 function.	 (This	 definition
follows	Dewey	[2011].)

.	Dewey	proposes	the	following	optimality	notion	for	a	value	learning	agent:

	

Here,	 P1	 and	 P2	 are	 two	 probability	 functions.	 The	 second	 summation
ranges	over	some	suitable	class	of	utility	functions	over	possible	interaction
histories.	In	the	version	presented	in	the	text,	we	have	made	explicit	some
dependencies	 as	 well	 as	 availed	 ourselves	 of	 the	 simplifying	 possible
worlds	notation.

	

.	 It	 should	 be	 noted	 that	 the	 set	 of	 utility	 functions	 	 should	 be	 such	 that
utilities	can	be	compared	and	averaged.	In	general,	this	is	problematic,	and
it	 is	 not	 always	 obvious	 how	 to	 represent	 different	moral	 theories	 of	 the
good	in	terms	of	cardinal	utility	functions.	See,	e.g.,	MacAskill	2010).

.	Or	more	 generally,	 since	 ν	might	 not	 be	 such	 as	 to	 directly	 imply	 for	 any
given	 pair	 of	 a	 possible	 world	 and	 a	 utility	 function	 (w,	U)	 whether	 the
proposition	ν(U)	 is	 true	 in	w,	what	 needs	 to	be	done	 is	 to	give	 the	AI	 an
adequate	representation	of	 the	conditional	probability	distribution	P(ν(U)	 |
w).



.	Consider	first	 ,	the	class	of	actions	that	are	possible	for	an	agent.	One	issue
here	is	what	exactly	should	count	as	an	action:	only	basic	motor	commands
(e.g.	“send	an	electric	pulse	along	output	channel	#00101100”),	or	higher-
level	actions	(e.g.	“keep	camera	centered	on	face”)?	Since	we	are	trying	to
develop	 an	 optimality	 notion	 rather	 than	 a	 practical	 implementation	 plan,
we	may	take	the	domain	to	be	basic	motor	commands	(and	since	the	set	of
possible	motor	commands	might	change	over	time,	we	may	need	to	index	
to	 time).	 However,	 in	 order	 to	 move	 toward	 implementation	 it	 will
presumably	 be	 necessary	 to	 introduce	 some	 kind	 of	 hierarchical	 planning
process,	 and	 one	may	 then	 need	 to	 consider	 how	 to	 apply	 the	 formula	 to
some	class	of	higher-level	actions.	Another	issue	is	how	to	analyze	internal
actions	(such	as	writing	strings	to	working	memory).	Since	internal	actions
can	have	important	consequences,	one	would	ideally	want	 	to	include	such
basic	 internal	 actions	 as	well	 as	motor	 commands.	But	 there	 are	 limits	 to
how	far	one	can	go	in	this	direction:	the	computation	of	the	expected	utility
of	any	action	 in	 	 requires	multiple	computational	operations,	and	 if	each
such	 operation	 were	 also	 regarded	 as	 an	 action	 in	 	 that	 needed	 to	 be
evaluated	according	to	AI-VL,	we	would	face	an	infinite	regress	that	would
make	 it	 impossible	 to	 ever	 get	 started.	 To	 avoid	 the	 infinite	 regress,	 one
must	restrict	any	explicit	attempt	to	estimate	the	expected	utility	to	a	limited
number	of	significant	action	possibilities.	The	system	will	then	need	some
heuristic	 process	 that	 identifies	 some	 significant	 action	 possibilities	 for
further	 consideration.	 (Eventually	 the	 system	 might	 also	 get	 around	 to
making	 explicit	 decisions	 regarding	 some	 possible	 actions	 to	 make
modifications	to	this	heuristic	process,	actions	that	might	have	been	flagged
for	explicit	attention	by	 this	self-same	process;	so	 that	 in	 the	 long	run	 the
system	 might	 become	 increasingly	 effective	 at	 approximating	 the	 ideal
identified	by	AI-VL.)

Consider	next	 ,	which	is	a	class	of	possible	worlds.	One	difficulty	here
is	 to	specify	 	 so	 that	 it	 is	 sufficiently	 inclusive.	Failure	 to	 include	 some
relevant	w	 in	 	 could	 render	 the	AI	 incapable	of	 representing	 a	 situation
that	actually	occurs,	resulting	in	the	AI	making	bad	decisions.	Suppose,	for
example,	that	we	use	some	ontological	theory	to	determine	the	makeup	of	
.	For	instance,	we	include	in	 	all	possible	worlds	that	consist	of	a	certain

kind	of	spacetime	manifold	populated	by	elementary	particles	found	in	the
standard	model	in	particle	physics.	This	could	distort	the	AI’s	epistemology
if	 the	 standard	model	 is	 incomplete	 or	 incorrect.	 One	 could	 try	 to	 use	 a
bigger	 -class	to	cover	more	possibilities;	but	even	if	one	could	ensure	that



every	possible	physical	universe	is	included	one	might	still	worry	that	some
other	possibility	would	be	left	out.	For	example,	what	about	the	possibility
of	 dualistic	 possible	 worlds	 in	 which	 facts	 about	 consciousness	 do	 not
supervene	on	 facts	about	physics?	What	about	 indexical	 facts?	Normative
facts?	Facts	of	higher	mathematics?	What	about	other	kinds	of	fact	that	we
fallible	 humans	 might	 have	 overlooked	 but	 that	 could	 turn	 out	 to	 be
important	 to	 making	 things	 go	 as	 well	 as	 possible?	 Some	 people	 have
strong	 convictions	 that	 some	 particular	 ontological	 theory	 is	 correct.
(Among	 people	 writing	 on	 the	 future	 of	 AI,	 a	 belief	 in	 a	 materialistic
ontology,	in	which	the	mental	supervenes	on	the	physical,	is	often	taken	for
granted.)	Yet	a	moment’s	 reflection	on	 the	history	of	 ideas	should	help	us
realize	 that	 there	 is	 a	 significant	 possibility	 that	 our	 favorite	 ontology	 is
wrong.	 Had	 nineteenth-century	 scientists	 attempted	 a	 physics-inspired
definition	 of	 ,	 they	 would	 probably	 have	 neglected	 to	 include	 the
possibility	of	a	non-Euclidian	spacetime	or	an	Everettian	(“many-worlds”)
quantum	theory	or	a	cosmological	multiverse	or	 the	simulation	hypothesis
—possibilities	 that	 now	 appear	 to	 have	 a	 substantial	 probability	 of
obtaining	in	the	actual	world.	It	is	plausible	that	there	are	other	possibilities
to	which	we	in	the	present	generation	are	similarly	oblivious.	(On	the	other
hand,	 if	 	 is	 too	big,	 there	arise	 technical	difficulties	 related	 to	having	 to
assign	 measures	 over	 transfinite	 sets.)	 The	 ideal	 might	 be	 if	 we	 could
somehow	 arrange	 things	 such	 that	 the	 AI	 could	 use	 some	 kind	 of	 open-
ended	ontology,	one	that	the	AI	itself	could	subsequently	extend	using	the
same	principles	 that	we	would	use	when	deciding	whether	 to	 recognize	 a
new	type	of	metaphysical	possibility.

Consider	P(w|Ey).	 Specifying	 this	 conditional	 probability	 is	 not	 strictly
part	 of	 the	 value-loading	 problem.	 In	 order	 to	 be	 intelligent,	 the	AI	must
already	have	some	way	of	deriving	 reasonably	accurate	probabilities	over
many	relevant	factual	possibilities.	A	system	that	falls	too	far	short	on	this
score	will	not	pose	the	kind	of	danger	that	concerns	us	here.	However,	there
may	 be	 a	 risk	 that	 the	AI	will	 end	 up	with	 an	 epistemology	 that	 is	 good
enough	 to	 make	 the	 AI	 instrumentally	 effective	 yet	 not	 good	 enough	 to
enable	 it	 to	 think	 correctly	 about	 some	 possibilities	 that	 are	 of	 great
normative	 importance.	 (The	problem	of	 specifying	P(w|Ey)	 is	 in	 this	way
related	to	the	problem	of	specifying	 .)	Specifying	P(w	|	Ey)	also	requires
confronting	other	issues,	such	as	how	to	represent	uncertainty	over	logical
impossibilities.



The	aforementioned	issues—how	to	define	a	class	of	possible	actions,	a
class	of	possible	worlds,	and	a	likelihood	distribution	connecting	evidence
to	classes	of	possible	worlds—are	quite	generic:	 similar	 issues	arise	 for	a
wide	 range	 of	 formally	 specified	 agents.	 It	 remains	 to	 examine	 a	 set	 of
issues	more	peculiar	to	the	value	learning	approach;	namely,	how	to	define	
,	V(U),	and	P(V(U)	|	w).

	 is	a	class	of	utility	functions.	There	is	a	connection	between	 	and	
inasmuch	as	each	utility	function	U	(w)	in	 	should	 ideally	assign	utilities
to	each	possible	world	w	in	 .	But	 	also	needs	to	be	wide	in	the	sense	of
containing	 sufficiently	 many	 and	 diverse	 utility	 functions	 for	 us	 to	 have
justified	 confidence	 that	 at	 least	 one	 of	 them	 does	 a	 good	 job	 of
representing	the	intended	values.

The	 reason	 for	 writing	 P(V(U)	 |	 w)	 rather	 than	 simply	 P(U|w)	 is	 to
emphasize	the	fact	that	probabilities	are	assigned	to	propositions.	A	utility
function,	per	se,	is	not	a	proposition,	but	we	can	transform	a	utility	function
into	 a	 proposition	 by	making	 some	 claim	 about	 it.	 For	 example,	we	may
claim	of	a	particular	utility	function	U(.)	that	it	describes	the	preferences	of
a	particular	person,	or	 that	 it	 represents	 the	prescriptions	 implied	by	some
ethical	theory,	or	that	it	is	the	utility	function	that	the	principal	would	have
wished	to	have	implemented	if	she	had	thought	things	through.	The	“value
criterion”	V(.)	can	thus	be	construed	as	a	function	that	takes	as	its	argument
a	utility	function	U	and	gives	as	its	value	a	proposition	to	the	effect	that	U
satisfies	the	criterion	V.	Once	we	have	defined	a	proposition	V(U),	we	can
hopefully	 obtain	 the	 conditional	 probability	 P(V(U)|w)	 from	 whatever
source	we	used	to	obtain	the	other	probability	distributions	in	the	AI.	(If	we
are	 certain	 that	 all	 normatively	 relevant	 facts	 are	 taken	 into	 account	 in
individuating	 the	possible	worlds	 ,	 then	P(V(U)|w)	 should	 equal	 zero	or
one	in	each	possible	world.)	The	question	remains	how	to	define	V.	This	is
discussed	further	in	the	text.

.	These	are	not	 the	only	challenges	for	 the	value	learning	approach.	Another
issue,	for	instance,	is	how	to	get	the	AI	to	have	sufficiently	sensible	initial
beliefs—at	 least	 by	 the	 time	 it	 becomes	 strong	 enough	 to	 subvert	 the
programmers’	attempts	to	correct	it.

.	Yudkowsky	(2001).



.	The	 term	 is	 taken	 from	American	 football,	where	 a	 “Hail	Mary”	 is	 a	 very
long	 forward	 pass	made	 in	 desperation,	 typically	when	 the	 time	 is	 nearly
up,	on	the	off	chance	that	a	friendly	player	might	catch	the	ball	near	the	end
zone	and	score	a	touchdown.

.	 The	 Hail	Mary	 approach	 relies	 on	 the	 idea	 that	 a	 superintelligence	 could
articulate	 its	 preferences	 with	 greater	 exactitude	 than	 we	 humans	 can
articulate	 ours.	 For	 example,	 a	 superintelligence	 could	 specify	 its
preference	as	code.	So	if	our	AI	is	representing	other	superintelligences	as
computational	processes	that	are	perceiving	their	environment,	then	our	AI
should	 be	 able	 to	 reason	 about	 how	 those	 alien	 superintelligences	 would
respond	to	some	hypothetical	stimulus,	such	as	a	“window”	popping	up	in
their	visual	field	presenting	them	with	the	source	code	of	our	own	AI	and
asking	 them	 to	 specify	 their	 instructions	 to	 us	 in	 some	 convenient	 pre-
specified	 format.	Our	AI	 could	 then	 read	off	 these	 imaginary	 instructions
(from	 its	 own	 model	 of	 this	 counterfactual	 scenario	 wherein	 these	 alien
superintelligences	are	represented),	and	we	would	have	built	our	AI	so	that
it	would	be	motivated	to	follow	those	instructions.

.	An	alternative	would	be	to	create	a	detector	that	looks	(within	our	AI’s	world
model)	 for	 (representations	 of)	 physical	 structures	 created	 by	 a
superintelligent	 civilization.	We	 could	 then	 bypass	 the	 step	 of	 identifying
the	hypothesized	superintelligences’	preference	functions,	and	give	our	own
AI	the	final	value	of	trying	to	copy	whatever	physical	structures	it	believes
superintelligent	civilizations	tend	to	produce.

There	 are	 technical	 challenges	 with	 this	 version,	 too,	 however.	 For
instance,	since	our	own	AI,	even	after	it	has	attained	superintelligence,	may
not	 be	 able	 to	 know	 with	 great	 precision	 what	 physical	 structures	 other
superintelligences	build,	our	AI	may	need	to	resort	to	trying	to	approximate
those	structures.	To	do	this,	 it	would	seem	our	AI	would	need	a	similarity
metric	 by	which	 to	 judge	 how	 closely	 one	 physical	 artifact	 approximates
another.	But	 similarity	metrics	 based	 on	 crude	 physical	measures	may	 be
inadequate—it	 being	 no	 good,	 for	 example,	 to	 judge	 that	 a	 brain	 is	more
similar	to	a	Camembert	cheese	than	to	a	computer	running	an	emulation.

A	 more	 feasible	 approach	 might	 be	 to	 look	 for	 “beacons”:	 messages
about	utility	functions	encoded	in	some	suitable	simple	format.	We	would
build	 our	 AI	 to	 want	 to	 follow	 whatever	 such	 messages	 about	 utility



functions	 it	 hypothesizes	 might	 exist	 out	 there	 in	 the	 universe;	 and	 we
would	 hope	 that	 friendly	 extraterrestrial	 AIs	 would	 create	 a	 variety	 of
beacons	 of	 the	 types	 that	 they	 (with	 their	 superintelligence)	 reckon	 that
simple	civilizations	like	ours	are	most	likely	to	build	our	AI	to	look	for.

.	If	every	civilization	tried	to	solve	the	value-loading	problem	through	a	Hail
Mary,	the	pass	would	fail.	Somebody	has	to	do	it	the	hard	way.

.	Christiano	(2012).

.	The	AI	we	build	need	not	be	able	to	find	the	model	either.	Like	us,	it	could
reason	about	what	such	a	complex	implicit	definition	would	entail	(perhaps
by	 looking	 at	 its	 environment	 and	 following	 much	 the	 same	 kind	 of
reasoning	that	we	would	follow).

.	Cf.	Chapters	9	and	11.

.	 For	 instance,	 MDMA	 may	 temporarily	 increase	 empathy;	 oxytocin	 may
temporarily	 increase	 trust	 (Vollenweider	 et	 al.	 1998;	 Bartz	 et	 al.	 2011).
However,	the	effects	seem	quite	variable	and	context	dependent.

.	The	enhanced	agents	might	be	killed	off	or	placed	 in	suspended	animation
(paused),	 reset	 to	 an	 earlier	 state,	 or	 disempowered	 and	 prevented	 from
receiving	any	further	enhancements,	until	the	overall	system	has	reached	a
more	mature	and	secure	state	where	these	earlier	rogue	elements	no	longer
pose	a	system-wide	threat.

.	The	issue	might	also	be	less	obvious	in	a	future	society	of	biological	humans,
one	 that	has	access	 to	advanced	surveillance	or	biomedical	 techniques	 for
psychological	 manipulation,	 or	 that	 is	 wealthy	 enough	 to	 afford	 an
extremely	 high	 ratio	 of	 security	 professionals	 to	 invigilate	 the	 regular
citizenry	(and	each	other).

.	Cf.	Armstrong	(2007)	and	Shulman	(2010b).

.	 One	 open	 question	 is	 to	 what	 degree	 a	 level	 n	 supervisor	 would	 need	 to
monitor	not	only	their	level	(n	–	1)	supervisees,	but	also	their	level	(n	–	2)
supervisees,	 in	order	 to	know	 that	 the	 level	 (n	–	1)	 agents	are	doing	 their
jobs	properly.	And	to	know	that	the	level	(n	–	1)	agents	have	successfully
managed	the	level	(n	–	2)	agents,	is	it	further	necessary	for	the	level	n	agent



to	also	monitor	the	level	(n	–	3)	agents?

.	This	approach	straddles	the	line	between	motivation	selection	and	capability
control.	 Technically,	 the	 part	 of	 the	 arrangement	 that	 consists	 of	 human
beings	controlling	a	set	of	software	supervisors	counts	as	capability	control,
whereas	 the	 part	 of	 the	 arrangement	 that	 consists	 of	 layers	 of	 software
agents	 within	 the	 system	 controlling	 other	 layers	 is	 motivation	 selection
(insofar	 as	 it	 is	 an	 arrangement	 that	 shapes	 the	 system’s	 motivational
tendencies).

.	In	fact,	many	other	costs	deserve	consideration	but	cannot	be	given	it	here.
For	example,	whatever	agents	are	charged	with	ruling	over	such	a	hierarchy
might	become	corrupted	or	debased	by	their	power.

.	For	this	guarantee	to	be	effective,	it	must	be	implemented	in	good	faith.	This
would	rule	out	certain	kinds	of	manipulation	of	 the	emulation’s	emotional
and	decision-making	faculties	which	might	otherwise	be	used	(for	instance)
to	install	a	fear	of	being	halted	or	to	prevent	the	emulation	from	rationally
considering	its	options.

.	See,	e.g.,	Brinton	(1965);	Goldstone	(1980,	2001).	(Social	science	progress
on	these	questions	could	make	a	nice	gift	to	the	world’s	despots,	who	might
use	 more	 accurate	 predictive	 models	 of	 social	 unrest	 to	 optimize	 their
population	control	strategies	and	to	gently	nip	insurgencies	in	the	bud	with
less-lethal	force.)

.	Cf.	Bostrom	(2011a,	2009b).

.	 In	 the	 case	 of	 an	 entirely	 artificial	 system,	 it	 might	 be	 possible	 to	 obtain
some	 of	 the	 advantages	 of	 an	 institutional	 structure	 without	 actually
creating	 distinct	 subagents.	 A	 system	 might	 incorporate	 multiple
perspectives	 into	 its	 decision	 process	 without	 endowing	 each	 of	 those
perspectives	 with	 its	 own	 panoply	 of	 cognitive	 faculties	 required	 for
independent	 agency.	 It	 could	 be	 tricky,	 however,	 to	 fully	 implement	 the
“observe	 the	 behavioral	 consequences	 of	 a	 proposed	 change,	 and	 revert
back	to	an	earlier	version	if	the	consequences	appear	undesirable	from	the
ex	 ante	 standpoint”	 feature	 described	 in	 the	 text	 in	 a	 system	 that	 is	 not
composed	of	subagents.

CHAPTER	13:	CHOOSING	THE	CRITERIA	FOR	CHOOSING



	

1.	 A	 recent	 canvass	 of	 professional	 philosophers	 found	 the	 percentage	 of
respondents	who	“accept	or	leans	toward”	various	positions.	On	normative
ethics,	 the	results	were	deontology	25.9%;	consequentialism	23.6%;	virtue
ethics	18.2%.	On	metaethics,	results	were	moral	realism	56.4%;	moral	anti-
realism	 27.7%.	 On	 moral	 judgment:	 cognitivism	 65.7%;	 non-cognitivism
17.0%	(Bourget	and	Chalmers	2009).

2.	Pinker	(2011).

3.	For	a	discussion	of	this	issue,	see	Shulman	et	al.	(2009).

4.	Moore	(2011).

5.	Bostrom	(2006b).

6.	Bostrom	(2009b).

7.	Bostrom	(2011a).

8.	More	precisely,	we	should	defer	to	its	opinion	except	on	those	topics	where
we	 have	 good	 reason	 to	 suppose	 that	 our	 beliefs	 are	 more	 accurate.	 For
example,	we	might	know	more	about	what	we	are	 thinking	at	a	particular
moment	than	the	superintelligence	does	if	it	is	not	able	to	scan	our	brains.
However,	 we	 could	 omit	 this	 qualification	 if	 we	 assume	 that	 the
superintelligence	has	access	to	our	opinions;	we	could	then	also	defer	to	the
superintelligence	the	task	of	 judging	when	our	opinions	should	be	trusted.
(There	might	 remain	 some	 special	 cases,	 involving	 indexical	 information,
that	 need	 to	 be	 handled	 separately—by,	 for	 example,	 having	 the
superintelligence	explain	to	us	what	it	would	be	rational	to	believe	from	our
perspective.)	 For	 an	 entry	 into	 the	 burgeoning	 philosophical	 literature	 on
testimony	and	epistemic	authority,	see,	e.g.,	Elga	(2007).

9.	Yudkowsky	(2004).	See	also	Mijic	(2010).

.	For	example,	David	Lewis	proposed	a	dispositional	 theory	of	value,	which
holds,	 roughly,	 that	 some	 thing	X	 is	 a	value	 for	A	 if	 and	only	 if	A	 would
want	 to	want	X	 if	A	were	perfectly	 rational	and	 ideally	acquainted	with	X
(Smith	et	al.	1989).	Kindred	 ideas	had	been	put	 forward	earlier;	 see,	e.g.,



Sen	and	Williams	(1982),	Railton	(1986),	and	Sidgwick	and	Jones	(2010).
Along	 somewhat	 similar	 lines,	 one	 common	 account	 of	 philosophical
justification,	 the	method	 of	 reflective	 equilibrium,	 proposes	 a	 process	 of
iterative	mutual	 adjustment	 between	 our	 intuitions	 about	 particular	 cases,
the	 general	 rules	 which	 we	 think	 govern	 these	 cases,	 and	 the	 principles
according	to	which	we	think	these	elements	should	be	revised,	to	achieve	a
more	coherent	system;	see,	e.g.,	Rawls	(1971)	and	Goodman	(1954).

.	 Presumably	 the	 intention	 here	 is	 that	 when	 the	 AI	 acts	 to	 prevent	 such
disasters,	 it	 should	 do	 it	 with	as	 light	 a	 touch	 as	 possible,	 i.e.	 in	 such	 a
manner	 that	 it	 averts	 the	disaster	but	without	exerting	 too	much	 influence
over	how	things	turn	out	for	humanity	in	other	respects.

.	Yudkowsky	(2004).

.	Rebecca	Roache,	personal	communication.

.	 The	 three	 principles	 are	 “Defend	 humans,	 the	 future	 of	 humanity,	 and
humane	 nature”	 (humane	 here	 being	 that	 which	 we	 wish	 we	 were,	 as
distinct	from	human,	which	is	what	we	are);	“Humankind	should	not	spend
the	 rest	 of	 eternity	 desperately	 wishing	 that	 the	 programmers	 had	 done
something	differently”;	and	“Help	people.”

.	Some	religious	groups	place	a	strong	emphasis	on	faith	in	contradistinction
to	 reason,	 the	 latter	of	which	 they	may	 regard—even	 in	 its	hypothetically
most	 idealized	 form	 and	 even	 after	 it	 would	 have	 ardently	 and	 open-
mindedly	 studied	 every	 scripture,	 revelation,	 and	 exegesis—to	 be
insufficient	for	the	attainment	of	essential	spiritual	insights.	Those	holding
such	views	might	not	regard	CEV	as	an	optimal	guide	to	decision-making
(though	 they	 might	 still	 prefer	 it	 to	 various	 other	 imperfect	 guides	 that
might	in	actuality	be	followed	if	the	CEV	approach	were	eschewed).

.	An	AI	acting	like	a	latent	force	of	nature	to	regulate	human	interactions	has
been	referred	to	as	a	“Sysop,”	a	kind	of	“operating	system”	for	the	matter
occupied	by	human	civilization.	See	Yudkowsky	(2001).

.	“Might,”	 because	conditional	 on	 humanity’s	 coherent	 extrapolated	 volition
wishing	 not	 to	 extend	moral	 consideration	 to	 these	 entities,	 it	 is	 perhaps
doubtful	 whether	 those	 entities	 actually	 have	 moral	 status	 (despite	 it
seeming	very	plausible	now	that	they	do).	“Potentially,”	because	even	if	a



blocking	 vote	 prevents	 the	 CEV	 dynamic	 from	 directly	 protecting	 these
outsiders,	 there	 is	 still	a	possibility	 that,	within	whatever	ground	rules	are
left	over	once	 the	 initial	dynamic	has	 run,	 individuals	whose	wishes	were
respected	 and	 who	 want	 some	 outsiders’	 welfare	 to	 be	 protected	 may
successfully	 bargain	 to	 attain	 this	 outcome	 (at	 the	 expense	 of	 giving	 up
some	of	their	own	resources).	Whether	this	would	be	possible	might	depend
on,	among	other	things,	whether	the	outcome	of	the	CEV	dynamic	is	a	set
of	 ground	 rules	 that	 makes	 it	 feasible	 to	 reach	 negotiated	 resolutions	 to
issues	 of	 this	 kind	 (which	might	 require	 provisions	 to	 overcome	 strategic
bargaining	problems).

.	 Individuals	 who	 contribute	 positively	 to	 realizing	 a	 safe	 and	 beneficial
superintelligence	might	merit	 some	 special	 reward	 for	 their	 labour,	 albeit
something	short	of	a	near-exclusive	mandate	to	determine	the	disposition	of
humanity’s	cosmic	endowment.	However,	 the	notion	of	everybody	getting
an	equal	share	in	our	extrapolation	base	is	such	a	nice	Schelling	point	that	it
should	not	be	lightly	tossed	away.	There	is,	in	any	case,	an	indirect	way	in
which	virtue	could	be	rewarded:	namely,	 the	CEV	itself	might	 turn	out	 to
specify	 that	 good	 people	 who	 exerted	 themselves	 on	 behalf	 of	 humanity
should	 be	 suitably	 recognized.	 This	 could	 happen	 without	 such	 people
being	 given	 any	 special	 weight	 in	 the	 extrapolation	 base	 if—as	 is	 easily
imaginable—our	CEV	would	endorse	(in	the	sense	of	giving	at	least	some
nonzero	weight	to)	a	principle	of	just	desert.

.	Bostrom	et	al.	(2013).

.	To	the	extent	that	there	is	some	(sufficiently	definite)	shared	meaning	that	is
being	expressed	when	we	make	moral	assertions,	a	superintelligence	should
be	 able	 to	 figure	 out	what	 that	meaning	 is.	 And	 to	 the	 extent	 that	moral
assertions	 are	 “truth-apt”	 (i.e.	 have	 an	 underlying	 propositional	 character
that	enables	them	to	be	true	or	false),	the	superintelligence	should	be	able	to
figure	out	which	assertions	of	the	form	“Agent	X	ought	now	to	Φ”	are	true.
At	least,	it	should	outperform	us	on	this	task.

An	AI	that	 initially	lacks	such	a	capacity	for	moral	cognition	should	be
able	 to	 acquire	 it	 if	 it	 has	 the	 intelligence	 amplification	 superpower.	One
way	the	AI	could	do	this	is	by	reverse-engineering	the	human	brain’s	moral
thinking	and	then	implement	a	similar	process	but	run	it	faster,	feed	it	more
accurate	factual	information,	and	so	forth.



.	Since	we	are	uncertain	about	metaethics,	there	is	a	question	of	what	the	AI	is
to	do	if	 the	preconditions	for	MR	fail	 to	obtain.	One	option	is	 to	stipulate
that	the	AI	shut	itself	off	if	it	assigns	a	sufficiently	high	probability	to	moral
cognitivism	 being	 false	 or	 to	 there	 being	 no	 suitable	 non-relative	 moral
truths.	 Alternatively,	 we	 could	 have	 the	 AI	 revert	 to	 some	 alternative
approach,	such	as	CEV.

We	could	refine	the	MR	proposal	to	make	it	clearer	what	is	to	be	done	in
various	ambiguous	or	degenerate	cases.	For	instance,	if	error	theory	is	true
(and	hence	all	positive	moral	assertions	of	the	form	“I	ought	now	to	τ”	are
false),	then	the	fallback	strategy	(e.g.	shutting	down)	would	be	invoked.	We
could	also	specify	what	should	happen	if	there	are	multiple	feasible	actions,
each	of	which	would	be	morally	 right.	For	example,	we	might	say	 that	 in
such	 cases	 the	 AI	 should	 perform	 (one	 of)	 the	 permissible	 actions	 that
humanity’s	 collective	 extrapolation	 would	 have	 favored.	 We	 might	 also
stipulate	what	should	happen	if	the	true	moral	theory	does	not	employ	terms
like	“morally	right”	in	its	basic	vocabulary.	For	instance,	a	consequentialist
theory	might	hold	that	some	actions	are	better	than	others	but	that	there	is
no	 particular	 threshold	 corresponding	 to	 the	 notion	 of	 an	 action	 being
“morally	 right.”	We	 could	 then	 say	 that	 if	 such	 a	 theory	 is	 correct,	 MR
should	perform	one	of	the	morally	best	feasible	actions,	if	there	is	one;	or,	if
there	 is	 an	 infinite	 number	 of	 feasible	 actions	 such	 that	 for	 any	 feasible
action	there	is	a	better	one,	then	maybe	MR	could	pick	any	that	is	at	least
astronomically	 better	 than	 the	 best	 action	 that	 any	 human	 would	 have
selected	in	a	similar	situation,	if	such	an	action	is	feasible—or	if	not,	then
an	 action	 that	 is	 at	 least	 as	 good	 as	 the	 best	 action	 a	 human	would	 have
performed.

A	couple	of	general	points	should	be	borne	in	mind	when	thinking	about
how	the	MR	proposal	could	be	refined.	First,	we	might	start	conservatively,
using	the	fallback	option	to	cover	almost	all	contingencies	and	only	use	the
“morally	 right”	option	 in	 those	 that	we	 feel	we	 fully	understand.	Second,
we	might	 add	 the	 general	 modulator	 to	 the	MR	 proposal	 that	 it	 is	 to	 be
“interpreted	charitably,	and	revised	as	we	would	have	revised	 it	 if	we	had
thought	more	carefully	about	it	before	we	wrote	it	down,	etc.”

.	Of	these	terms,	“knowledge”	might	seem	the	one	most	readily	susceptible	to
a	 formal	 analysis	 (in	 information-theoretic	 terms).	 However,	 to	 represent
what	it	is	for	a	human	to	know	something,	the	AI	may	need	a	sophisticated



set	 of	 representations	 relating	 to	 complex	 psychological	 properties.	 A
human	being	does	not	“know”	all	the	information	that	is	stored	somewhere
in	her	brain.

.	One	 indicator	 that	 the	 terms	 in	CEV	are	 (marginally)	 less	opaque	 is	 that	 it
would	count	as	philosophical	progress	if	we	could	analyze	moral	rightness
in	 terms	 like	 those	 used	 in	 CEV.	 In	 fact,	 one	 of	 the	 main	 strands	 in
metaethics—ideal	 observer	 theory—purports	 to	 do	 just	 that.	 See,	 e.g.,
Smith	et	al.	(1989).

.	This	requires	confronting	the	problem	of	fundamental	normative	uncertainty.
It	 can	 be	 shown	 that	 it	 is	 not	 always	 appropriate	 to	 act	 according	 to	 the
moral	 theory	 that	 has	 the	highest	 probability	of	 being	 true.	 It	 can	 also	be
shown	 that	 it	 is	 not	 always	 appropriate	 to	perform	 the	 action	 that	 has	 the
highest	probability	of	being	right.	Some	way	of	trading	probabilities	against
“degrees	of	wrongness”	or	severity	of	 issues	at	stake	seems	 to	be	needed.
For	some	ideas	in	this	direction,	see	Bostrom	(2009a).

.	 It	 could	 possibly	 even	 be	 argued	 that	 it	 is	 an	 adequacy	 condition	 for	 any
explication	 of	 the	 notion	 of	 moral	 rightness	 that	 it	 account	 for	 how	 Joe
Sixpack	is	able	to	have	some	idea	of	right	and	wrong.

.	It	is	not	obvious	that	the	morally	right	thing	for	us	to	do	is	to	build	an	AI	that
implements	 MR,	 even	 if	 we	 assume	 that	 the	 AI	 itself	 would	 always	 act
morally.	 Perhaps	 it	 would	 be	 objectionably	 hubristic	 or	 arrogant	 of	 us	 to
build	 such	 an	 AI	 (especially	 since	 many	 people	 may	 disapprove	 of	 that
project).	This	issue	can	be	partially	finessed	by	tweaking	the	MR	proposal.
Suppose	 that	we	 stipulate	 that	 the	AI	 should	 act	 (to	 do	what	 it	would	 be
morally	right	for	it	to	do)	only	if	it	was	morally	right	for	its	creators	to	have
built	the	AI	in	the	first	place;	otherwise	it	should	shut	itself	down.	It	is	hard
to	see	how	we	would	be	committing	any	grave	moral	wrong	in	creating	that
kind	of	AI,	since	if	it	were	wrong	for	us	to	create	it,	the	only	consequence
would	 be	 that	 an	 AI	 was	 created	 that	 immediately	 shuts	 itself	 down,
assuming	 that	 the	AI	has	committed	no	mind	crime	up	 to	 that	point.	 (We
might	 nevertheless	 have	 acted	wrongly—for	 instance,	 by	having	 failed	 to
seize	the	opportunity	to	build	some	other	AI	instead.)

A	second	issue	is	supererogation.	Suppose	there	are	many	actions	the	AI
could	 take,	 each	 of	which	would	 be	morally	 right—in	 the	 sense	 of	 being



morally	permissible—yet	some	of	which	are	morally	better	than	the	others.
One	option	 is	 to	have	 the	AI	aim	 to	 select	 the	morally	best	 action	 in	 any
such	a	situation	(or	one	of	the	best	actions,	in	case	there	are	several	that	are
equally	 good).	 Another	 option	 is	 to	 have	 the	 AI	 select	 from	 among	 the
morally	permissible	actions	one	 that	maximally	satisfies	some	other	 (non-
moral)	 desideratum.	 For	 example,	 the	 AI	 could	 select,	 from	 among	 the
actions	that	are	morally	permissible,	the	action	that	our	CEV	would	prefer	it
to	 take.	 Such	 an	 AI,	 while	 never	 doing	 anything	 that	 is	 morally
impermissible,	might	protect	our	interests	more	than	an	AI	that	does	what	is
morally	best.

.	When	the	AI	evaluates	the	moral	permissibility	of	our	act	of	creating	the	AI,
it	should	interpret	permissibility	in	its	objective	sense.	In	one	ordinary	sense
of	 “morally	 permissible,”	 a	 doctor	 acts	 morally	 permissibly	 when	 she
prescribes	 a	 drug	 she	 believes	 will	 cure	 her	 patient—even	 if	 the	 patient,
unbeknownst	 to	 the	 doctor,	 is	 allergic	 to	 the	 drug	 and	 dies	 as	 a	 result.
Focusing	 on	 objective	 moral	 permissibility	 takes	 advantage	 of	 the
presumably	superior	epistemic	position	of	the	AI.

.	More	directly,	 it	 depends	on	 the	AI’s	beliefs	 about	which	 ethical	 theory	 is
true	(or,	more	precisely,	on	its	probability	distribution	over	ethical	theories).

.	 It	 can	be	difficult	 to	 imagine	how	superlatively	wonderful	 these	physically
possible	lives	might	be.	See	Bostrom	(2008c)	for	a	poetic	attempt	to	convey
some	sense	of	this.	See	Bostrom	(2008b)	for	an	argument	that	some	of	these
possibilities	could	be	good	for	us,	good	for	existing	human	beings.

.	 It	 might	 seem	 deceptive	 or	 manipulative	 to	 promote	 one	 proposal	 if	 one
thinks	that	some	other	proposal	would	be	better.	But	one	could	promote	it	in
ways	that	avoid	insincerity.	For	example,	one	could	freely	acknowledge	the
superiority	 of	 the	 ideal	 while	 still	 promoting	 the	 non-ideal	 as	 the	 best
attainable	compromise.

.	 Or	 some	 other	 positively	 evaluative	 term,	 such	 as	 “good,”	 “great,”	 or
“wonderful.”

.	This	echoes	a	principle	in	software	design	known	as	“Do	What	I	Mean,”	or
DWIM.	See	Teitelman	(1966).

.	Goal	content,	decision	theory,	and	epistemology	are	three	aspects	that	should



be	 elucidated;	 but	we	 do	 not	 intend	 to	 beg	 the	 question	 of	whether	 there
must	be	a	neat	decomposition	into	these	three	separate	components.

.	An	ethical	project	ought	presumably	to	allocate	at	most	a	modest	portion	of
the	eventual	benefits	that	the	superintelligence	produces	as	special	rewards
to	 those	 who	 contributed	 in	 morally	 permissible	 ways	 to	 the	 project’s
success.	Allocating	a	great	portion	to	the	incentive	wrapping	scheme	would
be	 unseemly.	 It	 would	 be	 analogous	 to	 a	 charity	 that	 spends	 90%	 of	 its
income	 on	 performance	 bonuses	 for	 its	 fundraisers	 and	 on	 advertising
campaigns	to	increase	donations.

.	How	could	the	dead	be	rewarded?	One	can	think	of	several	possibilities.	At
the	 low	 end,	 there	 could	 be	 memorial	 services	 and	 monuments,	 which
would	 be	 a	 reward	 insofar	 as	 people	 desired	 posthumous	 fame.	 The
deceased	might	also	have	other	preferences	about	 the	 future	 that	could	be
honored,	 for	 instance	 concerning	 cultures,	 arts,	 buildings,	 or	 natural
environments.	Furthermore,	most	people	care	about	their	descendants,	and
special	 privileges	 could	 be	 granted	 to	 the	 children	 and	 grandchildren	 of
contributors.	 More	 speculatively,	 the	 superintelligence	 might	 be	 able	 to
create	relatively	faithful	simulations	of	some	past	people—simulations	that
would	 be	 conscious	 and	 that	 would	 resemble	 the	 original	 sufficiently	 to
count	 as	 a	 form	of	 survival	 (according	 to	 at	 least	 some	people’s	 criteria).
This	 would	 presumably	 be	 easier	 for	 people	 who	 have	 been	 placed	 in
cryonic	 suspension;	 but	 perhaps	 for	 a	 superintelligence	 it	 would	 not	 be
impossible	 to	 recreate	something	quite	similar	 to	 the	original	person	 from
other	 preserved	 records	 such	 as	 correspondence,	 publications,	 audiovisual
materials	and	digital	records,	or	 the	personal	memories	of	other	survivors.
A	 superintelligence	 might	 also	 think	 of	 some	 possibilities	 that	 do	 not
readily	occur	to	us.

.	 On	 Pascalian	 mugging,	 see	 Bostrom	 (2009b).	 For	 an	 analysis	 of	 issues
related	to	infinite	utilities,	see	Bostrom	(2011a).	On	fundamental	normative
uncertainty,	see,	e.g.,	Bostrom	(2009a).

.	E.g.,	Price	 (1991);	Joyce	(1999);	Drescher	 (2006);	Yudkowsky	(2010);	Dai
(2009).

.	E.g.,	Bostrom	(2009a).



.	It	is	also	conceivable	that	using	indirect	normativity	to	specify	the	AI’s	goal
content	would	mitigate	 the	 problems	 that	might	 arise	 from	 an	 incorrectly
specified	 decision	 theory.	Consider,	 for	 example,	 the	CEV	 approach.	 If	 it
were	 implemented	well,	 it	might	 be	 able	 to	 compensate	 for	 at	 least	 some
errors	in	the	specification	of	the	AI’s	decision	theory.	The	implementation
could	allow	the	values	 that	our	coherent	extrapolated	volition	would	want
the	 AI	 to	 pursue	 to	 depend	 on	 the	 AI’s	 decision	 theory.	 If	 our	 idealized
selves	knew	they	were	making	value	specifications	for	an	AI	that	was	using
a	 particular	 kind	 of	 decision	 theory,	 they	 could	 adjust	 their	 value
specifications	 such	as	 to	make	 the	AI	behave	benignly	despite	 its	warped
decision	theory—much	like	one	can	cancel	out	the	distorting	effects	of	one
lens	by	placing	another	lens	in	front	of	it	that	distorts	oppositely.

.	 Some	 epistemological	 systems	may,	 in	 a	 holistic	manner,	 have	 no	 distinct
foundation.	In	that	case,	the	constitutional	inheritance	is	not	a	distinct	set	of
principles,	but	rather,	as	 it	were,	an	epistemic	starting	point	 that	embodies
certain	propensities	to	respond	to	incoming	streams	of	evidence.

.	See,	e.g.,	the	problem	of	distortion	discussed	in	Bostrom	(2011a).

.	 For	 instance,	 one	 disputed	 issue	 in	 anthropic	 reasoning	 is	whether	 the	 so-
called	 self-indication	 assumption	 should	 be	 accepted.	 The	 self-indication
assumption	states,	roughly,	that	from	the	fact	that	you	exist	you	should	infer
that	 hypotheses	 according	 to	 which	 larger	 numbers	N	 of	 observers	 exist
should	 receive	 a	 probability	 boost	 proportional	 to	 N.	 For	 an	 argument
against	 this	 principle,	 see	 the	 “Presumptuous	 Philosopher”	 gedanken
experiment	 in	Bostrom	 (2002a).	For	 a	 defense	of	 the	principle,	 see	Olum
(2002);	and	for	a	critique	of	that	defense,	see	Bostrom	and	Ćirković	(2003).
Beliefs	about	the	self-indication	assumption	might	affect	various	empirical
hypotheses	 of	 potentially	 crucial	 strategic	 relevance,	 for	 example,
considerations	 such	 as	 the	 Carter–Leslie	 doomsday	 argument,	 the
simulation	 argument,	 and	 “great	 filter”	 arguments.	 See	 Bostrom	 (2002a,
2003a,	 2008a);	 Carter	 (1983);	 Ćirković	 et	 al.	 (2010);	 Hanson	 (1998d);
Leslie	(1996);	Tegmark	and	Bostrom	(2005).	A	similar	point	could	be	made
with	regard	to	other	fraught	issues	in	observation	selection	theory,	such	as
whether	 the	 choice	 of	 reference	 class	 can	 be	 relativized	 to	 observer-
moments,	and	if	so	how.

.	See,	e.g.,	Howson	and	Urbach	(1993).	There	are	also	some	interesting	results



that	 narrow	 the	 range	 of	 situations	 in	 which	 two	 Bayesian	 agents	 can
rationally	 disagree	 when	 their	 opinions	 are	 common	 knowledge;	 see
Aumann	(1976)	and	Hanson	(2006).

.	Cf.	the	concept	of	a	“last	judge”	in	Yudkowsky	(2004).

.	 There	 are	 many	 important	 issues	 outstanding	 in	 epistemology,	 some
mentioned	earlier	in	the	text.	The	point	here	is	that	we	may	not	need	to	get
all	 the	 solutions	 exactly	 right	 in	 order	 to	 achieve	 an	 outcome	 that	 is
practically	 indiscernible	 from	 the	 best	 outcome.	A	mixture	model	 (which
throws	together	a	wide	range	of	diverse	priors)	might	work.

CHAPTER	14:	THE	STRATEGIC	PICTURE

	

1.	This	principle	is	introduced	in	Bostrom	(2009b,	190),	where	it	is	also	noted
that	it	is	not	tautological.	For	a	visual	analogy,	picture	a	box	with	large	but
finite	 volume,	 representing	 the	 space	 of	 basic	 capabilities	 that	 could	 be
obtained	through	some	possible	technology.	Imagine	sand	being	poured	into
this	 box,	 representing	 research	 effort.	How	you	 pour	 the	 sand	 determines
where	 it	piles	up	 in	 the	box.	But	 if	you	keep	on	pouring,	 the	entire	space
eventually	gets	filled.

2.	Bostrom	(2002b).

3.	This	is	not	the	perspective	from	which	science	policy	has	traditionally	been
viewed.	 Harvey	 Averch	 describes	 science	 and	 technology	 policy	 in	 the
United	States	between	1945	and	1984	as	having	been	centered	on	debates
about	the	optimum	level	of	public	investment	in	the	S&T	enterprise	and	on
the	 extent	 to	 which	 the	 government	 should	 attempt	 to	 “pick	 winners”	 in
order	 to	 achieve	 the	 greatest	 increase	 in	 the	 nation’s	 economic	 prosperity
and	military	strength.	In	these	calculations,	technological	progress	is	always
assumed	 to	 be	 good.	 But	 Averch	 also	 describes	 the	 rise	 of	 critical
perspectives,	 which	 question	 the	 “progress	 is	 always	 good”	 premiss
(Averch	1985).	See	also	Graham	(1997).

4.	Bostrom	(2002b).

5.	This	is	of	course	by	no	means	tautological.	One	could	imagine	a	case	being



made	for	a	different	order	of	development.	It	could	be	argued	that	it	would
be	better	for	humanity	to	confront	some	less	difficult	challenge	first,	say	the
development	 of	 nanotechnology,	 on	 grounds	 that	 this	 would	 force	 us	 to
develop	 better	 institutions,	 become	more	 internationally	 coordinated,	 and
mature	 in	 our	 thinking	 about	 global	 strategy.	 Perhaps	we	would	 be	more
likely	 to	 rise	 to	 a	 challenge	 that	 presents	 a	 less	metaphysically	 confusing
threat	 than	 machine	 superintelligence.	 Nanotechnology	 (or	 synthetic
biology,	or	whatever	the	lesser	challenge	we	confront	first)	might	then	serve
as	a	footstool	that	would	help	us	ascend	to	the	capability	level	required	to
deal	with	the	higher-level	challenge	of	superintelligence.

Such	an	argument	would	have	to	be	assessed	on	a	case-by-case	basis.	For
example,	in	the	case	of	nanotechnology,	one	would	have	to	consider	various
possible	 consequences	 such	 as	 the	 boost	 in	 hardware	 performance	 from
nanofabricated	 computational	 substrates;	 the	 effects	 of	 cheap	 physical
capital	 for	 manufacturing	 on	 economic	 growth;	 the	 proliferation	 of
sophisticated	surveillance	technology;	the	possibility	that	a	singleton	might
emerge	 though	 the	 direct	 or	 indirect	 effects	 of	 a	 nanotechnology
breakthrough;	and	the	greater	feasibility	of	neuromorphic	and	whole	brain
emulation	approaches	to	machine	intelligence.	It	is	beyond	the	scope	of	our
investigation	 to	 consider	 all	 these	 issues	 (or	 the	parallel	 issues	 that	might
arise	for	other	existential	risk-causing	technologies).	Here	we	just	point	out
the	 prima	 facie	 case	 for	 favoring	 a	 superintelligence-first	 sequence	 of
development—while	stressing	that	there	are	complications	that	might	alter
this	preliminary	assessment	in	some	cases.

6.	Pinker	(2011);	Wright	(2001).

7.	 It	 might	 be	 tempting	 to	 suppose	 the	 hypothesis	 that	 everything	 has
accelerated	 to	be	meaningless	on	grounds	 that	 it	does	not	 (at	 first	glance)
seem	 to	 have	 any	 observational	 consequences;	 but	 see,	 e.g.,	 Shoemaker
(1969).

8.	The	level	of	preparedness	is	not	measured	by	the	amount	of	effort	expended
on	 preparedness	 activities,	 but	 by	 how	propitiously	 configured	 conditions
actually	 are	 and	 how	 well-poised	 key	 decision	 makers	 are	 to	 take
appropriate	action.

9.	 The	 degree	 of	 international	 trust	 during	 the	 lead-up	 to	 the	 intelligence



explosion	 may	 also	 be	 a	 factor.	 We	 consider	 this	 in	 the	 section
“Collaboration”	later	in	the	chapter.

.	 Anecdotally,	 it	 appears	 those	 currently	 seriously	 interested	 in	 the	 control
problem	 are	 disproportionately	 sampled	 from	 one	 extreme	 end	 of	 the
intelligence	distribution,	though	there	could	be	alternative	explanations	for
this	 impression.	 If	 the	 field	 becomes	 fashionable,	 it	 will	 undoubtedly	 be
flooded	with	mediocrities	and	cranks.

.	I	owe	this	term	to	Carl	Shulman.

.	How	similar	to	a	brain	does	a	machine	intelligence	have	to	be	to	count	as	a
whole	 brain	 emulation	 rather	 than	 a	 neuromorphic	 AI?	 The	 relevant
determinant	might	 be	whether	 the	 system	 reproduces	 either	 the	 values	 or
the	full	panoply	of	cognitive	and	evaluative	tendencies	of	either	a	particular
individual	or	a	generic	human	being,	because	this	would	plausibly	make	a
difference	to	the	control	problem.	Capturing	these	properties	may	require	a
rather	high	degree	of	emulation	fidelity.

.	The	magnitude	 of	 the	 boost	would	 of	 course	 depend	on	 how	big	 the	 push
was,	and	also	where	resources	for	the	push	came	from.	There	might	be	no
net	boost	for	neuroscience	if	all	the	extra	resources	invested	in	whole	brain
emulation	 research	 were	 deducted	 from	 regular	 neuroscience	 research—
unless	 a	 keener	 focus	 on	 emulation	 research	 just	 happened	 to	 be	 a	more
effective	 way	 of	 advancing	 neuroscience	 than	 the	 default	 portfolio	 of
neuroscience	research.

.	See	Drexler	(1986,	242).	Drexler	(private	communication)	confirms	that	this
reconstruction	 corresponds	 to	 the	 reasoning	 he	 was	 seeking	 to	 present.
Obviously,	a	number	of	 implicit	premisses	would	have	 to	be	added	 if	one
wished	 to	 cast	 the	 argument	 in	 the	 form	 of	 a	 deductively	 valid	 chain	 of
reasoning.

.	Perhaps	we	ought	not	 to	welcome	small	 catastrophes	 in	case	 they	 increase
our	 vigilance	 to	 the	 point	 of	 making	 us	 prevent	 the	 medium-scale
catastrophes	 that	 would	 have	 been	 needed	 to	 make	 us	 take	 the	 strong
precautions	necessary	 to	prevent	 existential	 catastrophes?	 (And	of	 course,
just	as	with	biological	immune	systems,	we	also	need	to	be	concerned	with
over-reactions,	analogous	to	allergies	and	autoimmune	disorders.)



.	Cf.	Lenman	(2000);	Burch-Brown	(2014).

.	Cf.	Bostrom	(2007).

.	Note	that	this	argument	focuses	on	the	ordering	rather	than	the	timing	of	the
relevant	 events.	 Making	 superintelligence	 happen	 earlier	 would	 help
preempt	other	existential	transition	risks	only	if	the	intervention	changes	the
sequence	 of	 the	 key	 developments:	 for	 example,	 by	 making
superintelligence	 happen	 before	 various	 milestones	 are	 reached	 in
nanotechnology	or	synthetic	biology.

.	If	solving	the	control	problem	is	extremely	difficult	compared	to	solving	the
performance	 problem	 in	 machine	 intelligence,	 and	 if	 project	 ability
correlates	only	weakly	with	project	size,	then	it	is	possible	that	it	would	be
better	 that	 a	 small	 project	 gets	 there	 first,	 namely	 if	 the	 variance	 in
capability	 is	 greater	 among	 smaller	 projects.	 In	 such	 a	 situation,	 even	 if
smaller	projects	are	on	average	less	competent	than	larger	projects,	it	could
be	 less	 unlikely	 that	 a	 given	 small	 project	 would	 happen	 to	 have	 the
freakishly	high	level	of	competence	needed	to	solve	the	control	problem.

.	 This	 is	 not	 to	 deny	 that	 one	 can	 imagine	 tools	 that	 could	 promote	 global
deliberation	 and	 which	 would	 benefit	 from,	 or	 even	 require,	 further
progress	in	hardware—for	example,	high-quality	translation,	better	search,
ubiquitous	 access	 to	 smart	 phones,	 attractive	 virtual	 reality	 environments
for	social	intercourse,	and	so	forth.

.	 Investment	 in	 emulation	 technology	 could	 speed	 progress	 toward	 whole
brain	 emulation	 not	 only	 directly	 (through	 any	 technical	 deliverables
produced)	but	also	 indirectly	by	creating	a	constituency	 that	will	push	 for
more	 funding	 and	 boost	 the	 visibility	 and	 credibility	 of	 the	 whole	 brain
emulation	(WBE)	vision.

.	How	much	 expected	 value	would	 be	 lost	 if	 the	 future	were	 shaped	by	 the
desires	of	one	 random	human	 rather	 than	by	 (some	suitable	 superposition
of)	 the	desires	of	all	of	humanity?	This	might	depend	sensitively	on	what
evaluation	standard	we	use,	and	also	on	whether	the	desires	in	question	are
idealized	or	raw.

.	For	example,	whereas	human	minds	communicate	slowly	via	language,	AIs
can	be	designed	so	that	 instances	of	the	same	program	are	able	easily	and



quickly	 to	 transfer	 both	 skills	 and	 information	 amongst	 one	 another.
Machine	minds	designed	ab	initio	could	do	away	with	cumbersome	legacy
systems	 that	 helped	 our	 ancestors	 deal	 with	 aspects	 of	 the	 natural
environment	 that	are	unimportant	 in	cyberspace.	Digital	minds	might	also
be	 designed	 to	 take	 advantage	 of	 fast	 serial	 processing	 unavailable	 to
biological	 brains,	 and	 to	make	 it	 easy	 to	 install	 new	modules	with	highly
optimized	 functionality	 (e.g.	 symbolic	 processing,	 pattern	 recognition,
simulators,	 data	 mining,	 and	 planning).	 Artificial	 intelligence	 might	 also
have	 significant	 non-technical	 advantages,	 such	 as	 being	 more	 easily
patentable	 or	 less	 entangled	 in	 the	 moral	 complexities	 of	 using	 human
uploads.

.	If	p1	and	p2	are	the	probabilities	of	failure	at	each	step,	the	total	probability
of	failure	is	p1	+	(1	–	p1)p2	since	one	can	fail	terminally	only	once.

.	It	is	possible,	of	course,	that	the	frontrunner	will	not	have	such	a	large	lead
and	will	not	be	able	to	form	a	singleton.	It	is	also	possible	that	a	singleton
would	arise	before	AI	even	without	the	intervention	of	WBE,	in	which	case
this	reason	for	favoring	a	WBE-first	scenario	falls	away.

.	 Is	 there	 a	 way	 for	 a	 promoter	 of	WBE	 to	 increase	 the	 specificity	 of	 her
support	 so	 that	 it	 accelerates	WBE	while	minimizing	 the	 spillover	 to	 AI
development?	Promoting	scanning	technology	is	probably	a	better	bet	than
promoting	neurocomputational	modeling.	(Promoting	computer	hardware	is
unlikely	 to	 make	 much	 difference	 one	 way	 or	 the	 other,	 given	 the	 large
commercial	interests	that	are	anyway	incentivizing	progress	in	that	field.)

Promoting	 scanning	 technology	 may	 increase	 the	 likelihood	 of	 a
multipolar	outcome	by	making	scanning	less	likely	to	be	a	bottleneck,	thus
increasing	 the	chance	 that	 the	early	emulation	population	will	be	stamped
from	many	different	human	templates	rather	than	consisting	of	gazillions	of
copies	of	a	tiny	number	of	templates.	Progress	in	scanning	technology	also
makes	 it	 more	 likely	 that	 the	 bottleneck	 will	 instead	 be	 computing
hardware,	which	would	tend	to	slow	the	takeoff.

.	Neuromorphic	AI	may	also	lack	other	safety-promoting	attributes	of	whole
brain	 emulation,	 such	 as	 having	 a	 profile	 of	 cognitive	 strengths	 and
weaknesses	similar	to	that	of	a	biological	human	being	(which	would	let	us
use	 our	 experience	 of	 humans	 to	 form	 some	 expectations	 of	 the	 system’s



capabilities	at	different	stages	of	its	development).

.	 If	somebody’s	motive	for	promoting	WBE	is	 to	make	WBE	happen	before
AI,	they	should	bear	in	mind	that	accelerating	WBE	will	alter	the	order	of
arrival	 only	 if	 the	 default	 timing	 of	 the	 two	 paths	 toward	 machine
intelligence	 is	 close	 and	 with	 a	 slight	 edge	 to	 AI.	 Otherwise,	 either
investment	in	WBE	will	simply	make	WBE	happen	earlier	than	it	otherwise
would	 (reducing	 hardware	 overhang	 and	 preparation	 time)	 but	 without
affecting	 the	 sequence	 of	 development;	 or	 else	 such	 investment	 in	WBE
will	have	little	effect	(other	than	perhaps	making	AI	happen	even	sooner	by
stimulating	progress	on	neuromorphic	AI).

.	Comment	on	Hanson	(2009).

.	There	would	of	course	be	some	magnitude	and	imminence	of	existential	risk
for	which	it	would	be	preferable	even	from	the	person-affecting	perspective
to	 postpone	 the	 risk—whether	 to	 enable	 existing	 people	 to	 eke	 out	 a	 bit
more	 life	 before	 the	 curtain	 drops	 or	 to	 provide	more	 time	 for	mitigation
efforts	that	might	reduce	the	danger.

.	 Suppose	 we	 could	 take	 some	 action	 that	 would	 bring	 the	 intelligence
explosion	closer	by	one	year.	Let	us	say	that	the	people	currently	inhabiting
the	Earth	are	dying	off	at	a	rate	of	1%	per	year,	and	that	the	default	risk	of
human	 extinction	 from	 the	 intelligence	 explosion	 is	 20%	 (to	 pick	 an
arbitrary	number	for	 the	purposes	of	 illustration	only).	Then	hastening	the
arrival	 of	 the	 intelligence	 explosion	 by	 1	 year	 might	 be	 worth	 (from	 a
person-affecting	standpoint)	an	increase	in	the	risk	from	20%	to	21%,	i.e.	a
5%	 increase	 in	 risk	 level.	However,	 the	vast	majority	of	people	 alive	one
year	before	the	start	of	the	intelligence	explosion	would	at	that	point	have
an	 interest	 in	 postponing	 it	 if	 they	 could	 thereby	 reduce	 the	 risk	 of	 the
explosion	 by	 one	 percentage	 point	 (since	most	 individuals	 would	 reckon
their	own	risk	of	dying	in	the	next	year	to	be	much	smaller	than	1%—given
that	most	mortality	 occurs	 in	 relatively	 narrow	 demographics	 such	 as	 the
frail	and	the	elderly).	One	could	thus	have	a	model	in	which	each	year	the
population	votes	to	postpone	the	intelligence	explosion	by	another	year,	so
that	the	intelligence	explosion	never	happens,	although	everybody	who	ever
lives	agrees	that	it	would	be	better	if	the	intelligence	explosion	happened	at
some	 point.	 In	 reality,	 of	 course,	 coordination	 failures,	 limited
predictability,	 or	 preferences	 for	 things	 other	 than	 personal	 survival	 are



likely	to	prevent	such	an	unending	pause.

If	one	uses	the	standard	economic	discount	factor	instead	of	the	person-
affecting	 standard,	 the	 magnitude	 of	 the	 potential	 upside	 is	 diminished,
since	the	value	of	existing	people	getting	to	enjoy	astronomically	long	lives
is	 then	 steeply	 discounted.	This	 effect	 is	 especially	 strong	 if	 the	 discount
factor	is	applied	to	each	individual’s	subjective	time	rather	than	to	sidereal
time.	 If	 future	 benefits	 are	 discounted	 at	 a	 rate	 of	 x%	 per	 year,	 and	 the
background	level	of	existential	risk	from	other	sources	is	y%	per	year,	then
the	optimum	point	 for	 the	 intelligence	explosion	would	be	when	delaying
the	 explosion	 for	 another	 year	would	 produce	 less	 than	 x	 +	 y	 percentage
points	 of	 reduction	 of	 the	 existential	 risk	 associated	 with	 an	 intelligence
explosion.

.	 I	 am	 indebted	 to	 Carl	 Shulman	 and	 Stuart	 Armstrong	 for	 help	 with	 this
model.	See	also	Shulman	(2010a,	3):	“Chalmers	(2010)	reports	a	consensus
among	 cadets	 and	 staff	 at	 the	U.S.	West	 Point	military	 academy	 that	 the
U.S.	 government	 would	 not	 restrain	 AI	 research	 even	 in	 the	 face	 of
potential	 catastrophe,	 for	 fear	 that	 rival	 powers	 would	 gain	 decisive
advantage.”

.	 That	 is,	 information	 in	 the	 model	 is	 always	 bad	 ex	 ante.	 Of	 course,
depending	on	what	the	information	actually	is,	it	will	in	some	cases	turn	out
to	be	good	that	the	information	became	known,	notably	if	the	gap	between
leader	 and	 runner-up	 is	 much	 greater	 than	 one	 would	 reasonably	 have
guessed	in	advance.

.	 It	 might	 even	 present	 an	 existential	 risk,	 especially	 if	 preceded	 by	 the
introduction	of	novel	military	technologies	of	destruction	or	unprecedented
arms	buildups.

.	A	project	could	have	its	workers	distributed	over	a	large	number	of	locations
and	 collaborating	 via	 encrypted	 communications	 channels.	 But	 this	 tactic
involves	a	security	trade-off:	while	geographical	dispersion	may	offer	some
protection	 against	 military	 attacks,	 it	 would	 impede	 operational	 security,
since	it	is	harder	to	prevent	personnel	from	defecting,	leaking	information,
or	 being	 abducted	 by	 a	 rival	 power	 if	 they	 are	 spread	 out	 over	 many
locations.



.	Note	 that	 a	 large	 temporal	 discount	 factor	 could	make	 a	 project	 behave	 in
some	 ways	 as	 though	 it	 were	 in	 a	 race,	 even	 if	 it	 knows	 it	 has	 no	 real
competitor.	The	large	discount	factor	means	it	would	care	little	about	the	far
future.	Depending	on	 the	 situation,	 this	would	 discourage	 blue-sky	R&D,
which	 would	 tend	 to	 delay	 the	 machine	 intelligence	 revolution	 (though
perhaps	making	 it	 more	 abrupt	 when	 it	 does	 occur,	 because	 of	 hardware
overhang).	But	the	large	discount	factor—or	a	low	level	of	caring	for	future
generations—would	 also	make	 existential	 risks	 seem	 to	matter	 less.	 This
would	encourage	gambles	that	involve	the	possibility	of	an	immediate	gain
at	 the	 expense	 of	 an	 increased	 risk	 of	 existential	 catastrophe,	 thus
disincentivizing	 safety	 investment	 and	 incentivizing	 an	 early	 launch—
mimicking	the	effects	of	the	race	dynamic.	By	contrast	to	the	race	dynamic,
however,	a	large	discount	factor	(or	disregard	for	future	generations)	would
have	no	particular	tendency	to	incite	conflict.

Reducing	 the	 race	 dynamic	 is	 a	 main	 benefit	 of	 collaboration.	 That
collaboration	would	facilitate	sharing	of	ideas	for	how	to	solve	the	control
problem	is	also	a	benefit,	although	 this	 is	 to	some	extent	counterbalanced
by	the	fact	that	collaboration	would	also	facilitate	sharing	of	ideas	for	how
to	solve	the	competence	problem.	The	net	effect	of	this	facilitation	of	idea-
sharing	may	be	to	slightly	increase	the	collective	intelligence	of	the	relevant
research	community.

.	 On	 the	 other	 hand,	 public	 oversight	 by	 a	 single	 government	 would	 risk
producing	 an	 outcome	 in	 which	 one	 nation	 monopolizes	 the	 gains.	 This
outcome	seems	inferior	to	one	in	which	unaccountable	altruists	ensure	that
everybody	stands	to	gain.	Furthermore,	oversight	by	a	national	government
would	not	necessarily	mean	that	even	all	the	citizens	of	that	country	receive
a	 share	 of	 the	 benefit:	 depending	 on	 the	 country	 in	 question,	 there	 is	 a
greater	or	smaller	risk	that	all	the	benefits	would	be	captured	by	a	political
elite	or	a	few	self-serving	agency	personnel.

.	 One	 qualification	 is	 that	 the	 use	 of	 incentive	 wrapping	 (as	 discussed	 in
Chapter	12)	might	in	some	circumstances	encourage	people	to	join	a	project
as	active	collaborators	rather	than	passive	free-riders.

.	 Diminishing	 returns	 would	 seem	 to	 set	 in	 at	 a	 much	 smaller	 scale.	 Most
people	would	rather	have	one	star	than	a	one-in-a-billion	chance	of	a	galaxy
with	a	billion	stars.	Indeed,	most	people	would	rather	have	a	billionth	of	the



resources	 on	 Earth	 than	 a	 one-in-a-billion	 chance	 of	 owning	 the	 entire
planet.

.	Cf.	Shulman	(2010a).

.	Aggregative	ethical	theories	run	into	trouble	when	the	idea	that	the	cosmos
might	be	 infinite	 is	 taken	seriously;	see	Bostrom	(2011b).	There	may	also
be	 trouble	 when	 the	 idea	 of	 ridiculously	 large	 but	 finite	 values	 is	 taken
seriously;	see	Bostrom	(2009b).

.	If	one	makes	a	computer	larger,	one	eventually	faces	relativistic	constraints
arising	 from	 communication	 latencies	 between	 the	 different	 parts	 of	 the
computer—signals	 do	 not	 propagate	 faster	 than	 light.	 If	 one	 shrinks	 the
computer,	 one	 encounters	 quantum	 limits	 to	 miniaturization.	 If	 one
increases	 the	density	of	 the	computer,	one	slams	into	 the	black	hole	 limit.
Admittedly,	we	cannot	be	completely	certain	that	new	physics	will	not	one
day	be	discovered	offering	some	way	around	these	limitations.

.	The	number	of	copies	of	a	person	would	scale	linearly	with	resources	with
no	 upper	 bound.	 Yet	 it	 is	 not	 clear	 how	much	 the	 average	 human	 being
would	 value	 having	 multiple	 copies	 of	 herself.	 Even	 those	 people	 who
would	prefer	to	be	multiply	instantiated	may	not	have	a	utility	function	that
is	 linear	with	 increasing	number	of	copies.	Copy	numbers,	 like	 life	years,
might	have	diminishing	returns	in	the	typical	person’s	utility	function.

.	A	singleton	is	highly	internally	collaborative	at	the	highest	level	of	decision-
making.	A	 singleton	could	 have	 a	 lot	 of	 non-collaboration	 and	 conflict	 at
lower	 levels,	 if	 the	 higher-level	 agency	 that	 constitutes	 the	 singleton
chooses	to	have	things	that	way.

.	If	each	rival	AI	team	is	convinced	that	the	other	teams	are	so	misguided	as	to
have	no	chance	of	producing	an	intelligence	explosion,	then	one	reason	for
collaboration—avoiding	 the	 race	dynamic—is	obviated:	 each	 team	should
independently	choose	to	go	slower	in	the	confident	belief	that	it	 lacks	any
serious	competition.

.	A	PhD	student.

.	This	formulation	is	intended	to	be	read	so	as	to	include	a	prescription	that	the
well-being	 of	 nonhuman	 animals	 and	 other	 sentient	 beings	 (including



digital	minds)	that	exist	or	may	come	to	exist	be	given	due	consideration.	It
is	not	meant	to	be	read	as	a	license	for	one	AI	developer	to	substitute	his	or
her	 own	 moral	 intuitions	 for	 those	 of	 the	 wider	 moral	 community.	 The
principle	 is	 consistent	with	 the	 “coherent	 extrapolated	 volition”	 approach
discussed	 in	 Chapter	 12,	 with	 an	 extrapolation	 base	 encompassing	 all
humans.

A	 further	 clarification:	 The	 formulation	 is	 not	 intended	 to	 necessarily
exclude	 the	 possibly	 of	 post-transition	 property	 rights	 in	 artificial
superintelligences	 or	 their	 constituent	 algorithms	 and	 data	 structures.	 The
formulation	 is	meant	 to	 be	 agnostic	 about	what	 legal	 or	 political	 systems
would	 best	 serve	 to	 organize	 transactions	 within	 a	 hypothetical	 future
posthuman	 society.	 What	 the	 formulation	 is	 meant	 to	 assert	 is	 that	 the
choice	of	such	a	system,	 insofar	as	 its	selection	 is	causally	determined	by
how	superintelligence	is	initially	developed,	should	to	be	made	on	the	basis
of	 the	 stated	 criterion;	 that	 is,	 the	 post-transition	 constitutional	 system
should	 be	 chosen	 for	 the	 benefit	 of	 all	 of	 humanity	 and	 in	 the	 service	 of
widely	 shared	 ethical	 ideals—as	 opposed	 to,	 for	 instance,	 for	 the	 benefit
merely	of	whoever	happened	to	be	the	first	to	develop	superintelligence.

.	 Refinements	 of	 the	 windfall	 clause	 are	 obviously	 possible.	 For	 example,
perhaps	the	threshold	should	be	expressed	in	per	capita	terms,	or	maybe	the
winner	should	be	allowed	to	keep	a	somewhat	larger	than	equal	share	of	the
overshoot	 in	 order	 to	more	 strongly	 incentivize	 further	 production	 (some
version	 of	 Rawls’s	 maximin	 principle	 might	 be	 attractive	 here).	 Other
refinements	would	refocus	the	clause	away	from	dollar	amounts	and	restate
it	in	terms	of	“influence	on	humanity’s	future”	or	“degree	to	which	different
parties’	 interests	 are	 weighed	 in	 a	 future	 singleton’s	 utility	 function”	 or
some	such.

CHAPTER	15:	CRUNCH	TIME

	

1.	Some	research	is	worthwhile	not	because	of	what	it	discovers	but	for	other
reasons,	 such	 as	by	 entertaining,	 educating,	 accrediting,	 or	 uplifting	 those
who	engage	in	it.

2.	 I	 am	 not	 suggesting	 that	 nobody	 should	 work	 on	 pure	 mathematics	 or



philosophy.	 I	 am	 also	 not	 suggesting	 that	 these	 endeavors	 are	 especially
wasteful	 compared	 to	 all	 the	 other	 dissipations	 of	 academia	 or	 society	 at
large.	It	 is	probably	very	good	that	some	people	can	devote	 themselves	 to
the	life	of	the	mind	and	follow	their	intellectual	curiosity	wherever	it	leads,
independent	of	any	thought	of	utility	or	impact.	The	suggestion	is	that	at	the
margin,	 some	of	 the	best	minds	might,	 upon	 realizing	 that	 their	 cognitive
performances	may	become	obsolete	in	the	foreseeable	future,	want	to	shift
their	attention	to	those	theoretical	problems	for	which	it	makes	a	difference
whether	we	get	the	solution	a	little	sooner.

3.	 Though	 one	 should	 be	 cautious	 in	 cases	 where	 this	 uncertainty	 may	 be
protective—recall,	 for	 instance,	 the	 risk-race	model	 in	Box	13,	where	we
found	 that	 additional	 strategic	 information	 could	 be	 harmful.	 More
generally,	 we	 need	 to	 worry	 about	 information	 hazards	 (see	 Bostrom
[2011b]).	 It	 is	 tempting	 to	 say	 that	we	need	more	 analysis	of	 information
hazards.	 This	 is	 probably	 true,	 although	 we	 might	 still	 worry	 that	 such
analysis	itself	may	produce	dangerous	information.

4.	Cf.	Bostrom	(2007).

5.	I	am	grateful	to	Carl	Shulman	for	emphasizing	this	point.
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