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Université Libre de Bruxelles
Brussels
Belgium

ISBN 978-3-642-54654-9 ISBN 978-3-642-54655-6 (eBook)
DOI 10.1007/978-3-642-54655-6
Springer Heidelberg New York Dordrecht London

Library of Congress Control Number: 2014943455

© Springer-Verlag Berlin Heidelberg 2014
This work is subject to copyright. All rights are reserved by the Publisher, whether
the whole or part of the material is concerned, specifically the rights of translation,
reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in
any other physical way, and transmission or information storage and retrieval, electronic
adaptation, computer software, or by similar or dissimilar methodology now known or
hereafter developed. Exempted from this legal reservation are brief excerpts in connection
with reviews or scholarly analysis or material supplied specifically for the purpose of being
entered and executed on a computer system, for exclusive use by the purchaser of the work.
Duplication of this publication or parts thereof is permitted only under the provisions of
the Copyright Law of the Publisher’s location, in its current version, and permission for
use must always be obtained from Springer. Permissions for use may be obtained through
RightsLink at the Copyright Clearance Center. Violations are liable to prosecution under
the respective Copyright Law.
The use of general descriptive names, registered names, trademarks, service marks, etc.
in this publication does not imply, even in the absence of a specific statement, that such
names are exempt from the relevant protective laws and regulations and therefore free for
general use.
While the advice and information in this book are believed to be true and accurate at the
date of publication, neither the authors nor the editors nor the publisher can accept any
legal responsibility for any errors or omissions that may be made. The publisher makes no
warranty, express or implied, with respect to the material contained herein.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

www.springer.com


To Andrés and Manuel,
who bring me joy and

happiness day after day
A.V.

To Elena,
the star that shed light upon my path,

with all my love
E.Z.





Foreword

Having worked with data warehouses for almost 20 years, I was both honored
and excited when two veteran authors in the field asked me to write a foreword
for their new book and sent me a PDF file with the current draft. Already
the size of the PDF file gave me a first impression of a very comprehensive
book, an impression that was heavily reinforced by reading the Table of
Contents. After reading the entire book, I think it is quite simply the most
comprehensive textbook about data warehousing on the market.

The book is very well suited for one or more data warehouse courses,
ranging from the most basic to the most advanced. It has all the features that
are necessary to make a good textbook. First, a running case study, based on
the Northwind database known from Microsoft’s tools, is used to illustrate
all aspects using many detailed figures and examples. Second, key terms and
concepts are highlighted in the text for better reading and understanding.
Third, review questions are provided at the end of each chapter so students
can quickly check their understanding. Fourth, the many detailed exercises for
each chapter put the presented knowledge into action, yielding deep learning
and taking students through all the steps needed to develop a data warehouse.
Finally, the book shows how to implement data warehouses using leading
industrial and open-source tools, concretely Microsoft’s and Pentaho’s suites
of data warehouse tools, giving students the essential hands-on experience
that enables them to put the knowledge into practice.

For the complete database novice, there is even an introductory chapter on
standard database concepts and design, making the book self-contained even
for this group. It is quite impressive to cover all this material, usually the topic
of an entire textbook, without making it a dense read. Next, the book provides
a good introduction to basic multidimensional concepts, later moving on to
advanced concepts such as summarizability. A complete overview of the data
warehouse and online analytical processing (OLAP) “architecture stack” is
given. For the conceptual modeling of the data warehouse, a concise and
intuitive graphical notation is used, a full specification of which is given in
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an appendix, along with a methodology for the modeling and the translation
to (logical-level) relational schemas.

Later, the book provides a lot of useful knowledge about designing and
querying data warehouses, including a detailed, yet easy-to-read, description
of the de facto standard OLAP query language: MultiDimensional eXpres-
sions (MDX). I certainly learned a thing or two about MDX in a short time.
The chapter on extract-transform-load (ETL) takes a refreshingly different
approach by using a graphical notation based on the Business Process
Modeling Notation (BPMN), thus treating the ETL flow at a higher and more
understandable level. Unlike most other data warehouse books, this book
also provides comprehensive coverage on analytics, including data mining
and reporting, and on how to implement these using industrial tools. The
book even has a chapter on methodology issues such as requirements capture
and the data warehouse development process, again something not covered
by most data warehouse textbooks.

However, the one thing that really sets this book apart from its peers is
the coverage of advanced data warehouse topics, such as spatial databases
and data warehouses, spatiotemporal data warehouses and trajectories, and
semantic web data warehouses. The book also provides a useful overview
of novel “big data” technologies like Hadoop and novel database and data
warehouse architectures like in-memory database systems, column store
database systems, and right-time data warehouses. These advanced topics
are a distinguishing feature not found in other textbooks.

Finally, the book concludes by pointing to a number of exciting directions
for future research in data warehousing, making it an interesting read even
for seasoned data warehouse researchers.

A famous quote by IBM veteran Bruce Lindsay states that “relational
databases are the foundation of Western civilization.” Similarly, I would say
that “data warehouses are the foundation of twenty-first-century enterprises.”
And this book is in turn an excellent foundation for building those data
warehouses, from the simplest to the most complex.

Happy reading!

Aalborg, Denmark Torben Bach Pedersen



Preface

Since the late 1970s, relational database technology has been adopted by most
organizations to store their essential data. However, nowadays, the needs of
these organizations are not the same as they used to be. On the one hand,
increasing market dynamics and competitiveness led to the need of having the
right information at the right time. Managers need to be properly informed in
order to take appropriate decisions to keep up with business successfully. On
the other hand, data possessed by organizations are usually scattered among
different systems, each one devised for a particular kind of business activity.
Further, these systems may also be distributed geographically in different
branches of the organization.

Traditional database systems are not well suited for these new require-
ments, since they were devised to support the day-to-day operations rather
than for data analysis and decision making. As a consequence, new database
technologies for these specific tasks have emerged in the 1990s, namely,
data warehousing and online analytical processing (OLAP), which involve
architectures, algorithms, tools, and techniques for bringing together data
from heterogeneous information sources into a single repository suited for
analysis. In this repository, called a data warehouse, data are accumulated
over a period of time for the purpose of analyzing its evolution and
discovering strategic information such as trends, correlations, and the like.
Data warehousing is nowadays a well-established and mature technology used
by organizations in many sectors to improve their operations and better
achieve their objectives.

Objective of the Book

This book is aimed at consolidating and transferring to the community the
experience of many years of teaching and research in the field of databases
and data warehouses conducted by the authors, individually as well as jointly.

ix
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However, this is not a compilation of the authors’ past publications. On the
contrary, the book aims at being a main textbook for undergraduate and
graduate computer science courses on data warehousing and OLAP. As such,
it is written in a pedagogical rather than research style to make the work of
the instructor easier and to help the student understand the concepts being
delivered. Researchers and practitioners who are interested in an introduction
to the area of data warehousing will also find in the book a useful reference.
In summary, we aimed at providing an in-depth coverage of the main topics
in the field, yet keeping a simple and understandable style.

We describe next the main features that make this book different
from other academic ones in the field. Throughout the book, we follow a
methodology that covers all the phases of the data warehousing process, from
requirements specification to implementation. Regarding data warehouse
design, we make a clear distinction between the three abstraction levels of
the American National Standards Institute (ANSI) database architecture,
that is, conceptual, logical, and physical, unlike the usual approaches, which
do not distinguish clearly between the conceptual and logical levels. A
strong emphasis is given to querying using the de facto standard MDX
(MultiDimensional eXpressions). Though there are many practical books
covering this language, academic books have largely ignored it. We also
provide an in-depth coverage of the extraction, transformation, and loading
(ETL) processes. Unlike other books in the field, we devote a whole chapter to
study how data mining techniques can be used to exploit the data warehouse.
In addition, we study how key performance indicators (KPIs) and dashboards
are built on top of data warehouses. Although there are many textbooks on
spatial databases, this is not the case with spatial data warehouses, which we
study in this book, together with trajectory data warehouses, which allow the
analysis of data produced by objects that change their position in space and
time, like cars or pedestrians. We also address several issues that we believe
are likely to be relevant in the near future, like new database architectures
such as column-store and in-memory databases, as well as data warehousing
and OLAP on the semantic web.

A key characteristic that distinguishes this book from other textbooks
is that we illustrate how the concepts introduced can be implemented
using existing tools. Specifically, throughout the book we develop a case
study based on the well-known Northwind database using representative
tools of different kinds. As an example of a commercial implementation,
we used the tools provided with Microsoft SQL Server, namely, Analysis
Services, Integration Services, and Reporting Services. As an example of an
open-source implementation, we used the Pentaho Business Analytics suite
of products, which includes Pentaho Analysis Services, an OLAP engine
commonly known as Mondrian, and Pentaho Data Integration, an ETL tool
commonly known as Kettle. In particular, the chapter on logical design
includes a complete description of how to define an OLAP cube in both
Analysis Services and Mondrian. Similarly, the chapter on physical design
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illustrates how to optimize SQL Server, Analysis Services, and Mondrian
applications. Further, in the chapter on ETL we give a complete example
of a process that loads the Northwind data warehouse, implemented using
both Integration Services and Kettle. In the chapter on data analytics, we
used Analysis Services for data mining and for defining key performance
indicators, and we used Reporting Services to show how dashboards can be
implemented. Finally, to illustrate spatial and spatiotemporal concepts, we
used the GeoMondrian OLAP tool over the open-source database PostgreSQL
and its spatial extension PostGIS. In this way, the reader can replicate most
of the examples and queries presented in the book.

We have also included review questions and exercises for all the chapters
in order to help the reader verify that the concepts in each chapter have
been well understood. We strongly believe that being formal and precise in
the presentation of the topics, implementing them on operational tools, and
checking the acquired knowledge against an extensive list of questions and
exercises provides a comprehensive learning path for the student.

In addition to the above, support material for the book has been
made available online at the address http://cs.ulb.ac.be/DWSDIbook/. This
includes electronic versions of the figures, slides for each chapter, solutions
to the proposed exercises, and other pedagogic material that can be used by
instructors using this book as a course text.

This book builds up from the book Advanced Data Warehouse Design:
From Conventional to Spatial and Temporal Applications coauthored by one
of the authors of the present work in collaboration with Elzbieta Malinowski
and published by Springer in 2007. We would like to emphasize that the
present book is not a new edition of the previous one but a completely new
book with a different objective: While the previous book focused solely on
data warehouse design, the present book provides a comprehensive coverage
of the overall data warehouse process, from requirements specification to
implementation and exploitation. Although approximatively 15% of the
previous book was used as a starting point of the present one, this reused
material has been adapted to cope with the new objectives of the book.

Organization of the Book and Teaching Paths

Part I of the book starts with Chap. 1 and provides a historical overview
of data warehousing and OLAP. Chapter 2 introduces the main concepts of
relational databases needed in the remainder of the book. We also introduce
the case study that we will use throughout the book, which is based on the
well-known Northwind database. Data warehouses and the multidimensional
model are introduced in Chap. 3, as well as the tools provided by SQL Server
and the Pentaho Business Analytics suite. Chapter 4 deals with conceptual
data warehouse design, while Chap. 5 is devoted to logical data warehouse

http://cs.ulb.ac.be/DWSDIbook/
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design. Part I closes with Chap. 6, which studies MDX and SQL/OLAP, the
extension of SQL with OLAP features.

Part II covers data warehouse implementation and exploitation issues.
This part starts with Chap. 7, which tackles physical data warehouse
design, focusing on indexing, view materialization, and database partitioning.
Chapter 8 studies conceptual modeling and implementation of ETL processes.
Chapter 9 studies data analytics as a way of exploiting the data warehouse
for decision making. Chapter 10 closes Part II, providing a comprehensive
method for data warehouse design.

Part III covers advanced data warehouse topics. This part starts with
Chap. 11, which studies spatial data warehouses and their exploitation,
denoted spatial OLAP (SOLAP). This is illustrated with an extension of the
Northwind data warehouse with spatial data, denoted GeoNorthwind, and
we query this data warehouse with a spatial extension of the MDX language.
Chapter 12 covers trajectory data warehousing. Like in Chap. 11, we illustrate
the problem by extending the Northwind data warehouse with trajectory
data and show how this data warehouse can be queried extending SQL with
spatiotemporal data types. Chapter 13 studies how novel techniques (like the
MapReduce programming model) and technologies (like column-store and in-
memory databases) can be applied in the field of data warehousing to allow
large amounts of data to be processed. Chapter 14 addresses OLAP analysis
over semantic web data. Finally, Chap. 15 concludes the book, pointing out
what we believe will be the main challenges for data warehousing in the
future. Appendix A summarizes the notations used in this book.

The figure below illustrates the overall structure of the book and the
interdependencies between the chapters described above. Readers may refer
to this figure to tailor their use of this book to their own particular
interests. The dependency graph in the figure suggests many of the possible
combinations that can be devised in order to offer advanced graduate courses
on data warehousing. We can see that there is a path from Chaps. 1 to 6,
covering a basic course. In addition, according to the course needs and the
coverage depth given to each of the topics, this basic course can be naturally
extended to include any combination of physical design, ETL process, data
analytics, or even spatial databases. That means the book organization gives
the lecturer enough flexibility to combine topics after the basic concepts have
been delivered. For example, advanced courses can include a quick overview
of Chaps. 1–5, and then they can be customized in many different ways. For
example, if the lecturer wants to focus on querying, she could deliver the
paths starting in Chap. 6. If she wants to focus on physical issues, she can
follow the paths starting in Chaps. 7 and 8.
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Part I
Fundamental Concepts



Chapter 1

Introduction

Organizations today are facing increasingly complex challenges in terms of
management and problem solving in order to achieve their operational goals.
This situation compels people in those organizations to utilize analysis tools
that can better support their decisions. Business intelligence comprises a
collection of methodologies, processes, architectures, and technologies that
transform raw data into meaningful and useful information for decision
making. Business intelligence and decision-support systems provide
assistance to managers at various organizational levels for analyzing strategic
information. These systems collect vast amounts of data and reduce them
to a form that can be used to analyze organizational behavior. This data
transformation comprises a set of tasks that take the data from the sources
and, through extraction, transformation, integration, and cleansing processes,
store the data in a common repository called a data warehouse. Data
warehouses have been developed and deployed as an integral part of decision-
support systems to provide an infrastructure that enables users to obtain
efficient and accurate responses to complex queries.

A wide variety of systems and tools can be used for accessing, analyzing,
and exploiting the data contained in data warehouses. From the early days
of data warehousing, the typical mechanism for those tasks has been online
analytical processing (OLAP). OLAP systems allow users to interactively
query and automatically aggregate the data contained in a data warehouse.
In this way, decision makers can easily access the required information and
analyze it at various levels of detail. Data mining tools have also been used
since the 1990s to infer and extract interesting knowledge hidden in data
warehouses. From the beginning of the twenty-first century, a large number
of new business intelligence techniques have been developed and used to assist
decision making. Thus, the business intelligence market is shifting to provide
sophisticated analysis tools that go beyond the data navigation techniques
that popularized the OLAP paradigm. This new paradigm is generically
called data analytics. The business intelligence techniques used to exploit a
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4 1 Introduction

data warehouse can be broadly summarized as follows (this list by no means
attempts to be comprehensive):

• Reporting, such as dashboards and alerts.
• Performance management, such as metrics, key performance indicators

(KPIs), and scorecards.
• Analytics, such as OLAP, data mining, time series analysis, text mining,

web analytics, and advanced data visualization.

Although in this book the main emphasis will be on OLAP as a tool to exploit
a data warehouse, many of these techniques will also be discussed.

In this chapter, we present an overview of the data warehousing field,
covering both established topics and new developments, and indicate the
chapters in the book where these subjects are covered. We give in Sect. 1.1
a historical overview of data warehousing and OLAP, starting from the
early achievements. Then, we describe in Sect. 1.2 the field of spatial and
spatiotemporal data warehouses, which has been increasingly used in many
application domains. Finally, in Sect. 1.3 we describe new domains and
challenges that are being explored in order to answer the requirements of
today’s analytical applications.

1.1 A Historical Overview of Data Warehousing

In the early 1990s, as a consequence of an increasingly competitive and
rapidly changing world, organizations realized that they needed to perform
sophisticated data analysis to support their decision-making processes.
Traditional operational or transactional databases did not satisfy the
requirements for data analysis, since they were designed and optimized to
support daily business operations, and their primary concern was ensuring
concurrent access by multiple users and, at the same time, providing recovery
techniques to guarantee data consistency. Typical operational databases
contain detailed data, do not include historical data, and perform poorly
when executing complex queries that involve many tables or aggregate large
volumes of data. Furthermore, when users need to analyze the behavior of
an organization as a whole, data from several different operational systems
must be integrated. This can be a difficult task to accomplish because of the
differences in data definition and content. Therefore, data warehouses were
proposed as a solution to the growing demands of decision-making users.

The classic data warehouse definition, given by Inmon, characterizes a
data warehouse as a collection of subject-oriented, integrated, nonvolatile,
and time-varying data to support management decisions. This definition
emphasizes some salient features of a data warehouse. Subject oriented
means that a data warehouse targets one or several subjects of analysis
according to the analytical requirements of managers at various levels of the
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decision-making process. For example, a data warehouse in a retail company
may contain data for the analysis of the inventory and sales of products. The
term integrated expresses the fact that the contents of a data warehouse
result from the integration of data from various operational and external
systems.Nonvolatile indicates that a data warehouse accumulates data from
operational systems for a long period of time. Thus, data modification and
removal are not allowed in data warehouses, and the only operation allowed is
the purging of obsolete data that is no longer needed. Finally, time varying
emphasizes the fact that a data warehouse keeps track of how its data has
evolved over time, for instance, to know the evolution of sales over the last
months or years.

The basic concepts of databases are studied in Chap. 2. The design of
operational databases is typically performed in four phases: requirements
specification, conceptual design, logical design, and physical design.
During the requirements specification process, the needs of users at various
levels of the organization are collected. The specification obtained serves as
a basis for creating a database schema capable of responding to user queries.
Databases are designed using a conceptual model, such as the entity-
relationship (ER) model, which aims at describing an application without
taking into account implementation considerations. The resulting design is
then translated into a logical model, which is an implementation paradigm
for database applications. Nowadays, the most used logical model for
databases is the relational model. Therefore, in the chapter we also cover two
relational query languages: the relational algebra and the structured query
language (SQL). Finally, physical design particularizes the logical model for
a specific implementation platform in order to produce a physical model.

Relational databases must be highly normalized in order to guarantee
consistency under frequent updates, which implies a minimum level of
redundancy. This is usually achieved at the expense of a higher cost
of querying, because normalization implies partitioning the database into
multiple tables. Several authors have pointed out that this design paradigm
is not appropriate for data warehouse applications. Data warehouses must be
modeled in a way that ensures a deep understanding of the underlying data
and delivers good performance for the complex queries needed for typical
analysis tasks. This requires a lesser degree of normalization or, in some
cases, no normalization at all. To account for these requirements, a different
model was needed. Thus, multidimensional modeling was adopted for data
warehouse design.

Multidimensional modeling, studied in Chap. 3, views data as con-
sisting of facts linked to several dimensions. A fact represents the focus of
analysis (e.g., analysis of sales in stores) and typically includes attributes
called measures. Measures are usually numeric values that allow a quanti-
tative evaluation of various aspects of an organization. For example, measures
such as the amount or number of sales might help to analyze sales activities
in various stores. Dimensions are used to see the measures from several
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perspectives. For example, a time dimension can be used to analyze changes in
sales over various periods of time, whereas a location dimension can be used to
analyze sales according to the geographical distribution of stores. Users may
combine several analysis perspectives (i.e., dimensions) according to their
needs. For example, a user may require information about sales of computer
accessories (the product dimension) in July 2012 (the time dimension) at all
store locations (the store dimension). Dimensions typically include attributes
that form hierarchies, which allow users to explore measures at various
levels of detail. Examples of hierarchies are month–quarter–year in the time
dimension and city–state–country in the location dimension. Aggregation of
measures takes place when a hierarchy is traversed. For example, moving in
a hierarchy from a month level to a year level will yield aggregated values of
sales for the various years.

From a methodological point of view, data warehouses must be designed
analogously to operational databases, that is, following the four-step process
consisting of requirements specification and conceptual, logical, and physical
design. However, there is still no widely accepted conceptual model for
data warehouse applications. Due to this, data warehouse design is usually
performed at the logical level, leading to schemas that are difficult to
understand by a typical user. We believe that a conceptual model that clearly
stands on top of the logical level is required for data warehouse design. In this
book, we use the MultiDim model, which is powerful enough to represent
the complex characteristics of data warehouses at an abstraction level higher
than the logical model. We study conceptual modeling for data warehouses
in Chap. 4.

At the logical level, the multidimensional model is usually represented by
relational tables organized in specialized structures called star schemas and
snowflake schemas. These relational schemas relate a fact table to several
dimension tables. Star schemas use a unique table for each dimension,
even in the presence of hierarchies, which yields denormalized dimension
tables. On the other hand, snowflake schemas use normalized tables for
dimensions and their hierarchies. Then, over this relational representation
of a data warehouse, an OLAP server builds a data cube, which provides a
multidimensional view of the data warehouse. Logical modeling is studied in
Chap. 5.

Once a data warehouse has been implemented, analytical queries must
be addressed to it. MDX (MultiDimensional eXpressions) is the de facto
standard language for querying a multidimensional database, although it
can also be used in the definition of data cubes. Thus, MDX provides a
functionality for multidimensional databases similar to the one provided by
SQL (Structured Query Language) for traditional relational databases. The
MDX language is studied (and compared to SQL) in Chap. 6.

The physical level is concerned with implementation issues. Given the
size of a typical data warehouse, physical design is crucial to ensure adequate
response time to the complex ad hoc queries that must be supported. Three
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techniques are normally used for improving system performance: materialized
views, indexing, and data partitioning. In particular, bitmap indexes are used
in the data warehousing context, opposite to operational databases, where B-
tree indexes are typically used. A huge amount of research in these topics had
been performed particularly during the second half of the 1990s. In Chap. 7,
we review and study these efforts.

Although data warehouses are, in the end, a particular kind of databases,
there are significant differences between the development of operational
databases and data warehouses. A key one is the fact that data in a warehouse
are extracted from several source systems. Thus, data must be taken from
these sources, transformed to fit the data warehouse model, and loaded into
the data warehouse. This process is called extraction, transformation,
and loading (ETL), and it has been proven crucial for the success of a
data warehousing project. However, in spite of the work carried out in this
topic, again, there is still no consensus on a methodology for ETL design,
and most problems are solved in an ad hoc manner. There exist, however,
several proposals regarding ETL conceptual design. We study the design and
implementation of ETL processes in Chap. 8.

Data analytics is the process of exploiting the contents of a data
warehouse in order to provide essential information to the decision-making
process. Three main tools can be used for this. Data mining consists in a
series of statistical techniques that analyze the data in a warehouse in order
to discover useful knowledge that is not easy to obtain from the original
data. Key performance indicators (KPIs) are measurable organizational
objectives that are used for characterizing how an organization is performing.
Finally, dashboards are interactive reports that present the data in a
warehouse, including the KPIs, in a visual way, providing an overview of
the performance of an organization for decision-support purposes. We study
data analytics in Chap. 9.

Designing a data warehouse is a complex endeavor that needs to be
carefully carried out. As for operational databases, several phases are
needed to design a data warehouse, where each phase addresses specific
considerations that must be taken into account. As mentioned above, these
phases are requirements specification, conceptual design, logical design,
and physical design. There are three different approaches to requirements
specification, which differ on how requirements are collected: from users, by
analyzing source systems, or by combining both. The choice on the particular
approach followed determines how the subsequent phase of conceptual design
is undertaken. We study in Chap. 10 a method for data warehouse design.

By the beginning of this century, the foundational concepts of data
warehouse systems were mature and consolidated. Starting from these
concepts, the field has been steadily growing in many different ways. On the
one hand, new kinds of data and data models have been introduced. Some of
them have been successfully implemented into commercial and open-source
systems. This is the case of spatial data. On the other hand, new architectures



8 1 Introduction

are being explored for coping with the massive amount of information that
must be processed in today’s decision-support systems. We comment on these
issues in the next sections.

1.2 Spatial and Spatiotemporal Data Warehouses

Over the years, spatial data has been increasingly used in various areas, like
public administration, transportation networks, environmental systems, and
public health, among others. Spatial data can represent either objects located
on the Earth’s surface, such as mountains, cities, and rivers, or geographic
phenomena, such as temperature, precipitation, and altitude. Spatial data
can also represent nongeographic data, that is, data located in other spatial
frames such as a human body, a house, or an engine. The amount of spatial
data available is growing considerably due to technological advances in areas
such as remote sensing and global navigation satellite systems (GNSS),
namely, the Global Positioning System (GPS) and the Galileo system.

Management of spatial data is carried out by spatial databases or
geographic information systems (GISs). Since the latter are used for
storing and manipulating geographic objects and phenomena, we shall use
the more general term spatial databases in the following. Spatial databases
are used to store spatial data located in a two- or three-dimensional space.
These systems provide a set of functions and operators for querying and
manipulating spatial data. Queries may refer to spatial characteristics of
individual objects, such as their area or perimeter, or may require complex
operations on two or more spatial objects. Topological relationships
between spatial objects, such as intersection, touches, and crosses, are
essential in spatial applications. For example, two roads may intersect, two
countries may touch because they have a common border, or a road may
cross a dessert. An important characteristic of topological relationships is
that they do not change when the underlying space is distorted through
rotation, scaling, and similar operations.

Spatial databases offer sophisticated capabilities for the management of
spatial data, including spatial index structures, storage management, and
dynamic query formulation. However, similarly to conventional operational
databases, they are typically targeted toward daily operations. Therefore,
spatial databases are not well suited to support the decision-making process.
As a consequence, a new field, called spatial data warehouses, emerged as
a combination of the spatial database and data warehouse technologies.

Spatial data warehouses provide improved data analysis, visualization,
and manipulation. This kind of analysis is called spatial OLAP (SOLAP),
conveying a reference to the ability of exploring spatial data through map
navigation and aggregation, as it is performed in OLAP with tables and
charts. We study spatial data warehouses in Chap. 11.
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Most applications focus on the analysis of data produced by objects like
customers, suppliers, and so on, assuming that these objects are static, in the
sense that their position in space and time is not relevant for the application
at hand. Nevertheless, many applications require the analysis of data about
moving objects, that is, objects that change their position in space and
time. The possibilities and interest of mobility data analysis have expanded
dramatically with the availability of positioning devices. Traffic data, for
example, can be captured as a collection of sequences of positioning signals
transmitted by the cars’ GPS along their itineraries. Although such sequences
can be very long, they are often processed by being divided in segments of
movement called trajectories, which are the unit of interest in the analysis
of movement data. Extending data warehouses to cope with trajectory data
leads to the notion of trajectory data warehouses. These are studied in
Chap. 12.

1.3 New Domains and Challenges

Nowadays, the availability of enormous amounts of data is calling for a shift in
the way data warehouse and business intelligence practices have been carried
out since the 1990s. It is becoming clear that for certain kinds of business
intelligence applications, the traditional approach, where day-to-day business
data produced in an organization are collected in a huge common repository
for data analysis, needs to be revised, to account for efficiently handling large-
scale data. In many emerging domains where business intelligence practices
are gaining acceptance, such as social networks or geospatial data analytics,
massive-scale data sources are becoming common, posing new challenges
to the data warehouse research community. In addition, new database
architectures are gaining momentum. Parallelism is becoming a must for large
data warehouse processing. Column-store database systems (like MonetDB
and Vertica) and in-memory database systems (like SAP HANA) are strong
candidates for data warehouse architectures since they deliver much better
performance than classic row-oriented databases for fact tables with a large
number of attributes. The MapReduce programming model is also becoming
increasingly popular, challenging traditional parallel database management
systems architectures. Even though at the time of writing this book it is
still not clear if this approach can be applied to all kinds of data warehouse
and business intelligence applications, many large data warehouses have been
built based on this model. As an example, the Facebook data warehouse
was built using Hadoop (an open-source implementation of MapReduce).
Chapter 13 discusses these new data warehousing challenges.

We already commented that the typical method of loading data into a
data warehouse is through an ETL process. This process pulls data from
source systems periodically (e.g., daily, weekly, or monthly), obtaining a
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snapshot of the business data at a given moment in time. These data are
then used for refreshing the contents of the data warehouse. Historically,
this process has been considered acceptable, since in the early days of data
warehousing it was almost impossible to obtain real-time, continuous feeds
from production systems. Moreover, it was difficult to get consistent, reliable
results from query analysis if warehouse data were constantly changing.
However, nowadays the user requirements have changed: business intelligence
applications constantly need current and up-to-date information. In addition,
while in those early days only selected users accessed the data warehouse, in
today’s web-based architectures the number of users has been constantly
growing. Moreover, modern data warehouses need to remain available 24/7,
without a time window when access could be denied. In summary, the need of
near real-time data warehousing is challenging ETL technology. To approach
real time, the time elapsed between a relevant application event and its
consequent action (called the data latency) needs to be minimized. Therefore,
to support real-time business intelligence, real-time data warehouses are
needed. We study these kinds of data warehouses also in Chap. 13.

The above are not the only challenges for data warehousing and OLAP in
the years to come. There is also a need to keep up with new application
requirements. For example, the web is changing the way in which data
warehouses are being designed, used, and exploited. For some data analysis
tasks (like worldwide price evolution of some product), the data contained
in a conventional data warehouse may not suffice. External data sources,
like the web, can provide useful multidimensional information, although
usually too volatile to be permanently stored. The semantic web aims at
representing web content in a machine-processable way. The basic layer of
the data representation for the semantic web recommended by the World
Wide Web Consortium (W3C) is the Resource Description Framework
(RDF), on top of which the Web Ontology Language (OWL) is based.
In a semantic web scenario, domain ontologies (defined in RDF or some
variant of OWL) define a common terminology for the concepts involved in a
particular domain. Semantic annotations are especially useful for describing
unstructured, semistructured, and textual data. Many applications attach
metadata and semantic annotations to the information they produce (e.g.,
in medical applications, medical imaging, and laboratory tests). Thus, large
repositories of semantically annotated data are currently available, opening
new opportunities for enhancing current decision-support systems. The data
warehousing technology must be prepared to handle semantic web data.
In this book, we study semantic web and unstructured data warehouses in
Chap. 14.

Finally, there are many interesting topics in the data warehouse domain
that are still under development. Among them, we can mention temporal
data warehouses, 3D/4D spatial data warehouses, text and multimedia data
warehouses, and graph data warehouses. Although all of them are strong
candidates to play a relevant role in the data warehousing field, due to space
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reasons, in this book we decided to address mature technologies and provide
brief comments on those topics in Chap. 15.

1.4 Review Questions

1.1 Why are traditional databases called operational or transactional? Why
are these databases inappropriate for data analysis?

1.2 Discuss four main characteristics of data warehouses.
1.3 Describe the different components of a multidimensional model, that

is, facts, measures, dimensions, and hierarchies.
1.4 What is the purpose of online analytical processing (OLAP) systems

and how are they related to data warehouses?
1.5 Specify the different steps used for designing a database. What are the

specific concerns addressed in each of these phases?
1.6 Explain the advantages of using a conceptual model when designing a

data warehouse.
1.7 What is the difference between the star and the snowflake schemas?
1.8 Specify several techniques that can be used for improving performance

in data warehouse systems.
1.9 What is the extraction, transformation, and loading (ETL) process?

1.10 What languages can be used for querying data warehouses?
1.11 Describe what is meant by the term data analytics. Give examples of

techniques that are used for exploiting the content of data warehouses.
1.12 Why do we need a method for data warehouse design?
1.13 What is spatial data? What is spatiotemporal data? Give examples of

applications for which such kinds of data are important.
1.14 Explain the differences between spatial databases and spatial data

warehouses.
1.15 What is big data and how is it related to data warehousing? Give

examples of technologies that are used in this context.
1.16 Describe why it is necessary to take into account web data in the context

of data warehousing. Motivate your answer by elaborating an example
application scenario.



Chapter 2

Database Concepts

This chapter introduces the basic database concepts, covering modeling,
design, and implementation aspects. Section 2.1 begins by describing the
concepts underlying database systems and the typical four-step process used
for designing them, starting with requirements specification, followed by
conceptual, logical, and physical design. These steps allow a separation of
concerns, where requirements specification gathers the requirements about
the application and its environment, conceptual design targets the modeling
of these requirements from the perspective of the users, logical design develops
an implementation of the application according to a particular database
technology, and physical design optimizes the application with respect to a
particular implementation platform. Section 2.2 presents the Northwind case
study that we will use throughout the book. In Sect. 2.3, we review the entity-
relationship model, a popular conceptual model for designing databases.
Section 2.4 is devoted to the most used logical model of databases, the
relational model. Finally, physical design considerations for databases are
covered in Sect. 2.5.

The aim of this chapter is to provide the necessary knowledge to
understand the remaining chapters in this book, making it self-contained.
However, we do not intend to be comprehensive and refer the interested
reader to the many textbooks on the subject.

2.1 Database Design

Databases constitute the core component of today’s information systems. A
database is a shared collection of logically related data, and a description of
that data, designed to meet the information needs and support the activities
of an organization. A database is deployed on a database management
system (DBMS), which is a software system used to define, create, manip-
ulate, and administer a database.

A. Vaisman and E. Zimányi, Data Warehouse Systems, Data-Centric
Systems and Applications, DOI 10.1007/978-3-642-54655-6 2,
© Springer-Verlag Berlin Heidelberg 2014
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Designing a database system is a complex undertaking typically divided
into four phases, described next.

• Requirements specification collects information about the users’ needs
with respect to the database system. A large number of approaches for
requirements specification have been developed by both academia and
practitioners. These techniques help to elicit necessary and desirable
system properties from prospective users, to homogenize requirements, and
to assign priorities to them. During this phase, the active participation of
users will increase their satisfaction with the delivered system and avoid
errors, which can be very expensive to correct if the subsequent phases
have already been carried out.

• Conceptual design aims at building a user-oriented representation of the
database that does not contain any implementation considerations. This
is done by using a conceptual model in order to identify the relevant
concepts of the application at hand. The entity-relationship model is one of
the most often used conceptual models for designing database applications.
Alternatively, object-oriented modeling techniques can also be applied,
based on the UML (Unified Modeling Language) notation.

Conceptual design can be performed using two different approaches,
according to the complexity of the system and the developers’ experi-
ence:

– Top-down design: The requirements of the various users are merged
before the design process begins, and a unique schema is built.
Afterward, a separation of the views corresponding to individual users’
requirements can be performed. This approach can be difficult and
expensive for large databases and inexperienced developers.

– Bottom-up design: A separate schema is built for each group of
users with different requirements, and later, during the view integration
phase, these schemas are merged to form a global conceptual schema
for the entire database. This is the approach typically used for large
databases.

• Logical design aims at translating the conceptual representation of the
database obtained in the previous phase into a particular logical model
common to several DBMSs. Currently, the most common logical model
is the relational model. Other logical models include the object-relational
model, the object-oriented model, and the semistructured model. In this
book, we focus on the relational model. To ensure an adequate logical
representation, we specify a set of suitable mapping rules that transform
the constructs in the conceptual model to appropriate structures of the
logical model.

• Physical design aims at customizing the logical representation of the
database obtained in the previous phase to a physical model targeted
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to a particular DBMS platform. Common DBMSs include SQL Server,
Oracle, DB2, MySQL, and PostgreSQL, among others.

A major objective of this four-level process is to provide data indepen-
dence, that is, to ensure as much as possible that schemas in upper levels
are unaffected by changes to schemas in lower levels. Two kinds of data
independence are typically defined. Logical data independence refers to
the immunity of the conceptual schema to changes in the logical schema.
For example, rearranging the structure of relational tables should not affect
the conceptual schema, provided that the requirements of the application
remain the same. Physical data independence refers to the immunity of
the logical schema to changes in the physical one. For example, physically
sorting the records of a file on a disk does not affect the conceptual or logical
schema, although this modification may be perceived by the user through a
change in response time.

In the following sections, we briefly describe the entity-relationship model
and the relational models to cover the most widely used conceptual and logical
models, respectively. We then address physical design considerations. Before
doing this, we introduce the use case we will use throughout the book, which
is based on the popular Northwind relational database.1 In this chapter, we
explain the database design concepts using this example. In the next chapter,
we will use a data warehouse derived from this database, over which we will
explain the data warehousing and OLAP concepts.

2.2 The Northwind Case Study

The Northwind company exports a number of goods. In order to manage and
store the company data, a relational database must be designed. The main
characteristics of the data to be stored are the following:

• Customer data, which must include an identifier, the customer’s name,
contact person’s name and title, full address, phone, and fax.

• Employee data, including the identifier, name, title, title of courtesy, birth
date, hire date, address, home phone, phone extension, and a photo.
Photos will be stored in the file system, and a path to the photo is
required. Further, employees report to other employees of higher level in
the company’s organization.

• Geographic data, namely, the territories where the company operates.
These territories are organized into regions. For the moment, only the

1This database can be downloaded from http://northwinddatabase.codeplex.com/.
Notice that in this book, we do not consider the tables CustomerDemographics and
CustomerCustomerDemo, which are empty, and in addition, we removed the space in
the name of the table Order Details.

http://northwinddatabase.codeplex.com/
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territory and region description must be kept. An employee can be assigned
to several territories, but these territories are not exclusive to an employee:
Each employee can be linked to multiple territories, and each territory can
be linked to multiple employees.

• Shipper data, that is, information about the companies that Northwind
hires to provide delivery services. For each one of them, the company name
and phone number must be kept.

• Supplier data, including the company name, contact name and title, full
address, phone, fax, and home page.

• Data about the products that Northwind trades, such as identifier, name,
quantity per unit, unit price, and an indication if the product has been
discontinued. In addition, an inventory is maintained, which requires to
know the number of units in stock, the units ordered (i.e., in stock but not
yet delivered), and the reorder level (i.e., the number of units in stock
such that when it is reached, the company must produce or acquire).
Products are further classified into categories, each of which has a name,
a description, and a picture. Each product has a unique supplier.

• Data about the sale orders. The information required includes the
identifier, the date at which the order was submitted, the required delivery
date, the actual delivery date, the employee involved in the sale, the
customer, the shipper in charge of its delivery, the freight cost, and the full
destination address. An order can contain many products, and for each of
them, the unit price, the quantity, and the discount that may be given
must be kept.

2.3 Conceptual Database Design

The entity-relationship (ER) model is one of the most often used conceptual
models for designing database applications. Although there is general agree-
ment about the meaning of the various concepts of the ER model, a number of
different visual notations have been proposed for representing these concepts.
Appendix A shows the notations we use in this book.

Figure 2.1 shows the ER model for the Northwind database. We next
introduce the main ER concepts using this figure.

Entity types are used to represent a set of real-world objects of interest
to an application. In Fig. 2.1, Employees, Orders, and Customers are examples
of entity types. An object belonging to an entity type is called an entity or
an instance. The set of instances of an entity type is called its population.
From the application point of view, all entities of an entity type have the
same characteristics.

In the real world, objects do not live in isolation; they are related to
other objects. Relationship types are used to represent these associations
between objects. In our example, Supplies, ReportsTo, and HasCategory
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Fig. 2.1 Conceptual schema of the Northwind database
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are examples of relationship types. An association between objects of a
relationship type is called a relationship or an instance. The set of
associations of a relationship type is called its population.

The participation of an entity type in a relationship type is called a
role and is represented by a line linking the two types. Each role of a
relationship type has associated with it a pair of cardinalities describing
the minimum and maximum number of times that an entity may participate
in that relationship type. For example, the role between Products and Supplies
has cardinalities (1,1), meaning that each product participates exactly once in
the relationship type. The role between Supplies and Suppliers has cardinality
(0,n), meaning that a supplier can participate between 0 and n times (i.e., an
undetermined number of times) in the relationship. On the other hand, the
cardinality (1,n) between Orders and OrderDetails means that each order can
participate between 1 and n times in the relationship type. A role is said to be
optional or mandatory depending on whether its minimum cardinality is 0
or 1, respectively. Further, a role is said to be monovalued or multivalued
depending on whether its maximum cardinality is 1 or n, respectively.

A relationship type may relate two or more object types: It is called binary
if it relates two object types and n-ary if it relates more than two object
types. In Fig. 2.1, all relationship types are binary. Depending on the max-
imum cardinality of each role, binary relationship types can be categorized
into one-to-one, one-to-many, and many-to-many relationship types. In
Fig. 2.1, the relationship type Supplies is a one-to-many relationship, since one
product is supplied by at most one supplier, whereas a supplier may supply
several products. On the other hand, the relationship type OrderDetails is
many-to-many, since an order is related to one or more products, while a
product can be included in many orders.

It may be the case that the same entity type is related more than once
in a relationship type, as is the case for the ReportsTo relationship type. In
this case, the relationship type is called recursive, and role names are
necessary to distinguish between the different roles of the entity type. In
Fig. 2.1, Subordinate and Supervisor are role names.

Both objects and the relationships between them have a series of structural
characteristics that describe them. Attributes are used for recording these
characteristics of entity or relationship types. For example, in Fig. 2.1, Address
and Homepage are attributes of Suppliers, while UnitPrice, Quantity, and
Discount are attributes of OrderDetails.

Like roles, attributes have associated cardinalities, defining the number
of values that an attribute may take in each instance. Since most of the
time the cardinality of an attribute is (1,1), we do not show this cardinality
in our schema diagrams. Thus, each supplier will have exactly one Address,
while they may have at most one Homepage. Therefore, its cardinality is
(0,1). In this case, we say the attribute is optional. When the cardinality
is (1,1), we say that the attribute is mandatory. Similarly, attributes are
called monovalued or multivalued depending on whether they may take
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at most one or several values, respectively. In our example, all attributes
are monovalued. However, if it is the case that a customer has one or more
phones, then the attribute Phone will be labeled (1,n).

Further, attributes may be composed of other attributes, as shown by
the attribute Name of the entity type Employees in our example, which is
composed of FirstName and LastName. Such attributes are called complex
attributes, while those that do not have components are called simple
attributes. Finally, some attributes may be derived, as shown for the
attribute NumberOrders of Products. This means that the number of orders
in which a product participates may be derived using a formula that involves
other elements of the schema and stored as an attribute. In our case, the
derived attribute records the number of times that a particular product
participates in the relationship OrderDetails.

A common situation in real-world applications is that one or several
attributes uniquely identify a particular object; such attributes are called
identifiers. In Fig. 2.1, identifiers are underlined; for example, EmployeeID
is the identifier of the entity type Employees, meaning that every employee
has a unique value for this attribute. In the figure, all entity type identifiers
are simple, that is, they are composed of only one attribute, although it is
common to have identifiers composed of two or more attributes.

Orders

OrderID
OrderDate
RequiredDate
ShippedDate
...

(1,n)
LineNo
UnitPrice
Quantity
Discount
SalesAmount

Composed
(1,1)

OrderDetails

Fig. 2.2 Relationship type OrderDetails modeled as a weak entity type

Entity types that do not have an identifier of their own are called weak
entity types and are represented with a double line on its name box. In
contrast, regular entity types that do have an identifier are called strong
entity types. In Fig. 2.1, there are no weak entity types. However, note that
the relationship OrderDetails between Orders and Products can be modeled as
shown in Fig. 2.2.

A weak entity type is dependent on the existence of another entity type,
called the identifying or owner entity type. The relationship type that
relates a weak entity type to its owner is called the identifying relationship
type of the weak entity type. A relationship type that is not an identifying
relationship type is called a regular relationship type. Thus, in Fig. 2.2,
Orders is the owner entity type for the weak entity type OrderDetails, and
Composed is its identifying relationship type. As shown in the figure, the
identifying relationship type and the role that connects it to the weak entity
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type are distinguished by their double lines. Note that identifying relationship
types have cardinality (1,1) in the role of the weak entity type and may have
(0,n) or (1,n) cardinality in the role of the owner.

A weak entity type typically has a partial identifier, which is a set of
attributes that uniquely identifies weak entities that are related to the same
owner entity. An example is the attribute LineNo of OrderDetails, which stores
the line number of each product in an order. Therefore, the same number
can appear several times in different orders, although it is unique within each
order. As shown in the figure, partial identifier attributes are underlined with
a dashed line.

(total,disjoint)

Temporary
Employees

ContractExpiration
ContractAmount

Permanent
Employees

Salary

Employees

EmployeeID
Name
     FirstName
     LastName
Title
...

Fig. 2.3 Entity type Employees and two subtypes

Finally, owing to the complexity of conceptualizing the real world, human
beings usually refer to the same concept using several different perspectives
with different abstraction levels. The generalization (or is-a) relationship
captures such a mental process. It relates two entity types, called the
supertype and the subtype, meaning that both types represent the same
concept at different levels of detail. The Northwind database does not
include a generalization. To give an example, consider Fig. 2.3, in which we
have a supertype, Employees, and two subtypes, PermanentEmployees and
TemporaryEmployees. The former has an additional attribute Salary, and the
latter has attributes ContractExpiration and ContractAmount.

Generalization has three essential characteristics. The first one is pop-
ulation inclusion, meaning that every instance of the subtype is also
an instance of the supertype. In our example, this means that every
temporary employee is also an employee of the Northwind company. The
second characteristic is inheritance, meaning that all characteristics of the
supertype (e.g., attributes and roles) are inherited by the subtype. Thus, in
our example, temporary employees also have, for instance, a name and a title.
Finally, the third characteristic is substitutability, meaning that each time
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an instance of the supertype is required (e.g., in an operation or in a query),
an instance of the subtype can be used instead.

Generalization may also be characterized according to two criteria. On
the one hand, a generalization can be either total or partial, depending
on whether every instance of the supertype is also an instance of one of the
subtypes. In Fig. 2.3, the generalization is total, since employees are either
permanent or temporary. On the other hand, a generalization can be either
disjoint or overlapping, depending on whether an instance may belong to
one or several subtypes. In our example, the generalization is disjoint, since
a temporary employee cannot be a permanent one.

2.4 Logical Database Design

In this section, we describe the most used logical data model for databases,
that is, the relational model. We also study two well-known query languages
for the relational model: the relational algebra and SQL.

2.4.1 The Relational Model

Relational databases have been successfully used for several decades for
storing information in many application domains. In spite of alternative
database technologies that have appeared in the last decades, the relational
model is still the most often used approach for storing persistent information,
particularly the information that is crucial for the day-to-day operation of an
organization.

Much of the success of the relational model, introduced by Codd in 1970,
is due to its simplicity, intuitiveness, and its foundation on a solid formal
theory: The relational model builds on the concept of a mathematical relation,
which can be seen as a table of values and is based on set theory and first-
order predicate logic. This mathematical foundation allowed the design of
declarative query languages and a rich spectrum of optimization techniques
that led to efficient implementations. Note that in spite of this, only in the
early 1980s, the first commercial relational DBMS (RDBMS) appeared.

The relational model has a simple data structure, a relation (or table)
composed of one or several attributes (or columns). Thus, a relational
schema describes the structure of a set of relations. Figure 2.4 shows a
relational schema that corresponds to the conceptual schema of Fig. 2.1. As
we will see later in this section, this relational schema is obtained by applying
a set of translation rules to the corresponding ER schema. The relational
schema of the Northwind database is composed of a set of relations, such
as Employees, Customers, and Products. Each of these relations is composed
of several attributes. For example, EmployeeID, FirstName, and LastName are



22 2 Database Concepts
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Fig. 2.4 A relational schema that corresponds to the Northwind conceptual schema
in Fig. 2.1

some attributes of the relation Employees. In what follows, we use the notation
R.A to indicate the attribute A of relation R.

In the relational model, each attribute is defined over a domain, or data
type, that is, a set of values with an associated set of operations, the most
typical ones are integer, float, date, and string. One important restriction of
the model is that attributes must be atomic and monovalued. Thus, complex
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attributes like Name of the entity type Employees in Fig. 2.1 must be split into
atomic values, like FirstName and LastName in the table of the same name
in Fig. 2.4. Therefore, a relation R is defined by a schema R(A1 : D1, A2 :
D2, . . . , An : Dn), where R is the name of the relation, and each attribute
Ai is defined over the domain Di. The relation R is associated with a set of
tuples (or rows if we see the relation as a table) (t1, t2, . . . , tn). This set of
tuples is a subset of the Cartesian product D1 × D2 × · · · × Dn, and it is
sometimes called the instance or extension of R. The degree (or arity)
of a relation is the number of attributes n of its relation schema.

The relational model allows several types of integrity constraints to be
defined declaratively.

• An attribute may be defined as being non-null, meaning that null values
(or blanks) are not allowed in that attribute. In Fig. 2.4, only the attributes
marked with a cardinality (0,1) allow null values.

• One or several attributes may be defined as a key, that is, it is not
allowed that two different tuples of the relation have identical values
in such columns. In Fig. 2.4, keys are underlined. A key composed of
several attributes is called a composite key; otherwise, it is a simple
key. In Fig. 2.4, the table Employees has a simple key, EmployeeID,
while the table EmployeeTerritories has a composite key, composed of
EmployeeID and TerritoryID. In the relational model, each relation must
have a primary key and may have other alternate keys. Further, the
attributes composing the primary key do not accept null values.

• Referential integrity specifies a link between two tables (or twice the
same table), where a set of attributes in one table, called the foreign key,
references the primary key of the other table. This means that the values
in the foreign key must also exist in the primary key. In Fig. 2.4, referential
integrity constraints are represented by arrows from the referencing table
to the table that is referenced. For example, the attribute EmployeeID
in table Orders references the primary key of the table Employees. This
ensures that every employee appearing in an order also appears in the
table Employees. Note that referential integrity may involve foreign keys
and primary keys composed of several attributes.

• Finally, a check constraint defines a predicate that must be valid
when adding or updating a tuple in a relation. For example, a check
constraint can be used to verify that in table Orders the values of attributes
OrderDate and RequiredDate for a given order are such that OrderDate ≤
RequiredDate. Note that many DBMSs restrict check constraints to a single
tuple: references to data stored in other tables or in other tuples of the
same table are not allowed. Therefore, check constraints can be used only
to verify simple constraints.

As can be seen, the above declarative integrity constraints do not suffice
to express the many constraints that exist in any application domain. Such
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constraints must then be implemented using triggers. A trigger is a named
event-condition-action rule that is automatically activated when a relation is
updated. In this book, we shall see several examples of integrity constraints
implemented using triggers.

Notice that triggers can also be used to compute derived attributes.
Figure 2.1 shows a derived attribute NumberOrders in the entity type
Products. If we want to implement this derived attribute in the table of the
same name in Fig. 2.4, a trigger will update the value of the attribute each
time there is an insert, update, or delete in table OrderDetails.

The translation of a conceptual schema (written in the ER or any other
conceptual model) to an equivalent relational schema is called a mapping.
This is a well-known process, implemented in most database design tools.
These tools use conceptual schemas to facilitate database design and then
automatically translate the conceptual schemas to logical ones, mainly into
the relational model. This process includes the definition of the tables in
various RDBMSs.

We now outline seven rules that are used to map an ER schema into a
relational one.

Rule 1: A strong entity type E is mapped to a table T containing the simple
monovalued attributes and the simple components of the monovalued
complex attributes of E. The identifier of E defines the primary key of
T . T also defines non-null constraints for the mandatory attributes. Note
that additional attributes will be added to this table by subsequent rules.

For example, the strong entity type Products in Fig. 2.1 is mapped to
the table Products in Fig. 2.4, with key ProductID.

Rule 2: Let us consider a weak entity type W , with owner (strong) entity
type O. Assume Wid is the partial identifier of W , and Oid is the identifier
of O. W is mapped in the same way as a strong entity type, that is, to
a table T . In this case, T must also include Oid as an attribute, with a
referential integrity constraint to attribute O.Oid. Moreover, the identifier
of T is the union of Wid and Oid.

As an example, the weak entity type OrderDetails in Fig. 2.2 is mapped
to the table of the same name in Fig. 2.5. The key of the latter is composed
of the attributes OrderID and LineNo, where the former is a foreign key
referencing table Orders.

Rule 3: A regular binary one-to-one relationship type R between two entity
types E1 and E2, which are mapped, respectively, to tables T1 and T2

is mapped embedding the identifier of T1 in T2 as a foreign key. In
addition, the simple monovalued attributes and the simple components of
the monovalued complex attributes of R are also included in T2. This table
also defines non-null constraints for the mandatory attributes.
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RequiredDate
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OrderID
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UnitPrice
Quantity
Discount
SalesAmount

OrderDetails

Fig. 2.5 Relationship translation of the schema in Fig. 2.2

Note that, in general, we can embed the key of T1 in T2, or conversely,
the key of T2 in T1. The choice depends on the cardinality of the roles of
R. In Fig. 2.1, assume the relationship Supplies has cardinalities (1,1) with
Products and (0,1) with Suppliers. Embedding ProductID in table Suppliers
may result in several tuples of the Suppliers relation containing null values
in the ProductID column, since there can be suppliers that do not supply
any product. Thus, to avoid null values, it would be preferable to embed
SupplierID in table Products.

Rule 4: Consider a regular binary one-to-many relationship type R relating
entity types E1 and E2, where T1 and T2 are the tables resulting from
the mapping of these entities. R is mapped embedding the key of T2 in
table T1 as a foreign key. In addition, the simple monovalued attributes
and the simple components of the monovalued complex attributes of R
are included in T1, defining the corresponding non-null constraints for the
mandatory attributes.

As an example, in Fig. 2.1, the one-to-many relationship type Supplies
between Products and Suppliers is mapped by including the attribute
SupplierID in table Products, as a foreign key, as shown in Fig. 2.4.

Rule 5: Consider a regular binary many-to-many relationship type R
between entity types E1 and E2, such that T1 and T2 are the tables
resulting from the mapping of the former entities. R is mapped to a table T
containing the keys of T1 and T2, as foreign keys. The key of T is the union
of these keys. Alternatively, the relationship identifier, if any, may define
the key of the table. T also contains the simple monovalued attributes and
the simple components of the monovalued complex attributes of R and
also defines non-null constraints for the mandatory attributes.

In Fig. 2.1, the many-to-many relationship type EmployeeTerritories
between Employees and Territories is mapped to a table with the same
name containing the identifiers of the two tables involved, as shown in
Fig. 2.4.

Rule 6: A multivalued attribute of an entity or relationship type E is
mapped to a table T , which also includes the identifier of the entity or
relationship type. A referential integrity constraint relates this identifier
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to the table associated with E. The primary key of T is composed of all
of its attributes.

Suppose that in Fig. 2.1, the attribute Phone of Customers is multival-
ued. In this case, the attribute is mapped to a table CustomerPhone with
attributes CustomerID and Phone both composing the primary key.

Rule 7: A generalization relationship between a supertype E1 and subtype
E2 can be dealt with in three different ways:

Rule 7a: Both E1 and E2 are mapped, respectively, to tables T1 and T2,
in which case the identifier of E1 is propagated to T2. A referential
integrity constraint relates this identifier to T1.

Rule 7b: Only E1 is associated with a table T1, which contains all
attributes of E2. All these attributes become optional in T1.

Rule 7c: Only E2 is associated with a table T2, in which case all
attributes E1 are inherited in T2.

As an example, the possible translations of the generalization given in
Fig. 2.3 are shown in Fig. 2.6.

Employees
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ContractAmount (0,1) Temporary

Employees

EmployeeID
FirstName
LastName
Title

ContractExpiration
ContractAmount

Permanent
Employees

EmployeeID
FirstName
LastName
Title

Salary

a b c

Fig. 2.6 Three possible translations of the schema in Fig. 2.3. (a) Using Rule 7a. (b)
Using Rule 7b. (c) Using Rule 7c

Note that the generalization type (total vs. partial and disjoint vs.
overlapping) may preclude one of the above three approaches. For example,
the third possibility is not applicable for partial generalizations. Also,
note that the semantics of the partial, total, disjoint, and overlapping
characteristics are not fully captured by this translation mechanism. The
conditions must be implemented when populating the relational tables. For
example, assume a table T and two tables T1 and T2 resulting from the
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mapping of a total and overlapping generalization. Referential integrity
does not fully capture the semantics. It must be ensured, among other
conditions, that when deleting an element from T , this element is also
deleted from T1 and T2 (since it can exist in both tables). Such constraints
are typically implemented with triggers.

Applying these mapping rules to the ER schema given in Fig. 2.1 yields
the relational schema shown in Fig. 2.4. Note that the above rules apply in
the general case; however, other mappings are possible. For example, binary
one-to-one and one-to-many relationships may be represented by a table of
its own, using Rule 5. The choice between alternative representation depends
on the characteristics of the particular application at hand.

It must be noted that there is a significant difference in expressive
power between the ER model and the relational model. This difference
may be explained by the fact that the ER model is a conceptual model
aimed at expressing concepts as closely as possible to the users’ perspective,
whereas the relational model is a logical model targeted toward particular
implementation platforms. Several ER concepts do not have a correspondence
in the relational model, and thus they must be expressed using only the
available concepts in the model, that is, relations, attributes, and the related
constraints. This translation implies a semantic loss in the sense that data
invalid in an ER schema are allowed in the corresponding relational schema,
unless the latter is supplemented by additional constraints. Many of such
constraints must be manually coded by the user using mechanisms such as
triggers or stored procedures. Furthermore, from a user’s perspective, the
relational schema is much less readable than the corresponding ER schema.
This is crucial when one is considering schemas with hundreds of entity or
relationship types and thousands of attributes. This is not a surprise, since
this was the reason for devising conceptual models back in the 1970s, that is,
the aim was to better understand the semantics of large relational schemas.

2.4.2 Normalization

When considering a relational schema, we must determine whether or not
the relations in the schema have potential redundancies and thus may induce
anomalies in the presence of insertions, updates, and deletions.

For example, assume that in relation OrderDetails in Fig. 2.7a, each
product, no matter the order, is associated with a discount percentage. Here,
the discount information for a product p will be repeated for all orders in
which p appears. Thus, this information will be redundant. Just associating
once the product and the discount would be enough to convey the same
information.
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OrderID
ProductID
UnitPrice
Quantity
Discount

OrderDetails Products

ProductID
ProductName
QuantityPerUnit
UnitPrice
...
CategoryName
Description
Picture

Employee
Territories

EmployeeID
TerritoryID
KindOfWork

a b c

Fig. 2.7 Examples of relations that are not normalized

Consider now the relation Products in Fig. 2.7b, which is a variation of
the relation with the same name in Fig. 2.4. In this case, we have included
the category information (name, description, and picture) in the Products
relation. It is easy to see that such information about a category is repeated
for each product with the same category. Therefore, when, for example,
the description of a category needs to be updated, we must ensure that all
tuples in the relation Products, corresponding to the same category, are also
updated; otherwise, there will be inconsistencies.

Finally, let us analyze the relation EmployeeTerritories in Fig. 2.7c, where an
additional attribute KindOfWork has been added with respect to the relation
with the same name in Fig. 2.4. Assume that an employee can do many kinds
of work, independently of the territories in which she carries out her work.
Thus, the information about the kind of work of an employee will be repeated
as many times as the number of territories she is assigned to.

Dependencies and normal forms are used to describe the redundancies
above. A functional dependency is a constraint between two sets of
attributes in a relation. Given a relation R and two sets of attributes X and
Y in R, a functional dependency X → Y holds if and only if in all the tuples
of the relation, each value of X is associated with at most one value of Y . In
this case, it is said that X determines Y . Note that a key is a particular case
of a functional dependency, where the set of attributes composing the key
functionally determines all of the attributes in the relation. In what follows,
F will denote a set of functional dependencies and F+ the set F augmented
with the set of all functional dependencies that can be inferred from F . For
example, if A→ B and B → C, then A→ C can be inferred.

The redundancies in Fig. 2.7a, b can be expressed by means of functional
dependencies. For example, in the relation OrderDetails in Fig. 2.7a, there
is the functional dependency ProductID → Discount. Also, in the relation
Products in Fig. 2.7b, we have the functional dependencies ProductID →
CategoryID and CategoryID→ CategoryName.

The redundancy in the relation EmployeeTerritories in Fig. 2.7c is captured
by another kind of dependency. Given two sets of attributes X and Y in a
relation R, a multivalued dependency X →→ Y holds if the value of X
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determines a set of values for Y , which is independent of R \ XY , where
‘\’ indicates the set difference. In this case, we say that X multidetermines
Y . In the relation in Fig. 2.7c, the multivalued dependency EmployeeID→→
KindOfWork holds, and consequently, TerritoryID →→ KindOfWork. Func-
tional dependencies are special cases of multivalued dependencies, that is,
every functional dependency is also a multivalued dependency. A multivalued
dependency X →→ Y is said to be trivial if either Y ⊆ X or X ∪ Y = R;
otherwise, it is nontrivial. This is straightforward since in those cases,
R \XY = ∅ holds.

A normal form is an integrity constraint aimed at guaranteeing that a
relational schema satisfies particular properties. Since the beginning of the
relational model in the 1970s, many types of normal forms have been defined.
In addition, normal forms have also been defined for other models, such as
the entity-relationship model. In the following, we consider only five normal
forms that are widely used in relational databases.

As already said, the relational model allows only attributes that are atomic
and monovalued. This restriction is called the first normal form.

The second normal form prevents redundancies such as those in the
table OrderDetails in Fig. 2.7a. To define the second normal form, we need
the concept of partial dependency, defined next:

• An attribute A in a relation schema R is called a prime attribute if it
belongs to some key in R. Otherwise, it is called nonprime.

• In a relation schema R such that X is a key of R, Z ⊂ X , and Y is a
nonprime attribute, a dependency of the form Z → Y is called partial.

A relation R is in the second normal form with respect to a set of functional
dependencies F if F+ does not contain any partial dependency. In other
words, a relation schema is in the second normal form if every nonprime
attribute is fully functionally dependent on every key in R. In the example of
Fig. 2.7a, Product→ Discount is a partial dependency. Therefore, the relation
is not in the second normal form. To make the relation comply with the
second normal form, the attribute Discount must be removed from the table
OrderDetails and must be added to the table Products in order to store the
information about the product discounts.

The third normal form prevents redundancies such as those in the table
Products in Fig. 2.7b. In order to define the third normal form, we must define
one additional concept:

• A dependency X → Z is transitive if there is a set of attributes Y such
that the dependencies X → Y and Y → Z hold.

A relation R is in the third normal form with respect to a set of
functional dependencies F if it is in the second normal form and there are
no transitive dependencies between a key and a nonprime attribute in F+.
The table Product above is not in the third normal form, since there is a
transitive dependency from ProductID to CategoryID and from CategoryID to
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CategoryName. To make the relation comply with the third normal form, the
attributes dependent on CategoryID must be removed from the table and a
table Category like the one in Fig. 2.4 must be used to store the data about
categories.

The Boyce-Codd normal form prevents redundancies originated in
functional dependencies. A relation R is in the Boyce-Codd normal form
with respect to a set of functional dependencies F if for every nontrivial
dependency X → Y in F+, X is a key or contains a key of R. Note that all
relations in Fig. 2.4 are in the Boyce-Codd normal form.

The fourth normal form prevents redundancies such as those in the
table EmployeeTerritories in Fig. 2.7c. A relation R is in the fourth normal
form with respect to a set of functional and multivalued dependencies F if
for every nontrivial dependency X →→ Y in F+, X is a key or contains
a key of R. The table above is not in the fourth normal form, since, for
example, there is a multivalued dependency from EmployeeID to KindOfWork,
and EmployeeID is not a key of the relation. To make the relation comply with
the fourth normal form, the attribute KindOfWork must be removed from the
table, and a table EmpWork(EmployeeID, KindOfWork) must be added.

2.4.3 Relational Query Languages

Data stored in a relational database can be queried using different formalisms.
Two kinds of query languages are typically defined. In a procedural language,
a query is specified indicating the operations needed to retrieve the desired
result. In a declarative language, the user only indicates what she wants
to retrieve, leaving to the DBMS the task of determining the equivalent
procedural query that is to be executed.

In this section, we introduce the relational algebra and SQL, which we
will be using in many parts of this book. While the relational algebra is a
procedural query language, SQL is a declarative one.

Relational Algebra

The relational algebra is a collection of operations for manipulating relations.
These operations can be of two kinds: unary, which receive as argument a
relation and return another relation, or binary, which receive as argument
two relations and return a relation. As the operations always return relations,
the algebra is closed, and operations can be combined in order to compute
the answer to a query. Further, another classification of the operations is as
follows. Basic operations cannot be derived from any combination of other
operations, while derived operations are a shorthand for a sequence of basic
operations, defined in order to make queries easier to express. In what follows,
we describe the relational algebra operations.
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Unary Operations

The projection operation, denoted πC1,...,Cn(R), returns the columns
C1, . . . , Cn from the relation R. Thus, it can be seen as a vertical partition of
R into two relations: one containing the columns mentioned in the expression
and the other containing the remaining columns. For the relational database
given in Fig. 2.4, an example of a projection is:

πFirstName, LastName, HireDate(Employees).

This operation returns the three specified attributes from the Employees table.
The selection operation, denoted σφ(R), returns the tuples from the

relation R that satisfy the Boolean condition φ. In other words, it partitions a
table horizontally into two sets of tuples: the ones that do satisfy the condition
and the ones that do not. Therefore, the structure of R is kept in the result.

A selection operation over the relational database given in Fig. 2.4 is:

σHireDate≥'01/01/1992'∧HireDate≤'31/12/1994'(Employees).

This operation returns the employees hired between 1992 and 1994.
Since the result of a relational algebra operation is a relation, it can be used

as input for another operation. To make queries easier to read, sometimes it
is useful to use temporary relations to store intermediate results. We will use
the notation T ← Q to indicate that relation T stores the result of query Q.
Thus, combining the two previous examples, we can ask for the first name,
last name, and hire date of all employees hired between 1992 and 1994. The
query reads:

Temp1 ← σHireDate≥'01/01/1992'∧HireDate≤'31/12/1994'(Employees)
Result ← πFirstName, LastName, HireDate(Temp1).

The result is given next.

FirstName LastName HireDate
Nancy Davolio 1992-05-01
Andrew Fuller 1992-08-14
Janet Leverling 1992-04-01
· · · · · · · · ·

The rename operation, denoted ρA1→B1,...,Ak→Bk
(R), returns a relation

where the attributes A1, . . . , Ak in R are renamed to B1, . . . , Bk, respectively.
Therefore, the resulting relation has the same tuples as the relation R,
although the schema of both relations is different.
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Binary Operations

These operations are based on the set theory classic operations. We first
introduce the basic binary operations, namely, union, difference, and Carte-
sian product, and then discuss the most used binary operation, the join, and
its variants inner and outer join.

The union operation, denoted R1 ∪R2, takes two relations with the same
schema and returns the tuples that are in R1, in R2, or in both, removing
duplicates. If the schemas are compatible, but the attribute names differ, the
attributes must be renamed before applying the operation.

The union can be used to express queries like “Identifier of employees from
the UK, or who are reported by an employee from the UK,” which reads:

UKEmps ← σCountry='UK'(Employees)
Result1 ← πEmployeeID(UKEmp)
Result2 ← ρ ReportsTo → EmployeeID(πReportsTo(UKEmps))
Result ← Result1 ∪ Result2.

Relation UKEmps contains the employees from the UK. Result1 contains
the projection of the former over EmployeeID, and Result2 contains the
EmployeeID of the employees reported by an employee from the UK. The
union of Result1 and Result2 yields the desired result.

The difference operation, denoted R1 \ R2, takes two relations with the
same schema and returns the tuples that are in R1 but not in R2. As in the
case of the union, if the schemas are compatible, but the attribute names
differ, the attributes must be renamed before applying the operation.

We use the difference to express queries like “Identifier of employees who
are not reported by an employee from the UK,” which is written as follows:

Result← πEmployeeID(Employees) \ Result2.

The first term of the difference contains the identifiers of all employees. From
this set, we subtract the set composed of the identifiers of all employees
reported by an employee from the UK, already computed in Result2.

TheCartesian product, denotedR1×R2, takes two relations and returns
a new one, whose schema is composed of all the attributes in R1 and R2

(renamed if necessary) and whose instance is obtained concatenating each
pair of tuples from R1 and R2. Thus, the number of tuples in the result is
the product of the cardinalities of both relations.

Although by itself the Cartesian product is usually meaningless, it is very
useful when combined with a selection. For example, suppose we want to
retrieve the name of the products supplied by suppliers from Brazil. To answer
this query, we use the Cartesian product to combine data from the tables
Products and Suppliers. For the sake of clarity, we only keep the attributes
we need: ProductID, ProductName, and SupplierID from table Products, and
SupplierID and Country from table Suppliers. Attribute SupplierID in one of
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the relations must be renamed, since a relation cannot have two attributes
with the same name:

Temp1← πProductID,ProductName,SupplierID(Products)
Temp2← ρSupplierID→SupID(π SupplierID,Country(Suppliers))
Temp3← Temp1× Temp2.

The Cartesian product combines each product with all the suppliers, as given
in the table below.

ProductID ProductName SupplierID SupID Country
1 Chai 1 1 UK
2 Chang 1 1 UK

. . . . . . . . . . . . . . .

17 Alice Mutton 7 2 USA
18 Carnarvon Tigers 7 2 USA

We are only interested in the rows that relate a product to its supplier (e.g.,
the first two rows). The other ones are not useful (e.g., the last row combines
a product supplied by supplier 7 with the country of supplier 2). We then
filter the meaningless tuples, select the ones corresponding to suppliers from
Brazil, and project the column we want, that is, ProductName:

Temp4 ← σSupplierID=SupID(Temp3)
Result ← πProductName(σCountry='Brazil'(Temp4))

The join operation, denoted R1 ��φ R2, where φ is a condition over the
attributes in R1 and R2, takes two relations and returns a new one, whose
schema consists in all attributes of R1 and R2 (renamed if necessary) and
whose instance is obtained concatenating each pair of tuples from R1 and
R2 that satisfy condition φ. The operation is basically a combination of a
Cartesian product and a selection.

Using the join operation, the query “Name of the products supplied by
suppliers from Brazil” will read:

Temp1 ← ρSupplierID→SupID(Suppliers)
Result ← πProductName(σCountry='Brazil'(Product ��SupplierID=SupID Temp1)).

Note that the join combines the Cartesian product in Temp3 and the selection
in Temp4 in a single operation, making the expression much more concise.

There are a number of variants of the join operation. An equijoin is a join
R1 ��φ R2 such that condition φ states the equality between all the attributes
with the same name in R1 and R2. If we project the result of an equijoin over
all the columns in R1 ∪ R2 (i.e., all the attributes in R1 and R2, without
duplicates), we have the natural join, denoted R1 ∗R2.
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For example, the query “List all product names and category names”
reads:

Temp ← Products ∗ Categories
Result← πProductName,CategoryName(Temp).

The first query performs the natural join between relations Products and
Categories. The attributes in Temp are all the attributes in Product, plus all
the attributes in Categories, except for CategoryID, which is in both relations,
so only one of them is kept. The second query performs the final projection.

The joins introduced above are known as inner joins, since tuples that do
no match the join condition are eliminated. In many practical cases, we need
to keep in the result all the tuples of one or both relations, independently
of whether or not they satisfy the join condition. For these cases, a set of
operations, called outer joins, were defined. There are three kinds of outer
joins: left outer join, right outer join, and full outer join.

The left outer join, denoted R �� S, performs the join as defined above,
but instead of keeping only the matching tuples, it keeps every tuple in R
(the relation of the left of the operation). If a tuple in R does not satisfy
the join condition, the tuple is kept, and the attributes of S in the result are
filled with null values.

As an example, the query “Last name of employees, together with the last
name of their supervisor, or null if the employee has no supervisor,” reads in
relational algebra:

Supervisors ← ρEmployeeID→SupID,LastName→SupLastName(Employees)
Result ← πEmployeeID,LastName,SupID,SupLastName(

Employees ��ReportsTo=SupID Supervisors)

The result is given in the following table.

EmployeeID LastName SupID SupLastName
1 Davolio 2 Fuller
2 Fuller NULL NULL
3 Leverling 2 Fuller

. . . . . . . . . . . .

We can see that employee 2 does not report to anybody; therefore, his
supervisor data contain null values.

The right outer join, denoted R �� S, is analogous to the left outer join,
except that the tuples that are kept are the ones in S. The full outer join,
denoted R �� S, keeps all the tuples in both R and S.

Suppose that in the previous example, we also require the information of
the employees who do not supervise anyone. Then, we would have:

πEmployeeID,LastName,SupID,SupLastName(Employees ��ReportsTo=SupID Supervisors)



2.4 Logical Database Design 35

The result is shown in the table below.

EmployeeID LastName SupID SupLastName
1 Davolio 2 Fuller
2 Fuller NULL NULL
3 Leverling 2 Fuller

. . . . . . . . . . . .

NULL NULL 1 Davolio
NULL NULL 3 Leverling

. . . . . . . . . . . .

With respect to the left outer join shown above, the above table has, in
addition, tuples of the form (NULL, NULL, SupervID, SupLastName), which
correspond to employees who do not supervise any other employee.

SQL: A Query Language for Relational DBMSs

SQL (structured query language) is the most common language for creating,
manipulating, and retrieving data from relational DBMSs. SQL is composed
of several sublanguages. The data definition language (DDL) is used to
define the schema of a database. The data manipulation language (DML)
is used to query a database and to modify its content (i.e., to add, update,
and delete data in a database). In what follows, we present a summary of the
main features of SQL that we will use in this book. For a detailed description,
we encourage the reader to check in the references provided at the end of this
chapter.

Below, we show the SQL DDL command for defining table Orders in the
relational schema of Fig. 2.4. The basic DDL statement is CREATE TABLE,
which creates a relation and defines the data types of the attributes, the
primary and foreign keys, and the constraints:

CREATE TABLE Orders (
OrderID INTEGER PRIMARY KEY,
CustomerID INTEGER NOT NULL,
EmployeeID INTEGER NOT NULL,
OrderDate DATE NOT NULL,
RequiredDate DATE NOT NULL,
ShippedDate DATE NOT NULL,
ShippedVia INTEGER NOT NULL,
Freight MONEY NOT NULL,
ShipName CHARACTER VARYING (50) NOT NULL,
ShipAddress CHARACTER VARYING (50) NOT NULL,
ShipCity CHARACTER VARYING (50) NOT NULL,
ShipRegion CHARACTER VARYING (50),
ShipPostalCode CHARACTER VARYING (30),
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ShipCountry CHARACTER VARYING (50) NOT NULL,
FOREIGN KEY (CustomerID) REFERENCES Customers(CustomerID),
FOREIGN KEY (ShippedVia) REFERENCES Shippers(ShipperID),
FOREIGN KEY (EmployeeID) REFERENCES Employees(EmployeeID),
CHECK (OrderDate <= RequiredDate) )

SQL provides a DROP TABLE statement for deleting a table and an ALTER
TABLE statement for modifying the structure of a table.

The DML part of SQL is used to insert, update, and delete tuples from
the database tables. For example, the following INSERT statement

INSERT INTO Shippers(CompanyName, Phone)
VALUES ('Federal Express', '02 752 75 75')

adds a new shipper in the Northwind database. This tuple is modified by the
following UPDATE statement:

UPDATE Shippers
SET CompanyName='Fedex'
WHERE CompanyName='Federal Express'

Finally, the new shipper is removed in the following DELETE statement:

DELETE FROM Shippers WHERE CompanyName='Fedex'

SQL also provides statements for retrieving data from the database. The
basic structure of an SQL expression is:

SELECT 〈 list of attributes 〉
FROM 〈 list of tables 〉
WHERE 〈 condition 〉

where 〈 list of attributes 〉 indicates the attribute names whose values are to be
retrieved by the query, 〈 list of tables 〉 is a list of the relation names that will
be included in the query, and 〈 condition 〉 is a Boolean expression that must
be satisfied by the tuples in the result. The semantics of an SQL expression

SELECT R.A, S.B
FROM R, S
WHERE R.B = S.A

is given by the relational algebra expression

πR.A,S.B(σR.B=S.A(R× S)),

that is, the SELECT clause is analogous to a projection π, the WHERE clause
is a selection σ, and the FROM clause indicates the Cartesian product ×
between all the tables included in the clause.

It is worth noting that an SQL query, opposite to a relational algebra one,
returns a set with duplicates (or a bag). Therefore, the keyword DISTINCT
must be used to remove duplicates in the result. For example, the query
“Countries of customers” must be written:
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SELECT DISTINCT Country
FROM Customers

This query returns the set of countries of the Northwind customers, without
duplicates. If the DISTINCT keyword is removed from the above query, then
it would return as many results as the number of customers in the database.

As another example, the query “Identifier, first name, and last name of the
employees hired between 1992 and 1994,” which we presented when discussing
the projection and selection operations, reads in SQL:

SELECT EmployeeID, FirstName, LastName
FROM Employees
WHERE HireDate >= '1992-01-01' and HireDate <= '1994-12-31'

The binary operations of the relational algebra are supported in SQL:
union, intersection, difference, and the different kinds of joins. Recall the
query “Identifiers of employees from the UK, or who are reported by an
employee from the UK.” In SQL, it would read:

SELECT EmployeeID
FROM Employees
WHERE Country='UK'

UNION
SELECT ReportsTo
FROM Employees
WHERE Country='UK'

Notice that the UNION in the above query removes duplicates in the result,
whereas the UNION ALL will keep them, that is, if an employee is from the
UK and is reported by at least one employee from the UK, it will appear
twice in the result.

The join operation can be, of course, implemented as a projection of a
selection over the Cartesian product of the relations involved. However, in
general, it is easier and more efficient to use the join operation. For example,
the query “Name of the products supplied by suppliers from Brazil” can be
written as follows:

SELECT ProductName
FROM Products P, Suppliers S
WHERE P.SupplierID = S.SupplierID AND Country = 'Brazil'

An alternative formulation of this query is as follows:

SELECT ProductName
FROM Products P JOIN Suppliers S ON P.SupplierID = S.SupplierID
WHERE Country = 'Brazil'

On the other hand, the outer join operations must be explicitly stated in
the FROM clause. For example, the query “First name and last name of
employees, together with the first name and last name of their supervisor,
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or null if the employee has no supervisor” can be implemented in SQL using
the LEFT OUTER JOIN operation:

SELECT E.FirstName, E.LastName, S.FirstName, S.LastName
FROM Employees E LEFT OUTER JOIN Employees S

ON E.ReportsTo = S.EmployeeID

Analogously, we can use the FULL OUTER JOIN operation to also include
in the answer the employees who do not supervise anybody:

SELECT E.FirstName, E.LastName, S.FirstName, S.LastName
FROM Employees E FULL OUTER JOIN Employees S

ON E.ReportsTo = S.EmployeeID

As shown in the examples above, SQL is a declarative language, that
is, we tell the system what we want, whereas in relational algebra, being
a procedural language, we must specify how we will obtain the result. In
fact, SQL query processors usually translate an SQL query into some form
of relational algebra in order to optimize it.

Aggregation and Sorting in SQL

Aggregation is used to summarize information from multiple tuples into a
single one. For this, tuples are grouped and then an aggregate function
is applied to every group. In data warehouses, particularly in OLAP,
aggregation plays a crucial role, as we will study in subsequent chapters
of this book.

Typically, DBMSs provide five basic aggregate functions, namely, COUNT,
SUM, MAX, MIN, and AVG. The COUNT function returns the number
of tuples in each group. Analogously, the functions SUM, MAX, MIN,
and AVG are applied over numeric attributes and return, respectively, the
sum, maximum value, minimum value, and average of the values in those
attributes, for each group. Note that all of these functions can be applied to
the whole table considered as a group. Further, the functions MAX and MIN
can also be used with attributes that have nonnumeric domains if a total
order is defined over the values in the domain, as is the case for strings.

The general form of an SQL query with aggregate functions is as follows:

SELECT 〈 list of grouping attributes 〉 〈 list of aggr funct(attribute) 〉
FROM 〈 list of tables 〉
WHERE 〈 condition 〉
GROUP BY 〈 list of grouping attributes 〉
HAVING 〈 condition over groups 〉
ORDER BY 〈 list of attributes 〉

An important restriction is that if there is a GROUP BY clause, the
SELECT clause must contain only aggregates or grouping attributes. The
HAVING clause is analogous to the WHERE clause, except that the condition
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is applied over each group rather than over each tuple. Finally, the result can
be sorted with the ORDER BY clause, where every attribute in the list can be
ordered either in ascending or descending order by specifying ASC or DESC,
respectively.

We next present some examples of aggregate SQL queries, more complex
ones will be presented later in the book. We start with the query “Total
number of orders handled by each employee, in descending order of number
of orders. Only list employees that handled more than 100 orders.”

SELECT EmployeeID, COUNT(*) AS OrdersByEmployee
FROM Orders
GROUP BY EmployeeID
HAVING COUNT(*) > 100
ORDER BY COUNT(*) DESC

The result below shows that employee 4 is the one that handled the
highest number of orders. Basically, to process this query, the SQL engine
sorts the table Orders by EmployeeID (the attribute associated with the
aggregate function) and counts the number of tuples corresponding to the
same employee, by scanning the ordered table. Thus, for example, there are
156 tuples in the table Orders with EmployeeID equal to 4.

EmployeeID OrdersByEmployee
4 156
3 127
1 123
8 104

Consider now the query “For customers from Germany, list the total
quantity of each product ordered. Order the result by customer ID, in
ascending order, and by quantity of product ordered, in descending order.”

SELECT C.CustomerID, D.ProductID, SUM(Quantity) AS TotalQty
FROM Orders O JOIN Customers C ON O.CustomerID = C.CustomerID

JOIN OrderDetails D ON O.OrderID = D.OrderID
WHERE C.Country = 'Germany'
GROUP BY C.CustomerID, D.ProductID
ORDER BY C.CustomerID ASC, SUM(Quantity) DESC

This query starts by joining three tables: Orders, Customers (where we
have the country information), and OrderDetails (where we have the quantity
ordered for each product in each order). Then, the query selects the customers
from Germany. We then group by pairs (CustomerID, ProductID), and for
each group, we take the sum in the attribute Quantity. Below, we show the
result and how it is built. On the table to the left, we show the result of
the join, ordered by CustomerID and ProductID. This is the state of the table
just before grouping takes place. Each tuple represents the appearance of a



40 2 Database Concepts

product in an order, along with the quantity of the product in the order. We
can see that customer BLAUS has three orders of product 21. On the table
to the right, we see the final result: there is only one tuple for BLAUS and
product 21, with a total of 23 units ordered.

CustomerID ProductID Quantity
ALFKI 58 40
ALFKI 39 21

. . . . . . . . .

BLAUS 21 12
BLAUS 21 8
BLAUS 21 3

. . . . . . . . .

CustomerID ProductID TotalQty
ALFKI 58 40
ALFKI 39 21

. . . . . . . . .

BLAUS 21 23
. . . . . . . . .

Subqueries

A subquery (or a nested query) is an SQL query used within a SELECT,
FROM, or WHERE clause. The external query is called the outer query.
In the WHERE clause, this is typically used to look for a certain value in
a database, and we use this value in a comparison condition through two
special predicates: IN and EXISTS (and their negated versions, NOT IN and
NOT EXISTS).

As an example of the IN predicate, let us consider the query “Identifier
and name of products ordered by customers from Germany.” The query is
written as follows:

SELECT ProductID, ProductName
FROM Products P
WHERE P.ProductID IN (

SELECT D.ProductID
FROM Orders O JOIN Customers C ON O.CustomerID = C.CustomerID

JOIN OrderDetails D ON O.OrderID = D.OrderID
WHERE C.Country = 'Germany' )

The inner query computes the products ordered by customers from Germany.
This returns a bag of product identifiers. The outer query scans the Products
table, and for each tuple, it compares the product identifier with the set
of identifiers returned by the inner query. If the product is in the set, the
product identifier and the product name are listed.

The query above can be formulated using the EXISTS predicate, yielding
what are denoted as correlated nested queries, as follows:
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SELECT ProductID, ProductName
FROM Products P
WHERE EXISTS (

SELECT *
FROM Orders O JOIN Customers C ON

O.CustomerID = C.CustomerID JOIN
OrderDetails D ON O.OrderID = D.OrderID

WHERE C.Country = 'Germany' AND D.ProductID = P.ProductID )

Note that in the outer query, we define an alias (or variable) P. For each
tuple in Products, the variable P in the inner query is instantiated with the
values in such tuple; if the result set of the inner query instantiated in this
way is not empty, the EXISTS predicate evaluates to true, and the values of
the attributes ProductID and ProductName are listed. The process is repeated
for all tuples in Products. Below, we show the result of the query, obviously
the same in both ways of writing it.

ProductID ProductName
1 Chai
2 Chang
3 Aniseed Syrup

. . . . . .

To illustrate the NOT EXISTS predicate, consider the query “Names of
customers who have not purchased any product,” which is written as follows:

SELECT C.CompanyName
FROM Customers C
WHERE NOT EXISTS (

SELECT *
FROM Orders O
WHERE C.CustomerID = O.CustomerID )

Here, the NOT EXISTS predicate will evaluate to true if when P is instantiated
in the inner query, the query returns the empty set. The result is as follows.

CompanyName
FISSA Fabrica Inter. Salchichas S.A.

Paris spécialités

Views

A view is just an SQL query that is stored in the database with an associated
name. Thus, views are like virtual tables. A view can be created from one or
many tables or other views, depending on the SQL query that defines it.
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Views can be used for various purposes. They are used to structure data in
a way that users find it natural or intuitive. They can also be used to restrict
access to data such that users can have access only to the data they need.
Finally, views can also be used to summarize data from various tables, which
can be used, for example, to generate reports.

Views are created with the CREATE VIEW statement. To create a view, a
user must have appropriate system privileges to modify the database schema.
Once a view is created, it can then be used in a query as any other table.

For example, the following statement creates a view CustomerOrders that
computes for each customer and order the total amount of the order:

CREATE VIEW CustomerOrders AS (
SELECT O.CustomerID, O.OrderID,

SUM(D.Quantity * D.UnitPrice) AS Amount
FROM Orders O, OrderDetails D
WHERE O.OrderID = D.OrderID
GROUP BY O.CustomerID, O.OrderID )

This view is used in the next query to compute for each customer the
maximum amount among all her orders:

SELECT CustomerID, MAX(Amount) AS MaxAmount
FROM CustomerOrders
GROUP BY CustomerID

The result of this query is as follows.

CustomerID MaxAmount
ALFKI 1086.00
ANATR 514.40
ANTON 2156.50
AROUT 4675.00
BERGS 4210.50

. . . . . .

As we will see in Chap. 7, views can be materialized, that is, they can be
physically stored in a database.

Common Table Expressions

A common table expression (CTE) is a temporary table defined within
an SQL statement. Such temporary tables can be seen as views within the
scope of the statement. A CTE is typically used when a user does not have
the necessary privileges for creating a view.
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For example, the following query

WITH CustomerOrders AS (
SELECT O.CustomerID, O.OrderID,

SUM(D.Quantity * D.UnitPrice) AS Amount
FROM Orders O, OrderDetails D
WHERE O.OrderID = D.OrderID
GROUP BY O.CustomerID, O.OrderID )

SELECT CustomerID, MAX(Amount) AS MaxAmount
FROM CustomerOrders
GROUP BY CustomerID

combines in a single statement the view definition and the subsequent query
given in the previous section. It is worth noting that several temporary tables
can be defined in the WITH clause. We will extensively use CTEs throughout
this book.

2.5 Physical Database Design

The objective of physical database design is to specify how database
records are stored, accessed, and related in order to ensure adequate perfor-
mance of a database application. Physical database design is related to query
processing, physical data organization, indexing, transaction processing, and
concurrency management, among other characteristics. In this section, we
provide a very brief overview of some of those issues that will be addressed
in detail for data warehouses in Chap. 7.

Physical database design requires one to know the specificities of the given
application, in particular the properties of the data and the usage patterns of
the database. The latter involves analyzing the transactions or queries that
are run frequently and will have a significant impact on performance, the
transactions that are critical to the operations of the organization, and the
periods of time during which there will be a high demand on the database
(called the peak load). This information is used to identify the parts of the
database that may cause performance problems.

There are a number of factors that can be used to measure the performance
of database applications. Transaction throughput is the number of
transactions that can be processed in a given time interval. In some systems,
such as electronic payment systems, a high transaction throughput is critical.
Response time is the elapsed time for the completion of a single transaction.
Minimizing response time is essential from the user’s point of view. Finally,
disk storage is the amount of disk space required to store the database files.
However, a compromise usually has to be made among these factors. From a
general perspective, this compromise implies the following factors:

1. Space-time trade-off: It is often possible to reduce the time taken to
perform an operation by using more space, and vice versa. For example,
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a compression algorithm can be used to reduce the space occupied by a
large file, but this implies extra time for the decompression process.

2. Query-update trade-off: Access to data can be made more efficient
by imposing some structure upon it. However, the more elaborate the
structure, the more time is taken to build it and to maintain it when its
contents change. For example, sorting the records of a file according to
a key field allows them to be located more easily, but there is a greater
overhead upon insertions to keep the file sorted.

Further, once an initial physical design has been implemented, it is
necessary to monitor the system and to tune it as a result of the observed
performance and any changes in requirements. Many DBMSs provide utilities
to monitor and tune the operations of the system.

As the functionality provided by current DBMSs varies widely, physical
design requires one to know the various techniques for storing and finding
data that are implemented in the particular DBMS that will be used.

A database is organized on secondary storage into one or more files,
where each file consists of one or several records and each record consists
of one or several fields. Typically, each tuple in a relation corresponds to a
record in a file. When a user requests a particular tuple, the DBMS maps
this logical record into a physical disk address and retrieves the record into
main memory using the file access routines of the operating system.

Data are stored on a computer disk in disk blocks (or pages) that are set
by the operating system during disk formatting. Transfer of data between the
main memory and the disk and vice versa takes place in units of disk blocks.
DBMSs store data on database blocks (or pages). One important aspect
of physical database design is the need to provide a good match between
disk blocks and database blocks, on which logical units such as tables and
records are stored. Most DBMSs provide the ability to specify a database
block size. The selection of a database block size depends on several issues.
For example, most DBMSs manage concurrent access to the records using
some kind of locking mechanism. If a record is locked by one transaction that
aims at modifying it, then no other transaction will be able to modify this
record (however, normally several transactions are able to read a record if
they do not try to write it). In some DBMSs, the finest locking granularity is
at the page level, not at the record level. Therefore, the larger the page size,
the larger the chance that two transactions will request access to entries on
the same page. On the other hand, for optimal disk efficiency, the database
block size must be equal to or be a multiple of the disk block size.

DBMSs reserve a storage area in the main memory that holds several
database pages, which can be accessed for answering a query without reading
those pages from the disk. This area is called a buffer. When a request is
issued to the database, the query processor checks if the required data records
are included in the pages already loaded in the buffer. If so, data are read
from the buffer and/or modified. In the latter case, the modified pages are
marked as such and eventually written back to the disk. If the pages needed to
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answer the query are not in the buffer, they are read from the disk, probably
replacing existing ones in the buffer (if it is full, which is normally the case)
using well-known algorithms, for example, replacing the least recently used
pages with the new ones. In this way, the buffer acts as a cache that the
DBMS can access to avoid going to disk, enhancing query performance.

File organization is the physical arrangement of data in a file into
records and blocks on secondary storage. There are three main types of file
organization. In a heap (or unordered) file organization, records are placed
in the file in the order in which they are inserted. This makes insertion very
efficient. However, retrieval is relatively slow, since the various pages of the
file must be read in sequence until the required record is found. Sequential
(or ordered) files have their records sorted on the values of one or more
fields, called ordering fields. Ordered files allow fast retrieving of records,
provided that the search condition is based on the sorting attribute. However,
inserting and deleting records in a sequential file are problematic, since the
order must be maintained. Finally, hash files use a hash function that
calculates the address of the block (or bucket) in which a record is to be
stored, based on the value of one or more attributes. Within a bucket, records
are placed in order of arrival. A collision occurs when a bucket is filled to
its capacity and a new record must be inserted into that bucket. Hashing
provides the fastest possible access for retrieving an arbitrary record given
the value of its hash field. However, collision management degrades the overall
performance.

Independently of the particular file organization, additional access struc-
tures called indexes are used to speed up the retrieval of records in response
to search conditions. Indexes provide efficient ways to access the records based
on the indexing fields that are used to construct the index. Any field(s) of
the file can be used to create an index, and multiple indexes on different fields
can be constructed in the same file.

There are many different types of indexes. We describe below some
categories of indexes according to various criteria:

• One categorization of indexes distinguishes between clustered and non-
clustered indexes, also called primary and secondary indexes. In a
clustered index, the records in the data file are physically ordered according
to the field(s) on which the index is defined. This is not the case for a
nonclustered index. A file can have at most one clustered index and in
addition can have several nonclustered indexes.

• Indexes can be single-column or multiple-column, depending on the
number of indexing fields on which they are based. When a multiple-
column index is created, the order of columns in the index has an impact
on data retrieval. Generally, the most restrictive value should be placed
first for optimum performance.

• Another categorization of indexes is according to whether they are unique
or nonunique: unique indexes do not allow duplicate values, while this is
not the case for nonunique indexes.
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• In addition, an index can be sparse or dense: in a dense index, there is
one entry in the index for every data record. This requires data files to
be ordered on the indexing key. Opposite to this, a sparse index contains
less index entries than data records. Thus, a nonclustered index is always
dense, since it is not ordered on the indexing key.

• Finally, indexes can be single-level or multilevel. When an index file
becomes large and extends over many blocks, the search time required for
the index increases. A multilevel index attempts to overcome this problem
by splitting the index into a number of smaller indexes and maintaining
an index to the indexes. Although a multilevel index reduces the number
of blocks accessed when one is searching for a record, it also has problems
in dealing with insertions and deletions in the index because all index
levels are physically ordered files. A dynamic multilevel index solves
this problem by leaving some space in each of its blocks for inserting new
entries. This type of index is often implemented by using data structures
called B-trees and B+-trees, which are supported by most DBMSs.

Most DBMSs give the designer the option to set up indexes on any fields,
thus achieving faster access at the expense of extra storage space for indexes,
and overheads when updating. Because the indexed values are held in a sorted
order, they can be efficiently exploited to handle partial matching and range
searches, and in a relational system, they can speed up join operations on
indexed fields.

We will see in Chap. 7 that distinctive characteristics of data warehouses
require physical design solutions that are different from the ones required by
DBMSs in order to support heavy transaction loads.

2.6 Summary

This chapter introduced the background database concepts that will be used
throughout the book. We started by describing database systems and the
usual steps followed for designing them, that is, requirements specification,
conceptual design, logical design, and physical design. Then, we presented
the Northwind case study, which was used to illustrate the different concepts
introduced throughout the chapter. We presented the entity-relationship
model, a well-known conceptual model. With respect to logical models,
we studied the relational model and also gave the mapping rules that are
used to translate an entity-relationship schema into a relational schema.
In addition, we briefly discussed normalization, which aims at preventing
redundancies and inconsistency in a relational database. Then, we presented
two different languages for manipulating relational databases, namely, the
relational algebra and SQL. We finished this introduction to database systems
by describing several issues related to physical database design.
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2.7 Bibliographic Notes

For a general overview of all the concepts covered in this chapter, we refer the
reader to the textbook [49]. Other relevant database textbooks are [58, 168].
An overall view of requirements engineering is given in [217]. Conceptual
database design is covered in [148] although it is based on UML [17] instead
of the entity-relationship model. Logical database design is covered in [198].
A thorough overview of the components of the SQL:1999 standard is given in
[133, 135], and later versions of the standard are described in [108, 132, 236].
Physical database design is detailed in [116].

2.8 Review Questions

2.1 What is a database? What is a DBMS?
2.2 Describe the four phases used in database design.
2.3 Define the following terms: entity type, entity, relationship type,

relationship, role, cardinality, and population.
2.4 Illustrate with an example each of the following kinds of relationship

types: binary, n-ary, one-to-one, one-to-many, many-to-many, and
recursive.

2.5 Discuss different kinds of attributes according to their cardinality and
their composition. What are derived attributes?

2.6 What is an identifier? What is the difference between a strong and a
weak entity type? Does a weak entity type always have an identifying
relationship? What is an owner entity type?

2.7 Discuss the different characteristics of the generalization relationship.
2.8 Define the following terms: relation (or table), attribute (or column),

tuple (or line), and domain.
2.9 Explain the various integrity constraints that can be described in the

relational model.
2.10 Discuss the basic rules for translating an ER schema into a relational

schema. Give an example of a concept of the ER model that can be
translated into the relational model in different ways.

2.11 Illustrate with examples the different types of redundancy that may
occur in a relation. How can redundancy in a relation induce problems
in the presence of insertions, updates, and deletions?

2.12 What is the purpose of functional and multivalued dependencies? What
is the difference between them?

2.13 What are normal forms? Specify several normal forms that can be
defined on relations. For each one of these normal forms, give an
example of a relation that does not satisfy the particular normal form.
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2.14 Describe the different operations of the relational algebra. Elaborate
on the difference between the several types of joins. How can a join be
expressed in terms of other operations of the relational algebra?

2.15 What is SQL? What are the sublanguages of SQL?
2.16 What is the general structure of SQL queries? How can the semantics

of an SQL query be expressed with the relational algebra?
2.17 Discuss the differences between the relational algebra and SQL. Why is

relational algebra an operational language, whereas SQL is a declarative
language?

2.18 Explain what duplicates are in SQL and how they are handled.
2.19 Describe the general structure of SQL queries with aggregation and

sorting. State the basic aggregation operations provided by SQL.
2.20 What are subqueries in SQL? Give an example of a correlated subquery.
2.21 What are CTEs in SQL? What are they needed for?
2.22 What is the objective of physical database design? Explain some factors

that can be used to measure the performance of database applications
and the trade-offs that have to be resolved.

2.23 Explain different types of file organization. Discuss their respective
advantages and disadvantages.

2.24 What is an index? Why are indexes needed? Explain the various types
of indexes.

2.25 What is clustering? What is it used for?

2.9 Exercises

2.1 A French horse race fan wants to set up a database to analyze the
performance of the horses as well as the betting payoffs.

A racetrack is described by a name (e.g., Hippodrome de Chantilly),
a location (e.g., Chantilly, Oise, France), an owner, a manager, a date
opened, and a description. A racetrack hosts a series of horse races.

A horse race has a name (e.g., Prix Jean Prat), a category (i.e., Group
1, 2, or 3), a race type (e.g., thoroughbred flat racing), a distance (in
meters), a track type (e.g., turf right-handed), qualification conditions
(e.g., 3-year-old excluding geldings), and the first year it took place.

A meeting is held on a certain date and a racetrack and is composed
of one or several races. For a meeting, the following information is kept:
weather (e.g., sunny, stormy), temperature, wind speed (in km per hour),
and wind direction (N, S, E, W, NE, etc.).

Each race of a meeting is given a number and a departure time and
has a number of horses participating in it. The application must keep
track of the purse distribution, that is, how the amount of prize money
is distributed among the top places (e.g., first place: e228,000; second
place: e88,000, etc.), and the time of the fastest horse.
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Each race at a date offers several betting types (e.g., tiercé, quarté+),
each type offering zero or more betting options (e.g., in order, in any
order, and bonus for the quarté+). The payoffs are given for a betting
type and a base amount (e.g., quarté+ for e2) and specify for each option
the win amount and the number of winners.

A horse has a name, a breed (e.g., thoroughbred), a sex, a foaling date
(i.e., birth date), a gelding date (i.e., castration date for male horses, if
any), a death date (if any), a sire (i.e., father), a dam (i.e., mother), a
coat color (e.g., bay, chestnut, white), an owner, a breeder, and a trainer.

A horse that participates in a race with a jockey is assigned a number
and carries a weight according to the conditions attached to the race
or to equalize the difference in ability between the runners. Finally, the
arrival place and the margin of victory of the horses are kept by the
application.

(a) Design an ER schema for this application. If you need additional
information, you may look at the various existing French horse racing
web sites.

(b) Translate the ER schema above into the relational model. Indicate
the keys of each relation, the referential integrity constraints, and
the non-null constraints.

2.2 A Formula One fan club wants to set up a database to keep track of the
results of all the seasons since the first Formula One World championship
in 1950.

A season is held on a year, between a starting date and an ending
date, has a number of races, and is described by a summary and a set
of regulations. A race has a round number (stating the ordering of the
race in a season), an official name (e.g., 2013 Formula One Shell Belgian
Grand Prix), a race date, a race time (expressed in both local and UTC
time), a description of the weather when the race took place, the pole
position (consisting of driver name and time realized), and the fastest
lap (consisting of driver name, time, and lap number).

Each race of a season belongs to a Grand Prix (e.g., Belgian Grand
Prix), for which the following information is kept: active years (e.g.,
1950–1956, 1958, etc. for the Belgian Grand Prix), total number of
races (58 races as of 2013 for the Belgian Grand Prix), and a short
historical description. The race of a season is held on a circuit, described
by its name (e.g., Circuit de Spa-Francorchamps), location (e.g., Spa,
Belgium), type (such as race, road, street), number of laps, circuit
length, race distance (the latter two expressed in kilometers), and lap
record (consisting of time, driver, and year). Notice that over the years,
the course of the circuits may be modified several times. For example,
the Spa-Francorchamps circuit was shortened from 14 to 7 km in 1979.
Further, a Grand Prix may use several circuits over the years. For
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example, the Belgian Grand Prix has been held alternatively in the Spa-
Francorchamps, Zolder, and Nivelles circuits.

A team has a name (e.g., Scuderia Ferrari), one or two bases (e.g.,
Maranello, Italy), and one or two current principals (e.g., Stefano
Domenicali). In addition, a team keeps track of its debut (the first
Grand Prix entered), the number of races competed, the number of
world championships won by constructor and by driver, the highest race
finish (consisting of place and number of times), the number of race
victories, the number of pole positions, and the number of fastest laps.
A team competing in a season has a full name, which typically includes
its current sponsor (e.g., Scuderia Ferrari Marlboro from 1997 to 2011),
a chassis (e.g., F138), an engine (e.g., Ferrari 056), and a tyre brand
(e.g., Bridgestone).

For each driver, the following information is kept: name, nationality,
birth date and birth place, number of races entered, number champi-
onships won, number of wins, number of podiums, total points in the
career, number of pole positions, number of fastest laps, highest race
finish (consisting of place and number of times), and highest grid position
(consisting of place and number of times). Drivers are hired by teams
competing in a season as either main drivers or test drivers. Each team
has two main drivers and usually two test drivers, but the number of
test drivers may vary from none to six. In addition, although a main
driver is usually associated with a team for the whole season, it may
only participate in some of the races of the season. A team participating
in a season is assigned two consecutive numbers for its main drivers,
where the number 1 is assigned to the team that won the constructor’s
world title the previous season. Further, the number 13 is usually not
given to a car, it only appeared once in the Mexican Grand Prix in 1963.

A driver participating in a Grand Prix must participate in a qualifying
session, which determines the starting order for the race. The results kept
for a driver participating in the qualifying session are the position and
the time realized for the three parts (called Q1, Q2, and Q3). Finally,
the results kept for a driver participating in a race are the following:
position (may be optional), number of laps, time, the reason why the
driver retired or was disqualified (both may be optional), and the number
of points (scored only for the top eight finishers).

(a) Design an ER schema for this application. In particular, state the
identifiers and the derived attributes. Note any unspecified require-
ments and integrity constraints, and make appropriate assumptions
to make the specification complete. If you need additional informa-
tion, you may look at the various existing Formula One web sites.

(b) Translate the ER schema above into the relational model. Indicate
the keys of each relation, the referential integrity constraints, and
the non-null constraints.
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2.3 For each of the relations below:

• Identify the potential redundancies.
• Identify the key(s).
• Determine its normal form.
• Propose a decomposition, if necessary.

(a) SalesManager(EmpNo, Area, FromDate, State, Country), describing
the geographical areas in which sales managers operate, with the
dependencies

EmpNo, Area → FromDate
Area → State, Country

(b) Product(ProductNo, Description, UnitPrice, VATRate, Category),
which describes the products sold by a company, with the
dependencies

ProductNo → Description, UnitPrice, VATRate, Category
Category → VATRate

(c) Assist(TeachingAssist, Professor, Course, Department), which descri-
bes the assignment of teaching assistants to professors, courses, and
departments, with the dependencies

TeachingAssist → Professor, Course, Department
Course, Department → TeachingAssist, Professor
Professor → Department

(d) Employee(EmpNo, Hobby, Sport), describing the hobbies and sports
of employees, with the dependencies

EmpNo →→ Hobby
EmpNo →→ Sport

2.4 Consider the following queries to be addressed to the Northwind
database. Write in relational algebra queries (a)–(g) and in SQL all the
queries.

(a) Name, address, city, and region of employees.
(b) Name of employees and name of customers located in Brussels related

through orders that are sent by Speedy Express.
(c) Title and name of employees who have sold at least one of the

products “Gravad Lax” or “Mishi Kobe Niku.”
(d) Name and title of employees as well as the name and title of the

employee to whom they report.
(e) Name of products that were sold by employees or purchased by

customers located in London.
(f) Name of employees and name of the city where they live for

employees who have sold to customers located in the same city.
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(g) Names of products that have not been ordered.
(h) Names of customers who bought all products.
(j) Name of categories and the average price of products in each

category.
(k) Identifier and name of the companies that provide more than three

products.
(l) Identifier, name, and total sales of employees ordered by employee

identifier.
(m) Name of employees who sell the products of more than seven

suppliers.



Chapter 3

Data Warehouse Concepts

This chapter introduces the basic concepts of data warehouses. A data
warehouse is a particular database targeted toward decision support. It
takes data from various operational databases and other data sources and
transforms it into new structures that fit better for the task of performing
business analysis. Data warehouses are based on a multidimensional model,
where data are represented as hypercubes, with dimensions corresponding to
the various business perspectives and cube cells containing the measures to be
analyzed. In Sect. 3.1, we study the multidimensional model and present its
main characteristics and components. Section 3.2 gives a detailed description
of the most common operations for manipulating data cubes. In Sect. 3.3, we
present the main characteristics of data warehouse systems and compare them
against operational databases. The architecture of data warehouse systems
is described in detail in Sect. 3.4. As we shall see, in addition to the data
warehouse itself, data warehouse systems are composed of back-end tools,
which extract data from the various sources to populate the warehouse, and
front-end tools, which are used to extract the information from the warehouse
and present it to users. In Sect. 3.5, we introduce the design methodology
we will use throughout the book. We finish by describing in Sect. 3.6 two
representative business intelligence suite of tools, SQL Server and Pentaho.

3.1 Multidimensional Model

The importance of data analysis has been steadily increasing from the early
1990s, as organizations in all sectors are being required to improve their
decision-making processes in order to maintain their competitive advantage.
Traditional database systems like the ones studied in Chap. 2 do not satisfy
the requirements of data analysis. They are designed and tuned to support
the daily operations of an organization, and their primary concern is to ensure
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fast, concurrent access to data. This requires transaction processing and
concurrency control capabilities, as well as recovery techniques that guarantee
data consistency. These systems are known as operational databases or
online transaction processing (OLTP) systems. The OLTP paradigm
is focused on transactions. In the Northwind database example, a simple
transaction could involve entering a new order, reserving the products
ordered, and, if the reorder point has been reached, issuing a purchase order
for the required products. Eventually, a user may want to know the status
of a given order. If a database is indexed following one of the techniques
described in the previous chapter, a typical OLTP query like the above would
require accessing only a few records of the database (and normally will return
a few tuples). Since OLTP systems must support heavy transaction loads,
their design should prevent update anomalies, and thus, OLTP databases
are highly normalized using the techniques studied in Chap. 2. Thus, they
perform poorly when executing complex queries that need to join many
relational tables together or to aggregate large volumes of data. Besides,
typical operational databases contain detailed data and do not include
historical data.

The above needs called for a new paradigm specifically oriented to
analyze the data in organizational databases to support decision making.
This paradigm is called online analytical processing (OLAP). This
paradigm is focused on queries, in particular, analytical queries. OLAP-
oriented databases should support a heavy query load. Typical OLAP queries
over the Northwind database would ask, for example, for the total sales
amount by product and by customer or for the most ordered products by
customer. These kinds of queries involve aggregation, and thus, processing
them will require, most of the time, traversing all the records in a database
table. Indexing techniques aimed at OLTP are not efficient in this case: new
indexing and query optimization techniques are required for OLAP. It is easy
to see that normalization is not good for these queries, since it partitions the
database into many tables. Reconstructing the data would require a high
number of joins.

Therefore, the need for a different database model to support OLAP
was clear and led to the notion of data warehouses, which are (usually)
large repositories that consolidate data from different sources (internal and
external to the organization), are updated off-line (although as we will see,
this is not always the case in modern data warehouse systems), and follow
the multidimensional data model. Being dedicated analysis databases, data
warehouses can be designed and optimized to efficiently support OLAP
queries. In addition, data warehouses are also used to support other kinds of
analysis tasks, like reporting, data mining, and statistical analysis.

Data warehouses and OLAP systems are based on the multidimensional
model, which views data in an n-dimensional space, usually called a data
cube or a hypercube. A data cube is defined by dimensions and facts.
Dimensions are perspectives used to analyze the data. For example, consider
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Fig. 3.1 A three-dimensional cube for sales data with dimensions Product, Time,
and Customer, and a measure Quantity

the data cube in Fig. 3.1, based on a portion of the Northwind database. We
can use this cube to analyze sales figures. The cube has three dimensions:
Product, Time, and Customer. A dimension level represents the granularity,
or level of detail, at which measures are represented for each dimension of
the cube. In the example, sales figures are aggregated to the levels Category,
Quarter, and City, respectively. Instances of a dimension are called members.
For example, Seafood and Beverages are members of the Product dimension
at the Category level. Dimensions also have associated attributes describing
them. For example, the Product dimension could contain attributes such as
ProductNumber and UnitPrice, which are not shown in the figure.

On the other hand, the cells of a data cube, or facts, have associated
numeric values (we will see later that this is not always the case), called
measures. These measures are used to evaluate quantitatively various
aspects of the analysis at hand. For example, each number shown in a cell
of the data cube in Fig. 3.1 represents a measure Quantity, indicating the
number of units sold (in thousands) by category, quarter, and customer’s
city. A data cube typically contains several measures. For example, another
measure, not shown in the figure, could be Amount, indicating the total sales
amount.

A data cube may be sparse or dense depending on whether it has
measures associated with each combination of dimension values. In the case
of Fig. 3.1, this depends on whether all products are bought by all customers
during the period of time considered. For example, not all customers may have
ordered products of all categories during all quarters of the year. Actually, in
real-world applications, cubes are typically sparse.



56 3 Data Warehouse Concepts

3.1.1 Hierarchies

We have said that the granularity of a data cube is determined by the
combination of the levels corresponding to each axis of the cube. In Fig. 3.1,
the dimension levels are indicated between parentheses: Category for the
Product dimension, Quarter for the Time dimension, and City for the Customer
dimension.

In order to extract strategic knowledge from a cube, it is necessary to view
its data at several levels of detail. In our example, an analyst may want to
see the sales figures at a finer granularity, such as at the month level, or at
a coarser granularity, such as at the customer’s country level. Hierarchies
allow this possibility by defining a sequence of mappings relating lower-level,
detailed concepts to higher-level, more general concepts. Given two related
levels in a hierarchy, the lower level is called the child and the higher level
is called the parent. The hierarchical structure of a dimension is called the
dimension schema, while a dimension instance comprises the members at
all levels in a dimension. Figure 3.2 shows the simplified hierarchies for our
cube example. In the next chapter, we give full details of how dimension
hierarchies are modeled. In the Product dimension, products are grouped
in categories. For the Time dimension, the lowest granularity is Day, which
aggregates into Month, which in turn aggregates into Quarter, Semester,
and Year. Similarly, for the Customer dimension, the lowest granularity is
Customer, which aggregates into City, State, Country, and Continent. It is usual
to represent the top of the hierarchy with a distinguished level called All.

All

Category

Product

Product

All

Year

Semester

Quarter

Month

Day

Time

All

Continent

Country

State

City

Customer

Customer

Fig. 3.2 Hierarchies of the Product, Time, and Customer dimensions

At the instance level, Fig. 3.3 shows an example of the Product dimension.1

Each product at the lowest level of the hierarchy can be mapped to a

1Note that, as indicated by the ellipses, not all nodes of the hierarchy are shown.
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corresponding category. All categories are grouped under a member called
all, which is the only member of the distinguished level All. This member is
used for obtaining the aggregation of measures for the whole hierarchy, that
is, for obtaining the total sales for all products.

all

Beverages

Chai Chang

Seafood

Ikura Konbu

...

.. .. ..Product

Category

All

Fig. 3.3 Members of a hierarchy Product → Category

In real-world applications, there exist many kinds of hierarchies. For
example, the hierarchy depicted in Fig. 3.3 is balanced, since there is
the same number of levels from each individual product to the root of
the hierarchy. In Chaps. 4 and 5, we shall study these and other kinds of
hierarchies in detail, covering both their conceptual representation and their
implementation in current data warehouse and OLAP systems.

3.1.2 Measures

Each measure in a cube is associated with an aggregation function that
combines several measure values into a single one. Aggregation of measures
takes place when one changes the level of detail at which data in a cube are
visualized. This is performed by traversing the hierarchies of the dimensions.
For example, if we use the Customer hierarchy in Fig. 3.2 for changing the
granularity of the data cube in Fig. 3.1 from City to Country, then the sales
figures for all customers in the same country will be aggregated using, for
example, the SUM operation. Similarly, total sales figures will result in a cube
containing one cell with the total sum of the quantities of all products, that
is, this corresponds to visualizing the cube at the All level of all dimension
hierarchies.

Summarizability refers to the correct aggregation of cube measures
along dimension hierarchies, in order to obtain consistent aggregation results.
To ensure summarizability, a set of conditions may hold. Below, we list some
of these conditions

• Disjointness of instances: The grouping of instances in a level with
respect to their parent in the next level must result in disjoint subsets.
For example, in the hierarchy of Fig. 3.3, a product cannot belong to two
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categories. If this were the case, each product sales would be counted twice,
one for each category.

• Completeness: All instances must be included in the hierarchy and each
instance must be related to one parent in the next level. For example,
the instances of the Time hierarchy in Fig. 3.2 must contain all days in
the period of interest, and each day must be assigned to a month. If
this condition were not satisfied, the aggregation of the results would be
incorrect, since there would be dates for which sales will not be counted.

• Correctness: It refers to the correct use of the aggregation functions. As
explained next, measures can be of various types, and this determines the
kind of aggregation function that can be applied to them.

According to the way in which they can be aggregated, measures can be
classified as follows:

• Additive measures can be meaningfully summarized along all the
dimensions, using addition. These are the most common type of measures.
For example, the measure Quantity in the cube of Fig. 3.1 is additive: it can
be summarized when the hierarchies in the Product, Time, and Customer
dimensions are traversed.

• Semiadditive measures can be meaningfully summarized using addition
along some, but not all, dimensions. A typical example is that of
inventory quantities, which cannot be meaningfully aggregated in the Time
dimension, for instance, by adding the inventory quantities for two different
quarters.

• Nonadditive measures cannot be meaningfully summarized using addi-
tion across any dimension. Typical examples are item price, cost per unit,
and exchange rate.

Thus, in order to define a measure, it is necessary to determine the
aggregation functions that will be used in the various dimensions. This is
particularly important in the case of semiadditive and nonadditive measures.
For example, a semiadditive measure representing inventory quantities
can be aggregated computing the average along the Time dimension and
computing the sum along other dimensions. Averaging can also be used
for aggregating nonadditive measures such as item price or exchange rate.
However, depending on the semantics of the application, other functions such
as the minimum, maximum, or count could be used instead.

In order to allow users to interactively explore the cube data at different
granularities, optimization techniques based on aggregate precomputation are
used. To avoid computing the whole aggregation from scratch each time the
data warehouse is queried, OLAP tools implement incremental aggregation
mechanisms. However, incremental aggregation computation is not always
possible, since this depends on the kind of aggregation function used. This
leads to another classification of measures, which we explain next.
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• Distributive measures are defined by an aggregation function that can
be computed in a distributed way. Suppose that the data are partitioned
into n sets and that the aggregate function is applied to each set,
giving n aggregated values. The function is distributive if the result of
applying it to the whole data set is the same as the result of applying a
function (not necessarily the same) to the n aggregated values. The usual
aggregation functions such as the count, sum, minimum, and maximum are
distributive. However, the distinct count function is not. For instance, if we
partition the set of measure values {3, 3, 4, 5, 8, 4, 7, 3, 8} into the subsets
{3, 3, 4}, {5, 8, 4}, and {7, 3, 8}, summing up the result of the distinct count
function applied to each subset gives us a result of 8, while the answer over
the original set is 5.

• Algebraic measures are defined by an aggregation function that can be
expressed as a scalar function of distributive ones. A typical example of an
algebraic aggregation function is the average, which can be computed by
dividing the sum by the count, the latter two functions being distributive.

• Holistic measures are measures that cannot be computed from other
subaggregates. Typical examples include the median, the mode, and the
rank. Holistic measures are expensive to compute, especially when data
are modified, since they must be computed from scratch.

3.2 OLAP Operations

As already said, a fundamental characteristic of the multidimensional model
is that it allows one to view data from multiple perspectives and at several
levels of detail. The OLAP operations allow these perspectives and levels of
detail to be materialized by exploiting the dimensions and their hierarchies,
thus providing an interactive data analysis environment.

Figure 3.4 presents a possible scenario that shows how an end user can
operate over a data cube in order to analyze data in different ways. Later
in this section, we present the OLAP operations in detail. Our user starts
from Fig. 3.4a, a cube containing quarterly sales quantities (in thousands) by
product categories and customer cities for the year 2012.

The user first wants to compute the sales quantities by country. For this,
she applies a roll-up operation to the Country level along the Customer
dimension. The result is shown in Fig. 3.4b. While the original cube contained
four values in the Customer dimension, one for each city, the new cube
contains two values, each one corresponding to one country. The remaining
dimensions are not affected. Thus, the values in cells pertaining to Paris and
Lyon in a given quarter and category contribute to the aggregation of the
corresponding values for France. The computation of the cells pertaining to
Germany proceeds analogously.
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Fig. 3.4 OLAP operations. (a) Original cube. (b) Roll-up to the Country level.
(c) Drill-down to the Month level. (d) Sort product by name. (e) Pivot
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Fig. 3.4 (continued) (f) Slice on City='Paris'. (g) Dice on City='Paris' or 'Lyon' and
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Fig. 3.4 (continued) (l) Maximum sales by quarter and city. (m) Top two sales by
quarter and city. (n) Top 70% by city and category ordered by ascending quarter.
(o) Top 70% by city and category ordered by descending quantity. (p) Rank quarter
by category and city ordered by descending quantity
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Fig. 3.4 (continued) (q) Three-month moving average. (r) Year-to-date compu-
tation. (s) Union of the original cube and another cube with data from Spain.
(t) Difference of the original cube and the cube in (m)

Our user then notices that sales of the category Seafood in France are
significantly higher in the first quarter compared to the other ones. Thus,
she first takes the cube back to the City aggregation level and then applies a
drill-down along the Time dimension to the Month level to find out whether
this high value occurred during a particular month. In this way, she discovers
that, for some reason yet unknown, sales in January soared both in Paris and
in Lyon, as shown in Fig. 3.4c.
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Our user now wants to explore alternative visualizations of the cube to
better understand the data contained in it. For this, she sorts the products
by name, as shown in Fig. 3.4d. Then, she wants to see the cube with the
Time dimension on the x-axis. Therefore, she takes the original cube and
rotates the axes of the cube without changing granularities. This is called
pivoting and is shown in Fig. 3.4e.

Continuing her browsing of the original cube, the user then wants to
visualize the data only for Paris. For this, she applies a slice operation
that results in the subcube depicted in Fig. 3.4f. Here, she obtained a two-
dimensional matrix, where each column represents the evolution of the sales
quantity by category and quarter, that is, a collection of time series.

As her next operation, our user goes back to the original cube and builds
a subcube, with the same dimensionality, but only containing sales figures
for the first two quarters and for the cities Lyon and Paris. This is done with
a dice operation, as shown in Fig. 3.4g.

Our user now wants to compare the sales quantities in 2012 with those in
2011. For this, she needs the cube in Fig. 3.4h, which has the same structure
as the one for 2012 given in Fig. 3.4a. She wants to have the measures in
the two cubes consolidated in a single one. Thus, she uses the drill-across
operation that, given two cubes, builds a new one with the measures of both
in each cell. This is shown in Fig. 3.4i.

The user now wants to compute the percentage change of sales between the
2 years. For this, she takes the cube resulting from the drill-across operation
above, and applies to it the add measure operation, which computes a new
value for each cell from the values in the original cube. The new measure is
shown in Fig. 3.4j.

After all these manipulations, the user wants to aggregate data in various
ways. Given the original cube in Fig. 3.4a, she first wants to compute to
total sales by quarter and city. This is obtained by the sum aggregation
operation, whose result is given in Fig. 3.4k. Then, the user wants to obtain
the maximum sales by quarter and city, and for this, she uses the max
operation to obtain the cube in Fig. 3.4l. After seeing the result, she decides
that she needs more information; thus, she computes the top two sales by
quarter and city, which is also obtained with the max operation yielding the
cube in Fig. 3.4m.

In the next step, the user goes back to the original cube in Fig. 3.4a and
computes the quarterly sales that amount to 70% of the total sales by city and
category. She explores this in two possible ways: according to the ascending
order of quarters, as shown in Fig. 3.4n, and according to the descending
order of quantity, as shown in Fig. 3.4o. In both cases, she applies the top
percent aggregation operation. She also wants to rank the quarterly sales
by category and city in descending order of quantity, which is obtained in
Fig. 3.4p.
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Now, the user wants to apply window operations to the cube in Fig. 3.4c
in order to see how monthly sales behave. She starts by requesting a 3-month
moving average to obtain the result in Fig. 3.4q. Then, she asks the year-to-
date computation whose result is given in Fig. 3.4r.

Finally, the user wants to add to the original cube data from Spain, which
are contained in another cube. She obtains this by performing a union of the
two cubes, whose result is given in Fig. 3.4s. As another operation, she also
wants to remove from the original cube all sales measures except the top two
sales by quarter and city. For this, she performs the difference of the original
cube in Fig. 3.4a and the cube in Fig. 3.4m, yielding the result in Fig. 3.4t.

The OLAP operations illustrated in Fig. 3.4 can be defined in a way
analogous to the relational algebra operations introduced in Chap. 2.

The roll-up operation aggregates measures along a dimension hierarchy
(using an aggregate function) to obtain measures at a coarser granularity.
The syntax for the roll-up operation is:

ROLLUP(CubeName, (Dimension → Level)*, AggFunction(Measure)*)

where Dimension → Level indicates to which level in a dimension the roll-up
is to be performed and function AggFunction is applied to summarize the
measure. When there is more than one measure in a cube, we must specify
an aggregate function for each measure that will be kept in the cube. All the
measures for which the aggregation is not specified will be removed from the
cube. In the example given in Fig. 3.4b, we applied the operation:

ROLLUP(Sales, Customer → Country, SUM(Quantity))

When querying a cube, a usual operation is to roll up a few dimensions
to particular levels and to remove the other dimensions through a roll-up
to the All level. In a cube with n dimensions, this can be obtained by
applying n successive ROLLUP operations. The ROLLUP* operation provides
a shorthand notation for this sequence of operations. The syntax is as follows:

ROLLUP*(CubeName, [(Dimension → Level)*], AggFunction(Measure)*)

For example, the total quantity by quarter can be obtained as follows:

ROLLUP*(Sales, Time → Quarter, SUM(Quantity))

which performs a roll-up along the Time dimension to the Quarter level and
the other dimensions (in this case Customer and Product) to the All level. On
the other hand, if the dimensions are not specified as in

ROLLUP*(Sales, SUM(Quantity))

all the dimensions of the cube will be rolled up to the All level, yielding a
single cell containing the overall sum of the Quantity measure.
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A usual need when applying a roll-up operation is to count the number of
members in one of the dimensions removed from the cube. For example, the
following query obtains the number of distinct products sold by quarter:

ROLLUP*(Sales, Time → Quarter, COUNT(Product) AS ProdCount)

In this case, a new measure ProdCount will be added to the cube. We will see
below other ways to add measures to a cube.

In many real-world situations, hierarchies are recursive, that is, they
contain a level that rolls up to itself. A typical example is a supervision
hierarchy over employees. Such hierarchies are discussed in detail in Chap. 4.
The particularity of such hierarchies is that the number of levels of the
hierarchy is not fixed at the schema level, but it depends on its members.
The RECROLLUP operation is used to aggregate measures over recursive
hierarchies by iteratively performing roll-ups over the hierarchy until the top
level is reached. The syntax of this operation is as follows:

RECROLLUP(CubeName, Dimension → Level, Hierarchy, AggFct(Measure)*)

We will show an example of such an operation in Sect. 4.4.
The drill-down operation performs the inverse of the roll-up operation,

that is, it goes from a more general level to a more detailed level in a hierarchy.
The syntax of the drill-down operation is as follows:

DRILLDOWN(CubeName, (Dimension → Level)*)

where Dimension → Level indicates to which level in a dimension we want to
drill down to. In our example given in Fig. 3.4c, we applied the operation

DRILLDOWN(Sales, Time → Month)

The sort operation returns a cube where the members of a dimension have
been sorted. The syntax of the operation is as follows:

SORT(CubeName, Dimension, (Expression [ {ASC | DESC | BASC | BDESC} ])*)

where the members of Dimension are sorted according to the value of
Expression either in ascending or descending order. In the case of ASC
or DESC, members are sorted within their parent (i.e., respecting the
hierarchies), whereas in the case of BASC or BDESC, the sorting is performed
across all members (i.e., irrespective of the hierarchies). The ASC is the
default option. For example, the following expression

SORT(Sales, Product, ProductName)

sorts the members of the Product dimension in ascending order of their name,
as shown in Fig. 3.4d. Here, ProductName is supposed to be an attribute of
products. When the cube contains only one dimension, the members can
be sorted based on its measures. For example, if SalesByQuarter is obtained
from the original cube by aggregating sales by quarter for all cities and all
categories, the following expression
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SORT(SalesByQuarter, Time, Quantity DESC)

sorts the members of the Time dimension on descending order of the Quantity
measure.

The pivot (or rotate) operation rotates the axes of a cube to provide an
alternative presentation of the data. The syntax of the operation is as follows:

PIVOT(CubeName, (Dimension → Axis)*)

where the axes are specified as {X, Y, Z, X1, Y1, Z1, . . . }. Thus, the example
illustrated in Fig. 3.4e is expressed by:

PIVOT(Sales, Time → X, Customer → Y, Product → Z)

The slice operation removes a dimension in a cube, that is, a cube of
n−1 dimensions is obtained from a cube of n dimensions. The syntax of this
operation is:

SLICE(CubeName, Dimension, Level = Value)

where the Dimension will be dropped by fixing a single Value in the Level.
The other dimensions remain unchanged. The example illustrated in Fig. 3.4f
is expressed by:

SLICE(Sales, Customer, City = 'Paris')

The slice operation assumes that the granularity of the cube is at the specified
level of the dimension (in the example above, at the city level). Thus, a
granularity change by means of a ROLLUP or DRILLDOWN operation is often
needed prior to applying the slice operation.

The dice operation keeps the cells in a cube that satisfy a Boolean
condition Φ. The syntax for this operation is

DICE(CubeName, Φ)

where Φ is a Boolean condition over dimension levels, attributes, and
measures. The DICE operation is analogous to the relational algebra selection
σΦ(R), where the argument is a cube instead of a relation. The example
illustrated in Fig. 3.4g is expressed by:

DICE(Sales, (Customer.City = 'Paris' OR Customer.City = 'Lyon') AND
(Time.Quarter = 'Q1' OR Time.Quarter = 'Q2'))

The rename operation returns a cube where some schema elements or
members have been renamed. The syntax is:

RENAME(CubeName, ({SchemaElement | Member} → NewName)*)

For example, the following expression

RENAME(Sales, Sales → Sales2012, Quantity → Quantity2012)

renames the cube in Fig. 3.4a and its measure. As another example,
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RENAME(Sales, Customer.all → AllCustomers)

will rename the all member of the customer dimension.
The drill-across operation combines cells from two data cubes that have

the same schema and instances. The syntax of the operation is:

DRILLACROSS(CubeName1, CubeName2, [Condition])

The DRILLACROSS operation is analogous to a full outer join in the relational
algebra. If the condition is not stated, it corresponds to an outer equijoin.
Given the cubes in Fig. 3.4a, h, the cube in Fig. 3.4i is expressed by:

Sales2011-2012 ← DRILLACROSS(Sales2011, Sales2012)

Notice that a renaming of the cube and the measure, as stated above, is
necessary prior to applying the drill-across operation. Notice also that the
resulting cube is named Sales2011-2012. On the other hand, if in the Sales
cube of Fig. 3.4c we want to compare the sales of a month with those of the
previous month, this can be expressed in two steps as follows:

Sales1 ← RENAME(Sales, Quantity ← PrevMonthQuantity)
Result ← DRILLACROSS(Sales1, Sales, Sales1.Time.Month+1 = Sales.Time.Month)

In the first step, we create a temporary cube Sales1 by renaming the measure.
In the second step, we perform the drill across of the two cubes by combining
a cell in Sales1 with the cell in Sales corresponding to the subsequent month.
As already stated, the join condition above corresponds to an outer join.
Notice that the Sales cube in Fig. 3.4a contains measures for a single year.
Thus, in the result above, the cells corresponding to January and December
will contain a null value in one of the two measures. As we will see in
Sect. 4.4, when the cube contains measures for several years, the join condition
must take into account that measures of January must be joined with those
of December of the preceding year. Notice also that the cube has three
dimensions and the join condition in the query above pertains to only one
dimension. For the other dimensions, it is supposed that an outer equijoin is
performed.

The add measure operation adds new measures to the cube computed
from other measures or dimensions. The syntax for this operation is as follows:

ADDMEASURE(CubeName, (NewMeasure = Expression, [AggFct])* )

where Expression is a formula over measures and dimension members and
AggFct is the default aggregation function for the measure, SUM being the
default. For example, given the cube in Fig. 3.4i, the measure shown in
Fig. 3.4j is expressed by:

ADDMEASURE(Sales2011-2012, PercentageChange =
(Quantity2011-Quantity2012)/Quantity2011)

The drop measure operation removes one or several measures from a
cube. The syntax is as follows:
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DROPMEASURE(CubeName, Measure*)

For example, given the result of the add measure above, the cube illustrated
in Fig. 3.4j is expressed by:

DROPMEASURE(Sales2011-2012, Quantity2011, Quantity2012)

We have seen that the roll-up operation aggregates measures when
displaying the cube at coarser level. On the other hand, we also need to
aggregate measures of a cube at the current granularity, that is, without
performing a roll-up operation. The syntax for this is as follows:

AggFunction(CubeName, Measure) [BY Dimension*]

Usual aggregation operations are SUM, AVG, COUNT, MIN, and MAX.
In addition to these, we use extended versions of MIN and MAX, which
have an additional argument that is used to obtain the n minimum or
maximum values. Further, TOPPERCENT and BOTTOMPERCENT select
the members of a dimension that cumulatively account for x percent of a
measure. Analogously, RANK andDENSERANK are used to rank the members
of a dimension according to a measure. We show next examples of these
operations.

For example, the cube in Fig. 3.4a is at the Quarter and City levels. The
total sales by quarter and city can be obtained by

SUM(Sales, Quantity) BY Time, Customer

This will yield the two-dimensional cube in Fig. 3.4k. On the other hand, to
obtain the total sales by quarter, we can write

SUM(Sales, Quantity) BY Time

which returns a one-dimensional cube with values for each quarter. Notice
that in the query above, a roll-up along the Customer dimension up to the
All level is performed before applying the aggregation operation. Finally, to
obtain the overall sales, we can write

SUM(Sales, Quantity)

which will result in a single cell.
Aggregation functions in OLAP can be classified in two types. Cumu-

lative aggregation functions compute the measure value of a cell from
several other cells. Examples of cumulative functions are SUM, COUNT,
and AVG. On the other hand, filtering aggregation functions filter the
members of a dimension that appears in the result. Examples of these
functions are MIN and MAX. The distinction between these two types
of aggregation functions is important in OLAP since filtering aggregation
functions must compute not only the aggregated value but must also
determine the dimension members that belong to the result. As an example,
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when asking for the best-selling employee, we must compute the maximum
sales amount but also identify who is the employee that performed best.

Therefore, when applying an aggregation operation, the resulting cube will
have different dimension members depending on the type of the aggregation
function. For example, given the cube in Fig. 3.4a, the total overall quantity
can be obtained by the expression

SUM(Sales, Quantity)

This will yield a single cell, whose coordinates for the three dimensions will
be all equal to all. On the other hand, when computing the overall maximum
quantity as follows

MAX(Sales, Quantity)

we will obtain the cell with value 47 and coordinates Q4, Condiments, and
Paris (we suppose that cells that are hidden in Fig. 3.4a contain a smaller
value for this measure). Similarly, the following expression

SUM(Sales, Quantity) BY Time, Customer

returns the total sales by quarter and customer, resulting in the cube given
in Fig. 3.4k. This cube has three dimensions, where the Product dimension
only contains the member all. On the other hand,

MAX(Sales, Quantity) BY Time, Customer

will yield the cube in Fig. 3.4l, where only the cells containing the maximum
by time and customer will have values, while the other ones will be filled with
null values. Similarly, the two maximum quantities by product and customer
as shown in Fig. 3.4m can be obtained as follows:

MAX(Sales, Quantity, 2) BY Time, Customer

Notice that in the example above, we requested the two maximum quantities
by time and customer. If in the cube there are two or more cells that tie for
the last place in the limited result set, then the number of cells in the result
could be greater than two. For example, this is the case in Fig. 3.4m for Berlin
and Q1, where there are three values in the result, that is, 33, 25, and 25.

To compute top or bottom percentages, the order of the cells must be
specified. For example, to compute the top 70% of the measure quantity by
city and category ordered by quarter, as shown in Fig. 3.4n, we can write

TOPPERCENT(Sales, Quantity, 70) BY City, Category ORDER BY Quarter ASC

The operation computes the running sum of the sales by city and category
starting with the first quarter and continues until the target percentage is
reached. In the example above, the sales by city and category for the first
three quarters covers 70% of the sales. Similarly, the top 70% of the measure
quantity by city and category ordered by quantity, as shown in Fig. 3.4o, can
be obtained by
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TOPPERCENT(Sales, Quantity, 70) BY City, Category ORDER BY Quantity DESC

The rank operation also requires the specification of the order of the cells.
As an example, to rank quarters by category and city order by descending
quantity, as shown in Fig. 3.4p, we can write

RANK(Sales, Time) BY Category, City ORDER BY Quantity DESC

The rank and the dense rank operations differ in the case of ties. The former
assigns the same rank to ties, with the next ranking(s) skipped. For example,
in Fig. 3.4p, there is a tie in the quarters for Seafood and Köln, where Q2 and
Q4 are in the first rank and Q3 and Q1 are in the third and fourth ranks,
respectively. If the dense rank is used, then Q3 and Q1 would be in the second
and third ranks, respectively.

In the examples above, the new measure value in a cell is computed from
the values of other measures in the same cell. However, we often need to
compute measures where the value of a cell is obtained by aggregating the
measures of several nearby cells. Examples of these include moving average
and year-to-date computations. For this, we need to define a subcube that
is associated with each cell and perform the aggregation over this subcube.
These functions correspond to the window functions in SQL that will be
described in Chap. 5. For example, given the cube in Fig. 3.4c, the 3-month
moving average in Fig. 3.4q can be obtained by

ADDMEASURE(Sales, MovAvg = AVG(Quantity) OVER
Time 2 CELLS PRECEDING)

Here, the moving average for January is equal to the measure in January,
since there are no previous cells. Analogously, the measure for February is
the average of the values of January and February. Finally, the average for
the remaining months is computed from the measure value of the current
month and the two preceding ones. Notice that in the window functions,
it is supposed that the members of the dimension over which the window is
constructed are already sorted. For this, a sort operation can be applied prior
to the application of the window aggregate function.

Similarly, to compute the year-to-date sum in Fig. 3.4r, we can write

ADDMEASURE(Sales, YTDQuantity = SUM(Quantity) OVER
Time ALL CELLS PRECEDING)

Here, the window over which the aggregation function is applied contains
the current cell and all the previous ones, as indicated by ALL CELLS
PRECEDING.

The union operation merges two cubes that have the same schema
but disjoint instances. For example, if CubeSpain is a cube having the
same schema as our original cube but containing only the sales to Spanish
customers, the cube in Fig. 3.4s is obtained by

UNION(Sales, SalesSpain)



72 3 Data Warehouse Concepts

The union operation is also used to display different granularities on the
same dimension. For example, if SalesCountry is the cube in Fig. 3.4b, then
the following operation

UNION(Sales, SalesCountry)

results in a cube containing sales measures summarized by city and by
country.

The difference operation removes the cells in a cube that exist in another
one. Obviously, the two cubes must have the same schema. For example, if
TopTwoSales is the cube in Fig. 3.4m, then the following operation

DIFFERENCE(Sales, TopTwoSales)

will result in the cube in Fig. 3.4t, which contains all sales measures except
for the top two sales by quarter and city.

Finally, the drill-through operation allows one to move from data at the
bottom level in a cube to data in the operational systems from which the cube
was derived. This could be used, for example, if one were trying to determine
the reason for outlier values in a data cube.

Table 3.1 summarizes the OLAP operations we have presented in this
section. In addition to the basic operations described above, OLAP tools
provide a great variety of mathematical, statistical, and financial operations
for computing ratios, variances, interest, depreciation, currency conversions,
etc.

3.3 Data Warehouses

A data warehouse is a repository of integrated data obtained from several
sources for the specific purpose of multidimensional data analysis. More
technically, a data warehouse is defined as a collection of subject-oriented,
integrated, nonvolatile, and time-varying data to support management
decisions. We explain next these characteristics:

• Subject oriented means that data warehouses focus on the analytical
needs of different areas of an organization. These areas vary depending
on the kind of activities performed by the organization. For example, in
the case of a retail company, the analysis may focus on product sales
or inventory management. In operational databases, on the contrary, the
focus is on specific functions that applications must perform, for example,
registering sales of products or inventory replenishment.

• Integrated means that data obtained from several operational and
external systems must be joined together, which implies solving problems
due to differences in data definition and content, such as differences
in data format and data codification, synonyms (fields with different
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Table 3.1 Summary of the OLAP operations

Operation Purpose
Add measure Adds new measures to a cube computed from other measures or

dimensions.
Aggregation
operations

Aggregate the cells of a cube, possibly after performing a group-
ing of cells.

Dice Keeps the cells of a cube that satisfy a Boolean condition over
dimension levels, attributes, and measures.

Difference Removes the cells of a cube that are in another cube. Both cubes
must have the same schema.

Drill-across Merges two cubes that have the same schema and instances using
a join condition.

Drill-down Disaggregates measures along a hierarchy to obtain data at a
finer granularity. It is the opposite of the roll-up operation.

Drill-through Shows data in the operational systems from which the cube was
derived.

Drop measure Removes measures from a cube.
Pivot Rotates the axes of a cube to provide an alternative presentation

of its data.
Recursive
roll-up

Performs an iteration of roll-ups over a recursive hierarchy until
the top level is reached.

Rename Renames one or several schema elements of a cube.
Roll-up Aggregates measures along a hierarchy to obtain data at a coarser

granularity. It is the opposite of the drill-down operation.
Roll-up* Shorthand notation for a sequence of roll-up operations.
Slice Removes a dimension from a cube by fixing a single value in a

level of the dimension.
Sort Orders the members of a dimension according to an expression.
Union Combines the cells of two cubes that have the same schema but

disjoint members.

names but the same data), homonyms (fields with the same name but
different meanings), multiplicity of occurrences of data, and many others.
In operational databases these problems are typically solved in the design
phase.

• Nonvolatile means that durability of data is ensured by disallowing data
modification and removal, thus expanding the scope of the data to a longer
period of time than operational systems usually offer. A data warehouse
gathers data encompassing several years, typically 5–10 years or beyond,
while data in operational databases is often kept for only a short period
of time, for example, from 2 to 6 months, as required for daily operations,
and it may be overwritten when necessary.

• Time varying indicates the possibility of retaining different values for
the same information, as well as the time when changes to these values
occurred. For example, a data warehouse in a bank might store information
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about the average monthly balance of clients’ accounts for a period
covering several years. In contrast, an operational database may not have
explicit temporal support, since sometimes it is not necessary for day-to-
day operations and it is also difficult to implement.

A data warehouse is aimed at analyzing the data of an entire organization.
It is often the case that particular departments or divisions of an organization
only require a portion of the organizational data warehouse specialized for
their needs. For example, a sales department may only need sales data, while
a human resources department may need demographic data and data about
the employees. These departmental data warehouses are called data marts.
However, these data marts are not necessarily private to a department; they
may be shared with other interested parts of the organization.

A data warehouse can be seen as a collection of data marts. This view
represents a bottom-up approach in which a data warehouse is built by
first building the smaller data marts and then merging these to obtain the
data warehouse. This can be a good approach for organizations not willing
to take the risk of building a large data warehouse, which may take a long
time to complete, or organizations that need fast results. On the other hand,
in the classic data warehouse view, data marts are obtained from the data
warehouse in a top-down fashion. In this approach, a data mart is sometimes
just a logical view of a data warehouse.

Table 3.2 shows several aspects that differentiate operational database (or
OLTP) systems from data warehouse (or OLAP) systems. We analyze next
in detail some of these differences.

Typically, the users of OLTP systems are operations and employees who
perform predefined operations through transactional applications, like payroll
systems or ticket reservation systems. Data warehouse users, on the other
hand, are usually located higher in the organizational hierarchy and use
interactive OLAP tools to perform data analysis, for example, to detect
salary inconsistencies or most frequently chosen tourist destinations (lines
1–2). Therefore, it is clear that data for OLTP systems should be current
and detailed, while data analytics require historical, summarized data (line
3). The difference on data organization (line 4) follows from the type of use
of OLTP and OLAP systems.

From a more technical viewpoint, data structures for OLTP are optimized
for rather small and simple transactions, which will be carried out frequently
and repeatedly. In addition, data access for OLTP requires reading and
writing data files. For example, in the Northwind database application, a
user may be able to frequently insert new orders, modify old ones, and delete
orders if customers cancel them. Thus, the number of records accessed by an
OLTP transaction is usually small (e.g., the records involved in a particular
sales order). On the other hand, data structures for OLAP must support
complex aggregation queries, thus requiring access to all the records in one or
more tables, which will translate in long, complex SQL queries. Furthermore,
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Table 3.2 Comparison between operational databases and data ware-
houses

Aspect Operational databases Data warehouses
1 User type Operators, office employees Managers, executives
2 Usage Predictable, repetitive Ad hoc, nonstructured
3 Data content Current, detailed data Historical, summarized data
4 Data organization According to operational

needs
According to analysis needs

5 Data structures Optimized for small
transactions

Optimized for complex
queries

6 Access frequency High From medium to low
7 Access type Read, insert, update, delete Read, append only
8 Number of records

per access
Few Many

9 Response time Short Can be long
10 Concurrency level High Low
11 Lock utilization Needed Not needed
12 Update frequency High None
13 Data redundancy Low (normalized tables) High (denormalized tables)
14 Data modeling UML, ER model Multidimensional model

OLAP systems are not so frequently accessed as OLTP systems. For example,
a system handling purchase orders is frequently accessed, while performing
analysis of orders may not be that frequent. Also, data warehouse records
are usually accessed in read mode (lines 5–8). From the above, it follows
that OLTP systems usually have a short query response time, provided the
appropriate indexing structures are defined, while complex OLAP queries can
take a longer time to complete (line 9).

OLTP systems have normally a high number of concurrent accesses and
therefore require locking or other concurrency management mechanisms to
ensure safe transaction processing (lines 10–11). On the other hand, OLAP
systems are read only, and therefore queries can be submitted and computed
concurrently, with no locking or complex transaction processing requirements.
Further, the number of concurrent users in an OLAP system is usually low.

Finally, OLTP systems are constantly being updated online through trans-
actional applications, while OLAP systems are updated off-line periodically.
This leads to different modeling choices. OLTP systems are modeled using
UML or some variation of the ER model studied in Chap. 2. Such models
lead to a highly normalized schema, adequate for databases that support
frequent transactions, to guarantee consistency and reduce redundancy.
OLAP designers use the multidimensional model, which, at the logical level
(as we will see in Chap. 5), leads in general to a denormalized database
schema, with a high level of redundancy, which favors query processing (lines
12–14).
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3.4 Data Warehouse Architecture

We are now ready to present a general data warehouse architecture that will
be used throughout the book. This architecture, depicted in Fig. 3.5, consists
of several tiers:

• The back-end tier is composed of extraction, transformation, and
loading (ETL) tools, used to feed data into the data warehouse from
operational databases and other data sources, which can be internal or
external from the organization, and a data staging area, which is an
intermediate database where all the data integration and transformation
processes are run prior to the loading of the data into the data warehouse.

• The data warehouse tier is composed of an enterprise data ware-
house and/or several data marts and a metadata repository storing
information about the data warehouse and its contents.

• The OLAP tier is composed of an OLAP server, which provides a
multidimensional view of the data, regardless of the actual way in which
data are stored in the underlying system.

• The front-end tier is used for data analysis and visualization. It contains
client tools such as OLAP tools, reporting tools, statistical tools,
and data mining tools.

We now describe in detail the various components of the above architecture.

3.4.1 Back-End Tier

In the back-end tier, the process commonly known as extraction, transfor-
mation, and loading is performed. As the name indicates, it is a three-step
process as follows:

• Extraction gathers data from multiple, heterogeneous data sources.
These sources may be operational databases but may also be files in various
formats; they may be internal to the organization or external to it.
In order to solve interoperability problems, data are extracted whenever
possible using application programming interfaces (APIs) such as ODBC
(Open Database Connectivity) and JDBC (Java Database Connectivity).

• Transformation modifies the data from the format of the data sources
to the warehouse format. This includes several aspects: cleaning, which
removes errors and inconsistencies in the data and converts it into a
standardized format; integration, which reconciles data from different data
sources, both at the schema and at the data level; and aggregation, which
summarizes the data obtained from data sources according to the level of
detail, or granularity, of the data warehouse.
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Fig. 3.5 Typical data warehouse architecture

• Loading feeds the data warehouse with the transformed data. This also
includes refreshing the data warehouse, that is, propagating updates from
the data sources to the data warehouse at a specified frequency in order
to provide up-to-date data for the decision-making process. Depending on
organizational policies, the refresh frequency may vary from monthly to
several times a day or even near to real time.

ETL processes usually require a data staging area, that is, a database in
which the data extracted from the sources undergoes successive modifications
to eventually be ready to be loaded into the data warehouse. Such a database
is usually called operational data store.

3.4.2 Data Warehouse Tier

The data warehouse tier in Fig. 3.5 depicts an enterprise data warehouse
and several data marts. As we have explained, while an enterprise data
warehouse is centralized and encompasses an entire organization, a data
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mart is a specialized data warehouse targeted toward a particular functional
or departmental area in an organization. A data mart can be seen as a small,
local data warehouse. Data in a data mart can be either derived from an
enterprise data warehouse or collected directly from data sources.

Another component of the data warehouse tier is the metadata repository.
Metadata can be defined as “data about data.” Metadata has been tradi-
tionally classified into technical and business metadata.Business metadata
describes the meaning (or semantics) of the data and organizational rules,
policies, and constraints related to the data. On the other hand, technical
metadata describes how data are structured and stored in a computer
system and the applications and processes that manipulate such data.

In the data warehouse context, technical metadata can be of various
natures, describing the data warehouse system, the source systems, and the
ETL process. In particular, the metadata repository may contain information
such as the following:

• Metadata describing the structure of the data warehouse and the data
marts, both at the conceptual/logical level (which includes the facts,
dimensions, hierarchies, derived data definitions) and at the physical level
(such as indexes, partitions, and replication). In addition, these metadata
contain security information (user authorization and access control) and
monitoring information (such as usage statistics, error reports, and audit
trails).

• Metadata describing the data sources, including their schemas (at the
conceptual, logical, and/or physical levels), and descriptive information
such as ownership, update frequencies, legal limitations, and access
methods.

• Metadata describing the ETL process, including data lineage (i.e., tracing
warehouse data back to the source data from which it was derived), data
extraction, cleaning, transformation rules and defaults, data refresh and
purging rules, and algorithms for summarization.

3.4.3 OLAP Tier

The OLAP tier in the architecture of Fig. 3.5 is composed of an OLAP
server, which presents business users with multidimensional data from data
warehouses or data marts.

Most database products provide OLAP extensions and related tools
allowing the construction and querying of cubes, as well as navigation,
analysis, and reporting. However, there is not yet a standardized language
for defining and manipulating data cubes, and the underlying technology
differs between the available systems. In this respect, several languages are
worth mentioning. XMLA (XML for Analysis) aims at providing a common



3.4 Data Warehouse Architecture 79

language for exchanging multidimensional data between client applications
and OLAP servers. Further, MDX (MultiDimensional eXpressions) is a query
language for OLAP databases. As it is supported by a number of OLAP
vendors, MDX became a de facto standard for querying OLAP systems. The
SQL standard has also been extended for providing analytical capabilities;
this extension is referred to as SQL/OLAP. In Chap. 6, we present a detailed
study of both MDX and SQL/OLAP.

3.4.4 Front-End Tier

The front-end tier in Fig. 3.5 contains client tools that allow users to
exploit the contents of the data warehouse. Typical client tools include the
following:

• OLAP tools allow interactive exploration and manipulation of the
warehouse data. They facilitate the formulation of complex queries that
may involve large amounts of data. These queries are called ad hoc
queries, since the system has no prior knowledge about them.

• Reporting tools enable the production, delivery, and management of
reports, which can be paper-based reports or interactive, web-based
reports. Reports use predefined queries, that is, queries asking for
specific information in a specific format that are performed on a regular
basis. Modern reporting techniques include key performance indicators and
dashboards.

• Statistical tools are used to analyze and visualize the cube data using
statistical methods.

• Data mining tools allow users to analyze data in order to discover
valuable knowledge such as patterns and trends; they also allow predictions
to be made on the basis of current data.

In Chap. 9, we show some of the tools used to exploit the data warehouse,
like data mining tools, key performance indicators, and dashboards.

3.4.5 Variations of the Architecture

Some of the components in Fig. 3.5 can be missing in a real environment.
In some situations, there is only an enterprise data warehouse without data

marts, or alternatively, an enterprise data warehouse does not exist. Building
an enterprise data warehouse is a complex task that is very costly in time
and resources. In contrast, a data mart is typically easier to build than an
enterprise warehouse. However, this advantage may turn into a problem when
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several data marts that were independently created need to be integrated into
a data warehouse for the entire enterprise.

In some other situations, an OLAP server does not exist and/or the client
tools directly access the data warehouse. This is indicated by the arrow
connecting the data warehouse tier to the front-end tier. This situation
is illustrated in Chap. 6, where the same queries for the Northwind case
study are expressed both in MDX (targeting the OLAP server) and in
SQL (targeting the data warehouse). An extreme situation is where there is
neither a data warehouse nor an OLAP server. This is called a virtual data
warehouse, which defines a set of views over operational databases that are
materialized for efficient access. The arrow connecting the data sources to
the front-end tier depicts this situation. Although a virtual data warehouse
is easy to build, it does not provide a real data warehouse solution, since it
does not contain historical data, does not contain centralized metadata, and
does not have the ability to clean and transform the data. Furthermore, a
virtual data warehouse can severely impact the performance of operational
databases.

Finally, a data staging area may not be needed when the data in the source
systems conforms very closely to the data in the warehouse. This situation
typically arises when there is one data source (or only a few) having high-
quality data. However, this is rarely the case in real-world situations.

3.5 Data Warehouse Design

Like in operational databases (studied in Sect. 2.1), there are two major
methods for the design of data warehouses and data marts. In the top-
down approach, the requirements of users at different organizational levels
are merged before the design process starts, and one schema for the entire
data warehouse is built, from which data marts can be obtained. In the
bottom-up approach, a schema is built for each data mart, according to
the requirements of the users of each business area. The data mart schemas
produced are then merged in a global warehouse schema. The choice between
the top-down and the bottom-up approach depends on many factors that will
be studied in Chap. 10 in this book.

Requirements 
specification

Conceptual 
design

Logical design Physical design

Fig. 3.6 Phases in data warehouse design
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There is still no consensus on the phases that should be followed for
data warehouse design. Most of the books in the data warehouse literature
follow a bottom-up, practitioner’s approach to design based on the relational
model, using the star, snowflake, and constellation schemas, which we will
study in detail in Chap. 5. In this book, we follow a different, model-based
approach for data warehouse design, which follows the traditional phases for
designing operational databases described in Chap. 2, that is, requirements
specification, conceptual design, logical design, and physical design. These
phases are shown in Fig. 3.6. In Chap. 10, which studies the design method
in detail, we will see that there are important differences between the design
phases for databases and data warehouses, arising from their different nature.
Also note that although, for simplicity, the phases in Fig. 3.6 are depicted
consecutively, actually there are multiple interactions between them. Finally,
we remark that the phases in Fig. 3.6 may be applied to define either the
schema of the overall schema of the organizational data warehouse or the
schemas of individual data marts.

A distinctive characteristic of the method presented in this book is the
importance given to the requirements specification and conceptual design
phases. For these phases, we can follow two approaches, which we explain
in detail in Chap. 10. In the analysis-driven approach, key users from
different organizational levels provide useful input about the analysis needs.
On the other hand, in the source-driven approach, the data warehouse
schema is obtained by analyzing the data source systems. In this approach,
normally, the participation of users is only required to confirm the correctness
of the data structures that are obtained from the source systems or to identify
some facts and measures as a starting point for the design of multidimensional
schemas. Finally, the analysis/source-driven approach is a combination
of the analysis- and source-driven approaches, aimed at matching the users’
analysis needs with the information that the source systems can provide. This
is why this approach is also called top-down/bottom-up analysis.

3.6 Business Intelligence Tools

Nowadays, the offer in business intelligence tools is quite large. The major
database providers, such as Microsoft, Oracle, IBM, and Teradata, have their
own suite of business intelligence tools. Other popular tools include SAP,
MicroStrategy, and Targit. In addition to the above commercial tools, there
are also open-source tools, of which Pentaho is the most popular one.

In this book, we have chosen two representative suites of tools for
illustrating the topics presented: Microsoft’s SQL Server tools and Pentaho
Business Analytics. In this section, we briefly describe these tools, while the
bibliographic notes section at the end of this chapter provides references to
other well-known business intelligence tools.
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3.6.1 Overview of Microsoft SQL Server Tools

Microsoft SQL Server provides an integrated platform for building analytical
applications. It is composed of three main components, described below:

• Analysis Services is an OLAP tool that provides analytical and data
mining capabilities. It is used to define, query, update, and manage
OLAP databases. The MDX (MultiDimensional eXpressions) language is
used to retrieve data. Users may work with OLAP data via client tools
(Excel or other OLAP clients) that interact with Analysis Services’ server
component. We will study these in Chaps. 5 and 6 when we define and
query the data cube for the Northwind case study. Further, Analysis
Services provides several data mining algorithms and uses the DMX (Data
Mining eXtensions) language for creating and querying data mining models
and obtaining predictions. We will study these in Chap. 9 when we exploit
the Northwind data warehouse for data analytics.

• Integration Services supports ETL processes, which are used for loading
and refreshing data warehouses on a periodic basis. Integration Services
is used to extract data from a variety of data sources; to combine, clean,
and summarize this data; and, finally, to populate a data warehouse with
the resulting data. We will explain in detail Integration Services when we
describe the ETL for the Northwind case study in Chap. 8.

• Reporting Services is used to define, generate, store, and manage
reports. Reports can be built from various types of data sources, including
data warehouses and OLAP cubes. Reports can be personalized and
delivered in a variety of formats. Users can view reports with a variety
of clients, such as web browsers or other reporting clients. Clients
access reports via Reporting Services’ server component. We will explain
Reporting Services when we build dashboards for the Northwind case study
in Chap. 9.

SQL Server provides two tools for developing and managing these com-
ponents. SQL Server Data Tools (SSDT) is a development platform
integrated with Microsoft Visual Studio. SQL Server Data Tools supports
Analysis Services, Reporting Services, and Integration Services projects.
On the other hand, SQL Server Management Studio (SSMS) provides
integrated management of all SQL Server components.

The underlying model across these tools is called the Business Intel-
ligence Semantic Model (BISM). This model comes in two modes, the
multidimensional and tabular modes, where, as their name suggest, the differ-
ence among them stems from their underlying paradigm (multidimensional or
relational). From the data model perspective, the multidimensional mode has
powerful capabilities for building advanced business intelligence applications
and supports large data volumes. On the other hand, the tabular mode is
simpler to understand and quicker to build than the multidimensional data
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mode. Further, the data volumes supported by the tabular mode are smaller
than those of the multidimensional mode in Analysis Services. From the query
language perspective, each of these modes has an associated query language,
MDX and DAX (Data Analysis Expressions), respectively. Finally, from the
data access perspective, the multidimensional mode supports data access in
MOLAP (multidimensional OLAP), ROLAP (relational OLAP), or HOLAP
(hybrid OLAP), which will be described in Chap. 5. On the other hand,
the tabular mode accesses data through xVelocity, an in-memory, column-
oriented database engine with compression capabilities. We will cover such
databases in Chap. 13. The tabular mode also allows the data to be retrieved
directly from relational data sources.

In this book, we cover only the multidimensional mode of BISM as well as
the MDX language.

3.6.2 Overview of Pentaho Business Analytics

Pentaho Business Analytics is a suite of business intelligence products.
It comes in two versions: an enterprise edition that is commercial and
a community edition that is open source. The main components are the
following:

• Pentaho Business Analytics Platform serves as the connection
point for all other components. It enables a unified, end-to-end solution
from data integration to visualization and consumption of data. It also
includes a set of tools for development, deployment, and management of
applications.

• Pentaho Analysis Services, also known as Mondrian, is a relational
OLAP server. It supports the MDX (multidimensional expressions) query
language and the XML for Analysis and olap4j interface specifications. It
reads from SQL and other data sources and aggregates data in a memory
cache.

• Pentaho Data Mining uses the Waikato Environment for Knowledge
Analysis (Weka) to search data for patterns. Weka consists of machine
learning algorithms for a broad set of data mining tasks. It contains
functions for data processing, regression analysis, classification methods,
cluster analysis, and visualization.

• Pentaho Data Integration, also known as Kettle, consists of a data
integration (ETL) engine and GUI (graphical user interface) applications
that allow users to define data integration jobs and transformations. It
supports deployment on single node computers as well as on a cloud or a
cluster.

• Pentaho Report Designer is a visual report writer that can query and
use data from many sources. It consists of a core reporting engine, capable
of generating reports in several formats based on an XML definition file.
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In addition, several design tools are provided, which are described next:

• Pentaho Schema Workbench provides a graphical interface for design-
ing OLAP cubes for Mondrian. The schema created is stored as an XML
file on disk.

• Pentaho Aggregation Designer operates on Mondrian XML schema
files and the database with the underlying tables described by the schema
to generate precalculated, aggregated answers to speed up analysis work
and MDX queries executed against Mondrian.

• Pentaho Metadata Editor is a tool that simplifies the creation of
reports and allows users to build metadata domains and relational data
models. It acts as an abstraction layer from the underlying data sources.

3.7 Summary

In this chapter, we introduced the multidimensional model, which is the
basis for data warehouse systems. We defined the notion of online analytical
processing (OLAP) systems as opposite to online transaction processing
(OLTP) systems. We then studied the data cube concept and its components:
dimensions, hierarchies, and measures. In particular, we presented several
classifications of measures and defined the notions of measure aggregation
and summarizability. Then, we defined a set of OLAP operations, like roll-
up and drill-down, that are used to interactively manipulate a data cube.
We then described data warehouse systems and highlighted their differences
with respect to traditional database systems. As data warehouse systems
include many different components, we discussed the basic architecture of
data warehouse systems and several variants of it that may be considered.
We finished this chapter by giving an overview of two representative sets of
tools: Microsoft SQL Server tools and Pentaho Business Analytics.

3.8 Bibliographic Notes

Basic data warehouse concepts can be found in the classic books by
Kimball [103] and by Inmon [90, 91]. In particular, the definition of data
warehouses we gave in Sect. 3.3 is from Inmon.

The notion of hypercube underlying the multidimensional model was
studied in [72], where the ROLLUP and the CUBE operations were defined
for SQL. Hierarchies in OLAP are studied, among other works, in [22, 123].
The notion of summarizability of measures was defined in [115] and has been
studied, for example, in [84–86]. Other classification of measures are given in
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[72, 103]. More details on these concepts are given in Chap. 5, where we also
give further references.

There is not yet a standard definition of the OLAP operations, in a similar
way as the relational algebra operations are defined for the relational algebra.
Many different algebras for OLAP have been proposed in the literature,
each one defining different sets of operations. A comparison of these OLAP
algebras is given in [181], where the authors advocate the need for a reference
algebra for OLAP. The definition of the operations we presented in this
chapter was inspired from [32].

There are many books that describe the various business intelligence tools.
We next give some references for commercial and open-source tools. For SQL
Server, the series of books devoted to Analysis Services [79], Integration Ser-
vices [105], and Reporting Services [209] cover extensively these components.
The business intelligence tools from Oracle are covered in [175, 218], while
those of IBM are covered in [147, 225]. SAP BusinessObjects is presented in
[81, 83], while MicroStrategy is covered in [50, 139]. For Pentaho, the book
[18] gives an overall description of the various components of the Pentaho
Business Intelligence Suite, while Mondrian is covered in the book [10], Kettle
in [26, 179], Reporting in [57], and Weka in [228]. The book [157] is devoted
to Big Data Analytics using Pentaho. On the academic side, a survey of
open-source tools for business intelligence is given in [199].

3.9 Review Questions

3.1 What is the meaning of the acronyms OLAP and OLTP?
3.2 Using an example of an application domain that you are familiar with,

describe the various components of the multidimensional model, that
is, facts, measures, dimensions, and hierarchies.

3.3 Why are hierarchies important in data warehouses? Give examples of
various hierarchies.

3.4 Discuss the role of measure aggregation in a data warehouse. How can
measures be characterized?

3.5 Give an example of a problem that may occur when summarizability is
not verified in a data warehouse.

3.6 Describe the various OLAP operations using the example you defined
in Question 3.2.

3.7 What is an operational database system? What is a data warehouse
system? Explain several aspects that differentiate these systems.

3.8 Give some essential characteristics of a data warehouse. How do a data
warehouse and a data mart differ? Describe two approaches for building
a data warehouse and its associated data marts.
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3.9 Describe the various components of a typical data warehouse architec-
ture. Identify variants of this architecture and specify in what situations
they are used.

3.10 Briefly describe the multidimensional model implemented in Analysis
Services.

3.10 Exercises

3.1 A data warehouse of a telephone provider consists of five dimensions:
caller customer, callee customer, time, call type, and call program and
three measures: number of calls, duration, and amount.

Define the OLAP operations to be performed in order to answer the
following queries. Propose the dimension hierarchies when needed.

(a) Total amount collected by each call program in 2012.
(b) Total duration of calls made by customers from Brussels in 2012.
(c) Total number of weekend calls made by customers from Brussels to

customers in Antwerp in 2012.
(d) Total duration of international calls started by customers in Belgium

in 2012.
(e) Total amount collected from customers in Brussels who are enrolled

in the corporate program in 2012.

3.2 A data warehouse of a train company contains information about train
segments. It consists of six dimensions, namely, departure station, arrival
station, trip, train, arrival time, and departure time, and three measures,
namely, number of passengers, duration, and number of kilometers.

Define the OLAP operations to be performed in order to answer the
following queries. Propose the dimension hierarchies when needed.

(a) Total number of kilometers made by Alstom trains during 2012
departing from French or Belgian stations.

(b) Total duration of international trips during 2012, that is, trips
departing from a station located in a country and arriving at a station
located in another country.

(c) Total number of trips that departed from or arrived at Paris during
July 2012.

(d) Average duration of train segments in Belgium in 2012.
(e) For each trip, average number of passengers per segment, which

means take all the segments of each trip and average the number
of passengers.
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3.3 Consider the data warehouse of a university that contains information
about teaching and research activities. On the one hand, the information
about teaching activities is related to dimensions department, professor,
course, and time, the latter at a granularity of academic semester.
Measures for teaching activities are number of hours and number of
credits. On the other hand, the information about research activities is
related to dimensions professor, funding agency, project, and time, the
latter twice for the start date and the end date, both at a granularity of
day. In this case, professors are related to the department to which they
are affiliated. Measures for research activities are the number of person
months and amount.

Define the OLAP operations to be performed in order to answer the
following queries. For this, propose the necessary dimension hierarchies.

(a) By department the total number of teaching hours during the
academic year 2012–2013.

(b) By department the total amount of research projects during the
calendar year 2012.

(c) By department the total number of professors involved in research
projects during the calendar year 2012.

(d) By professor the total number of courses delivered during the
academic year 2012–2013.

(e) By department and funding agency the total number of projects
started in 2012.



Chapter 4

Conceptual Data Warehouse Design

The advantages of using conceptual models for designing databases are
well known. Conceptual models facilitate communication between users
and designers since they do not require knowledge about specific features
of the underlying implementation platform. Further, schemas developed
using conceptual models can be mapped to various logical models, such
as relational, object-relational, or object-oriented models, thus simplifying
responses to changes in the technology used. Moreover, conceptual models
facilitate the database maintenance and evolution, since they focus on users’
requirements; as a consequence, they provide better support for subsequent
changes in the logical and physical schemas.

In this chapter, we focus our study on conceptual modeling for data
warehouses. In particular, we base our presentation in the MultiDim model,
which can be used to represent the data requirements of data warehouse and
OLAP applications. The definition of the model is given in Sect. 4.1. Since
hierarchies are essential for exploiting data warehouse and OLAP systems
to their full capabilities, in Sect. 4.2, we consider various kinds of hierarchies
that exist in real-world situations. We classify these hierarchies, giving a
graphical representation of them and emphasizing the differences between
them. We also present advanced aspects of conceptual modeling in Sect. 4.3.
Finally, in Sect. 4.4, we revisit the OLAP operations that we presented in
Chap. 2 by addressing a set of queries to the Northwind data warehouse.

4.1 Conceptual Modeling of Data Warehouses

As studied in Chap. 2, the conventional database design process includes the
creation of database schemas at three different levels: conceptual, logical,
and physical. A conceptual schema is a concise description of the users’
data requirements without taking into account implementation details.

A. Vaisman and E. Zimányi, Data Warehouse Systems, Data-Centric
Systems and Applications, DOI 10.1007/978-3-642-54655-6 4,
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Conventional databases are generally designed at the conceptual level using
some variation of the well-known entity-relationship (ER) model, although
the Unified Modeling Language (UML) is being increasingly used. Conceptual
schemas can be easily translated to the relational model by applying a set of
mapping rules.

Within the database community, it has been acknowledged for several
decades that conceptual models allow better communication between design-
ers and users for the purpose of understanding application requirements. A
conceptual schema is more stable than an implementation-oriented (logical)
schema, which must be changed whenever the target platform changes.
Conceptual models also provide better support for visual user interfaces;
for example, ER models have been very successful with users due to their
intuitiveness.

However, there is no well-established and universally adopted conceptual
model for multidimensional data. Due to this lack of a generic, user-friendly,
and comprehensible conceptual data model, data warehouse design is usually
directly performed at the logical level, based on star and/or snowflake
schemas (which we will study in Chap. 5), leading to schemas that are
difficult to understand by a typical user. Providing extensions to the ER
and the UML models for data warehouses is not really a solution to the
problem, since ultimately they represent a reflection and visualization of the
underlying relational technology concepts and, in addition, reveal their own
problems. Therefore, conceptual data warehousing modeling requires a model
that clearly stands on top of the logical level.

In this chapter, we use the MultiDim model, which is powerful enough to
represent at the conceptual level all elements required in data warehouse and
OLAP applications, that is, dimensions, hierarchies, and facts with associated
measures. The graphical notation of the MultiDim model is shown in Fig. 4.1.
As we can see, the notation resembles the one of the ER model, which we
presented in Chap. 2. A more detailed description of our notation is given in
Appendix A.

In order to give a general overview of the model, we shall use the example
in Fig. 4.2, which illustrates the conceptual schema of the Northwind data
warehouse. This figure includes several types of hierarchies, which will be
presented in more detail in the subsequent sections. We next introduce the
main components of the model.

A schema is composed of a set of dimensions and a set of facts.
A dimension is composed of either one level or one or more hierarchies.

A hierarchy is in turn composed of a set of levels (we explain below the
notation for hierarchies). There is no graphical element to represent a
dimension; it is depicted by means of its constituent elements.

A level is analogous to an entity type in the ER model. It describes a set
of real-world concepts that, from the application perspective, have similar
characteristics. For example, Product and Category are some of the levels
in Fig. 4.2. Instances of a level are called members. As shown in Fig. 4.1a,
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Fig. 4.1 Notation of the MultiDim model. (a) Level. (b) Hierarchy. (c) Cardinalities.
(d) Fact with measures and associated levels. (e) Types of measures. (f) Hierarchy
name. (g) Distributing attribute. (h) Exclusive relationships

a level has a set of attributes that describe the characteristics of their
members. In addition, a level has one or several identifiers that uniquely
identify the members of a level, each identifier being composed of one or
several attributes. For example, in Fig. 4.2, CategoryID is an identifier of the
Category level. Each attribute of a level has a type, that is, a domain for
its values. Typical value domains are integer, real, and string. We do not
include type information for attributes in the graphical representation of our
conceptual schemas.

A fact (Fig. 4.1d) relates several levels. For example, the Sales fact in
Fig. 4.2 relates the Employee, Customer, Supplier, Shipper, Order, Product, and
Time levels. As shown in Fig. 4.1d, the same level can participate several
times in a fact, playing different roles. Each role is identified by a name and
is represented by a separate link between the corresponding level and the
fact. For example, in Fig. 4.2, the Time level participates in the Sales fact
with the roles OrderDate, DueDate, and ShippedDate. Instances of a fact are
called fact members. The cardinality of the relationship between facts
and levels, as shown in Fig. 4.1c, indicates the minimum and the maximum
number of fact members that can be related to level members. For example,
in Fig. 4.2, the Sales fact is related to the Product level with a one-to-many
cardinality, which means that one sale is related to only one product and
that each product can have many sales. On the other hand, the Sales fact
is related to the Order level with a one-to-one cardinality, which means that
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Fig. 4.2 Conceptual schema of the Northwind data warehouse

every sale is related to only one order line and that each order line has only
one sale.

A fact may contain attributes commonly called measures. These contain
data (usually numerical) that are analyzed using the various perspectives
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represented by the dimensions. For example, the Sales fact in Fig. 4.2 includes
the measures Quantity, UnitPrice, Discount, SalesAmount, Freight, and Net-
Amount. The identifier attributes of the levels involved in a fact indicate the
granularity of the measures, that is, the level of detail at which measures are
represented.

Measures are aggregated along dimensions when performing roll-up oper-
ations. As shown in Fig. 4.1d, the aggregation function associated with
a measure can be specified next to the measure name, where the SUM
aggregation function is assumed by default. In Chap. 3, we classified measures
as additive, semiadditive, or nonadditive. As shown in Fig. 4.1e, we
assume by default that measures are additive, that is, they can be summarized
along all dimensions. For semiadditive and nonadditive measures, we include
the symbols ‘+!’ and ‘/+’, respectively. For example, in Fig. 4.2 the measures
Quantity and UnitPrice are, respectively, additive and semiadditive measures.
Further, measures and level attributes may be derived, where they are
calculated on the basis of other measures or attributes in the schema. We use
the symbol ‘/’ for indicating derived measures and attributes. For example,
in Fig. 4.2, the measure NetAmount is derived.

A hierarchy comprises several related levels, as in Fig. 4.1b. Given two
related levels of a hierarchy, the lower level is called the child and the higher
level is called the parent. Thus, the relationships composing hierarchies
are called parent-child relationships. The cardinalities in parent-child
relationships, as shown in Fig. 4.1c, indicate the minimum and the maximum
number of members in one level that can be related to a member in another
level. For example, in Fig. 4.2, the child level Product is related to the
parent level Category with a one-to-many cardinality, which means that every
product belongs to only one category and that each category can have many
products.

A dimension may contain several hierarchies, each one expressing a par-
ticular criterion used for analysis purposes; thus, we include the hierarchy
name (Fig. 4.1f) to differentiate them. If a single level contains attributes
forming a hierarchy, such as the attributes City, Region, and Country in the
Employee dimension in Fig. 4.2, this means that the user is not interested in
employing this hierarchy for aggregation purposes.

Levels in a hierarchy are used to analyze data at various granularities or
levels of detail. For example, the Product level contains specific information
about products, while the Category level may be used to see these products
from the more general perspective of the categories to which they belong. The
level in a hierarchy that contains the most detailed data is called the leaf
level. The name of the leaf level defines the dimension name, except for the
case where the same level participates several times in a fact, in which case
the role name defines the dimension name. These are called role-playing
dimensions. The level in a hierarchy representing the most general data is
called the root level. It is usual (but not mandatory) to represent the root
of a hierarchy using a distinguished level called All, which contains a single
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member, denoted all. The decision of including this level in multidimensional
schemas is left to the designer. In the remainder, we do not show the All
level in the hierarchies (except when we consider it necessary for clarity of
presentation), since we consider that it is meaningless in conceptual schemas.

The identifier attributes of a parent level define how child members are
grouped. For example, in Fig. 4.2, CategoryID in the Category level is an
identifier attribute; it is used for grouping different product members during
the roll-up operation from the Product to the Category levels. However, in
the case of many-to-many parent-child relationships, it is also needed to
determine how to distribute the measures from a child to its parent members.
For this, a distributing attribute (Fig. 4.1g) may be used, if needed. For
example, in Fig. 4.2, the relationship between Employee and City is many-
to-many, that is, the same employee can be assigned to several cities. A
distributing attribute can be used to store the percentage of time that an
employee devotes to each city.

Finally, it is sometimes the case that two or more parent-child relationships
are exclusive. This is represented using the symbol ‘⊗’, as shown in Fig. 4.1h.
An example is given in Fig. 4.2, where states can be aggregated either into
regions or into countries. Thus, according to their type, states participate in
only one of the relationships departing from the State level.

The reader may have noticed that many of the concepts of the MultiDim
model are similar to those used in Chap. 3, when we presented the multidi-
mensional model and the data cube. This suggests that the MultiDim model
stays on top of the logical level, hiding from the user the implementation
details. In other words, the model represents a conceptual data cube.
Therefore, we will call the model in Fig. 4.2 as the Northwind data cube.

4.2 Hierarchies

Hierarchies are key elements in analytical applications, since they provide
the means to represent the data under analysis at different abstraction
levels. In real-world situations, users must deal with complex hierarchies of
various kinds. Even though we can model complex hierarchies at a conceptual
level, as we will study in this section, logical models of data warehouse and
OLAP systems only provide a limited set of kinds of hierarchies. Therefore,
users are often unable to capture the essential semantics of multidimensional
applications and must limit their analysis to considering only the predefined
kinds of hierarchies provided by the tools in use. Nevertheless, a data
warehouse designer should be aware of the problems that the various kinds
of hierarchies introduce and be able to deal with them. In this section, we
discuss several kinds of hierarchies that can be represented by means of
the MultiDim model, although the classification of hierarchies that we will
provide is independent of the conceptual model used to represent them. Since
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many of the hierarchies we study next are not present in the Northwind data
cube of Fig. 4.2, we will introduce new ad hoc examples when needed.

4.2.1 Balanced Hierarchies

A balanced hierarchy has only one path at the schema level, where all
levels are mandatory. An example is given by hierarchy Product → Category
in Fig. 4.2. At the instance level, the members form a tree where all the
branches have the same length, as shown in Fig. 4.3. All parent members
have at least one child member, and a child member belongs exactly to one
parent member. For example, in Fig. 4.3, each category is assigned at least
one product, and a product belongs to only one category.

all

Beverages

Chai Chang

Seafood

Ikura Konbu

...

.. .. ..Product

Category

All

Fig. 4.3 Example of instances of the balanced hierarchy Product → Category in
Fig. 4.2 (repeated from Fig. 3.3)

4.2.2 Unbalanced Hierarchies

An unbalanced hierarchy has only one path at the schema level, where at
least one level is not mandatory. Therefore, at the instance level, there can
be parent members without associated child members. Figure 4.4a shows a
hierarchy schema in which a bank is composed of several branches, where
a branch may have agencies; further, an agency may have ATMs. As a
consequence, at the instance level, the members represent an unbalanced
tree, that is, the branches of the tree have different lengths, since some
parent members do not have associated child members. For example, Fig. 4.4b
shows a branch with no agency and several agencies with no ATM. As in the
case of balanced hierarchies, the cardinalities in the schema imply that every
child member should belong to at most one parent member. For example, in
Fig. 4.4, every agency belongs to one branch.

Unbalanced hierarchies include a special case that we call recursive
hierarchies, also called parent-child hierarchies. In this kind of hierarchy,
the same level is linked by the two roles of a parent-child relationship (note the
difference between the notions of parent-child hierarchies and relationships).
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Fig. 4.5 Instances of the parent-child hierarchy in the Northwind data warehouse

An example is given by dimension Employee in Fig. 4.2, which represents an
organizational chart in terms of the employee–supervisor relationship. The
Subordinate and Supervisor roles of the parent-child relationship are linked
to the Employee level. As seen in Fig. 4.5, this hierarchy is unbalanced since
employees with no subordinate will not have descendants in the instance tree.

4.2.3 Generalized Hierarchies

Sometimes, the members of a level are of different types. A typical example
arises with customers, which can be either companies or persons. Such
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a situation is usually captured in an ER model using the generalization
relationship studied in Chap. 2. Further, suppose that measures pertaining
to customers must be aggregated differently according to the customer type,
where for companies the aggregation path is Customer → Sector → Branch,
while for persons it is Customer → Profession → Branch. To represent such
kinds of hierarchies, the MultiDim model has the graphical notation shown in
Fig. 4.6a, where the common and specific hierarchy levels and also the parent-
child relationships between them are clearly represented. Such hierarchies are
called generalized hierarchies.
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Fig. 4.6 A generalized hierarchy. (a) Schema. (b) Examples of instances

At the schema level, a generalized hierarchy contains multiple exclusive
paths sharing at least the leaf level; they may also share some other levels, as
shown in Fig. 4.6a. This figure shows the two aggregation paths described
above, one for each type of customer, where both belong to the same
hierarchy. At the instance level, each member of the hierarchy belongs to
only one path, as can be seen in Fig. 4.6b. We use the symbol ‘⊗’ to indicate
that the paths are exclusive for every member. Such a notation is equivalent
to the xor annotation used in UML. The levels at which the alternative paths
split and join are called, respectively, the splitting and joining levels.

The distinction between splitting and joining levels in generalized hier-
archies is important to ensure correct measure aggregation during roll-up
operations, a property called summarizability, which we discussed in Chap. 3.
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Generalized hierarchies are, in general, not summarizable. For example, not
all customers are mapped to the Profession level. Thus, the aggregation
mechanism should be modified when a splitting level is reached in a roll-
up operation.

In generalized hierarchies, it is not necessary that splitting levels are
joined. An example is the hierarchy in Fig. 4.7, which is used for analyz-
ing international publications. Three kinds of publications are considered:
journals, books, and conference proceedings. The latter can be aggregated
to the conference level. However, there is not a common joining level for all
paths.
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Fig. 4.7 A generalized hierarchy without a joining level

Generalized hierarchies include a special case commonly referred to as
ragged hierarchies. An example is the hierarchy City → State → Region
→ Country → Continent given in Fig. 4.2. As can be seen in Fig. 4.8, some
countries, such as Belgium, are divided into regions, whereas others, such
as Germany, are not. Furthermore, small countries like the Vatican have
neither regions nor states. A ragged hierarchy is a generalized hierarchy
where alternative paths are obtained by skipping one or several intermediate
levels. At the instance level, every child member has only one parent member,
although the path length from the leaves to the same parent level can be
different for different members.

4.2.4 Alternative Hierarchies

Alternative hierarchies represent the situation where at the schema level,
there are several nonexclusive hierarchies that share at least the leaf level.
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Fig. 4.8 Examples of instances of the ragged hierarchy in Fig. 4.2

An example is given in Fig. 4.9a, where the Time dimension includes two
hierarchies corresponding to different groupings of months into calendar years
and fiscal years. Figure 4.9b shows an instance of the dimension (we do not
show members of the Time level), where it is supposed that fiscal years begin
in February. As it can be seen, the hierarchies form a graph, since a child
member is associated with more than one parent member and these parent
members belong to different levels. Alternative hierarchies are needed when
we want to analyze measures from a unique perspective (e.g., time) using
alternative aggregations.

Note the difference between generalized and alternative hierarchies (see
Figs. 4.6 and 4.9). Although the two kinds of hierarchies share some levels,
they represent different situations. In a generalized hierarchy, a child member
is related to only one of the paths, whereas in an alternative hierarchy, a
child member is related to all paths, and the user must choose one of them
for analysis.

4.2.5 Parallel Hierarchies

Parallel hierarchies arise when a dimension has several hierarchies associ-
ated with it, accounting for different analysis criteria. Further, the component
hierarchies may be of different kinds.

Parallel hierarchies can be dependent or independent depending on
whether the component hierarchies share levels. Figure 4.10 shows an
example of a dimension that has two parallel independent hierarchies.
The hierarchy ProductGroups is used for grouping products according to
categories or departments, while the hierarchy DistributorLocation groups
them according to distributors’ divisions or regions. On the other hand, the
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Fig. 4.9 An alternative hierarchy. (a) Schema. (b) Examples of instances

P
ro

du
ct

 
G

ro
up

s
D

is
tr

ib
ut

or
Lo

ca
tio

n

Product

ProductNumber 
ProductName
Description
Size
DistributorName
...

Category

CategoryName
Description
...

DistributorDivision

DivisionName
Responsible
...

DistributorRegion

RegionName
Area
...

Department

DepartmentName
Description
...
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parallel dependent hierarchies given in Fig. 4.11 represent a company that
requires sales analysis for stores located in several countries. The hierarchy
StoreLocation represents the geographic division of the store address, while
the hierarchy SalesOrganization represents the organizational division of the
company. Since the two hierarchies share the State level, this level plays
different roles according to the hierarchy chosen for the analysis. Sharing
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levels in a conceptual schema reduces the number of its elements without
losing its semantics, thus improving readability. In order to unambiguously
define the levels composing the various hierarchies, the hierarchy name must
be included in the sharing level for hierarchies that continue beyond that
level. This is the case of StoreLocation and SalesOrganization indicated on
level State.
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Fig. 4.11 An example of parallel dependent hierarchies

Even though both alternative and parallel hierarchies share some levels and
may be composed of several hierarchies, they represent different situations
and should be clearly distinguishable at the conceptual level. This is done
by including only one (for alternative hierarchies) or several (for parallel
hierarchies) hierarchy names, which account for various analysis criteria. In
this way, the user is aware that in the case of alternative hierarchies, it is not
meaningful to combine levels from different component hierarchies, whereas
this can be done for parallel hierarchies. For example, for the schema in
Fig. 4.11, the user can safely issue a query “Sales figures for stores in city A
that belong to the sales district B.”

Further, in parallel dependent hierarchies, a leaf member may be related
to various different members in a shared level, which is not the case for
alternative hierarchies that share levels. For instance, consider the schema
in Fig. 4.12, which refers to the living place and the territory assignment of
sales employees. It should be obvious that traversing the hierarchies Lives
and Territory from the Employee to the State level will lead to different
states for employees who live in one state and are assigned to another. As a
consequence of this, aggregated measure values can be reused for shared levels
in alternative hierarchies, whereas this is not the case for parallel dependent
hierarchies. For example, suppose that the amount of sales generated by
employees E1, E2, and E3 are $50, $100, and $150, respectively. If all
employees live in state A, but only E1 and E2 work in this state, aggregating
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Fig. 4.12 Parallel dependent hierarchies leading to different parent members of the
shared level

the sales of all employees to the State level following the Lives hierarchy gives
a total amount of $300, whereas the corresponding value will be equal to $150
when the Territories hierarchy is traversed. Note that both results are correct,
since the two hierarchies represent different analysis criteria.

4.2.6 Nonstrict Hierarchies

In the hierarchies studied so far, we have assumed that each parent-child
relationship has a one-to-many cardinality, that is, a child member is related
to at most one parent member and a parent member may be related to several
child members. However, many-to-many relationships between parent and
child levels are very common in real-life applications. For example, a diagnosis
may belong to several diagnosis groups, 1 week may span 2 months, a product
may be classified into various categories, etc.

A hierarchy that has at least one many-to-many relationship is called
nonstrict; otherwise, it is called strict. The fact that a hierarchy is strict
or not is orthogonal to its kind. Thus, the hierarchies previously presented
can be either strict or nonstrict. We next analyze some issues that arise when
dealing with nonstrict hierarchies.

Florida
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Leverling

Georgia

......

Employee

City

State

Fig. 4.13 Examples of instances of the nonstrict hierarchy in Fig. 4.2
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Figure 4.2 shows a nonstrict hierarchy where an employee may be assigned
to several cities. Some instances of this hierarchy are shown in Fig. 4.13. Here,
the employee Janet Leverling is assigned to three cities that belong to two
states. Therefore, since at the instance level a child member may have more
than one parent member, the members of the hierarchy form an acyclic graph.
Note the slight abuse of terminology. We use the term “nonstrict hierarchy”
to denote an acyclic classification graph. We use this term for several reasons.
Firstly, the term “hierarchy” conveys the notion that users need to analyze
measures at different levels of detail; the term “acyclic classification graph”
is less clear in this sense. Further, the term “hierarchy” is already used by
practitioners, and there are tools that support many-to-many parent-child
relationships. Finally, this notation is customary in data warehouse research.
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Fig. 4.14 Double-counting problem when aggregating a sales amount measure in
Fig. 4.13. (a) Strict hierarchy. (b) Nonstrict hierarchy

Nonstrict hierarchies induce the problem of double counting of measures
when a roll-up operation reaches a many-to-many relationship. Let us
consider the example in Fig. 4.14, which illustrates sales by employees with
aggregations along City and State levels (defined in Fig. 4.13), and employee
Janet Leverling with total sales equal to 100. Figure 4.14a shows a situation
where the employee has been assigned to Atlanta, in a strict hierarchy
scenario. The sum of sales by territory and by state can be calculated
straightforwardly, as the figure shows. Figure 4.14b shows a nonstrict
hierarchy scenario, where the employee has been assigned the territories
Atlanta, Orlando, and Tampa. This approach causes incorrect aggregated
results, since the employee’s sales are counted three times instead of only
once.

One solution to the double-counting problem consists in transforming a
nonstrict hierarchy into a strict one by creating a new member for each
set of parent members participating in a many-to-many relationship. In our
example, a new member that represents the three cities Atlanta, Orlando, and
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Tampa will be created. However, in this case, a new member must also be
created in the state level, since the three cities belong to two states. Another
solution would be to ignore the existence of several parent members and to
choose one of them as the primary member. For example, we may choose the
city of Atlanta. However, neither of these solutions correspond to the users’
analysis requirements, since in the former, artificial categories are introduced,
and in the latter, some pertinent analysis scenarios are ignored.
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Fig. 4.15 A nonstrict hierarchy with a distributing attribute

An alternative approach to the double-counting problem would be to
indicate how measures are distributed between several parent members
for many-to-many relationships. For example, Fig. 4.15 shows a nonstrict
hierarchy where employees may work in several sections. The schema includes
a measure that represents an employee’s overall salary, that is, the sum of the
salaries paid in each section. Suppose that an attribute stores the percentage
of time for which an employee works in each section. In this case, we depict
this attribute in the relationship with an additional symbol ‘÷’, indicating
that it is a distributing attribute determining how measures are divided
between several parent members in a many-to-many relationship.

Choosing an appropriate distributing attribute is important in order to
avoid approximate results when aggregating measures. For example, suppose
that in Fig. 4.15, the distributing attribute represents the percentage of time
that an employee works in a specific section. If the employee has a higher
position in one section and although she works less time in that section,
she may earn a higher salary. Thus, applying the percentage of time as a
distributing attribute for measures representing an employee’s overall salary
may not give an exact result. Note also that in cases where the distributing
attribute is unknown, it can be approximated by considering the total
number of parent members with which the child member is associated. In
the example of Fig. 4.14, since we have three cities with which the employee
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Fig. 4.16 Transforming a nonstrict hierarchy into a strict hierarchy with an
additional dimension

Janet Leverling is associated, one-third of the value of the measure will be
accounted for each city.

Figure 4.16 shows another solution to the problem of Fig. 4.15 where we
transformed a nonstrict hierarchy into independent dimensions. However, this
solution corresponds to a different conceptual schema, where the focus of
analysis has been changed from employees’ salaries to employees’ salaries
by section. Note that this solution can only be applied when the exact
distribution of the measures is known, for instance, when the amounts
of salary paid for working in the different sections are known. It cannot
be applied to nonstrict hierarchies without a distributing attribute, as in
Fig. 4.13.
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Fig. 4.17 Double-counting problem for a nonstrict hierarchy

Nevertheless, although the solution in Fig. 4.16 aggregates correctly the
Salary measure when applying the roll-up operation from the Section to the
Division level, the problem of double counting of the same employee will
occur. Suppose that we want to use the schema in Fig. 4.16 to calculate the
number of employees by section or by division; this value can be calculated
by counting the instances of employees in the fact. The example in Fig. 4.17a
considers five employees who are assigned to various sections. Counting the
number of employees who work in each section gives correct results. However,
the aggregated values for each section cannot be reused for calculating the
number of employees in every division, since some employees (E1 and E2 in
Fig. 4.17a) will be counted twice and the total result will give a value equal
to 7 (Fig. 4.17b) instead of 5.
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In summary, nonstrict hierarchies can be handled in several ways:

• Transforming a nonstrict hierarchy into a strict one:

– Creating a new parent member for each group of parent members linked
to a single child member in a many-to-many relationship.

– Choosing one parent member as the primary member and ignoring the
existence of other parent members.

– Transforming the nonstrict hierarchy into two independent dimensions.

• Including a distributing attribute.
• Calculating approximate values of a distributing attribute.

Since each solution has its advantages and disadvantages and requires
special aggregation procedures, the designer must select the appropriate
solution according to the situation at hand and the users’ requirements.

4.3 Advanced Modeling Aspects

In this section, we discuss particular modeling issues, namely, facts with
multiple granularities and many-to-many dimensions, and show how they
can be represented in the MultiDim model.

4.3.1 Facts with Multiple Granularities

Sometimes, it is the case that measures are captured at multiple granular-
ities. An example is given in Fig. 4.18, where, for instance, sales for the USA
might be reported per state, while European sales might be reported per
city. As another example, consider a medical data warehouse for analyzing
patients, where there is a diagnosis dimension with levels diagnosis, diagnosis
family, and diagnosis group. A patient may be related to a diagnosis at
the lowest granularity but may also have (more imprecise) diagnoses at the
diagnosis family and diagnosis group levels.

As can be seen in Fig. 4.18, this situation can be modeled using exclusive
relationships between the various granularity levels. Obviously, the issue in
this case is to get correct analysis results when fact data are registered at
multiple granularities.

4.3.2 Many-to-Many Dimensions

In a many-to-many dimension, several members of the dimension partic-
ipate in the same fact member. An example is shown in Fig. 4.19. Since an
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Fig. 4.19 Multidimensional schema for the analysis of bank accounts

account can be jointly owned by several clients, aggregation of the balance
according to the clients will count this balance as many times as the number
of account holders. For example, as shown in Fig. 4.20, suppose that at
some point in time T1 there are two accounts A1 and A2 with balances
of, respectively, 100 and 500. Suppose further that both accounts are shared
between several clients: account A1 is shared by C1, C2, and C3 and account
A2 by C1 and C2. The total balance of the two accounts is equal to 600;
however, aggregation (e.g., according to the Time or the Client dimension)
gives a value equal to 1,300.

The problem of double counting introduced above can be analyzed
through the concept of multidimensional normal forms (MNFs). MNFs
determine the conditions that ensure correct measure aggregation in the
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presence of the complex hierarchies studied in this chapter. The first
multidimensional normal form (1MNF) requires each measure to be uniquely
identified by the set of associated leaf levels. The 1MNF is the basis for correct
schema design. To analyze the schema in Fig. 4.19 in terms of the 1MNF,
we need to find out the functional dependencies that exist between the leaf
levels and the measures. Since the balance depends on the specific account
and the time when it is considered, the account and the time determine the
balance. Therefore, the schema in Fig. 4.19 does not satisfy the 1MNF, since
the measure is not determined by all leaf levels, and thus the fact must be
decomposed.
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Fig. 4.20 An example of double-counting problem in a many-to-many dimension

Let us recall the notion of multivalued dependency we have seen in Chap. 2.
There are two possible ways in which the Balance fact in Fig. 4.19 can be
decomposed. In the first one, the same joint account may have different clients
assigned to it during different periods of time, and thus the time and the
account multidetermine the clients. This situation leads to the solution shown
in Fig. 4.21a, where the original fact is decomposed into two facts, that is,
AccountHolders and Balance. If the joint account holders do not change over
time, clients are multidetermined just by the accounts (but not the time).
In this case, the link relating the Time level and the AccountHolders fact can
be eliminated. Alternatively, this situation can be modeled with a nonstrict
hierarchy as shown in Fig. 4.21b.

Even though the solutions proposed in Fig. 4.21 eliminate the double-
counting problem, the two schemas in Fig. 4.21 require programming effort for
queries that ask for information about individual clients. The difference lies in
the fact that in Fig. 4.21a, a drill-across operation (see Sect. 3.2) between the
two facts is needed, while in Fig. 4.21b, special procedures for aggregation in
nonstrict hierarchies must be applied. In the case of Fig. 4.21a, since the two
facts represent different granularities, queries with drill-across operations are
complex, demanding a conversion either from a finer to a coarser granularity
(e.g., grouping clients to know who holds a specific balance in an account)
or vice versa (e.g., distributing a balance between different account holders).
Note also that the two schemas in Fig. 4.21 could represent the information
about the percentage of ownership of accounts by customers (if this is
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Fig. 4.21 Two possible decompositions of the fact in Fig. 4.19. (a) Creating two
facts. (b) Including a nonstrict hierarchy

known). This could be represented by a measure in the AccountHolders fact in
Fig. 4.21a and by a distributing attribute in the many-to-many relationship
in Fig. 4.21b.

Another solution to this problem is shown in Fig. 4.22. In this solution, an
additional level is created, which represents the groups of clients participating
in joint accounts. In the case of the example in Fig. 4.20, two groups should
be created: one that includes clients C1, C2, and C3 and another with clients
C1 and C2. Note, however, that the schema in Fig. 4.22 is not in the 1MNF,
since the measure Balance is not determined by all leaf levels, that is, it is only
determined by Time and Account. Therefore, the schema must be decomposed
leading to schemas similar to those in Fig. 4.21, with the difference that in
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this case, the Client level in the two schemas in Fig. 4.21 is replaced by a
nonstrict hierarchy composed of the ClientGroup and the Client levels.

Finally, to avoid many-to-many dimensions, we can choose one client as
the primary account owner and ignore the other clients. In this way, only
one client will be related to a specific balance, and the schema in Fig. 4.19
can be used without any problems related to double counting of measures.
However, this solution may not represent the real-world situation and may
exclude from the analysis the other clients of joint accounts.
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Fig. 4.22 Alternative decomposition of the fact in Fig. 4.19

In summary, many-to-many dimensions in multidimensional schemas
can be avoided by using one of the solutions presented in Fig. 4.21. The
choice between these alternatives depends on the functional and multivalued
dependencies existing in the fact, the kinds of hierarchies in the schema, and
the complexity of the implementation.

4.4 Querying the Northwind Cube Using the OLAP
Operations

We conclude the chapter showing how the OLAP operations studied in
Chap. 3 can be used to answer a series of queries addressed to the Northwind
cube in Fig. 4.2. The idea of this section is to show how these operations
can be used to express queries over a conceptual model, independently of the
actual underlying implementation.

Query 4.1. Total sales amount per customer, year, and product category.

ROLLUP*(Sales, Customer → Customer, OrderDate → Year,
Product → Category, SUM(SalesAmount))
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The ROLLUP* operation is used to specify the levels at which each of the
dimensions Customer, OrderDate, and Product are rolled up. For the other
dimensions in the cube, a roll-up to All is performed. The SUM operation
is applied to aggregate the measure SalesAmount. All other measures of the
cube are removed from the result.

Query 4.2. Yearly sales amount for each pair of customer country and
supplier countries.

ROLLUP*(Sales, OrderDate → Year, Customer → Country,
Supplier → Country, SUM(SalesAmount))

As in the previous query, a roll-up to the specified levels is performed while
performing a SUM operation to aggregate the measure SalesAmount.

Query 4.3. Monthly sales by customer state compared to those of the
previous year.

Sales1 ← ROLLUP*(Sales, OrderDate → Month, Customer → State,
SUM(SalesAmount))

Sales2 ← RENAME(Sales1, SalesAmount ← PrevYearSalesAmount)
Result ← DRILLACROSS(Sales2, Sales1,

Sales2.OrderDate.Month = Sales1.OrderDate.Month AND
Sales2.OrderDate.Year+1 = Sales1.OrderDate.Year AND
Sales2.Customer.State = Sales1.Customer.State)

Here, we first apply a ROLLUP operation to aggregate the measure Sales-
Amount. Then, a copy of the resulting cube, with the measure renamed as
PrevYearSalesAmount, is kept in the cube Sales2. The two cubes are joined
with the DRILLACROSS operation, where the join condition ensures that cells
corresponding to the same month of two consecutive years and to the same
client state are merged in a single cell in the result. Although we include the
join condition for the Customer dimension, since it is an equijoin, this is not
mandatory—it is assumed by default for all the dimensions not mentioned
in the join condition. In the following, we do not include the equijoins in the
conditions in the DRILLACROSS operations.

Query 4.4. Monthly sales growth per product, that is, total sales per
product compared to those of the previous month.

Sales1 ← ROLLUP*(Sales, OrderDate → Month, Product → Product,
SUM(SalesAmount))

Sales2 ← RENAME(Sales1, SalesAmount ← PrevMonthSalesAmount)
Sales3 ← DRILLACROSS(Sales2, Sales1,

( Sales1.OrderDate.Month > 1 AND
Sales2.OrderDate.Month+1 = Sales1.OrderDate.Month AND
Sales2.OrderDate.Year = Sales1.OrderDate.Year ) OR

( Sales1.OrderDate.Month = 1 AND Sales2.OrderDate.Month = 12 AND
Sales2.OrderDate.Year+1 = Sales1.OrderDate.Year ) )

Result ← ADDMEASURE(Sales3, SalesGrowth =
SalesAmount - PrevMonthSalesAmount )
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As in the previous query, we first apply a ROLLUP operation, make a copy of
the resulting cube, and join the two cubes with the DRILLACROSS operation.
However, here the join condition is more involved than in the previous query,
since two cases must be considered. In the first one, for the months starting
from February (Month > 1), the cells to be merged must be consecutive and
belong to the same year. In the second case, the cell corresponding to January
must be merged with the one of December from the previous year. Finally,
in the last step, we compute a new measure SalesGrowth as the difference
between the sales amount of the two corresponding months.

Query 4.5. Three best-selling employees.

Sales1 ← ROLLUP*(Sales, Employee → Employee, SUM(SalesAmount))
Result ← MAX(Sales1, SalesAmount, 3)

Here, we roll up all the dimensions of the cube, except Employee, to the All
level, while aggregating the measure SalesAmount. Then, the MAX operation
is applied while specifying that cells with the top three values of the measure
are kept in the result.

Query 4.6. Best-selling employee per product and year.

Sales1 ← ROLLUP*(Sales, Employee → Employee,
Product → Product, OrderDate → Year, SUM(SalesAmount))

Result ← MAX(Sales1, SalesAmount) BY Product, OrderDate

In this query, we roll up the dimensions of the cube as specified. Then, the
MAX operation is applied after grouping by Product and OrderDate.

Query 4.7. Countries that account for top 50% of the sales amount.

Sales1 ← ROLLUP*(Sales, Customer → Country, SUM(SalesAmount))
Result ← TOPPERCENT(Sales1, Customer, 50) ORDER BY SalesAmount DESC

Here, we roll up the Customer dimension to Country level and the other
dimensions to the All level. Then, the TOPPERCENT operation selects the
countries that cumulatively account for top 50% of the sales amount.

Query 4.8. Total sales and average monthly sales by employee and year.

Sales1 ← ROLLUP*(Sales, Employee → Employee, OrderDate → Month,
SUM(SalesAmount))

Result ← ROLLUP*(Sales1, Employee → Employee, OrderDate → Year,
SUM(SalesAmount), AVG(SalesAmount))

Here, we first roll up the cube to the Employee and Month levels by summing
the SalesAmountmeasure. Then, we perform a second roll-up to the Year level
to obtain to overall sales and the average of monthly sales.

Query 4.9. Total sales amount and total discount amount per product and
month.

Sales1 ← ADDMEASURE(Sales, TotalDisc = Discount * Quantity * UnitPrice)
Result ← ROLLUP*(Sales1, Product → Product, OrderDate → Month,

SUM(SalesAmount), SUM(TotalDisc))
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Here, we first compute a new measure TotalDisc from three other measures.
Then, we roll up the cube to the Product and Month levels.

Query 4.10. Monthly year-to-date sales for each product category.

Sales1 ← ROLLUP*(Sales, Product → Category, OrderDate → Month,
SUM(SalesAmount))

Result ← ADDMEASURE(Sales1, YTD = SUM(SalesAmount) OVER
OrderDate BY Year ALL CELLS PRECEDING)

Here, we start by performing a roll-up to the category and month levels.
Then, a new measure is created by applying the SUM aggregation function
to a window composed of all preceding cells of the same year. Notice that it
is supposed that the members of the Time dimension are ordered according
to the calendar time.

Query 4.11. Moving average over the last 3 months of the sales amount by
product category.

Sales1 ← ROLLUP*(Sales, Product → Category, OrderDate → Month,
SUM(SalesAmount))

Result ← ADDMEASURE(Sales1, MovAvg = AVG(SalesAmount) OVER
OrderDate 2 CELLS PRECEDING)

In the first roll-up, we aggregate the SalesAmount measure by category and
month. Then, we compute the moving average over a window containing the
cells corresponding to the current month and the two preceding months.

Query 4.12. Personal sales amount made by an employee compared with
the total sales amount made by herself and her subordinates during 1997.

Sales1 ← SLICE(Sales, OrderDate.Year = 1997)
Sales2 ← ROLLUP*(Sales1, Employee → Employee, SUM(SalesAmount))
Sales3 ← RENAME(Sales2, PersonalSales ← SalesAmount)
Sales4 ← RECROLLUP(Sales2, Employee → Employee, Supervision,

SUM(SalesAmount))
Result ← DRILLACROSS(Sales4, Sales3)

In the first step, we restrict the data in the cube to the year 1997. Then, in
the second step, we perform the aggregation of the sales amount measure by
employee, thus obtaining the sales figures independently of the supervision
hierarchy. Then, in the third step, the obtained measure is renamed. In the
fourth step, we apply the recursive roll-up, which performs an iteration over
the supervision hierarchy by aggregating children to parent until the top level
is reached. Finally, the last step obtains the cube with both measures.

Query 4.13. Total sales amount, number of products, and sum of the
quantities sold for each order.

ROLLUP*(Sales, Order → Order, SUM(SalesAmount),
COUNT(Product) AS ProductCount, SUM(Quantity))
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Here, we roll up all the dimensions, except Order, to the All level, while
adding the SalesAmount and Quantity measures and counting the number of
products.

Query 4.14. For each month, total number of orders, total sales amount,
and average sales amount by order.

Sales1 ← ROLLUP*(Sales, OrderDate → Month, Order → Order,
SUM(SalesAmount))

Result ← ROLLUP*(Sales1, OrderDate → Month, SUM(SalesAmount),
AVG(SalesAmount) AS AvgSales, COUNT(Order) AS OrderCount)

In the query above, we first roll up to the Month and Order levels. Then,
we perform another roll-up to remove the Order dimension and obtain the
requested measures.

Query 4.15. For each employee, total sales amount, number of cities, and
number of states to which she is assigned.

ROLLUP*(Sales, Employee → State, SUM(SalesAmount), COUNT(DISTINCT City)
AS NoCities, COUNT(DISTINCT State) AS NoStates)

Recall that Territories is a nonstrict hierarchy in the Employee dimension.
In this query, we roll up to the State level while adding the SalesAmount
measure and counting the number of distinct cities and states. Notice that
the ROLLUP* operation takes into account the fact that the hierarchy is
nonstrict and avoids the double-counting problem to which we referred in
Sect. 4.2.6.

4.5 Summary

This chapter focused on conceptual modeling for data warehouses. As is
the case for databases, conceptual modeling allows user requirements to be
represented while hiding actual implementation details, that is, regardless
of the actual underlying data representation. To explain conceptual mul-
tidimensional modeling, we used the MultiDim model, which is based on
the entity-relationship model and provides an intuitive graphical notation. It
is well known that graphical representations facilitate the understanding of
application requirements by users and designers.

We have presented a comprehensive classification of hierarchies, taking
into account their differences at the schema and at the instance level. We
started by describing balanced, unbalanced, and generalized hierarchies,
all of which account for a single analysis criterion. Recursive (or parent-
child) and ragged hierarchies are special cases of unbalanced and generalized
hierarchies, respectively. Then, we introduced alternative hierarchies, which
are composed of several hierarchies defining various aggregation paths for
the same analysis criterion. We continued with parallel hierarchies, which
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are composed of several hierarchies accounting for different analysis criteria.
When parallel hierarchies share a level, they are called dependent; otherwise,
they are called independent. All the above hierarchies can be either strict
or nonstrict, depending on whether they contain many-to-many relationships
between parent and child levels. Nonstrict hierarchies define graphs at the
instance level. We then presented advanced modeling aspects, namely, facts
with multiple granularities and many-to-many dimensions. These often arise
in practice but are frequently overlooked in the data warehouse literature.
In Chap. 5, we will study how all these concepts can be implemented at the
logical level. We concluded showing how the OLAP operations introduced in
Chap. 3 can be applied over the conceptual model, using as example a set of
queries over the Northwind data cube.

4.6 Bibliographic Notes

Conceptual data warehouse design was first introduced by Golfarelli et al.
[65]. A detailed description of conceptual multidimensional models can be
found in [203]. Many multidimensional models have been proposed in the
literature. Some of them provide graphical representations based on the ER
model (e.g., [184, 205]), as is the case of the MultiDim model, while others
are based on UML (e.g., [1, 120, 204]). Other models propose new notations
(e.g., [67, 88, 207]), while others do not refer to a graphical representation
(e.g., [86, 160, 166]). There is great variation in the kinds of hierarchies
supported by current multidimensional models. A detailed comparison of
how the various multidimensional models cope with hierarchies is given in
[126, 158]. Multidimensional normal forms were defined in [113, 114].

The Object Management Group (OMG) has proposed the Common Ware-
house Model (CWM)1 as a standard for representing data warehouse and
OLAP systems. This model provides a framework for representing metadata
about data sources, data targets, transformations, and analysis, in addition
to processes and operations for the creation and management of warehouse
data. The CWM model is represented as a layered structure consisting of
a number of submodels. One of these submodels, the resource layer, defines
models that can be used for representing data in data warehouses and includes
the relational model as one of them. Further, the analysis layer presents a
metamodel for OLAP, which includes the concepts of a dimension and a
hierarchy. In the CWM, it is possible to represent all of the kinds of hierarchies
presented in this chapter.

1http://www.omg.org/docs/formal/03-03-02.pdf

http://www.omg.org/docs/formal/03-03-02.pdf
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4.7 Review Questions

4.1 Discuss the following concepts: dimension, level, attribute, identifier,
fact, role, measure, hierarchy, parent-child relationship, cardinalities,
root level, and leaf level.

4.2 Explain the difference, at the schema and at the instance level, between
balanced and unbalanced hierarchies.

4.3 Give an example of a recursive hierarchy. Explain how to represent an
unbalanced hierarchy with a recursive one.

4.4 Explain the usefulness of generalized hierarchies. To which concept of
the entity-relationship model are these hierarchies related?

4.5 What is a splitting level? What is a joining level? Does a generalized
hierarchy always have a joining level?

4.6 Explain why ragged hierarchies are a particular case of generalized
hierarchies.

4.7 Explain in what situations alternative hierarchies are used.
4.8 Describe the difference between parallel dependent and parallel inde-

pendent hierarchies.
4.9 Illustrate with examples the difference between generalized, alternative,

and parallel hierarchies.
4.10 What is the difference between strict and nonstrict hierarchies?
4.11 Illustrate with an example the problem of double counting of measures

for nonstrict hierarchies. Describe different solutions to this problem.
4.12 What is a distributing attribute? Explain the importance of choosing

an appropriate distributing attribute.
4.13 What does it mean to have a fact with multiple granularities?
4.14 Relate the problem of double counting to the functional and multival-

ued dependencies that hold in a fact.
4.15 Why must a fact be decomposed in the presence of dependencies? Show

an example of a fact that can be decomposed differently according to
the dependencies that hold on it.

4.8 Exercises

4.1 Design a MultiDim schema for an application domain that you are
familiar with. Make sure that the schema has a fact with associated
levels and measures, at least two hierarchies, one of them with an exclu-
sive relationship, and a parent-child relationship with a distributing
attribute.

4.2 Design a MultiDim schema for the telephone provider application in
Ex. 3.1.

4.3 Design a MultiDim schema for the train application in Ex. 3.2.
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4.4 Design a MultiDim schema for the university application given in Ex. 3.3
taking into account the different granularities of the time dimension.

4.5 Design a MultiDim schema for the French horse race application given
in Ex. 2.1. With respect to the races, the application must be able to
display different statistics about the prizes won by owners, by trainers,
by jockeys, by breeders, by horses, by sires (i.e., fathers), and by
damsires (i.e., maternal grandfathers). With respect to the bettings,
the application must be able to display different statistics about the
payoffs by type, by race, by racetrack, and by horses.

4.6 In each of the dimensions of the multidimensional schema of Ex. 4.5,
identify the hierarchies (if any) and determine its type.

4.7 Design a MultiDim schema for the Formula One application given in
Ex. 2.2. With respect to the races, the application must be able to
display different statistics about the prizes won by drivers, by teams, by
circuit, by Grand Prix, and by season.

4.8 Consider a time dimension composed of two alternative hierarchies: (a)
day, month, quarter, and year and (b) day, month, bimonth, and year.
Design the conceptual schema of this dimension and show examples of
instances.

4.9 Consider the well-known Foodmart cube whose schema is given in
Fig. 4.23. Write using the OLAP operations the following queries2:

(a) All measures for stores.
(b) All measures for stores in the states of California and Washington

summarized at the state level.
(c) All measures for stores in the states of California and Washington

summarized at the city level.
(d) All measures, including the derived ones, for stores in the state of

California summarized at the state and the city levels.
(e) Sales average in 1997 by store state and store type.
(f) Sales profit by store and semester in 1997.
(g) Sales profit percentage by quarter and semester in 1997.
(h) Sales profit by store for the first quarter of each year.
(i) Unit sales by city and percentage of the unit sales of the city with

respect to its state.
(j) Unit sales by city and percentage of the unit sales of the city with

respect to its country.
(k) For promotions other than “No Promotion,” unit sales and percent-

age of the unit sales of the promotion with respect to all promotions.
(l) Unit sales by promotion, year, and quarter.

2The queries of this exercise are based on a document written by Carl Nolan entitled
“Introduction to Multidimensional Expressions (MDX).”
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Fig. 4.23 Conceptual schema of the Foodmart cube

(m) Unit sales by promotion and store, for stores in the states of
California and Washington.

(n) Sales profit by month and sales profit growth with respect to the
previous month.

(o) Sales profit by month and sales profit growth with respect to the
same month of the previous year.
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(p) Sales profit by month and percentage profit growth with respect to
the previous month.

(q) For every month in 1997, unit sales and unit sales difference with
respect to the opening month of the quarter.

(r) Monthly year-to-date sales by product subcategory in 1997.
(s) Unit sales by product subcategory, customer state, and quarter.
(t) Sales profit in 1997 by store type and store city, for cities whose unit

sales in 1997 exceeded 25,000.
(u) Sales profit in 1997 by store type and store city, for cities whose

profit percentage in 1997 is less than the one of their state.
(v) All measures for store cities between Beverly Hills and Spokane (in

the USA) sorted by name regardless of the hierarchy.
(w) All measures for store cities sorted by descending order of sales count

regardless of the hierarchy.
(x) All measures for the top-five store cities based on sales count.
(y) All measures for the top-five store cities based on sales count and

all measures for all the other cities combined.
(z) Store cities whose sales count accounts for 50% of the overall sales

count.
(aa) For store cities whose sales count accounts for 50% of the overall

sales count, unit sales by store type.
(bb) Unit sales and number of customers by product subcategory.
(cc) Number of customers and number of female customers by store.
(dd) For each product subcategory, maximum monthly unit sales in 1997

and the month when that occurred.
(ee) For 1997 and by brand, total unit sales, monthly average of unit

sales, and number of months involved in the computation of the
average.



Chapter 5

Logical Data Warehouse Design

Conceptual models are useful to design database applications since they
favor the communication between the stakeholders in a project. However,
conceptual models must be translated into logical ones for their implemen-
tation on a database management system. In this chapter, we study how
the conceptual multidimensional model studied in the previous chapter can
be represented in the relational model. We start in Sect. 5.1 by describing
the three logical models for data warehouses, namely, relational OLAP
(ROLAP), multidimensional OLAP (MOLAP), and hybrid OLAP (HOLAP).
In Sect. 5.2, we focus on the relational representation of data warehouses
and study four typical implementations: the star, snowflake, starflake, and
constellation schemas. In Sect. 5.3, we present the rules for mapping a
conceptual multidimensional model (in our case, the MultiDim model) to the
relational model. Section 5.4 discusses how to represent the time dimension.
Sections 5.5 and 5.6 study how hierarchies, facts with multiple granularities,
and many-to-many dimensions can be implemented in the relational model.
Section 5.7 is devoted to the study of slowly changing dimensions, which
arise when dimensions in a data warehouse are updated. In Sect. 5.8, we
study how a data cube can be represented in the relational model and how it
can be queried in SQL using the SQL/OLAP extension. Finally, to show how
these concepts are applied in practice, in Sects. 5.9 and 5.10, we show how
the Northwind cube can be implemented, respectively, in Microsoft Analysis
Services and in Mondrian.

5.1 Logical Modeling of Data Warehouses

There are several approaches for implementing a multidimensional model,
depending on how the data cube is stored. These approaches are:

A. Vaisman and E. Zimányi, Data Warehouse Systems, Data-Centric
Systems and Applications, DOI 10.1007/978-3-642-54655-6 5,
© Springer-Verlag Berlin Heidelberg 2014
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• Relational OLAP (ROLAP), which stores data in relational databases
and supports extensions to SQL and special access methods to efficiently
implement the multidimensional data model and the related operations.

• Multidimensional OLAP (MOLAP), which stores data in specialized
multidimensional data structures (e.g., arrays) and implements the OLAP
operations over those data structures.

• Hybrid OLAP (HOLAP), which combines both approaches.

In ROLAP systems, multidimensional data are stored in relational tables.
Further, in order to increase performance, aggregates are also precomputed
in relational tables (we will study aggregate computation in Chap. 7). These
aggregates, together with indexing structures, take a large space from the
database. Moreover, since multidimensional data reside in relational tables,
OLAP operations must be performed on such tables, yielding usually complex
SQL statements. Finally, in ROLAP systems, all data management relies on
the underlying relational DBMS. This has several advantages since relational
databases are well standardized and provide a large storage capacity.

In MOLAP systems, data cubes are stored in multidimensional arrays,
combined with hashing and indexing techniques. Therefore, the OLAP
operations can be implemented efficiently, since such operations are very
natural and simple to perform. Data management in MOLAP is performed by
the multidimensional engine, which generally provides less storage capacity
than ROLAP systems. Normally, typical index structures (e.g., B-trees, or
R-trees) are used to index sparse dimensions (e.g., a product or a store
dimension), and dense dimensions (like the time dimension) are stored in
lists of multidimensional arrays. Each leaf node of the index tree points to
such arrays, providing efficient cube querying and storage, since the index in
general fits in main memory. Normally, MOLAP systems are used to query
data marts where the number of dimensions is relatively small (less than ten,
as a popular rule of thumb). For high-dimensionality data, ROLAP systems
are used. Finally, MOLAP systems are proprietary, which reduces portability.

While MOLAP systems offer less storage capacity than ROLAP systems,
they provide better performance when multidimensional data are queried
or aggregated. Thus, HOLAP systems benefit from the storage capacity of
ROLAP and the processing capabilities of MOLAP. For example, a HOLAP
server may store large volumes of detailed data in a relational database, while
aggregations are kept in a separate MOLAP store.

Current OLAP tools support a combination of the above models. Neverthe-
less, most of these tools rely on an underlying data warehouse implemented
on a relational database management system. For this reason, in what follows,
we study the relational OLAP implementation in detail.



5.2 Relational Data Warehouse Design 123

5.2 Relational Data Warehouse Design

One possible relational representation of the multidimensional model is based
on the star schema, where there is one central fact table, and a set of
dimension tables, one for each dimension. An example is given in Fig. 5.1,
where the fact table is depicted in gray and the dimension tables are depicted
in white. The fact table contains the foreign keys of the related dimension
tables, namely, ProductKey, StoreKey, PromotionKey, and TimeKey, and the
measures, namely, Amount and Quantity. As shown in the figure, referential
integrity constraints are specified between the fact table and each of the
dimension tables.

Time

TimeKey
Date
Event
WeekdayFlag
WeekendFlag
Season
...

Product

ProductKey
ProductNumber 
ProductName
Description
Size
CategoryName
CategoryDescr
DepartmentName
DepartmentDescr
...

Sales

ProductKey
StoreKey
PromotionKey
TimeKey
Amount
Quantity

Store

StoreKey
StoreNumber
StoreName
StoreAddress
ManagerName
CityName
CityPopulation
CityArea
StateName
StatePopulation
StateArea
StateMajorActivity
...Promotion

PromotionKey
PromotionDescr
DiscountPerc
Type
StartDate
EndDate
...

Fig. 5.1 An example of a star schema

In a star schema, the dimension tables are, in general, not normalized.
Therefore, they may contain redundant data, especially in the presence
of hierarchies. This is the case for dimension Product in Fig. 5.1 since all
products belonging to the same category will have redundant information for
the attributes describing the category and the department. The same occurs
in dimension Store with the attributes describing the city and the state.

On the other hand, fact tables are usually normalized: their key is the union
of the foreign keys since this union functionally determines all the measures,
while there is no functional dependency between the foreign key attributes.
In Fig. 5.1, the fact table Sales is normalized, and its key is composed by
ProductKey, StoreKey, PromotionKey, and TimeKey.
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A snowflake schema avoids the redundancy of star schemas by normal-
izing the dimension tables. Therefore, a dimension is represented by several
tables related by referential integrity constraints. In addition, as in the
case of star schemas, referential integrity constraints also relate the fact table
and the dimension tables at the finest level of detail.

Time

TimeKey
Date
Event
WeekdayFlag
WeekendFlag
Season
...

Category

CategoryKey
CategoryName
Description
DepartmentKey
...

Department

DepartmentKey
DepartmentName
Description
...

ProductKey
ProductNumber 
ProductName
Description
Size
CategoryKey
...

Sales
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StoreKey
PromotionKey
TimeKey
Amount
Quantity

Store

StoreKey
StoreNumber
StoreName
StoreAddress
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CityKey
...

City

CityKey
CityName
CityPopulation
CityArea
StateKey
...

State

StateKey
StateName
StatePopulation
StateArea
StateMajorActivity
...

Promotion

PromotionKey
PromotionDescr
DiscountPerc
Type
StartDate
EndDate
...

Product

Fig. 5.2 An example of a snowflake schema

An example of a snowflake schema is given in Fig. 5.2. Here, the fact
table is exactly the same as in Fig. 5.1. However, the dimensions Product
and Store are now represented by normalized tables. For example, in the
Product dimension, the information about categories has been moved to the
table Category, and only the attribute CategoryKey remained in the original
table. Thus, only the value of this key is repeated for each product of the same
category, but the information about a category will only be stored once, in
table Category. Normalized tables are easy to maintain and optimize storage
space. However, performance is affected since more joins need to be performed
when executing queries that require hierarchies to be traversed. For example,
the query “Total sales by category” for the star schema in Fig. 5.1 reads in
SQL as follows:
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SELECT CategoryName, SUM(Amount)
FROM Product P, Sales S
WHERE P.ProductKey = S.ProductKey
GROUP BY CategoryName

while in the snowflake schema in Fig. 5.2, we need an extra join, as follows:

SELECT CategoryName, SUM(Amount)
FROM Product P, Category C, Sales S
WHERE P.ProductKey = S.ProductKey AND P.CategoryKey = C.CategoryKey
GROUP BY CategoryName

A starflake schema is a combination of the star and the snowflake
schemas, where some dimensions are normalized while others are not. We
would have a starflake schema if we replace the tables Product, Category, and
Department in Fig. 5.2, by the dimension table Product of Fig. 5.1, and leave
all other tables in Fig. 5.2 (like dimension table Store) unchanged.
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DueTimeKey
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...

Fig. 5.3 An example of a constellation schema

Finally, a constellation schema has multiple fact tables that share
dimension tables. The example given in Fig. 5.3 has two fact tables Sales and
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Purchases sharing the Time and Product dimension. Constellation schemas
may include both normalized and denormalized dimension tables.

We will discuss further star and snowflake schemas when we study logical
representation of hierarchies later in this chapter.

5.3 Relational Implementation of the Conceptual
Model

In Chap. 2, we presented a set of rules that can be applied to translate an
ER model to the relational model. Analogously, we can define a set of rules
to translate the conceptual model we use in this book (the MultiDim model)
into the relational model using either the star or snowflake schema. In this
section and the following one, we study such mapping rules.

Since the MultiDim model is based on the ER model, its mapping to the
relational model is based on the rules described in Sect. 2.4.1, as follows:

Rule 1: A level L, provided it is not related to a fact with a one-to-one
relationship, is mapped to a table TL that contains all attributes of the
level. A surrogate key may be added to the table; otherwise, the identifier
of the level will be the key of the table. Note that additional attributes will
be added to this table when mapping relationships using Rule 3 below.

Rule 2: A fact F is mapped to a table TF that includes as attributes all
measures of the fact. Further, a surrogate key may be added to the table.
Note that additional attributes will be added to this table when mapping
relationships using Rule 3 below.

Rule 3: A relationship between either a fact F and a dimension level L, or
between dimension levels LP and LC (standing for the parent and child
levels, respectively), can be mapped in three different ways, depending on
its cardinalities:

Rule 3a: If the relationship is one-to-one, the table corresponding to the
fact (TF ) or to the child level (TC) is extended with all the attributes
of the dimension level or the parent level, respectively.

Rule 3b: If the relationship is one-to-many, the table corresponding to
the fact (TF ) or to the child level (TC) is extended with the surrogate
key of the table corresponding to the dimension level (TL) or the parent
level (TP ), respectively, that is, there is a foreign key in the fact or child
table pointing to the other table.

Rule 3c: If the relationship is many-to-many, a new table TB (standing
for bridge table) is created that contains as attributes the surrogate keys
of the tables corresponding to the fact (TF ) and the dimension level
(TL), or the parent (TP ) and child levels (TC), respectively. The key of
the table is the combination of both surrogate keys. If the relationship
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has a distributing attribute, an additional attribute is added to the
table to store this information.

In the above rules, surrogate keys are generated for each dimension level
in a data warehouse. The main reason for this is to provide independence
from the keys of the underlying source systems because such keys can change
across time. Another advantage of this solution is that surrogate keys are
usually represented as integers in order to increase efficiency, whereas keys
from source systems may be represented in less efficient data types such as
strings. Nevertheless, the keys coming from the source systems should also
be kept in the dimensions to be able to match data from sources with data
in the warehouse. Obviously, an alternative solution is to reuse the keys from
the source systems in the data warehouse.

Notice that a fact table obtained by the mapping rules above will contain
the surrogate key of each level related to the fact with a one-to-many
relationship, one for each role that the level is playing. The key of the table is
composed of the surrogate keys of all the participating levels. Alternatively,
if a surrogate key is added to the fact table, the combination of the surrogate
keys of all the participating levels becomes an alternate key.

As we will see in Sect. 5.5, more specialized rules are needed for mapping
the various kinds of hierarchies that we studied in Chap. 4.

Applying the above rules to the Northwind conceptual data cube given
in Fig. 4.2 yields the tables shown in Fig. 5.4. The Sales table includes eight
foreign keys, that is, one for each level related to the fact with a one-to-
many relationship. Recall from Chap. 4 that in role-playing dimensions,
a dimension plays several roles. This is the case for the dimension Time
where, in the relational model, each role will be represented by a foreign
key. Thus, OrderDateKey, DueDateKey, and ShippedDateKey are foreign keys
to the Time dimension table in Fig. 5.4. Note also that dimension Order is
related to the fact with a one-to-one relationship. Therefore, the attributes
of the dimension are included as part of the fact table. For this reason, such
a dimension is called a fact (or degenerate) dimension. The fact table
also contains five attributes representing the measures: UnitPrice, Quantity,
Discount, SalesAmount, and Freight. Finally, note that the many-to-many
parent-child relationship between Employee and Territory is mapped to the
table Territories, containing two foreign keys.

With respect to keys, in the Northwind data warehouse of Fig. 5.4, we
have illustrated the two possibilities for defining the keys of dimension levels,
namely, generating surrogate keys and keeping the database key as data
warehouse key. For example, Customer has a surrogate key CustomerKey and
a database key CustomerID. On the other hand, SupplierKey in Supplier is a
database key. The choice of one among these two solutions is addressed in
the ETL process that we will see in Chap. 8.
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Sales

CustomerKey
EmployeeKey
OrderDateKey
DueDateKey
ShippedDateKey
ShipperKey
ProductKey
SupplierKey
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OrderLineNo
UnitPrice
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Time
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Date
DayNbWeek
DayNameWeek
DayNbMonth
DayNbYear
WeekNbYear
MonthNumber
MonthName
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Year

Supplier

SupplierKey
CompanyName
Address
PostalCode
CityKey

Customer

CustomerKey
CustomerID
CompanyName
Address
PostalCode
CityKey

Shipper

ShipperKey
CompanyName

Employee

EmployeeKey
FirstName
LastName
Title
BirthDate
HireDate
Address
City
Region
PostalCode
Country
SupervisorKey

Territories

EmployeeKey
CityKey

Continent

ContinentKey
ContinentName

City

CityKey
CityName
StateKey (0,1)
CountryKey (0,1)

AK: (OrderNo,
OrderLineNo)

AK: CustomerID

AK: Date

State

StateKey
StateName
EnglishStateName
StateType
StateCode
StateCapital
RegionName (0,1)
RegionCode (0,1)
CountryKey

Country

CountryKey
CountryName
CountryCode
CountryCapital
Population
Subdivision
ContinentKey

Product

ProductKey
ProductName
QuantityPerUnit
UnitPrice
Discontinued
CategoryKey

Category

CategoryKey
CategoryName
Description

Fig. 5.4 Relational representation of the Northwind data warehouse in Fig. 4.2

5.4 Time Dimension

A data warehouse is, in the end, a historical database. Therefore, a time
dimension is present in almost all data warehouses. Time information is
included both as foreign keys in a fact table, indicating the time when a
fact took place, and as a time dimension, containing the aggregation levels,
that is, the different ways in which facts can be aggregated across time.

In OLTP database applications, temporal information is usually derived
from attributes of type DATE using the functions provided by the database
system. For example, a typical OLTP application would not explicitly store
whether a particular date is a holiday: this would be computed on the fly
using appropriate functions. Also, the fact that a particular date belongs
to a week, a month, and so on is not explicitly stored. On the other hand,
in a data warehouse, such information is stored as attributes in the time
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dimension since OLAP queries are highly demanding, and there is no time
to perform such computations each time a fact must be summarized. For
example, a query like “Total sales during weekends,” posed over the schema
of Fig. 5.1, would be easily evaluated with the following SQL query:

SELECT SUM(SalesAmount)
FROM Time T, Sales S
WHERE T.TimeKey = S.TimeKey AND T.WeekendFlag

The granularity of the time dimension varies depending on their use. For
example, if we are interested in monthly data, we would define the time
dimension with a granularity that will correspond to a month. Thus, the time
dimension table of a data warehouse spanning 5 years will have 5× 12 = 60
tuples. On the other hand, if we are interested in more detailed data, we could
define the time dimension with a granularity that corresponds to a second.
Thus, the same data warehouse as above will have a time dimension with
5 × 12 × 30 × 24 × 3,600 = 155,520,000 tuples. The time dimension has the
particularity that it can be (and in practice it is) populated automatically.

Finally, note that time dimension may have more than one hierarchy (recall
our calendar/fiscal year example in Fig. 4.9). Further, even if we use a single
hierarchy, we must be careful to satisfy the summarizability conditions. For
example, a day aggregates correctly over a month and a year level (a day
belongs to exactly 1 month and 1 year), whereas a week may correspond to
2 different months, and thus the week level cannot be aggregated over the
month level in a time dimension hierarchy.

5.5 Logical Representation of Hierarchies

The general mapping rules given in the previous section do not capture the
specific semantics of all of the kinds of hierarchies described in Sect. 4.2.
In addition, for some kinds of hierarchies, alternative logical representations
exist. In this section, we consider in detail the logical representation of the
various kinds of hierarchies studied in Chap. 4.

5.5.1 Balanced Hierarchies

As we have seen, in a conceptual multidimensional schema, the levels of
dimension hierarchies are represented independently, and these levels are
linked by parent-child relationships. Therefore, applying the mapping rules
given in Sect. 5.3 to balanced hierarchies leads to snowflake schemas
described before in this chapter: each level is represented as a separate table,
which includes the key and the attributes of the level, as well as foreign keys
for the parent-child relationships. For example, applying Rules 1 and 3b to
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the Categories hierarchy in Fig. 4.2 yields a snowflake structure with tables
Product and Category shown in Fig. 5.5a.

Nevertheless, if star schemas are required, it is necessary to represent
hierarchies using flat tables, where the key and the attributes of all levels
forming a hierarchy are included in a single table. This structure can be
obtained by denormalizing the tables that represent several hierarchy levels.
As an example, the Time dimension of Fig. 4.2 can be represented in a single
table containing all attributes, as shown in Fig. 5.5b.

Category

CategoryKey
CategoryName
Description

Product

ProductKey
ProductName
QuantityPerUnit
UnitPrice
Discontinued
CategoryKey

Time

TimeKey
Date
...
MonthNumber
MonthName
Quarter
Semester
Year

a b

Fig. 5.5 Relations for a balanced hierarchy. (a) Snowflake structure. (b) Flat table

As we have seen in Sect. 5.2, snowflake schemas better represent
hierarchical structures than star schemas, since every level can be easily
distinguished and, further, levels can be reused between different hierarchies.
Additionally, in this representation, specific attributes can be included in
the different levels of a hierarchy. For example, the Product and Category
tables in Fig. 5.5a have specific attributes. However, snowflake schemas are
less performant for querying due to the joins that are needed for combining
the data scattered in the various tables composing a hierarchy.

On the other hand, star schemas facilitate query formulation since
fewer joins are needed for expressing queries, owing to denormalization.
Additionally, much research has been done to improve system performance
for processing star queries. However, star schemas have some drawbacks.
For example, they do not model hierarchies adequately since the hierarchy
structure is not clear. For example, for the Store dimension in Fig. 5.1, it is not
clear which attributes can be used for hierarchies. As can also be seen in the
figure, it is difficult to clearly associate attributes with their corresponding
levels, making the hierarchy structure difficult to understand.

5.5.2 Unbalanced Hierarchies

Since unbalanced hierarchies do not satisfy the summarizability conditions
(see Sect. 3.1.2), the mapping described in Sect. 5.3 may lead to the problem
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of excluding from the analysis the members of nonleaf levels that do not
have an associated child. For instance, since in Fig. 4.4a all measures are
associated with the ATM level, these measures will be aggregated into the
higher levels only for those agencies that have ATMs and, similarly, only
for those branches that have agencies. To avoid this problem, an unbalanced
hierarchy can be transformed into a balanced one using placeholders (marked
PH1,PH2, . . . ,PHn in Fig. 5.6) or null values in missing levels. Then, the
logical mapping for balanced hierarchies may be applied.

bank  X

branch 1 branch 3

agency 11 agency 12 agency 31 agency 32

ATM 111 ATM 121

branch 2

PH1

PH4PH2 PH5PH3

Fig. 5.6 Transformation of the unbalanced hierarchy in Fig. 4.4b into a balanced one
using placeholders

The above transformation has the following consequences. First, the fact
table contains measures belonging to all levels whose members can be a leaf
at the instance level. For example, measures for the ATM level and for the
Agency level will be included in the fact table for those members that do
not have an ATM. This has the problem that users must be aware that they
have to deal with fact data at several different granularities. Further, when
for a child member there are two or more consecutive parent levels missing,
measure values must be repeated for aggregation purposes. For example, this
would be the case for branch 2 in Fig. 5.6 since two placeholders are used for
two consecutive missing levels. In addition, the introduction of meaningless
values requires additional storage space. Finally, special interface must be
developed to hide placeholders from users.

Recall from Sect. 4.2.2 that parent-child hierarchies are a special case
of unbalanced hierarchies. Mapping these hierarchies to the relational model
yields tables containing all attributes of a level and an additional foreign
key relating child members to their corresponding parent. For example,
the table Employee in Fig. 5.4 shows the relational representation of the
parent-child hierarchy in Fig. 4.2. Although such a table represents the
semantics of parent-child hierarchies, operations over it are more complex.
In particular, recursive queries are necessary for traversing a parent-child
hierarchy. Recursive queries are allowed both in SQL and in MDX.
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5.5.3 Generalized Hierarchies

Generalized hierarchies account for the case where dimension members are of
different kinds, and each kind has a specific aggregation path. For example,
in Fig. 4.6, customers can be either companies or persons, where companies
are aggregated through the path Customer→ Sector→ Branch, while persons
are aggregated through the path Customer → Profession → Branch.

As was the case for balanced hierarchies, two approaches can be used for
representing generalized hierarchies at the logical level: create a table for
each level, leading to snowflake schemas, or create a single flat table for all
the levels, where null values are used for attributes that do not pertain to
specific members (e.g., tuples for companies will have null values in attributes
corresponding to persons). Alternatively, a mix of these two approaches can
be followed: create one table for the common levels and another table for the
specific ones. Finally, we could also use separate fact and dimension tables
for each path. In all these approaches, we must keep metadata about which
tables compose the different aggregation paths, while we need to specify
additional constraints to ensure correct queries (e.g., to avoid grouping Sector
with Profession in Fig. 4.6).

Customer

Sector

SectorKey
SectorName
Description
BranchKey
...

Branch

BranchKey
BranchName
Description
...Profession

ProfessionKey
ProfessionName
Description
BranchKey
...

CustomerKey
CustomerId
CustomerName
Address
SectorKey (0,1)
ProfessionKey (0,1)
...

Fig. 5.7 Relations for the generalized hierarchy in Fig. 4.6

Applying the mapping described in Sect. 5.3 to the generalized hierarchy
in Fig. 4.6 yields the relations shown in Fig. 5.7. Even though this schema
clearly represents the hierarchical structure, it does not allow one to traverse
only the common levels of the hierarchy (e.g., to go from Customer to Branch).
To ensure this possibility, we must add the following mapping rule:

Rule 4: A table corresponding to a splitting level in a generalized hierarchy
has an additional attribute which is a foreign key of the next joining level,
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provided it exists. The table may also include a discriminating attribute
that indicates the specific aggregation path of each member.

Sector

SectorKey
SectorName
Description
BranchKey
...

Branch

BranchKey
BranchName
Description
...Profession

ProfessionKey
ProfessionName
Description
BranchKey
...

Customer

CustomerKey
CustomerId
CustomerName
Address
SectorKey (0,1)
ProfessionKey (0,1)
BranchKey
CustomerType
...

Fig. 5.8 Improved relational representation of the generalized hierarchy in Fig. 4.6

An example of the relations for the hierarchy in Fig. 4.6 is given in Fig. 5.8.
The table Customer includes two kinds of foreign keys: one that indicates
the next specialized hierarchy level (SectorKey and ProfessionKey), which is
obtained by applying Rules 1 and 3b in Sect. 5.3; the other kind of foreign
key corresponds to the next joining level (BranchKey), which is obtained by
applying Rule 4 above. The discriminating attribute CustomerType, which can
take the values Person and Company, indicates the specific aggregation path
of members to facilitate aggregations. Finally, check constraints must be
specified to ensure that only one of the foreign keys for the specialized levels
may have a value, according to the value of the discriminating attribute:

ALTER TABLE Customer ADD CONSTRAINT CustomerTypeCK
CHECK ( CustomerType IN ('Person', 'Company') )

ALTER TABLE Customer ADD CONSTRAINT CustomerPersonFK
CHECK ( (CustomerType != 'Person') OR
( ProfessionKey IS NOT NULL AND SectorKey IS NULL ) )

ALTER TABLE Customer ADD CONSTRAINT CustomerCompanyFK
CHECK ( (CustomerType != 'Company') OR
( ProfessionKey IS NULL AND SectorKey IS NOT NULL ) )

The schema in Fig. 5.8 allows one to choose alternative paths for analysis.
One possibility is to use the paths that include the specific levels, for example,
Profession or Sector. Another possibility is to only access the levels that are
common to all members, for example, to analyze all customers, whatever
their type, using the hierarchy Customer and Branch. As with the snowflake
structure, one disadvantage of this structure is the necessity to apply join
operations between several tables. However, an important advantage is the
expansion of the analysis possibilities that it offers.
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The mapping above can also be applied to ragged hierarchies since these
hierarchies are a special case of generalized hierarchies. This is illustrated in
Fig. 5.4 where the City level has two foreign keys to the State and Country
levels. Nevertheless, since in a ragged hierarchy there is a unique path where
some levels can be skipped, another solution is to embed the attributes of
an optional level in the splitting level. This is illustrated in Fig. 5.4, where
the level State has two optional attributes corresponding to the Region level.
Finally, another solution would be to transform the hierarchy at the instance
level by including placeholders in the missing intermediate levels, as it is done
for unbalanced hierarchies in Sect. 5.5.2. In this way, a ragged hierarchy is
converted into a balanced hierarchy and a star or snowflake structure can be
used for its logical representation.

5.5.4 Alternative Hierarchies

For alternative hierarchies, the traditional mapping to relational tables can
be applied. This is shown in Fig. 5.9 for the conceptual schema in Fig. 4.9.
Note that even though generalized and alternative hierarchies can be easily
distinguished at the conceptual level (see Figs. 4.6a and 4.9), this distinction
cannot be made at the logical level (compare Figs. 5.7 and 5.9).

Time

TimeKey 
Date
MonthKey
...

FiscalYear

Month

MonthKey
MonthName
FiscalQuarterKey
CalendarQuarterKey
...

FiscalQuarter

FiscalQuarterKey
FiscalQuarterNo
FiscalYearKey
...

CalendarYear

CalendYearKey
CalendarYearNo
...

CalendarQuarter

CalendQuarterKey
CalendarQuarterNo
CalendYearKey
...

FiscalYearKey
FiscalYearNo
...

Fig. 5.9 Relations for the alternative hierarchy in Fig. 4.9

5.5.5 Parallel Hierarchies

As parallel hierarchies are composed of several hierarchies, their logical
mapping consists in combining the mappings for the specific types of
hierarchies. For example, Fig. 5.10 shows the result of applying this mapping
to the schema shown in Fig. 4.11.
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Territory

TerritoryKey
TerritoryName
Description

Employee

EmployeeKey
EmployeeID
FirstName
LastName
Title
BirthDate
...

State

StateKey
StateName
EnglishStateName
StateType
...

City

CityKey
CityName
CityPopulation
CityArea
...

Fig. 5.10 Relations for the parallel dependent hierarchies in Fig. 4.12

Note that shared levels in parallel dependent hierarchies are represented in
one table (State, in this example). Since these levels play different roles in each
hierarchy, we can create views in order to facilitate queries and visualization.
For example, in Fig. 5.10, table States contains all states where an employee
lives, works, or both. Therefore, aggregating along the path Employee→ City
→ State will yield states where no employee lives. If we do not want these
states in the result, we can create a view named StateLives containing only
the states where at least one employee lives.

Finally, note also that both alternative and parallel dependent hierarchies
can be easily distinguished at the conceptual level (Figs. 4.9 and 4.12);
however, their logical-level representations (Figs. 5.9 and 5.10) look similar
in spite of several characteristics that differentiate them, as explained in
Sect. 4.2.5.

5.5.6 Nonstrict Hierarchies

The mapping rules specified in Sect. 5.3, applied to nonstrict hierarchies,
creates relations representing the levels and an additional relation (called
a bridge table) representing the many-to-many relationship between them.
An example for the hierarchy in Fig. 4.15 is given in Fig. 5.11, where the bridge
table EmplSection represents the many-to-many relationship. If the parent-
child relationship has a distributing attribute (as in Fig. 4.15), the bridge
table will include an additional attribute for storing the values required for
measure distribution. However, in order to aggregate measures correctly, a
special aggregation procedure that uses this distributing attribute must be
implemented.

Recall from Sect. 4.2.6 that another solution is to transform a nonstrict
hierarchy into a strict one by including an additional dimension in the fact,



136 5 Logical Data Warehouse Design

Section

SectionKey 
SectionName
Description
DivisionKey 
...

Division

DivisionKey 
DivisionName
Type
...

Employee

EmployeeKey
EmployeeId
EmployeeName
Position
...

EmplSection

EmployeeKey 
SectionKey
Percentage

Payroll

EmployeeKey 
...
Salary

Fig. 5.11 Relations for the nonstrict hierarchy in Fig. 4.15

as shown in Fig. 4.16. Then, the corresponding mapping for a strict hierarchy
can be applied. The choice between the two solutions may depend on various
factors, namely,

• Data structure and size: Bridge tables require less space than creating
additional dimensions. In the latter case, the fact table grows if child
members are related to many parent members. The additional foreign key
in the fact table also increases the space required. In addition, for bridge
tables, information about the parent-child relationship and distributing
attribute (if it exists) must be stored separately.

• Performance and applications: For bridge tables, join operations, calcula-
tions, and programming effort are needed to aggregate measures correctly,
while in the case of additional dimensions, measures in the fact table
are ready for aggregation along the hierarchy. Bridge tables are thus
appropriate for applications that have a few nonstrict hierarchies. They
are also adequate when the information about measure distribution does
not change with time. On the contrary, additional dimensions can easily
represent changes in time of measure distribution.

Finally, still another option consists in transforming the many-to-many
relationship into a one-to-many relationship by defining a “primary” rela-
tionship, that is, to convert the nonstrict hierarchy into a strict one, to which
the corresponding mapping for simple hierarchies is applied (as explained in
Sect. 4.3.2).

5.6 Advanced Modeling Aspects

In this section, we discuss how facts with multiple granularities and many-
to-many dimensions can be represented in the relational model.
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5.6.1 Facts with Multiple Granularities

Two approaches can be used for the logical representation of facts with
multiple granularities. The first one consists in using multiple foreign keys,
one for each alternative granularity, in a similar way as it was explained
for generalized hierarchies in Sect. 5.5.3. The second approach consists
in removing granularity variation at the instance level with the help of
placeholders, in a similar way as explained for unbalanced hierarchies in
Sect. 5.5.2.

Consider the example of Fig. 4.18, where measures are registered at
multiple granularities. Figure 5.12 shows the relational schema resulting from
the first solution above, where the Sales fact table is related to both the City
and the State levels through referential integrity constraints. In this case,
both attributes CityKey and StateKey are optional, and constraints must be
specified to ensure that only one of the foreign keys may have a value.

Time

TimeKey
Date
DayNbWeek
DayNameWeek
DayNbMonth
DayNbYear
WeekNbYear

City

CityKey
CityName
Population
Altitude
StateKey

State

StateKey
StateName
EnglishStateName
StateType
StateCode
StateCapital
CountryKey

Country

CountryKey
CountryName
CountryCode
CountryCapital
Population
Subdivision

Product

ProductKey
ProductNo
ProductName
QuantityPerUnit
UnitPrice
Discontinued

Sales

TimeKey
ProductKey
CityKey (0,1)
StateKey (0,1)
Quantity
UnitPrice
Discount
SalesAmount
Freight

Fig. 5.12 Relations for the fact with multiple granularities in Fig. 4.18

Figure 5.13 shows an example of instances for the second solution above,
where placeholders are used for facts that refer to nonleaf levels. There are
two possible cases illustrated by the two placeholders in the figure. In the first
case, a fact member points to a nonleaf member that has children. In this
case, placeholder PH1 represents all cities other than the existing children. In
the second case, a fact member points to a nonleaf member without children.
In this case, placeholder PH2 represents all (unknown) cities of the state.

Obviously, in both solutions, the issue is to guarantee the correct
summarization of measures. In the first solution, when aggregating at the
state level, we need to perform a union of two subqueries, one for each
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United States

Florida Georgia

Orlando Tampa PH2PH1

...

City

State

Country

Fig. 5.13 Using placeholders for the fact with multiple granularities in Fig. 4.18

alternative path. In the second solution, when aggregating at the city level,
we obtain the placeholders in the result.

5.6.2 Many-to-Many Dimensions

The mapping to the relational model given in Sect. 5.3, applied to many-to-
many dimensions, creates relations representing the fact, the dimension levels,
and an additional bridge table representing the many-to-many relationship
between the fact table and the dimension. Figure 5.14 shows the relational
representation of the many-to-many dimension in Fig. 4.19. As can be seen,
a bridge table BalanceClient relates the fact table Balance with the dimension
table Client. Note also that a surrogate key was added to the Balance fact
table so it can be used in the bridge table for relating facts with clients.

Time

TimeKey
Date
Event
WeekdayFlag
WeekendFlag
...

Account

AccountKey
AccountNo
Type
Description
OpeningDate

AgencyKey

Client

ClientKey
ClientId
ClientName
ClientAddress
...

Agency

AgencyKey
AgencyName
Address
Area
NoEmployees
...

Balance

BalanceKey
TimeKey
AccountKey
Amount

BalanceClient

BalanceKey
ClientKey

Fig. 5.14 Relations for the many-to-many dimension in Fig. 4.19

We have seen in Sect. 4.3.2 several solutions to decompose a many-to-many
dimension according to the dependencies that hold on the fact table. In this
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case, after the decomposition, the traditional mapping to the relational model
can be applied to the resulting decomposition.

5.7 Slowly Changing Dimensions

So far, we have assumed that new data that arrives to the warehouse only
corresponds to facts, which means dimensions are stable, and their data do
not change. However, in many real-world situations, dimensions can change
both at the structure and the instance level. Structural changes occur, for
example, when an attribute is deleted from the data sources and therefore it
is no longer available. As a consequence, this attribute should also be deleted
from the dimension table. Changes at the instance level can be of two kinds.
First, when a correction must be made to the dimension tables due to an
error, the new data should replace the old one. Second, when the contextual
conditions of an analysis scenario change, the contents of dimension tables
must change accordingly. We cover these two latter cases in this section.

We will introduce the problem by means of a simplified version of the
Northwind data warehouse. In this simplified version, we consider a Sales fact
table related only to the dimensions Time, Employee, Customer, and Product,
and a SalesAmount measure. We assume a star (denormalized) representation
of table Product, and thus category data are embedded in this table. Below,
we show instances of the Sales fact table and the Product dimension table.

TimeKey EmployeeKey CustomerKey ProductKey SalesAmount
t1 e1 c1 p1 100
t2 e2 c2 p1 100
t3 e1 c3 p3 100
t4 e2 c4 p4 100

ProductKey ProductName Discontinued CategoryName Description
p1 prod1 No cat1 desc1
p2 prod2 No cat1 desc1
p3 prod3 No cat2 desc2
p4 prod4 No cat2 desc2

As we said above, new tuples will be entered into the Sales fact table as new
sales occur. But also other updates are likely to occur. For example, when
a new product starts to be commercialized by the company, a new tuple in
Product must be inserted. Also, data about a product may be wrong, and in
this case, the corresponding tuples must be corrected. Finally, the category of
a product may need to be changed, not just as a result of erroneous data but
as a result of a new commercial or administrative policy. Assuming that these
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kinds of changes are not at all frequent, when the dimensions are designed
so that they support them, they are called slowly changing dimensions.

In the scenario above, consider a query asking for the total sales per
employee and product category, expressed as follows:

SELECT E.EmployeeKey, P.CategoryName, SUM(SalesAmount)
FROM Sales S, Product P
WHERE S.ProductKey = P.ProductKey
GROUP BY E.EmployeeKey, P.CategoryName

This query would return the following table:

EmployeeKey CategoryName SalesAmount
e1 cat1 100
e2 cat1 100
e1 cat2 100
e2 cat2 100

Suppose now that, at an instant t after t4 (the date of the last sale shown in
the fact table above), the category of product prod1 changed to cat2, which
means there is a reclassification of the product with respect to its category.
The trivial solution of updating the category of the product to cat2 will,
in general, produce erroneous results since there is no track of the previous
category of a product. For example, if the user poses the same query as above,
and the fact table has not been changed in the meantime, she would expect to
get the same result, but since all the sales occurred before the reclassification,
she would get the following result:

EmployeeKey CategoryKey SalesAmount
e1 cat2 200
e2 cat2 200

This result is incorrect since the products affected by the category change
were already associated with sales data. Opposite to this, if the new category
would be the result of an error correction (i.e., the actual category of prod1 is
cat2), this result would be correct. In the former case, obtaining the correct
answer requires to guarantee the preservation of the results obtained when
prod1 had category cat1 and make sure that the new aggregations will be
computed with the new category.

Three basic ways of handling slowly changing dimensions have been
proposed in the literature. The simplest one, called type 1, consists in
overwriting the old value of the attribute with the new one. Note that in
spite of the simplicity of the approach, we lose the history of the attribute.
This approach is appropriate when the modification is due to an error in the
dimension data.
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In the second solution, called type 2, the tuples in the dimension table are
versioned, and a new tuple is inserted each time a change takes place. Thus,
the tuples in the fact table will match the correct tuple in the dimension table.
In our example, we would enter a new row for product prod1 in the Product
table, with its new category cat2. Thus, all sales prior to t will contribute to
the aggregation to cat1, while the ones that occurred after t will contribute
to cat2. This solution requires the table Product to be extended with two
attributes indicating the validity interval of the tuple, let us call them From
and To. In our example, the table Product would look like the following:

Product
Key

Product
Name Discontinued Category

Name Description From To

p1 prod1 No cat1 desc1 2010-01-01 2011-12-31
p11 prod1 No cat2 desc2 2012-01-01 9999-12-31
p2 prod2 No cat1 desc1 2012-01-01 9999-12-31
p3 prod3 No cat2 desc2 2012-01-01 9999-12-31
p4 prod4 No cat2 desc2 2012-01-01 9999-12-31

In the table above, the first two tuples correspond to the two versions of
product prod1, with ProductKey values p1 and p11. The value 9999-12-31 in
the To attribute indicates that the tuple is still valid; this is a usual notation in
temporal databases. Note that since the same product participates in the fact
table with as many surrogates as there are attribute changes, to ensure correct
manipulation, it is necessary to keep track of all the tuples that pertain to the
same product. For example, counting the number of different products sold by
the company over specific time periods cannot be done by just counting the
appearance of a particular product in the fact table. Notice that since a new
record is inserted every time an attribute value changes, the dimension can
grow considerably, decreasing the performance during join operations with
the fact table. More sophisticated techniques have been proposed to address
this, and below we will comment on them.

In the type 2 approach, sometimes an additional attribute is added to
explicitly indicate which is the current row. The table below shows an
attribute denoted RowStatus, telling which is the current value for product
prod1.

Product
Key

Product
Name Discontinued Category

Name Description From To Row
Status

p1 prod1 No cat1 desc1 2010-01-01 2011-12-31 Expired
p11 prod1 No cat2 desc2 2012-01-01 9999-12-31 Current
· · · · · · · · · · · · · · · · · · · · · · · ·

The type 2 approach for a snowflake (normalized) representation is handled
in similar way as above. Let us consider a snowflake representation for the
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Product dimension where the categories of the product are represented in a
table Category.

Product
Key

Product
Name Discontinued Category

Key
p1 prod1 No c1
p2 prod2 No c1
p3 prod3 No c2
p4 prod4 No c2

Category
Key

Category
Name Description

c1 cat1 desc1
c2 cat2 desc2
c3 cat3 desc3
c4 cat4 desc4

Now assume that, as before, product prod1 changes its category to cat2.
In the case of a solution of type 2, we add two temporal attributes to the
Product table. Then, applying the change above, we obtain

Product
Key

Product
Name Discontinued Category

Key From To

p1 prod1 No c1 2010-01-01 2011-12-31
p11 prod1 No c2 2012-01-01 9999-12-31
p2 prod2 No c1 2010-01-01 9999-12-31
p3 prod3 No c2 2010-01-01 9999-12-31
p4 prod4 No c2 2011-01-01 9999-12-31

and the Category table remains unchanged. However, if the change occurs
at an upper level in the hierarchy, for example, a description is changed,
this change needs to be propagated downward in the hierarchy. For example,
suppose that the description of category cat1 changes, as reflected in the
following table:

Category
Key

Category
Name Description From To

c1 cat1 desc1 2010-01-01 2011-12-31
c11 cat1 desc11 2012-01-01 9999-12-31
c2 cat2 desc2 2012-01-01 9999-12-31
c3 cat3 desc3 2010-01-01 9999-12-31
c4 cat4 desc4 2010-01-01 9999-12-31

This change must be propagated to the Product table so that all sales prior
to the change refer to the old version of category cat1 (with key c1), while
the new sales must point to the new version (with key c11), as shown below:

Product
Key

Product
Name Discontinued Category

Key From To

p1 prod1 No c1 2010-01-01 2011-12-31
p11 prod1 No c11 2012-01-01 9999-12-31
p2 prod2 No c1 2010-01-01 9999-12-31
p3 prod3 No c2 2010-01-01 9999-12-31
p4 prod4 No c2 2011-01-01 9999-12-31
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The third solution to the problem of slowly changing dimensions, called
type 3, consists in introducing an additional column for each attribute subject
to change, which will hold the new value of the attribute. In our case,
attributes CategoryName and Description changed since when product prod1
changes category from cat1 to cat2, the associated description of the category
also changes from desc1 to desc2. The following table illustrates this solution:

Product
Key

Product
Name Discontinued Category

Name
New

Category Description New
Description

p1 prod1 No cat1 cat2 desc1 desc2
p2 prod2 No cat1 Null desc1 Null
p3 prod3 No cat2 Null desc2 Null
p4 prod4 No cat2 Null desc2 Null

Note that only the two more recent versions of the attribute can be
represented in this solution and that the validity interval of the tuples is
not stored.

It is worth noticing that it is possible to apply the three solutions above,
or combinations of them, to the same dimension. For example, we may apply
a correction (type 1) together with tuple versioning (type 2) or with attribute
addition (type 3) for various attributes of a dimension table.

In addition to these three classic approaches to handle slowly changing
dimensions, more sophisticated (although more difficult to implement)
solutions have been proposed. We briefly comment on them next.

The type 4 approach aims at handling very large dimension tables and
attributes that change frequently. This situation can make the dimension
tables to grow to a point that even browsing the dimension can become very
slow. Thus, a new dimension, called aminidimension, is created to store the
most frequently changing attributes. For example, assume that in the Product
dimension there are attributes SalesRanking and PriceRange, which are likely
to change frequently, depending on the market conditions. Thus, we will
create a new dimension called ProductFeatures, with key ProductFeaturesKey,
and the attributes SalesRanking and PriceRange, as follows:

Product
FeaturesKey

Sales
Ranking

Price
Range

pf1 1 1–100
pf2 2 1–100
· · · · · · · · ·

pf200 7 500–600

As can be seen, there will be one row in the minidimension for each unique
combination of SalesRanking and PriceRange encountered in the data, not one
row per product.
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The key ProductFeaturesKey must be added to the fact table Sales as a
foreign key. In this way, we prevent the dimension to grow with every change
in the sales ranking score or price range of a product, and the changes are
actually captured by the fact table. For example, assume that product prod1
initially has sales ranking 2 and price range 1–100. A sale of this product will
be entered in the fact table with a value of ProductFeaturesKey equal to pf2.
If later the sales ranking of the product goes up to 1, the subsequent sales
will be entered with ProductFeaturesKey equal to pf1.

The type 5 approach is an extension of type 4, where the primary
dimension table is extended with a foreign key to the minidimension table.
In the current example, the Product dimension will look as follows:

Product
Key

Product
Name Discontinued CurrentProduct

FeaturesKey
p1 prod1 No pf1
· · · · · · · · · · · ·

As can be seen, this allows us to analyze the current feature values of a
dimension without accessing the fact table. The foreign key is a type 1
attribute, and thus, when any feature of the product changes, the current
ProductFeaturesKey value is stored in the Product table. On the other hand,
the fact table includes the foreign keys ProductKey and ProductFeaturesKey,
where the latter points to feature values that were current at the time of
the sales. However, the attribute CurrentProductFeaturesKey in the Product
dimension would allow us to roll up historical facts based on the current
product profile.

The type 6 approach extends a type 2 dimension with an additional column
containing the current value of an attribute. Consider again the type 2
solution above, where the Product dimension is extended with attributes
From and To indicating the validity interval of the tuple. Further, we add an
attribute CurrentCategoryKey that contains the current value of the Category
attribute as follows:

Product
Key

Product
Name Discontinued Category

Key From To Current
CategoryKey

p1 prod1 No c1 2010-01-01 2011-12-31 c11
p11 prod1 No c11 2012-01-01 9999-12-31 c11
p2 prod2 No c1 2010-01-01 9999-12-31 c1
p3 prod3 No c2 2010-01-01 9999-12-31 c2
p4 prod4 No c2 2011-01-01 9999-12-31 c2

With this solution, the CategoryKey attribute can be used to group facts
based on the product category that was in effect when the facts occurred,
while the CurrentCategoryKey attribute can be used to group facts based on
the current product category.
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Finally, the type 7 approach delivers similar functionality as the type 6
solution in the case that there are many attributes in the dimension table for
which we need to support both current and historical perspectives. In a type
6 solution that would require one additional column in the dimension table
for each of such attributes, these columns will contain the current value of the
attributes. Instead, a type 7 solution would add to the fact table an additional
foreign key of the dimension table containing not the surrogate key, but the
natural key (ProductName in our example), provided it is a durable one. In
our example, the Product dimension will be exactly the same as in the type
2 solution, but the fact table would look as follows:

TimeKey EmployeeKey CustomerKey ProductKey Product
Name SalesAmount

t1 e1 c1 p1 prod1 100
t2 e2 c2 p11 prod1 100
t3 e1 c3 p3 prod3 100
t4 e2 c4 p4 prod4 100

The ProductKey column can be used for historical analysis based on the
product values effective when the fact occurred. In order to support current
analysis, we need an additional view, called CurrentProduct, which keeps only
current values of the Product dimension as follows:

Product
Name Discontinued Category

Key
prod1 No c2
prod2 No c1
prod3 No c2
prod4 No c2

A variant of this approach uses the surrogate key as the key of the current
dimension, thus eliminating the need of handling two different foreign keys
in the fact table.

Leading data warehouse platforms provide some support for slowly
changing dimensions, typically type 1 to type 3. However, as we have
seen, the proposed solutions are not satisfactory. In particular, they require
considerable programming effort for their correct manipulation. As we will
discuss in Chap. 15, temporal data warehouses have been proposed as a more
general solution to this problem. They aim at providing a temporal update
semantics to the data warehouse.

5.8 SQL/OLAP Operations

In this section, we show how the data cube, a multidimensional structure,
can be represented in the relational model. We also show how to implement
the OLAP operations in SQL using the extension called SQL/OLAP.
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5.8.1 Data Cube

A relational database is not the best data structure to hold data that is, in
nature, multidimensional. Consider a simple cube Sales, with two dimensions,
Product and Customer, and a measure, SalesAmount, as depicted in Fig. 5.15a.
This data cube contains all possible (22) aggregations of the cube cells,
namely, SalesAmount by Product, by Customer, and by both Product and
Customer, in addition to the base nonaggregated data. Computing such
aggregates can be easily done by performing matrix arithmetic. This explains
why MOLAP systems, which store data in special arrays, deliver good
performance.

c1 c2 c3 Total
p1 100 105 100 305
p2 70 60 40 170
p3 30 40 50 120

Total 200 205 190 595

ProductKey CustomerKey SalesAmount
p1 c1 100
p1 c2 105
p1 c3 100
p2 c1 70
p2 c2 60
p2 c3 40
p3 c1 30
p3 c2 40
p3 c3 50

a b

Fig. 5.15 (a) A data cube with two dimensions, Product and Customer. (b) A fact
table representing the same data

Consider now the corresponding Sales fact table depicted in Fig. 5.15b.
Computing all possible aggregations along the two dimensions, Product and
Customer, involves scanning the whole relation. A possible way to compute
this in SQL is to use the NULL value as follows:

SELECT ProductKey, CustomerKey, SalesAmount
FROM Sales

UNION
SELECT ProductKey, NULL, SUM(SalesAmount)
FROM Sales
GROUP BY ProductKey

UNION
SELECT NULL, CustomerKey, SUM(SalesAmount)
FROM Sales
GROUP BY CustomerKey

UNION
SELECT NULL, NULL, SUM(SalesAmount)
FROM Sales
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The result is given in Fig. 5.16. Note that each tuple in the table represents
a cell in the data cube. For example, the fourth tuple represents the total
sales amount to customer c1. The penultimate tuple represents the total sales
amount of product p3. Finally, the last tuple represents the total sales amount
of all products to all customers. In this example, for clarity, we did not include
hierarchies. However, cubes with hierarchies can be analyzed analogously.

ProductKey CustomerKey SalesAmount
p1 c1 100
p2 c1 70
p3 c1 30

NULL c1 200
p1 c2 105
p2 c2 60
p3 c2 40

NULL c2 205
p1 c3 100
p2 c3 40
p3 c3 50

NULL c3 190
p1 NULL 305
p2 NULL 170
p3 NULL 120

NULL NULL 595

Fig. 5.16 Data cube corresponding to the fact table in Fig. 5.15b

5.8.2 ROLLUP, CUBE, and GROUPING SETS

Computing a cube with n dimensions in the way described above would
require 2n GROUP BY statements, which is not very efficient. For this reason,
SQL/OLAP extends the GROUP BY clause with the ROLLUP and CUBE
operators. The former computes group subtotals in the order given by a list
of attributes. The latter computes all totals of such a list. Over the grouped
tuples, the HAVING clause can be applied, as in the case of a typical GROUP
BY. The syntax of both statements applied to our example above are

SELECT ProductKey, CustomerKey, SUM(SalesAmount)
FROM Sales
GROUP BY ROLLUP(ProductKey, CustomerKey)

SELECT ProductKey, CustomerKey, SUM(SalesAmount)
FROM Sales
GROUP BY CUBE(ProductKey, CustomerKey)



148 5 Logical Data Warehouse Design

The tables in Fig. 5.17a, b show, respectively, the result of the GROUP BY
ROLLUP and the GROUP BY CUBE queries above. In the case of roll-up, in
addition to the detailed data, we can see the total amount by product and
the overall total. For example, the total sales for product p1 is 305. If we also
need the totals by customer, we would need the cube computation, performed
by the second query.

ProductKey CustomerKey SalesAmount
p1 c1 100
p1 c2 105
p1 c3 100
p1 NULL 305
p2 c1 70
p2 c2 60
p2 c3 40
p2 NULL 170
p3 c1 30
p3 c2 40
p3 c3 50
p3 NULL 120

NULL NULL 595

ProductKey CustomerKey SalesAmount
p1 c1 100
p2 c1 70
p3 c1 30

NULL c1 200
p1 c2 105
p2 c2 60
p3 c2 40

NULL c2 205
p1 c3 100
p2 c3 40
p3 c3 50

NULL c3 190
NULL NULL 595

p1 NULL 305
p2 NULL 170
p3 NULL 120

a b

Fig. 5.17 Operators. GROUP BY ROLLUP (a) and GROUP BY CUBE (b)

Actually, the ROLLUP and CUBE operators are simply shorthands for a
more powerful operator, called GROUPING SETS, which is used to precisely
specify the aggregations to be computed. For example, the ROLLUP query
above can be written using GROUPING SETS as follows:

SELECT ProductKey, CustomerKey, SUM(SalesAmount)
FROM Sales
GROUP BY GROUPING SETS((ProductKey, CustomerKey), (ProductKey), ())

Analogously, the CUBE query would read:

SELECT ProductKey, CustomerKey, SUM(SalesAmount)
FROM Sales
GROUP BY GROUPING SETS((ProductKey, CustomerKey),

(ProductKey), (CustomerKey), ())
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5.8.3 Window Functions

A very common OLAP need is to compare detailed data with aggregate
values. For example, we may need to compare the sales of a product to a
customer against the maximum sales of this product to any customer. Thus,
we could obtain the relevance of each customer with respect to the sales of the
product. SQL/OLAP provides the means to perform this through a feature
called window partitioning. This query would be written as follows:

SELECT ProductKey, CustomerKey, SalesAmount, MAX(SalesAmount) OVER
(PARTITION BY ProductKey) AS MaxAmount

FROM Sales

The result of the query is given in Fig. 5.18. The first three columns are
obtained from the initial Sales table. The fourth one is obtained as follows.
For each tuple, a window is defined, called partition, containing all the tuples
pertaining to the same product. The attribute SalesAmount is then aggregated
over this group using the corresponding function (in this case MAX), and the
result is written in the MaxAmount column. Note that the first three tuples,
corresponding to product p1, have aMaxAmount of 105, that is, the maximum
amount sold of this product to customer c2.

ProductKey CustomerKey SalesAmount MaxAmount
p1 c1 100 105
p1 c2 105 105
p1 c3 100 105
p2 c1 70 70
p2 c2 60 70
p2 c3 40 70
p3 c1 30 50
p3 c2 40 50
p3 c3 50 50

Fig. 5.18 Sales of products to customers compared with the maximum amount sold
for that product

A second SQL/OLAP feature, called window ordering, is used to
order the rows within a partition. This feature is useful, in particular, to
compute rankings. Two common aggregate functions applied in this respect
are ROW NUMBER and RANK. For example, the next query shows how does
each product rank in the sales of each customer. For this, we can partition
the table by customer and apply the ROW NUMBER function as follows:

SELECT ProductKey, CustomerKey, SalesAmount, ROW NUMBER() OVER
(PARTITION BY CustomerKey ORDER BY SalesAmount DESC) AS RowNo

FROM Sales
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The result is shown in Fig. 5.19a. The first tuple, for example, was evaluated
by opening a window with all the tuples of customer c1, ordered by the sales
amount. We see that product p1 is the one most demanded by customer c1.

Customer
KeyKey

Sales
Amount RowNo

p1 c1 100 1
p2 c1 70 2
p3 c1 30 3
p1 c2 105 1
p2 c2 60 2
p3 c2 40 3
p1 c3 100 1
p3 c3 50 2
p2 c3 40 3

Customer
KeyKey

Sales
Amount Rank

p1 c2 105 1
p1 c3 100 2
p1 c1 100 2
p2 c1 70 1
p2 c2 60 2
p2 c3 40 3
p3 c3 50 1
p3 c2 40 2
p3 c1 30 3

a b
Product Product

Fig. 5.19 (a) Ranking of products in the sales of customers. (b) Ranking of
customers in the sales of products

We could instead partition by product and study how each customer ranks
in the sales of each product, using the function RANK.

SELECT ProductKey, CustomerKey, SalesAmount, RANK() OVER
(PARTITION BY ProductKey ORDER BY SalesAmount DESC) AS Rank

FROM Sales

As shown in the result given in Fig. 5.19b, the first tuple was evaluated
opening a window with all the tuples with product p1, ordered by the sales
amount. We can see that customer c2 is the one with highest purchases of
p1, and customers c3 and c1 are in the second place, with the same ranking.

A third kind of feature of SQL/OLAP is window framing, which defines
the size of the partition. This is used to compute statistical functions over
time series, like moving averages. To give an example, let us assume that we
add two columns, Year and Month, to the Sales table. The following query
computes the 3-month moving average of sales by product.

SELECT ProductKey, Year, Month, SalesAmount, AVG(SalesAmount) OVER
(PARTITION BY ProductKey ORDER BY Year, Month
ROWS 2 PRECEDING) AS MovAvg

FROM Sales

The result is shown in Fig. 5.20a. For each tuple, the query evaluator opens
a window that contains the tuples pertaining to the current product. Then,
it orders the window by year and month and computes the average over the
current tuple and the preceding two ones, provided they exist. For example,
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in the first tuple, the average is computed over the current tuple (there is no
preceding tuple), while in the second tuple, the average is computed over the
current tuple, and the preceding one. Finally, in the third tuple, the average
is computed over the current tuple and the two preceding ones.

Year Month Sales
Amount MovAvg

p1 2011 10 100 100
p1 2011 11 105 102.5
p1 2011 12 100 101.67
p2 2011 12 60 60
p2 2012 1 40 50
p2 2012 2 70 56.67
p3 2012 1 30 30
p3 2012 2 50 40
p3 2012 3 40 40

Year Month Sales
Amount YTD

p1 2011 10 100 100
p1 2011 11 105 205
p1 2011 12 100 305
p2 2011 12 60 60
p2 2012 1 40 40
p2 2012 2 70 110
p3 2012 1 30 30
p3 2012 2 50 80
p3 2012 3 40 120

a b
Product Product

Key Key

Fig. 5.20 (a) Three-month moving average of the sales per product. (b) Year-to-date
sum of the sales per product

As another example, the following query computes the year-to-date sum
of sales by product.

SELECT ProductKey, Year, Month, SalesAmount, AVG(SalesAmount) OVER
(PARTITION BY ProductKey, Year ORDER BY Month
ROWS UNBOUNDED PRECEDING) AS YTD

FROM Sales

The result is shown in Fig. 5.20b. For each tuple, the query evaluator opens a
window that contains the tuples pertaining to the current product and year
ordered by month. Unlike in the previous query, the aggregation function
SUM is applied to all the tuples before the current tuple, as indicated by
ROWS UNBOUNDED PRECEDING.

It is worth noting that queries that use window functions can be expressed
without them, although the resulting queries are harder to read and may be
less efficient. For example, the query above computing the year-to-date sales
can be equivalently written as follows:

SELECT ProductKey, Year, Month, SalesAmount, AVG(SalesAmount) AS YTD
FROM Sales S1, Sales S2
WHERE S1.ProductKey = S2.ProductKey AND

S1.Year = S2.Year AND S1.Month >= S2.Month

Of course, there are many other functions provided in the SQL/OLAP
extension, which the interested reader can find in the standard.
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5.9 Definition of the Northwind Cube in Analysis
Services

We introduce next the main concepts of Analysis Services using as example
the Northwind cube. In this section, we consider a simplified version of the
Northwind cube where the ragged geography hierarchy was transformed into
a regular one. The reason for this was to simplify both the schema definition
and the associated MDX and SQL queries that we will show in the next
chapter. More precisely, we did not include sales data about cities that roll
up to the country level, such as Singapore. Therefore, we dropped the foreign
key CountryKey in table City. Moreover, we did not consider the Region level.
As a result, the hierarchy City → State → Country → Continent becomes
balanced.

To define a cube in Analysis Services, we use SQL Server Data Tools
introduced in Chap. 3. The various kinds of objects to be created are described
in detail in the remainder of this section.

5.9.1 Data Sources

A data warehouse retrieves its data from one or several data stores. A data
source contains connection information to a data store, which includes the
location of the server, a login and password, a method to retrieve the data,
and security permissions. Analysis Services supports data sources that have
a connectivity interface through OLE DB or .NET Managed Provider. If the
source is a relational database, then SQL is used by default to query the
database. In our example, there is a single data source that connects to the
Northwind data warehouse.

5.9.2 Data Source Views

A data source view (DSV) defines the relational schema that is used for
populating an Analysis Services database. This schema is derived from the
schemas of the various data sources. Indeed, some transformations are often
needed in order to load data from sources into the warehouse. For example,
common requirements are to select some columns from a table, to add a new
derived column to a table, to restrict table rows on the basis of some specific
criteria, and to merge several columns into a single one. These operations can
be performed in the DSV by replacing a source table with a named query
written in SQL or by defining a named calculation, which adds a derived
column defined by an SQL expression. Further, if the source systems do not
specify the primary keys and the relationships between tables using foreign
keys, these can be defined in the DSV.
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Analysis Services allows the user to specify friendly names for tables
and columns. In order to facilitate visibility and navigation for large data
warehouses, it also offers the possibility to define customizable views within
a DSV, called diagrams, that show only certain tables.

Fig. 5.21 The data source view for the Northwind cube

The DSV, based on the Northwind data warehouse of Fig. 5.4, is given in
Fig. 5.21. We can see the Sales fact table and the associated dimension tables
(recall that the ragged geography hierarchy was transformed into a regular
one). The figure also shows several named calculations, which are identified
by a special icon at the left of the attribute name. As we will see later, these
named calculations are used for defining and browsing the dimensions. The
calculations are:

• In the Employee dimension table, the named calculation FullName combines
the first and last name with the expression

FirstName + ' ' + LastName
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• In the Time dimension table, the named calculations FullMonth, FullQuar-
ter, and FullSemester, are defined, respectively, by the expressions

MonthName + ' ' + CONVERT(CHAR(4),Year)
'Q' + CONVERT(CHAR(1), Quarter) + ' ' + CONVERT(CHAR(4), Year)
'S' + CONVERT(CHAR(1), Semester) + ' ' + CONVERT(CHAR(4), Year)

These calculations combine the month, quarter, or semester with the year.
• In the Sales fact table, the named calculation OrderLineDesc combines the

order number and the order line using the expression

CONVERT(CHAR(5),OrderNo) + ' - ' + CONVERT(CHAR(1),OrderLineNo)

5.9.3 Dimensions

Analysis Services supports several types of dimensions as follows:

• A regular dimension has a direct one-to-many link between a fact table
and a dimension table. An example is the dimension Product.

• A reference dimension is indirectly related to the fact table through
another dimension. An example is the Geography dimension, which is
related to the Sales fact table through the Customer and Supplier dimen-
sions. In this case, Geography may be defined as a reference dimension
for the Sales fact table. Reference dimensions can be chained together, for
instance, one can define another reference dimension from the Geography
dimension.

• In a role-playing dimension, a single fact table is related to a
dimension table more than once, as studied in Chap. 4. Examples are the
dimensions OrderDate, DueDate, and ShippedDate, which all refer to the
Time dimension. A role-playing dimension is stored once and used multiple
times.

• A fact dimension, also referred to as degenerate dimension, is similar
to a regular dimension, but the dimension data are stored in the fact table.
An example is the dimension Order.

• In a many-to-many dimension, a fact is related to multiple dimension
members and a member is related to multiple facts. In the Northwind data
warehouse, there is a many-to-many relationship between Employees and
Cities, which is represented in the bridge table Territories. This table must
be defined as a fact table in Analysis Services, as we will see later.

Dimensions must be defined either from a DSV, which provides data for
the dimension, or from preexisting templates provided by Analysis Services.
A typical example of the latter is the time dimension, which does not need
to be defined from a data source. Dimensions can be built from one or more
tables.

In order to define dimensions, we need to discuss how hierarchies are
handled in Analysis Services. In the next section, we provide a more
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detailed discussion on this topic. In Analysis Services, there are two types
of hierarchies. Attribute hierarchies correspond to a single column in a
dimension table, for instance, attribute ProductName in dimension Product.
On the other hand, multilevel (or user-defined) hierarchies are derived
from two or more attributes, each attribute being a level in the hierarchy,
for instance, Product and Category. An attribute can participate in more
than one multilevel hierarchy, for instance, a hierarchy Product and Brand
in addition to the previous one. Analysis Services supports three types of
multilevel hierarchies, depending on how the members of the hierarchy are
related to each other: balanced, ragged, and parent-child hierarchies. We
will explain how to define these hierarchies in Analysis Services later in this
section.

We illustrate next how to define the different kinds of dimensions
supported by Analysis Services using the Northwind cube. We start with
a regular dimension, namely, the Product dimension, shown in Fig. 5.22.
The right pane defines the tables in the DSV from which the dimension is
created. The attributes of the dimension are given in the left pane. Finally,
the hierarchy Categories, composed of the Category and Product levels, is
shown in the central pane. The attributes CategoryKey and ProductKey are
used for defining these levels. However, in order to show friendly names when
browsing the hierarchy, the NameColumn property of these attributes are set
to CategoryName and ProductName, respectively.

Fig. 5.22 Definition of the Product dimension

Figure 5.23 shows some members of the Product dimension. As shown
in the figure, the names of products and categories are displayed in the
dimension browser. Notice that a member called Unknown is shown at the
bottom of the figure. In fact, every dimension has an Unknown member. If
a key error is encountered while processing a fact table, which means that a
corresponding key cannot be found in the dimension, the fact value can be
assigned to the Unknown member for that dimension. The Unknown member
can be made visible or hidden using the dimension property UnknownMember.
When set to be visible, the member is included in the results of the MDX
queries.
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Fig. 5.23 Browsing the hierarchy of the Product dimension

Fig. 5.24 Definition of the Time dimension

We next explain how the Time dimension is defined in Analysis Services. As
shown in Fig. 5.24, the dimension has the hierarchy denoted Calendar, which
is defined using the attributes Year, Semester, Quarter, MonthNumber, and
TimeKey. Since specific MDX functions can be used with time dimensions,
the Type property of the dimension must be set to Time. Further, Analysis
Services needs to identify which attributes in a time dimension correspond to
the typical subdivision of time. This is done by defining the Type property of
the attributes of the dimension. Thus, the attributes DayNbMonth, Month-
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Number, Quarter, Semester, and Year are, respectively, of type DayOfMonth,
MonthOfYear, QuarterOfYear, HalfYearOfYear, and Year.

Attributes in hierarchies must have a one-to-many relationship to their
parents in order to ensure correct roll-up operations. For example, a quarter
must roll up to its semester. In Analysis Services, this is stated by defining
a key for each attribute composing a hierarchy. By default, this key is set
to the attribute itself, which implies that, for example, years are unique.
Nevertheless, in the Northwind data warehouse, attribute MonthNumber
has values such as 1 and 2, and thus, a given value appears in several
quarters. Therefore, it is necessary to specify that the key of the attribute
is a combination of MonthNumber and Year. This is done by defining the
KeyColumns property of the attribute, as shown in Fig. 5.25. Further, in this
case, the NameColumn property must also be set to the attribute that is
shown when browsing the hierarchy, that is, FullMonth. This should be done
similarly for attributes Quarter and Semester.

Fig. 5.25 Definition of the key for attribute MonthNumber in the Calendar hierarchy

Fig. 5.26 Definition of the relationships in the Calendar hierarchy

When creating a user-defined hierarchy, it is necessary to establish
the relationships between the attributes composing such hierarchy. These
relationships correspond to functional dependencies. The relationships for
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the Time dimension are given in Fig. 5.26. In Analysis Services, there are two
types of relationships, flexible and rigid. Flexible relationships can evolve
across time (e.g., a product can be assigned to a new category), while rigid
ones cannot (e.g., a month is always related to its year). The relationships
shown in Fig. 5.26 are rigid, as indicated by the solid arrowhead.

Fig. 5.27 Browsing the hierarchy in the Time dimension

Figure 5.27 shows some members of the Calendar hierarchy. As can be seen,
the named calculations FullSemester, FullQuarter, and FullMonth are displayed
when browsing the hierarchy.

The definition of the fact dimension Order follows similar steps than for
the other dimensions, except that the source table for the dimension is the
fact table. The key of the dimension will be composed of the combination
of the order number and the line number. Therefore, the named calculation
OrderLineDesc will be used in the NameColumn property when browsing the
dimension. Also, we must indicate Analysis Services that this is a degenerate
dimension when defining the cube. We will explain this in Sect. 5.9.5.

Finally, in many-to-many dimensions, like in the case of City and
Employee, we also need to indicate that the bridge table Territories is actually
defined as a fact table, so Analysis Services can take care of the double-
counting problem. This is also done when defining the cube.

5.9.4 Hierarchies

What we have generically called hierarchies in Chap. 4 and in the present
one in Analysis Services are denoted as user-defined or multilevel hierarchies.
Multilevel hierarchies are defined by means of dimension attributes, and
these attributes may be stored in a single table or in several tables of a
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snowflake schema. Therefore, both the star and the snowflake and schema
representation are supported in Analysis Services.

Balanced hierarchies are supported by Analysis Services. Examples
of these hierarchies in the Northwind cube are the Time and the Product
dimensions studied above.

Fig. 5.28 Browsing the Supervision hierarchy in the Employee dimension

Analysis Services does not support unbalanced hierarchies. We have
seen in Sect. 5.5.2 several solutions to cope with them. On the other hand,
Analysis Services supports parent-child hierarchies, which are a special
case of unbalanced hierarchies. We have seen that such hierarchies define a
hierarchical relationship between the members of a dimension. An example
is the Supervision hierarchy in the Employee dimension. As can be seen in
Fig. 5.21, in the underlying dimension table, the column SupervisorKey is a
foreign key referencing EmployeeKey. When defining the dimension, the Usage
property for the attributes of the dimension determines how they will be used.
In our case, the value of such property will be Parent for the SupervisorKey
attribute, will be Regular for all other attributes except EmployeeKey, and
will be Key for the attribute EmployeeKey. Figure 5.28 shows the members of
the Supervision hierarchy, where the named calculation FullName is displayed
when browsing the hierarchy.

In parent-child hierarchies, the hierarchical structure between members is
taken into account when measures are aggregated. Thus, for example, the
total sales amount of an employee would be her personal sales amount plus
the total sales amount of all employees under her in the organization. Each
member of a parent-child hierarchy has a system-generated child member that
contains the measure values directly associated with it, independently of its
descendants. These are referred to as data members. TheMembersWithData
property of the parent attribute controls the visibility of data members: they
are shown when the property is set to NonLeafDataVisible, while they are
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hidden when it is set to NonLeafDataHidden. We can see in Fig. 5.28 that the
data members are visible since both Andrew Fuller and Steven Buchanan
appear twice in the hierarchy. The MembersWithDataCaption property of the
parent attribute can be used to define a naming template for generating
names of data members.

Analysis Services does not support generalized hierarchies. If the
members differ in attributes and in hierarchy structure, the common solution
is to define one hierarchy for the common levels and another hierarchy for
each of the exclusive paths containing the specific levels. This is the case for
most of the OLAP tools in the market. On the other hand, Analysis Services
supports the particular case of ragged hierarchies. As we have already
seen, in a ragged hierarchy, the parent of a member may be in a level which
is not immediately above it. In a table corresponding to a ragged hierarchy,
the missing members can be represented in various ways: with null values or
empty strings or they can contain the same value as their parent.

In Analysis Services, a ragged hierarchy is defined using all of its levels,
that is, the longest path. To support the display of ragged hierarchies, the
HideMemberIf property of a level allows missing members to be hidden.
The possible values for this property and their associated behaviors are as
follows:

• Never: Level members are never hidden.
• OnlyChildWithNoName: A level member is hidden when it is the only child

of its parent and its name is null or an empty string.
• OnlyChildWithParentName: A level member is hidden when it is the only

child of its parent and its name is the same as the name of its parent.
• NoName: A level member is hidden when its name is empty.
• ParentName: A level member is hidden when its name is identical to that

of its parent.

In order to display ragged hierarchies correctly, the MDX Compatibility
property in the connection string from a client application must be set to 2.
If it is set to 1, a placeholder member is exposed in a ragged hierarchy.

With respect to alternative hierarchies, in Analysis Services, several
hierarchies can be defined on a dimension, and they can share levels.
For example, the alternative hierarchy in Fig. 4.9 will be represented by
two distinct hierarchies: the first one composed of Time → Month →
CalendarQuarter→ CalendarYear and another one composed of Time→Month
→ FiscalQuarter → FiscalYear.

Analysis Services supports parallel hierarchies, whether dependent or
independent. Levels can be shared among the various component hierarchies.

Finally, to represent nonstrict hierarchies in Analysis Services, it
is necessary to represent the corresponding bridge table as a fact table,
as it was explained in Sect. 5.9.3. In the relational representation of the
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Northwind cube given in Fig. 5.4, there is a many-to-many relationship
between employees and cities represented by the table Territories. Such a
table must be defined as a fact table in the corresponding cube. In this case,
using the terminology of Analysis Services, the City dimension has a many-
to-many relationship with the Sales measure group, through the Employee
intermediate dimension and the Territories measure group.

5.9.5 Cubes

In Analysis Services, a cube is built from one or several DSVs. A cube consists
of one or more dimensions from dimension tables and one or more measure
groups from fact tables. A measure group is composed by a set of measures.
The facts in a fact table are mapped as measures in a cube. Analysis Services
allows multiple fact tables in a single cube. In this case, the cube typically
contains multiple measure groups, one from each fact table.

Figure 5.29 shows the definition of the Northwind cube in Analysis
Services. As can be seen in Fig. 5.29a, Analysis Services adds a new measure
to each measure group, in our case Sales Count and Territories Count, which
counts the number fact members associated with each member of each
dimension. Thus, Sales Count would count the number of sales for each
customer, supplier, product, and so on. Similarly, Territories Count would
count the number of cities associated with each employee.

Figure 5.30 shows the relationships between dimensions and measure
groups in the cube. With respect to the Sales measure group, all dimensions
except the last two are regular dimensions, they do not have an icon to the
left of the attribute relating the dimension and the measure group. On the
other hand, Geography is a many-to-many dimension linked to the measure
group through the Territories fact table. Finally, Order is a fact dimension
linked to the measure group through the Order No attribute.

Analysis Services supports the usual additive aggregation functions SUM,
MIN, MAX, COUNT, and DISTINCT COUNT. It also supports semiadditive
measures, that is, measures that can be aggregated in some dimensions but
not in others. Recall that we defined such measures in Sect. 3.1.2. Analysis
Services provides several functions for semiadditive measures, namely, Avera-
geOfChildren, FirstChild, LastChild, FirstNonEmpty, and LastNonEmpty, among
other ones.

The aggregation function associated with each measure must be defined
with the AggregationFunction property. The default aggregation measure is
SUM, and this is suitable for all measures in our example, except for Unit
Price and Discount. Since these are semiadditive measures, their aggregation
should be AverageOfChildren, which computes, for a member, the average of
its children.
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Fig. 5.29 Definition of the Northwind cube in Analysis Services. (a) Measure groups.
(b) Dimensions. (c) Schema of the cube

The FormatString property is used to state the format in which the
measures will be displayed. For example, measures Unit Price, Sales Amount,
and Freight are of type money, and thus, their format will be $###,###.00,
where a ‘#’ displays a digit or nothing, a ‘0’ displays a digit or a zero, and
‘,’ and ‘.’ are, respectively, thousand and decimal separators. The format
string for measures Quantity and Sales Count will be ###,##0. Finally, the
format string for measure Discount will be 0.00%, where the percent symbol
‘%’ specifies that the measure is a percentage and includes a multiplication
by a factor of 100.

Further, we can define the default measure of the cube, in our case Sales
Amount. As we will see in Chap. 6, if an MDX query does not specify the
measure to be displayed, then the default measure will be used.
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Fig. 5.30 Definition of the dimensions of the Northwind cube

Fig. 5.31 Definition of the Net Amount derived measure

The derived measure Net Amount is defined as shown in Fig. 5.31. As can
be seen in the figure, the measure will be a calculated member in theMeasures
dimension. The defining expression is the difference between the Sales Amount
and the Freight measures.

Figure 5.32 shows an example of browsing the Northwind cube in Excel
using the PivotTable tools. In the figure, the customer hierarchy is displayed
on rows, the time hierarchy is displayed on columns, and the sales amount
measure is displayed on cells. Thus, the figure shows the yearly sales
of customers at different levels of the geography hierarchy, including the
individual sales of a shop located in San Francisco.
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Fig. 5.32 Browsing the Northwind cube in Excel

5.10 Definition of the Northwind Cube in Mondrian

Mondrian is an open-source relational online analytical processing (ROLAP)
server. It is also known as Pentaho Analysis Services and is a component of
the Pentaho Business Analytics suite. In this section, we describe Mondrian
4.0, which is the latest version at the time of writing this book.

In Mondrian, a cube schema written in an XML syntax defines a mapping
between the physical structure of the relational data warehouse and the
multidimensional cube. A cube schema contains the declaration of cubes,
dimensions, hierarchies, levels, measures, and calculated members. A cube
schema does not define the data source; this is done using a JDBC connection
string. We give next the overall structure of a cube schema definition in
Mondrian using the Northwind cube:

1 <Schema name='NorthwindDW' metamodelVersion='4.0'
2 description='Sales cube of the Northwind company'>
3 <PhysicalSchema>
4 . . .
5 </PhysicalSchema>
6 <Dimension name='Time' table='Time' . . .>
7 . . .
8 </Dimension>
9 <Cube name='Sales'>
10 <Dimensions>
11 . . .
12 </Dimensions>
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13 <MeasureGroups>
14 <MeasureGroup name='Sales' table='Sales'>
15 <Measures>
16 . . .
17 </Measures>
18 <DimensionLinks>
19 . . .
20 </DimensionLinks>
21 </MeasureGroup>
22 </MeasureGroups>
23 </Cube>
24 </Schema>

The Schema element (starting in line 1) defines all other elements in the
schema. The PhysicalSchema element (lines 3–5) defines the tables that are
the source data for the dimensions and cubes, and the foreign key links
between these tables. The Dimension element (lines 6–8) defines the shared
dimension Time, which is used several times in the Northwind cube for
the role-playing dimensions OrderDate, DueDate, and ShippingDate. Shared
dimensions can also be used in several cubes. The Cube element (lines 9–23)
defines the Sales cube. A cube schema contains dimensions and measures,
the latter organized in measure groups. The Dimensions element (lines 10–
12) defines the dimensions of the cube. The measure groups are defined
using the element MeasureGroups (lines 13–22). The measure group Sales
(lines 14–21) defines the measures using the Measures element (lines 15–17).
The DimensionLinks element (lines 18–20) defines how measures relate to
dimensions. We detail next each of the elements introduced above.

5.10.1 Schemas and Physical Schemas

The Schema element is the topmost element of a cube schema. It is the
container for all its schema elements. A schema has a name and may have
other attributes such as description and the version of Mondrian in which it
is written. A schema always includes a PhysicalSchema element and one or
more Cube elements. Other common elements are Dimension (to define shared
dimensions) and Role for access control.

The PhysicalSchema element defines the physical schema, which states
the tables and columns in the database that provide data for the dimensions
and cubes in the data warehouse. The physical schema isolates the logical data
warehouse schema from the underlying database. For example, a dimension
can be based upon a table that can be a real table or an SQL query in the
database. Similarly, a measure can be based upon a column that can be a
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real column or a column calculated using an SQL expression. The general
structure of the physical schema of the Northwind cube is given next:

1 <PhysicalSchema>
2 <Table name='Employee' keyColumn='EmployeeKey'>
3 <ColumnDefs>
4 <ColumnDef name='EmployeeKey' type='Integer' />
5 <ColumnDef name='FirstName' type='String' />
6 <ColumnDef name='LastName' type='String' />
7 . . .
8 <CalculatedColumnDef name='FullName' type='String'>
9 <ExpressionView>
10 <SQL dialect='generic'>
11 <Column name='FirstName' /> || ' ' ||
12 <Column name='LastName' />
13 </SQL>
14 <SQL dialect='SQL Server'>
15 <Column name='FirstName' /> + ' ' +
16 <Column name='LastName' />
17 </SQL>
18 </ExpressionView>
19 </CalculatedColumnDef>
20 </ColumnDefs>
21 </Table>
22 . . .
23 <Link source='City' target='Employee' foreignKeyColumn='CityKey' />
24 . . .
25 </PhysicalSchema>

The Table element defines the table Employee (lines 2–21). The columns
of the table are defined within the ColumnDefs element, and each column
is defined using the ColumnDef element. The definition of the calculated
column FullName is given in line 8 using the CalculatedColumnDef element.
The column will be populated using the values of the columns FirstName and
LastName in the underlying database. The ExpressionView element is used
to handle the various SQL dialects, which depend on the database system.
As can be seen, concatenation of strings is expressed in standard SQL using
‘||’, while it is expressed in SQL Server using ‘+’. In the case of snowflake
schemas, the physical schema also declares the foreign key links between
the tables using the Link element. In the example above, the link between the
tables Employee and City is defined in line 23.

5.10.2 Cubes, Dimensions, Attributes, and
Hierarchies

A cube is defined by a Cube element and is a container for a set of dimensions
and measure groups, as shown in the schema definition at the beginning of
this section (lines 9–23).
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A dimension is a collection of attributes and hierarchies. For example, the
general structure of the Time dimension in the Northwind cube is given next:

1 <Dimension name='Time' table='Time' type='TIME'>
2 <Attributes>
3 <Attribute name='Year' keyColumn='Year' levelType='TimeYears' />
4 . . .
5 <Attribute name='Month' levelType='TimeMonths'
6 nameColumn='FullMonth' orderByColumn='MonthNumber' />
7 <Key>
8 <Column name='Year' />
9 <Column name='MonthNumber' />
10 </Key>
11 </Attribute>
12 . . .
13 </Attributes>
14 <Hierarchies>
15 <Hierarchy name='Calendar' hasAll='true'>
16 <Level attribute='Year' />
17 . . .
18 <Level attribute='Month' />
19 . . .
20 </Hierarchy>
21 </Hierarchies>
22 </Dimension>

The Time dimension is defined in line 1, where attribute type states
that this is a time dimension. This would not be the case for the other
dimensions such as Customer. In lines 2–13, we define the attributes of the
dimension, while the multilevel hierarchies are defined in lines 14–21. An
Attribute element describes a data value, and it corresponds to a column in
the relational model. In line 3, we define the attribute Year based on the
column Year, while in lines 5–11, we define the attribute Month based on
the column MonthNumber. The nameColumn attribute specifies the column
that holds the name of members of the attribute, in this case the calculated
column FullMonth, which has values such as September 1997. Further, the
orderByColumn attribute specifies the column that specifies the sort order, in
this case the column MonthNumber.

The Calendar hierarchy is defined in lines 15–20 using the element
Hierarchy. The hasAll='true' statement indicates that the All level is included
in the hierarchy. As the attribute of each level in a hierarchy must have a
one-to-many relationship with the attribute of the next level, a key must
be defined for attributes. For example, since attribute MonthNumber can
take the same value for different years, the key of the attribute is defined
as a combination of attributes MonthNumber and Year in lines 7–10. This
guarantees that all values of the attribute Month are distinct. The key of
attribute Year is specified as the column Year using the attribute keyColumn
in line 3.
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As we will see in Chap. 6, MDX has several operators that specifically
operate over the time dimension. To support these operators, we need to tell
Mondrian which attributes define the subdivision of the time periods to which
the level corresponds. We indicate this with the attribute levelType in the
Attribute element. Values for this attribute can be TimeYears, TimeHalfYears,
TimeQuarters, TimeMonths, and so on.

We give next examples of attribute definition of the Product dimension:

1 <Attribute name='Unit Price' caption='Prix Unitaire'
2 description='Le prix unitaire de ce produit' keyColumn='UnitPrice' />
3 <Attribute name='Product Name' caption='Nom du Produit'
4 description='Le nom de ce produit' keyColumn='ProductName' />

The example shows three properties of the Attribute element. A caption is to
be displayed on the screen to a user, whereas the name is intended to be used
in code, particularly in an MDX statement. Usually, the name and caption
are the same, although the caption can be localized (shown in the language
of the user, as in the example) while the name is the same in all languages.
Finally, a description is displayed in many user interfaces (such as Pentaho
Analyzer) as tooltips when the mouse is moved over an element. Name,
caption, and description are not unique to attributes; the other elements
that may appear on user’s screen also have them, including Schema, Cube,
Measure, and Dimension.

Mondrian implicitly creates attribute hierarchies, even if a hierarchy is
not defined explicitly for the attribute. For example, if in dimension Employee
an attribute is defined as follows:

1 <Attributes>
2 <Attribute name='Last Name' keyColumn='LastName' />
3 . . .
4 </Attributes>

this is interpreted as if the following hierarchy has been defined in the
dimension:

1 <Hierarchy name='Last Name'>
2 <Level attribute='Last Name' />
3 </Hierarchy>

When a schema has more than one cube, these cubes may have several
dimensions in common. If these dimensions have the same definitions, they are
declared once and can be used in as many cubes as needed. In Mondrian, these
are called shared dimensions. Further, we have seen that dimensions can
be used more than once in the same cube. In the Northwind cube, the Time
dimension is used three times to represent the order, due, and shipped dates
of orders. We have seen that these are called role-playing dimensions.
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Role-playing dimensions are defined in Mondrian using the concept of shared
dimensions as we show below, where the shared dimension is Time:

1 <Cube name='Sales'>
2 <Dimensions>
3 <Dimension name='Order Date' source='Time' />
4 <Dimension name='Due Date' source='Time' />
5 <Dimension name='Shipped Date' source='Time' />
6 <Dimension name='Employee' table='Employee' key='Employee Key'>
7 . . .
8 </Dimension>
9 </Dimensions>
10 . . .
11 </Cube>

As we have seen, snowflake dimensions involve more than one table.
For example, the Product dimension involves tables Product and Category.
When defining dimensions based on snowflake schemas in Mondrian, it is
necessary to define in which table we can find the dimension attributes, as
shown next:

1 <Dimension name='Product' table='Product' key='Product Key'>
2 <Attributes>
3 <Attribute name='Category Name' keyColumn='CategoryName'
4 table='Category' />
5 . . .
6 <Attribute name='Product Name' keyColumn='ProductName' />
7 . . .
8 </Attributes>
9 <Hierarchies>
10 <Hierarchy name='Categories' hasAll='true'>
11 <Level name='Category' attribute='Category Name' />
12 <Level name='Product' attribute='Product Name' />
13 </Hierarchy>
14 </Hierarchies>
15 </Dimension>

As can be seen above, the definition of attribute Category Name states that it
comes from table Category (lines 3–4). On the other hand, when defining the
attribute Product Name the table is not specified, by default it will be found
in the table defined in the Dimension element, that is, the Product table.

We show next how a parent-child (or recursive) hierarchy can
be defined in Mondrian using the Supervision hierarchy in the Employee
dimension:

1 <Dimension name='Employee' table='Employee' key='Employee Key'>
2 <Attributes>
3 <Attribute name='Employee Key' keyColumn='EmployeeKey' />
4 . . .
5 <Attribute name='Supervisor Key' keyColumn='SupervisorKey' />
6 </Attributes>
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7 <Hierarchies>
8 <Hierarchy name='Supervision' hasAll='true'>
9 <Level name='Employee' attribute='Employee Key'
10 parentAttribute='Supervisor Key' nullParentValue='NULL' />
11 </Hierarchy>
12 </Hierarchies>
13 </Dimension>

The parentAttribute attribute in line 10 states the name of the attribute that
references the parent member in a parent-child hierarchy. The nullParentValue
attribute indicates the value determining the top member of the hierarchy, in
this case a null value. As in Analysis Services, each member of a parent-child
hierarchy has a shadow member, called its data member, that keeps the
measure values directly associated with it.

As we studied in this chapter and in the previous one, ragged hierarchies
allow some levels in the hierarchy to be skipped when traversing it. The
Geography hierarchy in the Northwind data warehouse shows an example. It
allows one to handle, for example, the case of Israel, which does not have
states or regions, and the cities belong directly to the country. As in Analysis
Services, Mondrian creates hidden members, for example, a dummy state
and a dummy region for Israel, to which any city in Israel belongs. Thus, if
we ask for the parent member of Tel Aviv, Mondrian will return Israel, the
dummy members will be hidden. In short, in Mondrian, when we define a
ragged hierarchy, we must tell which members must be hidden. This is done
with the hideMemberIf attribute, as shown next:

1 <Dimension name='Customer' table='Customer' />
2 <Attributes>
3 <Attribute name='Continent' table='Continent'
4 keyColumn='ContinentKey' />
5 <Attribute name='Country' table='State' keyColumn='CountryKey' />
6 <Attribute name='Region' table='State' keyColumn='RegionName' />
7 <Attribute name='State' table='State' keyColumn='StateKey' />
8 <Attribute name='City' table='City' keyColumn='CityKey' />
9 <Attribute name='Customer' keyColumn='CustomerKey' />
10 . . .
11 </Attributes>
12 <Hierarchies>
13 <Hierarchy name='Geography' />
14 <Level attribute name='Continent' />
15 <Level attribute name='Country' />
16 <Level attribute name='Region' hideMemberIf='IfBlankName' />
17 <Level attribute name='State' hideMemberIf='IfBlankName' />
18 <Level attribute name='City' />
19 <Level attribute name='Customer' />
20 </Hierarchy>
21 </Hierarchies>
22 </Dimension>

In the schema above, hideMemberIf='IfBlankName' tells that a member in
this level does not appear if its name is null, empty, or a whitespace. Other
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values for the hideMemberIf attribute are Never (the member always appears,
the default value) and IfParentName (the member appears unless its name
matches the one of its parent).

We next show how a fact (or degenerate) dimension can be defined in
Mondrian. Such a dimension has no associated dimension table, and thus,
all the columns in the dimension are in the fact table. In the case of the
Northwind cube, there is a fact dimension Order, composed by the order
number and the order line number corresponding to the fact. To represent
this dimension, we may write:

1 <Dimension name='Order' table='Sales'>
2 <Attributes>
3 <Attribute name='Order No' keyColumn='OrderNo'>
4 <Attribute name='Order Line' keyColumn='OrderLine'>
5 </Attributes>
6 </Dimension>

Note that the table associated with the dimension is the Sales fact table.

5.10.3 Measures

As in Analysis Services, in Mondrian the measures are also considered
dimensions: every cube has an implicit Measures dimension (we will see this
in detail in Chap. 6). The Measures dimension has a single hierarchy, also
called Measures, which has a single level, in turn also called Measures. The
measures of the Sales cube are defined as follows:

1 <Cube name='Sales'>
2 <Dimensions . . . />
3 <MeasureGroups>
4 <MeasureGroup name='Sales' table='Sales'>
5 <Measures>
6 <Measure name='Unit Price' column='UnitPrice'
7 aggregator='avg' formatString='$#,##0.00' />
8 <Measure name='Sales Count' aggregator='count' />
9 . . .
10 </Measures>
11 <DimensionLinks>
12 <ForeignKeyLink dimension='Customer'
13 foreignKeyColumn='CustomerKey' />
14 <ForeignKeyLink dimension='OrderDate'
15 foreignKeyColumn='OrderDateKey' />
16 . . .
17 <FactLink dimension='Order' />
18 </DimensionLinks>
19 </MeasureGroup>
20 </MeasureGroups>
21 <CalculatedMember name='Net Amount' dimension='Measures'
22 formula='[Measures].[Sales Amount]-[Measures].[Freight]'>
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23 <CalculatedMemberProperty name='FORMAT STRING'
24 value='$#,##0.00' />
25 </CalculatedMember>
26 </Cube>

As can be seen, a measure is defined within a measure group using a
Measure element (lines 5 and 6). Each measure has a name and an aggregator,
describing how to roll up values. The available aggregators are those provided
in SQL, that is, SUM, MIN, MAX, AVG, COUNT, and DISTINCT COUNT. A
column attribute defines the values to be aggregated. This is required for all
aggregators except COUNT. A COUNT aggregator without a column, as for
the Sales Count measure in line 9, counts rows.

Mondrian supports calculated measures, which are calculated from
other measures using an MDX formula. An example is shown for the measure
Net Amount (lines 20–24). The dimensions are linked to the measures through
the ForeignKeyLink element or, in the case of a fact dimension, through the
FactLink element (lines 10–17).

Figure 5.33 shows an example of browsing the Northwind cube in Saiku,
an open-source analytics client. In the figure, the countries of customers and
the categories of products are displayed on rows, the years are displayed on
columns, and the sales amount measure is displayed on cells. Saiku also allows
the user to write MDX queries directly on an editor.

Fig. 5.33 Browsing the Northwind cube in Saiku
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5.11 Summary

In this chapter, we have studied the problem of logical design of data
warehouses, specifically relational data warehouse design. Several alternatives
were discussed: the star, snowflake, starflake, and constellation schemas. Like
in the case of operational databases, we provided rules for translating concep-
tual multidimensional schemas to logical schemas. Particular importance was
given to the representation of the various kinds of hierarchies that can occur
in practice. The problem of slowly changing dimensions was also addressed in
detail. We then explained how the OLAP operations can be implemented on
the relational model using the SQL language and also reviewed the advanced
features SQL provides through the SQL/OLAP extension. We concluded
the chapter showing how we can implement the Northwind data cube over
Microsoft Analysis Services and Mondrian, starting from the Northwind data
warehouse.

5.12 Bibliographic Notes

A comprehensive reference to data warehouse modeling can be found in the
book by Kimball and Ross [103]. A work by Jagadish et al. [95] discusses
the uses of hierarchies in data warehousing. Complex hierarchies like the
ones discussed in this chapter were studied, among other works, in [84, 87,
159, 160]. The problem of summarizability is studied in the classic paper of
Lenz and Shoshani [115] and in [85, 86]. Following the ideas of Codd for
the relational model, there have been attempts to define normal forms for
multidimensional databases [114]. Regarding SQL, analytics and OLAP are
covered in the books [27, 132]. There is a wide array of books on Analysis
Services that describe in detail the functionalities and capabilities of this
tool [71,79,163,182,183]. Finally, a description of Mondrian can be found in
the books [10, 18].

5.13 Review Questions

5.1 Describe the differences between the following concepts:

(a) Relational OLAP (ROLAP), multidimensional OLAP (MOLAP),
and hybrid OLAP (HOLAP).

(b) Star schema, snowflake schema, starflake schema, and constellation
schema.
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5.2 Discuss the mapping rules for translating a MultiDim schema into a
relational schema. Are these rules similar to those used for translating
an ER schema into a relational schema?

5.3 Explain how a balanced hierarchy can be mapped into either normalized
or denormalized tables. Discuss the advantages and disadvantages of
these alternative mappings.

5.4 How do you transform at the logical level an unbalanced hierarchy into
a balanced one?

5.5 Describe different approaches for representing generalized hierarchies
at the logical level.

5.6 Is it possible to distinguish between generalized, alternative, and
parallel dependent hierarchies at the logical level?

5.7 Explain how a nonstrict hierarchy can be represented in the relational
model.

5.8 Analyze and discuss the pros and cons of the alternatives for represent-
ing slowly changing dimensions.

5.9 Define the kinds of SQL/OLAP window functions: partitioning, window
ordering, and window framing. Write, in English, queries of each class
over the Northwind data warehouse.

5.10 Identify the kind of hierarchies that can be directly represented in
Analysis Services.

5.11 Identify the kind of hierarchies that can be directly represented in
Mondrian.

5.12 Discuss how snowflake schemas are represented in Analysis Services
and in Mondrian.

5.14 Exercises

5.1 Consider the data warehouse of a telephone provider given in Ex. 3.1.
Draw a star schema diagram for the data warehouse.

5.2 For the star schema obtained in the previous exercise, write in SQL the
queries given in Ex. 3.1.

5.3 Consider the data warehouse of the train application given in Ex. 3.2.
Draw a snowflake schema diagram for the data warehouse with
hierarchies for the train and station dimensions.

5.4 For the snowflake schema obtained in the previous exercise, write in
SQL the queries given in Ex. 3.2.

5.5 Consider the university data warehouse described in Ex. 3.3. Draw a
constellation schema for the data warehouse taking into account the
different granularities of the time dimension.

5.6 For the constellation schema obtained in the previous exercise, write in
SQL the queries given in Ex. 3.3.
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5.7 Translate the MultiDim schema obtained for the French horse race
application in Ex. 4.5 into the relational model.

5.8 Translate the MultiDim schema obtained for the Formula One applica-
tion in Ex. 4.7 into the relational model.

5.9 The Research and Innovative Technology Administration (RITA)1

coordinates the US Department of Transportation’s (DOT) research
programs. It collects several statistics about many kinds of transporta-
tion means, including the information about flight segments between
airports summarized by month.2

There is a set of tables T T100I Segment All Carrier XXXX, one by year,
ranging from 1990 up until now. These tables include information about
the scheduled and actually departured flights, the number of seats sold,
the freight transported, and the distance traveled, among other ones.
The schema and description of these tables is given in Table 5.1. A set
of lookup tables given in Table 5.2 include information about airports,
carriers, and time. The schemas of these lookup tables are composed of
just two columns called Code and Description. The mentioned web site
describes all tables in detail.
From the information above, construct an appropriate data warehouse
schema. Analyze the input data and motivate the choice of your schema.

5.10 Implement in Analysis Services the MultiDim schema obtained for
the French horse race application in Ex. 4.5 and the relational data
warehouse obtained in Ex. 5.7.

5.11 Implement in Mondrian the MultiDim schema obtained for the Formula
One application in Ex. 4.7 and the relational data warehouse obtained
in Ex. 5.8.

1http://www.transtats.bts.gov/
2http://www.transtats.bts.gov/DL SelectFields.asp?Table ID=261

http://www.transtats.bts.gov/
http://www.transtats.bts.gov/DL_SelectFields.asp?Table_ID=261
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Table 5.1 Attributes of the tables T T100I Segment All Carrier XXXX

Summaries
DepScheduled Departures scheduled
DepPerformed Departures performed
Payload Available payload (pounds)
Seats Available seats
Passengers Non-stop segment passengers transported
Freight Non-stop segment freight transported (pounds)
Mail Non-stop segment mail transported (pounds)
Distance Distance between airports (miles)
RampTime Ramp to ramp time (minutes)
AirTime Airborne time (minutes)

Carrier
UniqueCarrier Unique carrier code. When the same code has been used

by multiple carriers, a numeric suffix is used for earlier
users, for example, PA, PA(1), PA(2). Use this field for
analysis across a range of years

AirlineID An identification number assigned by US DOT to iden-
tify a unique airline (carrier). A unique airline (carrier)
is defined as one holding and reporting under the same
DOT certificate regardless of its code, name, or holding
company/corporation

UniqueCarrierName Unique carrier name. When the same name has been used
by multiple carriers, a numeric suffix is used for earlier
users, for example, Air Caribbean, Air Caribbean (1)

UniqCarrierEntity Unique entity for a carrier’s operation region
CarrierRegion Carrier’s operation region. Carriers report data by oper-

ation region
Carrier Code assigned by IATA and commonly used to identify

a carrier. As the same code may have been assigned to
different carriers over time, the code is not always unique.
For analysis, use the unique carrier code

CarrierName Carrier name
CarrierGroup Carrier group code. Used in legacy analysis
CarrierGroupNew Carrier group new

Origin
OriginAirportID Origin airport, Airport ID. An identification number as-

signed by US DOT to identify a unique airport. Use this
field for airport analysis across a range of years because
an airport can change its airport code and airport codes
can be reused

OriginAirportSeqID Origin airport, Airport Sequence ID. An identification
number assigned by US DOT to identify a unique air-
port at a given point of time. Airport attributes, such as
airport name or coordinates, may change over time

OriginCityMarketID Origin airport, City Market ID. City Market ID is an
identification number assigned by US DOT to identify a
city market. Use this field to consolidate airports serving
the same city market

Origin Origin airport

(continued)
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Table 5.1 (continued)

OriginCityName Origin city
OriginCountry Origin airport, country
OriginCountryName Origin airport, country name
OriginWAC Origin airport, world area code

Destination
DestAirportID Destination airport, Airport ID. An identification num-

ber assigned by US DOT to identify a unique airport. Use
this field for airport analysis across a range of years be-
cause an airport can change its airport code and airport
codes can be reused

DestAirportSeqID Destination airport, Airport Sequence ID. An identifica-
tion number assigned by US DOT to identify a unique
airport at a given point of time. Airport attributes, such
as airport name or coordinates, may change over time

DestCityMarketID Destination airport, City Market ID. City Market ID is
an identification number assigned by US DOT to iden-
tify a city market. Use this field to consolidate airports
serving the same city market

Dest Destination airport
DestCityName Destination city
DestCountry Destination airport, country
DestCountryName Destination airport, country name
DestWAC Destination airport, world area code

Aircraft
AircraftGroup Aircraft group
AircraftType Aircraft type
AircraftConfig Aircraft configuration

Time Period
Year Year
Quarter Quarter
Month Month

Other
DistanceGroup Distance intervals, every 500 Miles, for flight segment
Class Service Class
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Table 5.2 Lookup tables for the table T T100I Segment All Carrier XXXX

L STRCRAFT CONFIG L CITY MARKET ID
L STRCRAFT GROUP L COUNTRY CODE
L STRCRAFT TYPE L DISTANCE GROUP 500
L STRLINE ID L MONTHS
L STRPORT L QUARTERS
L STRPORT ID L REGION
L STRPORT SEQ ID L SERVICE CLASS
L CARRIER GROUP L UNIQUE CARRIER ENTITIES
L CARRIER GROUP NEW L UNIQUE CARRIERS
L CARRIER HISTORY L WORLD AREA CODES



Chapter 6

Querying Data Warehouses

Just as SQL is a language for manipulating relational databases, MDX
(Multi-Dimensional eXpressions) is a language for defining and querying
multidimensional databases. Although at first sight it may appear that MDX
resembles SQL, they are significantly different from each other. While SQL
operates over tables, attributes, and tuples, MDX works over data cubes,
dimensions, hierarchies, and members (at the instance level). MDX is a de
facto standard supported by many OLAP tool providers.

MDX supports two distinct modes. On the one hand, it can be used as an
expression language to design OLAP cubes, that is, to define and manipulate
data in order to calculate values, to add business logic to the cubes, to define
custom roll-ups and actions, to define security settings, and so on. On the
other hand, it can be used as a query language to retrieve data from cubes.
In this chapter, we address MDX as a query language.

In Sect. 6.1, we describe the main functionalities of MDX. Starting
from simple queries, we progressively introduce more complex features,
like navigation capabilities that are used to drill down or roll up along
hierarchies. Functions that are used to analyze time series are also discussed.
Finally, aggregation functions are addressed, going from the typical ones to
more involved functions like moving averages, for instance. We apply all
these functions and concepts in Sect. 6.2, where we query the Northwind
data cube using MDX. Generally speaking, MDX queries over cubes can
also be expressed as SQL queries over the underlying data warehouse.
Thus, in Sect. 6.3 we write the same queries presented in Sect. 6.2 as SQL
queries over the Northwind data warehouse instead of over the Northwind
multidimensional data cube. In Sect. 6.4, we compare the main features of
both languages, based on an analysis of the alternatives discussed in the two
formerly mentioned sections.

A. Vaisman and E. Zimányi, Data Warehouse Systems, Data-Centric
Systems and Applications, DOI 10.1007/978-3-642-54655-6 6,
© Springer-Verlag Berlin Heidelberg 2014
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6.1 Introduction to MDX

6.1.1 Tuples and Sets

Two fundamental concepts in MDX are tuples and sets. Intuitively, a tuple
identifies a single cell in a multidimensional cube. A tuple is defined by stating
one member from one or several dimensions of the cube.
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Fig. 6.1 A simple three-dimensional cube with one measure

Consider, for example, the cube given in Fig. 6.1. The cell in the top left
corner with value 21 corresponds to the sales of beverages in Paris in the first
quarter. To identify such cell, we just need to provide the coordinates of each
dimension as follows:

(Product.Category.Beverages, Time.Quarter.Q1, Customer.City.Paris)

Notice that in the above expression, we stated the coordinate for each of
the three dimensions in the format Dimension.Level.Member. As we will see
later, in MDX there are several ways to specify a member of a dimension.
In particular, the order of the members is not significant, and the previous
tuple can also be stated as follows:

(Time.Quarter.Q1, Product.Category.Beverages, Customer.City.Paris)

Since a tuple points to a single cell, then it follows that each member in the
tuple must belong to a different dimension.

A set is a collection of tuples defined using the same dimensions. For
example, the following set

{ (Product.Category.Beverages, Time.Quarter.Q1, Customer.City.Paris)
(Product.Category.Beverages, Time.Quarter.Q1, Customer.City.Lyon) }
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points to the previous cell with value 21 and the one behind it with value 12.
It is worth noting that a set may have one or even zero tuples.

A tuple does not need to specify a member from every dimension. Thus,
the tuple

(Customer.City.Paris)

points to the slice of the cube composed of the sixteen front cells of the cube,
that is, the sales of product categories in Paris, while the tuple

(Customer.City.Paris, Product.Category.Beverages)

points to the four cells at the front and left of the cube, that is, the sales of
beverages in Paris. If a member for a particular dimension is not specified,
then the default member for the dimension is implied. Typically, the default
member is the All member, which has the aggregated value for the dimension.
However, as we will see later, the default member can be also the current
member in the scope of a query.

Let us see now how tuples interact with hierarchies. Suppose that in our
cube we have a hierarchy in the customer dimension with levels Customer,
City, State, and Country. In this case, the following tuple

(Customer.Country.France, Product.Category.Beverages, Time.Quarter.Q1)

uses the aggregated member France and therefore points to the single cell
that holds the value for the total sales of beverages in France in the first
quarter.

In MDX, measures act much like dimensions. Suppose that in our cube
we have three measures UnitPrice, Discount, and SalesAmount. In this case,
the Measures dimension, which exists in every cube, contains three members,
and thus, we can specify the measure we want as in the following tuple:

(Customer.Country.France, Product.Category.Beverages, Time.Quarter.Q1,
Measures.SalesAmount)

If a measure is not specified, then a default measure will be used.

6.1.2 Basic Queries

The syntax of a typical MDX query is as follows:

SELECT 〈 axis specification 〉
FROM 〈 cube 〉
[ WHERE 〈 slicer specification 〉 ]

As can be seen, at a first glance, MDX resembles SQL, but as we will see in
this chapter, the two languages differ in several significant ways.
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The axis specification states the axes of a query as well as the members
selected for each of these axis. There can be up to 128 axes in an MDX query.
Each axis has a number: 0 for the x-axis, 1 for the y-axis, 2 for the z-axis,
and so on. The first axes have predefined names, namely, COLUMNS, ROWS,
PAGES, CHAPTERS, and SECTIONS. Otherwise, the axes can be referenced
using the AXIS(number) or the number naming convention, where AXIS(0)
corresponds to COLUMNS, AXIS(1) corresponds to ROWS, and so on. It is
worth noting that query axes cannot be skipped, that is, a query that includes
an axis must not exclude lower-numbered axes. For example, a query cannot
have a ROWS axis without a COLUMNS axis.

The slicer specification on the WHERE clause is optional. If not specified,
the query returns the default measure for the cube. Unless we want to display
the Measures dimension, most queries have a slicer specification.

The simplest form of an axis specification consists in taking the members
of the required dimension, including those of the special Measures dimension,
as follows:

SELECT [Measures].MEMBERS ON COLUMNS,
[Customer].[Country].MEMBERS ON ROWS

FROM Sales

This query displays all the measures for customers summarized at the country
level. In MDX the square brackets are optional, except for a name with
embedded spaces, with numbers, or that is an MDX keyword, where they
are required. In the following, we omit unnecessary square brackets. The
result of this query is given next.

Unit Price Quantity Discount Sales Amount Freight Sales Count
Austria $84.77 4,644 $115,328.31 $6,827.10 114
Belgium $64.65 1,242 $30,505.06 $1,179.53 49
Denmark $70.28 1,156 $32,428.94 $1,377.75 45
Finland $54.41 848 $17,530.05 $827.45 51
France $64.51 3,052 $77,056.01 $3,991.42 172

Germany $79.54 8,670 $219,356.08 $10,459.01 309
Ireland

· · · · · · · · ·

21.71%
9.72%
17.94%
9.09%
11.76%
19.26%

· ·· · · · · · · · · ·

Notice that there is no customer from Ireland and therefore the correspond-
ing row has only null values. In order to remove such values, the NONEMPTY
function must be used:

SELECT Measures.MEMBERS ON COLUMNS,
NONEMPTY(Customer.Country.MEMBERS) ON ROWS

FROM Sales
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Alternatively, the NON EMPTY keyword can be used as in the following
query:

SELECT Measures.MEMBERS ON COLUMNS,
NON EMPTY Customer.Country.MEMBERS ON ROWS

FROM Sales

Although in this case the use of the NONEMPTY function and the NON
EMPTY keyword yields the same result, there are slight differences between
both, which go beyond this introduction to MDX.

Notice also that the derived measure NetAmount does not appear in the
result. If we want this to happen, we should use the ALLMEMBERS keyword:

SELECT Measures.ALLMEMBERS ON COLUMNS,
Customer.Country.MEMBERS ON ROWS

FROM Sales

The ADDCALCULATEDMEMBERS function can also be used for this purpose.

6.1.3 Slicing

Consider now the query below, which shows all measures by year:

SELECT Measures.MEMBERS ON COLUMNS,
[Order Date].Year.MEMBERS ON ROWS

FROM Sales

The query returns the following result:

Unit Price Quantity Discount Sales Amount Freight Sales Count
All $134.14 46,388 27.64% $1,145,155.86 $58,587.49 1,931

1996 $99.55 8,775 21.95% $191,849.87 $9,475.00 371
1997 $116.63 23,461 25.89% $570,199.61 $29,880.49 982
1998 $205.38 14,152 35.74% $383,106.38 $19,232.00 578

To restrict the result to Belgium, we can write the following query:

SELECT Measures.MEMBERS ON COLUMNS,
[Order Date].Year.MEMBERS ON ROWS

FROM Sales
WHERE (Customer.Country.Belgium)

The added condition does not change what is returned on the axes (i.e., the
years and the measure names), but only the values returned in each cell. In
this example, the query returns the values of all measures for all years but
only for customers who live in Belgium.

Multiple members from different hierarchies can be added to the WHERE
clause. The following query shows the values of all measures for all years
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for customers who live in Belgium and who bought products in the category
beverages:

SELECT Measures.MEMBERS ON COLUMNS,
[Order Date].Year.MEMBERS ON ROWS

FROM Sales
WHERE (Customer.Country.Belgium, Product.Categories.Beverages)

To use multiple members from the same hierarchy, we need to include a set
in the WHERE clause. For example, the following query shows the values of
all measures for all years for customers who bought products in the category
beverages and live in either Belgium or France:

SELECT Measures.MEMBERS ON COLUMNS,
[Order Date].Year.MEMBERS ON ROWS

FROM Sales
WHERE ( { Customer.Country.Belgium, Customer.Country.France },

Product.Categories.Beverages)

Using a set in the WHERE clause implicitly aggregates values for all members
in the set. In this case, the query shows aggregated values for Belgium and
France in each cell.

Consider now the following query, which requests the sales amount of
customers by country and by year:

SELECT [Order Date].Year.MEMBERS ON COLUMNS,
Customer.Country.MEMBERS ON ROWS

FROM Sales
WHERE Measures.[Sales Amount]

Here, we specified in the WHERE clause the measure to be displayed. If no
measure is stated, then the default measure is used. The result is given below:

All 1996 1997 1998
Austria $115,328.31 $24,467.52 $55,759.04 $35101.7502
Belgium $30,505.06 $5,865.10 $9,075.48 $15,564.48
Denmark $32,428.93 $2,952.40 $25,192.53 $4,284.00
Finland $17,530.05 $2,195.760 $13,077.29 $2,257.00

· · · · · · · · · · · · · · ·

The WHERE clause can combine measures and dimensions. For example,
the following query will show a result similar to the one given above, but now
with the figures restricted to the category beverages:

SELECT [Order Date].Year.MEMBERS ON COLUMNS,
Customer.Country.MEMBERS ON ROWS

FROM Sales
WHERE (Measures.[Sales Amount], Product.Category.[Beverages])

If a dimension appears in a slicer, it cannot be used in any axis in the
SELECT clause. We will see later that the FILTER function can be used to
filter members of dimensions appearing in an axis.
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6.1.4 Navigation

The result of the query above contains aggregated values for all the years,
including the All column. If we wanted to display only the values for the
individual years (and not the All member), we would use the CHILDREN
function instead as follows:

SELECT [Order Date].Year.CHILDREN ON COLUMNS, . . .

The attentive reader may wonder why the member All does not appear in the
rows of the above result. The reason is that the expression

Customer.Country.MEMBERS

we used in the query is a shorthand notation for

Customer.Geography.Country.MEMBERS

and thus it selects the members of the Country level of the Geography hierarchy
of the Customer dimension. Since the All member is the topmost member of
the hierarchy, above the members of the Continent level, it is not a member
of the Country level and does not appear in the result. Let us explain this
further. As we have seen in Chap. 5, every attribute of a dimension defines
an attribute hierarchy. Thus, there is an All member in each hierarchy of a
dimension, for both the user-defined hierarchies and the attribute hierarchies.
Since the dimension Customer has an attribute hierarchy Company Name, if
in the above query we use the expression

Customer.[Company Name].MEMBERS

the result will contain the All member, in addition to the names of all the
customers. Using CHILDREN instead will not show the All member.

Instead of taking the members of a dimension, a single member or an
enumeration of members of a dimension can be selected. An example is given
in the following query:

SELECT [Order Date].Year.MEMBERS ON COLUMNS,
{ Customer.Country.France,Customer.Country.Italy } ON ROWS

FROM Sales
WHERE Measures.[Sales Amount]

This expression queries the sales amount of customers by year summarized
for France and Italy. In the above query, the set in the row axis could be also
stated using expressions such as the following ones:

Customer.France
Customer.Geography.France
Customer.Geography.Country.France
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The latter expression uses fully qualified or unique names, namely, the
dimension, hierarchy, and level to which the specific member belongs. When
member names are uniquely identifiable, fully qualified member names are not
required. Nevertheless, to remove any ambiguities in formulating expressions,
the use of unique names is recommended.

To retrieve the states of the countries above, we may use the function
CHILDREN as follows:

SELECT [Order Date].Year.MEMBERS ON COLUMNS,
NON EMPTY { Customer.France.CHILDREN,
Customer.Italy.CHILDREN } ON ROWS

FROM Sales
WHERE Measures.[Sales Amount]

The result is shown below, where the first two lines correspond to departments
in France and the last two lines correspond to provinces in Italy.

All 1996 1997 1998
Bas-Rhin $18,534.07 $9,986.20 $7,817.87 $730.00

Bouches-du-Rhône $19,373.10 $2,675.88 $10,809.36 $5,887.86
· · · · · · · · · · · · · · ·

Reggio Emilia $6,641.83 $80.10 $3,000.84 $3,560.89
Torino $1,545.70 $249.70 $1,296.00

The MEMBERS and CHILDREN functions seen above do not provide the
ability to drill down to a lower level in a hierarchy. For this, the function
DESCENDANTS can be used. For example, the following query shows the
sales amount for German cities:

SELECT [Order Date].Year.MEMBERS ON COLUMNS,
NON EMPTY DESCENDANTS(Customer.Germany, Customer.City)
ON ROWS

FROM Sales
WHERE Measures.[Sales Amount]

The result of the above query is given next.

All 1996 1997 1998
Mannheim $2,381.80 $1,079.80 $1,302.00
Stuttgart $8,705.23 $2,956.60 $4,262.83 $1,485.80
München $26,656.56 $9,748.04 $11,829.78 $5,078.74

· · · · · · · · · · · · · · ·

By default, the function DESCENDANTS displays only members at the
level specified as its second argument. An optional flag as third argument
states whether to include or exclude descendants or children before and after
the specified level as follows:
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• SELF, which is the default, displays values for the City level as above.
• BEFORE displays values from the state level up to the Country level.
• SELF AND BEFORE displays values from the City level up to the Country

level.
• AFTER displays values from the Customer level, since it is only level after

City.
• SELF AND AFTER displays values from the City and Customer levels.
• BEFORE AND AFTER displays values from the Country level to the

Customer level, excluding the former.
• SELF BEFORE AFTER displays values from the Country level to the

Customer level.
• LEAVES displays values from the City level as above, since this is the only

leaf level between Country and City. On the other hand, if LEAVES is used
without specifying the level, as in the following query

DESCENDANTS(Customer.Geography.Germany, ,LEAVES)

then the leaf level, that is, Customer, will be displayed.

The ASCENDANTS function returns a set that includes all the ancestors
of a member and the member itself. For example, the following query asks
for the sales amount for the customer Du monde entier and all its ancestors in
the Geography hierarchy, that is, at the City, State, Country, Continent, and
All levels:

SELECT Measures.[Sales Amount] ON COLUMNS,
ASCENDANTS(Customer.Geography.[Du monde entier]) ON ROWS

FROM Sales

The result of the query is as follows:

Sales Amount
$1,548.70

Nantes $4,720.86
Loire-Atlantique $4,720.86

France $77,056.01
Europe $683,523.76

All Customers $1,145,155.86

monde entierDu

The function ANCESTOR can be used to obtain the result for an ancestor at
a specified level, as shown next:

SELECT Measures.[Sales Amount] ON COLUMNS,
ANCESTOR(Customer.Geography.[Du monde entier],
Customer.Geography.State) ON ROWS

FROM Sales

Here, only the line corresponding to Loire-Atlantique in the table above will
be shown.
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6.1.5 Cross Join

As said above, an MDX query can display up to 128 axes. However, most
OLAP tools are only able to display two axes, that is, two-dimensional tables.
In this case, a cross join can be used to combine several dimensions in a single
axis. Suppose that we want to obtain the sales amount for product categories
by country and by quarter. In order to view this query in a matrix format, we
need to combine the customer and time dimensions in a single axis through
the CROSSJOIN function as shown next:

SELECT Product.Category.MEMBERS ON COLUMNS,
CROSSJOIN(Customer.Country.MEMBERS,
[Order Date].Calendar.Quarter.MEMBERS) ON ROWS

FROM Sales
WHERE Measures.[Sales Amount]

Alternatively, we can use the cross join operator ‘*’:

SELECT Product.Category.MEMBERS ON COLUMNS,
Customer.Country.MEMBERS *
[Order Date].Calendar.Quarter.MEMBERS ON ROWS

FROM Sales
WHERE Measures.[Sales Amount]

The result of the query is as follows:

Beverages Condiments Confections · · ·
Austria Q3 1996 $708.80 $884.00 $625.50 · · ·
Austria Q4 1996 $12,955.60 $703.60 $36.00 · · ·
Austria Q1 1997 $3,097.50 $1,505.22 · · ·
Austria Q2 1997 $1,287.50 $1,390.95 $3,159.00 · · ·

· · · · · · · · · · · · · · · · · ·

More than two cross joins can be applied, as shown in the following query:

SELECT Product.Category.MEMBERS ON COLUMNS,
Customer.Country.MEMBERS *
[Order Date].Calendar.Quarter.MEMBERS *
Shipper.[Company Name].MEMBERS ON ROWS

FROM Sales
WHERE Measures.[Sales Amount]

This query yields the result displayed below:
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Beverages Condiments Confections · · ·
Austria Q3 1996 All $708.80 $884.00 $625.50 · · ·
Austria Q3 1996 Federal Shipping $100.80 $625.50 · · ·
Austria Q3 1996 Speedy Express $608.00 $884.00 · · ·
Austria Q3 1996 United Package · · ·
Austria Q4 1996 All $12,955.60 $703.60 $36.00 · · ·

· · · · · · · · · · · · · · · · · · · · ·

6.1.6 Subqueries

As stated above, the WHERE clause applies a slice to the cube. In the queries
so far, we have used this clause to select the measure to be displayed. But
this can also be used for dimensions. If we were only interested in the sales
amount for the beverages and condiments product categories, we could write
the following query:

SELECT Measures.[Sales Amount] ON COLUMNS,
[Order Date].Calendar.Quarter.MEMBERS ON ROWS

FROM Sales
WHERE { Product.Category.Beverages, Product.Category.Condiments }

Instead of using a slicer in the WHERE clause of above query, we can define
a subquery in the FROM clause as follows:

SELECT Measures.[Sales Amount] ON COLUMNS,
[Order Date].Calendar.Quarter.MEMBERS ON ROWS

FROM ( SELECT { Product.Category.Beverages,
Product.Category.Condiments } ON COLUMNS

FROM Sales )

This query displays the sales amount for each quarter in a subquery which
only mentions the beverages and condiments product categories. As we can
see in the query above, different from SQL, in the outer query we can mention
attributes that are not selected in the subquery.

Nevertheless, there is a fundamental difference between these two
approaches. When we include the product category hierarchy in the WHERE
clause, it cannot appear on any axis, but this is not the case in the subquery
approach as the following query shows:

SELECT Measures.[Sales Amount] ON COLUMNS,
[Order Date].Calendar.Quarter.MEMBERS *
Product.Category.MEMBERS ON ROWS

FROM ( SELECT { Product.Category.Beverages,
Product.Category.Condiments } ON COLUMNS

FROM Sales )

The answer of this query is given next.
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Sales Amount
Q3 1996 Beverages $8,996.98
Q3 1996 Condiments $4,003.30
Q4 1996 Beverages $32,937.70
Q4 1996 Condiments $10,778.16

· · · · · · · · ·

We can see that the members of the Category hierarchy now are only the
beverages and condiments categories and not the other categories which are
present in the original Northwind cube. Thus, the structure of the cube itself
has been altered.

The subquery may include more than one dimension, as the following
example shows:

SELECT Measures.[Sales Amount] ON COLUMNS,
[Order Date].Calendar.Quarter.MEMBERS *
Product.Category.MEMBERS ON ROWS

FROM ( SELECT ( { Product.Category.Beverages,
Product.Category.Condiments },
{ [Order Date].Calendar.[Q1 1997],
[Order Date].Calendar.[Q2 1997] } ) ON COLUMNS

FROM Sales )

whose answer is as follows:

Sales Amount
Q1 1997 Beverages $33,902.08
Q1 1997 Condiments $9,912.22
Q2 1997 Beverages $21,485.53
Q2 1997 Condiments $10,875.70

We can also nest several subquery expressions, which are used to express
complex multistep filtering operations, as it is done in the following query,
which asks for the sales amount by quarter for the top two selling countries
for the beverages and condiments product categories:

SELECT Measures.[Sales Amount] ON COLUMNS,
[Order Date].Calendar.[Quarter].Members ON ROWS

FROM ( SELECT TOPCOUNT(Customer.Country.MEMBERS, 2,
Measures.[Sales Amount]) ON COLUMNS

FROM ( SELECT { Product.Category.Beverages,
Product.Category.Condiments } ON COLUMNS

FROM Sales ) )

This query uses the TOPCOUNT function, which sorts a set in descending
order with respect to the expression given as third parameter and returns the
specified number of elements with the highest values. Notice that although we
could have used a single nesting, the expression above is easier to understand.
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6.1.7 Calculated Members and Named Sets

A powerful concept in MDX is that of calculated members and named sets.
Calculated members are used to define new members in a dimension or new
measures. These are defined using the following clause in front of the SELECT
statement:

WITH MEMBER Parent.MemberName AS 〈 expression 〉

where Parent refers to the parent of the new calculated member and
MemberName is its name. Similarly, named sets are used to define new sets
as follows:

WITH SET SetName AS 〈 expression 〉

Calculated members and named sets defined using the WITH clause as
above are within the scope of a query. They can be defined instead within the
scope of a session, and thus, they will be visible to all queries in that session
or within the scope of a cube. In these cases, a CREATE statement must be
used. In the sequel, we will only show examples of calculated members and
named sets defined within queries.

Calculated members and named sets are computed at run time, and
therefore, there is no penalty in the processing of the cube or in the number
of aggregations to be stored. The most common use of calculated members is
to define a new measure that relates already defined measures. For example,
a measure that calculates the percentage profit of sales can be defined as
follows:

WITH MEMBER Measures.Profit% AS
(Measures.[Sales Amount] - Measures.[Freight]) /
(Measures.[Sales Amount]), FORMAT STRING = '#0.00%'

SELECT { [Sales Amount], Freight, Profit% } ON COLUMNS,
Customer.Country ON ROWS

FROM Sales

Here, FORMAT STRING specifies the display format to use for the new
calculated member. In the format expression above, a ‘#’ displays a digit
or nothing, while a ‘0’ displays a digit or a zero. The use of the percent
symbol ‘%’ specifies that the calculation returns a percentage and includes a
multiplication by a factor of 100. The result of the query follows:

Sales Amount Freight Profit%
Austria $115,328.31 $6,827.10 94.08%
Belgium $30,505.06 $1,179.53 96.13%
Denmark $32,428.94 $1,377.75 95.75%
Finland $17,530.05 $827.45 95.28%

· · · · · · · · · · · ·
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In the above example, we created a calculated member in the Measures
dimension. It is also possible to create a calculated member in a dimension,
as shown in the following example:

WITH MEMBER Product.Categories.[All].[Meat & Fish] AS
Product.Categories.[Meat/Poultry] + Product.Categories.[Seafood]

SELECT { Measures.[Unit Price], Measures.Quantity, Measures.Discount,
Measures.[Sales Amount] } ON COLUMNS,
Category.ALLMEMBERS ON ROWS

FROM Sales

The query above creates a calculated member equal to the sum of the
Meat/Poultry and Seafood categories. This member is a child of the All
member of the hierarchy Categories of the Product dimension. It will thus
belong to the Category level of the Categories hierarchy. The following table
shows the result of the query:

Unit Price Quantity Discount Sales Amount
· · · · · · · · · · · · · · ·

Meat/Poultry $50.25 3,897 7.48% $139,428.18
Produce $41.24 2,710 5.09% $90,216.14
Seafood $27.64 7,070 8.25% $122,307.02

Meat & Fish $77.89 10,967 15.73% $261,735.20

In the following query, we define a named set Nordic Countries composed
of the countries Denmark, Finland, Norway, and Sweden:

WITH SET [Nordic Countries] AS
{ Customer.Country.Denmark, Customer.Country.Finland,
Customer.Country.Norway, Customer.Country.Sweden }

SELECT Measures.MEMBERS ON COLUMNS,
[Nordic Countries] ON ROWS

FROM Sales

The result of the query is as follows:

Unit Price Quantity Discount Sales Amount Freight Sales Count
Denmark $70.28 1,156 17.94% $32,428.94 $1,377.75 45
Finland $54.41 848 9.09% $17,530.05 $827.45 51
Norway $97.95 152 0.00% $5,321.15 $257.45 15
Sweden $68.73 2,149 19.57% $51,292.64 $3,032.12 94

In the above example, the named set is defined by enumerating its
members, and thus, it is a static name set even if defined in the scope of
a session or a cube, since its result must not be reevaluated upon updates
of the cube. On the contrary, a dynamic named set is evaluated any time
there are changes to the scope. As an example of a dynamic named set, the
following query displays several measures for the top five selling products:
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WITH SET TopFiveProducts AS
TOPCOUNT ( Product.Categories.Product.MEMBERS, 5,
Measures.[Sales Amount] )

SELECT { Measures.[Unit Price], Measures.Quantity, Measures.Discount,
Measures.[Sales Amount] } ON COLUMNS,
TopFiveProducts ON ROWS

FROM Sales

The result of the query is shown below:

Unit Price Quantity Discount Sales Amount
Côte de Blaye $256.63 623 4.78% $141,396.74

Raclette Courdavault $53.17 1,369 3.96% $65,658.45
Thüringer Rostbratwurst $115.24 596 6.21% $63,657.02

Tarte au sucre $46.56 1,068 5.53% $46,643.97
Camembert Pierrot $34.32 1,498 7.21% $44,200.68

6.1.8 Relative Navigation

It is often necessary to relate the value of a member to those of other
members in a hierarchy. MDX has many methods that can be applied
to a member to traverse a hierarchy, the most common ones are PRE-
VMEMBER, NEXTMEMBER, CURRENTMEMBER, PARENT, FIRSTCHILD,
and LASTCHILD. Suppose we want to calculate the sales of a member of the
Geography hierarchy as a percentage of the sales of its parent, as shown in
the following query:

WITH MEMBER Measures.[Percentage Sales] AS
(Measures.[Sales Amount], Customer.Geography.CURRENTMEMBER) /
(Measures.[Sales Amount],
Customer.Geography.CURRENTMEMBER.PARENT),
FORMAT STRING = '#0.00%'

SELECT { Measures.[Sales Amount], Measures.[Percentage Sales] }
ON COLUMNS, DESCENDANTS(Customer.Europe,
Customer.Country, SELF AND BEFORE) ON ROWS

FROM Sales

In the WITH clause, the CURRENTMEMBER function returns the current
member along a dimension during an iteration, while the PARENT function
returns the parent of a member. In the SELECT clause, the measures for
European countries are displayed. The expression defining the calculated
member can be abbreviated as follows:

(Measures.[Sales Amount]) / (Measures.[Sales Amount],
Customer.Geography.CURRENTMEMBER.PARENT)
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where the current member of the hierarchy will be used by default if not
specified. The result of the query is as follows:

Sales Amount Percentage Sales
Europe $683,523.76 59.69%
Austria $115,328.31 16.87%
Belgium $30,505.06 4.46%
Denmark $32,428.94 4.74%
Finland $17,530.05 2.56%

· · · · · · · · ·

As can be seen, for example, sales in Austria represent 16.87% of European
sales, while European sales represent 59.69% of the overall sales. The problem
with the above calculated measure is that it works well for all members of
the Geography hierarchy, at any level, except for the All member, since it does
not have a parent. Therefore, we must add a conditional expression in the
definition of the measure as follows:

WITH MEMBER Measures.[Percentage Sales] AS
IIF((Measures.[Sales Amount],
Customer.Geography.CURRENTMEMBER.PARENT)=0, 1,
(Measures.[Sales Amount]) / (Measures.[Sales Amount],
Customer.Geography.CURRENTMEMBER.PARENT)),
FORMAT STRING = '#0.00%'

SELECT . . .

The IIF function has three parameters: the first one is a Boolean condition,
the second one is the value returned if the condition is true, and the third
one is the value returned if the condition is false. Thus, since the All member
has no parent, the value of the measure sales amount for its parent will be
equal to 0, and in this case a value of 1 will be given for the percentage sales.

The GENERATE function iterates through the members of a set, using a
second set as a template for the resultant set. Suppose we want to display the
sales amount by category for all customers in Belgium and France. To avoid
enumerating in the query all customers for each country, the GENERATE
function can be used as follows:

SELECT Product.Category.MEMBERS ON COLUMNS,
GENERATE({Customer.Belgium, Customer.France},
DESCENDANTS(Customer.Geography.CURRENTMEMBER,
[Company Name])) ON ROWS

FROM Sales
WHERE Measures.[Sales Amount]

The result of the query is given next.
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Beverages Condiments Confections Dairy Products · · ·
Maison Dewey $108.00 $680.00 $2,659.38 $2,972.00 · · ·

Suprêmes délices $3,108.08 $1,675.60 $4,820.20 $5,688.00 · · ·
Blondesddsl père et fils $3,975.92 $1,939.00 $2,872.00 · · ·

Bon app' $877.50 $2,662.48 $2,313.67 $1,912.43 · · ·
La maison d'Asie $1,499.15 $525.90 $2,085.90 $757.76 · · ·
Du monde entier $194.00 $60.00 $201.60 · · ·

· · · · · · · · · · · · · · · · · ·

The PREVMEMBER function can be used to show growth over a time
period. The following query displays net sales and the incremental change
from the previous time member for all months in 1996:

WITH MEMBER Measures.[Net Sales Growth] AS
(Measures.[Net Sales]) -
(Measures.[Net Sales], [Order Date].Calendar.PREVMEMBER),
FORMAT STRING = '$###,##0.00; $-###,##0.00'

SELECT { Measures.[Net Sales], Measures.[Net Sales Growth] } ON COLUMNS,
DESCENDANTS([Order Date].Calendar.[1996],
[Order Date].Calendar.[Month]) ON ROWS

FROM Sales

The format expression above defines two formats, the first one for positive
numbers and the second one for negative numbers. Using NEXTMEMBER in
the expression above would show net sales for each month compared with
those of the following month. The result of the query is given next.

Net Sales Net Sales Growth
July 1996 $25,982.68 $25,982.68

August 1996 $21,849.97 $-4,132.71
September 1996 $19,698.94 $-2,151.03
October 1996 $32,586.14 $12,887.20

November 1996 $42,337.16 $9,751.03
December 1996 $39,919.97 $-2,417.19

As shown above, the net sales growth for the first month is equivalent to the
net sales. Since the cube only holds sales starting from July 1996, the growth
for the first month cannot be measured. In this case, a value of zero is used
for the previous period that is beyond the range of the cube.

In the query above, instead of the PREVMEMBER function, we can use
the LAG(n) function, which returns the member located a specified number
of positions preceding a specific member along the member dimension. If
the number given is negative, a subsequent member is returned; if it is zero,
the current member is returned. Thus, PREV, NEXT, and CURRENT can be
replaced with LAG(1), LAG(-1), and LAG(0), respectively. A similar function
called LEAD exists, such that LAG(n) is equivalent to LEAD(-n).
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6.1.9 Time Series Functions

Time period analysis is an essential component of business intelligence
applications. For example, one could want to examine the sales of a month
or quarter compared to those of the same month or quarter last year. MDX
provides a powerful set of time series functions for time period analysis. While
their most common use is with a time dimension, most of them can also be
used with any other dimension.

The PARALLELPERIOD function is used to compare values of a specified
member with those of a member in the same relative position in a prior
period. For example, one would compare values from one quarter with those
of the same quarter in the previous year. In the previous query, we used the
PREVMEMBER function to compute the growth with respect to the previous
month. The PARALLELPERIOD function can be used to compute the growth
with respect to the same period in the previous year, as shown next:

WITH MEMBER Measures.[Previous Year] AS
(Measures.[Net Sales],
PARALLELPERIOD([Order Date].Calendar.Quarter, 4)),
FORMAT STRING = '$###,##0.00'

MEMBER Measures.[Net Sales Growth] AS
Measures.[Net Sales] - Measures.[Previous Year],
FORMAT STRING = '$###,##0.00; $-###,##0.00'

SELECT { [Net Sales], [Previous Year], [Net Sales Growth] } ON COLUMNS,
[Order Date].Calendar.Quarter ON ROWS

FROM Sales

Here, the PARALLELPERIOD selects the member that is four quarters (i.e.,
a year) prior to the current quarter. The query result is as follows:

Net Sales Previous Year Net Sales Growth
Q3 1996 $67,531.59 $67,531.59
Q4 1996 $114,843.27 $114,843.27
Q1 1997 $125,174.40 $125,174.40
Q2 1997 $121,518.78 $121,518.78
Q3 1997 $133,636.32 $67,531.59 $66,104.73
Q4 1997 $159,989.61 $114,843.27 $45,146.34
Q1 1998 $259,322.36 $125,174.40 $134,147.95
Q2 1998 $104,552.03 $121,518.78 $-16,966.75

As can be seen, the net sales growth for the third quarter of 1997 is the
difference between the net sales in that quarter and the net sales of the third
quarter of 1996. Notice that the net sales growth for the first four quarters
is equal to the net sales. As already said, since the Northwind cube contains
sales data starting from July 1996, the net sales for the first four quarters
shown in the result above is null. In this case, a value of zero is used for
parallel periods beyond the range of the cube.
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The functions OPENINGPERIOD and CLOSINGPERIOD return, respec-
tively, the first or last sibling among the descendants of a member at a
specified level. For example, the difference between the sales quantity of a
month and that of the opening month of the quarter can be obtained as
follows:

WITH MEMBER Measures.[Quantity Difference] AS
(Measures.[Quantity]) - (Measures.[Quantity],
OPENINGPERIOD([Order Date].Calendar.Month,
[Order Date].Calendar.CURRENTMEMBER.PARENT))

SELECT { Measures.[Quantity], Measures.[Quantity Difference] } ON COLUMNS,
[Order Date].Calendar.[Month] ON ROWS

FROM Sales

In deriving the calculated member Quantity Difference, the opening period
at the month level is taken for the quarter to which the month corresponds.
If CLOSINGPERIOD is used instead, the query will show sales based on the
final month of the specified season, as shown next.

Quantity Quantity Difference
July 1996 1,425

August 1996 1,221 -204
September 1996 882 -543
October 1996 1,602

November 1996 1,649 47
December 1996 1,996 394

· · · · · · · · ·

The PERIODSTODATE function returns a set of periods (members) from
a specified level starting with the first period and ending with a specified
member. For example, the following expression defines a set containing all
the months up to and including June 1997:

PERIODSTODATE([Order Date].Calendar.Year,
[Order Date].Calendar.[June 1997])

Suppose now that we want to define a calculated member that displays
year-to-date information, for example, the monthly year-to-date sales. For
this, in addition to PERIODSTODATE, we need to use the SUM function,
which returns the sum of a numeric expression evaluated over a set. For
example, the sum of sales amount for Italy and Greece can be displayed with
the following expression:

SUM({Customer.Country.Italy, Customer.Country.Greece},
Measures.[Sales Amount])
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We can now compute the monthly year-to-date sales. In the expression below,
the measure to be displayed is the sum of the current time member over the
year level:

SUM(PERIODSTODATE([Order Date].Calendar.Year,
[Order Date].Calendar.CURRENTMEMBER), Measures.[Sales Amount])

Similarly, by replacing Year by Quarter in the above expression, we can obtain
quarter-to-date sales. For example, the following query shows year-to-date
and quarter-to-date sales:

WITH MEMBER Measures.YTDSales AS
SUM(PERIODSTODATE([Order Date].Calendar.Year,
[Order Date].Calendar.CURRENTMEMBER), Measures.[Sales Amount])

MEMBER Measures.QTDSales AS
SUM(PERIODSTODATE([Order Date].Calendar.Quarter,
[Order Date].Calendar.CURRENTMEMBER), Measures.[Sales Amount])

SELECT { Measures.[Sales Amount], Measures.YTDSales, Measures.QTDSales }
ON COLUMNS, [Order Date].Calendar.Month.MEMBERS ON ROWS

FROM Sales

The result of the query is as follows:

Sales Amount YTDSales QTDSales
July 1996 $27,246.10 $27,246.10 $27,246.10

August 1996 $23,104.98 $50,351.07 $50,351.07
September 1996 $20,582.40 $70,933.47 $70,933.47
October 1996 $33,991.56 $104,925.04 $33,991.56

November 1996 $44,365.42 $149,290.46 $78,356.98
December 1996 $42,559.41 $191,849.87 $120,916.40
January 1997 $57,187.26 $57,187.26 $57,187.26
February 1997 $36,275.14 $93,462.39 $93,462.39

· · · · · · · · · · · ·

As can be seen above, the Northwind data warehouse contains sales data
starting in July 1996. Thus, the value of both measures YTDSales and
QTDSales for August 1996 is the sum of the measure Sales Amount of
July 1996 and August 1996. Similarly, the value of measure YTDSales for
December 1996 is the sum of Sales Amount from July 1996 to December 1996.
This is to be contrasted with the value of measure QTDSales for December
1996, which is the sum of Sales Amount from October 1996 to December 1996.

The xTD (YTD, QTD, MTD, and WTD) functions refer to year-, quarter-,
month-, and week-to-date periods. They are only applicable to a time
dimension (which was not the case for the other functions we have seen so
far). The xTD functions are equivalent to the PeriodsToDate function with a
level specified. YTD specifies a year level, QTD specifies a quarter level, and
so on. For example, in the query above, the measure YTDSales can be defined
instead by the following expression:
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SUM(YTD([Order Date].Calendar.CURRENTMEMBER),
Measures.[Sales Amount])

Moving averages are used to solve very common business problems. They
are well suited to track the behavior of temporal series, such as financial
indicators or stock market data. As these data change very rapidly, moving
averages are used to smooth out the variations and discover general trends.
However, choosing the period over which smoothing is performed is essential,
because if the period is too long, the average will be flat and will not be
useful to discover any trend, whereas a too short period will show too many
peaks and troughs to highlight general trends.

The LAG function we have seen in the previous section, combined with
the range operator ‘:’, helps us to write moving averages in MDX. The range
operator returns a set of members made of two given members and all the
members in between. Thus, for computing the 3-month moving average of
the number of orders, we can write the following query:

WITH MEMBER Measures.MovAvg3Months AS
AVG([Order Date].Calendar.CURRENTMEMBER.LAG(2):
[Order Date].Calendar.CURRENTMEMBER,
Measures.[Order No]), FORMAT STRING = '###,##0.00'

SELECT { Measures.[Order No], Measures.MovAvg3Months } ON COLUMNS,
[Order Date].Calendar.Month.MEMBERS ON ROWS

FROM Sales
WHERE (Measures.MovAvg3Months)

The AVG function, like SUM, returns the average of an expression evaluated
over a set. The LAG(2) function obtains the month preceding the current one
by 2 months. The range operator returns the set containing the 3 months
over which the average of the number of orders is computed. The answer of
this query is given next.

Order No MovAvg3Months
July 1996 21 21.00

August 1996 25 23.00
September 1996 21 22.33
October 1996 25 23.67

November 1996 25 23.67
December 1996 29 26.33

· · · · · · · · ·

As can be seen, the average for July 1996 is equal to the number of orders, as
there are no prior data, while the average for August 1996 will be computed
from the data from July and August 1996. From September 2006 onward, the
average will be computed from the current month and the prior 2 months.
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6.1.10 Filtering

As its name suggests, filtering is used to reduce the number of axis members
that are displayed. This is to be contrasted with slicing, as specified in the
WHERE clause, since slicing does not affect selection of the axis members,
but rather the values that go into them.

We have already seen the most common form of filtering, where the
members of an axis that have no values are removed with the NON EMPTY
clause. The FILTER function can be used for more specific filtering. This
function filters a set according to a specified condition. Suppose we want
to show sales amount in 1997 by city and by product category. If one were
only interested in viewing top-performing cities, defined by those whose sales
amount exceeds $25,000, a filter would be defined as follows:

SELECT Product.Category.MEMBERS ON COLUMNS,
FILTER(Customer.City.MEMBERS, (Measures.[Sales Amount],
[Order Date].Calendar.[1997]) > 25000) ON ROWS

FROM Sales
WHERE (Measures.[Net Sales Growth], [Order Date].Calendar.[1997])

As shown in the result below, only five cities satisfy the condition.

Beverages Condiments Confections Dairy Products · · ·
Graz $-2,370.58 $6,114.67 $8,581.51 $7,171.01 · · ·

Cunewalde $6,966.40 $2,610.51 $8,821.85 $7,144.74 · · ·
London $2,088.23 $683.88 $1,942.56 $83.13 · · ·
Montréal $9,142.78 $2,359.90 $213.93 $3,609.16 · · ·

Boise $1,871.10 $94.84 $4,411.46 $6,522.61 · · ·

As another example, the following query shows customers that in 1997 had
profit margins below the state average:

WITH MEMBER Measures.[Profit%] AS
(Measures.[Sales Amount] - Measures.[Freight]) /
(Measures.[Sales Amount]), FORMAT STRING = '#0.00%'

MEMBER Measures.[Profit%City] AS
(Measures.[Profit%],
Customer.Geography.CURRENTMEMBER.PARENT),
FORMAT STRING = '#0.00%'

SELECT { Measures.[Sales Amount], Measures.[Freight], Measures.[Net Sales],
Measures.[Profit%], Measures.[Profit%City] } ON COLUMNS,
FILTER(NONEMPTY(Customer.Customer.MEMBERS),
(Measures.[Profit%]) < (Measures.[Profit%City])) ON ROWS

FROM Sales
WHERE [Order Date].Calendar.[1997]

The result of this query is shown below:
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Sales Amount Freight Net Sales Profit% Profit%City
France restauration $920.10 $30.34 $889.76 96.70% 97.40%

Princesa Isabel Vinhos $1,409.20 $86.85 $1,322.35 93.84% 95.93%
Around the Horn $6,406.90 $305.59 $6,101.31 95.23% 95.58%

North/South $604.00 $33.46 $570.54 94.46% 95.58%
Seven Seas Imports $9,021.24 $425.03 $8,596.21 95.29% 95.58%

· · · · · · · · · · · · · · · · · ·

Here, Profit% computes the profit percentage of the current member, and
Profit%City applies Profit% to the parent of the current member, that is, the
profit of the state to which the city belongs.

6.1.11 Sorting

In cube queries, all the members in a dimension have a hierarchical order.
For example, consider the query below:

SELECT Measures.MEMBERS ON COLUMNS,
Customer.Geography.Country.MEMBERS ON ROWS

FROM Sales

The answer of this query is given next.

Unit Price Quantity Discount Sales Amount Freight Sales Count
Austria $84.77 4,644 21.71% $115,328.31 $6,827.10 114
Belgium $64.65 1,242 9.72% $30,505.06 $1,179.53 49
Denmark $70.28 1,156 17.94% $32,428.94 $1,377.75 45
Finland $54.41 848 9.09% $17,530.05 $827.45 51
France $64.51 3,052 11.76% $77,056.01 $3,991.42 172

· · · · · · · · · · · · · · · · · · · · ·

The countries are displayed in the hierarchical order determined by the
Continent level (the topmost level of the Geography hierarchy), that is, first
the European countries, then the North American countries, and so on. If we
wanted the countries sorted by their name, we can use the ORDER function,
whose syntax is given next:

ORDER(Set, Expression [, ASC | DESC | BASC | BDESC])

The expression can be a numeric or string expression. The default sort order
is ASC. The ‘B’ prefix indicates that the hierarchical order can be broken.
The hierarchical order first sorts members according to their position in
the hierarchy, and then it sorts each level. The nonhierarchical order sorts
members in the set independently of the hierarchy. In the previous query, the
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set of countries can be ordered regardless of the hierarchy in the following
way:

SELECT Measures.MEMBERS ON COLUMNS,
ORDER(Customer.Geography.Country.MEMBERS,
Customer.Geography.CURRENTMEMBER.NAME, BASC) ON ROWS

FROM Sales

Here, the property NAME returns the name of a level, dimension, member,
or hierarchy. A similar property, UNIQUENAME, returns the corresponding
unique name. The answer to this query will show the countries in alphabetical
order, that is, Argentina, Australia, Austria, and so on.

It is often the case that the ordering is based on an actual measure. In
the query above, the countries can be ordered based on the sales amount as
follows:

SELECT Measures.MEMBERS ON COLUMNS,
ORDER(Customer.Geography.Country.MEMBERS,
Measures.[Sales Amount], BDESC) ON ROWS

FROM Sales

Ordering on multiple criteria is difficult to express in MDX. Indeed, unlike
in SQL, the ORDER function allows a single expression for sorting. Suppose,
for instance, that we want to analyze the sales amount by continent and
category. Further, suppose that we want to order the result first by continent
name and then by category name. For this we need to use the GENERATE
function:

SELECT Measures.[Sales Amount] ON COLUMNS,
NON EMPTY GENERATE(
ORDER( Customer.Geography.Continent.ALLMEMBERS,
Customer.Geography.CURRENTMEMBER.NAME, BASC ),
ORDER( { Customer.Geography.CURRENTMEMBER } *
Product.Categories.Category.ALLMEMBERS,
Product.Categories.CURRENTMEMBER.NAME, BASC ) ) ON ROWS

FROM Sales

In the first argument of the GENERATE function, we sort the continents
in ascending order of their name. In the second argument, we cross join the
current continent with the categories sorted in ascending order of their name.
This query will give the following answer:

Sales Amount
Europe Beverages $120,361.83
Europe Condiments $60,517.12
Europe Confections $95,690.12
Europe Dairy Products $137,315.75
Europe Grains/Cereals $48,781.57

· · · · · · · · ·



6.1 Introduction to MDX 203

6.1.12 Top and Bottom Analysis

When displaying information such as the best-selling cities based on sales
amount, a usual requirement is to limit the query to, say, the top three. The
HEAD function returns the first members in the set based on the number that
one requests. A similar function TAIL returns a subset from the end of the
set. The query “Top three best-selling store cities” is expressed as follows:

SELECT Measures.MEMBERS ON COLUMNS,
HEAD(ORDER(Customer.Geography.City.MEMBERS,
Measures.[Sales Amount], BDESC), 3) ON ROWS

FROM Sales

This query yields the following answer:

Unit Price Quantity Discount Sales Amount Freight Sales Count
Cunewalde $101.46 3,616 21.40% $103,597.43 $4,999.77 77

Boise $90.90 4,809 32.41% $102,253.85 $6,570.58 113
Graz $88.00 4,045 23.57% $93,349.45 $5,725.79 92

Alternatively, the function TOPCOUNT can be used to answer the previous
query:

SELECT Measures.MEMBERS ON COLUMNS,
TOPCOUNT(Customer.Geography.City.MEMBERS, 3,
Measures.[Sales Amount]) ON ROWS

FROM Sales

As a more elaborated example, suppose that we want to display the top
three cities based on sales amount together with their combined sales and
the combined sales of all the other cities. This can be written as follows:

WITH SET SetTop3Cities AS TOPCOUNT(
Customer.Geography.City.MEMBERS, 3, [Sales Amount])

MEMBER Customer.Geography.[Top 3 Cities] AS
AGGREGATE(SetTop3Cities)

MEMBER Customer.Geography.[Other Cities] AS
(Customer.[All]) - (Customer.[Top 3 Cities])

SELECT Measures.MEMBERS ON COLUMNS,
{ SetTop3Cities, [Top 3 Cities], [Other Cities], Customer.[All] } ON ROWS

FROM Sales

The query starts by selecting the three best-selling cities and denotes this set
SetTop3Cities. Then, it adds two members to the Geography hierarchy. The
first one, denoted Top 3 Cities, contains the aggregation of the measures of the
elements in the set SetTop3Cities. The other member, denoted Other Cities,
contains the difference between the measures of the member Customer.[All]
and the measures of the member Top 3 Cities. The AGGREGATE function
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aggregates each measure using the aggregation operator specified for each
measure. Thus, for measures Unit Price and Discount, the average is used,
while for the other measures, the sum is applied. The result of the query is
given below. We can see the values for each one of the top three cities, the
aggregated values for the top three cities, and the aggregated values of the
other cities.

Unit Price Quantity Discount Sales Amount Freight Sales Count
Cunewalde $101.46 3,616 21.40% $103,597.43 $4,999.77 77

Boise $90.90 4,809 32.41% $102,253.85 $6,570.58 113
Graz $88.00 4,045 23.57% $93,349.45 $5,725.79 92

Top 3 Cities $95.46 12,470 26.69% $299,200.73 $17,296.14 282
Other Cities $38.68 33,918 0.95% $845,955.13 $41,291.35 1,649

All Customers $134.14 46,388 27.64% $1,145,155.86 $58,587.49 1,931

Other functions exist for top filter processing. The TOPPERCENT and
TOPSUM functions return the top elements whose cumulative total is at
least a specified percentage or a specified value, respectively. For example,
the next query displays the list of cities whose sales count accounts for 30%
of all the sales.

SELECT Measures.[Sales Amount] ON COLUMNS,
{ TOPPERCENT(Customer.Geography.City.MEMBERS, 30,
Measures.[Sales Amount]), Customer.Geography.[All] } ON ROWS

FROM Sales

The result of the query is as follows:

Sales Amount
Cunewalde $103,597.43

Boise $102,253.85
Graz $93,349.45

London $51,169.01
Albuquerque $49,290.08
All Customers $1,145,155.86

As can be seen, the sum of the sales of the cities in the answer amounts to
34% of the total sales amount.

There is also an analogous series of BOTTOM functions, returning the
bottom items in a list. For example, in the above query we could use the
BOTTOMSUM function to obtain the bottom cities whose cumulative sales
amount is less than, say, $10,000.
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6.1.13 Aggregation Functions

As can be expected, MDX provides many aggregation functions. We have
seen already an example of the SUM and AVG functions. Other functions like
MEDIAN, MAX, MIN, VAR, and STDDEV compute, respectively, the median,
maximum, minimum, variance, and standard deviation of tuples in a set based
on a numeric value. For example, the following query analyzes each product
category to see the total, maximum, minimum, and average sales amount for
a 1-month period in 1997:

WITH MEMBER Measures.[Maximum Sales] AS
MAX(DESCENDANTS([Order Date].Calendar.Year.[1997],
[Order Date].Calendar.Month), Measures.[Sales Amount])

MEMBER Measures.[Minimum Sales] AS
MIN(DESCENDANTS([Order Date].Calendar.Year.[1997],
[Order Date].Calendar.Month), Measures.[Sales Amount])

MEMBER Measures.[Average Sales] AS
AVG(DESCENDANTS([Order Date].Calendar.Year.[1997],
[Order Date].Calendar.Month), Measures.[Sales Amount])

SELECT { [Sales Amount], [Maximum Sales],
[Minimum Sales], [Average Sales] } ON COLUMNS,
Product.Categories.Category.MEMBERS ON ROWS

FROM Sales

The result of the query is as follows:

Sales Amount Maximum Sales Minimum Sales Average Sales
Beverages $237,203.91 $21,817.76 $2,109.84 $7,652.65

Condiments $91,528.81 $5,629.70 $1,252.33 $3,842.09
Confections $162,443.91 $11,538.61 $2,174.89 $6,798.83

Dairy Products $221,157.31 $12,992.48 $5,584.84 $9,119.26
Grains/Cereals $80,870.58 $6,012.65 $1,891.00 $4,193.64
Meat/Poultry $139,428.18 $14,110.16 $1,029.00 $6,217.45

Produce $90,216.14 $12,157.90 $1,650.00 $4,429.52
Seafood $122,307.02 $8,448.86 $1,587.11 $5,263.19

Our next query computes the maximum sales by category as well as the
month in which they occurred:

WITH MEMBER Measures.[Maximum Sales] AS
MAX(DESCENDANTS([Order Date].Calendar.Year.[1997],
[Order Date].Calendar.Month), Measures.[Sales Amount])

MEMBER Measures.[Maximum Period] AS
TOPCOUNT(DESCENDANTS([Order Date].Calendar.Year.[1997],
[Order Date].Calendar.Month), 1,
Measures.[Sales Amount]).ITEM(0).NAME

SELECT { [Maximum Sales], [Maximum Period] } ON COLUMNS,
Product.Categories.Category.MEMBERS ON ROWS

FROM Sales
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Here, the TOPCOUNT function obtains the tuple corresponding to the
maximum sales amount. Then, the ITEM function retrieves the first member
from the specified tuple, and finally, the NAME function obtains the name of
this member. The result of the query is given below:

Maximum Sales Maximum Period
Beverages $21,817.76 January 1997

Condiments $5,629.70 December 1997
Confections $11,538.61 April 1997

Dairy Products $12,992.48 November 1997
Grains/Cereals $6,012.65 June 1997
Meat/Poultry $14,110.16 October 1997

Produce $12,157.90 December 1997
Seafood $8,448.86 September 1997

The previous query can be further elaborated to obtain the maximum sales
by category and by country, as well as the month in which they occurred.
This can be written as follows:

WITH MEMBER Measures.[Maximum Sales] AS
MAX(DESCENDANTS([Order Date].Calendar.Year.[1997],
[Order Date].Calendar.[Month]), Measures.[Sales Amount])

MEMBER Measures.[Maximum Period] AS
TOPCOUNT(DESCENDANTS([Order Date].Calendar.Year.[1997],
[Order Date].Calendar.[Month]), 1,
Measures.[Sales Amount]).ITEM(0).NAME

SELECT { [Maximum Sales], [Maximum Period] } ON COLUMNS,
Product.Categories.Category.MEMBERS *
Customer.Geography.Country.MEMBERS ON ROWS

FROM Sales

The result of the query is given next.

Maximum Sales Maximum Period
Beverages Austria $2,149.40 December 1997
Beverages Belgium $514.08 March 1997
Beverages Denmark $10,540.00 January 1997
Beverages Finland $288.00 February 1997
Beverages France $915.75 December 1997
Beverages Germany $8,010.00 May 1997

· · · · · · · · · · · ·

The COUNT function counts the number of tuples in a set. This
function has an optional parameter, with values INCLUDEEMPTY or
EXCLUDEEMPTY, which states whether to include or exclude empty cells.
For example, the COUNT function can be used to compute the number of
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customers that purchased a particular product category. This can be done
by counting the number of tuples obtained by joining the sales amount and
customer names. Excluding empty cells is necessary to restrict the count
to those customers for which there are sales in the corresponding product
category. This is shown below:

WITH MEMBER Measures.[Customer Count] AS
COUNT({Measures.[Sales Amount] *
[Customer].[Company Name].MEMBERS}, EXCLUDEEMPTY)

SELECT { Measures.[Sales Amount], Measures.[Customer Count] } ON COLUMNS,
Product.Category.MEMBERS ON ROWS

FROM Sales

The result of the query is as follows:

Sales Amount Customer Count
Beverages $237,203.91 82

Condiments $91,528.81 65
Confections $162,443.91 79

Dairy Products $221,157.31 80
· · · · · · · · ·

6.2 Querying the Northwind Cube in MDX

In this section, we further illustrate the MDX language by revisiting the
queries given in Sect. 4.4 addressed to the Northwind cube.

Query 6.1. Total sales amount per customer, year, and product category.

SELECT [Order Date].Year.CHILDREN ON COLUMNS,
NON EMPTY Customer.[Company Name].CHILDREN *
Product.[Category Name].CHILDREN ON ROWS

FROM Sales
WHERE Measures.[Sales Amount]

Here, we display the years on the column axis and we use a cross join of
the Customer and Category dimensions to display both dimensions in the
row axis. We use the CHILDREN function instead of MEMBERS to prevent
displaying the All members of the three dimensions involved in the query.
The NON EMPTY keyword is used to avoid displaying customers that never
ordered articles from a particular category. Finally, we state the measure to
be displayed as a slicer in the WHERE clause.
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1996 1997 1998
Alfreds Futterkiste Beverages $553.50
Alfreds Futterkiste Condiments $938.00 $400.80
Alfreds Futterkiste Dairy Products $1,255.00
Alfreds Futterkiste Produce $513.00 $91.20
Alfreds Futterkiste Seafood $18.00 $503.50

· · · · · · · · · · · · · · ·

Query 6.2. Yearly sales amount for each pair of customer country and
supplier countries.

SELECT [Order Date].Year.MEMBERS ON COLUMNS,
NON EMPTY Customer.Country.MEMBERS *
Supplier.Country.MEMBERS ON ROWS

FROM Sales
WHERE Measures.[Sales Amount]

In this query, we use a cross join of the Customer and Supplier dimensions to
display the pair of countries from both dimensions in the row axis.

All 1996 1997 1998
Austria Denmark $675.67 $432.00 $243.67
Austria Finland $900.00 $900.00
Austria France $29,307.19 $12,437.20 $4,569.99 $12,300.00

· · · · · · · · · · · · · · · · · ·

Query 6.3. Monthly sales by customer state compared to those of the
previous year.

WITH MEMBER Measures.[Previous Year] AS
(Measures.[Sales Amount],
PARALLELPERIOD([Order Date].Calendar.Month,12)),
FORMAT STRING = '$###,##0.00'

SELECT { Measures.[Sales Amount], Measures.[Previous Year] } ON COLUMNS,
NON EMPTY ORDER(Customer.Geography.State.MEMBERS,
Customer.Geography.CURRENTMEMBER.NAME, BASC) *
[Order Date].Calendar.Month.MEMBERS ON ROWS

FROM Sales

In this query, we do a cross join of the Customer and Order Date dimensions
to display the states and months on the row axis. We use the ORDER function
to sort the states of the customers in alphabetical order irrespective of the
Geography hierarchy. The calculated measure Previous Year computes the sales
amount of the same month of the previous year for the current state and
month using the PARALLELPERIOD function. The format for displaying the
new measure is also defined.
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Sales Amount Previous Year
Alaska September 1996 $3,741.30
Alaska October 1996 $934.50
Alaska February 1997 $1,755.00
Alaska July 1997 $565.50
Alaska September 1997 $1,261.88 $3,741.30
Alaska October 1997 $1,893.00 $934.50
Alaska January 1998 $3,638.89

· · · · · · · · · · · ·

Query 6.4. Monthly sales growth per product, that is, total sales per
product compared to those of the previous month.

WITH MEMBER Measures.[Previous Month] AS
(Measures.[Sales Amount],
[Order Date].Calendar.CURRENTMEMBER.PREVMEMBER),
FORMAT STRING = '$###,##0.00'

MEMBER Measures.[Sales Growth] AS
(Measures.[Sales Amount]) - (Measures.[Previous Month]),
FORMAT STRING = '$###,##0.00; $-###,##0.00'

SELECT { Measures.[Sales Amount], Measures.[Previous Month],
Measures.[Sales Growth] } ON COLUMNS,
NON EMPTY ORDER(Product.Categories.Product.MEMBERS,
Product.Categories.CURRENTMEMBER.NAME, BASC) *
[Order Date].Calendar.Month.MEMBERS ON ROWS

FROM Sales

In this query, we do a cross join of the Product and Order Date dimensions
to display the products and months on the row axis. The calculated measure
Previous Month computes the sales amount of the previous month of the
current category and month, while the calculated measure Sales Growth
computes the difference of the sales amount of the current month and the
one of the previous month.

Sales Amount Previous Month Sales Growth
Alice Mutton July 1996 $936.00 $936.00
Alice Mutton August 1996 $819.00 $936.00 $-117.00
Alice Mutton September 1996 $1,248.00 $819.00 $429.00
Alice Mutton October 1996 $2,948.40 $1,248.00 $1,700.40

· · · · · · · · · · · · · · ·

Query 6.5. Three best-selling employees.

SELECT Measures.[Sales Amount] ON COLUMNS,
TOPCOUNT(Employee.[Full Name].CHILDREN, 3,
Measures.[Sales Amount]) ON ROWS

FROM Sales
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Here, we use the TOPCOUNT function to find the three employees who
have the highest value of the sales amount measure. We use the CHILDREN
function instead of MEMBERS since otherwise the All member will appear in
the first position, as it contains the total sales amount of all employees.

Sales Amount
Margaret Peacock $217,469.14
Janet Leverling $176,515.01
Nancy Davolio $175,837.26

Query 6.6. Best-selling employee per product and year.

WITH MEMBER Measures.[Top Sales] AS
MAX([Order Date].Calendar.CURRENTMEMBER *
Employee.[Full Name].CHILDREN, Measures.[Sales Amount])

MEMBER Measures.[Top Employee] AS
TOPCOUNT([Order Date].Calendar.CURRENTMEMBER *
Employee.[Full Name].CHILDREN, 1, Measures.[Sales Amount]).
ITEM(0).ITEM(1).NAME

SELECT { Measures.[Top Sales], Measures.[Top Employee] } ON COLUMNS,
ORDER(Product.Categories.Product.MEMBERS,
Product.Categories.CURRENTMEMBER.NAME,BASC) *
[Order Date].Calendar.Year.MEMBERS ON ROWS

FROM Sales

The calculated measure Top Sales computes the maximum value of sales
amount for the current year among all employees. The calculated measure
Top Employee uses the function TOPCOUNT to obtain the tuple composed
of the current year and the employee with highest sales amount. The ITEM
function retrieves the first member of the specified tuple. Since such member
is a combination of year and employee, ITEM is applied again to obtain the
employee. Finally, the NAME function retrieves the name of the employee.

Top Sales Top Employee
Alice Mutton 1996 $3,010.80 Andrew Fuller
Alice Mutton 1997 $4,689.75 Steven Buchanan
Alice Mutton 1998 $2,702.70 Nancy Davolio
Aniseed Syrup 1996 $240.00 Robert King
Aniseed Syrup 1997 $800.00 Janet Leverling
Aniseed Syrup 1998 $740.00 Anne Dodsworth

· · · · · · · · · · · ·

Query 6.7. Countries that account for top 50% of the sales amount.

SELECT Measures.[Sales Amount] ON COLUMNS,
{ Customer.Geography.[All],
TOPPERCENT([Customer].Geography.Country.MEMBERS, 50,
Measures.[Sales Amount]) } ON ROWS

FROM Sales
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In this query, we use the TOPPERCENT function for selecting the countries
whose cumulative total is equal to the specified percentage. We can see in the
answer below that the sum of the values for the three listed countries slightly
exceeds 50% of the sales amount.

Sales Amount
All Customers $1,145,155.86
United States $238,490.40

Germany $219,356.08
Austria $115,328.31

Query 6.8. Total sales and average monthly sales by employee and year.

WITH MEMBER Measures.[Avg Monthly Sales] AS
AVG(DESCENDANTS([Order Date].Calendar.CURRENTMEMBER,
[Order Date].Calendar.Month),Measures.[Sales Amount]),
FORMAT STRING = '$###,##0.00'

SELECT { Measures.[Sales Amount], Measures.[Avg Monthly Sales] } ON COLUMNS,
Employee.[Full Name].CHILDREN *
[Order Date].Calendar.Year.MEMBERS ON ROWS

FROM Sales

In this query, we cross join the Employee and Order Date dimensions to
display the employee name and the year on the row axis. The calculated
measure Avg Monthly Sales computes the average of sales amount of the
current employee for all months of the current year.

Sales Amount Avg Monthly Sales
Andrew Fuller 1996 $20,773.06 $3,462.18
Andrew Fuller 1997 $62,848.74 $5,237.40
Andrew Fuller 1998 $60,591.94 $15,147.99

Anne Dodsworth 1996 $9,894.51 $3,298.17
Anne Dodsworth 1997 $18,099.29 $1,809.93
Anne Dodsworth 1998 $39,803.96 $9,950.99

· · · · · · · · · · · ·

Query 6.9. Total sales amount and total discount amount per product and
month.

WITH MEMBER Measures.[TotalDisc] AS
Measures.Discount * Measures.Quantity * Measures.[Unit Price],
FORMAT STRING = '$###,##0.00'

SELECT { Measures.[Sales Amount], [TotalDisc] } ON COLUMNS,
NON EMPTY ORDER(Product.Categories.Product.MEMBERS,
Product.Categories.CURRENTMEMBER.NAME, BASC) *
[Order Date].Calendar.Month.MEMBERS ON ROWS

FROM Sales
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In this query, we cross join the Product and Order Date dimensions to display
the product and the month on the row axis. The calculated measure TotalDisc
multiplies the discount, quantity, and unit price measures to compute the
total discount amount of the current product and month.

Sales Amount TotalDisc
Alice Mutton July 1996 $936.00 $0.00
Alice Mutton August 1996 $819.00 $117.00
Alice Mutton September 1996 $1,248.00 $0.00
Alice Mutton October 1996 $2,948.40 $50.96

· · · · · · · · · · · ·

Query 6.10. Monthly year-to-date sales for each product category.

WITH MEMBER Measures.YTDSales AS
SUM(PERIODSTODATE([Order Date].Calendar.[Year],
[Order Date].Calendar.CURRENTMEMBER),
Measures.[Sales Amount]), FORMAT STRING = '###,##0.00'

SELECT DESCENDANTS([Order Date].[1996], [Order Date].[Month])
ON COLUMNS, Product.[Category].MEMBERS ON ROWS

FROM Sales
WHERE (Measures.YTDSales)

Here, we use the PERIODSTODATE function in order to select all months of
the current year up to the current month. Then, the SUM function is applied
to obtain the year-to-date aggregate value of the measure Sales Amount.

July 1996 August 1996 September 1996 October 1996 · · ·
Beverages $3,182.50 $6,577.38 $8,996.98 $15,700.82 · · ·

Condiments $1,753.40 $3,141.70 $4,003.30 $8,127.62 · · ·
Confections $5,775.15 $10,781.92 $16,527.92 $20,056.52 · · ·

Dairy Products $6,838.34 $11,600.04 $14,416.04 $21,353.59 · · ·
Grains/Cereals $1,158.86 $1,429.46 $2,159.06 $4,530.02 · · ·
Meat/Poultry $2,268.72 $5,764.38 $10,055.38 $13,706.68 · · ·

Produce $3,868.80 $4,673.12 $5,837.92 $6,700.92 · · ·
Seafood $2,400.33 $6,383.07 $8,936.87 $14,748.87 · · ·

Query 6.11. Moving average over the last 3 months of the sales amount by
product category.

WITH MEMBER Measures.MovAvg3Months AS
AVG([Order Date].Calendar.CURRENTMEMBER.LAG(2):
[Order Date].Calendar.CURRENTMEMBER,
Measures.[Sales Amount]), FORMAT STRING = '$###,##0.00'

SELECT [Order Date].Calendar.Month.MEMBERS ON COLUMNS,
Product.[Category].MEMBERS ON ROWS

FROM Sales
WHERE (Measures.MovAvg3Months)
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Here, we use the LAG function and the range operator ‘:’ to construct the set
composed of the current month and its preceding 2 months. Then, we take
the average of the measure Sales Amount over these 3 months.

July 1996 August 1996 September 1996 October 1996 · · ·
Beverages $3,182.50 $3,288.69 $2,998.99 $4,172.77 · · ·

Condiments $1,753.40 $1,570.85 $1,334.43 $2,124.74 · · ·
Confections $5,775.15 $5,390.96 $5,509.31 $4,760.46 · · ·

Dairy Products $6,838.34 $5,800.02 $4,805.35 $4,838.42 · · ·
Grains/Cereals $1,158.86 $714.73 $719.69 $1,123.72 · · ·
Meat/Poultry $2,268.72 $2,882.19 $3,351.79 $3,812.65 · · ·

Produce $3,868.80 $2,336.56 $1,945.97 $944.04 · · ·

Query 6.12. Personal sales amount made by an employee compared with
the total sales amount made by herself and her subordinates during 1997.

WITH MEMBER Measures.[Personal Sales] AS
(Employee.Supervision.DATAMEMBER, [Measures].[Sales Amount]),
FORMAT STRING = '$###,##0.00'

SELECT { Measures.[Personal Sales], Measures.[Sales Amount] } ON COLUMNS,
ORDER(Employee.Supervision.MEMBERS - Employee.Supervision.[All],
Employee.Supervision.CURRENTMEMBER.NAME, BASC) ON ROWS

FROM Sales
WHERE [Order Date].Calendar.Year.[1997]
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Fig. 6.2 Supervision hierarchy in the Employee dimension (repeated from Fig. 4.5)

In this query, we use the parent-child hierarchy Supervision of the Employee
dimension, as depicted in Fig. 6.2. In such a hierarchy, each employee has
personal sales amount values. As we have seen in Sect. 5.9.3, such value is kept
in system-generated child members. This value can be accessed in MDX using
the keyword DATAMEMBER as shown in the calculated measure Personal
Sales of the above query. Furthermore, the value of the total sales amount for
an employee at the lower level of the hierarchy (i.e., without subordinates,
such as Robert King) is equal to its personal sales. For employees with
subordinates, the value of the measure is the sum of her personal sales
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and those of her subordinates, as is the case for Andrew Fuller and Steven
Buchanan. Notice that in this query we removed the member All from the
set of members of the Supervision hierarchy, using the set difference operator
denoted ‘-’. If in the query above we replace Employee.Supervision.MEMBERS
with Employee.Supervision.CHILDREN, we will obtain only the first line of
the answer corresponding to Andrew Fuller. As can be seen, parent-child
hierarchies behave to this respect differently from user-defined hierarchies.

Personal Sales Sales Amount
Andrew Fuller $68,063.09 $596,630.80

Anne Dodsworth $18,906.49 $18,906.49
Janet Leverling $105,351.30 $105,351.30
Laura Callahan $56,032.62 $56,032.62

Margaret Peacock $128,809.79 $128,809.79
Michael Suyama $38,213.37 $38,213.37
Nancy Davolio $90,629.08 $90,629.08
Robert King $59,908.60 $59,908.60

Steven Buchanan $30,716.47 $147,744.92

It is worth remarking that the personal sales amount made by an employee
can also be obtained with the following query, which exploits the attribute
hierarchy [Full Name] instead of the parent-child hierarchy Supervision:

SELECT Measures.[Sales Amount] on COLUMNS,
Employee.[Full Name].CHILDREN ON ROWS

FROM Sales
WHERE [Order Date].Calendar.Year.[1997]

Query 6.13. Total sales amount, number of products, and sum of the
quantities sold for each order.

WITH MEMBER Measures.[NbProducts] AS
COUNT(NONEMPTY([Order].[Order No].CURRENTMEMBER *
[Order].[Order Line].MEMBERS))

SELECT { Measures.[Sales Amount], NbProducts, Quantity } on COLUMNS,
[Order].[Order No].CHILDREN ON ROWS

FROM Sales

In this query, we use the fact (or degenerate) dimension Order, which is
defined from the fact table Sales in the data warehouse. The dimension has
two attributes, the order number and the order line, and the order number is
displayed on the rows axis. In the calculated measure NbProducts, a cross join
is used to obtain the order lines associated with the current order. By counting
the elements in this set, we can obtain the number of distinct products of
the order. Finally, the measures Sales Amount, NbProducts, and Quantity are
displayed on the column axis.
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Sales Amount NbProducts Quantity
10248 $342.00 2 17
10249 $1,863.40 2 49
10250 $1,552.60 3 60
10251 $654.06 3 41
· · · · · · · · · · · ·

Query 6.14. For each month, total number of orders, total sales amount,
and average sales amount by order.

WITH MEMBER Measures.AvgSales AS
Measures.[Sales Amount]/Measures.[Order No],
FORMAT STRING = '$###,##0.00'

SELECT { Measures.[Order No], [Sales Amount], AvgSales } ON COLUMNS,
NON EMPTY [Order Date].Calendar.Month.MEMBERS ON ROWS

FROM Sales

This query displays the months of the Order Date dimension on the row axis
and the measures Order No, Sales Amount, and AvgSales on the column axis,
the latter being a calculated measure. For Sales Amount, the roll-up operation
computes the sum of the values in a month. For the Order No measure, since
in the cube definition the aggregate function associated with the measure is
DistinctCount, the roll-up operation computes the number of orders within
a month. Notice that for computing the average in the calculated measure
AvgSales, we divided the two measures Sales Amount and Order No. If we used
instead AVG(Measures.[Sales Amount]), the result obtained will correspond to
the Sales Amount. Indeed, the average will be applied to a set containing as
only element the measure of the current month.

Order No Sales Amount AvgSales
July 1996 21 $27,246.10 $1,297.43

August 1996 25 $23,104.98 $924.20
September 1996 21 $20,582.40 $980.11
October 1996 25 $33,991.56 $1,359.66

· · · · · · · · · · · ·

Query 6.15. For each employee, total sales amount, number of cities, and
number of states to which she is assigned.

WITH MEMBER NoCities AS
Measures.[Territories Count]

MEMBER NoStates AS
DISTINCTCOUNT(Employee.[Full Name].CURRENTMEMBER *
City.Geography.State.MEMBERS)

SELECT { Measures.[Sales Amount], Measures.NoCities, Measures.NoStates }
ON COLUMNS, Employee.[Full Name].CHILDREN ON ROWS

FROM Sales
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Here, we exploit the many-to-many relationship between employees and cities
through the bridge table Territories. We assume that we are using Analysis
Services, and thus, we make use of the Territories Count measure that is
automatically added to each measure when it is created, as explained in
Sect. 5.9.5. We rename this measure as NoCities at the beginning of the
query. Then, for the NoStates calculated measure, we perform a cross join
that obtains the states to which the current employee is related and apply
DISTINCTCOUNT to the result, in order to compute the number of states for
such employee. Notice that a similar approach can be used for obtaining the
number of cities if the measure Territories Count does not exist in the cube.
Finally, the SELECT clause displays the measures.

FullName Sales Amount NoCities NoStates
Andrew Fuller $152,164.80 6 3

Anne Dodsworth $69,046.17 7 5
Janet Leverling $186,197.80 4 2
Laura Callahan $122,528.86 4 3

Margaret Peacock $224,397.30 3 2
Michael Suyama $64,969.63 5 3
Nancy Davolio $184,758.38 1 1
Robert King $117,020.49 10 3

Steven Buchanan $68,792.28 5 3

6.3 Querying the Northwind Data Warehouse in
SQL

Given the schema of the Northwind data warehouse in Fig. 6.3, we revisit
the queries of the previous section in SQL. This allows us to compare the
expressiveness of both languages. This is of particular importance because
some OLAP tools automatically translate MDX queries into SQL queries
which are then sent to a relational server.

Query 6.1. Total sales amount per customer, year, and product category.

SELECT C.CompanyName, T.Year, A.CategoryName,
FORMAT(SUM(SalesAmount),'$###,##0.00') AS SalesAmount

FROM Sales S, Customer C, Time T, Product P, Category A
WHERE S.CustomerKey = C.CustomerKey AND

S.OrderDateKey = T.TimeKey AND
S.ProductKey = P.ProductKey AND P.CategoryKey = A.CategoryKey

GROUP BY C.CompanyName, T.Year, A.CategoryName

Here, we join the fact tables with the involved dimension tables and aggregate
the results by company, year, and category. The FORMAT function is used
to format the aggregated measure.
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Sales

CustomerKey
EmployeeKey
OrderDateKey
DueDateKey
ShippedDateKey
ShipperKey
ProductKey
SupplierKey
OrderNo
OrderLineNo
UnitPrice
Quantity
Discount
SalesAmount
Freight

Time

TimeKey
Date
DayNbWeek
DayNameWeek
DayNbMonth
DayNbYear
WeekNbYear
MonthNumber
MonthName
Quarter
Semester
Year

Supplier

SupplierKey
CompanyName
Address
PostalCode
CityKey

Customer

CustomerKey
CustomerID
CompanyName
Address
PostalCode
CityKey

Shipper

ShipperKey
CompanyName

Employee

EmployeeKey
FirstName
LastName
Title
BirthDate
HireDate
Address
City
Region
PostalCode
Country
SupervisorKey

Territories

EmployeeKey
CityKey

Continent

ContinentKey
ContinentName

City

CityKey
CityName
StateKey (0,1)
CountryKey (0,1)

AK: (OrderNo,
OrderLineNo)

AK: CustomerID

AK: Date

State

StateKey
StateName
EnglishStateName
StateType
StateCode
StateCapital
RegionName (0,1)
RegionCode (0,1)
CountryKey

Country

CountryKey
CountryName
CountryCode
CountryCapital
Population
Subdivision
ContinentKey

Product

ProductKey
ProductName
QuantityPerUnit
UnitPrice
Discontinued
CategoryKey

Category

CategoryKey
CategoryName
Description

Fig. 6.3 Schema of the Northwind data warehouse (repeated from Fig. 5.4)

Query 6.2. Yearly sales amount for each pair of customer country and
supplier countries.

SELECT CO.CountryName AS CustomerCountry,
SO.CountryName AS SupplierCountry, T.Year,
FORMAT(SUM(SalesAmount),'$###,##0.00') AS SalesAmount

FROM Sales F, Customer C, City CC, State CS, Country CO,
Supplier S, City SC, State SS, Country SO, Time T

WHERE F.CustomerKey = C.CustomerKey AND C.CityKey = CC.CityKey AND
CC.StateKey = CS.StateKey AND
CS.CountryKey = CO.CountryKey AND
F.SupplierKey = S.SupplierKey AND S.CityKey = SC.CityKey AND
SC.StateKey = SS.StateKey AND
SS.CountryKey = SO.CountryKey AND F.OrderDateKey = T.TimeKey

GROUP BY CO.CountryName, SO.CountryName, T.Year
ORDER BY CO.CountryName, SO.CountryName, T.Year
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Here, the tables of the geography dimension are joined twice with the fact
table for obtaining the countries of the customer and the supplier.

Query 6.3. Monthly sales by customer state compared to those of the
previous year.

CREATE FUNCTION MonthYear (@Month INT, @Year INT)
RETURNS CHAR(14) AS

BEGIN
DECLARE @Date CHAR(10);
SET @Date = CAST(@Year AS CHAR(4)) + '-' +
CAST(@Month AS CHAR(2)) + '-' + '01';
RETURN(Datename(month,@Date) + ' ' +
CAST(@Year AS CHAR(4)));

END
WITH MonthlySalesState AS (

SELECT S.StateName, T.MonthNumber, T.Year,
SUM(SalesAmount) AS SalesAmount

FROM Sales F, Customer C, City Y, State S, Time T
WHERE F.CustomerKey = C.CustomerKey AND

C.CityKey = Y.CityKey AND
Y.StateKey = S.StateKey AND
F.OrderDateKey = T.TimeKey

GROUP BY S.StateName, T.Year, T.MonthNumber )
SELECT M1.StateName,

dbo.MonthYear(M1.MonthNumber,M1.Year) AS Month,
FORMAT(M1.SalesAmount,'$###,##0.00'),
FORMAT(M2.SalesAmount,'$###,##0.00') AS PreviousYear

FROM MonthlySalesState M1 LEFT OUTER JOIN
MonthlySalesState M2 ON M1.StateName = M2.StateName
AND M1.MonthNumber = M2.MonthNumber AND
M1.Year-1 = M2.Year

ORDER BY M1.StateName, Month

In this query, we define a MonthYear function that concatenates a month
and a year for a more user-friendly display. In the WITH clause, we define a
common table expression (see Chap. 2) which computes the monthly sales by
state. In the query, the temporary table is joined twice to obtain the sales of
a month and the previous month. A left outer join is used for displaying a
null value in case there are no sales for the previous month.

Query 6.4. Monthly sales growth per product, that is, total sales per
product compared to those of the previous month.

WITH MonthlySalesProd AS (
SELECT P.ProductName, T.MonthNumber AS Month, T.Year,

SUM(SalesAmount) AS SalesAmount
FROM Sales S, Product P, Time T
WHERE S.ProductKey = P.ProductKey AND

S.OrderDateKey = T.TimeKey
GROUP BY P.ProductName, T.Year, T.MonthNumber ),

MonthlySalesProdComp AS (
SELECT M1.ProductName,
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dbo.MonthYear(M1.Month,M1.Year) AS Month,
M1.SalesAmount, M2.SalesAmount AS PreviousMonth

FROM MonthlySalesProd M1 LEFT OUTER JOIN
MonthlySalesProd M2 ON
M1.ProductName = M2.ProductName AND
M1.Month-1 = M2.Month AND M1.Year = M2.Year

WHERE M1.Month > 1
UNION
SELECT M1.ProductName,

dbo.MonthYear(M1.Month,M1.Year) AS Month,
M1.SalesAmount, M2.SalesAmount AS PreviousMonth

FROM MonthlySalesProd M1 LEFT OUTER JOIN
MonthlySalesProd M2 ON
M1.ProductName = M2.ProductName AND
M1.Month+11 = M2.Month AND M1.Year-1 = M2.Year

WHERE M1.Month=1 )
SELECT ProductName, Month,

FORMAT(SalesAmount,'$###,##0.00') AS SalesAmount,
FORMAT(PreviousMonth,'$###,##0.00') AS PreviousMonth,
FORMAT(SalesAmount - PreviousMonth,
'$###,##0.00; $-###,##0.00') AS SalesGrowth

FROM MonthlySalesProdComp
ORDER BY ProductName, Month

Here, we first define a temporary table MonthlySalesProd that computes the
monthly sales by product. In the second temporary table MonthlySalesProd-
Comp, the previous temporary table is used twice for obtaining through a
left outer join the sales of a month and the previous month. Notice that two
cases must be accounted for. In the first case, the previous month belongs to
the same year, while in the second case, the previous month for January is
December of the previous year. Finally, the main query is used for ordering
the tuples of the second temporary table and to define their display format.

Note that the above query cannot be written with window functions, since
it would combine the sales of a month with the sales of the previous existing
month. For example, if there are no sales for February, the tuple for March
will compare the sales of March and those of January.

Query 6.5. Three best-selling employees.

SELECT TOP(3) E.FirstName + ' ' + E.LastName AS EmployeeName,
FORMAT(SUM(F.SalesAmount), '$###,##0.00') AS SalesAmount

FROM Sales F, Employee E
WHERE F.EmployeeKey = E.EmployeeKey
GROUP BY E.FirstName, E.LastName
ORDER BY SUM(F.SalesAmount) DESC

In the above query, we group the sales by employee and apply the SUM
aggregation to each group. The result is then sorted in descending order of
the aggregated sales, and the TOP function is used to obtain the first three
tuples.
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Query 6.6. Best-selling employee per product and year.

WITH SalesProdYearEmp AS (
SELECT P.ProductName, T.Year,

SUM(S.SalesAmount) AS SalesAmount,
E.FirstName + ' ' + E.LastName AS EmployeeName

FROM Sales S, Employee E, Time T, Product P
WHERE S.EmployeeKey = E.EmployeeKey AND

S.OrderDateKey = T.TimeKey AND
S.ProductKey = P.ProductKey

GROUP BY P.ProductName, T.Year, E.FirstName, E.LastName )
SELECT ProductName, Year,

FORMAT(SalesAmount,'$###,##0.00') AS TopSales,
EmployeeName AS TopEmployee

FROM SalesProdYearEmp S1
WHERE S1.SalesAmount = (

SELECT MAX(SalesAmount)
FROM SalesProdYearEmp S2
WHERE S1.ProductName = S2.ProductName AND

S1.Year = S2.Year )

The WITH clause computes the total sales by product, year, and employee.
In the query, we select the tuples of this table such that the total sales equals
the maximum total sales for the product and the year.

Query 6.7. Countries that account for top 50% of the sales amount.

WITH SalesCountry AS (
SELECT CountryName, SUM(SalesAmount) AS SalesAmount
FROM Sales S, Customer C, City Y, State T, Country O
WHERE S.CustomerKey = C.CustomerKey AND

C.CityKey = Y.CityKey AND Y.StateKey = T.StateKey AND
T.CountryKey = O.CountryKey

GROUP BY CountryName ),
CumSalesCountry AS (

SELECT S.*, SUM(SalesAmount) OVER (ORDER BY
SalesAmount DESC ROWS UNBOUNDED PRECEDING)
AS CumSalesAmount

FROM SalesCountry S )
SELECT 'All Customers' AS CountryName,

FORMAT(SUM(SalesAmount), '$###,##0.00') AS SalesAmount
FROM SalesCountry
UNION
SELECT CountryName,

FORMAT(SalesAmount, '$###,##0.00') AS SalesAmount
FROM CumSalesCountry
WHERE CumSalesAmount <=

(SELECT MIN(CumSalesAmount) FROM CumSalesCountry
WHERE CumSalesAmount >=
(SELECT 0.5 * SUM(SalesAmount) FROM SalesCountry) ) )

We start by defining the temporary table SalesCountry, which aggregates the
sales amount by country. In the temporary table CumSalesCountry, for each
row in SalesCountry, we define a window containing all the rows sorted in
decreasing value of sales amount and compute the sum of the current row
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and all the preceding rows in the window. Finally, in the main query, we have
to select the countries in CumSalesCountry whose cumulative sales amount is
less or equal than the minimum value that is higher or equal to the 50% of
the total sales amount.

Query 6.8. Total sales and average monthly sales by employee and year.

WITH MonthlySalesEmp AS (
SELECT E.FirstName + ' ' + E.LastName AS EmployeeName,

T.Year, T.MonthNumber,
SUM(SalesAmount) AS SalesAmount

FROM Sales S, Employee E, Time T
WHERE S.EmployeeKey = E.EmployeeKey AND

S.OrderDateKey = T.TimeKey
GROUP BY E.FirstName, E.LastName, T.Year, T.MonthNumber )

SELECT EmployeeName, Year,
FORMAT(SUM(SalesAmount),'$###,##0.00') AS SalesAmount,
FORMAT(AVG(SalesAmount),'$###,##0.00') AS AvgMonthlySales

FROM MonthlySalesEmp
GROUP BY EmployeeName, Year
ORDER BY EmployeeName, Year

The table defined in the WITH clause computes the monthly sales by
employee. In the query, we group the tuples of this table by employee and
year, and the SUM and AVG functions are applied to obtain, respectively, the
total yearly sales and the average monthly sales.

Query 6.9. Total sales amount and total discount amount per product and
month.

SELECT P.ProductName, dbo.MonthYear(T.MonthNumber,T.Year) AS Month,
FORMAT(SUM(F.SalesAmount),'$###,##0.00') AS SalesAmount,
FORMAT(SUM(F.UnitPrice * F.Quantity * F.Discount),
'$###,##0.00') AS TotalDisc

FROM Sales F, Time T, Product P
WHERE F.OrderDateKey = T.TimeKey AND F.ProductKey = P.ProductKey
GROUP BY P.ProductName, T.Year, T.MonthNumber
ORDER BY P.ProductName, T.Year, T.MonthNumber

Here, we group the sales by product and month. Then, the SUM aggregation
function is used for obtaining the total sales and the total discount amount.

Query 6.10. Monthly year-to-date sales for each product category.

WITH SalesByCategoryMonth AS (
SELECT CategoryName, Year, MonthNumber, MonthName,

SUM(SalesAmount) AS SalesAmount
FROM Sales S, Product P, Category C, Time T
WHERE S.OrderDateKey = T.TimeKey AND

S.ProductKey = P.ProductKey AND
P.CategoryKey = C.CategoryKey

GROUP BY CategoryName, Year, MonthNumber, MonthName )
SELECT CategoryName,

MonthName + ' ' + CAST(Year AS CHAR(4)) AS Month,
FORMAT(SUM(SalesAmount) OVER (PARTITION BY
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CategoryName, Year ORDER BY MonthNumber
ROWS UNBOUNDED PRECEDING), '$###,##0.00')
AS YTDSalesAmount

FROM SalesByCategoryMonth
ORDER BY CategoryName, Year, MonthNumber

In the temporary table, we aggregate the sales amount by category and
month. In the main query, for each row in the temporary table, we define
a window containing all the rows with the same category and year, order the
rows in the window by month, and compute the sum of the current row and
all the preceding rows in the window.

Query 6.11. Moving average over the last 3 months of the sales amount by
product category.

WITH SalesByCategoryMonth AS (
SELECT CategoryName, Year, MonthNumber, MonthName,

SUM(SalesAmount) AS SalesAmount
FROM Sales S, Product P, Category C, Time T
WHERE S.OrderDateKey = T.TimeKey AND

S.ProductKey = P.ProductKey AND
P.CategoryKey = C.CategoryKey

GROUP BY CategoryName, Year, MonthNumber, MonthName )
SELECT CategoryName,

MonthName + ' ' + CAST(Year AS CHAR(4)) AS Month,
FORMAT(SalesAmount, '$###,##0.00') AS SalesAmount,
FORMAT(AVG(SalesAmount) OVER (PARTITION BY
CategoryName ORDER BY Year, MonthNumber
ROWS 2 PRECEDING), '$###,##0.00') AS MovAvg3Months

FROM SalesByCategoryMonth
ORDER BY CategoryName, Year, MonthNumber

In the temporary table, we aggregate the sales amount by category and
month. In the query, we define, for each row of the temporary table, a window
containing all the tuples with the same category, order the tuples in the
window by year and month, and compute the average of the current row and
the two preceding ones.

Query 6.12. Personal sales amount made by an employee compared with
the total sales amount made by herself and her subordinates during 1997.

WITH SalesByEmp1997 AS (
SELECT E.EmployeeKey,

FirstName + ' ' + LastName AS EmployeeName,
SUM(S.SalesAmount) AS SalesAmount

FROM Sales S, Employee E, Time T
WHERE S.EmployeeKey = E.EmployeeKey AND

S.OrderDateKey = T.TimeKey AND T.Year = 1997
GROUP BY E.EmployeeKey, FirstName, LastName ),

Supervision(SupervisorKey, SubordinateKey) AS (
SELECT SupervisorKey, EmployeeKey
FROM Employee
WHERE SupervisorKey IS NOT NULL
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UNION ALL
SELECT S.SupervisorKey, E.EmployeeKey
FROM Supervision S, Employee E
WHERE S.SubordinateKey = E.SupervisorKey )

SELECT T2.EmployeeName,
FORMAT(T2.SalesAmount, '$###,##0.00') AS PersonalSales,
FORMAT(T1.TotalSubSales + T2.SalesAmount, '$###,##0.00')
AS SalesAmount

FROM ( SELECT SupervisorKey, SUM(S.SalesAmount) AS TotalSubSales
FROM Supervision U, SalesByEmp1997 S
WHERE S.EmployeeKey = U.SubordinateKey
GROUP BY SupervisorKey
) T1 JOIN SalesByEmp1997 T2 ON
T1.SupervisorKey = T2.EmployeeKey

UNION
SELECT EmployeeName,

FORMAT(SalesAmount,'$###,##0.00') AS PersonalSales,
FORMAT(SalesAmount,'$###,##0.00') AS SalesAmount

FROM SalesByEmp1997 S
WHERE NOT EXISTS (

SELECT *
FROM Supervision U
WHERE S.EmployeeKey = U.SupervisorKey )

The first temporary table SalesByEmp1997 defined in the WITH clause
computes the total sales by employee. The temporary table Supervision
computes with a recursive query the transitive closure of the supervision
relationship. The main query is composed of the union of two queries.
The first one computes the personal sales and the total sales amount for
supervisors. For this, the inner query in the FROM clause computes the total
amount made by the subordinates of an employee, and the additional join
with the view SalesByEmp1997 is used to obtain the total sales of a supervisor
in order to add the two amounts. Finally, the second query in the union takes
from the SalesByEmp1997 the data from employees who are not supervisors.

Query 6.13. Total sales amount, number of products, and sum of the
quantities sold for each order.

SELECT OrderNo,
FORMAT(SUM(SalesAmount),'$###,##0.00') AS SalesAmount,
MAX(OrderLineNo) AS NbProducts, SUM(Quantity) AS Quantity

FROM Sales
GROUP BY OrderNo
ORDER BY OrderNo

Recall that the sales fact table contains both the order number and the order
line number, which constitute a fact dimension. In the query, we group the
sales by order number, and then we apply the SUM and MAX aggregation
functions for obtaining the requested values.

Query 6.14. For each month, total number of orders, total sales amount,
and average sales amount by order.
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WITH OrderAgg AS (
SELECT OrderNo, OrderDateKey,

SUM(SalesAmount) AS SalesAmount
FROM Sales
GROUP BY OrderNo, OrderDateKey )

SELECT dbo.MonthYear(MonthNumber,Year) AS Month,
COUNT(OrderNo) AS NoOrders,
FORMAT(SUM(SalesAmount), '$###,##0.00') AS SalesAmount,
FORMAT(AVG(SalesAmount), '$###,##0.00') AS AvgAmount

FROM OrderAgg O, Time T
WHERE O.OrderDateKey = T.TimeKey
GROUP BY Year, MonthNumber
ORDER BY Year, MonthNumber

In the temporary table, we compute the total sales amount of each order.
Notice that we also need to keep the key of the time dimension, which will
be used in the main query for joining the fact table and the time dimension
table. Then, by grouping the tuples by year and month, we can compute the
aggregated values requested.

Query 6.15. For each employee, total sales amount, number of cities, and
number of states to which she is assigned.

SELECT FirstName + ' ' + LastName AS FullName,
FORMAT(SUM(SalesAmount) / COUNT(DISTINCT CityName),
'$###,##0.00') AS TotalSales,
COUNT(DISTINCT CityName) AS NoCities,
COUNT(DISTINCT StateName) AS NoStates

FROM Sales F, Employee E, Territories T, City C, State S
WHERE F.EmployeeKey = E.EmployeeKey AND

E.EmployeeKey = T.EmployeeKey AND
T.CityKey = C.CityKey AND C.StateKey = S.StateKey

GROUP BY FirstName + ' ' + LastName
ORDER BY FirstName + ' ' + LastName

Recall that the Territories table captures the many-to-many relationship
between employees and cities. Thus, the above query makes the join of the five
tables and then groups the result by employee. Then, in the SELECT clause
we sum the SalesAmount measure and divide it by the number of distinct
CityName assigned to an employee in the Territories table. This solves the
double-counting problem to which we referred in Sect. 4.2.6.

Suppose now that the Territories table have an additional attribute
Percentage stating the percentage of time an employee is assigned to each
city. In this case, the query above would be as follows:

SELECT FirstName + ' ' + LastName AS FullName,
FORMAT(SUM(SalesAmount) * T.Percentage,
'$###,##0.00') AS TotalSales,
COUNT(DISTINCT CityName) AS NoCities,
COUNT(DISTINCT StateName) AS NoStates

FROM Sales F, Employee E, Territories T, City C, State S
WHERE . . .
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As can be seen, the sum of the SalesAmount measure is multiplied by the
percentage to account for the double-counting problem.

6.4 Comparison of MDX and SQL

In the two preceding sections, we used MDX and SQL for querying the
Northwind cube. In this section, we compare the two languages.

At a first glance, the syntax of both languages seems similar. As we
have shown, the functionality of both languages is also similar. Indeed, we
expressed the same set of queries in both languages. However, there are some
fundamental differences between SQL and MDX that we discuss next.

The main difference between SQL and MDX is the ability of MDX to
reference multiple dimensions. Although it is possible to use SQL exclusively
to query cubes, MDX provides commands that are designed specifically
to retrieve multidimensional data with almost any number of dimensions.
On the other hand, SQL refers to only two dimensions, columns and
rows. Nevertheless, this fundamental difference between the two languages
somehow disappears since most OLAP tools are incapable of displaying a
result set with more than two dimensions. In our example queries, we used
the cross join operator to combine several dimensions in one axis when we
needed to analyze measures across more than two dimensions.

In SQL, the SELECT clause is used to define the column layout for a
query. However, in MDX the SELECT clause is used to define several axis
dimensions.

In SQL, the WHERE clause is used to filter the data returned by a
query, whereas in MDX, the WHERE clause is used to provide a slice of
the data returned by a query. While the two concepts are similar, they are
not equivalent. In an SQL query, the WHERE clause contains an arbitrary
list of items, which may or may not be returned in the result set, in order
to narrow down the scope of the data that are retrieved. In MDX, however,
the concept of a slice implies a reduction in the number of dimensions, and
thus, each member in the WHERE clause must identify a distinct portion of
data from a different dimension. Furthermore, unlike in SQL, the WHERE
clause in MDX cannot filter what is returned on an axis of a query. To filter
what appears on an axis of a query, we can use functions such as FILTER,
NONEMPTY, and TOPCOUNT.

Let us compare the queries in MDX of Sect. 6.2 with those in SQL of
Sect. 6.3.

Consider Query 6.1. A first observation is that, in SQL, the joins between
tables must be explicitly indicated in the query, whereas they are implicit in
MDX. Also, in SQL, an inner join will remove empty combinations, whereas
in MDX, NON EMPTY must be specified to achieve this. On the other hand,
outer joins are needed in SQL if we want to show empty combinations.
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Furthermore, in SQL the aggregations needed for the roll-up operations
must be explicitly stated through the GROUP BY and the aggregation
functions in the SELECT clause, while in MDX the aggregation functions
are stated in the cube definition and they are automatically performed upon
roll-up operations. Finally, in SQL the display format must be stated in the
query, while in MDX this is stated in the cube definition.

Consider now the comparison of measures of the current period with
respect to those of a previous period, such as the previous month or the same
month in the previous year. An example is given in Query 6.3. In MDX, this
can be achieved with calculated members using the WITH MEMBER clause.
On the other hand, in SQL this can be achieved by defining a temporary
table in the WITH clause in which the aggregations needed for the roll-up
operation are performed for each period, and an outer join is needed in the
main query for obtaining the measure of the current period together with
that of a previous period. Nevertheless, as shown in Query 6.4, obtaining the
previous month in SQL is somehow complex since we must account for two
cases depending on whether the previous month is in the same year or in the
previous year.

Consider now top and bottom performance analysis, an example of which
is given in Query 6.5. In MDX this can be obtained with functions such as
TOPCOUNT, whereas in SQL, this can be achieved with the TOP function.
Nevertheless, there is a fundamental difference between the two approaches.
For example, in MDX, the function TOPPERCENT sorts a set in descending
order, and returns a set of tuples with the highest values whose cumulative
total is equal to or greater than a specified percentage. On the other hand,
in SQL, stating TOP(n) PERCENT will return the percentage of the total
number of tuples in the answer. We have seen in Query 6.7 how to achieve
cumulative top percentages in SQL.

Query 6.8 is an example of manipulating aggregates at several granular-
ities. In MDX this is achieved by starting at the coarser granularity and
obtained the finer granularity through the DESCENDANTS function. In SQL,
we computed the finer granularity in a temporary table and obtained the
coarser granularity by aggregating the temporary table in the main query.

Let us consider period-to-date calculations and moving averages, as exem-
plified in Queries 6.10 and 6.11. In MDX, the function PERIODSTODATE is
used for the former, and hierarchical navigation is used for the latter. On the
other hand, in SQL these are obtained by using the window functions.

Query 6.12 is an example of aggregation in parent-child hierarchies. As
can be seen, this is easily expressed in MDX, while a complex recursive query
is needed to obtain similar functionality in SQL.

Queries 6.13 and 6.14 show examples of manipulating fact dimensions.
Although this can be expressed quite succinctly in MDX, it is not immediate
to understand how to achieve such a result. The corresponding queries in
SQL are easier to write.



6.5 Summary 227

Finally, Query 6.15 is an example of manipulating many-to-many dimen-
sions. As can be seen, the SQL version needs to deal with the double-counting
problem while aggregating the measure.

To conclude, Table 6.1 summarizes some of the advantages and disadvan-
tages of both languages.

Table 6.1 Comparison of MDX and SQL

MDX SQL
Advantages

• Data modeling: definition of di-
mensions, hierarchies, measure
groups, from various data sources

• Simple navigation within time di-
mension and hierarchies

• Relatively simple expressions for
often used business requests

• Fast, due to the existence of agg-
regations

Advantages

• Large user base
• Easy-to-understand semantics of

queries
• Results are easy to visualize:

scalars or 2D tables
• Various ways of relating tables:

joins, derived tables, correlated
queries, common table expres-
sions, etc.

Disadvantages

• Extra effort for designing a cube
and setting up aggregations

• Steep learning curve: manipulat-
ing an n-dimensional space

• Hard-to-grasp concepts: current
context, execution phases, etc.

• Some operations are difficult to
express, such as ordering on mul-
tiple criteria

Disadvantages

• Tables must be joined explicitly
inside a query

• Sometimes not intuitive and com-
plex syntax for expressing analyt-
ical queries

• No concept of row ordering
and hierarchies: navigation di-
mensions may be complex

• Not so performant for the types
of queries used in data analysis

6.5 Summary

In this chapter, we presented the MDX language, which is used for designing
and querying multidimensional databases. MDX can be used both as an
expression language for defining cubes and as a query language for extracting
data from cubes. We covered MDX as a query language and introduced its
main functionalities through examples. After this introduction, we addressed
a series of MDX queries to the Northwind cube. Then, we addressed the
same queries to the Northwind data warehouse using SQL. We concluded the
chapter comparing the expressiveness of MDX and SQL using both sets of
queries, highlighting advantages and disadvantages.
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6.6 Bibliographic Notes

MDX was first introduced in 1997 by Microsoft as part of the OLE DB for
OLAP specification. After the commercial release of Microsoft OLAP Services
in 1998 and Microsoft Analysis Services in 2005, MDX was adopted by the
wide range of OLAP vendors, both at the server and the client side. The latest
version of the OLE DB for OLAP specification was issued by Microsoft in
1999. In Analysis Services 2005, Microsoft added some MDX extensions like
subqueries. This newer variant of MDX is sometimes referred to as MDX
2005. There are many books about MDX. A popular introductory one is
[227], although it is somehow outdated, and more advanced books on MDX
are, for example, [163,189,197]. MDX is also covered, although succinctly, in
general books covering OLAP tools, such as [71, 79, 182].

XML for Analysis (abbreviated as XMLA) is an industry standard for com-
municating among analytical systems. XMLA is an application programming
interface (API) based on SOAP (Simple Object Access Protocol) designed for
OLAP and data mining. XMLA is maintained by XMLA Council, which is
composed of many companies, with Microsoft, Hyperion, and SAS being the
official XMLA Council founder members. In this chapter, we did not cover
XMLA due to the fact that XMLA requests are typically generated by client
tools and OLAP servers to communicate between them. XMLA is covered,
for example, in the books about OLAP tools mentioned above.

Data Mining Extensions (DMX) is a query language for data mining
models supported by Analysis Services. Like SQL, it supports a data
definition language (DDL), a data manipulation language (DML), and a
data query language. Whereas SQL statements operate on relational tables
and MDX on data cubes, DMX statements operate on data mining models.
DMX is used to create and train data mining models and to browse, manage,
and predict against them. We will study DMX together with a data mining
overview in Chap. 9. This is why we did not cover DMX in this chapter.

Self-service business intelligence is an approach to data analytics that
enables business users to access and work with corporate information in order
to create personalized reports and analytical queries on their own, without
the involvement of IT specialists. In order to realize this vision, Microsoft
introduced the Business Intelligence Semantic Model (BISM), which we
introduced in Chap. 3. The BISM supports two models, the traditional
multidimensional model and a new tabular model. The tabular model was
designed to be simpler and easier to understand by users familiar with Excel
and the relational data model. In addition, Microsoft has created a new query
language to query the BISM tabular model. This language, called DAX (Data
Analysis Expressions), is not a subset of MDX, but rather a new formula
language that is an extension of the formula language in Excel. The DAX
statements operate against an in-memory relational data store and are used
to create custom measures and calculated columns. In this chapter, we did not
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sales_fact

product_id
time_id
customer_id
promotion_id
store_id
store_sales
store_cost
unit_sales

time_by_day

time_id
the_date
the_day
the_month
the_year
day_of_month
week_of_year
month_of_year
quarter
fiscal_period

store

store_id
store_type
region_id
store_name
store_number
store_street_address
store_city
store_state
store_postal_code
store_country
store_manager
store_phone
store_fax
first_opened_date
last_remodel_date
lease_sqft
store_sqft
grocery_sqft
frozen_sqft
meat_sqft
coffee_bar
video_store
salad_bar
prepared_food
florist

promotion

promotion_id
promotion_district_id
promotion_name
media_type
cost
start_date
end_date

customer

customer_id
account_num
lname
fname
mi
address1
address2
address3
address4
city
state_province
postal_code
country
customer_region_id
phone1
phone2
birthdate
marital_status
yearly_income
gender
total_children
num_children_at_home
education
date_accnt_opened
member_card
occupation
houseowner
num_cars_owned

product

product_id
product_class_id
brand_name
product_name
SKU
SRP
gross_weight
net_weight
recyclable_package
low_fat
units_per_case
cases_per_pallet
shelf_width
shelf_height
shelf_depth

product_class

product_class_id
product_subcategory
product_category
product_department
product_family

region

region_id
sales_city
sales_state_province
sales_district
sales_region
sales_country
sales_district_id

Fig. 6.4 Relational schema of the Foodmart data warehouse

cover DAX, in particular since, at the time of writing, it is mostly supported
by Microsoft tools. A book entirely devoted to the BISM tabular model and
DAX is [183], although these topics are also covered in the book [79] already
cited above.
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6.7 Review Questions

6.1 Describe what is MDX and what it is used for. Describe the two modes
supported by MDX.

6.2 Define what are tuples and sets and MDX.
6.3 Describe the basic syntax of MDX queries and describe the several

clauses that compose an MDX query. Which clauses are required and
which are optional?

6.4 Describe conceptually how an MDX query is executed by specifying
the conceptual order of executing the different clauses composing the
query.

6.5 Define the slicing operation in MDX. How does this operation differ
from the filtering operation specified in SQL in the WHERE clause?

6.6 Why is navigation essential for querying multidimensional databases?
Give examples of navigation functions in MDX and exemplify their use
in common queries.

6.7 What is a cross join in MDX? For which purpose is a cross join needed?
Establish similarities and differences between the cross join in MDX and
the various types of join in SQL.

6.8 What is subcubing in MDX? Does subcubing provide additional
expressive power to the language?

6.9 Define calculated members and named sets. Why are they needed?
State the syntax for defining them in an MDX query.

6.10 Why time series analysis is important in many business scenarios? Give
examples of functionality that is provided by MDX for time series
analysis.

6.11 What is filtering and how does this differ from slicing?
6.12 How you do sorting in MDX? What are the limitations of MDX in this

respect?
6.13 Give examples of MDX functions that are used for top and bottom

analysis. How do they differ from similar functions provided by SQL?
6.14 Describe the main differences between MDX and SQL.

6.8 Exercises

6.1 Write in MDX the queries over the Foodmart cube given in Ex. 4.9.
6.2 Consider the relational schema of the Foodmart data warehouse given

in Fig. 6.4. Write in SQL the queries given in the previous exercise.
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Chapter 7

Physical Data Warehouse Design

The physical design of data warehouses is crucial to ensure adequate query
response time. There are typically three common techniques for improving
performance in data warehouse systems: materialized views, indexing, and
partitioning. A materialized view is a view that is physically stored in a
database, which enhances query performance by precalculating costly oper-
ations such as joins and aggregations. With respect to indexing, traditional
techniques used in OLTP systems are not appropriate for multidimensional
data. Thus, alternative indexing mechanisms are used in data warehouses,
typically bitmap and join indexes. Finally, partitioning or fragmentation
divides the contents of a relation into several files, typically based on a range
of values of an attribute.

In this chapter, we focus on a relational implementation of the data
warehouse and the associated data cubes. We first give in Sect. 7.1 an
introduction to the problems stated above. Then, in Sect. 7.2, we study
the problem of computing and maintaining materialized views. In Sect. 7.3,
we study the data cube maintenance problem and discuss in detail the
classic algorithms in the field. Section 7.4 studies efficient ways of computing
the whole data cube, while Sect. 7.4.3 studies classic algorithms aimed at
materializing only a portion of the data cube. Section 7.5 studies data
warehouse indexing techniques in detail, while Sect. 7.6 discusses how indexes
are used to evaluate typical data warehouse queries. Section 7.7 overviews
data warehouse partitioning issues. Section 7.8 studies physical design
support in SQL Server and in Analysis Services, while Sect. 7.9 briefly
discusses query optimization in Analysis Services. Finally, Sect. 7.10 discusses
query optimization in Mondrian.

A. Vaisman and E. Zimányi, Data Warehouse Systems, Data-Centric
Systems and Applications, DOI 10.1007/978-3-642-54655-6 7,
© Springer-Verlag Berlin Heidelberg 2014
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7.1 Physical Modeling of Data Warehouses

In this section, we give an overview of the three classic techniques for
improving data warehouse performance: materialized views, indexing, and
partitioning. Later in the chapter we study these techniques in detail.

As we studied in Chap. 2, a view in the relational model is just a query
that is stored in the database with an associated name and which can then
be used like a normal table. This query can involve base tables (i.e., tables
physically stored in the database) and/or other views. A materialized view
is a view that is physically stored in a database. Materialized views enhance
query performance by precalculating costly operations such as joins and
aggregations and storing the results in the database. In this way, queries that
only need to access materialized views will be executed faster. Obviously, the
increased query performance is achieved at the expense of storage space.

A typical problem of materialized views is updating since all modifi-
cations to the underlying base tables must be propagated into the view.
Whenever possible, updates to materialized views are performed in an
incremental way, avoiding to recalculate the whole view from scratch. This
implies capturing the modifications to the base tables and determining how
they influence the content of the view. Much research work has been done in
the area of view maintenance. We study the most classic ones in this chapter.

In a data warehouse, given that the number of aggregates grows exponen-
tially with the number of dimensions and hierarchies, normally not all possible
aggregations can be precalculated and materialized. Thus, an important
problem in designing a data warehouse is the selection of materialized
views. The goal is to select an appropriate set of views that minimizes the
total query response time and the cost of maintaining the selected views,
given a limited amount of resources such as storage space or materialization
time. Many algorithms have been designed for selection of materialized views,
and currently some commercial DBMSs provide tools that tune the selection
of materialized views on the basis of previous queries to the data warehouse.

Once the views to be materialized have been defined, the queries addressed
to a data warehouse must be rewritten in order to best exploit such views
to improve query response time. This process, known as query rewriting,
tries to use the materialized views as much as possible, even if they only
partially fulfill the query conditions. Selecting the best rewriting for a
query is a complex process, in particular for queries involving aggregations.
Many algorithms have been proposed for query rewriting in the presence of
materialized views. These algorithms impose various restrictions on the given
query and the potential materialized views so that the rewriting can be done.

A drawback of the materialized view approach is that it requires one to
anticipate the queries to be materialized. However, data warehouse queries
are often ad hoc and cannot always be anticipated. As queries which are not
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precalculated must be computed at run time, indexing methods are required
to ensure effective query processing. Traditional indexing techniques for
OLTP systems are not appropriate for multidimensional data. Indeed, most
OLTP transactions access only a small number of tuples, and the indexing
techniques used are designed for this situation. Since data warehouse queries
typically access a large number of tuples, alternative indexing mechanisms
are needed.

Two common types of indexes for data warehouses are bitmap indexes
and join indexes. Bitmap indexes are a special kind of index, particularly
useful for columns with a low number of distinct values (i.e., low cardinality
attributes), although several compression techniques eliminate this limita-
tion. On the other hand, join indexes materialize a relational join between
two tables by keeping pairs of row identifiers that participate in the join. In
data warehouses, join indexes relate the values of dimensions to rows in the
fact table. For example, given a fact table Sales and a dimension Client, a join
index maintains for each client a list of row identifiers of the tuples recording
the sales to this client. Join indexes can be combined with bitmap indexes,
as we will see in this chapter.

Partitioning or fragmentation is a mechanism frequently used in
relational databases to reduce the execution time of queries. It consists
in dividing the contents of a relation into several files that can be more
efficiently processed in this way. There are two ways of partitioning a relation:
vertically and horizontally. Vertical partitioning splits the attributes of a
table into groups that can be independently stored. For example, a table can
be partitioned such that the most often used attributes are stored in one
partition, while other less often used attributes are kept in another partition.
Also, column-store database systems (that will be studied in Chap. 13) make
use of this technique. Horizontal partitioning divides the records of a
table into groups according to a particular criterion. A common horizontal
partitioning scheme in data warehouses is based on time, where each partition
contains data about a particular time period, for instance, a year or a range
of months.

In the following sections, we study these techniques in detail.

7.2 Materialized Views

We know that a view is a derived relation defined in terms of base relations
or other views, by means of the CREATE VIEW statement in SQL. A view
is recomputed every time it is invoked. A materialized view, on the other
hand, is a view that is physically stored in the database. This improves
query performance, playing the role of a cache which can be directly accessed
without looking into the base relations. But this benefit has a counterpart.
When the base relations are updated, the materialized views derived from
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them also need to be updated. The process of updating a materialized view in
response to changes in the base relations is called view maintenance. Under
certain conditions, it is possible to compute changes to the view caused by
changes in the underlying relations without recomputing the entire view from
scratch. This is called incremental view maintenance. As this problem is
central to data warehousing, we will describe it with some detail.

The view maintenance problem can be analyzed through four dimen-
sions:

• Information: Refers to the information available for view maintenance, like
integrity constraints, keys, access to base relations, and so on.

• Modification: Refers to the kinds of modifications that can be handled by
the maintenance algorithm, namely, insertions, deletions, and updates; the
latter are usually treated as deletions followed by insertions.

• Language: Refers to the language used to define the view, most often SQL.
Aggregation and recursion are also issues in this dimension.

• Instance: Refers to whether or not the algorithm works for every instance
of the database or for a subset of all instances.

For example, consider a relation Sales(ProductKey,CustomerKey,Quantity)
and a materialized view TopProducts that keeps the products for which at
least one customer ordered more than 150 units. The view TopProducts is
defined as follows:

TopProducts = πProductKey(σQuantity>150(Sales)).

It is clear that inserting a tuple like (p2, c3, 110) in the table Sales would
have no effect on the view, since the tuple does not satisfy the view condition.
However, the insertion of the tuple (p2, c3, 160) would possibly modify the
view. An algorithm can easily update it without accessing the base relation,
basically adding the product if it is not already in the view.

Let us now analyze the deletion of a tuple from Sales, for example,
(p2, c3, 160). We cannot delete p2 from the view until checking if p2 has
not been ordered by some other customer in a quantity greater than 150,
which requires to scan the relation Sales.

In summary, although in some cases insertion can be performed just
accessing the materialized view, deletion always requires further information.

Consider now a view FoodCustomers which includes a join. The view
contains the customers that ordered at least one product in the food
category (we use the simplified and denormalized Product dimension defined
in Sect. 5.7):

FoodCustomers = πCustomerKey(σCategoryName='Food'(Product) ∗ Sales)

If we insert the tuple (p3, c4, 170) in table Sales, we cannot know if c4 will
be in the view FoodCustomers (of course assuming that it is not in the view
already) unless we check in the base relations whether or not p3 is in the
food category.
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The above examples show the need of characterizing the kinds of view
maintenance problems in terms of the kind of update and of the operations
in the view definition. Two main classes of algorithms for view maintenance
have been studied in the database literature:

• Algorithms using full information, which means the views and the base
relations.

• Algorithms using partial information, namely, the materialized views and
the key constraints.

7.2.1 Algorithms Using Full Information

Three kinds of views are addressed by these algorithms: nonrecursive views,
outer-join views, and recursive views. In this section, we discuss the first two
kinds and omit the discussion on recursive views, which is beyond the scope
of this book.

The basic algorithm for nonrecursive views (which may include join, union,
negation, and aggregation) is the counting algorithm. This algorithm
counts the number of alternative derivations that every tuple in the view
has. In this way, if we delete a tuple in a base relation, we can check whether
or not we should delete it from the view. To study this kind of view, let us
consider the relation FoodCustomers introduced above. The view is created
as follows:

CREATE VIEW FoodCustomers AS (
SELECT DISTINCT CustomerKey
FROM Sales S, Product P
WHERE S.ProductKey = P.ProductKey AND P.CategoryName = 'Food' )

An instance of relation Sales is depicted in Fig. 7.1a; the view FoodCustomers
over this instance is shown in Fig. 7.1b. We added a column Count indicating
the number of possible derivations for each tuple. For example, (c2, 2) means
that customer c2 bought two products from the category food. Further, we

ProductKey CustomerKey Quantity
p1 c1 20
p1 c2 100
p2 c2 50
· · · · · · · · ·

CustomerKey Count
c1 1
c2 2

CustomerKey Count
c1 1
c2 1

a b c

Fig. 7.1 An example of the counting algorithm. (a) Instance of the Sales relation.
(b) View FoodCustomers, including the number of possible derivations of each tuple.
(c) View FoodCustomers after the deletion of (p1, c2, 100)
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suppose that the only products of the category food are p1 and p2 and the
tuples shown are the only ones concerning these products.

Suppose that we delete tuple (p1, c2, 100) from Sales. Although c2 in
FoodCustomers is derived from the deleted tuple, it has also an alter-
native derivation, through (p2, c2, 50). Thus, deleting (p1, c2, 100) does
not prevent c2 to be in the view. The counting algorithm computes a
relation Δ−(FoodCustomers) which contains the tuples that can be derived
from (p1, c2, 100), and therefore affected by the deletion of such tuple,
and adds a −1 to each tuple. In this example, Δ−(FoodCustomers) will
contain the tuples {(c2,−1)}. Analogously, for dealing with insertions,
Δ+(FoodCustomers) extends the tuples with a 1. The updated view (shown
in Fig. 7.1c) is obtained by joining Δ−(FoodCustomers) with the materialized
view FoodCustomers (using the attribute CustomerKey) and subtracting
Δ−(FoodCustomers).Count from FoodCustomers.Count. We can see that, since
c2 has two possible derivations (Fig. 7.1b), it will not be removed from
the view; we will only eliminate one possible derivation. If later the tuple
(p2, c2, 50) gets deleted, c2 will be also eliminated from the view. On the
contrary, c1 would be deleted together with (p1, c1, 20).

We analyze now views defined with an outer join. Let us consider two
relations Product(ProdID,ProdName, ShipID) and Shipper(ShipID, ShipName)
as depicted, respectively, in Fig. 7.2a,b. An example of outer join view is as
follows:

CREATE VIEW ProductShipper AS (
SELECT P.ProdID, P.ProdName, S.ShipID, S.ShipName
FROM Product P FULL OUTER JOIN Shipper S ON

P.ShipID = S.ShipID )

This view is depicted in Fig. 7.2d. A modification Δ(Product) to a relation
Product consists in insertions Δ+(Product) and deletions Δ−(Product). As
usual, updates are considered as deletions followed by insertions. View
maintenance is tackled by rewriting the full outer join as either left or right
outer joins as indicated below, depending on whether we tackle the updates
of the left or the right table of the full outer join. Then, we merge the result
with the view to be updated:

SELECT P.ProdID, P.ProdName, S.ShipID, S.ShipName
FROM Δ(Product) P LEFT OUTER JOIN Shipper S ON P.ShipID = S.ShipID

SELECT P.ProdID, P.ProdName, S.ShipID, S.ShipName
FROM Product P RIGHT OUTER JOIN Δ(Shipper) S ON P.ShipID = S.ShipID

The first query computes the effect on the view of the changes to Product,
and the second one does the same with the changes to Shipper. Consider
the two relations Product and Shipper in Fig. 7.2a,b, as well as Δ+(Product)
in Fig. 7.2c containing the tuples inserted in Product. When we insert a
matching tuple like (p3,MP3, s2), the projection of the left outer join with
Shipper would be (p3,MP3, s2,DHL). In this case, the algorithm should
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ProdID ProdName ShipID
p1 TV s1
p2 Tablet NULL

ShipID ShipName
s1 Fedex
s2 DHL

ProdID ProdName ShipID
p3 MP3 s2
p4 PC NULL

ProdID ProdName ShipID ShipName
p1 TV s1 Fedex
p2 Tablet NULL NULL

NULL NULL s2 DHL

ProdID ProdName ShipID ShipName
p1 TV s1 Fedex
p2 Tablet NULL NULL
p3 MP3 s2 DHL
p4 PC NULL NULL

a b

d e

c

Fig. 7.2 An example of maintenance of a full outer join view. (a) Table Product. (b)
Table Shipper. (c) Δ+(Product). (d) View ProductShipper. (e) Resulting view after
the insertions

also delete (NULL,NULL, s2,DHL) (because (s2,DHL) now has a matching
tuple), together with adding (p3,MP3, s2,DHL). If the tuple (p4,PC,NULL) is
inserted into Product, the left outer join between (p4,PC,NULL) and Shipper
yields (p4,PC,NULL,NULL), which is inserted into the view. Figure 7.2e
shows the final state of the view.

7.2.2 Algorithms Using Partial Information

It is not always possible to maintain a view using only partial information. A
view is called self-maintainable if it can be maintained using only the view
and key constraints. This is important for data warehouses because we do
not want to access base data to update summary tables. Further, we say that
a view is self-maintainable with respect to a modification type T to a base
relation R if the view can be self-maintained for all instances of the database
in response to all modifications of type T over R.

As an example, consider again the view FoodCustomers defined above:

FoodCustomers = πCustomerKey(σCategoryName='Food'(Product) ∗ Sales)

Suppose that c3 is in the view and we delete the tuple (p1, c3, 100) from
the relation Sales. We could not delete c3 from the view without checking if
this customer ordered another food product. If in the base relations we find
that there is another tuple in Sales of the form (p, c3, q), such that p is in the
food category, then c3 will remain in the view. Thus, the view FoodCustomers
is not self-maintainable with respect to deletions on Sales. Analogously, this
view is not self-maintainable with respect to insertions into any of the two
base relations, because for any tuple inserted, for example, into Sales, we
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must check if the product is in the food category (except if c3 is already in
the view, in which case nothing should be done).

We say an attribute is distinguished in a view V if it appears in the
SELECT clause of the view definition. An attribute A belonging to a relation
R is exposed in a view V if A is used in a predicate in V . We briefly present
some well-known results in view maintenance theory:

• A select-project-join view is not self-maintainable with respect to inser-
tions.

• A select-project-join view is self-maintainable with respect to deletions in
a relation R if the key attributes from each occurrence of R in the join are
either included in the view or equated to a constant in the view definition.
Note that none of these conditions are satisfied in the example above.

• A left or full outer join view V defined using two relations R and S such
that the keys of R and S are distinguished and all exposed attributes
of R are distinguished is self-maintainable with respect to all types of
modifications in S.

Consider again the outer join view defined in the previous section and the
instances of Fig. 7.2:

CREATE VIEW ProductShipper AS (
SELECT P.ProdID, P.ProdName, S.ShipID, S.ShipName
FROM Product P FULL OUTER JOIN Shipper S ON

P.ShipID = S.ShipID )

Since this view satisfies the third condition above, it is self-maintainable
with respect to all types of modifications in Product. Let us first compute
the projection of the view over Shipper, expressed as Proj Shipper =
πShipID,ShipName(Product �� Shipper), shown in Fig. 7.3a. Notice that the tuple
(NULL,NULL) is excluded from this projection. The tables Δ+(Product) and
Δ−(Product) denoting, respectively, the tuples inserted and deleted from
Product are shown in Fig. 7.3b,c. Since the view is self-maintainable, we can
join these delta tables with Proj Shipper instead of Shipper, thus avoiding to
access the base relations. The joins between delta tables and Proj Shipper
are shown in Fig. 7.3d,e. Finally, the result of both joins is merged with the
original view and the side effects are addressed. For example, when inserting
(p3,MP3, s2,DHL), we must delete (NULL,NULL, s2,DHL). Analogously,
when deleting (p1,TV, s1,Fedex), we must insert (NULL,NULL, s1,Fedex).
Figure 7.3f shows the final result.

7.3 Data Cube Maintenance

In data warehouses, materialized views that include aggregate functions
are called summary tables. We now discuss how summary tables can be
maintained with minimum access to the base data while keeping maximum
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ShipID ShipName
s1 Fedex
s2 DHL

ProdID ProdName ShipID
p3 MP3 s2
p4 PC NULL

ProdID ProdName ShipID
p1 TV s1

ProdID ProdName ShipID ShipName
p3 MP3 s2 DHL
p4 PC NULL NULL

ProdID ProdName ShipID ShipName
p1 TV s1 Fedex

ProdID ProdName ShipID ShipName
p2 Tablet NULL NULL
p3 MP3 s2 DHL
p4 PC NULL NULL

NULL NULL s1 Fedex

a

d e

f

b c

Fig. 7.3 An example of self-maintenance of a full outer join view. (a) Proj Shipper.
(b) Δ+(Product). (c) Δ−(Product). (d) Δ+(Product) �� Proj Shipper. (e)
Δ−(Product) �� Proj Shipper. (f) Final result

data availability. The problem can be stated as follows: as data at the
sources are added or updated, the summary tables that depend on these
data must be also updated. Then, two options arise: to recompute the
summary tables from scratch and to apply incremental view maintenance
techniques to avoid such recomputation. Note that since summary tables
remain unavailable to the data warehouse users while they are maintained,
we need to reduce the time invested in their updating. In this section, we
explain a representative summary table maintenance algorithm called the
summary-delta algorithm, although many other techniques (like the ones
that maintain many versions of the summary tables) exist in the literature.

Analogously to the definition of self-maintainable views, we say that an
aggregate function is self-maintainable if the new value of the function can
be computed solely from the old values and from changes to the base data.
Aggregate functions must be distributive in order to be self-maintainable. The
five classic aggregate functions in SQL are self-maintainable with respect to
insertions, but not to deletions. In fact, MAX and MIN are not, and cannot
be made, self-maintainable with respect to deletions.

The summary-delta algorithm has two main phases called propagate and
refresh. The main advantage of this approach is that the propagate phase
can be performed in parallel with data warehouse operations; only the refresh
phase requires taking the warehouse off-line. The basic idea is to create in
the propagate phase a so-called summary-delta table that stores the net
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changes to the summary table due to changes in the source data. Then, during
the refresh phase, these changes are applied to the summary table.

We will explain the algorithm with a simplified version of the Sales fact
table in the Northwind case study, whose schema we show next:

Sales(ProductKey, CustomerKey, TimeKey, Quantity)

Consider a view DailySalesSum defined as follows:

CREATE VIEW DailySalesSum AS (
SELECT ProductKey, TimeKey, SUM(Quantity) AS SumQuantity,

COUNT(*) AS Count
FROM Sales
GROUP BY ProductKey, TimeKey )

The Count attribute is added in order to maintain the view in the presence
of deletions, as we will explain later. In the propagate phase, we define two
tables, Δ+(Sales) and Δ−(Sales), which store the insertions and deletions to
the fact table, and a view where the net changes to the summary tables are
stored. The latter is called a summary-delta table, which in this example is
created as follows:

CREATE VIEW SD DailySalesSum(ProductKey, TimeKey,
SD SumQuantity, SD Count) AS

WITH Temp AS (
( SELECT ProductKey, TimeKey,

Quantity AS Quantity, 1 AS Count
FROM Δ+(Sales) )

UNION ALL
( SELECT ProductKey, TimeKey,

-1 * Quantity AS Quantity, -1 AS Count
FROM Δ−(Sales) ) )

SELECT ProductKey, TimeKey, SUM( Quantity), SUM( Count)
FROM Temp
GROUP BY ProductKey, TimeKey

In the temporary table Temp of the view definition, we can see that for
each tuple in Δ+(Sales), we store a 1 in the Count attribute, while for
each tuple in Δ−(Sales), we store a −1. Analogously, the Quantity attribute
values are multiplied by 1 or −1 depending if they are retrieved from
Δ+(Sales) or Δ−(Sales), respectively. Then, in the main SELECT clause,
the SD SumQuantity attribute contains the net sum of the quantity for each
combination of ProductKey and TimeKey, while SD Count contains the net
number of tuples in the view corresponding to such combination.

During the refresh phase, we apply to the summary table the net changes
stored in the summary-delta table. Below we give a general scheme of the
refresh algorithm valid when the aggregate function is SUM:

Refresh Algorithm
INPUT: Summary-delta table SD DailySalesSum

Summary table DailySalesSum
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OUTPUT: Updated summary table DailySalesSum
BEGIN

For each tuple T in SD DailySalesSum DO
IF NOT EXISTS (

SELECT *
FROM DailySalesSum D
WHERE T.ProductKey = D.ProductKey AND

T.TimeKey = D.TimeKey)
INSERT T INTO DailySalesSum

ELSE
IF EXISTS (

SELECT *
FROM DailySalesSum D
WHERE T.ProductKey = D.ProductKey AND

T.TimeKey = D.TimeKey AND
T.SD Count + D.Count = 0)

DELETE T FROM DailySalesSum
ELSE

UPDATE DailySalesSum
SET SumQuantity = SumQuantity + T.SD SumQuantity,

Count = Count + T.SD Count
WHERE ProductKey = T.ProductKey AND

TimeKey = T.TimeKey
END

For each tuple T in the summary-delta table, the algorithm checks if
T is already in the view. If not, it is inserted. If T is in the view and
all the occurrences of a (ProductKey,TimeKey) combination are deleted
(T.SD Count+ D.Count = 0), then T is deleted from the view. Otherwise,
the tuple in the view corresponding to T is updated with the new sum and
the new count.

Figure 7.4 shows an example using the SUM aggregate function. Fig-
ure 7.4a shows the original DailySalesSum table, Fig. 7.4b,c shows the tables
containing the changes to DailySalesSum, and Fig. 7.4d shows the summary-
delta table. Finally, the result of the view update is shown in Fig. 7.4e. For
instance, the tuple (p4, c2, t4, 100) has been inserted, as depicted inΔ+(Sales)
(Fig. 7.4b). The tuple (p4, t4, 100, 1) in Fig. 7.4d tells the net result of the
combination (p4, t4) that has to be used to update the DailySalesSum view,
which yields the tuple (p4, t4, 200, 16) depicted in Fig. 7.4e.

Figure 7.5 shows an example using the MAX aggregate function. As can
be seen in Fig. 7.5a, in the view DailySalesMax, we need an additional column
that counts the number of tuples that have the maximum value, instead of
counting the number of tuples that have the same combination of ProductKey
and TimeKey as was the case for the SUM. The view can be created as follows:

CREATE VIEW DailySalesMax(ProductKey, TimeKey, MaxQuantity, Count) AS (
SELECT ProductKey, TimeKey, MIN(Quantity), COUNT(*)
FROM Sales S1
WHERE Quantity = (

SELECT MAX(Quantity)
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Product
Key

Time
Key

Sum
Quantity Count

p2 t2 100 10
p3 t3 100 20
p4 t4 100 15
p5 t5 100 2
p6 t6 100 1

Product
Key

Customer
Key

Time
Key Quantity

p1 c1 t1 150
p2 c1 t2 200
p2 c2 t2 100
p4 c2 t4 100
p6 c5 t6 200

Product
Key

Customer
Key

Time
Key Quantity

p2 c1 t2 10
p5 c2 t5 10
p6 c5 t6 100

Product
Key

Time
Key

SD Sum
Quantity SD Count

p1 t1 150 1
p2 t2 290 1
p4 t4 100 1
p5 t5 -10 -1
p6 t6 100 0

Product
Key

Time
Key

Sum
Quantity Count

p1 t1 150 1
p2 t2 390 11
p3 t3 100 20
p4 t4 200 16
p5 t5 90 1
p6 t6 200 1

a

b c

d e

Fig. 7.4 An example of the propagate and refresh algorithm with aggregate function
SUM. (a) Original view DailySalesSum. (b) Δ+(Sales). (c) Δ−(Sales). (d) Summary-
delta table SD DailySalesSum. (e) View DailySalesSum after update

FROM Sales S2
WHERE S1.ProductKey = S2.ProductKey AND

S1.TimeKey = S2.TimeKey )
GROUP BY ProductKey, TimeKey )

Figure 7.5b shows the summary-delta table. As can be seen, we need a
column for keeping the maximum value in the tuples inserted or deleted,
as well as another column counting the number of insertions or deletions
of tuples having the maximum value. Thus, the first four tuples in the
summary-delta table correspond to insertions, while the last three correspond
to deletions since the count value is negative. The view for creating the
summary-delta table is given next:

CREATE VIEW SD DailySalesMax(ProductKey, TimeKey,
SD MaxQuantity, SD Count) AS (
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Product
Key

Time
Key

Max
Quantity Count

p2 t2 150 4
p3 t3 100 5
p4 t4 50 6
p5 t5 150 5
p6 t6 100 3
p7 t7 100 2

Product
Key

Time
Key

SD Max
Quantity SD Count

p1 t1 100 2
p2 t2 100 2
p3 t3 100 2
p4 t4 100 2
p5 t5 100 -2
p6 t6 100 -2
p7 t7 100 -2

Product
Key

Time
Key

Max
Quantity Count

p1 t1 100 2
p2 t2 150 4
p3 t3 100 7
p4 t4 100 2
p5 t5 150 5
p6 t6 100 1
p7 t7 ? ?

a

b c

Fig. 7.5 An example of the propagate and refresh algorithm with aggregate function
MAX. (a) Original view DailySalesMax. (b) Summary-delta table SD DailySalesMax.
(c) Updated view DailySalesMax

SELECT ProductKey, TimeKey, Quantity, COUNT(*)
FROM Δ+(Sales) S1
WHERE Quantity = (

SELECT MAX(Quantity)
FROM Δ+(Sales) S2
WHERE S1.ProductKey = S2.ProductKey AND

S1.TimeKey = S2.TimeKey )
GROUP BY ProductKey, TimeKey

UNION ALL
SELECT ProductKey, TimeKey, Quantity, -1 * COUNT(*)
FROM Δ−(Sales) S1
WHERE Quantity = (

SELECT MAX(Quantity)
FROM Δ−(Sales) S2
WHERE S1.ProductKey = S2.ProductKey AND

S1.TimeKey = S2.TimeKey )
GROUP BY ProductKey, TimeKey )

Finally, Fig. 7.5c shows the view after the update. Let us consider first
the insertions. The tuple for p1 in the summary-delta table does not have a
corresponding tuple in the view, and thus, it is inserted in the view. The tuple
for p2 in the summary-delta table has a maximum value smaller than that in
the view so the view is not modified. The tuple for p3 in the summary-delta
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table has a quantity value equal to the maximum in the view so the maximum
value remains the same and the counter is increased to 7. The tuple for p4 in
the summary-delta table has a maximum value greater than the maximum
in the view, and thus, the view must be updated with the new maximum and
the new counter.

Now consider the deletions. The tuple for p5 in the summary-delta table
has a quantity value smaller than the maximum in the view so the view is not
modified. The tuple for p6 in the summary-delta table has a quantity value
equal to the maximum in the view but with a greater count value. In this
case, we decrease the counter in the view to 1. The tuple for p7 illustrates
why the MAX function is not self-maintainable with respect to deletions.
The maximum value and the counter in the summary-delta table are equal
to those value in the view. There are two possible cases. If there are other
tuples in the base table with the same combination (p7, t7), we must obtain
the new maximum value and the new count from the base tables. This case
is depicted in Fig. 7.5c. Otherwise, if there are no other tuples in the base
table with the same combination (p7, t7), we must simply delete the tuple
from the view.

The algorithm for refreshing the view DailySalesMax from the summary-
delta table SD DailySalesMax is left as an exercise.

7.4 Computation of a Data Cube

In Chap. 5, we have explained how the data cube could be computed by
means of an SQL query, where the all value is represented by the null value.
Computing the whole data cube in this way from the base fact and dimension
tables could become extremely hard unless an adequate strategy is applied.
The simplest method, consisting in performing the GROUP BY queries for
each view and then taking their UNION, would be unacceptable in real-life
applications. Thus, several optimization techniques have been proposed for
this. We study next some of them in order to convey the main idea.

The optimization methods start with the notion of data cube lattice.
In this lattice, each node represents a possible aggregation of the fact data,
where there is an edge from node i to node j if j can be computed from i and
the number of grouping attributes of i is the number of attributes of j plus
one. For instance, given an aggregate view by CustomerKey and ProductKey
of the Sales table of the previous section, we can compute the total sales
amount by customer directly from this view, without computing it from the
base table. In what follows, to avoid overloading figures, we will work with the
lattice depicted in Fig. 7.6, corresponding to a four-dimensional data cube,
with dimensions A, B, C, andD. In this lattice, an edge from ABC to ABmeans
that the summary table AB can be computed from ABC. We do not include
in the lattice the transitive edges, for example, edges like ABCD→ AB.



7.4 Computation of a Data Cube 247

ABCD

ADAC BDBC CDAB

B CA D

All

ABDABC ACD BCD

Level 4

Level 3

Level 2

Level 1

Level 0

Fig. 7.6 A data cube lattice

The simplest optimizations for computing the cube lattice are:

• Smallest-parent: Computes each view from the smallest previously com-
puted one. In the lattice of Fig. 7.6, AB can be computed from ABC, ABD,
or ABCD. This method chooses the smallest of them.

• Cache-results: Caches in memory an aggregation from which other ones
can be computed.

• Amortize-scans: Computes in memory as many aggregations as possible,
reducing the amount of table scans.

• Share-sorts: Applies only to methods based on sorting and aims at sharing
costs between several aggregations.

• Share-partitions: These are specific to algorithms based on hashing. When
the hash table is too large to fit in main memory, data are partitioned
and aggregation is performed for each partition that fits in memory. The
partitioning cost can be shared across multiple aggregations.

Note that these methods can be contradictory. For instance, share-sorts would
induce to prefer AB to be derived from ABC, while ABD could be its smallest
parent. Sophisticated cube computation methods try to combine together
some of these simple optimization techniques to produce an efficient query
evaluation plan. We explain below a method based on sorting. Methods based
on hashing follow a similar rationale. Note that most of these algorithms
require the estimation of the sizes of each aggregate view in the lattice.

7.4.1 PipeSort Algorithm

The PipeSort algorithm gives a global strategy for computing the data
cube, which includes the first four optimization methods specified above.
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The algorithm includes cache-results and amortize-scans strategies by means
of computing nodes with common prefixes in a single scan. This is called
pipelined evaluation in database query optimization. In this way, we could
compute ABCD, ABC, AB, and A in a single scan because the attribute order
in the view is the sorting order in the file. For example, in the base table below,
with a single scan of the first five tuples, we can compute the aggregations
(a1, b1, c1, 200), (a1, b1, c2, 500), (a1, b1, 700), (a1, b2, 400), and (a1, 1100).

A B C D

a1 b1 c1 d1 100

a1 b1 c1 d2 100

a1 b1 c2 d1 200

a1 b1 c2 d1 300

a1 b2 c1 d1 400

a2 b1 c1 d1 100

a2 b1 c2 d2 400

· · · · · · · · · · · · · · ·

The input of the algorithm is a data cube lattice in which each edge eij ,
where node i is the parent of node j, is labeled with two costs, S(eij) and
A(eij). S(eij) is the cost of computing j from i if i is not sorted. A(eij) is
the cost of computing j from i if i is already sorted. Thus, A(eij) ≤ S(eij).
In addition, we consider the lattice organized into levels, where each level
k contains views with exactly k attributes, starting from All, where k = 0.
This data structure is called a search lattice.

The output of the algorithm is a subgraph of the search lattice such that
each node has exactly one parent from which it will be computed in a certain
mode, that is, sorted or not (note that in the search lattice, each node, except
All, has more than one parent). If the attribute order of a node j is a prefix of
the order of its parent i, then j can be computed from i without sorting the
latter, and in the resulting graph, the edge will have cost A(eij). Otherwise,
i has to be sorted to compute j and the edge will have cost S(eij). Note that
for any node i in an output graph, there can be at most one outgoing edge
marked A and many outgoing edges marked S. The goal of the algorithm is
to find an output graph representing an execution plan such that the sum of
the costs labeling the edges is minimum.

To obtain the minimum cost output graph, the algorithm proceeds level
by level, starting from level 0 until level N − 1, where N is the number of
levels in the search lattice. We find the best way of computing the nodes in
each level k from the nodes in level k+1, reducing the problem to a weighted
bipartite matching problem as follows. Consider a pair (k, k + 1) of levels.
The algorithm first transforms the level k + 1 by making k copies of each
one of its nodes. Thus, each node in level k + 1 will have k + 1 children,
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B CA D

ACAB ADAC ADAB BC BC BD BD CD CD

B CA D

ACAB ADAC ADAB BC BC BD BD CD CD

a

b

Fig. 7.7 Computation of the minimum bipartite matching between two levels in the
cube lattice

that is, k + 1 outgoing edges. All original edges have cost A(eij) and all
replicated edges have cost S(eij). Therefore, this transformed graph induces
a bipartite graph (because there are edges between nodes in different levels
but not between nodes in the same level). Finally, we compute the minimum
cost matching in this bipartite graph such that each node j in level k will be
matched to some node i in level k + 1. If j is connected to i by an A() edge,
then j determines the attribute order in which i will be sorted during its
computation. If, instead, j is connected to i by an S() edge, i will be sorted
in order to compute j.

As an example, consider in Fig. 7.7 the graph constructed as indicated
above, for levels 1 and 2 of the lattice in Fig. 7.6. Edges of type A(eij) are
represented with solid lines, while edges of type S(eij) with dashed lines. Note
that in Fig. 7.7a we have added a copy of each node at level 2. In Fig. 7.7b,
we can see that all the views will be computed at a cost A(eij). For example,
A will be computed from AC, B from BA, and so on.

The matching above is performed N times, where N is the number of
grouping attributes, generating an evaluation plan. The heuristics is that if
for every pair of levels the cost is minimum, the same occurs for the whole
plan. The output lattice gives a sorting order to compute each node. As a
result, the PipeSort algorithm induces the following evaluation strategy: in
every chain such that a node in level k is a prefix of node in level k + 1 (in
the output graph), all aggregations can be computed in a pipeline.

The general scheme of the PipeSort algorithm is given next:

PipeSort Algorithm
INPUT: A search lattice with the A() and S() edges costs
OUTPUT: An evaluation plan to compute all nodes in the search lattice
For level k = 0 to level N − 1

Generate-Plan(k + 1→ k);
For each node i in level k + 1
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Fix the sort order of i as the order of the level k node
connected to i by an A() edge;

Generate-Plan(k + 1→ k);
Create k additional copies of each level k + 1 node;
Connect each copy node to the same set of level k nodes as the original node;
Assign cost A(eij) to edges eij from the original nodes and cost S(eij)

to edges from the copy nodes;
Find the minimum cost matching on the transformed level k + 1 with level k;

Figure 7.8 shows an evaluation plan for computing the cube lattice of
Fig. 7.6 using the PipeSort algorithm. The minimum cost sort plan will first
sort the base fact table in CBAD order and compute CBA, CB, C, and All
aggregations in a pipelined fashion. Then, we sort the base fact table in the
BADC order and proceed as above to compute aggregates BAD, BA, and A.
We continue in the same way with ACDB and DBCA. Note how the views in
level 1 (A, B, C, and D) are computed from the views in level 2 in the way
that was indicated by the bipartite graph matching in Fig. 7.7.

CBAD

CBA

CB

C

All

BAD ACD DBC

BA AC DB AD CD

B A D

Fig. 7.8 Evaluation plan for computing the cube lattice in Fig. 7.6

7.4.2 Cube Size Estimation

We have already said that algorithms like PipeSort, and most algorithms
computing summary tables, require knowing the size of each aggregate.
However, in general this is not known in advance. Thus, we need to accurately
predict the sizes of the different aggregates. There are three classic methods
for this, although a wide array of statistical techniques could be used. The
first of these methods is purely analytical, the second is based on sampling,
and the last one on probabilistic counting.

The analytical algorithm is based on a result by Feller from 1957, stating
that choosing r elements (which we can assume are the tuples in a relation)
randomly from a set of n elements (which are all the different values a set



7.4 Computation of a Data Cube 251

of attributes can take), the expected number of distinct elements obtained is
n−n∗ (1− 1

n )
r. This assumes that data are uniformly distributed. If it turns

out not to be the case and data present some skew, we will be overestimating
the size of the data cube. For instance, let us suppose a relation R(ProductKey,
CustomerKey, TimeKey). If we want to estimate the size of the aggregation
over ProductKey and CustomerKey, we should know the number of different
values of each attribute. Then, n = |ProductKey|∗ |CustomerKey|, and r is the
number of tuples in R. The main advantage of this method is its simplicity
and performance. The obvious drawback of the algorithm is that it does not
consult the database, and the results can be used only when we know that
data are uniformly distributed.

The basic idea of the sampling-based algorithm is to take a random
subset of the database and compute the cube over this subset. Let D be the
database, S the sample, and Cube(S) the size of the cube computed from S.

The size of the cube will be estimated as Cube(S)∗ |D|
|S| . This method is simple

and fast, and it has been reported that it provides satisfactory results over
real-world data sets.

The probabilistic counting algorithm is based on the following obser-
vation: suppose we want to compute the number of tuples of the aggregation
of sales by product category and shipper. We would first aggregate along the
dimension Product, to generate product categories, and count the number
of distinct shippers generated by this operation. For example, for the set of
product-shipper pairs {(p1, s1), (p2, s1), (p3, s2), (p4, s4), (p5, s4)}, if p1 and
p2 correspond to category c1 and the rest to category c2, the aggregation
will have three tuples: {(c1, s1), (c2, s2), (c2, s4)}. In other words, c1 yields
only one value of shipper, and c2 yields two distinct values of shipper. Thus,
estimating the number of distinct tuples in a group (in this case, shippers by
category), we can estimate the number of tuples in that group. This idea is
used to estimate the size of a data cube by means of counting the number
of distinct elements in a multiset as proposed in a well-known algorithm
by Flajolet and Martin, performing this for all possible combinations of the
hierarchies in the cube. The algorithm estimates the sizes of the aggregations
in a cube at the cost of scanning the whole database once. However, this is
cheaper than actually computing the cube, and it is proved that the error
has a bound. Details of this algorithm fall beyond the scope of this book.

7.4.3 Partial Computation of a Data Cube

Generally speaking, three alternatives exist to implement a data warehouse:
materialize the whole data cube (as studied in the previous section),
materialize a selected portion of the cube, and not materializing any
aggregation at all. Materializing the whole cube has not only the drawback of
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the storage space required but also the cost of refreshing the summary tables.
On the other hand, it implies that any possible aggregate query will match a
summary table; thus, the cost of answering the query would just be a table
scan which, in addition, will often be of a small size. The “no materialization”
approach is likely to be inefficient in most real-world situations. It follows that
a good trade-off between these options can be to materialize only a portion of
the views in the data cube. The main problem in this case is to decide which
views are going to be materialized. Notice that once we decide which are the
views to materialize, we can apply the techniques for cube computation and
maintenance already studied in this chapter. Actually, the problem could be
stated in many ways:

• How many views must we materialize to get reasonable performance?
• Given a certain amount of storage space, which views should we materialize

in order to minimize the average query cost?
• If we can assume an X% performance degradation with respect to a fully

materialized data cube, how much space do we save?

We next explain a classic greedy algorithm that finds, given a cube lattice,
the best set of views to materialize under a certain criterion. Although the
set of views returned by the algorithm may not always be the optimal one,
we have chosen this algorithm as representative of a class of algorithms that
aim at solving the same problem.

The algorithm makes use of a lattice that takes into account two kinds
of dependencies between nodes. The first kind of dependency accounts for
the case in which the attributes of a view are included in those of another
view. For example, in the lattice representing the possible aggregations of the
fact table Sales(ProductKey,CustomerKey,TimeKey), there is a dependency
between the node (ProductKey,CustomerKey) and the node (ProductKey),
stating that the latter can be computed from the former since {ProductKey} ⊆
{ProductKey,CustomerKey} holds. The second kind of dependency accounts
for hierarchies. For example, given a hierarchy Month→ Year, if we have an
aggregation over Month, we can use it to compute the aggregation over Year
without going down to the fact table. Thus, the dependency lattice represents
a relation vi � vj between the views such that a view vi can be answered
using vj . For simplicity, and without loss of generalization, in the examples
of this section, we only consider the case in which the attributes of a view
are included in those of another view.

The view selection algorithm is based on calculating the costs of computing
the views in the lattice. A linear cost model with the following characteristics
is assumed:

• The cost of answering a view v from a materialized view vm is the number
of rows in vm.

• All queries are identical to some view in the dependency lattice.
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The algorithm also requires knowing the expected number of rows for each
view in the lattice. Finally, it is assumed that the lowest node in the lattice
(typically, the base fact table) is always materialized.

The goal of the algorithm is to minimize the time taken to evaluate a
view, constrained to materialize a fixed number of views regardless of the
space available, a problem known to be NP-complete. The greedy algorithm
we present below uses a heuristic that selects a sequence of views such that
each choice in this sequence is the best, given what was selected before.

Let us call C(v) the cost of view v, k the number of views to materialize,
and S a set of materialized views. The benefit of materializing a view v not
in S, relative to the materialized views already in S, is denoted B(v, S), and
it is computed as follows:

View Materialization Benefit Algorithm
INPUT: A lattice L, each view node labeled with its expected number of rows

A node v, not yet selected to materialize
A set S containing the nodes already selected to materialize

OUTPUT: The benefit of materializing v given S
BEGIN

For each view w � v, w 	∈ S, Bw is computed by
Let u be the view of least cost in S such that w � u
If C(v) < C(u), Bw = C(u) − C(v), otherwise Bw = 0

B(v, S) =
∑

w�v Bw

END

The algorithm above works as follows. Given a view w (not yet material-
ized), let us denote u the (materialized) view of minimum cost from which w
can be computed. Given a candidate view v selected for materialization, for
each view w that depends on v, the benefit of materializing w (denoted Bw)
is computed as the difference between the costs of v and u. If computing w
from v is more expensive than doing it from u (C(v) > C(u)), materializing
the candidate view does not benefit the computation of w (Bw = 0). The
algorithm iterates over all views w, and finally, the benefit of materializing v
is the sum of all individual benefits (

∑
w�v Bw).

The view selection algorithm computes, in each iteration, the view v whose
materialization gives the maximum benefit. The scheme of the algorithm is
given next:

View Selection Algorithm
INPUT: A lattice L, each view node v labeled with its expected number of rows

The number of views to materialize, k
OUTPUT: The set of views to materialize
BEGIN

S = {The bottom view in L}
FOR i = 1 TO k DO

Select a view v not in S such that B(v, S) is maximized
S = S ∪ {v}
END DO

S is the selection of views to materialize
END
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Fig. 7.9 Dependency lattice. Initially, the only view materialized is ABCD

The set S contains the views already materialized. In each one of the k itera-
tions, the algorithm computes the benefit produced by the materialization of
each of the views not yet in S. The one with the maximum benefit is added
to S, and a new iteration begins.

Let us apply the algorithm to the lattice in Fig. 7.9. In addition to the
node label, beside each node we indicate the cost of the view that the node
represents. Assume that we can materialize three views and that the bottom
view is already materialized.

Let us show how to select the first view to materialize. We need to compute
the benefit of materializing each view, knowing that S = {ABC}. We start
with node AB, which is a good candidate, since it offers a cost reduction of
1,600 units for each view that depends on it. For example, node A depends
on AB. Currently, computing A has cost 2,000 since this is performed from
ABC. If we materialize AB, the cost of computing A will drop to 400.

The benefit of materializing AB given S is given by

B(AB, S) =
∑

w�ABBw.

Thus, for each view w covered by AB, we compute C(ABC)−C(AB), because
ABC is the only materialized view when the algorithm begins. That is,
C(ABC) − C(AB) is the benefit of materializing AB for each view covered
by AB. For example, to compute B without materializing AB, we would need
to scan ABC at cost 2,000. With AB being materialized, this reduces to 400.
The same occurs with all the views that have a path to All that passes through
AB, that is, A, B, All, and AB itself. For C, AC, and BC, the materialization
of AB is irrelevant. Then,

B(AB, S) = 1,600 + 1,600 + 1,600 + 1,600 = 6,400.
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In an analogous way,

B(BC, S) =
∑

w�BCBw = 1,300× 4 = 5,200,

which is the benefit of materializing BC for the computation of B, C, All, and
BC itself. If we continue in this fashion, we will find that AB is the view to
materialize because it yields the maximum benefit. Thus, when we start the
second iteration, we have S = {ABC,AB}.

We now explain the second iteration. The benefit of materializing BC is
B(BC, S) =

∑
w�BC Bw = 1,300 + 1,300 = 2,600, corresponding to C and

BC itself since materializing BC has no effect on the nodes that reach All
through AB because they can be computed from AB at a cost of 400. For
example, B can be computed from AB at cost 400; therefore, materializing
BC yields no benefit for the computation of B. On the other hand, the benefit
of materializing B is B(B, S) =

∑
w�B Bw = 340×2 since both B and All can

be computed from AB at a costBw = 400−60 each. Also note that the benefit
of materializing C is B(C, S) =

∑
w�CBw = 1,960 + 400− 40 = 2,320 since

the benefit for computing All is just 400 − 40 because All can be computed
from AB at a cost of 400. We will eventually choose BC in the second iteration
with a benefit of 2,600.

Finally, the three views to materialize will be AB, BC, and AC, with a total
benefit of 10,100. The following table shows the complete computation. Each
cell in the table shows the benefit of selecting a given view in an iteration.

View First Iteration Second Iteration Third Iteration
AB 1,600 × 4 = 6,400
AC 1,100 × 4 = 4,400 1,100 × 2 = 2,200 1,100 × 1 = 1,100
BC 1,300 × 4 = 5,200 1,300 x 2 = 2,600
A 1,980 × 2 = 3,960 380 × 2 = 760 380 × 2 = 760
B 1,940 × 2 = 3,880 340 × 2 = 680 340 × 2 = 680
C 1,960 × 2 = 3,920 1,960 + (400 - 40) = 2,320 660 + 360 = 1,020
All 1,999 × 1 = 1,999 399 × 1 = 399 399 × 1 = 399

It can be proved that the benefit of this greedy algorithm is at least 63%
of the benefit of the optimal algorithm. On the other hand, even this is a
classic algorithm, pedagogically interesting for presenting the problem, a clear
drawback is that it does not consider the frequency of the queries over each
view. Thus, in our example, even though the sum of the benefit is maximum,
nothing is said about the frequency of the queries asking for A or B. This
drawback has been addressed in several research papers.



256 7 Physical Data Warehouse Design

7.5 Indexes for Data Warehouses

A major concern in database management systems (DBMSs) is to provide
fast access to data. Given a query, a relational DBMS attempts to choose the
best possible access path to the data. A popular way to speed data access is
known as indexing. An index provides a quick way to locate data of interest.
Almost all the queries asking for data that satisfy a certain condition are
answered with the help of some index.

As an example, consider the following SQL query:

SELECT *
FROM Employee
WHERE EmployeeKey = 1234

Without an index on attribute EmployeeKey, we should perform a complete
scan of table Employee (unless it is ordered), whereas with the help of an
index over such attribute, a single disk block access will do the job since this
attribute is a key for the relation.

Although indexing provides advantages for fast data access, it has a
drawback: almost every update on an indexed attribute also requires an index
update. This suggests that designers and database administrators should
be careful on defining indexes because their proliferation can lead to bad
updating performance.

The most popular indexing technique in relational databases is the B+-
tree. All major vendors provide support for some variation of B+-tree indexes.
A B+-tree index is a multilevel structure containing a root node and pointers
to the next lower level in a tree. The lowest level is formed by the leaves of
the tree, which in general contain a record identifier for the corresponding
data. Often, the size of each node equals the size of a block, and each node
holds a large number of keys, so the resulting tree has a low number of levels
and the retrieval of a record can be very fast. This works well if the attribute
being indexed is a key of the file or if the number of duplicate values is low.

We have seen that queries submitted to an OLAP system are of a very
different nature than those of an OLTP system. Therefore, new indexing
strategies are needed for OLAP systems. Some indexing requirements for a
data warehouse system are as follows:

• Symmetric partial match queries: Most OLAP queries involve partial
ranges. An example is the query “Total sales from January 2006 to
December 2010.” As queries can ask for ranges over any dimension, all
the dimensions of the data cube should be symmetrically indexed so that
they can be searched simultaneously.

• Indexing at multiple levels of aggregation: Since summary tables can be
large or queries may ask for particular values of aggregate data, summary
tables must be indexed in the same way as base nonaggregated tables.
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• Efficient batch update: As already said, updates are not so critical in OLAP
systems, which allows more columns to be indexed. However, the refreshing
time of a data warehouse must be taken into account when designing the
indexing schema. Indeed, the time needed for reconstructing the indexes
after the refreshing extends the downtime of the warehouse.

• Sparse data: Typically, only 20% of the cells in a data cube are nonempty.
The indexing schema must thus be able to deal efficiently with sparse and
nonsparse data.

To cope with these requirements, two kinds of indexes are commonly used
in data warehouse systems: bitmap indexes and join indexes. We study these
indexes next.

7.5.1 Bitmap Indexes

Consider the table Product in Fig. 7.10a. For clarity, we assume a simplified
example with only six products. We show next how to build a bitmap index
on attributes QuantityPerUnit and UnitPrice. There are, respectively, four and
five possible values for these attributes in table Product. We create a bit
vector of length 6 (the number of rows in Product) for each possible attribute
value, as shown in Fig. 7.10b,c. In a position i of vector j, there is a ‘1’ if the
product in row i has the value in the label of column j, and a ‘0’ otherwise.
For example, in the first row of the table in Fig. 7.10b, there is a ‘1’ in the
vector with label 25, indicating that the corresponding product (p1) has a
value 25 in attribute QuantityPerUnit. Note that we have included the product
key in the first column of the bitmap index to facilitate the reading, although
this column is not part of the index.

Now, assume the query “Products with unit price equal to 75.” A query
processor will just need to know that there is a bitmap index over UnitPrice in
Product and look for the bit vector with a value of 75. The vector positions
where a ‘1’ is found indicate the positions of the records that satisfy the
query, in this case, the third row in the table.

For queries involving a search range, the process is a little bit more
involved. Consider the query “Products having between 45 and 55 pieces
per unit, and with a unit price between 100 and 200.” To compute this
query, we first look for the index over QuantityPerUnit and the bit vectors
with labels between 45 and 55. There are two such vectors, with labels 45
and 50. The products having between 45 and 55 pieces per unit are the ones
corresponding to an OR operation between these vectors. Then, we look for
the index over UnitPrice and the bit vectors with labels between 100 and 200.
There are three such vectors, with labels 100, 110, and 120. The products
having unit price between 100 and 200 are, again, the ones corresponding to
an OR operation between these vectors. We obtain the two vectors labeled
OR1 and OR2 in Fig. 7.11a,b, respectively. Finally, an AND between these
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ProductKey ProductName QuantityPerUnit UnitPrice Discontinued CategoryKey
p1 prod1 25 60 No c1
p2 prod2 45 60 Yes c1
p3 prod3 50 75 No c2
p4 prod4 50 100 Yes c2
p5 prod5 50 120 No c3
p6 prod6 70 110 Yes c4

25 45 50 70
p1 1 0 0 0
p2 0 1 0 0
p3 0 0 1 0
p4 0 0 1 0
p5 0 0 1 0
p6 0 0 0 1

60 75 100 110 120
p1 1 0 0 0 0
p2 1 0 0 0 0
p3 0 1 0 0 0
p4 0 0 1 0 0
p5 0 0 0 0 1
p6 0 0 0 1 0

a

b c

Fig. 7.10 An example of bitmap indexes for a Product dimension table. (a) Product
dimension table. (b) Bitmap index for attribute QuantityPerUnit. (c) Bitmap index
for attribute UnitPrice

45 50 OR1
p1 0 0 0
p2 1 0 1
p3 0 1 1
p4 0 1 1
p5 0 1 1
p6 0 0 0

100 110 120 OR2
p1 0 0 0 0
p2 0 0 0 0
p3 0 0 0 0
p4 1 0 0 1
p5 0 0 1 1
p6 0 1 0 1

OR1 OR2 AND
p1 0 0 0
p2 1 0 0
p3 1 0 0
p4 1 1 1
p5 1 1 1
p6 0 1 0

a b c

Fig. 7.11 Finding the products having between 45 and 55 pieces per unit and with
a unit price between 100 and 200. (a) OR for QuantityPerUnit. (b) OR for UnitPrice.
(c) AND operation

two vectors, shown in Fig. 7.11c, gives the rows satisfying both conditions.
The result is that products p4 and p5 satisfy the query.

The operation just described is the main reason of the high performance
achieved by bitmapped indexing in the querying process. When performing
AND, OR, and NOT operations, the system will just perform a bit comparison,
and the resulting bit vector is obtained at a very low CPU cost.

The above example suggests that the best opportunities for these indexes
are found where the cardinality of the attributes being indexed is low.
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Otherwise, we will need to deal with large indexes composed of a large
number of sparse vectors, and the index can become space inefficient.
Continuing with our example, assume that the Product table contains
100,000 rows. A bitmapped index on the attribute UnitPrice will occupy
100,000 × 6/8 bytes = 0.075MB. A traditional B-tree index would occupy
approximately 100,000 × 4 = 0.4MB (assume 4 bytes are required to store
a record identifier). It follows that the space required by a bitmapped index
is proportional to the number of entries in the index and to the number of
rows, while the space required by traditional indexes depends strongly on the
number of records to be indexed. OLAP systems typically index attributes
with low cardinality. Therefore, one of the reasons for using bitmap indexes
is that they occupy less space than B+-tree indexes, as shown above.

There are two main reasons that make bitmap indexes not adequate in
OLTP environments. On the one hand, these systems are subject to frequent
updates, which are not efficiently handled by bitmap indexes. On the other
hand, in database systems locking occurs at page level and not at the record
level. Thus, concurrency can be heavily affected if bitmap indexes are used
for operational systems, given that a locked page would lock a large number
on index entries.

7.5.2 Bitmap Compression

As we have seen, bitmap indexes are typically sparse: the bit vectors have
a few ‘1’s among many ‘0’s. This characteristic makes them appropriate
for compression. We have also seen that even without compression, for
low cardinality attributes, bitmap outperforms B+-tree in terms of space.
In addition, bitmap compression allows indexes to support high-cardinality
attributes. The downside of this strategy is the overhead of decompression
during query evaluation. Given the many textbooks on data compression
and the high number of compression strategies, we next just give the
idea of a simple and popular strategy, called run-length encoding (RLE).
Many sophisticated techniques are based on RLE, as we comment on the
bibliographic notes section of this chapter.

Run-length encoding is very popular for compressing black and white
and grayscale images since it takes advantage of the fact that the bit value
of an image is likely to be the same as the one of its neighboring bits.
There are many variants of this technique, most of them based on how they
manage decoding ambiguity. The basic idea is the following: if a bit of value
v occurs n consecutive times, replace these occurrences with the number n.
This sequence of bits is called a run of length n.

In the case of bitmap indexes, since the bit vectors have a few ‘1’s
among many ‘0’s, if a bit of value ‘0’ occurs n consecutive times, we
replace these occurrences with the number n. The ‘1’s are written as
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they come in the vector. Let us analyze the following sequence of bits:
0000000111000000000011.We have two runs of lengths 7 and 10, respectively,
three ‘1’s in between, and two ‘1’s at the end. This vector can be trivially
represented as the sequence of integers 7,1,1,1,10,1,1. However, this encoding
can be ambiguous, since we may not be able to distinguish if a ‘1’ is an actual
bit or the length of a run. Let us see how we can handle this problem. Let us
call j the number of bits needed to represent n, the length of a run. We can
represent the run as a sequence of j−1 ‘1’ bits, followed by a ‘0’, followed by
n in binary format. In our example, the first run, 0000000, will be encoded as
110111, where the first two ‘1’s correspond to the j−1 part, ‘0’ indicates the
component of the run, and the last three ‘1’s are the number 7 (the length
of the run) in binary format.

Finally, the bitmap vector above is encoded as 1100111111111010101,
where the encoding is indicated in boldface and the actual bits of the vector
are indicated in normal font. Note that since we know the length of the array,
we could get rid of the trailing ‘1’s to save even more space.

7.5.3 Join Indexes

It is a well-known fact that join is one of the most expensive database
operations. Join indexes are particularly efficient for join processing in
decision-support queries since they take advantage of the star schema design,
where, as we have seen, the fact table is related to the dimension tables by
foreign keys, and joins are typically performed on these foreign keys.

The main idea of join indexes consists in precomputing the join as shown
in Fig. 7.12. Consider the dimension table Product and the fact table Sales
from the Northwind data warehouse. We can expect that many queries
require a join between both tables using the foreign key. Figure 7.12a depicts
table Product, with an additional attribute RowIDProd, and Fig. 7.12b shows
table Sales extended with an additional attribute RowIDSales. Figure 7.12c
shows the corresponding join index, basically a table containing pointers to
the matching rows. This structure can be used to efficiently answer queries
requiring a join between tables Product and Sales.

A particular case of join index is the bitmap join index. Suppose now that a
usual query asks for total sales of discontinued products. In this case, a bitmap
join index can be created on table Sales over the attribute Discontinued, as
shown in Fig. 7.12d. As can be seen, the sales pertaining to discontinued
products (products p2 and p4) have a ‘1’ in the bit vector labeled ‘Yes’.
At first sight, this may appear to be strange because attribute Discontinued
does not belong to Sales. Actually what happens is that the index points to
the tuples in Sales that store sales of discontinued products. This is done by
precomputing the join between both tables through the attribute ProductKey
and then creating a bitmap index on Sales for each possible value of the
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RowID
Product

Product
Key

Product
Name . . . Discontinued . . .

1 p1 prod1 . . . No . . .

2 p2 prod2 . . . Yes . . .

3 p3 prod3 . . . No . . .

4 p4 prod4 . . . Yes . . .

5 p5 prod5 . . . No . . .

6 p6 prod6 . . . Yes . . .

RowID
Sales

Product
Key

Customer
Key

Time
Key

Sales
Amount

1 p1 c1 t1 100
2 p1 c2 t1 100
3 p2 c2 t2 100
4 p2 c2 t3 100
5 p3 c3 t3 100
6 p4 c3 t4 100
7 p5 c4 t5 100

RowID
Sales

RowID
Product

1 1
2 1
3 2
4 2
5 3
6 4
7 5

Yes No

0 1
0 1
1 0
1 0
0 1
1 0
0 1

a

b c d

Fig. 7.12 An example of a join and a bitmap join indexes. (a) Product dimension
table. (b) Sales fact table. (c) Join index. (d) Bitmap join index on attribute
Discontinued

attribute Discontinued (‘Yes’ or ‘No’). A query like the one above will be
answered straightforwardly since we have precomputed the join between the
two tables and the bitmap over the attribute Discontinued.

In the next section, we will show how bitmap and join indexes are used in
query evaluation.

7.6 Evaluation of Star Queries

Queries over star schemas are called star queries since they make use of
the star schema structure, joining the fact table with the dimension tables.
For example, a typical star query over our simplified Northwind example in
Sect. 7.3 would be “Total sales of discontinued products, by customer name
and product name.” This query reads in SQL:

SELECT C.CustomerName, P.ProductName, SUM(S.SalesAmount)
FROM Sales S, Customer C, Product P
WHERE S.CustomerKey = C.CustomerKey AND

S.ProductKey = P.ProductKey AND P.Discontinued = 'Yes'
GROUP BY C.CustomerName, P.ProductName
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Product
Key

Product
Name . . . Discontinued . . .

p1 prod1 . . . No . . .

p2 prod2 . . . Yes . . .

p3 prod3 . . . No . . .

p4 prod4 . . . Yes . . .

p5 prod5 . . . No . . .

p6 prod6 . . . Yes . . .

Yes No

0 1
1 0
0 1
1 0
0 1
1 0

Customer
Key

Customer
Name Address Postal

Code . . .

c1 cust1 35 Main St. 7373 . . .

c2 cust2 Av. Roosevelt 50 1050 . . .

c3 cust3 Av. Louise 233 1080 . . .

c4 cust4 Rue Gabrielle 1180 . . .

Product
Key

Customer
Key

Time
Key

Sales
Amount

p1 c1 t1 100
p1 c2 t1 100
p2 c2 t2 100
p2 c2 t3 100
p3 c3 t3 100
p4 c3 t4 100
p5 c4 t5 100

c1 c2 c3 c4

1 0 0 0
0 1 0 0
0 1 0 0
0 1 0 0
0 0 1 0
0 0 1 0
0 0 0 1

p1 p2 p3 p4 p5 p6

1 0 0 0 0 0
1 0 0 0 0 0
0 1 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0

Yes No

0 1
0 1
1 0
1 0
0 1
1 0
0 1

a b

c

d e f g

Fig. 7.13 An example of evaluation of star queries with bitmap indexes. (a) Product
table. (b) Bitmap for Discontinued. (c) Customer table. (d) Sales fact table. (e) Bitmap
for CustomerKey. (f) Bitmap for ProductKey. (g) Bitmap join index for Discontinued

We will study now how this query is evaluated by an engine using the indexing
strategies studied above.

An efficient evaluation of our example query would require the definition of
a B+-tree over the dimension keys CustomerKey and ProductKey and bitmap
indexes on Discontinued in the Product dimension table and on the foreign
key columns in the fact table Sales. Figure 7.13a,c,d shows the Product and
Customer dimension tables and the Sales fact table, while the bitmap indexes
are depicted in Fig. 7.13b,e,f.

Let us describe how this query is evaluated by an OLAP engine. The
first step consists in obtaining the record numbers of the records that satisfy
the condition over the dimension, that is, Discontinued = 'Yes'. As shown in
the bitmap index (Fig. 7.13b), such records are the ones with ProductKey
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values p2, p4, and p6. We then access the bitmap vectors with these labels
in Fig. 7.13f, thus performing a join between Product (Fig. 7.13a) and Sales.
Only the vectors labeled p2 and p4 match the search since there is no fact
record for product p6. The third, fourth, and sixth rows in the fact table are
the answer since they are the only ones with a ‘1’ in the corresponding vectors
in Fig. 7.13f. We then obtain the key values for the CustomerKey (c2 and c3)
using the bitmap index in Fig. 7.13e. With these values we search in the B+-
tree index over the keys in tables Product and Customer to find the names of
the products and the customer satisfying the query condition. Note that this
performs the join between the dimensions and the fact table. As we can see
in Figs. 7.10a and 7.13c, the records correspond to the names cust2, cust3,
prod2, and prod4, respectively. Finally, the query answer is (cust2, prod2, 200)
and (cust3, prod4, 100).

Note that the last join with Customer would not be needed if the query
would have been of the following form:

SELECT S.CustomerKey, P.ProductKey, SUM(SalesAmount)
FROM Sales S, Product P
WHERE S.ProductKey = P.ProductKey AND P.Discontinued = 'Yes'
GROUP BY S.CustomerKey, P.ProductKey

The query above only mentions attributes in the fact table Sales. Thus, the
only join that needs to be performed is the one between Product and Sales.

We illustrate now the evaluation of star queries using bitmap join indexes.
We have seen that the main idea is to create a bitmap index over a fact
table using an attribute belonging to a dimension table, precomputing the
join between both tables and building a bitmap index over the latter.
Figure 7.13g shows the bitmap join index between Sales and Product
over the attribute Discontinued. Finding the facts corresponding to sales
of discontinued products, as required by the query under study, is now
straightforward: we just need to find the vector labeled ‘Yes’, and look for the
bits set to ‘1’. During query evaluation, this avoids the first step described in
the previous section, when evaluating the query with bitmap indexes. This
is done at the expense of the cost of (off-line) precomputation.

Note that this strategy can reduce dramatically the evaluation cost if in
the SELECT clause there are no dimension attributes, and thus, we do not
need to join back with the dimensions using the B+-tree as explained above.
Thus, the answer for the alternative query above would just require a simple
scan of the Sales table, in the worst case.

7.7 Data Warehouse Partitioning

In a database, partitioning or fragmentation divides a table into smaller
data sets (each one called a partition) to better support the management
and processing of very large volumes of data. Partitioning can be applied
to tables as well as to indexes. Further, a partitioned index can be
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defined over an unpartitioned table, and vice versa, a partitioned table
may have unpartitioned indexes defined over it. Database vendors provide
several different partitioning methods, each of them having particular design
considerations.

There are two ways of partitioning a table: vertically and horizontally.
Vertical partitioning splits the attributes of a table into groups that can
be independently stored. For example, a table can be partitioned such that
the most often used attributes are stored in one partition, while other less
often used attributes are kept in another partition. In this way, more records
can be brought into main memory, reducing their processing time. On the
other hand, horizontal partitioning divides a table into smaller tables that
have the same structure than the full table but fewer records. For example,
if some queries require the most recent data while others access older data,
a fact table can be horizontally partitioned according to some time frame,
for example, years. An obvious advantage of this kind of partitioning is that
refreshing the data warehouse is more efficient since only the last partition
must be accessed.

In addition to the above, partitioning database tables into smaller data sets
facilitates administrative tasks, increases query performance especially when
parallel processing is applied, and enables access to a smaller subset of the
data (if the user’s selection does not refer to all partitions). Also, partitioning
is recommended when the contents of a table need to be distributed across
different servers. In the case of indexes, partitioning is advised, for example,
in order to perform maintenance on parts of the data without invalidating
the entire index. Finally, we remark that from an application perspective, a
partitioned table is identical to a nonpartitioned table, thus partitioning is
transparent for writing SQL queries and DML statements.

We next analyze further some characteristics of partitioning.

7.7.1 Queries in Partitioned Databases

There are two classic techniques of partitioning related to query evaluation.
Partition pruning is the typical way of improving query performance using
partitioning, often producing performance enhancements of several orders of
magnitude. For example, a Sales fact table in a warehouse can be partitioned
by month. A query requesting orders for a single month only needs to access
the partition corresponding to such a month. If the Sales table contains 2
years of historical data, this query would access one partition instead of 24
ones, greatly reducing query response time.

The execution time of joins can also be enhanced by using partitioning.
This occurs when the two tables to be joined are partitioned on the join
attributes or, in the case of foreign key joins, when the reference table is
partitioned on its primary key. In these cases, a large join is broken into
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smaller joins that occur between each of the partitions, producing significant
performance gains, which can be even improved taking advantage of parallel
execution.

7.7.2 Managing Partitioned Databases

Partitioning also improves the job of database and data warehouse adminis-
trators, since tables and indexes are partitioned into smaller, more manage-
able pieces of data. In this way, maintenance operations can be performed
on these particular portions of tables. For example, a database administrator
may back up just a single partition of a table instead of the whole one. In addi-
tion, partitioned database tables and indexes induce high data availability.
For example, if some partitions of a table become unavailable, it is possible
that most of the other partitions of the table remain on-line and available, in
particular if partitions are allocated to various different devices. In this way,
applications can continue to execute queries and transactions that do not
need to access the unavailable partitions. Even during normal operation, since
each partition can be stored in separate tablespaces, backup and recovery
operations can be performed over individual partitions, independent from
each other. Thus, the active parts of the database can be made available
sooner than in the case of an unpartitioned table.

7.7.3 Partitioning Strategies

There are three most common partitioning strategies in database systems:
range partitioning, hash partitioning, and list partitioning.

The most usual type of partitioning is range partitioning, which maps
records to partitions based on ranges of values of the partitioning key. The
temporal dimension is a natural candidate for range partitioning, although
other attributes can be used. For example, if a table contains a date column
defined as the partitioning key, the January 2012 partition will contain rows
with key values from January 1, 2012, to January 31, 2012.

Hash partitioning maps records to partitions based on a hashing
algorithm applied to the partitioning key. The hashing algorithm distributes
rows among partitions in a uniform fashion, yielding, ideally, partitions of the
same size. This is typically used when partitions are distributed in several
devices and, in general, when data are not partitioned based on time since it
is more likely to yield even record distribution across partitions.

Finally, list partitioning enables to explicitly control how rows are
mapped to partitions specifying a list of values for the partitioning key. In
this way, data can be organized in an ad hoc fashion.
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Some vendors (like Oracle) support the notion of composite partition-
ing, which combines the basic data distribution methods above. In this way,
a table can be range partitioned, and each partition can be further subdivided
using hash partitioning.

7.8 Physical Design in SQL Server and Analysis
Services

In this section, we discuss how the theoretical concepts studied in this
chapter are applied in Microsoft SQL Server. We start with the study of
how materialized views are supported in these tools. We then introduce
a novel kind of index provided by SQL Server called column-store index.
Then, we study partitioning, followed by a description of how the three
types of multidimensional data representation introduced in Chap. 5, namely,
ROLAP, MOLAP, and HOLAP, are implemented in Analysis Services.

7.8.1 Indexed Views

In SQL Server, materialized views are called indexed views. Basically, an
indexed view consists in the creation of a unique clustered index on a view,
thus precomputing and materializing such view. We have seen that this is a
mandatory optimization technique in data warehouse environments.

When we create an indexed view, it is essential to verify that the view
and the base tables satisfy the many conditions required by the tool. For
example, the definition of an indexed view must be deterministic, meaning
that all expressions in the SELECT, WHERE, and GROUP BY clauses are
deterministic. For instance, the DATEADD function is deterministic because
it always returns the same result for any given set of argument values
for its three parameters. On the contrary, GETDATE is not deterministic
because it is always invoked with the same argument, but the value it returns
changes each time it is executed. Also, indexed views may be created with
the SCHEMABINDING option. This indicates that the base tables cannot be
modified in a way that would affect the view definition. For example, the
following statement creates an indexed view computing the total sales by
employee over the Sales fact table in the Northwind data warehouse:

CREATE VIEW EmployeeSales WITH SCHEMABINDING AS (
SELECT EmployeeKey, SUM(UnitPrice * OrderQty * Discount)

AS TotalAmount, COUNT(*) AS SalesCount
FROM Sales
GROUP BY EmployeeKey )

CREATE UNIQUE CLUSTERED INDEX CI EmployeeSales ON
EmployeeSales (EmployeeKey)
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An indexed view can be used in two ways: when a query explicitly
references the indexed view and when the view is not referenced in a query
but the query optimizer determines that the view can be used to generate a
lower-cost query plan.

In the first case, when a query refers to a view, the definition of the view
is expanded until it refers only to base tables. This process is called view
expansion. If we do not want this to happen, we can use the NOEXPAND
hint, which forces the query optimizer to treat the view like an ordinary
table with a clustered index, preventing view expansion. The syntax is as
follows:

SELECT EmployeeKey, EmployeeName, . . .
FROM Employee, EmployeeSales WITH (NOEXPAND)
WHERE . . .

In the second case, when the view is not referenced in a query, the query
optimizer determines when an indexed view can be used in a given query
execution. Thus, existing applications can benefit from newly created indexed
views without changing those applications. Several conditions are checked to
determine if an indexed view can cover the entire query or a part of it, for
example, (a) the tables in the FROM clause of the query must be a superset
of the tables in the FROM clause of the indexed view; (b) the join conditions
in the query must be a superset of the join conditions in the view; and (c)
the aggregate columns in the query must be derivable from a subset of the
aggregate columns in the view.

7.8.2 Partition-Aligned Indexed Views

If a partitioned table is created in SQL Server and indexed views are built
on this table, SQL Server automatically partitions the indexed view by using
the same partition scheme as the table. An indexed view built in this way
is called a partition-aligned indexed view. The main feature of such a view
is that the database query processor automatically maintains it when a new
partition of the table is created, without the need of dropping and recreating
the view. This improves the manageability of indexed views.

We show next how we can create a partition-aligned indexed view on the
Sales fact table of the Northwind data warehouse. To facilitate maintenance
and for efficiency reasons, we decide to partition this fact table by year. This
is done as follows.

To create a partition scheme, we need first to define the partition function.
We want to define a scheme that partitions the table by year, from 1996
through 1998. The partition function is called PartByYear and takes as input
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an attribute of integer type, which represents the values of the surrogate keys
for the Time dimension:

CREATE PARTITION FUNCTION [PartByYear] (INT)
AS RANGE LEFT FOR VALUES (184, 549, 730);

Here, 184, 549, and 730 are, respectively, the surrogate keys representing
the dates 31/12/1996, 31/12/1997, and 31/12/1998. These dates are the
boundaries of the partition intervals. RANGE LEFT means that the records
with values less or equal than 184 will belong to the first partition, the ones
greater than 184 and less or equal than 549 to the second, and the records
with values greater than 730 to the third partition.

Once the partition function has been defined, the partition scheme is
created as follows:

CREATE PARTITION SCHEME [SalesPartScheme]
AS PARTITION [PartByYear] ALL to ( [PRIMARY] );

Here, PRIMARY means that the partitions will be stored in the primary
filegroup, that is, the group that contains the startup database information.
Filegroup names can be used instead (can be more than one). ALL indicates
that all partitions will be stored in the primary filegroup.

The Sales fact table is created as a partitioned table as follows:

CREATETABLE Sales (CustomerKey INT, EmployeeKey INT,
OrderDateKey INT, . . . ) ON SalesPartScheme(OrderDateKey)

The statement ON SalesPartScheme(OrderDateKey) tells that the table will
be partitioned following the SalesPartScheme and the partition function will
have OrderDateKey as argument.

Now we create an indexed view over the Sales table, as explained in
Sect. 7.8.1. We first create the view:

CREATE VIEW SalesByDateProdEmp WITH SCHEMABINDING AS (
SELECT OrderDateKey, ProductKey, EmployeeKey, COUNT(*) AS Cnt,

SUM(SalesAmount) AS SalesAmount
FROM Sales
GROUP BY OrderDateKey, ProductKey, EmployeeKey )

Finally, we materialize the view:

CREATE UNIQUE CLUSTERED INDEX UCI SalesByDateProdEmp
ON SalesByDateProdEmp (OrderDateKey, ProductKey, EmployeeKey)
ON SalesPartScheme(OrderDateKey)

Since the clustered index was created using the same partition scheme, this
is a partition-aligned indexed view.
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7.8.3 Column-Store Indexes

SQL Server provides column-store indexes, which store data by column. In
a sense, column-store indexes work like a vertical partitioning commented
above and can dramatically enhance performance for certain kinds of queries.
The same concepts that were explained for bitmap indexes and their use in
star-join evaluation also apply to column-store indexes. We will provide a
detailed study of this kind of indexes in Chap. 13.

We now show how a column-store index is defined. For this, suppose there
is a materialized view Sales2012 that selects from the Sales fact table the
data pertaining to 2012. Suppose that many queries request the attributes
DueDateKey, EmployeeKey, and SalesAmount. In order to speed up access to
the Sales2012 view, we can define a column-store index over it as follows:

CREATE NONCLUSTERED COLUMNSTORE INDEX CSI Sales2012
ON Sales2012 (DueDateKey, EmployeeKey, SalesAmount)

Column-store indexes have important limitations. One of them is that a table
over which a column-store index is defined cannot be updated. Thus, we
cannot define the index over the original Sales fact table since it is subject to
updates and create instead the index over a view.

Bitmap indexes are not supported in SQL Server. Instead, SQL Server
provides a so-called bitmap filter. A bitmap filter is a bitmap created at
execution time by the query processor to filter values on tables. Bitmap
filtering can be introduced in the query plan after optimization, or it can be
introduced dynamically by the query optimizer during the generation of the
query plan. The latter is called optimized bitmap filter and can significantly
improve the performance of data warehouse queries that use star schemas
by removing nonqualifying rows from the fact table early in the query plan.
Note however that this is completely different from defining a bitmap index
like we explained above and which is supported by other database systems
like Oracle and Informix.

7.8.4 Partitions in Analysis Services

In Analysis Services, a partition is a container for a portion of the data of a
measure group. Defining a partition requires to specify:

• Basic information, like name of the partition, the storage mode, and the
processing mode.

• Slicing definition, which is an MDX expression specifying a tuple or a set.
• Aggregation design, which is a collection of aggregation definitions that

can be shared across multiple partitions.
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The data for a partition in a measure group must be exclusive of the data
in any other partition in the measure group; otherwise, these data would be
considered more than once. Every measure group has at least one partition,
created when the measure group is defined. This initial partition is based on a
single fact table in the data source view of the cube. When there are multiple
partitions for a measure group, each partition can reference a different table
in either the data source view or in the underlying relational data source for
the cube. Also, more than one partition in a measure group can reference the
same table.

Analogously to what we explained in the previous section for database
tables, partitions allow large data cubes to be managed efficiently, for
example, by distributing source and aggregate data of a cube across
multiple hard disks and multiple servers. This improves query performance,
load performance, and efficiency of cube maintenance. For example, if
in the Northwind data cube we partition data by year, only the last
partition will be processed when current information is added to the
cube. Partitions can later be merged. For example, at the end of a
year, the quarterly partitions can be merged into a single partition
for the year and a new partition created for the first quarter of the
new year. Thus, partitions can be configured, added, or dropped by
the database administrator. Each partition is stored in a separate set
of files. Aggregate data of each partition can be stored on either the
instance of Analysis Services where the partition is defined or on another
instance.

Finally, the storage mode of each partition can be configured independently
of other partitions in the measure group, for example, using any combination
of source data location, storage mode, and aggregation design. We study this
feature next.

ROLAP Storage

In the ROLAP storage mode, the aggregations of a partition are stored
in indexed views in the relational database specified as the data source of
the partition. The indexed views in the data source are accessed to answer
queries. In the ROLAP storage, the query response time and the processing
time are generally slower than with the MOLAP or HOLAP storage modes
(see below). However, ROLAP enables users to view data in real time and can
save storage space when working with large data sets that are infrequently
queried, such as purely historical data.

If a partition uses the ROLAP storage mode and its source data are
stored in SQL Server, Analysis Services tries to create indexed views to store
aggregations. When these views cannot be created, aggregation tables are not
created. Indexed views for aggregations can be created if several conditions
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hold in the ROLAP partition and the tables in it. The more relevant ones
are as follows:

• The partition cannot contain measures that use the MIN orMAX aggregate
functions.

• Each table in the schema of the ROLAP partition must be used only once.
• All table names in the partition schema must be qualified with the owner

name, for example, [dbo].[Customer].
• All tables in the partition schema must have the same owner.
• The source columns of the partition measures must not be nullable.

MOLAP Storage

In theMOLAP storage mode, both the aggregations and a copy of the source
data are stored in a multidimensional structure. Such structures are highly
optimized to maximize query performance. Since a copy of the source data
resides in the multidimensional structure, queries can be processed without
accessing the source data of the partition.

Note however that data in a MOLAP partition reflect the most recently
processed state of a partition. Thus, when source data are updated, objects
in the MOLAP storage must be reprocessed to include the changes and
make them available to users. Changes can be processed from scratch or,
if possible, incrementally, as explained in Sect. 7.2. This update can be
performed without taking the partition or cube off-line. However, if structural
changes to OLAP objects are performed, the cube must be taken off-line. In
these cases, it is recommended to update and process cubes on a staging
server.

HOLAP Storage

The HOLAP storage mode combines features of the previously explained
MOLAP and ROLAP modes. Like MOLAP, in HOLAP the aggregations of
the partition are stored in a multidimensional data structure. However, like
in ROLAP, HOLAP does not store a copy of the source data. Thus, if queries
only access summary data of a partition, HOLAP works like MOLAP very
efficiently. Queries that need to access unaggregated source data must retrieve
it from the relational database and therefore will not be as fast as if it were
stored in a MOLAP structure. However, this can be solved if the query can
use cached data, that is, data that are stored in main memory rather than
on disk.

In summary, partitions stored as HOLAP are smaller than the equivalent
MOLAP partitions since they do not contain source data. On the other hand,
they can answer faster than ROLAP partitions for queries involving summary
data. Thus, this mode tries to capture the best of both worlds.
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Defining Partitions in Analysis Services

We show next how MOLAP, ROLAP, and HOLAP partitions over measure
groups can be defined in Analysis Services.

Fig. 7.14 Initial partition for the Sales measure group

Fig. 7.15 Template query that defines a partition

Figure 7.14 shows a unique initial partition for the Salesmeasure group in a
data cube created from the Northwind cube. As we can see, this is a MOLAP
partition. Assume now that, for efficiency reasons, we want to partition this
measure group by year. Since in the Northwind data warehouse we have
data from 1996, 1997, and 1998, we will create one partition for each year.
We decided that the first and the last ones will be MOLAP partitions, and
the middle one, a ROLAP partition. To define the limits for the partitions,
the Analysis Services cube wizard creates an SQL query template, shown in
Fig. 7.15, which must be completed in the WHERE clause with the key range
corresponding to each partition. In order to obtain the first and last keys for
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each period, a query such as the following one must be addressed to the data
warehouse:

SELECT MIN(TimeKey), MAX(TimeKey)
FROM Time
WHERE Date >= '1997-01-01' AND Date <= '1997-12-31'

The values obtained from this query can then be entered in the wizard for
defining the partition for 1997.

Figure 7.16 shows the three final partitions of the measure group Sales.
Note that in that figure the second partition is highlighted. Figure 7.17 shows
the properties of such partition, in particular the ROLAP storage mode. This
dialog box also can be used to change the storage mode.

Fig. 7.16 Final partitions for the Sales measure group

Fig. 7.17 Storage mode for the Sales 1997 partition



274 7 Physical Data Warehouse Design

7.9 Query Performance in Analysis Services

We now briefly describe how query performance can be enhanced in Analysis
Services through several techniques.

The first step must be to optimize cube and measure group design. For
this, many of the issues studied in this book apply. For example, it is
suggested to use cascading attribute relationships, like Day → Month →
Quarter → Year, and define user hierarchies of related attributes within
each dimension. These are called natural hierarchies. The reason for this is
that attributes participating in natural hierarchies are materialized on disk
and are automatically considered to be aggregation candidates. Redundant
relationships between attributes must be removed to assist the query
execution engine in generating an appropriate query plan. Also, the cube
space must be kept as small as possible, only including measure groups
that are needed. Measures that are queried together must be allocated to
the same measure group since if a query retrieves measures from multiple
measure groups, it will require multiple storage engine operations. Large
sets of measures that are not queried together must be placed into separate
measure groups. Large parent-child hierarchies must be avoided, because in
these hierarchies aggregations are created only for the key attribute and
the top attribute. Thus, queries asking for cells at intermediate levels are
calculated at query time and can be slow for large parent-child dimensions.
Many-to-many dimension performance must be optimized, since it requires a
run-time join between the data measure group and the intermediate measure
group. Also, if possible, the size of the intermediate fact table underlying the
intermediate measure group must be reduced.

Aggregations are also used by Analysis Services to enhance query per-
formance. Thus, the most efficient aggregations for the query workload
must be selected to reduce the number of records that the storage engine
needs to scan on disk to evaluate a query. When designing aggregations,
we must evaluate the benefits that aggregations provide when querying,
against the time it takes to create and refresh such aggregations. Moreover,
unnecessary aggregations can worsen query performance. A typical example
is the case when a summary table matches an unusual query. This can make
the summary table to be moved into the cache to be accessed faster. Since
this table will be rarely used afterwards, it can deallocate a more useful table
from the cache (which has a limited size), with the obvious negative effect on
query. In summary, we must avoid designing a large number of aggregations
since they may reduce query performance.

The Analysis Services aggregation design algorithm does not automatically
consider every attribute for aggregation. Consequently, we must check the
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attributes that are considered for aggregation and determine if we need to
suggest additional aggregation candidates, for example, because we detected
that most user queries not resolved from cache are resolved by partition reads
rather than aggregation reads. Analysis Services uses the Aggregation Usage
property to determine which attributes it should consider for aggregation.
This property can take one of four values: full (every aggregation for the
cube must include this attribute), none (no aggregation uses the attribute),
unrestricted (the attribute must be evaluated), and default (a rule is applied
to determine if the attribute must be used). The administrator can use this
property to change its value for influencing its use for aggregation.

As we have already explained, partitions must be defined to enable
Analysis Services to access less data to answer a query when it cannot be
answered from the data cache or from aggregations. Data must be partitioned
matching common queries. Analogously to the case of measure groups, we
must avoid partitioning in a way that requires most queries to be resolved
from many partitions. It is recommended by the vendor that partitions
contain at most 20 million records and at least 2 million records. Also,
each measure group should contain fewer than 2,000 partitions. A separate
ROLAP partition must be selected for real-time data and this partition must
have its own measure group.

We can also optimize performance by writing efficient MDX queries and
expressions. For this, run-time checks in an MDX calculation must be avoided.
For example, using CASE and IF functions that must be repeatedly evaluated
during query resolution will result in a slow execution. In that case, it is
recommended to rewrite the queries using the SCOPE function. If possible,
Non Empty Behavior must be used to enable the query execution engine to
use the bulk evaluation mode. In addition, EXISTS rather than filtering on
member properties should be used since this enables bulk evaluation mode.
Too many subqueries must be avoided if possible. Also, if possible, a set
must be filtered before using it in a cross join to reduce the cube space before
performing such cross join.

The cache of the query engine must be used efficiently. First, the server
must have enough memory to store query results in memory for reuse in
subsequent queries. We must also define calculations in MDX scripts because
these have a global scope that enables the cache related to these queries to
be shared across sessions for the same set of security permissions. Finally,
the cache must be warmed by executing a set of predefined queries using any
appropriate tool.

Other techniques are similar to the ones used for tuning relational
databases, like tuning memory and processor usage. For details, we refer
the reader to the Analysis Services documentation.
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7.10 Query Performance in Mondrian

There are three main strategies for increasing performance when using the
Mondrian OLAP engine: tuning the underlying database, using materialized
views (called aggregate tables), and caching.

The data used by Mondrian are stored in a database. Tuning such database
is the first task to perform to enhance query performance. Since this task is
independent of the Mondrian engine and also given that Mondrian can work
with many kinds of databases, we do not address this issue here and focus on
topics that are specific to Mondrian, namely, materialized views and caching.

7.10.1 Aggregate Tables

In Mondrian, materialized views and summary tables studied in this chapter
are called aggregate tables. Physically, aggregate tables are created in the
database and populated during the ETL process. Mondrian can be configured
to use, if possible, aggregate tables when answering a query. Aggregate
tables can be enabled or disabled using a file called mondrian.properties.
The aggregated tables are disabled by default; they are enabled setting the
properties mondrian.rolap.aggregates.Use and mondrian.rolap.aggregates.Read
to true. Also, Mondrian provides a tool called Aggregation Designer to
assist in creating aggregate tables. This tool reads a schema and makes
recommendations for aggregate tables, generating SQL code to create and
populate the tables. We show below how to declare an aggregate table for
precomputing the average unit price and the total sales amount by year and
product category in the Northwind cube. The table will have the following
columns: Category, Year, RowCount, AvgUnitPrice, and TotalSalesAmount.

<Cube name =''Sales''>
<Table name = ''Sales''>

<AggName name=''SalesByMonthProduct''>
<AggFactCount column=''RowCount'' >
<AggMeasure name=''Measures.AvgUnitPrice'' column=''AvgUnitPrice''>
<AggMeasure name=''Measures.TotalSalesAmount''
column=''TotalSalesAmount''>
<AggLevel name=''Product.Category'' column=''Category''>
<AggLevel name=''OrderDate.Year'' column=''Year''>

</AggName>
</Table>

</Cube>

Note that this is a declaration of the aggregate table in the Mondrian
OLAP server. The actual table must be created in the underlying database
and populated, typically, during the ETL process.

We have studied in this book that a parent-child hierarchy can have an
arbitrary depth. The classic example is the employee-supervisor relationship
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found in the Northwind data warehouse. In parent-child hierarchies, we
normally want to aggregate measures of child members into parent members.
For example, when considering an employee Andrew Fuller who is head
of the Northwind company (see Fig. 6.2), we may want to report not
only his sales amount but his sales amount plus the sum of the sales
amount of the employees that directly and indirectly report to him (Nancy
Davolio, Janet Leverling, and so on). Mondrian provides a special structure
called a closure table, which basically contains the transitive closure of
the hierarchy. This table has schema (SupervisorKey,EmployeeKey,Distance),
where the third attribute contains the distance from the two employees in
the hierarchy. For the hierarchy in Fig. 6.2, the closure table will contain,
for example, the tuples (2, 2, 0), (2, 5, 1), and (2, 6, 2), which correspond
to (Andrew Fuller,Andrew Fuller, 0), (Andrew Fuller, Steven Buchanan, 1), and
(Andrew Fuller,Michael Suyama, 2). It follows from the above that a closure
table is similar to an aggregate table in the sense that it contains a redundant
copy of the data in the database. Note that while an aggregate table speeds
up aggregation, a closure table makes the computation of rollups along a
parent-child hierarchy more efficient.

When a query matches the definition of an aggregate table, Mondrian uses
such a table to answer the query instead of computing the aggregate from
scratch, basically applying the theoretical concepts studied in this chapter.
If more than one aggregate table matches a particular query, Mondrian must
choose between them. This is done as follows: If there is an aggregate table of
the same granularity as the query, Mondrian uses it. If there is no aggregate
table at the desired granularity, Mondrian picks an aggregate table of lower
granularity and rolls up from it. In general, Mondrian chooses the aggregate
table with the fewest rows (the heuristic we have called “smallest parent”).

7.10.2 Caching

Another feature provided by Mondrian to speed up query performance is
caching data in main memory, to avoid accessing the database to retrieve
schemas, dimension members, and facts. Mondrian provides three different
kinds of caches:

• The schema cache, which keeps schemas in memory to avoid reading them
each time a cube is loaded. This cache stores the schema in memory after
it has been read for the first time and keeps it in memory until the cache
is cleared. Each time the schema is updated, the cache must be cleared.

• The member cache, which stores dimension members in memory. The
member cache must also be synchronized with the underlying data. A
Service Provider Interface is used to flush the members from the cache.
The member cache is populated when members of a dimension are first
read, and then members are retrieved as needed. Like it is the case in
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relational database systems, if the member is in memory, it does not need
to be read from the database. Members are specific values in a dimension
(like Customer.Country.France), and they include the root and the children.
We have to give the complete path to the member since a member is not
simply a value, but a value and an associated dimension level, since a
member can have the same name for a given level, for different paths
within the hierarchy.

• The segment cache, which holds data from the fact table (usually the
largest table in a warehouse) and contains aggregated data, reducing
the number of calculations to perform. The segment is associated with
a measure, for example, Sales Amount, and also contains a set of
predicates separated by commas (e.g., [CityName = Paris], [CategoryName
= Beverages]) and a list of measure values associated with these predicates
(e.g., the list of sales amounts for beverages in Paris: [120, 259, . . . ]).
With these values in the cache, aggregations can be easily computed when
a query includes the predicates in the cache. The segment cache can be
internal, where the segments are stored in local memory, or external, where
the segments are stored in a data grid, which increases the amount of data
stored in memory by adding additional servers.

Mondrian automatically updates the caches as schemas and dimensions
are read and aggregates are calculated. As usual in caching techniques,
the first user to access the data is the one that populates the cache
rather than getting benefits of it. However, there are techniques that
populate the cache in advance, so it will be ready to benefit users from
the start. This is called precaching. Normally, in Mondrian, XML for
Analysis (XMLA) web service calls are used for this task (recall from
Chap. 6 that XMLA is a SOAP-based standard for making web service
calls).

When data sources change, the cache gets outdated with respect to the
actual data, and the cache must be flushed. When the schema cache is flushed,
its associated member and segment caches are also flushed. Most tools that
use Mondrian, like Pentaho, provide a way to manually flush the cache.
Pentaho provides the Enterprise Console or User Console for this. A more
efficient approach is to automate cache flushing by including this task as part
of the ETL process.

7.11 Summary

In this chapter, we studied the problem of physical data warehouse design. We
focused on three techniques: view materialization, indexing, and partitioning.
For the former, we studied the problem of incremental view maintenance, that
is, how and when a view can be updated without recomputing it from scratch.
In addition, we presented algorithms that compute efficiently the data cube
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when all possible views are materialized. Also, we showed that when full
materialization is not possible, we can estimate which is the best set to be
chosen for materialization given a set of constraints. We then studied two
typical indexing schemes used in data warehousing, namely, bitmap and join
indexes, and how they are used in query evaluation. Finally, we discussed
partitioning techniques and strategies, aimed at enhancing data warehouse
performance and management. The last three sections of the chapter were
devoted to study physical design and query performance in Analysis Services
and Mondrian, showing how the theoretical concepts studied in the first part
of the chapter are applied over real-world tools.

7.12 Bibliographic Notes

A general book about physical database design is [116], while physical design
for SQL Server is covered, for instance, in [35]. Most of the topics studied
in this chapter have been presented in classic data warehousing papers.
Incremental view maintenance has been studied in [73, 74]. The summary
table algorithm is due to Mumick et al. [141]. The PipeSort algorithm, as
well as other data cube computation techniques, is discussed in detail in [2].
The view selection algorithm was proposed in a classic paper by Harinarayan
et al. [78]. Bitmap indexes were first introduced in [149] and bitmap join
indexes in [150]. A study of the joint usage of indexing, partitioning, and view
materialization in data warehouses is reported in [12]. A book on indexing
structures for data warehouses is [98]. A study on index selection for data
warehouses can be found in [60], while [192] surveys bitmap indexes for
data warehouses. A popular bitmap compression technique, based on run-
length encoding, is WAH (Word Align Hybrid) [232]. The PLWAH (Position
List Word Align Hybrid) bitmap compression technique [192] was proposed
as a variation of the WAH scheme, and it is reported to be more efficient
than the former, particularly in terms of storage. The authors proposed this
indexing scheme to support music data warehouses, which we comment in
Chap. 15. Rizzi and Saltarelli [177] compare view materialization against
indexing for data warehouse design. A survey of view selection methods
is [128]. Finally, [10] discusses practical aspects of the Mondrian OLAP
engine.

7.13 Review Questions

7.1 What is the objective of physical data warehouse design? Specify
different techniques that are used to achieve such objective.

7.2 Discuss advantages and disadvantages of using materialized views.
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7.3 What is view maintenance? What is incremental view maintenance?
7.4 Discuss the kinds of algorithms for incremental view maintenance, that

is, using full and partial information.
7.5 Define self-maintainable aggregate functions. What is a self-

maintainable view?
7.6 Explain briefly the main idea of the summary-delta algorithm for data

cube maintenance.
7.7 How is data cube computation optimized? What are the kinds of

optimizations that algorithms are based on?
7.8 Explain the idea of the PipeSort algorithm.
7.9 How can we estimate the size of a data cube?

7.10 Explain the algorithm for selecting a set of views to materialize. Discuss
its limitations. How can they be overridden?

7.11 Compare B-tree+ indexes, hash indexes, bitmap indexes, and join
indexes with respect to their use in databases and data warehouses.

7.12 How do we use bitmap indexes for range queries?
7.13 Explain run length encoding.
7.14 Describe a typical indexing scheme in a star and snowflake schemas.
7.15 How are bitmap indexes used during query processing?
7.16 How do join indexes work in query processing? For which kinds of

queries are they efficient? For which kinds of queries are they not
efficient?

7.17 What is partitioning? Which kinds of partitioning schemes do you
know?

7.18 What are the main advantages and disadvantages of partitioning?
7.19 Discuss the characteristics of storage modes in Analysis Services.
7.20 How do indexed views compare with materialized views?

7.14 Exercises

7.1 In the Northwind database, consider the relations

Employee(EmplID, FirstName, LastName, Title, . . . )
Orders(OrderID, CustID, EmpID, OrderDate, . . . ).

Consider further a view

EmpOrders(EmpID, Name, OrderID, OrderDate)

computed from the full outer join of tables Employee and Orders, where
Name is obtained by concatenating FirstName and LastName.

Define the view EmpOrders in SQL. Show an example of instances
for the relations and the corresponding view. By means of examples,
show how the view EmpOrders must be modified upon insertions and
deletions in table Employee. Give the SQL command to compute the
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delta relation of the view from the delta relations of table Employee.
Write an algorithm to update the view from the delta relation.

7.2 Consider a relation Connected(CityFrom,CityTo,Distance), which indi-
cates pairs of cities that are directly connected and the distance between
them, and a view OneStop(CityFrom, CityTo), which computes the pairs
of cities (c1, c2) such that c2 can be reached from c1 passing through
exactly one intermediate stop.

Answer the same questions as those of the previous exercise.
7.3 Consider the following tables:

Store(StoreID, City, State, Manager)
Order(OrderID, StoreID, Date)
OrderLine(OrderID, LineNo, ProductID, Quantity, Price)
Product(ProductID, ProductName, Category, Supplier)
Part(PartID, PartName, ProductID, Quantity)

and the following views:

• ParisManagers(Manager) that contains managers of stores located in
Paris.

• OrderProducts(OrderID, ProductCount) that contains the number of
products for each order.

• OrderSuppliers(OrderID, SupplierCount) that contains the number of
suppliers for each order.

• OrderAmount(OrderID, StoreID, Date, Amount) which adds to the
table Order an additional column that contains the total amount of
each order.

• StoreOrders(StoreID, OrderCount) that contains the number of orders
for each store.

• ProductPart(ProductID, ProductName, PartID, PartName) that is
obtained from the full outer join of tables Product and Part.

Define the above views in SQL. For each of these views, determine
whether the view is self-maintainable with respect to insertions and
deletions. Give examples illustrating the cases that are not self-
maintainable.

7.4 Consider the following tables

Professor(ProfNo, ProfName, Laboratory)
Supervision(ProfNo,StudNo)
PhDStudent(StudNo, StudName, Laboratory)

and a view ProfPhdStud(ProfNo, ProfName, StudNo, StudName) com-
puted from the outer joins of these three relations.

Determine whether the view is self-maintainable. Write the SQL
command for creating the view. Show a possible instance of the tables
and the corresponding view. Give a delta table composed of insertions
to and deletions from the table Supervision and show how the view is
computed from these delta tables.
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Fig. 7.18 A data cube lattice

7.5 By means of examples, explain the propagate and refresh algorithm for
the aggregate functions AVG, MIN, and COUNT. For each aggregate
function, write the SQL command that creates the summary-delta
table from the tables containing the inserted and deleted tuples in the
fact table, and write the algorithm that refreshes the view from the
summary-delta table.

7.6 Suppose that a cube Sales(A,B,C,D,Amount) has to be fully materi-
alized. The cube contains 64 tuples. Sorting takes the typical n log(n)
time. Every GROUP BY with k attributes has 2k tuples:

(a) Compute the cube using the PipeSort algorithm.
(b) Compute the gain of applying the PipeSort compared to the cost

of computing all the views from scratch.

7.7 Consider the graph in Fig. 7.18, where each node represents a view and
the numbers are the costs of materializing the view. Assuming that the
bottom of the lattice is materialized, determine using the view selection
algorithm the five views to be materialized first.

7.8 Consider the data cube lattice of a three-dimensional cube with
dimensions A, B, and C. Extend the lattice to take into account the
hierarchies A→ A1 → All and B → B1 → B2 → All. Since the lattice
is complex to draw, represent it by giving the list of nodes and the list
of edges.

7.9 Modify the algorithm for selecting views to materialize in order to
consider the probability that each view has to completely match a given
query. In other words, consider that you know the distribution of the
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queries, so that view A has probability P (A) to match a query, view B
has probability P (B), etc.:

(a) How would you change the algorithm to take into account this
knowledge?

(b) Suppose that in the lattice of Fig. 7.9, the view ABC is already
materialized. Apply the modified algorithm to select four views
to be materialized given the following probabilities for the views:
P (ABC) = 0.1, P (AB) = 0.1, P (AC) = 0.2, P (BC) = 0.3, P (A)) =
0.05, P (B) = 0.05, P (C) = 0.1, and P (All) = 0.1.

(c) Answer the same question as in (b) but now with the probabilities
as follows: P (ABC) = 0.1, P (AB) = 0.05, P (AC) = 0.1, P (BC) = 0,
P (A) = 0.2, P (B) = 0.1, P (C) = 0.05, and P (All) = 0.05, Compare
the results.

7.10 Given the Employee table below, show how a bitmap index on attribute
Title would look like. Compress the bitmap values using run-length
encoding.

Employee
Key

Employee
Name Title Address City Department

Key

e1 Peter Brown Dr. . . . Brussels d1

e2 James Martin Mr. . . . Wavre d1

e3 Ronald Ritchie Mr. . . . Paris d2

e4 Marco Benetti Mr. . . . Versailles d2

e5 Alexis Manoulis Mr. . . . London d3

e6 Maria Mortsel Mrs. . . . Reading d3

e7 Laura Spinotti Mr. . . . Brussels d4

e8 John River Mrs. . . . Waterloo d4

e9 Bert Jasper Mr. . . . Paris d5

e10 Claudia Brugman Mrs. . . . Saint-Denis d5

7.11 Given the Sales table below and the Employee table from Ex. 7.10, show
how a join index on attribute EmployeeKey would look like.

RowID
Sales

Product
Key

Customer
Key

Employee
Key

Time
Key

Sales
Amount

1 p1 c1 e1 t1 100

2 p1 c2 e3 t1 100

3 p2 c2 e4 t2 100

4 p2 c3 e5 t2 100

5 p3 c3 e1 t3 100

6 p4 c4 e2 t4 100

7 p5 c4 e2 t5 100
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7.12 Given the Department table below and the Employee table from Ex. 7.10,
show how a bitmap join index on attribute DeptKey would look like.

Department
Key

Department
Name Location

d1 Management Brussels

d2 Production Paris

d3 Marketing London

d4 HumanResources Brussels

d5 Research Paris

7.13 Consider the tables Sales in Ex. 7.11, Employee in Ex. 7.10, and
Department in Ex. 7.12.

(a) Propose an indexing scheme for the tables, including any kind
of index you consider it necessary. Discuss possible alternatives
according to several query scenarios. Discuss the advantages and
disadvantages of creating the indexes.

(b) Consider the query:

SELECT E.EmployeeName, SUM(S.SalesAmount)
FROM Sales S, Employee E, Department D
WHERE S.EmployeeKey = E.EmployeeKey AND

E.DepartmentKey = D.DepartmentKey AND
( D.Location = 'Brussels' OR D.Location = 'Paris' )

GROUP BY E.EmployeeName

Explain a possible query plan that makes use of the indexes defined
in (a).



Chapter 8

Extraction, Transformation, and Loading

Extraction, transformation, and loading (ETL) processes are used to extract
data from internal and external sources of an organization, transform these
data, and load them into a data warehouse. Since ETL processes are complex
and costly, it is important to reduce their development and maintenance costs.
Modeling ETL processes at a conceptual level is a way to achieve this goal.
However, existing ETL tools, like Microsoft Integration Services or Pentaho
Data Integration (also known as Kettle), have their own specific language to
define ETL processes. Further, there is no agreed-upon conceptual model to
specify such processes. In this chapter, we study the design of ETL processes
using a conceptual approach. The model we use is based on the Business
Process Modeling Notation (BPMN), a de facto standard for specifying
business processes. The model provides a set of primitives that cover the
requirements of frequently used ETL processes. Since BPMN is already used
for specifying business processes, users already familiar with BPMN do not
need to learn another language for defining ETL processes. Further, BPMN
provides a conceptual and implementation-independent specification of such
processes, which hides technical details and allows users and designers to
focus on essential characteristics of such processes. Finally, ETL processes
expressed in BPMN can be translated into executable specifications for
ETL tools.

We start this chapter with a brief introduction of BPMN, which we give in
Sect. 8.1. Then, in Sect. 8.2, we explain how we can use BPMN for conceptual
modeling of ETL processes. In Sect. 8.3, we apply these concepts to the
Northwind case study. We design a conceptual model for the ETL process
that loads the Northwind data warehouse used in the previous chapters with
data extracted from the Northwind operational database and other sources.
Finally, after providing in Sect. 8.4 a brief overview of Microsoft Integration
Services and Pentaho Kettle, we show in Sects. 8.5 and 8.6 how the ETL
conceptual model can be implemented in both tools. A detailed specification
of the process is provided, and the differences between both implementation
platforms are highlighted.

A. Vaisman and E. Zimányi, Data Warehouse Systems, Data-Centric
Systems and Applications, DOI 10.1007/978-3-642-54655-6 8,
© Springer-Verlag Berlin Heidelberg 2014
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8.1 Business Process Modeling Notation

A business process is a collection of related activities or tasks in an
organization whose goal is to produce a specific service or product. A
task can be performed by software systems, humans, or a combination of
these. Business process modeling is the activity of representing the business
processes of an organization so that the current processes may be analyzed
and improved.

Many techniques to model business processes have been proposed over the
years. Traditional techniques include Gantt charts, flowcharts, PERT dia-
grams, and data flow diagrams. However, the problem with these techniques
is the lack of a formal semantics. On the other hand, formal techniques such
as Petri Nets have a well-defined semantics but are difficult to understand
by business users and, in addition, do not have the expressiveness to
represent some typical situations that arise in real-world settings. Many
efforts were carried out since the 1990s in the area of workflow management
systems to define languages and tools for modeling and executing business
processes. A standardization process resulted in BPMN released by the
Object Management Group (OMG). The current version of the standard
is BPMN 2.0.1

BPMN provides a graphical notation for defining and understanding the
business processes of an organization and to communicate them in a standard
manner. The rationale behind BPMN is to define a language that is usable
by the business community, is constrained to support the modeling concepts
that are applicable to business processes, and is useful in clearly describing
complex processes. BPMN is defined using the Unified Modeling Language
(UML). In addition, a precise semantics of the language and an execution
semantics are also defined.

BPMN aims at tackling two conflicting requirements, namely, providing
a simple mechanism for creating business process models and handling
the complexity inherent to them. The approach taken to tackle these two
requirements was to organize the graphical aspects of the notation into
categories, so that the reader of a BPMN diagram can easily recognize
the basic types of elements and understand the diagram. Within the basic
categories of elements, additional variation and information can be added
to support the requirements for complexity without dramatically changing
the basic look and feel of the diagram. There are four basic categories of
elements, namely, flow objects, connecting objects, swimlanes, and artifacts.

Flow objects are the main elements for defining a business process. There
are three types of flow objects: activities, gateways, and events. An activity
is a work performed during a process. Activities can be either single tasks

1http://www.omg.org/spec/BPMN/2.0/

http://www.omg.org/spec/BPMN/2.0/
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a b

Fig. 8.1 Activities. (a) Single task. (b) Collapsed and expanded subprocess

or subprocesses, and thus they can be atomic or nonatomic. Figure 8.1a
shows how a task is represented. A subprocess is an encapsulated process
whose details we want to hide. Figure 8.1b shows that there are two ways of
representing a subprocess: collapsed and expanded.

Exclusive Inclusive Parallel Complex

Splitting Merging

a

b

Fig. 8.2 (a) Different types of gateways. (b) Splitting and merging gateways

Gateways are used to control the sequence of activities in a process
depending on conditions. It is worth noting that BPMN does not state how
these conditions must be written; this is left to the modeler. Gateways are
represented by diamond shapes. BPMN defines several types of gateways,
shown in Fig. 8.2a, which are distinguished by the symbol used inside the
diamond shape. All these types can be splitting or merging gateways,
as shown in Fig. 8.2b, depending on the number of ingoing and outgoing
branches. An exclusive gateway models an exclusive OR decision, that is,
depending on a condition, the gateway activates exactly one of its outgoing
branches. It can be represented as an empty diamond shape or a diamond
shape with an ‘X’ inside. A default flow (see below) can be defined as one
of the outgoing flows, if no other condition is true. An inclusive gateway
triggers or merges one or more flows. In a splitting inclusive gateway, any
combination of outgoing flows can be triggered. However, a default flow
cannot be included in such a combination. In a merging inclusive gateway,
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any combination can be chosen to continue the flow. A parallel gateway
allows the synchronization between outgoing and incoming flows as follows.
A splitting parallel gateway is analogous to an AND operator: the incoming
flow triggers one or more outgoing parallel flows. On the other hand, a
merging parallel gateway synchronizes the flow merging all the incoming
flows into a single outgoing one. Finally, complex gateways can represent
complex conditions. For example, a merging complex gateway can model that
when three out of five flows are completed, the process can continue without
waiting for the completion of the other two.

Terminate

End event

Message CancelCompensation

  

Intermediate
event

Start event

Time

  

Fig. 8.3 Examples of events

Canceled

Activity

Send
Message

Correct
Error

Activity

Compensated

Fig. 8.4 Error handling: canceled and compensated activities

Events (see Fig. 8.3) represent something that happens that affects the
sequence and timing of the workflow activities. Events may be internal or
external to the task into consideration. There are three types of events, which
can be distinguished depending on whether they are drawn with a single, a
double, or a thick line. Start and end events indicate the beginning and
ending of a process, respectively. Intermediate events include time, message,
cancel, and terminate events.Time events can be used to represent situations
when a task must wait for some period of time before continuing. Message
events can be used to represent communication, for example, to send an
e-mail indicating that an error has occurred. They can also be used for
triggering a task, for example, a message may indicate that an activity can
start.Cancel events listen to the errors in a process and notify them either by
an explicit action like sending a message, as in the canceled activity shown
in Fig. 8.4, or by an implicit action to be defined in the next steps of the
process development. Compensation events can be employed to recover
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errors by launching specific compensation activities, which are linked to
the compensation event with the association connecting object (Fig. 8.5), as
shown in Fig. 8.4. Finally, terminate events stop the entire process, including
all parallel processes.

Sequence flow

Message flow

Association

Conditional
sequence flow

Default sequence 
flow

Fig. 8.5 Connecting objects

Connecting objects are used to represent how objects are connected.
There are three types of connecting objects, illustrated in Fig. 8.5, which are
explained next.

A sequence flow represents a sequencing constraint between flow objects.
It is the basic connecting object in a workflow. It states that if two activities
are linked by a sequence flow, the target activity will start only when the
source one has finished. If multiple sequence flows outgo from an activity, all
of them will be activated after its execution. In case there is a need to control
a sequence flow, it is possible to add a condition to the sequence flow by using
the conditional sequence flow. A sequence flow may be set as the default
flow in case of many outgoing flows. For example, as explained above, in an
exclusive or an inclusive gateway, if no other condition is true, then the default
flow is followed. Note that sequence flows can replace splitting and merging
gateways. For example, an exclusive gateway splitting into two paths could
be replaced by two conditional flows, provided the conditions are mutually
exclusive. Inclusive gateways could be replaced by conditional flows, even
when the former constraint does not apply.

Amessage flow represents the sending and receiving of messages between
organizational boundaries (i.e., pools, explained below). A message flow is the
only connecting object able to get through the boundary of a pool and may
also connect to a flow object within that pool.

An association relates artifacts (like annotations) to flow objects (like
activities). We give examples below. An association can indicate directionality
using an open arrowhead, for example, when linking the compensation
activity in case of error handling.

A loop (see Fig. 8.6) represents the repeated execution of a process for
as long as the underlying looping condition is true. This condition must be
evaluated for every loop iteration and may be evaluated at the beginning or
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Looping
Subprocess

+

Looping
Activity

Fig. 8.6 Activity and subprocess loops

Fig. 8.7 An example of a subprocess loop

at the end of the iteration. In the example of Fig. 8.7, we represent a task
of an ETL process that connects to a server. At a high abstraction level,
the subprocess activity hides the details. It has the loop symbol attached
(a curved arrow), indicating that the subprocess is executed repeatedly until
an ending condition is reached. When we expand the subprocess, we can
see what happens within it: the server waits for 3min (this waiting task
is represented by the time event). If the connection is not established, the
request for the connection is launched again. After 15min (another time
event), if the connection was not reached, the task is stopped, and an error
e-mail is sent (a message event).

A swimlane (see Fig. 8.8) is a structuring object that comprises pools
and lanes. Both of them are used to define process boundaries. Only messages
are allowed between two pools, not sequence flows. In other words, a workflow
must be contained in only one pool. However, a pool may be subdivided into
several lanes, which represent roles or services in the enterprise. Lanes within
a pool do not have any special constraint, and thus sequence flows may cross
a lane freely. We give an example in the next section.

Artifacts are used to add information to a diagram. There are three types
of artifacts. A data object represents either data that are input to a process,
data resulting from a process, data that needs to be collected, or data that
needs to be stored. A group organizes tasks or processes that have some kind
of significance in the overall model. A group does not affect the flow in the
diagram. Annotations are used to add extra information to flow objects.
For example, an annotation for an activity in an ETL process can indicate
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Fig. 8.8 Swimlanes: pool and lanes

Fig. 8.9 BPMN artifacts: annotations

a gateway condition or the attributes involved in a lookup task, as shown in
Fig. 8.9. Annotations may be associated with both activities and subprocesses
in order to describe their semantics.

8.2 Conceptual ETL Design Using BPMN

There is no standard conceptual model for defining ETL processes. Each
existing tool provides its own model, often too detailed since it takes into
consideration many particular implementation issues. In this section, we show
how BPMN can be customized for designing ETL processes at a conceptual
level. We describe how the BPMN constructs introduced in the previous
sections can be used to define the most common ETL tasks. We also introduce
a BPMN-based notation for ETL. The most obvious advantage of using a
conceptual approach for designing ETL processes is the ability to replicate
the same process with different tools. We will illustrate this fact by describing
in Sect. 8.3 the conceptual model of the ETL process that loads the Northwind
data warehouse. Then, in Sects. 8.5 and 8.6, we will show how this conceptual
model can be implemented, respectively, in Integration Services and Kettle.
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A key point of the approach we present here is the perception of ETL
processes as a combination of control and data tasks, where control tasks
orchestrate groups of tasks and data tasks detail how input data are
transformed and output data are produced. For example, the overall process
of populating a data warehouse is a control task composed of multiple
subtasks, while populating a fact or dimension table is a data task. Therefore,
control tasks can be considered as workflows where arrows represent the
precedence between tasks, while data tasks represent data flows where records
are transferred through the arrows. Given the discussion above, designing
ETL processes using business process modeling tools appears natural. We
present next the conceptual model for ETL processes based on BPMN.

Control tasks represent the orchestration of an ETL process, independently
of the data flowing through such process. Such tasks are represented by means
of the constructs described in Sect. 8.1. For example, gateways are used to
control the sequence of activities in an ETL process. The most used types of
gateways in an ETL context are exclusive and parallel gateways. Events are
another type of objects often used in control tasks. For instance, a cancelation
event can be used to represent the situation when an error occurs and may
be followed by a message event that sends an e-mail to notify the failure.

Fig. 8.10 An excerpt of a control task

Figure 8.10 shows a portion of the control task that loads the Northwind
data warehouse. There are three subprocesses called Continent Country State
Load, TempCities Load, and City Load, which load, respectively, the tables
composing the hierarchy State → Country → Continent, a temporary table
TempCities, and the table City. The first two subprocesses are the incoming
flow of a parallel merging gateway. The outgoing flow of this gateway is the
input to the City Load. Note that the sequence flows outgoing the City Load
activity could also be modeled as a parallel splitting gateway.

Swimlanes can be used to organize ETL processes according to several
strategies, namely, by technical architecture (such as servers to which tasks
are assigned), by business entities (such as departments or branches), or
by user profiles (such as manager, analyst, or designer) that give special
access rights to users. For example, Fig. 8.8 illustrates the use of swimlanes
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for the Northwind ETL process (we will explain in detail this process later
in this chapter). The figure shows some of the subprocesses that load the
Product dimension table, the Time dimension table, and the Sales fact table
(represented as compound activities with subprocesses); it also assumes their
distribution between Server 1 and Server 2. Each one of these servers is
considered as a lane contained inside the pool of data warehouse servers.
We can also see that a swimlane denoted Currency Server contains a web
service that receives an input currency (like US dollars), an amount, and an
output currency (like euros) and returns the amount equivalent in the output
currency. This could be used in the loading of the Sales fact table. Thus, flow
messages are exchanged between the Sales Load activity and the Exchange
Rate task which is performed by the web service. These messages go across
both swimlanes.

Data tasks represent activities typically carried out to manipulate data,
such as input data, output data, and data transformation. Since such
data manipulation operations occur within an activity, data tasks can be
considered as being at a lower abstraction level than control tasks. Recall that
arrows in a data task represent not only a precedence relationship between
its activities but also the flow of data records between them.

Data tasks can be classified into row and rowset operations. Row
operations apply transformations to the data on a row-by-row basis. In
contrast, rowset operations deal with a set of rows. For example, updating
the value of a column is a row operation, while aggregation is a rowset
operation. Data tasks can also be classified (orthogonally to the previous
classification) into unary or n-ary data tasks, depending of the number of
input flows.

Input Data

File: Time.xls
Type: Excel

Insert Data

Database: NorthwindDW
Table: Time
Mappings:
TimeKey->OrderDateKey
Op�ons: Append

Add Column

Column: SalesAmount =
D.UnitPrice * (1-Discount) *
Quan�ty

Convert
Column

Columns:
Date: Date
DayNbWeek: Smallint

a b c d

Fig. 8.11 Unary row operations. (a) Input data. (b) Insert data. (c) Add column.
(d) Convert column

Figure 8.11 shows examples of unary row operations: Input Data, Insert
Data, Add Column, and Convert Column. Note the annotations linked to the
tasks by means of association flows. The annotations contain metadata that
specify the parameters of the task. For example, in Fig. 8.11a, the annotation
tells that the data is read from an Excel file called Time.xls. Similarly, the
annotation in Fig. 8.11b tells that the task inserts tuples in the table Time
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of the NorthwindDW database, where column TimeKey in the flow is mapped
to the attribute OrderDateKey. Further, new records will be appended to
the table. The task in Fig. 8.11c adds a column named SalesAmount to
the flow whose value is computed from the expression given. Here, it is
supposed that the values of the columns appearing in the expression are
taken from the current record. Finally, Fig. 8.11d converts the columns Date
and DayNbWeek (e.g., read from an Excel file as strings) into a Date and a
Smallint, respectively.

Agreggate

Group By: OrderNo
Columns: Cnt=Count(*), EmployeeID = Employeekey

oi p

Union

n
StateKey,

t

p a

TotalSales=Sum(SalesAmount)

Join

Condit ion:

J n y : Le� Outer JoinT e

u *
CountryKey

Ou
StateKey, CountryKey
Keep Du i es No

I p t CityName,

p t CityName,

l c t :

:

u :

a b c

Fig. 8.12 Rowset operations. (a) Aggregate (unary). (b) Join (binary). (c) Union
(n-ary)

Figure 8.12 shows three rowset operations: Aggregate (unary), Join
(binary), and Union (n-ary). These operations receive a set of rows to
process altogether, rather than operating row by row. Again, annotations
complement the diagram information. For example, in the case of the Union
task, the annotation tells the name of the input and output columns and
informs if duplicates must be kept. Note that the case of the union is a
particular one: if duplicates are retained, then it becomes a row operation
since it can be done row by row. If duplicates are eliminated, then it becomes
a rowset operation because sorting is involved in the operation.

Fig. 8.13 Shorthand notation for the lookup task

A very common data task in an ETL process is the lookup, which checks
if some value is present in a file, based on a single or compound search key.
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Typically, a lookup is immediately followed by an exclusive gateway with a
branching condition. For conciseness, we decided to use a shorthand for these
two tasks and replace this by two conditional flows. This is shown in Fig. 8.13.

Table 8.1 defines the various ETL tasks and their annotations. The
annotations between brackets, as in [Group By], are optional, while the
annotations suffixed with an asterisk, as in Input*, can be repeated several
times. Finally, the annotations separated by a vertical bar, as in Table | Query,
are exclusive, one of which must be provided. In Appendix A, we give the
BPMN notation for these ETL tasks.

8.3 Conceptual Design of the Northwind ETL
Process

In this section, using the concepts explained in the previous ones, we
present a conceptual model of the ETL process that loads the Northwind
data warehouse from the operational database and other sources. Later,
in Sects. 8.5 and 8.6, we show how this model can be implemented in,
respectively, Microsoft Integration Services and Pentaho Kettle.

The operational data reside in a relational database, whose logical schema
is shown in Fig. 8.14. These data must be mapped to a data warehouse, whose
schema is given in Fig. 8.15. In addition to the operational database, some
other files are needed for loading the data warehouse. We next describe these
files, as well as the requirements of the process.

First, an Excel file called Time.xls contains the data needed for loading the
Time dimension table. The time interval of this file covers the dates contained
in the table Orders of the Northwind operational database.

We can see in Fig. 8.15 that in the Northwind data warehouse the
dimension tables Customer and Supplier share the geographic hierarchy
starting at the City level. Data for the hierarchy State→ Country→ Continent
are loaded from an XML file called Territories.xml that begins as shown
in Fig. 8.16a. A graphical representation of the schema of the XML file is
shown in Fig. 8.16b. Here, rectangles represent XML elements, and rounded
rectangles represent XML attributes. The cardinalities of the relationships
are also indicated. Notice that type is an attribute of State that contains, for
example, the value state for Austria. However, for Belgium it contains the
value province (not shown in the figure). Notice also that EnglishStateName,
RegionName, and RegionCode are optional, as indicated by the cardinality
0..1.

It is worth noting that the attribute Region of tables Customers and
Suppliers in the Northwind database contains in fact a state or province name
(e.g., Québec) or a state code (e.g., CA). Similarly, the attribute Country
contains a country name (e.g., Canada) or a country code (e.g., USA). To
identify to which state or province a city belongs, a file called Cities.txt
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Table 8.1 Annotations of the ETL tasks in BPMN

Add Column: adds new derived columns to the flow
Columns List of Col=Expr computing the value of a new column Col added

to the output flow from expression Expr

Add Column: adds new columns to the flow obtained from an SQL query
Columns List of column names added to the output flow
Database Name of the database
Query SQL query

Aggregate: adds new columns to the flow computed by aggregating values from
the input flow, possibly after grouping the records
[Group By] List of column names from the input flow that are used for

grouping. These columns are the only ones from the input flow
that are also in the output flow

Columns List of Col1=AgFct(Col2) or Col1=AgFct(*), where a new
column Col1 in the output flow will be assigned the value
AgFct(Col2) or AgrFct(*)

Convert Column: changes the type of columns from the flow
Columns List of Col:Type, where column Col in the input flow is converted

to type Type in the output flow

Delete Data: deletes tuples from a database corresponding to records in the flow
Database Name of the database
Table Name of the table
Where List of column names from the input flow
Matches List of attribute names from the table

Difference: computes the difference of two flows
Input* List of column names from the two input flows. Input* is used if

the column names are the same for both flows, otherwise Input1
and Input2 are used, each flow defining the column names

Output List of column names from the output flow

Drop Column: drops columns from the flow
Columns List of column names from the input flow that are removed from

the output flow

Input Data: inserts records into the flow obtained from a file
File Name of the file
Type Type of the file, such as Text, CSV, Excel, or XML
[Fields] Name of the fields or XPath expressions

Input Data: inserts records into the flow obtained from a database
Database Name of the database
Table | Query Name of the table or SQL query
[Columns] Name of the columns

Insert Data: inserts records from the flow into a file
File Name of the file
Type Type of the file
[Options] Headers if column names are put in the first line of the file; either

Empty or Append depending on whether the file is emptied before
inserting the new tuples, the latter is the default

(continued)
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Table 8.1 (continued)

Insert Data: inserts tuples into a database corresponding to records in the flow
Database Name of the database
Table Name of the table
[Mappings] List of Col->Attr, where column Col in the input flow is mapped

to attribute Attr in the database
[Options] Either Empty or Append depending on whether the table is emp-

tied before inserting the new tuples, the latter is the default

Join: computes the join of two flows
Condition List of Col1 op Col2, where Col1 belongs to the first input flow,

Col2 to the second flow, and op is a comparison operator
[Join Type] Either Inner Join, Left Outer Join, or Full Outer Join, the first one

is the default

Lookup: adds columns to the flow obtained by looking up data from a database
Retrieve List of column names added to the output flow
Database Database name
Table | Query Name of the table or SQL query
Where List of column names from the input flow
Matches List of attribute names from the lookup table or SQL query

Lookup: replaces column values of the flow with values obtained by looking up
data from a database
Replace List of column names from the input flow whose values are re-

placed in the output flow
Database Database name
Table | Query Name of the table or SQL query
Where List of column names from the input flow
Matches List of attribute names from the lookup table or description of

an SQL query

Multicast: produces several output flows from an input flow
Input List of column names from the input flow
Output* List of column names from each output flow. Output* is used

if the column names are the same for all flows, otherwise
Output1, . . . , Outputn are used, each flow defining the column
names

Remove Duplicates: removes duplicate records from the flow
(None) This task does not have any annotation

Rename Column: changes the name of columns from the flow
Columns List of Col->NewCol where column Col from the input flow is

renamed NewCol in the output flow

Sort: sorts the records of the flow
Columns List of colum names from the input flow, where for each of them,

either ASC or DESC is specified, the former being the default

Union: computes the union of two or more flows
Input* List of column names from each input flow. Input* is used if the

column names are the same for all flows. Otherwise Input1, . . .,
Inputn are used, each flow defining the column names

Output List of column names from the output flow
[Keep Duplicates] Either Yes or No, the former is the default

(continued)
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Table 8.1 (continued)

Update Column: replaces column values from the flow
Columns List of Col=Expr computing the new value of column Col from

the input flow from expression Expr
[Condition] Boolean condition that the records in the input flow must satisfy

in order to be updated. If not specified all records are updated

Update Column: replaces column values from the flow
Columns List of column names from the input flow whose values are

changed in the output flow
Database Name of the database
Query SQL query
[Condition] Boolean condition that the records in the input flow must satisfy

in order to be updated. If not specified all records are updated

Update Data: update tuples of a database corresponding to records in the flow
Database Name of the database
Table Name of the table
Columns List of Attr=Expr computing the new value of attribute Attr in

the table from expression Expr
Where List of column names from the input flow
Matches List of attribute names from the table

is used. The file contains three fields separated by tabs and begins as shown in
Fig. 8.17a, where the first line contains field names. In the case of cities located
in countries that do not have states, as it is the case of Singapore, a null value
is given for the second field. The above file is also used to identify to which
state the city in the attribute TerritoryDescription of the table Territories in the
Northwind database corresponds. A temporary table in the data warehouse,
denoted TempCities, will be used for storing the contents of this file. The
structure of the table is given in Fig. 8.17b.

It is worth noting that the keys of the operational database are reused in
the data warehouse as surrogate keys for all dimensions except for dimension
Customer. In this dimension, the key of the operational database is kept in
the attribute CustomerID, while a new surrogate key is generated during the
ETL process.

In addition, for the Sales table in the Northwind data warehouse, the
following transformations are needed:

• The attribute OrderLineNo must be generated in ascending order of
ProductID (in the operational database, there is no order line number).

• The attribute SalesAmountmust be calculated taking into account the unit
price, the discount, and the quantity.

• The attribute Freight, which in the operational database is related to the
whole order, must be evenly distributed among the lines of the order.
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Fig. 8.14 Schema of the Northwind operational database (repeated from Fig. 2.4)

Figure 8.18 provides a general overview of the whole ETL process.
The figure shows the control tasks needed to perform the transformation
from the operational database and the additional files presented above and
the loading of the transformed data into the data warehouse. We can see that
the process starts with a start event, followed by activities (with subprocesses)
that can be performed in parallel (represented by a splitting parallel gateway)
which populate the dimension hierarchies. Finally, a parallel merging gateway
synchronizes the flow, meaning that the loading of the Sales fact table
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Fig. 8.15 Schema of the Northwind data warehouse (repeated from Fig. 5.4)

(activity Sales Load) can only start when all other tasks have been completed.
If the process fails, a cancelation event is triggered and an error message in
the form of an e-mail is dispatched.

Figure 8.19 shows the task that loads the Category table in the data
warehouse. It is just composed of an input data task and an insertion data
task. The former reads the table Categories from the operational database.
The latter loads the table Category in the data warehouse, where the
CategoryID attribute in the Categories table is mapped to the CategoryKey
attribute in the Category table. Similarly, Fig. 8.20 shows the task that loads
the Time table from an Excel file. It is similar to the previously explained
task but includes a conversion of columns, which defines the data types of the
attributes of the target table Time in the data warehouse, and the addition of
a column TimeKey initialized with null values so the database can generate
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<?xml version="1.0"  encoding="ISO-8859-1"?>
<Continents>

<Continent>
<ContinentName>Europe</ContinentName>
<Country>

<CountryName>Austria</CountryName>
<CountryCode>AT</CountryCode>
<CountryCapital>Vienna</CountryCapital>
<Population>8316487</Population>
<Subdivision>Austria is divided into nine Bundesländer,

or simply Länder (states; sing. Land).</Subdivision>
<State type="state">

<StateName>Burgenland</StateName>
<StateCode>BU</StateCode>
<StateCapital>Eisenstadt</StateCapital>

</State>
<State type="state">

<StateName>Kärnten</StateName>
<StateCode>KA</StateCode>
<EnglishStateName>Carinthia</EnglishStateName>
<StateCapital>Klagenfurt</StateCapital>

</State>
...

1..1 CountryName

1..1 CountryCode

1..1 CountryCapital

1..1 Population

1..1 Subdivision

0..n State

1..1 type

1..1 StateName

1..1 StateCode

0..1 English-
StateName

1..1 StateCapital

0..1 RegionName

0..1 RegionCode

Continent-
Name

CountryContinents Continent1..n

1..1

1..n

a

b

Fig. 8.16 (a) Beginning of the file Territories.xml. (b) XML schema of the file

surrogate keys for this attribute. We do not show the task that loads the
TempCities table, shown in Fig. 8.17b, since it is similar to the one that loads
the Categories table just described, except that the data is input from a file
instead of a database.
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a b

Fig. 8.17 (a) Beginning of the file Cities.txt. (b) Associated table TempCities

The control task that loads the tables composing the hierarchy State →
Country → Continent is depicted in Fig. 8.21a. As can be seen, this requires
a sequence of data tasks. Figure 8.21b shows the data task that loads the
Continent table. It reads the data from the XML file using the following
XPath expression:

<Continents>/<Continent>/<ContinentName>

Then, a new column is added to the flow in order to be able to generate the
surrogate key for the table in the data warehouse.

Figure 8.21c shows the task that loads the Country table. It reads the data
from the XML file using the following XPath expressions:

<Continents>/<Continent>/<Country>/*
<Continents>/<Continent>/<ContinentName>

In this case, we need to read from the XML file not only the attributes
of Country but also the ContinentName to which a country belongs. For
example, when reading the Country element corresponding to Austria, we
must also obtain the corresponding value of the element ContinentName, that
is, Europe. Thus, the flow is now composed of the attributes CountryName,
CountryCode, CountryCapital, Population, Subdivision, State, and Continent-
Name (see Fig. 8.16b). The ContinentName value is then used in a lookup
task for obtaining the corresponding ContinentKey from the data warehouse.
Finally, the data in the flow is loaded into the warehouse. We do not show
the task that loads the State table since it is similar to the one that loads the
Country table just described.

The process that loads the City table is depicted in Fig. 8.22. The first task
is an input data task over the table TempCities. Note that the final goal is
to populate a table with a state key and a country key, one of which is null
depending on the political division of the country, that is, on whether the
country is divided into states or not. Thus, the first exclusive gateway tests
whether State is null or not (recall that this is the optional attribute). In the
first case, a lookup obtains the CountryKey. In the second case, we must match
(State,Country) pairs in TempCities to values in the State and Country tables.
However, as we have explained, states and countries can come in many forms;
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Fig. 8.18 Overall view of the conceptual ETL process for the Northwind data
warehouse

Fig. 8.19 Load of the Category dimension table

thus, we need three lookup tasks, as shown in the annotations in Fig. 8.22.
The three lookups are as follows:

• The first lookup process records where State and Country correspond,
respectively, to StateName and CountryName. An example is state Loire
and country France.
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Fig. 8.20 Load of the Time dimension table

a

b

c

Fig. 8.21 Load of the tables for the State → Country → Continent hierarchy. (a)
Associated control task. (b) Load of the Continent table. (c) Load of the Country
table

• The second lookup process records where State and Country correspond,
respectively, to EnglishStateName and CountryName. An example is state
Lower Saxony, whose German name is Niedersachsen, together with country
Germany.

• Finally, the third lookup process records where State and Country corre-
spond, respectively, to StateName and CountryCode. An example is state
Florida and country USA.

The SQL query associated with these lookups is as follows:

SELECT S.*, CountryName, CountryCode
FROM State S JOIN Country C ON S.CountryKey = C.CountryKey
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Fig. 8.22 Load of the City dimension table

Finally, a union is performed with the results of the four flows, and the table
is populated with an insert data task. Note that in the City table, if a state
was not found in the initial lookup (Input1 in Fig. 8.22), the attribute State
will be null; on the other hand, if a state was found, it means that the city will
have an associated state; therefore, the Country attribute will be null (Inputs2,
Input3, and Input4 in the figure). Records for which the state and/or country
are not found are stored into a BadCities.txt file.

Figure 8.23 shows the conceptual ETL process for loading the Customer
table in the data warehouse. The input table Customers is read from the
operational database using an input data task. Recall that the Region
attribute in this table corresponds actually to a state name or a state code.
Since this attribute is optional, the first exclusive gateway checks whether this
attribute is null or not. If Region is null, a lookup checks if the corresponding
(City, Country) pair matches a pair in TempCities and retrieves the State
attribute from the latter, creating a new column. Since the value State just
obtained may be null for countries without states, another exclusive gateway
tests whether State is null, in which case a lookup obtains the CityKey by
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Fig. 8.23 Load of the Customer dimension table

matching values of City and Country in a lookup table defined by the following
SQL query:

SELECT CityKey, CityName, CountryName
FROM City C JOIN Country T ON C.CountryKey = T.CountryKey

Then, we send the obtained records to a union task in order to load them in
the data warehouse.
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Returning back to the first exclusive gateway, if the Region attribute is not
null, we add a new column State initialized with the values of column Region
and we make the union of these records with ones having a value of State
different from null obtained in the first lookup.

Then, in a similar way as the task that loads the City table, five lookup
tasks are needed, where each one tries to match a couple of values of State
and Country to values in the lookup table built as a join between the City,
State, and Country tables as follows:

SELECT C.CityKey, C.CityName, S.StateName, S.EnglishStateName,
S.StateCode, T.CountryName, T.CountryCode

FROM City C JOIN State S ON C.StateKey = S.StateKey
JOIN Country T ON S.CountryKey = T.CountryKey

Two additional cases are needed with respect to the City Load task:

• The fourth lookup process records where State and Country correspond,
respectively, to StateCode and CountryName. An example is state BC and
country Canada.

• The fifth lookup process records where State and Country correspond,
respectively, to StateCode and CountryCode. An example is state AK and
country USA.

Finally, we perform the union of all flows, add the column CustomerKey for
the surrogate key initialized to null, and write to the target table by means
of an insert data task. We omit the description of the ETL process that loads
the Supplier table since it is similar to the one that loads the Customer table
just described.

Fig. 8.24 Load of the Territories bridge table

Figure 8.24 depicts the process for loading the Territories bridge table. The
input table is the following SQL query:

SELECT E.*, TerritoryDescription
FROM EmployeeTerritories E JOIN Territories T ON E.TerritoryID = T.TerritoryID
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Then, an update column task is applied to remove the leading spaces (with
operation trim) from the attribute TerritoryDescription. The city key is then
obtained with a lookup over the table City in the data warehouse, which adds
the attribute CityKey to the flow. The data flow continues with a task that
removes duplicates in the assignment of employees to cities. Indeed, in the
Northwind operational database, New York appears twice in the Territories
table with different identifiers, and employee number 5 is assigned to both
of these versions of New York in the EmployeeTerritories table. Finally, after
removing duplicates, we populate the Territories table with an insert data
task, where a mapping matches the attribute EmployeeID in the database
with the attribute EmployeeKey in the data warehouse.

Fig. 8.25 Load of the Sales fact table

Figure 8.25 shows the conceptual ETL process for loading the Sales fact
table. This task is performed once all the other tasks loading the dimension
tables have been done. The process starts with an input data task that obtains
data from the operational database by means of the SQL query below:

SELECT O.CustomerID, EmployeeID AS EmployeeKey, O.OrderDate,
O.RequiredDate AS DueDate, O.ShippedDate,
ShipVia AS ShipperKey, P.ProductID AS ProductKey,
P.SupplierID AS SupplierKey, O.OrderID AS OrderNo,
ROW NUMBER() OVER (PARTITION BY D.OrderID
ORDER BY D.ProductID) AS OrderLineNo,



8.4 Integration Services and Kettle 309

D.UnitPrice, Quantity, Discount,
D.UnitPrice * (1-Discount) * Quantity AS SalesAmount,
O.Freight/COUNT(*) OVER (PARTITION BY D.OrderID) AS Freight

FROM Orders O, OrderDetails D, Products P
WHERE O.OrderID = D.OrderID AND D.ProductID = P.ProductID

A sequence of lookups follows, which obtains the missing foreign keys for the
dimension tables. Finally, the fact table is loaded with the data retrieved.

8.4 Integration Services and Kettle

To be able to understand how the conceptual ETL design for the Northwind
data warehouse can be implemented using existing tools, in this section we
give a brief description of Microsoft Integration Services and Pentaho Data
Integration (also known as Kettle, the name we use from here on).

8.4.1 Overview of Integration Services

Integration Services is a component of SQL Server that can be used to
perform data migration tasks and in particular to implement and execute
ETL processes.

In Integration Services, a package is basically a workflow containing a
collection of tasks executed in an orderly fashion. A package consists of a
control flow and, optionally, one or more data flows. Integration Services
provides three different types of control flow elements:

• Tasks, which are individual units of work that provide functionality to a
package.

• Containers, which group tasks logically into units of work and are also used
to define variables and events. Examples of containers are the Sequence
Container and the For Loop Container.

• Precedence constraints, which connect tasks, containers, and executables in
order to define the order in which these are executed within the workflow
of a package.

A control flow orchestrates the order of execution of package components
according to the precedence constraints defined. Among the many different
kinds of tasks supported by Integration Services, there are data flow tasks
(which run data flows to extract data, apply column-level transformations,
and load data), data preparation tasks (which copy files and directories,
download files and data, profile data for cleansing, and so on), Analysis
Services tasks (which create, modify, delete, and process Analysis Services
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objects), and workflow tasks (which communicate with other processes to
run packages, send and receive messages, send e-mail messages, and so on).

Creating a control flow in Integration Services requires the following
steps:

• Adding containers that implement repeating workflows in a package.
• Adding tasks of the kinds mentioned above. If the package has to work

with data (which is most of the times the case), the control flow must
include at least one data flow task.

• Connecting containers and tasks using precedence constraints. Tasks or
containers can be joined in a control flow dragging their connectors
from one item to another. A connector between two items represents a
precedence constraint, which specifies that the first one must be executed
successfully before the next one in the control flow can run.

• Adding connection managers, which are needed when a task requires a
connection to a data source.

A data flow extracts data into memory, transforms them, and writes them
to a destination. Integration Services provides three different types of data
flow components as follows:

• Sources, which extract data from data stores like tables and views in
relational databases, files, and Analysis Services databases. Integration
Services can connect with OLE DB data sources, like SQL Server, Oracle,
or DB2. Also, sources can be Excel files, flat files, and XML files, among
other ones.

• Transformations, which modify, summarize, and clean data. These trans-
formations can split, divert, or merge the flow. Examples of transforma-
tions are Conditional Split, Copy Column, and Aggregate.

• Destinations, which load data into data stores or create in-memory data
sets.

Creating a data flow includes the following steps:

• Adding one or more sources to extract data from files and databases and
adding connection managers to connect to these sources.

• Adding the transformations to satisfy the package requirements.
• Connecting data flow components.
• Adding one or more destinations to load data into data stores.
• Configuring error outputs on components.
• Including annotations to document the data flow.

We illustrate all these concepts in Sect. 8.5 when we study the implemen-
tation of the Northwind ETL process in Integration Services.
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8.4.2 Overview of Kettle

We now give an overview of Kettle, a tool for designing and executing ETL
tasks. It is also known as Pentaho Data Integration and is a component of
the Pentaho Business Analytics suite.

The main components of Kettle are as follows:

• Transformations, which are logical tasks consisting in steps connected by
hops, defined below. Transformations are essentially data flows, and their
purpose is to extract, transform, and load data.

• Steps are the basic components of a transformation. A step performs a
specific task, such as reading data from a flat file, filtering rows, and writing
to a database. The steps available in Kettle are grouped according to their
function, such as input, output, scripting, and so on. Note that the steps
in a transformation run in parallel, each one in its own thread.

• Hops are data paths that connect steps to each other, allowing records to
pass from one step to another. Hops determine the flow of data through
the steps, although not necessarily the sequence in which they run.

• Jobs are workflows that orchestrate the individual pieces of functionality
implementing an entire ETL process. Jobs are composed of job entries, job
hops, and job settings.

• Job entries are the primary building blocks of a job and correspond to the
steps in data transformations.

• Job hops specify the execution order of job entries and the conditions on
which they are executed based on the results of previous entries. Job hops
behave differently from hops used in a transformation.

• Job settings are the options that control the behavior of a job and the
method of logging a job’s actions.

It is worth mentioning that loops are not allowed in transformations since
the field values that are passed from one step to another are dependent on the
previous steps, and as we said above, steps are executed in parallel. However,
loops are allowed in jobs since job entries are executed sequentially.

Kettle is composed of the following components:

• Data Integration Server, which performs the actual data integration tasks.
Its primary functions are to execute jobs and transformations, to define and
manage security, to provide content management facilities to administer
jobs and transformations in collaborative development environments, and
to provide services for scheduling and monitoring activities.

• Spoon, a graphical user interface for designing jobs and transformations.
The transformations can be executed locally within Spoon or in the Data
Integration Server. Spoon provides a way to create complex ETL jobs
without having to read or write code.
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• Pan, a stand-alone command line tool for executing transformations. Pan
reads data from and writes data to various data sources and is used also
to manipulate data.

• Kitchen, a stand-alone command line tool for executing jobs. Jobs are
usually scheduled to run in batch mode at regular intervals.

• Carte, a lightweight server for running jobs and transformations on
a remote host. It provides similar execution capabilities as the Data
Integration Server but does not provide scheduling, security, and content
management facilities.

We illustrate these concepts in Sect. 8.6 when we study the implementation
of the Northwind ETL process in Kettle.

8.5 The Northwind ETL Process in Integration
Services

In this section, we show an implementation in Integration Services of the
ETL process that loads the Northwind data warehouse. We compare this
implementation with the conceptual design presented in Sect. 8.3 and show
how to translate the constructs of the conceptual ETL language into the
equivalent ones in Integration Services. In our implementation, the Northwind
operational database and the Northwind data warehouse are located on an
SQL Server database.

Figure 8.26 shows the overall ETL process. It is composed of one sequence
container task (the one with the blue arrow in the left) and eleven data flow
tasks. All of these tasks are connected by precedence constraints, represented
by green arrows. The reader can compare this representation with the one
in Fig. 8.18. Note that gateways are not present, but the semantics of the
corresponding arrows is quite similar: no task can start until all precedent
tasks have finished.

Several data flow tasks are simple. For example, the task that loads the
Category table is given in Fig. 8.27a (compare with Fig. 8.19), where the data
flow tasks are an OLE DB Source task that reads the entire table from the
operational database and an OLE DB Destination task that receives the
output from the previous task and stores it in the data warehouse. Similar
data flows are used for loading the Product, Shipper, and Employee tables.

Another straightforward task is the data flow that loads the Time
dimension table, shown in Fig. 8.27b. After loading the source Excel file,
a data conversion transformation is needed to convert the data types from
the Excel file into the data types of the database. We can also see that this is
very similar to the conceptual specification depicted in Fig. 8.20, except that
the addition of the surrogate key column is implicit in the Time Load task.
We further explain this next.



8.5 The Northwind ETL Process in Integration Services 313

Fig. 8.26 Overall view of the ETL process in Integration Services

Fig. 8.27 Load of the Category (a) and the Time (b) dimension tables

As explained in Sect. 8.3, in some tables, the keys of the operational
database are reused as surrogate keys in the data warehouse, while in other
tables a surrogate key must be generated in the data warehouse. Therefore,
the mapping of columns in the OLE DB Destination tasks should be done
in one of the ways shown in Fig. 8.28. For example, for the table Category
(Fig. 8.28a), we reuse the key in the operational database (CategoryID) as
key in the data warehouse (CategoryKey). On the other hand, for the table
Customer (Fig. 8.28b), the CustomerID key in the operational database is
kept in the CustomerID column in the data warehouse, and a new value for
CustomerKey is generated during the insertion in the data warehouse.

Figure 8.29 shows the data flow used for loading the table TempCities from
the text file Cities.txt. A data conversion transformation is needed to convert
the default types obtained from the text file into the database types.

Figure 8.30a shows the data flow that loads the hierarchy composed of
the Continent, Country, and State tables. This is the Integration Services
equivalent to the conceptual control flow defined in Fig. 8.21a. A Sequence
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Fig. 8.28 Mappings of the source and destination columns, depending on whether
the key in the operational database is reused in the data warehouse

Fig. 8.29 Load of the TempCities table

Fig. 8.30 (a) Load of the tables for the Continent→ Country→ State hierarchy. (b)
Load of the Continent dimension table. (c) Load of the Country dimension table
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Container is used for the three data flows that load the tables of the hierarchy.
Since Continent is the highest level in the hierarchy, we first need to produce
a key for it, so it can be later referenced from the Country level. The data
flow for loading the table Continent is given in Fig. 8.30b. With respect to the
conceptual model given in Fig. 8.21b, a data conversion is needed to convert
the data types from the XML file into the data types of the database. This is
shown in Fig. 8.31, where the ContinentName, read from the XML file, is by
default of length 255, and it is converted into a string of length 20. Finally,
the Continent table is loaded, and a ContinentKey is automatically generated.

Fig. 8.31 Conversion of the data types that are input from the XML file

The data flow that loads the table Country is given in Fig. 8.30c. With
respect to the conceptual model given in Fig. 8.21b, a merge join transforma-
tion is needed to obtain for a given Country the corresponding ContinentName.
A data conversion transformation is needed to convert the data types from the
XML file into the data types of the database. Then, a lookup transformation
is needed to obtain, from the database, the ContinentKey corresponding to the
ContinentName. This attribute is also added to the flow. Finally, the Country
table is loaded analogously to the Continent table above. Notice that the data
flow that loads the table State is similar; therefore, we omit it.

Figure 8.32 shows the data flow for loading the City table. The conceptual
model for the data flow has been presented in Fig. 8.22. The data flow
needs to associate to each city in the TempCities table either a StateKey
or a CountryKey, depending on whether or not the corresponding country is
divided in states. For this, the conditional split tests if the State is null or not.
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Fig. 8.32 Load of the City dimension table

In the first case, a lookup is needed for obtaining the CountryKey. This will
obtain, for example, the country key for Singapore, which has no states. In the
second case, as explained in Sect. 8.3, three lookup tasks are needed, where
a couple of values of State and Country in TempCities must be matched with
either StateName and CountryName, EnglishStateName and CountryName, or
StateName and CountryCode. Since this process is similar to the one in the
conceptual design, we do not repeat it here. Finally, a union of the four flows
is performed (note that this task is named Union All 1 since there cannot
exist two tasks with the same name), and the City table is loaded.

The task that loads the Customer table is shown in Fig. 8.33, while its
conceptual schema is given in Fig. 8.23. It starts with a conditional split since
some customers have a null value in Region (this attribute in fact corresponds
to states). In this case, a lookup adds a column State by matching City and
Country from Customers with City and Country from TempCities. Notice that
the value State just obtained may be null for countries without states, and
thus another conditional split (called Conditional Split 1) is needed. If State
is null, then a lookup tries to find a CityKey by means of matching values of
City and Country. The SQL query of the lookup task, the same as in Sect. 8.3,
is as follows:

SELECT CityKey, CityName, CountryName
FROM City C JOIN Country T ON C.CountryKey = T.CountryKey

On the other hand, for customers that have a nonnull Region, the values of
this column are copied into a new column State. Analogously to the loading
of City, we must perform five lookup tasks in order to retrieve the city key.
Since this process is analogous to the one in the conceptual design given in
Sect. 8.3, we do not repeat the details here. Finally, we perform the union of
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Fig. 8.33 Load of the Customer dimension table

all flows and load the data into the warehouse. A similar data flow task is
used for loading the Supplier dimension table.

Fig. 8.34 Load of the Territories bridge table

The data flow that loads the Territories bridge table is shown in Fig. 8.34.
This data flow is similar to the conceptual design of Fig. 8.24. It starts
with an OLE DB Source task consisting in an SQL query that joins the
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EmployeeTerritories and the Territories table as in Sect. 8.3. It continues with
a derived column transformation that removes the trailing spaces in the
values of TerritoryDescription. Then, a lookup transformation searches the
corresponding values of CityKey in City. The data flow continues with a sort
transformation that removes duplicates in the assignment of employees to
territories, as described in Sect. 8.3. Finally, the data flow finishes by loading
the data warehouse table.

Fig. 8.35 Load of the Sales fact table

Finally, the data flow that loads the Sales table is shown in Fig. 8.35. The
first OLE DB Source task includes an SQL query that combines data from
the operational database and the data warehouse, as follows:

SELECT
( SELECT CustomerKey FROM dbo.Customer C
WHERE C.CustomerID = O.CustomerID) AS CustomerKey,

EmployeeID AS EmployeeKey,
( SELECT TimeKey FROM dbo.Time T
WHERE T.Date = O.OrderDate) AS OrderDateKey,

( SELECT TimeKey FROM dbo.Time T
WHERE T.Date = O.RequiredDate) AS DueDateKey,

( SELECT TimeKey FROM dbo.Time T
WHERE T.Date = O.ShippedDate) AS ShippedDateKey,

ShipVia AS ShipperKey, P.ProductID AS ProductKey,
SupplierID AS SupplierKey, O.OrderID AS OrderNo,
CONVERT(INT, ROW NUMBER() OVER (PARTITION BY D.OrderID
ORDER BY D.ProductID)) AS OrderLineNo,

D.UnitPrice, Quantity, Discount,
CONVERT(MONEY, D.UnitPrice * (1-Discount) * Quantity) AS SalesAmount,
CONVERT(MONEY, O.Freight/COUNT(*) OVER
(PARTITION BY D.OrderID)) AS Freight

FROM Northwind.dbo.Orders O, Northwind.dbo.OrderDetails D,
Northwind.dbo.Products P

WHERE O.OrderID = D.OrderID AND D.ProductID = P.ProductID

Notice that the above query obtains data from both the Northwind opera-
tional database and the Northwind data warehouse in a single query. This is
possible to do in Integration Services but not in other platforms such as in
PostgreSQL. Thus, the above query performs the lookups of surrogate keys
from the data warehouse in the inner queries of the SELECT clause. However,
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if these surrogate keys are not found, null values are returned in the result.
Therefore, a conditional split transformation task selects the records obtained
in the previous query with a null value in the lookup columns and stores them
in a flat file. The correct records are loaded in the data warehouse.

Notice the difference of the above query with respect to the corresponding
query in the conceptual model given in Fig. 8.25. While the above query
implements all the necessary lookups, in the conceptual design we have chosen
to implement the lookups in individual tasks, which conveys information
in a clearer way. Therefore, the conceptual design is more appropriate to
communicate the process steps within the project participants and also gives
us the flexibility to choose the implementation that is more appropriate for
the application needs.

8.6 The Northwind ETL Process in Kettle

We describe next a possible implementation in Kettle of the ETL process that
loads the Northwind data warehouse. In our implementation, the Northwind
operational database and the Northwind data warehouse are located on a
PostgreSQL database server.

Figure 8.36 shows the overall ETL process, in Kettle terminology, a job.
It is similar to the corresponding process for Integration Services shown in
Fig. 8.26. Notice that we have not implemented a control flow for grouping
the three tasks that load the hierarchy composed of the Continent, Country,
and State tables, although this could be done in Kettle using subjobs.

Figure 8.37a shows the transformation (or flow) that loads the Category
dimension table. As can be seen, it is similar to the data flow in Integration
Services shown in Fig. 8.27a. On the other hand, Fig. 8.37b shows the
transformation that loads the Time dimension table. Compared with the
corresponding data flow shown in Fig. 8.27b, Integration Services requires
an additional step for setting the appropriate data types for the attributes
read, while this is specified in the transformation step (or task) that reads
the CSV file in Kettle.2

Transformations similar to the above are needed to load the Product and
Shipper tables. However, although loading the Employee table (which contains
a parent-child hierarchy) in Integration Services is also similar to the other
ones, this is not the case in Kettle, as Fig. 8.38 shows. In this figure, we can
see the transformation that loads the Employee dimension table. We have
seen in Chap. 7 that Mondrian requires a closure table that contains the

2Note that in what follows we will refer indistinctly to transformations and steps
(in Kettle terminology) or flows and tasks (in Integration Services terminology),
respectively, since they represent analogous concepts.
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Fig. 8.36 Overall view of the ETL process in Kettle

Fig. 8.37 Load of the Category (a) and the Time (b) dimension tables

Fig. 8.38 Load of the Employee dimension table

transitive closure of the Supervision hierarchy. For this reason, after reading
the Employees table in the Northwind database, the rows read are sent in
parallel to the steps that load the Employee and the EmployeeClosure tables,
as shown by the icon over the arrows that represent those flows.
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Fig. 8.39 Load of the Continent (a) and the Country (b) dimension tables

Figure 8.39a shows the transformation that loads the Continent dimension
table. With respect to the corresponding data flow in Fig. 8.30b, we can
see that the conversion task is not required in Kettle. On the other hand,
the transformation that loads the Country dimension table in Fig. 8.39b
differs from the corresponding transformation in Integration Services in
Fig. 8.30c, since in Kettle, we can find the ContinentName associated with
a given Country using an XPath expression in a similar way as was done in
the conceptual design given in Sect. 8.3. On the other hand, in Integration
Services, a merge join is needed for this task. After this, a lookup over the
database is performed to get the ContinentKey, and finally the Country table
is loaded.

Fig. 8.40 Load of the City dimension table

Figure 8.40 shows the transformation that loads the City dimension table.
It significantly differs from the corresponding transformation in Fig. 8.32 in
several aspects. First, it is not possible to cascade lookup steps in Kettle as
it is done with lookup tasks in Integration Services since in the latter the
lookup task allows one to split the records into alternative flows depending
on whether a lookup value is found or not, while there is no simple way to do
this in Kettle. Thus, the cascade lookups must be implemented as a collection
of parallel flows. For the same reason, in the Kettle implementation, we do
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not have tasks that load records for which a lookup value was not found in a
text file. The loading of the City table illustrates the above limitation. In the
first step, the transformation tests whether State is null or not. The rows that
do not have a null value must be sent in parallel to all the subsequent lookup
tasks, as shown by the icon over the arrows that represent the flows, while
in Integration Services these lookup tasks are cascaded. Note that we need a
dummy task from which the parallel tasks are triggered. A second important
difference between the Integration Services and Kettle implementations is
that in the latter there is no need to explicitly include a union task, since
when a step has multiple input flows, the union of all such flows is performed.
However, this requires that all the fields in the input flows have the same name
and appear in the same order in the rows. For this reason, two different steps
are needed for loading the City table in Kettle: one for the records containing
CountryKey (task City Load) and the other for the records containing StateKey
(task City Load 2).

Figure 8.41 shows the transformation that loads the Customer dimension
table. Notice that there are two different steps for performing lookups, as
indicated by the different icons: the one that looks for State and the other
ones that look for CityKey. The former lookup type looks for values in a single
table and sends all rows in the input flow to the output flow, where null values
are put in the lookup fields when there is no match. After this, in order to
split the flow, we can check if State is null. The second type of lookup looks

Fig. 8.41 Load of the Customer dimension table
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for values in an SQL query and only sends to the output stream the rows
for which a matching value is found. A dummy task is needed in Kettle for
performing the union between the step that copies the column Region into
a new column State and the step that filters the rows for which a value for
State was found in the first lookup. For the same reasons explained above,
the transformation in Fig. 8.41 differs from the corresponding one in Fig. 8.33
in that the dummy step sends the input rows to all subsequent lookup tasks.
The SQL query used in the lookup step that looks for CityKey with StateName
and CountryName is as follows:

SELECT C.CityKey
FROM City C JOIN State S ON C.StateKey = S.Statekey

JOIN Country T ON S.CountryKey = T.CountryKey
WHERE ? = CityName AND ? = StateName AND ? = CountryName

The ‘?’ symbols are used as parameters that are replaced in the flow with
the values of City, State, and Country that are read from the Customers table.
The SQL queries for the other lookups are similar.

The implementation for the Supplier dimension table is similar so we omit
its description.

Fig. 8.42 Load of the Territories bridge table

Figure 8.42 shows the transformation that loads the Territories bridge table.
The corresponding data flow for Integration Services is shown in Fig. 8.34.
The flow starts by obtaining the assignment of employees to territories from
the Northwind database using an SQL query. In the case of Kettle, there is
no step that removes the trailing spaces in the TerritoryDescription column.
This was taken into account in the SQL query of the subsequent lookup step
as follows:

SELECT CityKey
FROM City
WHERE TRIM(?) = CityName

Note that a similar solution could have been applied in Integration Services.
After the lookup of the CityKey, Kettle requires a sort process prior to
the unique rows step. Compared with the corresponding implementation in



324 8 Extraction, Transformation, and Loading

Fig. 8.43 Load of the Sales fact table

Integration Services, in the latter the sort data task includes the capability
to remove duplicates, which in Kettle requires two transformation steps.

Finally, Fig. 8.43 shows the transformation that loads the Sales fact table.
The corresponding flow for Integration Services is shown in Fig. 8.35. The
flow starts by obtaining values from the following SQL query addressed to
the Northwind database, which is the same as in the conceptual design given
in Sect. 8.3:

SELECT O.CustomerID, EmployeeID AS EmployeeKey,
O.OrderDate, O.RequiredDate, O.ShippedDate,
ShipVia AS ShipperKey, P.ProductID AS ProductKey,
P.SupplierID AS SupplierKey, O.OrderID AS OrderNo,
ROW NUMBER() OVER (PARTITION BY D.OrderID
ORDER BY D.ProductID) AS OrderLineNo,
D.UnitPrice, Quantity, Discount,
D.UnitPrice * (1-Discount) * Quantity AS SalesAmount,
O.Freight/COUNT(*) OVER (PARTITION BY D.OrderID) AS Freight

FROM Orders O, OrderDetails D, Products P
WHERE O.OrderID = D.OrderID AND D.ProductID = P.ProductID

In the corresponding query in Integration Services, it is possible to query
both the Northwind operational database and the Northwind data warehouse
in a single query, while this not possible natively in PostgreSQL. For this,
additional lookup steps are needed in Kettle for obtaining the surrogate keys.
As a consequence, an additional task is needed in Integration Services for
removing the records with null values for surrogate keys obtained from the
SQL query, while these records are automatically removed in the lookup steps
in Kettle.

8.7 Summary

In this chapter, we have presented a detailed study of ETL processes, a key
component of a data warehousing architecture. We have shown the usefulness
of producing a conceptual model of ETL processes, independent of any
implementation. In this way, deploying the model in different tools is possible.
Further, information can be shared and distributed in a language that can
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be easily understood by the stakeholders. The conceptual model for ETL
processes is based on the BPMN standard, relying on the assumption that
ETL processes are similar to business processes. We illustrated the design
and implementation of ETL processes with a complete example based on
the Northwind case study. Thus, the reader can have a clear idea of the
usual tasks that must be performed while implementing such processes. We
provided three versions of the Northwind ETL process, a conceptual one
using BPMN and two implementations in Microsoft Integration Services and
in Pentaho Kettle. We described the differences between the three versions of
this ETL process, taking into account implementation considerations in the
two platforms chosen.

8.8 Bibliographic Notes

A classic reference for ETL is the book by Kimball and Caserta [102]. Various
approaches for designing, optimizing, and automating ETL processes have
been proposed in the last few years. A survey of ETL technology can be
found in [219]. Simitsis et al. [221] represent ETL processes as a graph where
nodes match to transformations, constraints, attributes, and data stores and
edges correspond to data flows, inter-attribute relations, compositions, and
concurrent candidates. An approach for mapping conceptual ETL design
to logical ETL design was proposed in [188]. The books [105] and [26]
describe in detail, respectively, Microsoft Integration Services and Pentaho
Data Integration or Kettle. An introduction to business process modeling,
and an overview of BPMN 2.0 are provided in [211]. This chapter is based
on previous work on using BPMN as a conceptual model for ETL processes,
performed by the authors and collaborators [45–48].

Although in this chapter we focused on Integration Services and Kettle,
other tools are available for designing and executing ETL processes, like
Oracle Data Integrator [80] or Talend Open Studio [19]. However, all
existing tools provide their own language for specifying ETL processes. Their
languages differ considerably in many respects, in particular since they are
based on different paradigms and have different expression power.

8.9 Review Questions

8.1 What is a business process? Why do we need to model business
processes?

8.2 Describe and classify the main constructs of BPMN.
8.3 What is the difference between an exclusive and an inclusive gateway?
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8.4 Can we model splitting of flows without gateways? Are there cases
where this is not possible?

8.5 Give examples of the use of the several kinds of BPMN events.
8.6 What is a default flow? When should we use it?
8.7 Discuss why should we or should we not need a conceptual design phase

for ETL processes.
8.8 Why is BPMN appropriate for modeling ETL processes? Do you think

that there are situations where this is not the case?
8.9 Explain the rationale of the methodology studied in the chapter. What

are control tasks? What are data tasks?
8.10 What is the main difference between the diagrams for ETL design

proposed in this chapter and the typical BPMN diagram?
8.11 Discuss the advantages and disadvantages of representing, in Integra-

tion Services, a sequence of tasks as a single SQL query (see an example
in Sect. 8.5).

8.12 Compare Integration Services and Pentaho Kettle. What are the main
differences between them? For each element of the former (e.g., a flow),
describe the analogous one on the latter.

8.13 Discuss why it is not possible to perform a sequence of lookups in
Kettle, as it is done in Integration Services.

8.10 Exercises

8.1 Design the conceptual ETL schema for loading the Product dimension
of the Northwind data warehouse.

8.2 In the Northwind data warehouse, suppose that surrogate keys Catego-
ryKey and ProductKey are added, respectively, to the Category and the
Product tables, while the operational keys are kept in attributes Cate-
goryID and ProductID. Modify the conceptual ETL schema obtained in
Ex. 8.1 to take into account this situation.

8.3 Modify the conceptual ETL schema obtained in Ex. 8.2 to take into
account a refresh scenario in which products obtained from the
operational database may be already in the Product dimension in the
data warehouse. Use a type 1 solution for the slowly changing dimension
by which the attribute values obtained from the operational database
are updated in the data warehouse.

8.4 Modify the conceptual ETL schema obtained in Ex. 8.3 by using a type
2 solution for the slowly changing dimension Product by which for the
products that have changed the value of the To attribute for the current
record is set to the current date and a new record is inserted in the
dimension with a null value in that attribute.

8.5 Design the conceptual ETL schema for loading the Supplier dimension
of the Northwind data warehouse.
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8.6 Implement in Integration Services the conceptual schemas of Exs. 8.1
and 8.5.

8.7 Implement in Kettle the conceptual schemas of Exs. 8.1 and 8.5.
8.8 Given the operational database of the French horse race application

obtained in Ex. 2.1 and the associated data warehouse obtained in
Ex. 4.5, design the conceptual ETL schema that loads the data
warehouse from the operational database.

8.9 Given the operational database of the Formula One application
obtained in Ex. 2.2 and the associated data warehouse obtained
in Ex. 4.7, design the conceptual ETL schema that loads the data
warehouse from the operational database.

8.10 Given the source database in Ex. 5.9 and the schema of your solution,
implement in Integration Services the ETL schema that loads the data
warehouse from the sources.

8.11 Given the source database in Ex. 5.9 and the schema of your solution,
implement in Kettle the ETL schema that loads the data warehouse
from the sources.



Chapter 9

Data Analytics: Exploiting the Data
Warehouse

Analytics can be defined as the discovery and communication of meaningful
patterns in data. Organizations apply analytics to their data in order to
describe, predict, and improve organizational performance. Analytics uses
descriptive and predictive models to gain valuable knowledge from data
and uses this insight to guide decision making. Analytics relies on data
visualization to communicate insight. We can distinguish several variations of
analytics depending on the kind of data to be analyzed. While data analytics
copes with traditional structured data, text analytics refers to the analysis
of unstructured textual sources such as those found in blogs, social networks,
and the like. Web analytics refers to the collection, analysis, and reporting of
web data. Finally, visual analytics combines automated analysis techniques
with interactive visualizations, providing effective means to interactively
explore large and complex data sets for decision making.

In this chapter, we focus on data analytics in the context of data
warehousing, that is, on the exploitation of the data collected in the
warehouse to support the decision-making process. We describe several tools
that can be used for this purpose, namely, data mining, key performance
indicators (KPIs), and dashboards. We start in Sect. 9.1 by presenting the
most widely used data mining tasks and the techniques that implement
them. We focus on decision trees, clustering, and association analysis and also
comment on other techniques like regression and pattern analysis. Then, in
Sect. 9.2, we discuss the notion of KPIs. Finally, in Sect. 9.3, we explain how
dashboards are used to display KPIs and other organizational information
in a way that the managers can take timely and informed decisions. In all
cases, we implement these techniques over the Northwind case study using
Microsoft Analysis Services.

Note that this chapter is not intended to be a comprehensive presentation
of these topics as there are many books entirely devoted to each one of them.
We give an introduction to these topics in the context of data warehouses
and point at the end of the chapter to popular references in these domains.

A. Vaisman and E. Zimányi, Data Warehouse Systems, Data-Centric
Systems and Applications, DOI 10.1007/978-3-642-54655-6 9,
© Springer-Verlag Berlin Heidelberg 2014

329



330 9 Data Analytics: Exploiting the Data Warehouse

9.1 Data Mining

Data mining is the analysis of often large data sets to find unsuspected
interesting relationships and to summarize data in novel ways that are both
understandable and useful to the users. Mining information and knowledge
from large databases had become nowadays a key topic in database systems.
Thus, vendors of such systems, as well as the academic community, have
been giving increasing attention to the development of data mining tools. The
growing capability to collect and process data, enhanced with the possibilities
given by data warehousing, has generated the necessity to have tools which
can help to handle this explosive growth and to extract useful information
from such data, and data mining has emerged as an answer to these needs.

Data mining is a single step in a larger process called knowledge
discovery in databases, which aims at the extraction of nontrivial,
implicit, previously unknown, and potentially useful information from data
in databases. The knowledge discovery process involves several steps such
as data cleaning, selection, transformation, reduction, model selection, and,
finally, exploitation of the extracted knowledge.

Data mining borrows from several scientific fields like artificial intelligence,
statistics, neural networks, and other ones, but the need for a separate
research area is justified by the size of the data collections under analysis.
The information is hidden in large and often heterogeneous collections of
data, located in several different sources, with users demanding friendly and
effective visualization tools. On the other hand, usual data mining queries
cannot be answered in plain SQL. Moreover, it is often the case that the
user does not know what she is looking for, so she needs an interactive
environment, which can be provided by a combination of OLAP and data
mining tools.

We point out next some requirements in data mining not covered by the
scientific fields from which it inherits:

• Heterogeneous data must be handled, in addition to traditional relational
data. For example, textual, web, spatial, and temporal data, among others,
must be supported.

• Efficient and scalable algorithms are required due to the size of the data
under analysis.

• Graphical user interfaces are necessary for knowledge discovery, since it is
often the case that nonexpert users interact with such systems.

• Privacy-aware data mining algorithms must be developed, since data are
used in strategic planning and decision making, increasing the need for
data protection, in addition to privacy regulation compliance.

• Mining at different abstraction levels also needs to be supported. Some-
times, essential knowledge that cannot be found at some level of abstrac-
tion could be discovered at finer or coarser granularity levels.
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• Since data in databases are constantly being modified, discovery methods
should be incremental, to be able to update results as data change, without
needing to rerun the algorithms from scratch.

9.1.1 Data Mining Tasks

Data mining can be categorized into types of tasks, which correspond to
various different objectives of the data analyst. Data mining tasks aim at
discovering models and patterns. A model is a global summary of a data
set. A simple model can be represented by a linear equation like

Y = aX + b

where X and Y are variables and a and b are parameters. Opposite to the
global nature of a model, patterns make statements about restricted regions
of space spanned by the variables. An example is the simple probabilistic
statement

if X > x1 then prob(Y > y1) = p1.

Thus, a pattern describes a structure of a relatively small part of the data
space. We next discuss the main data mining tasks.

Exploratory data analysis is an approach for data analysis that uses a
variety of (mostly graphical) techniques to get insight into a data set, aimed
at exploring the data without a clear idea of what we are looking for. Thus,
these techniques are typically visual and interactive. A common example of
an exploratory data analysis technique is to perform a scatterplot of the data
set in the plane and visually analyze the characteristics of such data set. For
example, if we can approximate this set of points using a line, we say that
the data set is linear. The same plot can also be used to visually look for
outliers.

The goal of descriptive modeling is to describe the data or the process
that generates such data. A typical descriptive technique is clustering. This
technique aims at putting together similar records based on the values of
their attributes. For example, in commercial databases, we may want to split
the records into homogeneous groups so that similar people (e.g., customers)
fall in the same group. There are two possibilities in this respect. We can
either define the number of groups in advance or let the algorithm discover
natural groups of data.

Predictive modeling aims at building a model that predicts the value
of one variable from the values of other ones. Typical techniques are
classification and regression. In the former, the variable being predicted
is categorical, while in the latter, the variable to be predicted is quantitative.
For example, in classification, we may want to categorize insurance customers
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according to three levels of risk: low, medium, and high. Regression models
can be used to predict the value of a commodity. The key difference between
both prediction and description is that prediction has a unique variable as
objective, while in descriptive problems no single variable is central to the
model. In this chapter, we focus on classification.

Pattern discovery aims at revealing either a regular behavior in a data
set or records that deviate from such a regular behavior. A typical example
of the former is the problem of finding sequential patterns in a data set.
In traffic analysis, for instance, we can discover frequent routes of moving
objects like cars, trucks, and pedestrians. An example of finding irregular
behavior is to discover fraudulent credit card transactions. Another problem
related to pattern discovery arises when, given a pattern of interest, the user
wants to discover similar ones in the data set. This is used, for instance, to
find documents relevant to a set of keywords or images similar to a given one.

Typically, data mining algorithms have the following components:

• A model or pattern, for determining the underlying structure or functional
forms that we are looking for in the data.

• A score function, to assess the quality of the model.
• Optimization and search methods, to optimize the score function and

search over different models and patterns.
• Data management strategies, to handle data access efficiently during

search and optimization.

In the next sections, we give a brief overview of the most important data
mining techniques and algorithms used to carry out the data mining tasks
described above. We will illustrate these using the Northwind data warehouse
given in Fig. 5.4, to which we added two tables, depicted in Fig. 9.1, one
containing customer demographic data and another containing prospective
new customers. The latter will be used for prediction purposes, to forecast
the probability that a new customer places an order above a certain amount.

We explain next some of the attributes of these tables. The domain
of attribute BusinessType is the set {Minimart, Grocery, Supermarket,
Hypermarket, Pub, Tavern, Café, Restaurant, Delicatessen}. The domain of
attribute OwnershipType is the set {Soletrader, Partnership, Cooperative,
Limited liability company, Unlimited liability company, Corporation, Franchise}.
Attributes TotalEmployees and PermanentEmployees have the following
categorical values:

• 1: 1–19
• 2: 20–49
• 3: 50–99
• 4: 100–249
• 5: 250–499
• 6: 500–999
• 7: 1,000–2,500
• 8: Over 2,500
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Customer

CustomerKey
CustomerID
CompanyName
Address
PostalCode
CityKey

Customer
Demographics

CustomerKey
BusinessType
OwnershipType
TotalEmployees
PermanentEmployees
AnnualRevenue
AnnualProfit
YearEstablished
StoreSurface
ParkingSurface
DateFirstOrder
DateLastOrder

NewCustomers

NewCustomerKey
CompanyName
StreetAddress
City
State
PostalCode
Country
BusinessType
OwnershipType
TotalEmployees
PermanentEmployees
AnnualRevenue
AnnualProfit
YearEstablished
StoreSurface
ParkingSurface

Fig. 9.1 Tables CustomerDemographics and NewCustomers added to the Northwind
data warehouse given in Fig. 5.4

Attributes AnnualRevenue and AnnualProfit have the following values:

• 1: Under $10,000
• 2: $10,000–50,000
• 3: $50,000–100,000
• 4: $100,000–500,000
• 5: $500,000–1,000,000
• 6: Over $1,000,000

Attribute YearEstablished has a range of 1950–1997. Attributes StoreSurface
and ParkingSurface are expressed in square meters. Finally, attributes Date-
FirstOrder and DateLastOrder are derived from the Sales fact table.

9.1.2 Supervised Classification

Supervised classification is the process that allocates a set of objects in
a database to different predefined classes according to a model built on the
attributes of these objects. For this, a database DB is split into a training
set E and a test set T . The tuples of DB and T have the same format,
while the tuples in E have an additional field, which is the class identity,
which stores the class of each tuple in the training set. These classes are used
to generate a model to be used for classifying new data. Once the model
is built using the training set (with labeled records), the correctness of the
classification is evaluated using the test set (with unlabeled records). Typical
uses of classification are credit approval (risk classification), marketing, health
planning, and so on.
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Classification methods were borrowed from statistics and machine learn-
ing. The most popular methods are the ones based on decision trees. A
decision tree has three types of nodes: a root node, with no incoming edges and
zero or more outgoing edges; internal nodes, with exactly one incoming edge
and two or more outgoing edges; and leaf or terminal nodes, with exactly one
incoming edge and no outgoing edges. In a decision tree, each terminal node
is assigned a class label. Nonterminal nodes contain attribute test conditions
to split records with different characteristics from each other.

For example, in the Northwind case study, we want to generate a very
simple classification of customers, consisting in just two classes: good or
bad customers, identified as ‘G’ and ‘B’, respectively. For this, we use two
demographic characteristics: the year the business was established and the
annual profit. To represent the first characteristic, we use the attribute
YearEstablished. For the second and to keep the example simple at this stage,
we use a continuous attribute called AnnualProfitCont. Recall that in Sect. 9.1
the attribute AnnualProfit has been categorized into six classes. For the
current example, we use the actual continuous values. Later in this chapter,
we will show an example using discrete attributes when we present Analysis
Services data mining tools. Intuitively, to be classified as ‘G’, a customer
established a long time ago (say, 20 years) requires a smaller profit than the
profit required to a customer more recently established. We will see below
how this classification is produced.

YearEstablished AnnualProfitCont Class
1977 1,000,000 G
1961 500,000 B
1978 1,300,000 B
1985 1,200,000 G
1995 1,400,000 B
1975 1,100,000 G

In this example, we can use the YearEstablished attribute to separate records
first, and, in a second step, we can use the AnnualProfitCont attribute for
a finer classification within the class of customers with similar amount
of years in the market. The intuition behind this is that the attribute
YearEstablished conveys more information about the record than the attribute
AnnualProfitCont.

Once the model has been built, classifying a test record is straightforward,
as this is done by traversing the tree and evaluating the conditions at
each node. For example, we can build a tree like the one in Fig. 9.2, based
on the training data. Then, if a record with YearEstablished = 1995 and
AnnualProfitCont = 1,200,000 arrives, it will be classified as ‘G’, following
the path: YearEstablished ≤ 1977 = false, AnnualProfitCont ≤ 1,000,000 =
false. Again, the rationale here is that even if the customer has established
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Year
Established 

1977

AnnualProfit 
500,000

AnnualProfit 
1,000,000

B G B G

Y
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N Y N

Y

Fig. 9.2 An example of a decision tree model for the Northwind customers

relatively recently, its profit is high enough to be considered as a reliable
customer.

There are many algorithms that compute a decision tree. A well-known one
is the ID3 algorithm. Here, starting at the root, which initially contains all the
training samples, the attribute conveying more information is used to split
the nodes in a recursive fashion. Other algorithms like SPRINT and SLIQ
are also used to improve the efficiency of classification in large databases.
The basic process involves two steps, partitioning and pruning, as shown
below. It is usual to split the data set into two halves, the first being used
for partitioning and the second for pruning:

ID3 Algorithm
INPUT: A data set T
OUTPUT: A classification tree
BEGIN

1. Build an initial tree from the training data set T
IF all points in T belong to the same class THEN RETURN;
Evaluate splits for every attribute;
Use the best split for partition T into T1 and T2;
ID3(T1);
ID3(T2);

2. Prune this tree to increase test accuracy.
This removes branches that are likely to induce errors.

END

A key challenge in these algorithms is how to partition the tree nodes. This
is done measuring the information conveyed by each attribute. Attributes
conveying more information are selected first. There are many methods used
for node partitioning. For example, the SPRINT algorithm uses the Gini
index, while the SLIQ algorithm uses the notion of information entropy.

The Gini index for a data set T whose elements are classified into C
classes is defined as follows:

Gini(T ) = 1−
C∑

i=1

p2i
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where pi is the relative frequency of class i in the data set T . If the set T
contains n samples and a split divides T into two subsets T1 and T2, with
sizes n1 and n2, respectively, the Gini index of the divided data is given by

GiniSplit(T ) =
n1

n
Gini(T1) +

n2

n
Gini(T2).

The attribute achieving the smallest Gini index value is then chosen to split
the node. Note that there are three different cases to consider, depending on
the kind of attribute, namely, binary, categorical, or continuous. The latter
is the case in our example. Since it would be very expensive to consider all
possible values to split a node, candidate values are taken as the actual values
of the attribute. Thus, for the YearEstablished attribute, we only consider the
values 1961, 1977, 1978, 1995, 2010, and 2012. For instance, splitting the node
using YearEstablished = 1977 results in a subset T1 containing one record in
class ‘B’ and two records in class ‘G’ (for the values ≤ 1977) and another
subset T2 containing two records in class ‘B’ and one record in class ‘G’ (for
the values > 1977). Thus, the Gini index will be

Gini(T1) = 1− (13 )
2 − (23 )

2 = 0.444

Gini(T2) = 1− (23 )
2 − (13 )

2 = 0.4444

GiniYearEstablished=1977(T ) =
3
6 (0.444) +

3
6 (0.444) = 0.444

Doing the same, for example, with AnnualProfitCont = 1,000,000, we would
obtain a Gini index of 0.495 (we leave the computation to the reader); thus,
we select first the attribute YearEstablished. At a second level, we will use
AnnualProfitCont for a finer classification.

9.1.3 Clustering

Clustering or unsupervised classification is the process of grouping
objects into classes of similar ones. Classes are defined as collections of
objects with high intraclass similarity and low interclass similarity. Let us
motivate the use of clustering in the Northwind case study. In addition to the
classification that we described above, which is used to predict a customer’s
behavior, the Northwind managers also want to have a first idea of the
groups of similar customers that can be defined based on their demographic
characteristics and in the purchases they had made. With this information,
for example, the marketing department can prepare customized offers or
packages. Note that to include information about the customer’s purchases,
a join between the tables Customer and CustomerDemographics and the fact
table Sales must be performed, in order to generate a larger table that will be
the input to the clustering algorithm containing, for example, the number of
orders placed, the maximum and minimum amounts of the orders, and other
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data that may be useful to group similar customers. Anyway, this is only one
of the many possible data preparation tasks that must be performed over the
data in order to guarantee reliable results. We show a concrete example over
Analysis Services later in this chapter.

Data clustering discovers distribution patterns of the data set. The most
popular clustering methods are based on similarity or distance between data
points. Thus, a notion of distance between clusters must be defined in order
to evaluate the quality of a clustering model. Typically the Euclidean distance
is used. We explain this next.

Let us call d(x, y) the distance between two points x and y in a cluster.
In addition, for a given cluster Ck, its center rk is computed, often as the
vector mean of the points in the cluster. To determine the quality of a certain
clustering configuration C = C1, . . . , CK , we need to compute two functions:
the within cluster variation wc(C) and the between cluster variation
bc(C). These functions are used to measure the intraclass and interclass
similarity, respectively. The within cluster variation is first computed for each
cluster and then for the whole clustering configuration, as indicated below:

wc(Ck) =
∑

x(i)∈Ck

d(x, rk)
2; wc(C) =

K∑

k=1

wc(Ck).

The between cluster variation is measured by the distance between cluster
centers and is computed as follows:

bc(C) =
∑

1≤j≤k≤K

d(rj , rk)
2.

Finally, the quality of a clustering can be defined by the score function
bc(C)/wc(C).

Clustering algorithms are aimed at optimizing the score functions. The
problem consists in searching the space of assignments of points to clusters
and find the one that minimizes/maximizes the score function. The typical
clustering algorithm, from which many different variants are built, is the K-
means algorithm. Here, the number of K clusters is fixed at the start.
The basic algorithm randomly picks K cluster centers and assigns each point
to the cluster whose mean is closest using the Euclidean distance. For each
cluster, the new center is computed and used to replace each initial cluster
center value. Then, each object is assigned to the cluster with the smallest
squared Euclidean distance. The cluster centers are recalculated based on the
new membership assignment, and the procedure is repeated until no object
changes the clusters. A scheme of the algorithm is given next:

K-Means Algorithm
INPUT: A data set T containing n data points (x1, . . . , xn)
OUTPUT: A set of K clusters C1, . . . , CK
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BEGIN
FOR k = 1, . . . ,K let rk be a randomly chosen point in T ;
WHILE changes in clusters Ck happen DO

/* Form clusters */
FOR k = 1, . . . , K DO

Ck = {xi ∈ T | d(rk, xi) ≤ d(rj , xi) ∀j = 1, . . . , K, j 	= k};
END;
/* Compute new cluster centers */
FOR k = 1, . . . , K; DO

rk = the vector mean of the points in Ck;
END;

END;
END;

There are several enhancements and variations of the classic clustering
method. A relevant one is hierarchical clustering. The idea behind hierar-
chical clustering is to reduce or increase iteratively the number of clusters
of a given model. In the first case, we have agglomerative algorithms; in
the second one, we have divisive algorithms. Let us consider agglomerative
algorithms. The rationale is that if two clusters are close to each other (given
the distance function in use), we can merge them into a single one. The
general algorithm is given below:

Agglomerative Algorithm
INPUT: A data set T containing n data points (x1, . . . , xn).

A function d(Ci, Cj) to measure the distance between clusters.
OUTPUT: A set of K clusters C1, . . . , CK

BEGIN
FOR k = 1, . . . , n let Ci = {xi};
WHILE there is more than one cluster left DO

Let Ci and Cj be the clusters minimizing the distance between
all pairs of clusters;

Ci = Ci ∪ Cj ;
Remove Cj ;

END;
END;

9.1.4 Association Rules

Association analysis aims at discovering interesting relationships hidden in
large data sets. Although it can be used in many domains, it is a very popular
technique for market basket analysis, for example, in the retail industry. Thus,
the goal of mining association rules in databases is to discover associations
between items that are present in a set of transactions. Although through
this technique we can find many trivial associations, it is also possible to
find unexpected associations, that is, items that are frequently purchased
together although their relationship is not that obvious. Like in all data
mining techniques, data preprocessing must be performed to produce the
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appropriate tables over which the algorithms can be applied. For example,
the Northwind data warehouse is an appropriate source of data to find
associations between items. Conceptually, the Sales fact table contains data
of all customer purchases. Further, the OrderNo and OrderLineNo can be used
to obtain the items that are purchased together. With this information, the
Northwind management can discover which are the items that are frequently
ordered together. We show a concrete example in Sect. 9.1.7.

Let I = {i1, i2, . . . , im} be a set of literals, called items. A set of items
is called an itemset. Let D be a set of transactions, where each transaction
T is an itemset such that T ⊆ I. Let also X be an itemset. A transaction
T is said to contain X if and only if X ⊆ T . An association rule is an
implication of the form X ⇒ Y , where X ⊂ I, Y ⊂ I, and X ∩ Y = ∅. The
rule X ⇒ Y holds in D with confidence c, if c% of the transactions in D
that contain X also contain Y . The rule X ⇒ Y has support s in D if s%
of the transactions in D contain X ∪ Y .

We illustrate the problem with a simple but typical example. Consider
the following table containing a collection of transactions corresponding to
purchases in a supermarket. A transaction is identified by a TransactionID
attribute and a list of items included in the transaction.

TransactionId Items
1000 {1,2,3}
2000 {1,3}
3000 {1,4}
4000 {2,5,6}

From this data set, we can obtain at least the following rules. First, 1⇒ 3
with support 50% and confidence 66%, which means half of the transactions
include items 1 and 3, and from the three transactions that include item 1,
two of them include item 3. That is, c = 2

4 and s = 2
3 . Analogously, the rule

3⇒ 1 also holds with support 50% (for the same reason of the previous rule)
and confidence 100%. The latter is because all the transactions containing
item 3 also contain item 1.

In general, algorithms for finding association rules consist in two main
stages:

1. Generate the frequent itemsets, which finds all the itemsets that satisfy
a minimum support (minsup) threshold.

2. Generate the association rules, which extracts all the high-confidence rules
from the frequent itemsets found in the previous step. These are called
strong rules.

The first operation above is critical since generating the rules once the
frequent itemsets have been found is straightforward.

Another concept worth to be commented is the one of interesting rules.
We say an association rule A ⇒ B is interesting if its confidence exceeds a
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certain value or, in other words, if P (A∩B)
P (A) is greater than a constant d. The

former is just a test of statistical independence.
The most well-known algorithms for mining association rules are the

Apriori algorithm and the DHP algorithm. The main idea is to generate,
in the ith iteration, the set of candidate itemsets of length i (denoted Ci)
and prune the ones that do not satisfy the minimum required support. In
this way, we generate the sets called large itemsets Li, which will be used
for finding the sets of candidate itemsets with length i + 1. To prune these
sets, the Apriori principle is typically applied: if an itemset is frequent, all of
its subsets must also be frequent. For instance, {A,B} cannot be a frequent
itemset if either A or B are not frequent. The DHP algorithm is similar to
Apriori, but it uses hashing to test the eligibility of a k-itemset.

Let us show how the Apriori algorithm works, using the example intro-
duced above. We first rewrite the transaction table as a table with two
columns Item and Count, where column Count contains the number of times
that an item appears in a transaction in the database.

Item Count
1 3
2 2
3 2
4 1
5 1
6 1

Assume that the minimum support required is minsup = 50%, which
means each itemset must appear at least two times in the database of
transactions, in order to be considered frequent. Initially, every item is a
candidate 1-itemset C1. However, only items 1, 2, and 3 have support at
least equal to minsup. Thus, we delete the remaining ones (depicted in light
gray in the table above) and we obtain the set of large 1-itemsets L1. With
this set we generate the new candidate itemset table C2, depicted below.

Item Count
{1,2} 1
{1,3} 2
{2,3} 1

Then, the only 2-itemset that satisfies minsup is {1,3}. Since we cannot
generate 3-itemsets (because the set would contain the subset {1,2}, which
does not satisfy the minimum support), we stop here. Then, the only two
rules that can be generated are 1⇒ 3 and 3⇒ 1.
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To enhance the efficiency of the process of discovering association rules,
various techniques can be applied:

1. Database scan reduction: If the candidate itemsets can be stored in main
memory, some scans could be avoided and more than one large itemset
could be found using the same database scan.

2. Sampling: If mining is required frequently, sampling can be a way of
improving performance, with reasonable accuracy cost, if we take the
reduction factor into account when computing the confidence and support.
A relaxation factor is calculated according to the size of the sample.

3. Parallel data mining: Several algorithms supporting parallelism have been
developed, in order to take advantage of parallel architectures.

As data are entered into the database, we may need to recompute the
discovered association rules. In order to keep performance within required
limits, incremental updating of association rules should be developed, to avoid
repeating the whole mining process. The classic Fast Update algorithm (FUP)
was the first one proposed to solve the problem of incremental mining of
association rules. The algorithm handles insertions but is not able to deal
with deletions. Although it was enhanced in sequel versions, we explain here
the basic algorithm to give a general idea of how updates can be handled in
association rule mining.

Let us consider a database DB and the frequent itemsets obtained from
it, denoted L = {L1, . . . , Lk}. There is also an incremental database db,
containing the new records. The goal of FUP is to reuse information to
efficiently obtain the new frequent itemsets L′ = {L′

1, . . . , L
′
k} over the

database DB ′ = DB ∪ db. Let us assume that D is the size (number of
transactions) of DB and d is the size of db. We call X.sDB the support of an
itemset X over the database DB expressed as the number of transactions in
which X appears in the database.

The FUP algorithm is based in the fact that, given an original database
DB and an incremental database db, the following holds:

• A 1-itemset X frequent in DB (i.e., X ∈ L1) becomes infrequent in DB ′

(i.e., X �∈ L′
1) if and only if X.sDB′ < minsup × (D + d).

• A 1-itemset X infrequent in DB (i.e., X �∈ L1) may become frequent in
DB ′ (i.e., X ∈ L′

1) if and only if X.sdb < minsup × d.
• A k-itemset X whose (k − 1)-subsets become infrequent (i.e., the subsets

are in Lk−1 but not in L′
k−1) must be infrequent in db.

Similarly to the Apriori algorithm, the FUP algorithm involves a number
of iterations. The candidate sets at each iteration are generated based on the
frequent itemsets found in the previous iteration. At the kth iteration, the
db is scanned exactly once. The originally frequent itemsets {X |X ∈ Lk}
only have to be checked against the small increment db. To discover the new
frequent itemsets, the set of candidate itemsets Ck is firstly extracted from db
and then pruned according to the support count of each candidate itemset in
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db using the rules above. To explain the idea of the algorithm, next we focus
on how to incrementally compute the 1-itemsets, which means the itemsets of
length one. The remaining itemsets are computed analogously in subsequent
iterations. To compute L′

1 in the updated database DB ′, the FUP algorithm
proceeds as follows:

• Scan db for all itemsets X ∈ L1, and update their support count X.sDB ′ .
Then, if X.sDB′ < minsup × (D + d), X will not be in L′

1 (in the original
FUP algorithm, it is called a loser).

• In the same scan, compute the candidate set C1 with all the items X that
are in db but not in L1. If X.sdb < minsup × d, X cannot be a frequent
itemset in the updated database.

• Scan the original database DB to update the support count for each X ∈
C1. Then, we can generate L′

1.

For instance, suppose that our example database is updated with the
following transactions (the incremental database db):

TransactionId Items
5000 {1,2,4}
6000 {4}

The count of each item in db is given by

Item Count
1 1
2 1
4 2

Recall that we require minsup = 50%. Let us consider first the frequent
1-itemsets in the original database DB , which means the items in L1. These
are I1 = 1 (appears three times in the database), I2 = 2 (appears twice in
the database), and I3 = 3 (also appears twice in the database). The first
step of the FUP algorithm requires a scan of db for all itemsets L1 and the
computation of their support with respect to DB ′. For each one of these
items, we have

I1.sDB ′ = 4 > 0.5× 6

I2.sDB ′ = 3 = 0.5× 6

I3.sDB ′ = 2 < 0.5× 6

Therefore, itemset I3 will be a loser since it does not verify the support
in the updated database; therefore, it is dropped. On the contrary, I1 and I2
will be included in L′

1.
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The second step of the algorithm computes the candidate set C1 with all
the 1-itemsets in db that are not in L1. We only have I4 = 4 in this situation.
Since I4 is in both transactions in db, we have I4.sdb = 2 > 0.5× 2, and thus,
I4 will be added to L′

1.
Finally, the updated support count is given in the following table, where

in light gray we indicate the items I with support less than minsup × 6:

Item Count
1 4
2 3
3 2
4 3
5 1
6 1

The association analysis studied so far operates over the items in a
database of transactions. However, we have seen that dimension hierarchies
are a way of defining a hierarchy of concepts along which transaction items
can be classified. This leads to the notion of hierarchical association
rules. For example, in the Northwind data warehouse, products are organized
into categories. Assume now that in the original transaction database in our
example above, items 1 and 2 belong to category A, items 3 and 4 to category
B, and items 5 and 6 to category C. The transaction table with the categories
instead of the items is given below:

TransactionId Items
1000 {A,A,B}
2000 {A,B}
3000 {A,B}
4000 {A,C,C}

Suppose now that we require minsup = 75% over the items database, we
would obtain no rules as a result. However, aggregating items over categories,
like in the table above, would result in the rules A ⇒ B and B ⇒ A since
categories A and B have support larger than the minimum, namely, 1 and
0.75, respectively. That means we could not say that each time a given item
X appears in the database, an item Y will appear, but we could say that each
time an item of category A appears, an item of category B will be present
too. This is called a hierarchical association rule. Note that combinations of
items at different granularities can also appear, for example, rules like “Each
time a given item X appears in the database, an item of a category C will
also appear.”
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9.1.5 Pattern Growth Algorithm

The Apriori algorithm presented above is the most popular approach to
mining association rules. However, when the minimum support is low or
the length of the patterns is long, candidate generation may turn out to
be inefficient. In addition, in each iteration, the database must be scanned
with respect to the current candidates, which is also a costly task. To address
these problems, another approach to mining frequent itemsets, called pattern
growth, has been devised. The pattern growth algorithm does not generate
candidate itemsets. The method uses a two-step approach: In the first step,
a compact data structure, called FP-tree, is built to encode the database.
Two scans of the database are required for this. In the second step, the
frequent itemsets are extracted after traversing and partitioning the FP-tree.
We sketch the idea of the algorithm next, using the same transaction database
as above.

TransactionId Itemset Ordered Frequent Items
1000 {1,2,3} 1:3, 2:2, 3:2
2000 {1,3} 1:3, 3:2
3000 {1,4} 1:3
4000 {2,5,6} 2:2

Note that, to better illustrate the algorithm, we added a column to
represent the frequent items, in descending order of support. For example, 1:3
means that item 1 has support 3 (recall that in this example, the minimum
support is 2). Items 4, 5, and 6 were excluded from this new column because
their support is 1. Below, we explain how these values are obtained.

The FP-tree is a data structure defined as follows:

• The nodes are of the form i :c, where i represents the item and c represents
a counter.

• There is an edge (indicated as a solid line) between nodes appearing
together in a transaction; a fixed order is used, so paths in the tree overlap
if transactions share items.

• There is a table T containing an entry for each item in the tree.
• There is an edge (indicated as a dashed line) between nodes containing

the same item (independent of the value of the counter), forming a path
composed of nodes representing the same item.

• There is an edge between each entry in T to the node in the tree which is
the head of the path indicated above.

Figure 9.3 shows the FP-tree of our example. We next explain how we built
this tree.

The FP-tree is constructed in two passes over the database. In the first
pass, we scan the database to find the support of each item. We discard items
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that are not frequent (the ones with support less than 2 in our example),
and, for each transaction, we sort the frequent items in decreasing order
of their support. In this way, the common prefixes can be shared between
transactions.

In our example, only items 1, 2, and 3 are frequent. The first transaction
in the database includes all of these items. Thus, we sort them in descending
order of support, including the support count in the form i :c. We obtain the
list 〈1:3, 2:2, 3:2〉, meaning that items 1, 2, and 3 have support 3, 2, and 2,
respectively. We proceed analogously with the other transactions.

In the second pass, we construct the FP-tree as follows. We first create the
root node and then perform a scan of the database, analyzing each transaction
again, but only considering the frequent items obtained in the first pass.
In our example, the first transaction produces the first branch of the tree:
root→ 1:1→ 2:1→ 3:1. The branch is ordered according to the third column
of the table above, that is, the order defined in the first pass. The second
transaction contains items 1 and 3, so it shares a common prefix with the
first transaction (i.e., item 1). Thus, we increment the support count of this
prefix to 2, and the branch will read root→ 1:2→ 3:1. The third transaction
includes only one item whose minimum support is at least 2 (again, item 1).
Thus, we just increase the node count, yielding the node 1:3. Finally, the
fourth transaction leads to a new branch of length 1, namely, root → 2:1.
Figure 9.3 shows the final state of the FP-tree.

2:1

3:1

root

3:1

2:1

1

2

3

Item

1:3

Fig. 9.3 The FP-tree for the running example

Note that this tree represents, in a compact form, the part of the database
containing only items satisfying the minimum support. Each transaction is
mapped to a path in the FP-tree, and the more paths that overlap, the higher
the compression rate achieved. In this way, it is even possible that this tree
fits in main memory. In the best case, we will have a single path in the tree.
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Fig. 9.4 Prefix path subtrees ending in 3 (a), 2 (b), and 1 (c)

In the worst case, we will have the whole database, if there are no items in
common in the transactions, which is very unlikely in real-world scenarios.

To discover the frequent itemsets, the method makes use of a divide and
conquer strategy. The FP-tree is divided using a bottom-up algorithm that
finds subtrees such that each one of them is composed of the paths ending
at the same item. These are called prefix path subtrees. There are as many
subtrees as frequent items. Each subtree is built bottom-up starting from
a frequent item. For instance, for the FP-tree in Fig. 9.3, the prefix path
subtree ending in 3 is shown in Fig. 9.4a. The subtree is composed of all
the paths that start at the root and end at a node representing item 3. We
proceed analogously with items 2 and 1, yielding the subtrees of Fig. 9.4b, c.
Note that the support of the items in each subtree is obtained by adding the
values of the counters along each linked list (the one formed by the dashed
lines). For example, in Fig. 9.4a, the support of item 3 is 2, because two nodes
3:1 are linked by a dashed line. Thus, item 3 is frequent, and we can now find
the frequent itemsets ending in 3. For this, we need to build the corresponding
conditional subtrees as we explain next.

For each subtree corresponding to an item i, we construct a conditional
subtree as follows: we take each prefix path subtree for i and remove all the
nodes containing i. For example, for the subtree corresponding to item 3, we
traverse the tree bottom-up starting from each node for 3. We drop all the
nodes for item 3 (in this case, the two nodes 3:1) and update the counters.
Now, the node 1:3 becomes 1:2 (corresponding to the paths root→ 1:2→ 2:1,
and root→ 2:1). We obtain the tree in Fig. 9.5a. From this tree we remove the
infrequent nodes, in this case, node 2:1. The name ‘conditional’ arises from
the fact that this tree contains only items that appear together with item 3.
Frequent itemsets containing the item {3} are obtained combining the nodes
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in the conditional tree with such item. In this case, combining item 1 (from
node 1:2) with the parameter of the conditional tree (in this case, item 3), we
obtain the 2-itemset {1,3}. Thus, item 3 yields two frequent itemsets, {1,3}
and {3}.

Then, we build the conditional FP-tree for item {2}. We traverse bottom-
up the tree in Fig. 9.4b, starting from each node for 2, and update the
counters. Now, the node 1:3 becomes 1:1. Then, we drop all the nodes for
item 2, in this case, the two nodes 2:1. We obtain the tree in Fig. 9.5b. Since
we can drop the only node in the tree because it does not have the minimum
support (the node 1:1 indicates the only path remaining for item 1), we just
obtain the itemset {2}.

Proceeding analogously, the conditional FP-tree for item {1} is the empty
tree; thus, we just obtain the itemset {1}.

Alternatively, we could also obtain the conditional FP-trees without using
the prefix path subtrees as follows. We pick only the transactions that contain
i and remove i from such transactions. All other transactions are discarded.
Then, we construct the conditional FP-trees as explained for regular FP-
trees. For example, for the subtree corresponding to item 3, we pick only
transactions 1000 and 2000 (the ones that contain item 3) and eliminate item
3 from the transactions. Transactions 3000 and 4000 are discarded. Thus, we
keep items {1,2} (from transaction 1000) and {1} (from transaction 2000).
With these items we build an FP-tree as explained above, obtaining the tree
in Fig. 9.5a, from which we remove the infrequent nodes. From this tree,
frequent itemsets containing the item {3} are obtained as explained above.
We can proceed analogously to build the conditional FP-tree for item {2}.

root

2:1

1

2

Item

1:2 1:1
1

Item

root

Item

root

a b c

Fig. 9.5 Conditional FP-tree for items 3 (a), 2 (b), and 1 (c)

9.1.6 Sequential Patterns

The association rules studied above have an important characteristic: they
do not consider order. As we have seen in our examples, the order in which
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the items were purchased was irrelevant; therefore, if a rule 1⇒ 3 holds, then
3 ⇒ 1 must also hold. However, there are many real-world situations where
the order in which actions are taken is relevant for the decision maker. For
instance, in our Northwind example, we may be interested not only in the
items bought together but also in statements like “Customers that purchase
item X frequently order item Y afterward, with 40% support.” We can see
that if the rule 1⇒ 3 holds, not necessarily 3⇒ 1 does since the order is now
important. When order matters, we are in the case of sequential pattern
mining, which is a particular case of association analysis.

Consider a sequence 〈s1, s2, . . . , sn〉 such that the si’s are itemsets as
defined above when studying association rules. We say that a sequence
s1 = 〈a1, a2, . . . , an〉 is contained in another sequence s2 = 〈b1, b2, . . . , bm〉,
if there exist integers i1, . . . , in such that a1 ⊆ bi1 , a2 ⊆ bi2 , . . . , an ⊆ bin ,
where the bij ’s are itemsets in s2, ordered and different from each other.

For example, the sequence 〈{Shoes}, {Shirt, Tie}〉 is contained in the
sequence 〈{Belt}, {Shoes}, {Jacket}, {Shirt, Belt, Tie}, {Jacket}〉, because
the term {Shoes} in the first sequence matches a similar term in the second
one, and the term {Shirt, Tie} in the first sequence is included in {Shirt, Belt,
Tie} in the second one. On the other hand, the sequence 〈{Shoes}, {Shirt}〉
is not contained in the sequence 〈{Shoes, Shirt}〉.

Let us consider the set of transactions performed by customers given
in Fig. 9.6, where the transactions are ordered by customer and, for each
customer, by transaction time.

We say a customer C supports a sequence s if s is contained in the
sequence corresponding to C. The support s of a sequence is the fraction
of total customers who support it. In this case, the problem of finding
sequential patterns can be defined as follows: given a database D of customer
transactions, find the maximal sequences that have a certain minimum
support.

As an example, we want to find the maximal sequential patterns with
support greater than 2 in the transaction database above. In this case, there
will be Shoes followed by Shoes, and Shoes followed by Shirt and Tie, because
we can see that customers 1 and 4 support the sequence 〈{Shoes}, {Shoes}〉,
and customers 2 and 4 support the sequences 〈{Shoes}, {Shirt, Tie}〉.

Algorithms for finding sequential patterns are similar to the algorithms for
discovering association rules. However, the number of candidate sequences
will be much larger than the number of candidate itemsets because:

• In association rule mining, an item can appear at most once in an
itemset. For example, given two items i1 and i2, only one 2-itemset can be
generated. On the contrary, for sequential pattern mining, there are many
sequences that can be generated, like 〈{i1, i2}〉, 〈{i1}, {i1}〉, 〈{i2}, {i1}〉,
and so on.

• As already commented, order matters for sequences but not for item-
sets. For example, {1, 2} and {2, 1} represent the same itemset, while
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CustomerId Time Items
1 2012-06-02 {Shoes}
1 2013-10-03 {Shoes}
2 2013-06-01 {Shoes}
2 2013-06-15 {Jacket}
2 2013-08-14 {Shirt,Tie}
3 2012-03-02 {Shoes,Tie}
4 2013-06-02 {Shoes}
4 2013-07-12 {Shirt,Belt,Tie}
4 2013-10-21 {Shoes}
5 2013-11-06 {Shoes}

Fig. 9.6 A set of transactions of the Northwind customers

〈{i1}, {i2}〉 and 〈{i2}, {i1}〉 correspond to different sequences and must
be generated separately.

Further, the Apriori principle also holds for sequential data since any data
sequence that contains a particular k-sequence must also contain all of its
(k − 1)-subsequences.

Basically, for generating sequential patterns, we enumerate all possible
sequences and count their support. In this way, we first generate 1-sequences,
then 2-sequences, and so on. The general form of the sequences produced is
given next:

1-sequences: 〈i1, i2, . . . , in〉
2-sequences: 〈{i1, i2}, {i1, i3}, . . . , {in−1, in}〉,

〈{i1}, {i1}〉, 〈{i1}, {i2}〉, . . . , 〈{in−1}, {in}〉
3-sequences: 〈{i1, i2, i3}〉, 〈{i1, i2, i4}〉, . . . , 〈{i1, i2}, {i1}〉, . . . ,

〈{i1}, {i1, i2}〉, . . . , 〈{i1}, {i1}, {i1}〉, . . . , 〈{in}, {in}, {in}〉
We can see that we first generate all sequences with just one itemset
(the 1-sequences). To produce the sequences with elements containing two
itemsets, we generate all possible combinations of two itemsets in the 1-
sequences and eliminate the ones that do not satisfy the minimum support
condition. With the remaining sequences, we do the same to generate the
sequences with elements containing three itemsets and continue in the same
way until no more sequences with the required support can be produced.

From the above, it follows that the same principles apply to associates
rules and sequential pattern analysis; thus, we do not get into further details
and direct the interested reader to the references given at the end of the
chapter.
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9.1.7 Data Mining in Analysis Services

In the previous section, we studied how data mining algorithms create a
mining model by analyzing a data set to find hidden patterns and trends.
Once the parameters of the mining model are defined, they are applied
across the entire data set to extract interesting knowledge. As we have seen,
the mining model can take various forms, like a decision tree that predicts
whether a particular customer will buy a product, a model that forecasts
sales, a set of clusters describing the customers’ profiles, a set of rules that
describe which products are ordered together, and so on.

The two tools that we have used to implement our examples, namely,
Microsoft Analysis Services and Pentaho Business Analytics, provide data
mining capabilities that implement the concepts studied above. The former
also provides a query language denoted DMX (Data Mining eXtensions).
This language can be used for querying data mining models in Analysis
Services. There are two kinds of DMX queries: content queries, which
provide details about the patterns discovered during the analysis, and
prediction queries, which use the patterns in the model, for example, to
make predictions for new data. On the other hand, Pentaho Data Mining is
based on Weka (Waikato Environment for Knowledge Analysis). Weka is a
machine learning and data mining software written in Java. Weka includes
classification, regression, association rules, and clustering algorithms. In this
section and to avoid redundancy, we use Analysis Services to illustrate how
data mining concepts can be used in practice.

We next study three algorithms provided by Analysis Services, namely,
decision trees, clustering, and association rules. We will present these
algorithms using the Northwind case study, extended with the demographic
and new customer data described in Sect. 9.1. Since the original Northwind
database is not big enough to obtain meaningful results (in particular,
because of the low number of customers), we have extended such data set
ten times with generated data.

To create a decision tree and cluster models, we will use the Customer
and CustomerDemographics dimension tables, together with the Sales fact
table, to produce a view TargetCustomers. This view includes a class Boolean
attribute HighValueCust which indicates that the customer had placed an
order with a total amount higher than $3,500. This attribute represents the
class variable whose value the model will forecast, as we explain below. The
view TargetCustomers is defined as follows:

CREATE VIEW TargetCustomers AS
WITH CustOrderTotal AS (

SELECT S.CustomerKey, S.OrderNo,
SUM(S.SalesAmount) AS TotalAmount

FROM Sales S
GROUP BY S.CustomerKey, S.OrderNo ),

CustMaxAmount AS (
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SELECT CustomerKey, MAX(TotalAmount) AS MaxAmount
FROM CustOrderTotal
GROUP BY CustomerKey )

SELECT C.CustomerKey, C.CustomerID, C.CompanyName,
C.Address, C.CityKey, D.AnnualProfit, D.AnnualRevenue,
D.BusinessType, D.DateFirstOrder, D.DateLastOrder,
D.OwnershipType, D.ParkingSurface, D.StoreSurface,
D.TotalEmployees, D.PermanentEmployees, D.YearEstablished,
CASE

WHEN M.MaxAmount >= 3500 THEN 1
ELSE 0

END AS HighValueCust
FROM Customer C, CustomerDemographics D, CustMaxAmount M
WHERE C.CustomerKey = D.CustomerKey AND

C.CustomerKey = M.CustomerKey

In addition, as we explained in Sect. 9.1, we have the table NewCustomers
containing new prospective customers whose behavior we want to predict.

To create an association model for the Northwind case study, we need
to define views containing orders and items. For this, we create two views:
The first one, denoted AssocOrders, contains the order number and customer
data. The second one, denoted AssocLineItems, contains the details of each
order, which means the products that each order contains. We show next the
definition of these views:

CREATE VIEW AssocOrders AS
SELECT DISTINCT S.OrderNo, S.CustomerKey, O.CountryName,

D.BusinessType
FROM Sales S, Time T, Customer C, CustomerDemographics D,

City Y, State A, Country O
WHERE S.OrderDateKey = T.TimeKey AND Year(T.Date) = 1997 AND

S.CustomerKey = C.CustomerKey AND
C.CustomerKey = D.CustomerKey AND
C.CityKey = Y.CityKey AND Y.StateKey = A.StateKey AND
A.CountryKey = O.CountryKey

CREATE VIEW AssocLineItems AS
SELECT OrderNo, OrderLineNo, P.ProductName
FROM Sales S, Time T, Product P
WHERE S.OrderDateKey = T.TimeKey AND Year(T.Date) = 1997 AND

S.ProductKey = P.ProductKey

We are now ready to present our data mining case study for the Northwind
company. We will show how to:

• Build a decision tree model to predict, given the new customer charac-
teristics, if she is likely to place an order with an amount higher than
$3,500.

• Build a clustering model to produce a profile of the current customers and
predict a new customer’s profile.

• Create an association rule model to predict which items will be ordered
together.
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Decision Trees

As we explained above, we want to build a decision tree model that predicts
whether or not a new customer is likely to place an order with a total amount
of more than $3,500. For this we use the TargetCustomers view. The decision
tree algorithm requires us to indicate the class attribute to be predicted, the
attributes that must be used as input, and the attributes that will be ignored
by the algorithm but that can be used for visualization of the results. The
TargetCustomers view includes the attribute HighValueCust. A value of ‘1’ in
this attribute means that the customer is a high-valued one. Otherwise, the
variable takes the value ‘0’. This is the variable to be predicted.

Figure 9.7 shows how the attributes to be used for building the model
are defined in Analysis Services, both for the decision tree model explained
in this section and the clustering model explained in the next section. Note
that the attribute HighValueCust is defined as PredictOnly. Also, for example,
BusinessType will be used as a predictor variable; therefore, it is defined as
input. Finally, Address will only be used for visualization purposes, and it is
marked as Ignore.

With this input, the model is deployed. Figure 9.8 shows an excerpt of
the decision tree obtained. We can see that the root (the whole data set) is
first split using the attribute YearEstablished, resulting in six subsets. Then,
the nodes are further split according to the distribution of the HighValueCust
values. When the contents of the classes are stable, the split stops. We can
see, for example, that all the records in the path YearEstablished >= 1975 and
YearEstablished < 1990 → BusinessType = 'Restaurant' have HighValueCust
= 1. However, if BusinessType = 'Grocery Store' the algorithm continued
splitting.

Fig. 9.7 Attributes for the decision tree and the clustering models in the Northwind
case study
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Fig. 9.8 Excerpt of the decision tree for the Northwind case study

Given a decision tree model, a DMX content query over it can provide
statistics about the number of cases at each level of the tree or the rules
at each node, while a prediction query maps the model to new data in
order to produce recommendations and classifications. Metadata about the
model can also be retrieved. For example, over the model deployed (called
NWDW DecisionTree), we can issue the following content query asking for the
characteristics of an interior node in the tree (NODE TYPE = 3):

SELECT NODE NAME AS [Node], NODE CAPTION AS [Caption],
NODE SUPPORT as [Support], [CHILDREN CARDINALITY] AS [Children]

FROM NWDW DecisionTree.CONTENT
WHERE NODE TYPE = 3

In this query, the attribute NODE SUPPORT contains the number of records
in the node, while the attribute CHILDREN CARDINALITY tells in how many
subgroups has the algorithm divided the node. This query results in the
following table. We can see that, for instance, the node labeled YearEstablished
>= 1975 and YearEstablished < 1990 contains 239 elements and has seven
children. On the other hand, the node Business Type = 'Delicatessen' contains
43 elements and has two children.
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Node Caption Support Children
00000000400 Year Established < 1955 153 2
00000000401 Year Established >= 1955 and < 1960 50 2
00000000402 Year Established >= 1960 and < 1970 110 4
00000000403 Year Established >= 1970 and < 1975 71 2
00000000404 Year Established >= 1975 and < 1990 239 7
0000000040402 Business Type = 'Delicatessen' 43 2
· · · · · · · · · · · ·

We can then issue a prediction query that uses the decision tree model that
has been produced. For this, we use the table called NewCustomers in Fig. 9.1.
Each new customer can be input to the model to check if she is likely to place
a $3,500 value order. The query uses the DMX function PredictProbability to
display the probability of a customer with the attribute values indicated in
the subquery (e.g., a store surface of 773 square meters and established in
1956), to be classified as a high-valued one (HighValueCust = 1):

SELECT [High Value Cust], PredictProbability([High Value Cust], 1) AS [Probability],
FROM [NWDW Decision Tree] NATURAL PREDICTION JOIN

( SELECT 'Restaurant' AS [Business Type], 5 AS [Permanent Employees],
1956 AS [Year Established], 1 AS [Annual Profit],
773 AS [Store Surface], 460 AS [Parking Surface] ) AS T

This query results in the following table, which tells that there is a probability
of 75% that the customer places an order above $3,500:

High Value Cust Probability
1 0.7551

The next query does the same, but scans the whole NewCustomers table using
the OPENQUERY statement. Note that the PREDICTION JOIN operation is
performed between the attributes in the table and the ones in the model. The
final WHERE clause of the query filters the results to return only high-valued
customers:

SELECT CompanyName, BusinessType, PermanentEmployees AS [PE],
YearEstablished AS [YE], AnnualProfit AS [AP],
StoreSurface AS [SS], ParkingSurface AS [PS],
PredictProbability([High Value Cust], 1) AS [Prob=1],
PredictProbability([High Value Cust], 0) AS [Prob=0]

FROM [NWDW Decision Tree] PREDICTION JOIN
OPENQUERY(Sales,
'SELECT CompanyName, BusinessType, PermanentEmployees,
YearEstablished, AnnualProfit, StoreSurface, ParkingSurface
FROM NewCustomers') AS T ON
[NWDW Decision Tree].[Business Type] = T.[BusinessType] AND
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[NWDW Decision Tree].[Permanent Employees] =
T.[PermanentEmployees] AND
[NWDW Decision Tree].[Year Established] = T.[YearEstablished] AND
[NWDW Decision Tree].[Store Surface] = T.[StoreSurface] AND
[NWDW Decision Tree].[Parking Surface] = T.[ParkingSurface]

WHERE [High Value Cust] = 1

This query results in the following table, where values in the column Prob=1
indicate the probability of being a high-valued customer:

CompanyName BusinessType PE YE AP SS PS Prob=1 Prob=0
L'Amour Fou Restaurant 4 1955 2 1178 918 0.7551 0.2448
Le Tavernier Pub 1 1984 1 2787 438 0.5326 0.4673
Potemkine Restaurant 5 1956 1 773 460 0.7551 0.2448
Flamingo Restaurant 3 1960 2 2935 1191 0.6041 0.3958
Pure Bar Pub 3 1989 2 1360 307 0.5326 0.4673
· · · · · · · · · · · · · · · · · · · · · · · · · · ·

Clustering

We will now show how to build a clustering model to find out a customer
profile structure, using the view TargetCustomers and the parameters depicted
in the right-hand side of Fig. 9.7. Then, given the table of prospective
customers (NewCustomers), we can predict to which profile each new customer
is likely to belong. Figure 9.9 shows the result of the clustering algorithm. The
shadow and thickness of the lines linking the clusters indicate the strength
of the relationship between the clusters, the darker and thicker the line, the
stronger the link between two clusters. The profiles of some of the clusters
are given in Fig. 9.10. These profiles indicate, for example, the number of
elements in each cluster and the distribution of the attribute values within
each cluster. We can see, for example, that Cluster 5 contains few high-valued
customers.

In clustering models, a content query asks for details about the clusters
that were found. A prediction query may ask to which cluster a new data
point is most likely to belong.

Once the model is built (in this case, called NWDW Clustering), we can find
out the characteristics of the clusters produced. Since in Analysis Services, the
clustering structure is a tree such that below the root (NODE TYPE=1) there
is a collection of flat nodes (i.e., NODE TYPE=5). Thus, since all clusters
have a node type of 5, we can easily retrieve a list of the clusters by querying
the model content for only the nodes of that type. We can also filter the
nodes by support. The query shown below displays the identifier, the name,
the support (the number of elements in the cluster), and the description (the
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Fig. 9.9 Clustering for the Northwind customers

Fig. 9.10 Profiles of the clusters for the Northwind customers

attributes of the objects in the clusters), for all clusters of type 5 with support
greater than 75:

SELECT NODE NAME AS [Name], NODE CAPTION AS [Caption],
NODE SUPPORT AS [Support], NODE DESCRIPTION AS [Description]
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FROM NWDW Clustering.CONTENT
WHERE NODE TYPE = 5 AND NODE SUPPORT > 75

The above query yields the following result:

Name Caption Support Description
001 Cluster 1 102 City Key=66, City Key=74, City Key=17, City

Key=7, City Key=75, City Key=33, City Key=70,
City Key=3, City Key=108, City Key=59, Per-
manent Employees=0, 1971 <=Year Established
<=1992, Business Type=Delicatessen, [. . .]

002 Cluster 2 89 City Key=30, City Key=49, City Key=12, City
Key=2, City Key=28, Business Type=Pub, Business
Type=Restaurant, [. . .]

006 Cluster 6 77 City Key=95, City Key=53, City Key=54, 1950
<=Year Established <=1957, Permanent Employ-
ees=6, City Key=11, Business Type=Minimart, [. . .]

We can also ask for the discriminating factors of clusters. The following
query returns a table that indicates the primary discriminating factors
between two clusters with node IDs 001 and 002:

CALL System.Microsoft.AnalysisServices.System.DataMining.Clustering.
GetClusterDiscrimination('NWDW Clustering', '001', '002', 0.0005, true)

The query uses a system stored procedure, although the query could also
be performed manually. Attributes with positive score favor the cluster with
ID 001, whereas attributes with negative values favor the cluster with ID
002. For example, if we analyze the table below with respect to Fig. 9.10,
we can see that Cluster 2 contains an important proportion of records with
BusinessType = 'Restaurant' compared to Cluster 1. This is explained by the
score −63.7781. The result of this query is given next:

Attributes Values Score
Store Surface 142 - 1,924 100
Store Surface 1,925 - 7,857 -99.9999

Date Last Order 12/03/1998 - 06/05/1998 76.1429
Date Last Order 18/07/1996 - 12/03/1998 -68.3848
Business Type Restaurant -63.7781

. . . . . . . . .

We can use the model to make predictions about the outcome using the
predictable attributes in the model, which are handled depending on whether
the attribute is set to Predict or PredictOnly (Fig. 9.7). In the first case, the
values for the attribute are added to the clustering model and appear as
attributes in the finished model. In the second case, the values are not used to
create clusters. Instead, after the model is completed, the clustering algorithm
creates new values for the PredictOnly attribute based on the clusters to which
each case belongs. This is our case in this example, as it can be seen in Fig. 9.7.
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Our next prediction query uses the Cluster DMX function to return the
cluster to which a new case, for which we know the business type, the total
number of permanent employees, the year established, the annual profit, and
the store surface, is most likely to belong. It also uses the ClusterProbability
DMX function to return the probability of belonging to that cluster. Note
that the query, again, is performed over the model not over the database (the
name in the FROM clause is the name of the model):

SELECT Cluster() AS [Cluster], ClusterProbability() AS [Probability]
FROM [NWDW Clustering] NATURAL PREDICTION JOIN

( SELECT 'Restaurant' AS [Business Type],
2 AS [Permanent Employees], 1977 AS [Year Established],
2 AS [Annual Profit], 400 AS [Store Surface], 860 AS [Parking Surface] )

This yields the following result:

Cluster Probability
Cluster 7 0.7047

Finally, we can do the same as above, but for all the records in the
NewCustomers database, as we have done for the decision trees model, using
the PREDICTION JOIN and OPENQUERY DMX clauses, joining the model
and the database table:

SELECT T.CompanyName, T.BusinessType, T.ParkingSurface AS [PS],
T.PermanentEmployees AS [PE], T.StoreSurface AS [SS],
T.YearEstablished AS [YE], Cluster() AS [Cluster],
ClusterProbability() as [Probability]

FROM [NWDW Clustering] PREDICTION JOIN OPENQUERY(Sales,
'SELECT CompanyName, BusinessType, ParkingSurface,
PermanentEmployees, StoreSurface, YearEstablished
FROM NewCustomers') AS T ON
[NWDW Clustering].[Business Type] = T.[BusinessType] AND
[NWDW Clustering].[Permanent Employees] =
T.[PermanentEmployees] AND
[NWDW Clustering].[Year Established] = T.[YearEstablished] AND
[NWDW Clustering].[Store Surface] = T.[StoreSurface] AND
[NWDW Clustering].[Parking Surface] = T.[ParkingSurface]

The result of this query is as follows:

CompanyName BusinessType PS PE SS YE Cluster Probability
La Grande Epicerie Grocery 1135 2 1788 1963 Cluster 7 0.7979

L'Amour Fou Restaurant 918 4 1178 1955 Cluster 7 0.7806
Copenhagen Tavern Tavern 0 3 667 1976 Cluster 8 0.5874

Au soleil Café 542 3 374 1996 Cluster 8 0.5598
Mio Padre Minimart 183 6 570 1965 Cluster 2 0.9943

. . . . . . . . . . . . . . . . . . . . . . . .
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Association Rules

We have already explained that the association model for the Northwind
case study requires two views, namely, AssocOrders and AssocLineItems. Once
these views are prepared, we can set the model parameters like support and
confidence (called probability in Analysis Services) and deploy the model. In
our case, we just show the results to give the look and feel of the tool and
discuss the DMX commands since the number of records is still low to produce
meaningful results. Figure 9.11 shows the association rules obtained, along
with their probability. Figure 9.12 shows some of the itemsets obtained. For
example, we can see that the products Sirop d'érable and Sir Rodney's Scones
have a support of 55, which means they appear together 55 times in the
database. The reader can also compare the itemsets and the corresponding
rules that those itemsets yield. For example, the itemset (Sirop d'érable, Sir
Rodney's Scones) produces two rules, since the order of purchasing does not
matter: Sirop d'érable→ Sir Rodney's Scones, and Sir Rodney's Scones→ Sirop
d'érable.

Fig. 9.11 Association rules for the Northwind case study

There are two common uses of an association model: to discover infor-
mation about frequent itemsets and to extract details about particular rules
and itemsets. For example, we can retrieve a list of rules that were scored
as being especially interesting or create a list of the most common itemsets.
This information can be obtained through a DMX content query or browsing
this information by using the Microsoft Association Viewer. The next content
query returns details about the parameter values that were used when the
model was created:

SELECT MINING PARAMETERS
FROM $system.DMSCHEMA MINING MODELS
WHERE MODEL NAME = 'Association'
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Fig. 9.12 Itemsets for the Northwind case study

The query returns the following result:

MINING PARAMETERS
MAXIMUM ITEMSET COUNT=200000, MAXIMUM ITEMSET SIZE=3,
MAXIMUM SUPPORT=1, MINIMUM SUPPORT=7.53768844221106E-03,
MINIMUM IMPORTANCE=-999999999, MINIMUM ITEMSET SIZE=0,
MINIMUM PROBABILITY=0.1

Our next query retrieves all the itemsets, together with a nested table (an
attribute that is actually a table) that lists the products included in each
itemset. The NODE NAME column contains the unique ID of the itemset
within the model. In this example, the nested table has been flattened (using
the FLATTENED keyword). Thus, an itemset will generate as many rows in
the result as products such itemset contains. This is the case, for instance, of
nodes 74 and 75, which contain two items:

SELECT FLATTENED NODE NAME AS [Node],
NODE PROBABILITY AS [Probability],
NODE SUPPORT AS [Support],
(SELECT ATTRIBUTE NAME AS [Name]
FROM NODE DISTRIBUTION) AS Products

FROM Association.CONTENT
WHERE NODE TYPE = 7
ORDER BY NODE NAME

Each itemset is contained in its own node (as indicated by NODE TYPE =
7). This query returns the following table:
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Node Probability Support Products.Name
. . . . . . . . . . . .

72 0.0728 319 Assoc Line Items1(Raclette Courdavault)
73 0.0804 352 Assoc Line Items1(Gnocchi di nonna Alice)
74 0.0125 55 Assoc Line Items1(Sirop d' érable)
74 0.0125 55 Assoc Line Items1(Sir Rodney's Scones)
75 0.0100 44 Assoc Line Items1(Zaanse koeken)
75 0.0100 44 Assoc Line Items1(Gnocchi di nonna Alice)
. . . . . . . . . . . .

As another example, the following query returns the top 5 itemsets ordered by
the support for each node. The NODE CAPTION provides a text description
of the items:

SELECT TOP 5 (NODE SUPPORT), NODE NAME, NODE CAPTION
FROM Association.CONTENT
WHERE NODE TYPE = 7

This query returns the following table:

NODE SUPPORT NODE NAME NODE CAPTION
352 73 Gnocchi di nonna Alice = Existing
319 72 Raclette Courdavault = Existing
275 70 Gorgonzola Telino = Existing
275 71 Boston Crab Meat = Existing
264 69 Rhönbräu Klosterbier = Existing

Finally, we can use the model to issue prediction queries, typically based on
rules, to be used, for example, to make recommendations. The following query
tells us what products we can recommend to a customer who has purchased
a particular product. Since the column that corresponds to the products to
be predicted is a nested table, we must use one SELECT clause to map the
new value to the nested table column [Product Name] and another SELECT
clause to map the nested table column to the case-level column, [Assoc Line
Items]. Adding the keyword INCLUDE STATISTICS to the query displays the
probability and support for the recommendation:

SELECT FLATTENED PredictAssociation([Association].[Assoc Line Items],
INCLUDE STATISTICS, 3) AS [A]

FROM [Association] NATURAL PREDICTION JOIN
( SELECT
( SELECT 'Tarte au sucre' AS [Product Name] )
AS [Assoc Line Items] ) AS T
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The query returns the following table:

Product Name $SUPPORT $PROBABILITY $ADJUSTEDPROBABILITY
Pavlova 242 0.1818 0.6445

Gnocchi di nonna Alice 352 0.0804 0.0772
Raclette Courdavault 319 0.0728 0.0702

The adjusted probability is used by Analysis Services to “penalize” popular
items during a prediction task. For example, given two items such that their
predicted probability is the same and such that one of them is much popular
than the other one (i.e., much more people buys the first one), we would like
to recommend the less popular one. In this case, the $AdjustedProbability lifts
the predicted probability. This is the case of product Pavlova in the example
above, whose probability is strongly lifted.

9.2 Key Performance Indicators

Traditionally, managers use reporting tools to display statistics in order to
monitor the performance of an organization. These reports, for example,
display the monthly sales by employee for the current year, the sales amount
by month also during the current year, the top ten orders or the top ten
employees (according to the sales figures achieved), and so on. However, note
that these reports lack a lot of crucial information. For example, how are sales
performing against expected figures? What are the sale goals for employees?
What is the sales trend? To obtain this information, business users must
define a collection of indicators and display them timely in order to alert
when things are getting out of the expected path. For example, they can
devise a sales indicator that shows the sales over the current analysis period
(e.g., quarter) and how these sales figures compare against an expected value
or company goal. Indicators of this kind are called key performance indicators
(KPIs).

KPIs are complex measurements used to estimate the effectiveness of an
organization in carrying out their activities and to monitor the performance
of their processes and business strategies. KPIs are traditionally defined with
respect to a business strategy and business objectives, delivering a global
overview of the company status. They are usually included in dashboards
and reports (which will be discussed below), providing a detailed view of
each specific area of the organization. Thus, business users can assess and
manage organizational performance using KPIs. To support decision making,
KPIs typically have a current value which is compared against a target
value, a threshold value, and a minimum value. All these values are usually
normalized, to facilitate interpretation.
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9.2.1 Classification of Key Performance Indicators

There have been many proposals of classification of KPIs. The simplest one
is to classify them according to the industry in which they are applied. In
this way, we have, for instance, agriculture KPIs, education and training
KPIs, finance KPIs, and so on. Another simple classification is based on the
functionals area where they are applied. Thus, we have accounting KPIs,
corporate services KPIs, finance KPIs, human resources KPIs, and so on.

KPIs can be also classified along other dimensions, for example, the
temporal dimension. In this way, we have:

• Leading KPIs, which reflect expectations about what can happen in the
future. An example is expected demand.

• Coincident KPIs, which reflect what is currently happening. An example
is number of current orders.

• Lagging KPIs, which reflect what happened in the past. Examples include
earnings before interest and taxes or customer satisfaction.

Another dimension along which we can classify KPIs refers to whether the
indicator measures characteristics of the input or the output of a process.
Thus, we have:

• Input KPIs, which measure resources invested in or used to generate
business results. Examples include headcount or cost per hour.

• Output KPIs, which reflect the overall results or impact of the business
activity to quantify performance. An example is customer retention.

KPIs can be also classified as qualitative or quantitative:

• Qualitative KPIs, which measure a descriptive characteristic, an opinion,
or a property. An example is customer satisfaction measured through
surveys, where even if survey data are quantitative, the measures are based
on a subjective interpretation of a customer’s opinions.

• Quantitative KPIs, which measure characteristics obtained through a
mathematical expression. These are the most common kinds of KPIs. An
example is units per man-hour.

KPIs can be also classified as strategic or operational:

• Strategic KPIs, which are typically reported to senior levels in the orga-
nization and at less regular intervals than the corresponding operational
indicators. They have a medium- or long-term time scope.

• Operational KPIs, which are focused at lower levels in the organization
and are reported more frequently than strategic indicators. They usually
have a short-term time scope.
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The last classification we give is based on the issues addressed by a KPI.
Thus, we may have:

• Process KPIs, which refer to the efficiency or productivity of a business
process. Examples are sales growth or shipping efficiency.

• Quality KPIs, which describe the quality of the production. Examples are
number of production interruptions or customer satisfaction.

• Context KPIs, which are not directly influenced by the processes of the
organization. Examples are size of market or number of competitors.

There are many other classifications of KPIs in the literature, although
the list we have given above covers the most common ones.

9.2.2 Guidelines for Defining Key Performance
Indicators

To be able to define a good set of indicators for an organization, we need to
identify the sources from which we can obtain relevant information. These
sources of information can be classified into primary, secondary, and external,
as follows:

• Primary sources:

– Front-line employees. They are at the core of the value chain and know
what are the important factors to achieve the operational goals.

– Managers. They provide their perspective across the value chain and
their strategic knowledge.

– Board. It defines the organizational goals and suggest specific KPIs that
are highly prioritized and sometimes nonnegotiable.

– Suppliers and customers. They bring an external perspective to what
should be measured and improved.

• Secondary sources. These include strategic development plan, annual
business/strategic plan, annual reports, internal operational reports, and
competitor review reports.

• External sources. These include printed catalogs, on-line catalogs, annual
reports of other organizations, expert advice, and questions in discussion
forums.

When the sources have been identified, we can follow the steps below in
order to define the indicators for the problem at hand:

1. Assemble a (preferably small) team.
2. Categorize potential metrics, basically to look at the business from many

different perspectives. For example, we may want to define metrics that
capture how the organization is performing from a financial perspective,
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from a customer’s perspective, and with respect to employee’s expecta-
tions.

3. Brainstorm possible metrics to discuss many possible measures before
deciding the final set.

4. Prioritize the initially defined metrics. In order to do this, for each metric,
we must:

• Give its precise definition.
• Define if the indicator is leading or lagging. It is recommended to have

an even number of leading and lagging metrics.
• Verify if the metric is likely to have a relevant impact.
• Check if the metric is linked to a specific set of business processes that

we can drill into if it deviates from the desired values.
• Check if we have at least one to two metrics for each key category

defined in the second step.

5. Perform a final filter on metrics. This consists in checking if the metric
definition is unambiguous and clear to people not on the core team, if we
have credible data to compute the metric, and making sure that achieving
the metrics will lead to achieving our goals.

6. Set targets for the selected metrics. This is a crucial step since it is one
of the biggest challenges in KPI definition. For this, historical information
can be used as a guide against which the core team can look at industry
benchmarks and economic conditions.

Finally, we give a set of conditions that a KPI must satisfy in order to
be potentially useful. The conditions below consolidate a collection of good
practices usually found in the literature:

• The metric must be specific and unambiguous, which means the definition
of the indicator must be clear and easily understandable. In addition, the
definition must precisely specify how the metric will be computed. In the
Northwind case, for instance, an indicator called Sales Performance could
be defined as the total value of the SalesAmount attribute in the Sales
fact table, computed over the current quarter, divided by the value of the
attribute for the same period last year. This ratio is then compared against
an expected sales growth value set as a company goal.

• The indicator must be clearly owned by a department or company office,
which means there must be an individual or a group that must be made
clearly accountable for keeping the indicator on track.

• The metric must be measurable, which means all elements must be
quantifiable.

• The indicator can be produced timely. To be useful for decision making,
we must be able to produce a KPI at regular predefined intervals, in a
way such that it can be analyzed together with other KPIs in the set of
indicators.
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• The indicator must be aligned with the company goals. KPIs should lead
to the achievement of the global company goals. For example, a global goal
can be to grow 10% per year.

• The number of KPIs must remain manageable, and decision makers must
not be overwhelmed by a large number of indicators.

We next apply the above guidelines to define a collection of indicators for
the Northwind case study.

9.2.3 KPIs for the Northwind Case Study

We now give some examples of indicators that can be appropriate for the
Northwind company. We define KPIs belonging to several categories and
according to the requirements of the departments that will be responsible
for monitoring such indicators. For example, the sales department wants to
monitor sales performance and order activity. The marketing department
wants to follow shipping efficiency as an indirect way of estimating customer
satisfaction. The human resources department wants to measure how sales
employees are performing to estimate the end-of-year bonuses. Therefore, we
propose the following KPIs:

1. Sales performance: Measures the monthly sales amount with respect to
the same month of the previous year. The goal consists in achieving 15%
growth year over year. It is computed over the Sales fact table of the
Northwind data warehouse.

2. Number of orders : Measures the activity in terms of orders received. It is
computed as the number of orders submitted per month. The goal is to
achieve a 5% monthly increase: The indicator is computed from the Sales
fact table of the Northwind data warehouse. Note that if we also compute
this KPI weekly, we can have an idea of how orders are evolving within
the current period and can take corrective measures in order to achieve
the monthly goal.

3. Shipping efficiency: Measures the delay in the shipping of orders. There-
fore, it is a measure of customer satisfaction. It is computed as the monthly
average of the difference between the order and the shipped dates in the
Sales fact table of the data warehouse. It is computed every month. The
goal is that the difference between both dates takes a value less than 7.

4. Shipping costs : Measures the relative cost of shipping with respect to the
sales amount. It is computed as the quotient between the freight costs
and the total sales amount (the Freight and SalesAmount attributes in the
Sales fact table) for the current month. It is computed monthly. The goal
is that the shipping cost does not exceed the 5% of the sales amount.

5. Salespersons reaching quota: Measures the percentage of the employees
reaching their selling quota yearly. It is computed monthly, to see how
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this number is evolving during the current year. For this, we use the Sales
fact table. For simplicity, we assume that the employee’s quota is computed
as a 15% increase over last year’s sales. The goal is that the salespersons
reaching quota must be at least of 75%.

We next show how we can define KPIs using Microsoft Analysis Services.

9.2.4 KPIs in Analysis Services

Analysis Services provides a framework for defining KPIs that exploit the
business data stored in cubes. Each KPI uses a predefined set of properties
to which MDX expressions are assigned. Only the metadata for the KPIs are
stored by Analysis Services, whereas a set of MDX functions is available to
applications for retrieving KPI values from cubes using these metadata. The
Cube Designer provided in SQL Server Data Tools enables cube developers
to create and test KPIs.

In Analysis Services, a cube can have a collection of KPIs. Each KPI has
five properties, which are MDX expressions that return numeric values from
a cube, as described next:

• Value, which returns the actual value of the KPI. It is mandatory for a
KPI.

• Goal, which returns the goal of the KPI.
• Status, which returns the status of the KPI. To best represent the value

graphically, this expression should return a value between −1 and 1. Client
applications use this value to display a graphic indicator of the KPI value.

• Trend, which returns the trend of the KPI over time. As with Status, it
should return a value between −1 and 1. Client applications use this value
to display a graphic indicator of the KPI trend direction.

• Weight, which returns the weight of the KPI. If a KPI has a parent KPI,
we can define weights to control the contribution of this KPI to its parent.

Analysis Services creates hidden calculated members on the Measures
dimension for each KPI property above. Nevertheless, these calculated
measures can be used in an MDX expression, even though they are hidden.

We show next how the Sales performance KPI defined in the previous
section can be implemented using Analysis Services. Recall that we want to
monitor the sales amount by year with respect to the goal of achieving 15%
growth year over year. Let us now give more detail about what the users want.
If the actual sales amount is more than 95% of the goal, the performance is
considered satisfactory. If, however, the sales amount is within 85–95% of the
goal, management must be alerted. If the sales amount drops under 85% of
the goal, management must take immediate action to change the trend. These
alerts and calls to action are commonly associated with the use of KPIs. We
are also interested in the trends associated with the sales amount; if the
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sales amount is 20% higher than expected, this is great news and should be
highlighted. Similarly, if the sales amount is 20% lower than expected, then
we have to deal immediately with the situation.

The MDX query that computes the goal of the KPI is given next:

WITH MEMBER Measures.SalesPerformanceGoal AS
CASE

WHEN ISEMPTY(PARALLELPERIOD(
[Order Date].Calendar.Month, 12,
[Order Date].Calendar.CurrentMember))
THEN Measures.[Sales Amount]

ELSE 1.15 *
( Measures.[Sales Amount],
PARALLELPERIOD (
[Order Date].Calendar.Month, 12,
[Order Date].Calendar.CurrentMember))

END,
FORMAT STRING = '$###,##0.00'

SELECT { [Sales Amount], SalesPerformanceGoal } ON COLUMNS,
[Order Date].Calendar.Month.MEMBERS ON ROWS

FROM Sales

In the above query, the CASE statement sets the goal to the sales of the
current month if the corresponding month of the previous year is not included
in the time frame of the cube. This query gives the following result:

Sales Amount SalesPerformanceGoal
· · · · · · · · ·

June 1997 $33,843.80 $33,843.80
July 1997 $51,020.86 $32,041.18

August 1997 $45,841.67 $29,308.07
September 1997 $50,105.74 $25,270.56
October 1997 $62,651.25 $40,801.50

November 1997 $42,536.81 $52,440.05
· · · · · · · · ·

As can be seen above, since the sales in the Northwind data warehouse started
in July 1996, the goal until June 1997 is set to the current sales.

We can use SQL Server Data Tools for defining the above KPI, which we
name Sales Performance. For this, we need to provide MDX expressions for
each of the above properties as follows:

• Value: The measure used for defining the KPI is [Measures].[Sales Amount].
• Goal: The goal to increase 15% over last year sales amount is given by the

CASE expression in the query above.
• Status: We need to choose a graphical indicator for displaying the status

of the KPI. The available indicators are shown in Fig. 9.13. We select the
traffic light indicator. Then, the MDX expression defined for the status
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must return a value between −1 and 1. The KPI browser displays a red
traffic light when the status is −1, a yellow traffic light when the status is
0, and a green traffic light when the status is 1. The MDX expression is
given next:

CASE
WHEN KpiValue(''Sales Performance'')/

KpiGoal(''Sales Performance'') >= 0.95
THEN 1
WHEN KpiValue(''Sales Performance'')/

KpiGoal(''Sales Performance'') < 0.85
THEN -1
ELSE 0

END

In the preceding MDX expression, the KpiValue and the KpiGoal functions
retrieve, respectively, the actual value and the goal value of the Sales
Performance KPI.

Fig. 9.13 Graphical indicators for displaying the status of a KPI

• Trend: Here, we choose the default indicator, that is, the standard arrow.
The associated MDX expression is given next:

CASE
WHEN ( KpiValue(''Sales Performance'') -

KpiGoal(''Sales Performance'') ) /
KpiGoal(''Sales Performance'') <= -0.2

THEN -1
WHEN ( KpiValue(''Sales Performance'') -

KpiGoal(''Sales Performance'') ) /
KpiGoal(''Sales Performance'') > 0.2

THEN 1
ELSE 0

END

This expression computes the trend of the KPI by subtracting current KPI
values and last year values from the same period and divided between last
year values from the same period. If there is a decrease of 20% or more,
the value of the trend is −1; if there is an increase of 20% or more, the
value of the trend is 1; otherwise, the value of the trend is 0.

• Weight: We leave it empty.
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Fig. 9.14 Display of the Sales PerformanceKPI for November 1997 (a) and December
1997 (b)

Now that the KPI is defined, we can address the following MDX query to
the Northwind cube:

SELECT { Measures.[Sales Amount], Measures.[Sales Performance Goal],
Measures.[Sales Performance Trend] } ON COLUMNS,
{ [Order Date].Calendar.Month.[November 1997],
[Order Date].Calendar.Month.[December 1997] } ON ROWS

FROM Sales

The result is given next.

Sales Amount Sales Performance Goal Sales Performance Trend
November 1997 $41,833.61 $51.020,23 0
December 1997 $68,564.32 $48.943,32 1

Figure 9.14 shows the KPI for November and December 1997. As can be
seen, where the figures for the month of December achieved the goal, this
was not the case for the month of November.

9.3 Dashboards

The most popular visualization tools in business intelligence are dashboards,
which are collections of multiple visual components (such as charts or KPIs)
on a single view. Dashboards enable organizations to effectively measure,
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monitor, and manage business performance. Dashboards are used to visualize
organizational data and utilize different performance measurement models to
identify and implement measures for all levels in the organization. There is
an extensive practitioner-oriented literature on dashboards, although there
is a lack of academic literature. In this section, we characterize dashboards,
give some practical hints for their design, and implement a dashboard for the
Northwind case study.

There are many definitions of the dashboard concept. However, since the
visible part of a dashboard system is its user interface, most of them focus
on its visual features. A classic definition due to Stephen Few states that a
dashboard is a “visual display of the most important information needed to
achieve one or more objectives, consolidated and arranged on a single screen
so the information can be monitored at a glance.”

Dashboards help to make fact-based decisions, using the right data,
delivered reliably in an easily accessed and perceivable form. Note that
decision makers require data in context to manage performance over time.
Thus, although the current status of business is important, decision makers
require comparisons of current values to past performance and to future
objectives. We must also take into account that the time horizon and scope
of data needed differ significantly based on the roles in the organization.
An executive, focused on achieving enterprise-wide strategic goals, requires
a high-level view across different lines of business and covering months or
years. Business managers, on the other hand, must achieve daily or weekly
performance goals and require not only a narrower time frame and kind of
data but also, if current rates are off-target, the ability to quickly investigate
the amount and cause of variation of a parameter. Business analysts have
a much broader set of needs. Rather than knowing what they are looking
for, they often approach performance data with ad hoc questions; therefore,
they may require a time frame ranging between just a few hours up to many
weeks.

9.3.1 Types of Dashboards

A well-known classification of dashboards proposes three high-level cate-
gories: strategic, operational, and analytical.

Strategic dashboards provide a quick overview of the status of an
organization, assisting executive decisions such as the definition of long-
term goals. Strategic dashboards, therefore, do not require real-time data:
the focus is not on what is going on right now but in the past performance.
Strategic dashboard data may be quantitative or qualitative. For instance, in
the Northwind case study, the sales manager wants trend data on revenues
and sales. Qualitatively, a human resource manager may want the top ten and
worst ten salesmen. Because of their broad time horizon, strategic dashboards
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should have an interface that quickly guides decision makers to the answers
they seek, telling if the indicator is on track.

Operational dashboards are designed to monitor the company opera-
tions. Monitoring operations requires more timely data, tracking constantly
changing activities that could require immediate attention. Operational
dashboards require a simple view to enable rapid visual identification of
measures that are going away from the goals and require immediate action.
Thus, the design of these kinds of dashboards must be very simple to avoid
mistakes. The timeliness of operational data can vary. If things are on track,
periodic snapshots may be sufficient. However, if a measure deviates from the
goal, operational managers may want real-time data to see if the variance is
an anomaly or a trend.

Analytical dashboards support interaction with the data, such as
drilling down into the underlying details, to enable the exploration needed
to make sense of it, which means not just to see what is going on but to
examine the causes. Therefore, analytical dashboards must support what we
called exploratory data analysis in Sect. 9.1.

9.3.2 Guidelines for Dashboard Design

In order to design a dashboard that complies with the needs of the
intended audience, the visual elements and interactions must be carefully
chosen. Factors such as placement, attention, cognitive load, and interactivity
contribute greatly to the effectiveness of a dashboard.

A dashboard is meant to be viewed at a glance, so once the elements to
be shown have been selected, they must be arranged in a display that can be
viewed all at once in a screen, without having to scroll or navigate through
multiple pages, minimizing the effort of viewing information. In addition,
important information must be noticed quickly. From a designer’s point of
view, it is crucial to know who will be the users of the dashboard we are
designing and what their goals are, in order to define to which of the above
categories we defined the dashboard belongs. This information is typically
obtained through user interviews.

To design a dashboard that can be effective and usable for its audience,
we need to choose data visualizations that convey the information clearly, are
easy to interpret, avoid excessive use of space, and are attractive and legible.
For example, dashboards may provide the user with visualizations that
allow data comparison. Line graphs, bar charts, and bullet bars are effective
visual metaphors to use for quick comparisons. Analytical dashboards should
provide interactivity, such as filtering or drill-down exploration. A scatterplot
can provide more detail behind comparisons by showing patterns created by
individual data points.
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Operational dashboards should display any variations that would require
action in a way that is quickly and easily noticeable. KPIs are used for
effectively showing the comparison and drawing attention to data that
indicate that action is required. A KPI must be set up to show where data
falls within a specified range, so if a value falls below or above a threshold,
the visual element utilizes color coding to draw attention to that value, like
we showed in Sect. 9.2. Typically, red is used to show when performance
has fallen below a target, green indicates good performance, and yellow can
be used to show that no action is required. If multiple KPIs are used in a
dashboard, the color coding must be used consistently for the different KPIs,
so a user does not have to go through the extra work of decoding color codes
for KPIs that have the same meaning. For example, we must use the same
shade of red for all KPIs on a dashboard that show if a measure is performing
below a threshold.

We must avoid to include distracting tools in a dashboard, like motion
and animations. Also, using too many colors, or colors that are too bright, is
distracting and must be avoided. Dashboard visualization should be easy to
interpret and self-explanatory. Thus, only important text (like graph titles,
category labels, or data values) should be placed on the dashboard. While a
dashboard may have a small area, text should not be made so small that it
is difficult to read. A good way to test readability is through test users.

9.3.3 Dashboards in Reporting Services

In this section, we illustrate how we can use Microsoft Reporting Services for
building a dashboard for the Northwind company.

Reporting Services is a server-based reporting platform that provides
reporting functionality for a wide range of data sources. The three main
components of the Microsoft Reporting Services architecture are the client,
the report server, and the report databases. The SQL Server Data Tools
is typically used as the client. The report server is responsible to take a
client’s request to render a report or to perform a management request. The
server performs functions like authentication, report and data processing,
report rendering, scheduling, and delivery. Finally, there are three databases
in the Reporting Services architecture: the two Reporting Services databases,
denoted ReportServer and ReportServerTempDB, and the data source. The
latter is the origin of the data that will populate the reports and can
correspond to various providers, like SQL Server and Oracle databases, or
XML, ODBC, and OLE DB data providers; the former store metadata about
the reports.

Reporting Services provides many objects that can be included in a
dashboard. These include various chart types, report objects like gauges
(typically used with KPIs), images (for embedding standard images, such
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as JPEG or TIFF, in a report), maps, data bars, sparklines, and indicators.
These can be put together with tabular data, as we show below.

We next describe our case study. The management of the Northwind
company wants to put together in a dashboard a group of indicators to
monitor the performance of several sectors of the company. The dashboard
will contain the following elements:

• A graph showing the evolution of the total sales per month, together with
the total sales in the same month for the previous year.

• To the right of the former graph, we will place a gauge to monitor the
percentual variation of total sales with respect to the same month for the
previous year. The goal is to obtain a 5% increase, and the gauge allows
the manager to easily visualize if the goal has been achieved.

• Below the first graph, we will place another one conveying the shipping
costs. The graph reports, monthly, the total freight cost with respect to
the total sales. The goal is that the shipping costs must represent less than
the 5% of the sales amount.

• To the right of this graph, we place a gauge showing the percentage of
shipping costs with respect to the total sales from January to the end of
April 1998 (data in the Northwind data warehouse range from 1996 to
1998). This is the KPI introduced in Sect. 9.2.

• In the lower part of the dashboard, we will place a table that can be used to
analyze the performance of the sales force of the company and take actions
if necessary. Thus, we list the three employees with the least number of
sales as of April 1998. For each one of them, we compute the total sales
and the percentage with respect to the expected yearly sales quota. We
assume that an employee is expected to increase her sales 5% each year.

Figure 9.15 shows the definition of the dashboard in Reporting Services
using SQL Server Data Tools. As can be seen in the left part of the figure,
the data source of the report is the Northwind data warehouse. There are
five datasets, one for each element of the dashboard. Each dataset has an
associated SQL query. The one in the dialog box corresponds to the top left
chart of the report, which shows the monthly sales compared with those of the
previous year. Each dataset has a set of fields, shown below the dataset name,
which correspond to the columns returned by the SQL query. Figure 9.16
shows the resulting dashboard. We explain below its different components.

The top left chart shows the monthly sales compared with those of the
previous year. The corresponding SQL query is given next:

WITH MonthlySales AS (
SELECT DATEPART(yy, T.Date) AS Year,

DATEPART(mm, T.Date) AS Month,
SUBSTRING(DATENAME(mm, T.Date), 1, 3)
AS MonthName, SUM(S.SalesAmount) AS MonthlySales

FROM Sales S, Time T
WHERE S.OrderDateKey = T.TimeKey
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Fig. 9.15 Definition of the dashboard for the Northwind case study in Reporting
Services using SQL Server Data Tools

GROUP BY DATEPART(yy, T.Date), DATEPART(mm, T.Date),
DATENAME(mm, T.Date) )

SELECT MS.Year, MS.Month, MS.MonthName, MS.MonthlySales,
PYMS.MonthlySales AS PreviousYearMonthlySales,
MS.MonthlySales / PYMS.MonthlySales AS Percentage

FROM MonthlySales MS, MonthlySales PYMS
WHERE MS.Month = PYMS.Month AND PYMS.Year = MS.Year - 1 AND

NOT (MS.Year = 1998 AND MS.Month = 5)

The above query computes the monthly sales amount in a temporary table
denoted MonthlySales. In addition to the year and the month, the table
obtains in the column MonthName the first three letters of the month name
to be used for the labels of the x-axis of the chart. Then, the main query
joins this table twice to obtain the monthly sales amount together with that
of the previous year. The last line of the main query excludes the values from
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Fig. 9.16 Dashboard of the Northwind case study

May 1998 since in the Northwind data set, the sales for this month are not
complete (sales stop at May 4, 1998).

The top right gauge shows the percentage of the sales in April 1998 with
respect to the sales in April 1997. The gauge defines a range (shown in the left
side of the scale) with a gradient from light gray to white and ranging from
0 to 105%. This corresponds to the KPI targeting a 5% increase of monthly
sales amount with respect to the same month of the previous year. The query
for the gauge is given next:

WITH MonthlySalesApr1997 AS (
SELECT SUM(S.SalesAmount) AS TotalSales
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FROM Sales S, Time T
WHERE S.OrderDateKey = T.TimeKey AND

DATEPART(yy, T.Date)=1997 AND
DATEPART(mm, T.Date)=4 ),

MonthlySalesApr1998 AS (
SELECT SUM(S.SalesAmount) AS TotalSales
FROM Sales S, Time T
WHERE S.OrderDateKey = T.TimeKey AND

DATEPART(yy, T.Date)=1998 AND
DATEPART(mm, T.Date)=4 )

SELECT MS.TotalSales, LYMS.TotalSales AS LY TotalSales,
MS.TotalSales / LYMS.TotalSales AS Percentage

FROM MonthlySalesApr1998 MS, MonthlySalesApr1997 LYMS

The above query defines two temporary tables computing, respectively, the
monthly sales for April 1997 and April 1998. Each of these tables results in
a single line. Then, a cross join of the two temporary tables is performed in
the main query to obtain both values in a single line.

Below, we analyze the query for the center left chart, which shows the
shipping costs with respect to the total sales by month:

SELECT DATEPART(yy, T.Date) AS Year, DATEPART(mm, T.Date) AS Month,
SUBSTRING(DATENAME(MM, T.Date), 1, 3) AS MonthName,
SUM(S.SalesAmount) AS TotalSales, SUM(S.Freight) AS TotalFreight,
SUM(S.Freight) / SUM(S.SalesAmount) AS Percentage

FROM Sales S, Time T
WHERE S.OrderDateKey = T.TimeKey AND NOT

( DATEPART(yy, T.Date) = 1998 AND DATEPART(mm, T.Date) = 5 )
GROUP BY DATEPART(yy, T.Date), DATEPART(mm, T.Date),

DATENAME(mm, T.Date)
ORDER BY Year, Month, DATENAME(mm, T.Date)

In this query, we compute the total sales and the total freight cost by month,
as well as the percentage between the two. As before, we exclude the values
from May 1998.

The gauge in the center right of Fig. 9.16 shows the percentage of shipping
costs with respect to the total sales from January to April 1998. The range
of the gauge (shown at the right of the scale) reflects the KPI used for
monitoring shipping costs, targeted at remaining below 5% of the sales
amount. The corresponding query is given next:

SELECT SUM(S.SalesAmount) AS TotalSales, SUM(S.Freight) AS TotalFreight,
SUM(S.Freight) / SUM(S.SalesAmount) AS Percentage

FROM Sales S, Time T
WHERE S.OrderDateKey = T.TimeKey AND DATEPART(yy, T.Date) = 1998 AND

DATEPART(mm, T.Date) >= 1 AND DATEPART(mm, T.Date) <= 4

Finally, the query for the bottom table showing the three least performing
selling employees as of April 1998 is given next:

WITH Quota1998 AS (
SELECT S.EmployeeKey, SUM(S.SalesAmount) * 1.05 AS Quota
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FROM Sales S, Time T
WHERE S.OrderDateKey = T.TimeKey AND

DATEPART(yy, T.Date) = 1997
GROUP BY S.EmployeeKey )

SELECT TOP (3) E.FirstName + ' ' + E.LastName AS Name,
SUM(S.SalesAmount) AS SalesApril1998,
SUM(S.SalesAmount) * 3 AS ExpectedSales1998, Q.Quota,
SUM(S.SalesAmount) * 3 / Q.Quota AS Percentage

FROM Sales S, Time T, Employee E, Quota1998 Q
WHERE S.OrderDateKey = T.TimeKey AND

S.EmployeeKey = E.EmployeeKey AND
S.OrderDateKey = T.TimeKey AND
S.EmployeeKey = Q.EmployeeKey AND
DATEPART(yy, T.Date) = 1998 AND DATEPART(mm, T.Date) <= 4

GROUP BY S.EmployeeKey, E.FirstName, E.LastName, Q.Quota
ORDER BY Percentage

In the temporary table Quota1998, we compute the sales quota that employees
must achieve for 1998, as 5% increase of the sales amount for 1997. Then,
the main query computes in the column SalesApril1998 the sales of employees
from January to April 1998 and in the column ExpectedSales1998 the expected
sales for 1998, calculated as three times the previous value; finally, the query
computes the percentage of the expected sales and the quota.

9.4 Summary

In this chapter, we have discussed how a data warehouse can be exploited
to obtain valuable and hidden information. We started describing three
commonly used data mining techniques and their implementation in Analysis
Services. We also applied them to the Northwind case study. Then, we
studied KPIs, gave a classification of them, and provided guidelines for their
definition. We also illustrated how to define KPIs for the Northwind case
study in Analysis Services. We continued with the study of dashboards.
We characterized different types of dashboards and gave guidelines for their
definition. We concluded by illustrating how to create a dashboard for the
Northwind case study using Microsoft Reporting Services.

9.5 Bibliographic Notes

There is a wide literature in data mining, where the concepts that we
explained in this chapter could be studied in detail. For example, the book
by Han, Kamber, and Pei [77] provides a good introduction to data mining
techniques. Another good reference is the book by Tan et al. [196]. The classic
Apriori algorithms can be found in [3, 190]. The latter covers association
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rules at different levels of granularity. The pattern growth algorithm was
introduced in [76]. Sequential pattern algorithms are described in [4, 191].
Variants to make them more efficient by pruning uninteresting sequences are
explained in Garofalakis et al. [59, 60]. Clustering is studied in [101], and
the DBSCAN algorithm is described in [51]. The classic SLIQ and SPRINT
classification algorithms are described in [131, 186], respectively.

Most of the books on KPIs and dashboards are oriented to practitioners.
A typical reference on KPIs is the book by Parmenter [156]. Some references
for dashboards are [55, 56, 162, 169]. Details on Microsoft Reporting Services
can be found in [209].

9.6 Review Questions

9.1 What is data mining? Which disciplines does it comprise? How does
data mining differentiate from statistics?

9.2 How does data mining fit into the process of knowledge discovery in
databases?

9.3 Describe the main data mining tasks.
9.4 Describe the components of most data mining algorithms.
9.5 What is the main difference between supervised and unsupervised

classification? Give examples of the possible uses of each technique.
9.6 What are decision trees? What is the Gini index used for?
9.7 Explain the partition algorithm for building a decision tree.
9.8 What is clustering? How would you select a good distance function?

What is a score function?
9.9 Explain the K-means algorithm for clustering.

9.10 What is an association rule? Define confidence and support. What are
they used for? What is an itemset? What is a frequent itemset?

9.11 Explain the Apriori algorithm for mining association rules.
9.12 Explain the concept of hierarchical association rules. How would you

use them in a data mining process?
9.13 Describe the FUP algorithm for updating association rules. Give the

principles on which this algorithm works and discuss its limitations.
9.14 Explain the concept of mining sequential patterns. How does it

differentiate from mining association rules? What are the implications
of accounting for order?

9.15 What are key performance indicators or KPIs? What are they used for?
Detail the conditions a good KPI must satisfy.

9.16 Define a collection of KPIs using an example of an application domain
that you are familiar with.

9.17 Explain the notion of dashboard. Compare the different definitions for
dashboards.

9.18 What types of dashboards do you know? How would you use each kind?
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9.19 Comment on the dashboard design guidelines.
9.20 Define a dashboard using an example of an application domain that

you are familiar with.

9.7 Exercises

9.1 Consider the following training data about students:

StudID Age Country FamilyIncome Distance Finish
s1 1 local low 1 1
s2 0 local medium 0 0
s3 0 local high 1 0
s4 0 local medium 1 0
s5 4 foreigner medium 2 1
s6 3 foreigner medium 1 1
s7 3 foreigner low 1 2
s8 2 foreigner low 1 3
s9 1 local high 2 3
s10 0 local high 1 2

where the classes are as follows:

• Age indicates the age at which the student started the studies.
Possible values are as follows: 0 (between 17 and 21), 1 (between
22 and 26), 3 ( between 27 and 32), and 4 (older than 32).

• Country can have two values: local and foreigner.
• FamilyIncome can be low, medium, and high.
• Distance indicates the distance that the student has to travel to go

to university. It can take values 0 (less than 1 mile), 1 (between 1
and 3 miles), and 2 (more than 3 miles).

• Finish indicates whether the student finished her studies in the years
planned for the corresponding career. It can take the values 0 (the
student finished her studies on time), 1 (the student finished at most
with 1-year delay), 2 (the student finished with 2 or more years of
delay), and 3 (the student abandoned her studies).

(a) Manually run the ID3 algorithm to build a decision tree over the
class Finish. Use the Gini index to partition the nodes.

(b) Use the K-means algorithm to generate three clusters of students.

9.2 Consider the Foodmart data warehouse of Fig. 6.4:

(a) Build a decision tree model that predicts whether a new customer
is likely to order an item of a (sub)category X . Use the Customer,
Product, Product class, and Sales tables in the Foodmart data
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warehouse to build the data set. Add a Boolean attribute Buyer to
each record: if a customer has purchased an item of (sub)category
X , classify the record as 1, otherwise as 0. Add also an attribute
age.

(b) Analyze the model using Analysis Services. Comment on the main
characteristics, the attributes that the algorithm has selected to
partition the tree, and other features you consider of interest.
Modify the parameters and verify if you obtain the same model.

(c) Write a prediction query that checks for a new customer if she will
order an item of the required (sub)category.

9.3 Consider again the Foodmart data warehouse:

(a) Use the Customer dimension and build a clustering model.
(b) Analyze the model using Analysis Services. Comment on the main

characteristics, the number of clusters, and so on. Analyze if the
partition reflects correctly the data or if you think that the model
must be revised. Modify the parameters to produce other models.

(c) Write a DMX query that returns the cluster to which a new
customer will most likely belong. Assume that this customer is a
35-year-old single female with university studies.

9.4 Consider the following transaction database:

TID Items
T1 A,B,C
T2 A,B,D
T3 B,C
T4 D,E,F
T5 E,F,G
T6 A,C,E
T7 A,B,D
T8 A,B,C,F
T9 A,D,E,F
T10 B,C,D,E

{
{
{

{
{
{
{

{
{

}
}

}
}
}
}
}
}
}

{ }

(a) Manually run the Apriori algorithm to find out the frequent
itemsets and rules with minimum support and confidence of 40%.

(b) Use the FUP algorithm to insert the following transactions:

TID Items
T1 A,K
T2 C,E,K
T3 F, G
T4 K,L

{ }
{ }
{ }
{ }

Explain the algorithm step by step.
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(c) Insert the necessary transactions such that at least two new
frequent itemsets are discovered, keeping the same support.

9.5 Given the transaction database below, manually run the FP-growth
algorithm with minimum support of 3.

TID Items
T1 A,B
T2 B,C,D
T3 A,C,D,E
T4 A,D,E
T5 A,B,C
T6 A,B,C,D
T7 A
T8 A,B,C
T9 A,B,D
T10 B,C,E

{ }
{ }

{ }
{ }
{ }

{ }
{ }

{ }
{ }
{ }

9.6 Consider again the Foodmart data warehouse:

(a) Use the Sales table to build a transaction database for association
rule mining. Use this table to produce an association rule model.

(b) Explore the model, and write a query to find out the 10 most
frequent itemsets.

(c) Write a DMX query that, given the purchase of a product by a
customer, selects other products to recommend her.

9.7 Use the Sales, Product, and Product class tables to build a table contain-
ing transactions for hierarchical association rule mining. The hierarchy
in the Product class table contains the levels product subcategory →
product category → product department → product family. We want to
know, given a purchase of a product of a class C, which is the class
of a product that will be bought together with the former one, where
class is one of subcategory, category, department, or family. Using the
Product class table, produce an association rule model and analyze it.

9.8 Implement in Analysis Services the KPIs defined in Sect. 9.2.3 for the
Northwind data warehouse.

9.9 The Foodmart company wants to define a collection of KPIs based
on its data warehouse. The finance department wants to monitor the
overall performance of the company stores, to check the percentage of
the stores accountable for 85% of the total sales (the Pareto’s principle).
The sales department wants to monitor the evolution of the sales cost.
It also wants to measure the monthly rate of new customers.
Propose KPIs that can help the departments in these tasks. Define
these KPIs together with the goals that they are aimed to evaluate.

9.10 Define in Analysis Services the KPIs of Ex. 9.9.
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9.11 Define in Reporting Services a dashboard to display the best five
customers (the ones that purchased for the highest amount) for the
last year, the best five selling products for the last year, the evolution
in the last 2 years of the product sales by family, and the evolution in
the last 2 years of the promotion sales against nonpromoted sales.



Chapter 10

A Method for Data Warehouse Design

Even though there is an abundant literature in the area of software
development, few publications have been devoted to the development of
data warehouses. Most of them are written by practitioners based on their
experience in building data warehouses. On the other hand, the scientific
community has proposed a variety of approaches, which in general target
a specific conceptual model and are too complex to be used in real-world
environments. As a consequence, there is still a lack of a methodological
framework that could guide developers in the various stages of the data
warehouse development process.

In this chapter, building over several existing approaches, we describe
a general method for data warehouse design. We use the Northwind case
study to illustrate the methodology. In Sect. 10.1, we present the existing
approaches to data warehouse design. Then, in Sect. 10.2, we refer to the
various phases that make up the data warehouse design process. Analogously
to traditional database design, the methodology includes the phases of
requirements specification, conceptual design, logical design, and physical
design. The subsequent sections are devoted to more detailed descriptions
of each design phase. In Sect. 10.3, we describe three different approaches to
requirements specification. These approaches differ in which is the driving
force for specifying requirements: users, source systems, or both. Section 10.4
covers conceptual design for data warehouses. In Sects. 10.5 and 10.6, we
briefly describe the logical and physical design phases for data warehouses,
extensively covered in Chaps. 5 and 7. We just provide this description to
give a complete self-contained vision of the method. Section 10.7 highlights
the advantages and disadvantages of the three approaches.

A. Vaisman and E. Zimányi, Data Warehouse Systems, Data-Centric
Systems and Applications, DOI 10.1007/978-3-642-54655-6 10,
© Springer-Verlag Berlin Heidelberg 2014
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10.1 Approaches to Data Warehouse Design

A wide variety of approaches have been proposed for designing data
warehouses. They differ in several aspects, such as whether they target data
warehouses or data marts, the various phases that make up the design process,
and the methods used for performing requirements specification and data
warehouse design. This section highlights some of the essential characteristics
of the current approaches according to these aspects.

A data warehouse includes data about an entire organization that help
users at high management levels to take strategic decisions. However, these
decisions may also be taken at lower organizational levels related to specific
business areas, in which case only a subset of the data contained in a data
warehouse is required. This subset is typically contained in a data mart (see
Sect. 3.4), which has a similar structure to a data warehouse but is smaller
in size. Data marts can be physically collocated with the data warehouse or
they can have their own separate platform.

Like in operational databases (see Sect. 2.1), there are two major methods
for the design of a data warehouse and its related data marts:

• Top-down design: The requirements of users at different organizational
levels are merged before the design process begins, and one schema for
the entire data warehouse is built. Then, separate data marts are tailored
according to the characteristics of each business area or process.

• Bottom-up design:A separate schema is built for each data mart, taking
into account the requirements of the decision-making users responsible for
the corresponding specific business area or process. Later, these schemas
are merged in a global schema for the entire data warehouse.

The choice between the top-down and the bottom-up approach depends on
many factors, such as the professional skills of the development team, the size
of the data warehouse, the users’ motivation for having a data warehouse, and
the financial support, among other things. The development of an enterprise-
wide data warehouse using the top-down approach may be overwhelming for
many organizations in terms of cost and duration. It is also a challenging
activity for designers because of its size and complexity. On the other hand,
the smaller size of data marts allows the return of the investment to be
obtained in a shorter time period and facilitates the development processes.
Further, if the user motivation is low, the bottom-up approach may deliver
a data mart faster and at less cost, allowing users to quickly interact with
OLAP tools and create new reports; this may lead to an increase in users’
acceptance level and improve the motivation for having a data warehouse.
Nevertheless, the development of these data marts requires a global data
warehouse framework to be established so that the data marts are built
considering their future integration into a whole data warehouse. A lack of
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this global framework can make such integration difficult and costly in the
long term.

There is no consensus on the phases that should be followed for data
warehouse design. Some authors consider that the traditional phases of
developing operational databases described in Chap. 2, that is, requirements
specification, conceptual design, logical design, and physical design, can also
be used in developing data warehouses. Other authors ignore some of these
phases, especially the conceptual design phase. Several approaches for data
warehouse design have been proposed based on whether the analysis goals,
the source systems, or a combination of these are used as the driving force. We
next present these approaches, which we study in detail in the next sections.

The analysis-driven approach requires the identification of key users
that can provide useful input about the organizational goals. Users play
a fundamental role during requirements analysis and must be actively
involved in the process of discovering relevant facts and dimensions. Users
from different levels of the organization must be selected. Then, various
techniques, such as interviews or facilitated sessions, are used to specify
the information requirements. Consequently, the specification obtained will
include the requirements of users at all organizational levels, aligned with the
overall business goals. This is also called goal-driven approach.

In the source-driven approach, the data warehouse schema is obtained
by analyzing the underlying source systems. Some of the proposed techniques
require conceptual representations of the operational source systems, most of
them based on the entity-relationship model, which we studied in Chap. 2.
Other techniques use a relational schema to represent the source systems.
These schemas should be normalized to facilitate the extraction of facts,
measures, dimensions, and hierarchies. In general, the participation of users is
only required to confirm the correctness of the derived structures or to identify
some facts and measures as a starting point for the design of multidimensional
schemas. After creating an initial schema, users can specify their information
requirements. This is also called data-driven or supply-driven approach.

The analysis/source-driven approach is a combination of the analysis-
and source-driven approaches, which takes into account what are the analysis
needs from the users and what the source systems can provide. In an ideal
situation, these two components should match, that is, all information that
the users require for analysis purposes should be supplied by the data included
in the source systems. This approach is also called top-down/bottom-up
analysis.

These approaches, originally proposed for the requirements specification
phase, are adapted to the other data warehouse design phases in the method
that we explain in the next section.
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10.2 General Overview of the Method

We next describe a general method for data warehouse design that encom-
passes various existing approaches from both research and practitioners. The
method is based on the assumption that data warehouses are a particular
type of databases dedicated to analytical purposes. Therefore, their design
should follow the traditional database design phases, that is, requirements
specification, conceptual design, logical design, and physical design, as
shown in Fig. 10.1, which repeats, for clarity, Fig. 3.6 presented in Chap. 3.
Nevertheless, there are significant differences between the design phases for
databases and data warehouses, which stem from their different nature, as
explained in Chap. 3. Note that although the various phases in Fig. 10.1 are
depicted consecutively, actually there are multiple interactions between them,
especially if an iterative development process is adopted in which the system
is developed in incremental versions with increased functionality.

Requirements 
specification

Conceptual 
design

Logical design Physical design

Fig. 10.1 Phases in data warehouse design (repeated from Fig. 3.6)

The phases in Fig. 10.1 may be applied to define either the overall data
warehouse schema or the schemas of the individual data marts. From now
on, we shall use the term “data warehouse” to mean that the concepts that
we are discussing apply also to data marts if not stated otherwise.

For all the phases in Fig. 10.1, the specification of business and technical
metadata is in continuous development. These include information about the
data warehouse schema, the data source schemas, and the ETL processes. For
example, the metadata for a data warehouse schema may provide information
such as aliases used for various elements, abbreviations, currencies for
monetary attributes or measures, and metric systems. The elements of the
source systems should also be documented similarly. This could be a difficult
task if conceptual schemas for these systems do not exist. The metadata for
the ETL processes should consider several elements, such as the frequency of
data refreshment. Data in a fact table may be required on a daily or monthly
basis or after some specific event (e.g., after finishing a project). Therefore,
users should specify a data refreshment strategy that corresponds to their
analysis needs.

To illustrate the proposed method, we will use a hypothetical scenario
concerning the design of the Northwind data warehouse we have been using
as example throughout this book. We assume that the company wants to
analyze its sales along dimensions like customers, products, geography, and
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so on in order to optimize the marketing strategy, for example, detecting
customers that potentially could increase their orders or sales regions that
are underperforming. To be able to conduct the analysis process, Northwind
decided to implement a data warehouse system.

10.3 Requirements Specification

The requirements specification phase is one of the earliest steps in system
development and thus entails significant problems if it is faulty or incomplete.
Not much attention has been paid to the requirements analysis phase in data
warehouse development, and many data warehouse projects skip this phase;
instead, they concentrate on technical issues such as database modeling or
query performance. As a consequence, many data warehouse projects fail to
meet user needs and do not deliver the expected support for the decision-
making process.

Requirements specification determines, among other things, which data
should be available and how these data should be organized. In this phase,
the queries of interest for the users are also determined. The requirements
specification phase should lead the designer to discover the essential elements
of a multidimensional schema, like the facts and their associated dimensions,
which are required to facilitate future data manipulation and calculations. We
will see that requirements specification for decision support and operational
systems differ significantly from each other. The requirements specification
phase establishes a foundation for all future activities in data warehouse
development; in addition, it has a major impact on the success of data
warehouse projects since it directly affects the technical aspects, as well as
the data warehouse structures and applications.

We present next a general framework for the requirements specification
phase. Although we separate the phases of requirements specification and
conceptual design for readability purposes, these phases often overlap. In
many cases, as soon as initial requirements have been documented, an initial
conceptual schema starts to be sketched. As the requirements become more
complete, so does the conceptual schema. For each one of the three approaches
above, we first give a general description and then explain in more detail the
various steps; finally, we apply each approach to the Northwind case study.
We do not indicate the various iterations that may occur between steps. Our
purpose is to provide a general framework to which details can be added and
that can be tailored to the particularities of a specific data warehouse project.

10.3.1 Analysis-Driven Requirements Specification

In the analysis-driven approach, the driving force for developing the con-
ceptual schema are the analysis needs of users. These requirements express
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Identify users

Define, refine, 
and prioritize 

goals

Document
requirements 
specification

Determine analysis needs

Operationalize 
goals

Define facts,
measures, and 

dimensions

Fig. 10.2 Steps for requirements specification in the analysis-driven approach

the organizational goals and needs that the data warehouse is expected to
address to support the decision-making process.

The steps in the analysis-driven approach to requirements specification are
shown in Fig. 10.2 and described next.

Identify Users

Since a data warehouse provides an enterprise-wide decision-support infras-
tructure, users at various hierarchical levels in the organization should
be considered when analyzing requirements. Executive users at the top
organizational level typically require global, summarized information. They
help in understanding high-level objectives and goals and the overall business
vision. Management users may require more detailed information pertaining
to a specific area of the organization. They provide more insight into the
business processes or the tactics used for achieving the business goals. Finally,
professional users are responsible for a specific section or set of services
and may demand specific information related to their area of interest. Fur-
thermore, the identification of potential users should also consider different
entities in a horizontal division of the organization (e.g., departments). This
will help in providing an overall view of the project and its scope.

Determine Analysis Needs

Analysis needs help developers understand what data should be available to
respond to the users’ expectations on the data warehouse system. This phase
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should eventually discover a collection of facts, measures, dimensions, and
hierarchies. The process includes several steps, as follows.

Define, Refine, and Prioritize Goals

The starting point in determining analysis needs is the consideration of the
business goals. Successful data warehouse projects assume that the goals of
the company are the same for everyone and that the entire company will
therefore be pursuing the same direction. Therefore, a clear specification of
goals is essential to guide user needs and convert them into data elements.
Since users at several different management levels participate in requirements
specification, analysis needs may be expressed by considering both general
and specific goals. The specific goals should be aligned with the general ones
to ensure a common direction of the overall development. The goal-gathering
process is conducted by means of interviews and brainstorming sessions,
among other ones. The list of goals should be analyzed to detect redundancies
and dependencies. For example, some goals could be combined because of
their similarity, discarded because of their inconsistency, or considered as
subgoals of other ones. This analysis may require additional interaction with
the users to establish the final list of goals.

Operationalize Goals

Once the goals have been defined and prioritized, we need to make them
concrete. Thus, for each goal identified in the previous step, a collection
of representative queries must be defined through interviews with the
users. These queries capture functional requirements, which define the
operations and activities that a system must be able to perform. Each user is
requested to provide, in natural language, a list of queries needed for her daily
task. Initially, the vocabulary can be unrestricted. However, certain terms
may have different meanings for different users. The analyst must identify and
disambiguate them. For example, a term like “the best customer” should be
expressed as “the customer with the highest total sales amount.” A document
is then produced, where for each goal there is a collection of queries, and
each query is associated with a user. The process continues with query
analysis and integration. Here, users review and consolidate the queries in the
document above to avoid misunderstandings or redundancies. The frequency
of the queries must also be estimated. Finally, a prioritization process is
carried out. Since we worked with different areas of the organization, we
must unify all requirements from these areas and define priorities between
them. A possible priority hierarchy can be areas → users → queries of the
same user. Intuitively, the idea is that the requirement with the least priority
in an area prevails over the requirement with the highest priority in the
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area immediately following in importance the previous one. Obviously, other
criteria could also be used. This is a cyclic process, which results in a final
document containing consistent, nonredundant queries. In addition to the
queries, nonfunctional requirements should also be elicited and specified.
These are criteria that can be used to judge the operation of a system rather
than specific behavior. Thus, a list of nonfunctional requirements may be
associated with each query, for example, required response time and accuracy.

Define Facts, Measures, and Dimensions

In this step, the analyst tries to identify the underlying facts and dimensions
from the queries above. This is typically a manual process. For example, in the
documentation of this step, we can find a query “Name of top five customers
with monthly average sales higher than $1,500.” This query includes the
following data elements: customer name, month, and sales. We should also
include information about which data elements will be aggregated and the
functions that must be used. If possible, this step should also specify the
granularities required for the measures and information about whether they
are additive, semiadditive, or nonadditive (see Sect. 3.1).

Document Requirements Specification

The information obtained in the previous step should be documented.
The documentation delivered is the starting point for the technical and
business metadata (see Sect. 3.4). Therefore, this document should include
all elements required by the designers and also a dictionary of the terminology,
organizational structure, policies, and constraints of the business, among
other things. For example, the document could express in business terms what
the candidate measures or dimensions actually represent, who has access to
them, and what operations can be done. Note that this document will not be
final since additional interactions could be necessary during the conceptual
design phase in order to refine or clarify some aspects.

10.3.2 Analysis-Driven Requirements for the
Northwind Case Study

We now apply the analysis-driven approach to produce a requirements
specification for the Northwind data warehouse. We do not include all details
about each step. We limit ourselves to illustrate only the essential aspects of
the method.
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Identify Users

In this example, three groups of users were identified:

1. Executive: the members of the board of directors of the Northwind
company who define the overall company goals.

2. Management: managers at departmental levels, for example, marketing,
regional sales, and human resources.

3. Professional: professional personnel who implement the indications of the
management. Examples are marketing executive officers.

Determine Analysis Needs

This step starts with the specification of the goals. We will just address the
general goal: increase the overall company sales by 10% percent yearly. This
goal can be decomposed into subgoals :

1. Increase sales in underperforming regions.
2. For customers buying below their potential, increase their orders (in

number of orders and individual order amount).
3. Increase sales of products selling below the company expectations.
4. Take action on employees performing below their expected quota.

In the next step, further sessions with the users are carried out to understand
their demands in more detail and operationalize the goals and subgoals. As we
explained above, the queries can be expressed in free natural language. Then,
the terms must be aligned with a data dictionary or common vocabulary
during a process of cleansing, disambiguation, and prioritization. Below, we
give some examples of the queries that operationalize the goals above. We
show the queries already expressed in a common vocabulary that we assume
has been previously defined in a data dictionary. We omit here the process
of prioritizing queries and users. We then identify potential dimensions,
hierarchy levels, and measures. To facilitate reading, we use different fonts
for dimensions, hierarchy levels, and measures.

1. Increase sales in underperforming regions:

(a) Five best- and worst-selling (measured as total sales amount) pairs of
customer and supplier countries.

(b) Countries, states, and cities whose customers have the highest total sales
amount.

(c) Five best- and worst-selling (measured as total sales amount) products
by customer country, state, and city.
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2. For customers buying below their potential, increase their orders (in
number of orders and individual order amount):

(a) Monthly sales by customer compared to the corresponding sales (for
the same customer) of the previous year.

(b) Total number of orders by customer, time period (e.g., year), and
product.

(c) Average unit price per customer.

3. Increase sales of products selling below the company expectations:

(a) Monthly sales for each product category for the current year.
(b) Average discount percentage per product and month.
(c) Average quantity ordered per product.

4. Take action on employees performing below their expected quota:

(a) Best-selling employee per product per year with respect to sales amount.
(b) Average monthly sales by employee and year.
(c) Total sales by an employee and her subordinates during a certain time

period.

Table 10.1 shows, for each query, which are the candidate dimensions,
measures, and hierarchies. If priorities are considered, they will be associated
with each query; it is also usual that each query is associated with the users
that proposed it. In the first column from the left of the table, dimension and
measure names are distinguished by their fonts. Thus, for instance, Employee
is a dimension while Quantity is a measure. The table displays summarized
information in the sense that a check mark is placed if a query mentions at
least one level of one hierarchy in the second column from the left. Note also
that Table 10.1 includes more hierarchy levels than the ones referenced in
the goals and subgoals above. We assume that these have been discovered
by means of the analysis of other queries not shown here. We will also see
later that the complete design includes more dimensions and measures not
displayed here for the sake of clarity. For example, we do not show here
the information related to the shipping of products. Also, regarding the
Time dimension, note that we did not identify the three roles it plays in
the Northwind data warehouse, that is, as an order date, a shipped date, or
a due date. The queries we have addressed only allow to discover the order
date role; therefore, we have just called this dimension Time.

Table 10.1 does not only show the dimensions but also candidate hier-
archies inferred from the queries above and company documentation. For
example, in dimension Employee, we can see that there are two candidate
hierarchies: Supervision and Territories. The former can be inferred, among
other sources of information, from Requirement 4c, which suggests that
users are interested in analyzing together employees and their supervisors
as a sales force. The Territories hierarchy is derived from the documentation
of the company processes, which state that employees are assigned to a
given number of cities and a city may have many employees assigned
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Table 10.1 Multidimensional elements of the Northwind case study obtained using
the analysis-driven approach

Analysis scenariosDimensions
/measures

Hierarchies
and levels 1a 1b 1c 2a 2b 2c 3a 3b 3c 4a 4b 4c

Employee

Supervision
Subordinate → Supervisor
Territories
Employee City →
State → Country → Continent

– – – – – – – – –

Time
Calendar
Day → Month →
Quarter → Semester → Year

– – – –

Product
Categories
Product → Category

– – – – – –

Customer
Geography
Customer → City →
State → Country → Continent

– – – – – –

Supplier
Geography
Supplier → City →
State → Country → Continent

– – – – – – – – – – –

Quantity – – – – – – – – – – – –
Discount – – – – – – – – – – – –

SalesAmount – – – – –
UnitPrice – – – – – – – – – – – –

to it. In addition, users informed that they are interested in analyzing
total sales along a geographic dimension. Note that following the previous
description, the hierarchy will be nonstrict. Requirements 1a–c suggest that
customers are organized geographically and that this organization is relevant
for analysis. Thus, Geography is a candidate hierarchy to be associated
with customers. The same occurs with suppliers. The hierarchy Categories
follows straightforwardly from Requirement 3a. The remaining hierarchies
are obtained analogously.

Document Requirements Specification

The information compiled is included in the specification of the users’ require-
ments. For example, it can contain summarized information as presented in
Table 10.1 and also more descriptive parts that explain each element. The
requirements specification document also contains the business metadata. For
the Northwind case study, there are various ways to obtain these metadata,
for example, by interviewing users or administrative staff or accessing the
existing company documentation. We do not detail this document here.
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10.3.3 Source-Driven Requirements Specification

The source-driven approach is based on the data available at the source
systems. It aims at identifying all multidimensional schemas that can
be implemented starting from the available operational databases. These
databases are analyzed exhaustively in order to discover the elements that
can represent facts with associated dimensions, hierarchies, and measures
leading to an initial data warehouse schema.

Identify source
systems

Apply derivation 
process

Document
requirements 
specification

Fig. 10.3 Steps for requirements specification in the source-driven approach

We briefly describe next the steps in this approach to requirements
specification, depicted in Fig. 10.3. As with the analysis-driven approach, we
do not show the various iterations that could be required before the final
data warehouse schema is developed.

Identify Source Systems

The aim of this step is to determine the existing operational systems that
can be data providers for the warehouse. External sources are not considered
at this stage; they can be included later on when the need for additional
information has been identified.

This step relies on system documentation, preferably represented using the
entity-relationship model or relational tables. However, in many situations,
this representation may be difficult to obtain, for example, when the data
sources include implicit structures that are not declared through the data
definition language of the database, when redundant and denormalized
structures have been added to improve query response time, when the
database has not been well designed, or when the databases reside on
legacy systems whose inspection is a difficult task. In such situations, reverse
engineering processes can be applied. These processes are used to rebuild the
logical and conceptual schemas of source systems whose documentation is
missing or outdated.

It is important not only to identify the data sources but also to assess
their quality. Moreover, it is often the case that the same data are available
from more than one source. Reliability, availability, and update frequency
of these sources may differ from each other. Thus, data sources must be
analyzed to assess their suitability to satisfy nonfunctional requirements. For
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this, meetings with data producers are carried out where the set of data
sources, the quality of their data, and their availability must be documented.
At the end of the whole requirements specification process, ideally we will
have for each data element the best data source for obtaining it.

Apply Derivation Process

There are many techniques to derive multidimensional elements from opera-
tional databases. All these techniques require that the operational databases
are represented using either the entity-relationship or the relational model.

Facts and their associated measures are determined by analyzing the
existing documentation or the structure of the databases. Facts and measures
are associated with elements that are frequently updated. If the operational
databases are relational, they may correspond to tables and attributes,
respectively. If the operational databases are represented using the entity-
relationship model, facts could be entity or relationship types, while measures
may be attributes of these elements. An alternative option is to involve users
who understand the operational systems and can help to determine what data
can be considered as measures. Identifying facts and measures is the most
important aspect of this approach since these form the basis for constructing
multidimensional schemas.

Various procedures can be applied to derive dimensions and hierarchies.
These procedures may be automatic, semiautomatic, or manual. The former
two require knowledge about the specific conceptual models that are used
for the initial schema and its subsequent transformations. The process of
discovering a dimension or a leaf level of a hierarchy usually starts from
identifying the static (not frequently updated) elements that are related to
the facts. Then, a search for other hierarchy levels is conducted. For this
purpose, starting with a leaf level of a hierarchy, every relationship in which
it participates is revised. Unlike automatic or semiautomatic procedures,
manual procedures allow designers to find hierarchies embedded within the
same entity or table, for example, to find city and province attributes in a
customer or employee entity type. However, either the presence of system
experts who understand the data in the operational databases is required or
the designer must have good knowledge about the business domain and the
underlying systems.

Document Requirements Specification

Like in the analysis-driven approach, the requirements specification phase
should be documented. The documentation should describe those elements
of the source systems that can be considered as facts, measures, dimensions,
and hierarchies. This will be contained in the technical metadata. Further,
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it is desirable to involve at this stage a domain expert who can help in defining
business terminology for these elements and in indicating, for example,
whether measures are additive, semiadditive, or nonadditive.

10.3.4 Source-Driven Requirements for the
Northwind Case Study

We illustrate next the source-driven approach for the Northwind case study.
We assume that the entity-relationship schema of the operational database,
shown in Fig. 10.4, is available and data of appropriate quality can be
obtained. We skip the step of identifying the source systems, except for the
geographic data, which were obtained from external sources (typically web-
based), complementing the ones in the database in the Customers, Employees,
and Suppliers tables.

Apply Derivation Process

We chose a manual derivation process to provide a more general solution,
although automatic or semiautomatic methods could have also been applied.

We start by identifying candidate facts. In the schema of Fig. 10.4, we can
distinguish the many-to-many relationship type OrderDetails, with attributes
that represent numeric data. This is a clear candidate to be a fact in a
multidimensional schema. Candidate measures for this fact are the attributes
UnitPrice, Quantity, and Discount. An order in Orders is associated with
many products through the relationship type OrderDetails. Since users have
expressed that they are interested in individual sales rather than in the whole
content of an order, a fact should be associated with an order line. Thus, the
products in OrderDetails may be subsumed in the Orders table so that each
record in the latter now becomes a fact. We call this fact Sales. A sales fact
is associated with a unique employee (in entity type Employees), shipper (in
entity type Shippers), and customer (in entity type Customers). In addition,
it is associated with three dates: the order date, the required date, and the
shipped date. These are potential dimensions, analyzed below.

Since each sales fact is associated with an order line, we may also envision
a dimension Order, with a one-to-one relationship with the fact Sales. Thus,
Order is a candidate to be a fact or degenerate dimension (see Chap. 3), which
can be used, for example, to determine the average sales amount of an order
or the average number of items in an order.

The other many-to-many relationship type in the schema is EmployeeTer-
ritories. Since it does not have associated attributes, initially we can consider
it as candidate to be a nonstrict hierarchy rather than a fact.
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Fig. 10.4 Conceptual schema of the Northwind database (repeated from Fig. 2.1)
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We now analyze potential dimensions and hierarchies. We start with the
time dimension. Users have indicated that for decision making, a granularity
at the level of day will suffice, and analysis by month, quarter, semester, and
year are needed. The former defines, on the one hand, a Time dimension and,
on the other hand, the hierarchy Date → Month → Quarter → Semester →
Year. We call this hierarchy Calendar. We mentioned that each sales fact is
associated with three dates, thus yielding three roles for the Time dimension,
namely, OrderDate and ShippedDate (for the attribute with that name in the
operational database) and DueDate (for the RequiredDate attribute).

In addition to the Time dimension, we have seen that a sales fact is
associated with three other potential dimensions: Employee, Customer, and
Supplier, derived from the respective many-to-one relationship types with the
Orders table. A careful inspection of these geographic data showed that the
data sources were incomplete. Thus, external data sources need to be checked
(like Wikipedia1 and GeoNames2) to complete the data. This analysis also
shows that we need several different kinds of hierarchies to account for all
possible political organizations of countries. Also, a detailed analysis of the
data revealed that in the Northwind database, the term territories actually
refers to cities, and this is the name we will adopt in the requirements process.
Also, in the one-to-many relationship type Belongs between Territories and
Regions, we consider the latter as a candidate to be a dimension level, yielding
a candidate hierarchy City → Region. In light of the above, we define a
hierarchy, called Geography, composed of the levels City → State → Region
→ Country. But this hierarchy should also allow other paths to be followed,
like City → Country (for cities that do not belong to any state) and State
→ Country (for states that do not belong to any region). During conceptual
design, we will show how this will be modeled. This hierarchy will be shared by
the Customer and Supplier dimensions and will also be a part of the Employee
dimension via the Territories hierarchy. The difference is that the latter is a
nonstrict hierarchy, while Geography is a strict one.

The Products entity type induces the Product dimension, mentioned before.
The Categories entity type and the HasCategory relationship type allow us to
derive a hierarchy Product → Category, which we call Categories.

Finally, the entity type Employees is involved in a one-to-many recursive
relationship type denoted ReportsTo. This is an obvious candidate to be a
parent-child hierarchy, which we call Supervision.

Table 10.2 summarizes the result of applying the derivation process. We
included the cardinalities of the relationship between the dimensions and the
fact Sales. The term Employee � City indicates a many-to-many relationship
between the Employee and City levels. All other relationships are many-to-one.

1http://www.wikipedia.org
2http://www.geonames.org

http://www.wikipedia.org
http://www.geonames.org
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Table 10.2 Multidimensional elements in the Northwind case
study obtained using the source-driven approach

Facts Measures Dimensions and
cardinalities

Hierarchies and
levels

Sales UnitPrice Product 1:n Categories
Quantity Product → Category
Discount Supplier 1:n Geography

Supplier → City → State →
Region → Country

Customer 1:n Geography
Supplier → City → State →
Region → Country

Employee 1:n Supervision
Subordinate → Supervisor
Territories
Employee City →→→

State →
Region → Country

OrderDate 1:n Calendar
Date → Month → Quarter →
Semester → Year

DueDate 1:n Calendar (as above)
ShippedDate 1:n Calendar (as above)
Order 1:1

Document Requirements Specification

Similarly to the analysis-driven approach, all information specified in the
previous steps is documented here. This documentation includes a detailed
description of the source schemas that serve as a basis for identifying the
elements in the multidimensional schema. It may also contain elements in
the source schema for which it is not clear whether they can be used as
attributes or hierarchies in a dimension. For example, we considered that the
address of employees will not be used as a hierarchy. If the source schemas
use attributes or relation names with unclear semantics, the corresponding
elements of the multidimensional schema must be renamed, specifying clearly
the correspondences between the old and new names.

10.3.5 Analysis/Source-Driven Requirements
Specification

The analysis/source-driven approach to requirements specification combines
both of the previously described approaches, which can be used in parallel to
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achieve an optimal design. As illustrated in Fig. 10.5, two types of activities
can be distinguished: one that corresponds to analysis needs (as described
in Sect. 10.3.1) and another that represents the steps involved in creating
a multidimensional schema from operational databases (as described in
Sect. 10.3.3). Each type of activity results in the identification of elements
for the initial multidimensional schema.

Identify source
systems

Identify users
Determine 

analysis needs

Apply derivation 
process

Document
requirements 
specification

Document
requirements 
specification

Analysis-driven
approach

Source-driven
approach

Fig. 10.5 Steps for requirements specification in the analysis/source-driven
approach

10.4 Conceptual Design

Independently of whether the analysis-driven or the source-driven approach
has been used, the requirements specification phase should eventually provide
the necessary elements for building the initial conceptual data warehouse
schema. The purpose of this schema is to represent a set of data requirements
in a clear and concise manner that can be understood by the users. In the
following, we detail the various steps of the conceptual-design phase and
show examples of their execution. We use the MultiDim model described in
Chap. 4 to define the conceptual schemas, although other conceptual models
that provide an abstract representation of a data warehouse schema can also
be used.

10.4.1 Analysis-Driven Conceptual Design

The design of a conceptual schema is an iterative process composed of three
steps, shown in Fig. 10.6, namely, the development of the initial schema,
the verification that the data in this schema are available in the source
systems, and the mapping between the data in the schema and the data
in the sources. In the case of missing data items, modification of the schema
must be performed, which may lead to changes in the mappings. Finally, note
that data can be directly obtained from the sources or can be derived from
one or many sources. We next detail the three steps above.
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Fig. 10.6 Steps for conceptual design in the analysis-driven approach

Develop Initial Conceptual Schema

Well-specified analysis requirements lead to clearly distinguishable multidi-
mensional elements, that is, facts, measures, dimensions, and hierarchies.
We have shown this in Tables 10.1 and 10.2 as the result of the analysis-
and source-driven requirements specification, respectively. Therefore, a first
approximation to the conceptual schema can be developed. This schema
should be validated against its potential use for analytical processing. This
can be done by first revising the list of queries and analytical scenarios and
also by consulting the users directly. Designers should be aware of the features
of the multidimensional model in use and pose more detailed questions (if
necessary) to clarify any aspect that may remain unclear. For example, a
schema may contain different kinds of hierarchies, as specified in Sect. 4.2,
some dimensions can play different roles, and derived attributes and measures
could be needed. During this step, the refinement of the conceptual schema
may require several iterations with the users.

Check Data Availability and Specify Mappings

The data contained in the source systems determines whether the proposed
conceptual schema can be transformed into logical and physical schemas
and be fed with the data required for analysis. All elements included in
the conceptual schema are checked against the data items in the source
systems. This process can be time-consuming if the underlying source
systems are not documented, are denormalized, or are legacy systems.
The result of this step is a specification of the mappings for all elements
of the multidimensional schema that match data in the source systems.
This mapping can be represented either descriptively or, more formally,
using model-driven engineering techniques. This specification includes also a
description of the required transformations, if they are necessary. Note that it
is important to determine data availability at an early stage in data warehouse
design to avoid unnecessary effort in developing logical and physical schemas
for which the required data may not be available.

Develop Final Conceptual Schema and Mappings

If data are available in the source systems for all elements of the conceptual
schema, the initial schema could be considered as the final schema. However,
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if not all multidimensional elements can be fed with data from the source
systems, a new iteration with the users to modify their requirements
according to the availability of data is required. As a result, a new schema
should be developed and presented to the users for acceptance. The changes
to the schema may require modification of existing mappings.

10.4.2 Analysis-Driven Conceptual Design for the
Northwind Case Study

Develop Initial Schema

Based on the users’ requirements, we developed the initial conceptual diagram
shown in Fig. 10.7. This diagram was presented in Chap. 4, and we repeat it
here to facilitate the presentation.

As described in the requirements phase, the main focus of analysis pertains
to sales amount figures. This is represented at the conceptual level by the
Sales fact in Fig. 10.7. Given that the source data are organized into orders,
we need to transform order data into sales facts during the ETL process. For
example, the schema in Fig. 10.7 includes the measures Quantity, UnitPrice,
Discount, SalesAmount, Freight, and NetAmount. The first three measures are
obtained directly from the sources, while the others must be computed during
the ETL process. SalesAmount will be computed from Quantity, UnitPrice,
and Discount. On the other hand, since in the operational database Freight
is associated with a complete order rather than with an order line, in the
data warehouse it must be distributed proportionally across the articles in
the corresponding order. Finally, NetAmount is a derived measure, computed
over the data cube. We remark the difference between a measure that is
computed during the ETL process (SalesAmount) and a derived attribute,
which is computed from the data cube (NetAmount). In addition, we specify
the aggregate function to be applied to each measure. For example, average
is applied to the measures UnitPrice and Discount. Note that the measures
Freight and NetAmount are not included in Table 10.1 since they do not
follow from Queries 1a–4c, which only represent a portion of the actual set
of queries.

The Sales fact is defined between the Product, Supplier, Customer,
Employee, and Time dimensions. Since the orders are associated with
different time instants, the Time level participates in the Sales fact with the
roles OrderDate, DueDate, and ShippedDate. According to the requirements
summarized in Table 10.1, the Time dimension contains four aggregation
levels, where most of the scenarios include aggregation over time. Dimension
Product is related to the parent level Category with a one-to-many cardinality,
defining a strict hierarchy. The level Product also contains specific information
about products.
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Fig. 10.7 Conceptual schema of the Northwind data warehouse (repeated from
Fig. 4.2)

Also, following Table 10.1, geographic data are transformed in dimension
levels, which are used in three hierarchies for the Customer, Supplier, and
Employee dimensions. These hierarchies share the levels City, State, Region,
Country, and Continent and are manually constructed (using the external
data sources) taking into account the administrative divisions of the countries
we want to represent. In addition, the many-to-many relationship between
Employee and City defines a nonstrict hierarchy. This relationship was
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discovered analyzing the content of the source database in the requirements
phase.

Finally, for human resource management (Columns 4a–4c in Table 10.1),
we need to analyze sales by employee supervisors. Thus, in dimension
Employee, we defined a recursive hierarchy denoted Supervision.

Check Data Availability and Specify Mappings

The next step in the method is to check the availability of data in the
source systems for all elements included in the data warehouse schema. In our
example, the logical schema of the data source is depicted in Fig. 10.4, thus
facilitating the task of specifying mappings. In the absence of a conceptual
representation of the source systems, their logical structures can be used
instead. Table 10.3 shows an example of a table that specifies the way in which
source tables and attributes of the operational databases are related to the
levels and attributes of the data warehouse. The rightmost column indicates
whether a transformation is required. For example, data representing the
ProductName, QuantityPerUnit, and UnitPrice of products in the operational
database can be used without any transformation in the data warehouse for
the corresponding attributes of the Product level. Note that Table 10.3 is
just a simplification of the information that should be collected. Additional
documentation should be delivered that includes more detailed specification
of the required mappings and transformations.

Develop Final Conceptual Schema and Mappings

Revision and additional consultation with users are required in order to
adapt the multidimensional schema to the content of the data sources. When
this has been done, the final schema and the corresponding mappings are
developed. In our example, some of the issues found during the revision
process were:

• We need to create and populate the dimension Time. The time interval of
this dimension must cover the dates contained in the table Orders of the
Northwind operational database.

• The dimensions Customer and Suppliers share the geographic hierarchy
starting with City. However, this information is incomplete in the opera-
tional database. Therefore, the data for the hierarchy State, Country, and
Continent must be obtained from an external source.

Metadata for the source systems, the data warehouse, and the ETL
processes are also developed in this step. Besides the specification of trans-
formations, the metadata include abstract descriptions of various features
mentioned earlier in this section. For example, for each source system, its
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Table 10.3 Data transformation between sources and the data ware-
house

access information must be specified (e.g., login, password, and accessibility).
Also, for each element in the source schemas (e.g., the entity and relationship
types), we specify its name, its alias, a description of its semantics in the
application domain, and so on. The elements of the data warehouse schema
are also described by names and aliases and, additionally, include information
about data granularity, policies for the preservation of data changes (i.e.,
whether they are kept or discarded upon updates), loading frequencies, and
the purging period, among other things.

10.4.3 Source-Driven Conceptual Design

In this approach, once the operational schemas have been analyzed, the initial
data warehouse schema is developed. Since not all facts will be of interest
for the purpose of decision support, input from users is required to identify
which facts are important. Users can also refine the existing hierarchies since
some of these are sometimes “hidden” in an entity type or a table. As a
consequence, the initial data warehouse schema is modified until it becomes
the final version accepted by the users.

The conceptual-design phase consists of three steps, shown in Fig. 10.8.
We discuss next these steps.
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Define final 
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schema and 
mappings

Fig. 10.8 Steps for conceptual design in the source-driven approach
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Develop Initial Schema

Since the multidimensional elements have been identified in the requirements
specification phase, the development of an initial data warehouse conceptual
schema is straightforward. The usual practice for these kinds of schemas is to
use names for the various schema elements that facilitate user understanding.
However, in some cases, users are familiar with the technical names used in
the source systems. Therefore, designers should develop a dictionary of names
to facilitate communication with the users.

Validate Conceptual Schema with Users

The schema was obtained starting from the data sources. Thus, at this point,
the participation of the users has been minimal, consisting of responding only
to specific inquiries from the designer. In this step, users are incorporated in
a more active role. Most of the time, these users belong to the professional
or administrative level because of their knowledge of the underlying systems.
The initial schema is examined in detail, and it is possible that it requires
some modification for several reasons: (1) it may contain more elements than
those required for the analysis purposes of the decision-making users; (2)
some elements may require transformation (e.g., attributes into hierarchies);
and (3) some elements could be missing even though they exist in the source
systems (e.g., owing to confusing names). Note that the inclusion of new
elements may require further interaction with the source systems.

Develop Final Conceptual Schema and Mappings

Users’ recommendations about changes are incorporated into the initial
schema, leading to a final conceptual schema that should be approved by the
users. In this stage, an abstract specification of mappings and transformations
(if required) between the data in the source systems and the data in the data
warehouse is defined.

During all the above steps of the conceptual-design phase, a specification
of the business, technical, and ETL metadata should be developed, following
the same guidelines as those described for the analysis-driven approach.

10.4.4 Source-Driven Conceptual Design for the
Northwind Case Study

Develop Initial Schema

The requirements elicitation phase discussed in Sect. 10.3.4 resulted in
the multidimensional elements depicted in Table 10.2, namely, the facts,
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dimensions, and hierarchies inferred from the analysis of the operational
database (Fig. 10.4). This led to the multidimensional schema shown in
Fig. 10.7.

Validate Conceptual Schema with Users

The initial data warehouse schema as presented in Fig. 10.7 should be
delivered to the users. In this way, they can assess its appropriateness for
the analysis needs. This can lead to the modification of the schema, either by
removing schema elements that are not needed for analysis or by specifying
missing elements. Recall that in the source-driven approach, during the
requirements elicitation the users have not participated, thus changes to the
initial conceptual schema will likely be needed.

Develop Final Conceptual Schema and Mappings

The modified schema is finally delivered to the users. Given that the
operational schema of the Northwind database is very simple, the mapping
between the source schema and the final data warehouse schema is almost
straightforward. The implementation of such a mapping was described in
Chap. 8, thus we do not repeat it here. Further, since we already have
the schemas for the source system and the data warehouse, we can specify
metadata in a similar way to that described for the analysis-driven approach
above.

10.4.5 Analysis/Source-Driven Conceptual Design

In the analysis/source-driven approach, two activities are performed, target-
ing both the analysis requirements of the data warehouse and the exploration
of the source systems feeding the warehouse. This leads to the creation of two
data warehouse schemas (Fig. 10.9). The schema obtained from the analysis-
driven approach identifies the structure of the data warehouse as it emerges
from the analysis requirements. The source-driven approach results in a
data warehouse schema that can be extracted from the existing operational
databases. After both initial schemas have been developed, they must be
matched. Several aspects should be considered in this matching process, such
as the terminology used and the degree of similarity between the two solutions
for each multidimensional element, for example, between dimensions, levels,
attributes, or hierarchies. Some solutions for this have been proposed in
academic literature, although they are highly technical and complex to
implement.
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Fig. 10.9 Steps for conceptual design in the analysis/source-driven approach

An ideal situation arises when both schemas cover the same analysis
aspects, that is, the users’ needs are covered by the data in the operational
systems and no other data are needed to expand the analysis. In this
case, the schema is accepted, and mappings between elements of the source
systems and the data warehouse are specified. Additionally, documentation is
developed following the guidelines studied for the analysis-driven and source-
driven approaches. This documentation contains metadata about the data
warehouse, the source systems, and the ETL process. Nevertheless, in real-
world applications, it is seldom the case that both schemas will cover the
same aspects of analysis. Two situations may occur:

1. The users require less information than what the operational databases
can provide. In this case, it is necessary to determine whether users may
consider new aspects of analysis or whether to eliminate from the schema
those facts that are not of interest to users. Therefore, another iteration of
the analysis- and source-driven approaches is required, where either new
users will be involved or a new initial schema will be developed.

2. The users require more information than what the operational databases
can provide. In this case, the users may reconsider their needs and limit
them to those proposed by the analysis-driven solution. Alternatively, the
users may require the inclusion of external sources or legacy systems that
were not considered in the previous iteration but contain the necessary
data. Thus, new iterations of the analysis- and source-driven approaches
may again be needed.

10.5 Logical Design

As illustrated in Fig. 10.10, two steps must be considered during the logical
design phase: first, the transformation of the conceptual multidimensional
schema into a logical schema; and second, the specification of the ETL
processes, considering the mappings and transformations indicated in the
previous phase. We shall refer next to these two steps.
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10.5.1 Logical Schemas

After the conceptual design phase has been completed, it is necessary to
apply mapping rules to the resulting conceptual schema in order to generate
a logical schema. These mapping rules depend on the conceptual model used.
In Sect. 5.3, we described some general mapping rules that translate the
MultiDim conceptual model into the relational model. In this section, we
apply these rules to the conceptual multidimensional schemas developed in
the previous phase. As explained in Sect. 5.2, the logical representation of
a data warehouse is often based on the relational data model using specific
structures such as star and snowflake schemas. We also studied in Chap. 7
that many data warehouse applications include precomputed summary tables
containing aggregated data that are stored as materialized views. However,
we do not consider such tables to be part of the core logical schema.

We comment next on some design decisions taken when transforming the
schema shown in Fig. 10.7 into relational tables. To facilitate the reading, we
repeat the logical schema of the Northwind data warehouse in Fig. 10.11.

First, considering users’ analysis needs, query performance, and data reuse,
we must decide whether a star or a snowflake representation should be
chosen. In Sect. 5.2, we have already stated the advantages and disadvantages
of star (denormalized) or snowflake (normalized) schemas for representing
dimensions with hierarchies. The following decisions were taken in our case
study.

Given that the Calendar hierarchy is only used in the Time dimension, for
performance reasons we denormalize these hierarchies and include them in a
single table instead of mapping every level to a separate table, thus choosing
a star representation for the Time dimension.

The hierarchies Territories, Geography (for customers), and Geography (for
suppliers) in Fig. 10.7 share the levels City, State, Region, Country, and
Continent. In order to favor the reuse of existing data, we decided to use
the snowflake representation for this hierarchy, that is, we represent each one
of the levels above in a separate table, except for Region, which is embedded
in the table State. We explain this choice next. The hierarchy City → State
→ Region → Country → Continent is a ragged one (Sect. 4.2). To map this
hierarchy to the relational model, we can embed all the data of the parent
level in the child one (a denormalized mapping) or we can create a table
for each level and an optional foreign key referencing the potential parent
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Fig. 10.11 Relational schema of the Northwind data warehouse (repeated from
Fig. 5.4)

levels, as explained in Chap. 5. For the levels State and Region, we adopted
the first alternative, where the attributes RegionName and RegionCode have
been embedded in the State table as optional attributes. For the other levels,
we have chosen the snowflaked solution. For example, in the City table, we
have embedded StateKey and CountryKey as optional foreign keys. Then, if a
city does directly belong to a country, we can reference the country without
traversing the intermediate levels.

Territories is a nonstrict hierarchy (Sect. 4.2.6) since it contains a many-to-
many relationship between the Employee and City levels. In order to represent
this relationship in the relational model, we must use a bridge table. For that
purpose, we create the table Territories, which references both the Employee
and the City tables.
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In a similar way, we define tables for the other hierarchies and levels.
Finally, the fact table is created containing all measures included in the
conceptual schema and referencing all participating dimensions.

10.5.2 ETL Processes

During the conceptual design phase, we identified the mappings required
between the sources and the data warehouse. We also specify some transfor-
mations that could be necessary in order to match user requirements with
the data available in the source systems. However, before implementing the
ETL processes, several additional tasks must be specified in more detail.

In the logical design phase, all transformations of the source data should
be considered. Some of them can be straightforward, for example, the
separation of addresses into their components (e.g., street, city, postal code)
or the extraction of date components (e.g., month and year). Note that
the transformation may depend on the logical model. For example, in the
relational model, each component of a department address will be represented
as a separate attribute.

Other transformations may require further decisions, for instance, whether
to recalculate measure values to express them in euros or dollars or to use
the original currency and include the exchange rate. It should be clear that
in real situations, complex data transformations may be required. Further,
since the same data can be included in different source systems, the issue
of inconsistencies may arise, and an appropriate strategy for resolving them
must be devised. Also, developers should design the necessary data structures
for all elements for which users want to keep changes, as explained in Sect. 5.7.

A preliminary sequence of execution for the ETL processes should also
be determined. This ensures that all data will be transformed and included,
with their consistency being checked. We do not explain here the ETL design
for the Northwind data warehouse since it was studied in detail in Chap. 8.

10.6 Physical Design

As with the logical-design phase, we should consider two aspects in the
physical-design phase: one related to the implementation of the data ware-
house schema and another that considers the ETL processes. This is
illustrated in Fig. 10.12. Since in Chap. 8 we have presented an in-depth
analysis of an ETL case study, we do not extend further in this subject,
and we focus on the implementation of the data warehouse schema.

During the physical design phase, the logical schema is converted into a
tool-dependent physical database structure. Physical design decisions should
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Implement 
physical schema

Implement ETL 
processes

Fig. 10.12 Steps for physical design

consider both the proposed logical schema and the analytical queries specified
during the process of requirements gathering. A well-developed physical
design should enable to manage very large amounts of data, to refresh the
data warehouse with new data from the source systems, to perform complex
operations that may include joins of many tables, and to aggregate many data
items. All of these depend on the facilities provided by the DBMS regarding
storage methods, indexes, partitioning, parallel query execution, aggregation
functions, and view materialization, among other things.

As studied in Chap. 7, partitioning consists in dividing a table into
smaller data sets, thus providing better support for the management of
very large volumes of data. For example, if it is usual that a query requests
employee names, dimension Employee can be fragmented vertically to have the
attributes FirstName, LastName, and City in one partition and the remaining
ones in another partition. This enables more records to be retrieved into the
main memory. Also, the Sales fact table could be partitioned horizontally
according to time if it is usual that queries require the most recent data
according to some time frame, for example, years. However, to be able to
use partitioning techniques, we must have a good knowledge not only of the
consequences of having partitioned dimension and fact tables but also of
which method of partitioning may work better if the system we are working
with supports more than one (e.g., Oracle provides four types of horizontal
partitioning methods). SQL Server, as we have seen in Chap. 7, also supports
partitioning. We have shown how the Sales fact table can be partitioned by
year. We have also explained in Chap. 7 that in Analysis Services it is possible
to partition data cubes, where the storage modes in the partitions can differ
from each other. For example, one partition can be stored in a MOLAP mode,
while another one can be stored in a ROLAP mode.

Indexing is a key feature to obtain good query performance in data
warehouses. In the physical design phase, we must define which kinds of
indexes we are going to use and over which attributes. In addition to the
typical B-tree and hashed indexes provided by the database management
systems, bitmap indexes and join indexes are used in data warehousing. We
have studied that bitmap indexes are appropriate for answering typical data
warehouse queries, in particular for filtering tuples using conditions over low-
cardinality columns. Again, the designer should be aware of the possibilities
of the DBMS that she will use. For example, we have seen in Sect. 7.8.3 that
in SQL Server it is not possible to define a bitmap index over a table column,
while this is possible in Oracle. We have also seen that column-store indexes,
which were studied in Chap. 7, can be defined in SQL Server.
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View materialization is a key feature for achieving good query perfor-
mance in OLAP. Thus, during physical design, we must define which are
the most common queries our system will support and, based on this study,
define which are the materialized views that we need. Recall that SQL Server
supports materialized views indirectly, through the feature called indexed
views, basically a unique clustered index defined over a view. Since view
materialization was studied in Chap. 7, we do not extend further in this topic
here.

10.7 Characterization of the Various Approaches

In this section, we summarize the three approaches to data warehouse
development. We discuss the many aspects that must be considered before
choosing one of those approaches for a specific data warehouse project.

10.7.1 Analysis-Driven Approach

The analysis-driven approach requires the intensive participation of users
from different organizational levels. In particular, the support of executive-
level users is important in order to define business goals and needs. The
identification of key users for requirements specification is a crucial task. It
is necessary to consider several aspects:

• Users should be aware of the overall business goals to avoid situations
where the requirements represent the personal perceptions of users accord-
ing to their role in the organization or business unit.

• Users who would dominate the requirements specification process should
be avoided or tempered in order to ensure that the information needs of
different users will be considered.

• Users must be available and agree to participate during the whole process
of requirements gathering and conceptual design.

• Users must have an idea of what a data warehouse system and an OLAP
system can offer. If this is not the case, they should be instructed by means
of explanations, demonstrations, or prototypes.

The development team requires highly qualified professionals. For example,
a project manager should have very strong moderation and leadership skills.
A good knowledge of information-gathering techniques and business process
modeling is also required. It is important that data warehouse designers
should be able to communicate with and to understand nonexpert users
in order to obtain the required information and, later on, to present and
describe the proposed multidimensional schema to them. This helps to avoid
the situation where users describe the requirements for the data warehouse
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system using business terminology and the data warehouse team develops
the system using a more technical viewpoint that is difficult for the users to
understand.

Advantages of the analysis-driven approach are

• It provides a comprehensive and precise specification of the needs of
stakeholders from their business viewpoint.

• It facilitates, through the effective participation of users, a better under-
standing of the facts, dimensions, and the relationships between them.

• It promotes the acceptance of the system if there is continuous interaction
with potential users and decision makers.

• It enables the specification of long-term strategic goals.

However, some disadvantages of this approach can play an important role
in determining its usability for a specific data warehouse project:

• The specification of business goals can be a difficult process, and its result
depends on the techniques applied and the skills of the developer team.

• Requirements specification not aligned with business goals may produce
a complex schema that does not support the decision processes at all
organizational levels.

• The duration of the project tends to be longer than the duration of the
source-driven approach. Thus, the cost of the project can also be higher.

• The users’ requirements might not be satisfied by the information existing
in the source systems.

10.7.2 Source-Driven Approach

In this approach, the participation of the users is not explicitly required.
They are involved only sporadically, either to confirm the correctness of
the structures derived or to identify facts and measures as a starting
point for creating multidimensional schemas. Typically, users come from
the professional or the administrative organizational level since data are
represented at a low level of detail. Also, this approach requires highly skilled
and experienced designers. Besides the usual modeling abilities, they should
have enough business knowledge to understand the business context and its
needs. They should also have the capacity to understand the structure of the
underlying operational databases.

The source-driven method has several advantages:

• It ensures that the data warehouse reflects the underlying relationships in
the data.

• It ensures that the data warehouse contains all necessary data from the
beginning.

• It simplifies the ETL processes since data warehouses are developed on
the basis of existing operational databases.
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• It reduces the user involvement required to start the project.
• It facilitates a fast and straightforward development process, provided that

well-structured and normalized operational systems exist.
• It allows automatic or semiautomatic techniques to be applied if the

operational databases are represented using the entity-relationship model
or normalized relational tables.

However, it is important to consider the following disadvantages before
choosing this approach:

• Only business needs reflected in the underlying source data models can be
captured.

• The system may not meet users’ expectations since the company’s goals
and the users’ requirements are not reflected at all.

• The method may not be applied when the logical schemas of the underlying
operational systems are hard to understand or the data sources reside on
legacy systems.

• Since it relies on existing data, this approach cannot be used to address
long-term strategic goals.

• The inclusion of hierarchies may be difficult since they may be hidden in
various structures, for example, in generalization relationships.

• It is difficult to motivate end users to work with large schemas developed
for and by specialists.

• The derivation process can be difficult without knowledge of the users’
needs since, for instance, the same data can be considered as a measure or
as a dimension attribute.

10.7.3 Analysis/Source-Driven Approach

As this approach combines the analysis-driven and source-driven approaches,
the recommendations regarding users and the development team given above
should also be considered here. The analysis/source-driven approach has
several important advantages:

• It generates a feasible solution, supported by the existing data sources,
which better reflects the users’ goals.

• It alerts about missing data in the operational databases that are required
to support the decision-making process.

• If the source systems offer more information than what the business users
initially demand, the analysis can be expanded to include new aspects not
yet considered.

However, this approach has the following disadvantages:

• The development process is complicated since two schemas are required,
one obtained from the definition of the analysis requirements and another
derived from the underlying source systems.
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• The integration process to determine whether the data sources cover the
users’ requirements may need complex techniques.

10.8 Summary

In this chapter, we have presented a general method for the design of data
warehouses. Our proposal is close to the classic database design method and
is composed of the following phases: requirements specification, conceptual
design, logical design, and physical design. For the requirements specification
and conceptual design phases, we have proposed three different approaches:
(1) the analysis-driven approach, which focuses on analysis needs; (2) the
source-driven approach, which develops the data warehouse schema on the
basis of the structures of the underlying operational databases, typically
represented using the entity-relationship or the relational model; and (3) the
analysis/source-driven approach, which combines the first two approaches,
matching the users’ analysis needs with the availability of data. The next
phases of the method presented correspond to those of classic database
design. Therefore, a mapping of the conceptual model to a logical model
is specified, followed by the definition of physical structures. The design of
these structures should consider the specific features of the target DBMS
with respect to the particularities of data warehouse applications.

10.9 Bibliographic Notes

Given the lack of consensus about a data warehouse design methodology,
we comment in some detail the most well-known approaches to this topic.
Golfarelli and Rizzi [65] presented a data warehouse design method composed
of the following steps: analysis of the information system, requirements
specification, conceptual design workload refinement and schema validation,
logical design, and physical design. This method corresponds to the one used
in traditional database design, extended with an additional phase of workload
refinement in order to determine the expected data volume. Luján-Mora and
Trujillo [119] presented a method for data warehouse design based on UML.
This proposal deals with all data warehouse design phases from the analysis of
the operational data sources to the final implementation, including the ETL
processes. Jarke et al. [96] proposed the DWQ (Data Warehouse Quality)
design method for data warehouses, consisting of six steps, focusing on data
quality concepts.

Regarding requirements specification following the analysis-driven
approach, Mazón et al. [130] propose to include business goals in data
warehouse requirements analysis. These requirements are then transformed
into a multidimensional model. Kimball et al. [103, 104] base their data
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warehouse development strategy on choosing the core business processes to
model. Then, business users are interviewed to introduce the data warehouse
team to the company’s goals and to understand the users’ expectations of
the data warehouse. Even though this approach lacks formality, it has been
applied in many data warehouse projects.

There are several methods for requirements analysis based on the source-
driven approach: Böhnlein and Ulbrich-vom Ende [15] proposed a method
for deriving logical data warehouse structures from the conceptual schemas
of operational systems. Golfarelli et al. [68] presented a graphical conceptual
model for data warehouses called the Dimensional Fact Model and proposed
a semiautomatic process for building conceptual schemas from operational
entity-relationship (ER) schemas. Cabibbo and Torlone [23] presented a
design method that starts from an existing ER schema, deriving a multidi-
mensional schema and providing an implementation of it in terms of relational
tables and multidimensional arrays. Paim et al. [153] proposed a method for
requirements specification consisting of the phases of requirements planning,
specification, and validation. Paim and Castro [152] extended this method by
including nonfunctional requirements, such as performance and accessibility.
Vaisman [210] proposed a method for the specification of functional and
nonfunctional requirements that integrates the concepts of requirements
engineering and data quality. This method refers to the mechanisms for
collecting, analyzing, and integrating requirements. Users are also involved
in order to determine the expected quality of the source data. Then, data
sources are selected using quantitative measures to ensure data quality. The
outcome of this method is a set of documents and a ranking of the operational
data sources that should satisfy the users’ requirements according to various
quality parameters.

As for the combination of approaches, Bonifati et al. [16] presented a
method for the identification and design of data marts, which consists of three
general parts: top-down analysis, bottom-up analysis, and integration. The
top-down analysis emphasizes the users’ requirements and requires precise
identification and formulation of goals. On the basis of these goals, a set of
ideal star schemas is created. On the other hand, the bottom-up analysis aims
at identifying all the star schemas that can be implemented using the available
source systems. This analysis requires the source systems to be represented
using the ER model. The final integration phase is used to match the ideal
star schemas with realistic ones based on the existing data.

10.10 Review Questions

10.1 What are the similarities and the differences between designing a
database and designing a data warehouse?

10.2 Compare the top-down and the bottom-up approaches for data
warehouse design. Which of the two approaches is more often used?
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How does the design of a data warehouse differ from the design of a
data mart?

10.3 Discuss the various phases in data warehouse design, emphasizing the
objective of each phase.

10.4 Summarize the main characteristics of the analysis-driven, source-
driven, and analysis/source-driven approaches for requirements spec-
ification. How do they differ from each other? What are their
respective advantages and disadvantages? Identify in which situations
one approach would be preferred over the others.

10.5 Using an application domain that you are familiar with, illustrate
the various steps in the analysis-driven approach for requirements
specification. Identify at least two different users, each one with a
particular analysis goal.

10.6 Using the application domain of Question 10.5, illustrate the various
steps in the source-driven approach for requirements specification.
Define an excerpt of an ER schema from which some multidimensional
elements can be derived.

10.7 Compare the steps for conceptual design in the analysis-driven, source-
driven, and analysis/source-driven approaches.

10.8 Develop a conceptual multidimensional schema for the application
domain of Question 10.5 using among the three approaches the one
that you know best.

10.9 Illustrate the different aspects of the logical design phase by trans-
lating the conceptual schema developed in Question 10.8 into the
relational model.

10.10 Describe several aspects that are important to consider in the physical
design phase of data warehouses.

10.11 Exercises

10.1 Consider the train application described in Ex. 3.2. Using the analysis-
driven approach, write the requirements specifications that would result
in the MultiDim schema obtained in Ex. 4.3.

10.2 Consider the French horse race application described in Ex. 2.1. Using
the source-driven approach, write the requirements specifications in
order to produce the MultiDim schema obtained in Ex. 4.5.

10.3 Consider the Formula One application described in Ex. 2.2. Using the
analysis/source-driven approach, write the requirements specifications
in order to produce the MultiDim schema obtained in Ex. 4.7.

10.4 The ranking of universities has become an important factor in estab-
lishing the reputation of a university at the international level. Our
university wants to determine what actions it should take to improve
its position in the rankings. To simplify the discussion, we consider only
the ranking by The Times. The evaluation criteria in this ranking refer
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to the two main areas of activities of universities, namely, research and
education. However, a closer analysis shows that 60% of the criteria are
related to research activities (peer review and citation/faculty scores)
and 40% to the university’s commitment to teaching. Therefore, we
suppose that the decision-making users chose initially to analyze the
situation related to research activities. To be able to conduct the
analysis process, it was decided to implement a data warehouse system.

Universities are usually divided into faculties representing gen-
eral fields of knowledge (e.g., medicine, engineering, sciences, and
so on). These faculties comprise several departments dedicated to
more specialized domains; for example, the faculty of engineering may
include departments of civil engineering, mechanical engineering, and
computer engineering, among others. University staff (e.g., professors,
researchers, teaching assistants, administrative staff, and so on) are
administratively attached to departments. In addition, autonomous
structures called research centers support multidisciplinary research
activities. University staff from various faculties or departments may
belong to these research centers. Research projects are conducted by
one or several research bodies, which may be either departments or
research centers. The research department is the administrative body
that coordinates all research activities at the university. It serves as a
bridge between high-level executives (e.g., the Rector and the research
council of the university) and researchers, as well as between researchers
and external organizations, whether industrial or governmental. For
example, the research department is responsible for the evaluation of
research activities, for the development of strategic research plans, for
promoting research activities and services, for managing intellectual
property rights and patents, and for technology transfer and creation
of spin-offs, among other things. In particular, the establishment of
strategic research areas is based on the university’s core strengths and
ambitions, taking into account long-term potential and relevance. These
areas are the focus of institutional initiatives and investments. On the
basis of the institutional research strategy, faculties, departments, and
research centers establish their own research priorities.

Suppose the university has one general goal : to improve its ranking
considering the strategic research areas established at the university.
This goal is decomposed into two subgoals related to improving the
scores in two evaluation criteria of The Times ranking: (a) the peer
review and (b) the citation per faculty criteria. The peer review
criterion (40% of the ranking score) is based on interviewing selected
academics from various countries to name the top institutions in the
areas and subjects about which they feel able to make an informed
judgment. The citation per faculty criterion (20% of the ranking score)
refers to the numbers of citations of academic papers generated by staff
members.
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Determining the activities that could improve these evaluation
criteria required the participation of users at various organizational
levels. Interviews with users allowed us to conclude that, in the first
step, information related to international conferences, projects, and
publications was necessary to better understand the participation of
the university’s staff in international forums.

Participation in international conferences helps the university’s staff
to meet international colleagues working in the same or a similar
area. In this way, not only can new strategic contacts be established
(which may lead to international projects) but also the quality of the
university’s research can be improved.

Further, international projects promote the interaction of the
university staff with peers from other universities working in the same
area and thus could help to improve the peer review score. There are
several sources of funding for research projects: the university, industry,
and regional, national, and international institutions. Independently of
the funding scheme, a project may be considered as being international
when it involves participants from institutions in other countries.

Finally, knowledge about the international publications produced by
the university’s staff is essential for assessing the citation per faculty
criterion. Publications can be of several types, namely, articles in
conference proceedings or in journals, and books.

Based on the description above, we ask you to

(a) Produce a requirements specification for the design of the data
warehouse using the analysis-driven approach. For this, you must

• Identify users.
• For each goal and subgoal, write a set of queries that these users

would require. Refine and prioritize these queries.
• Define facts, measures, and dimensions based on these queries.
• Infer dimension hierarchies.
• Build a table summarizing the information obtained.

(b) Produce a conceptual schema, using the analysis-driven approach
and the top-down design. Discuss data availability conditions and
how they impact on the design. Identify and specify the necessary
mappings.

(c) Produce a conceptual schema, using the analysis-driven approach,
and the bottom-up design. For this, you must build three data marts:
one for the analysis of conferences, another one for the analysis of
publications, and the third one for the analysis of research projects.
Then, merge the three of them, and compare the schema produced
with the one obtained through the top-down approach above.

(d) Produce a requirements specification for the design of the data
warehouse using the source-driven approach, given the entity-
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Fig. 10.13 Excerpt from the ER schema of the operational database in the university
application

relationship schema of the operational database in Fig. 10.13. For
this, you must

• Explain how the facts, measures, dimensions, and hierarchies are
derived.

• Summarize in a table the information obtained.

(e) Produce a conceptual schema using the source-driven approach,
deriving the schema from the one in Fig. 10.13. Validate the
conceptual schema with the users, indicating if the schema includes
less, more, or the exact information needed to solve our case.
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Chapter 11

Spatial Data Warehouses

It is estimated that about 80% of the data stored in databases has a spatial or
location component. Therefore, the location dimension has been widely used
in data warehouse and OLAP systems. However, this dimension is usually
represented in an alphanumeric, nonspatial manner (i.e., using solely the
place name) since these systems are not able to manipulate spatial data.
Nevertheless, it is well known that including spatial data in the analysis
process can help to reveal patterns that are difficult to discover otherwise.
Taking into account the growing demand to incorporate spatial data into the
decision-making process, we present in this chapter how data warehouses can
be extended with spatial data.

Section 11.1 briefly introduces some concepts related to spatial databases,
providing background information for the rest of the chapter. In Sect. 11.2,
we present a spatial extension of the MultiDim conceptual model and
use this model to show how we can enhance the Northwind data ware-
house with spatial data, leading to the GeoNorthwind data warehouse. In
Sect. 11.3, we discuss implementation options for spatial data; in particular,
we address the vector and raster models and how they are implemented
in PostGIS, the spatial extension of the PostgreSQL database management
system. Section 11.4 presents the relational representation of spatial data
warehouses. Section 11.5 briefly introduces GeoMondrian, a spatial OLAP
(SOLAP) server. In Sects. 11.6 and 11.7, we address analytical queries to the
GeoNorthwind data warehouse expressed, respectively, in MDX and in SQL.
Finally, Sect. 11.8 discusses spatial data warehouse design, complementing
the methodological aspects covered in Chap. 10.

A. Vaisman and E. Zimányi, Data Warehouse Systems, Data-Centric
Systems and Applications, DOI 10.1007/978-3-642-54655-6 11,
© Springer-Verlag Berlin Heidelberg 2014
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11.1 General Concepts of Spatial Databases

Spatial databases have been used for several decades for storing and
manipulating spatial data. These data are used to describe the spatial
properties of real-world phenomena. There are two complementary ways of
modeling spatial data. In the object-based approach, space is decomposed
into identifiable objects whose shapes are described. This allows us, for
example, to represent a road as a line or a state as a surface. The field-based
approach is used to represent phenomena that vary on space, associating with
each point a value that characterizes a feature at that point. Typical examples
are temperature, altitude, and soil cover. In order to represent these two
alternative ways to model spatial features, we need appropriate data types.
In this section, we describe spatial data types for both the object-based and
the field-based approaches at a conceptual level.

11.1.1 Spatial Data Types

A spatial object corresponds to a real-world entity for which an application
needs to store spatial characteristics. Spatial objects consist of a descriptive
component and a spatial component. The descriptive component is
represented using traditional data types, such as integer, string, and date;
it contains general characteristics of the spatial object. For example, a state
object may be described by its name, population, and capital. The spatial
component defines the extent of the object in the space of interest.

Several spatial data types can be used to represent the spatial extent of
real-world objects. At the conceptual level, we use the spatial data types
defined by the MADS model, cited in the bibliographic notes at the end of
the chapter. These data types provide support for two-dimensional features.
They are organized in a hierarchy, shown in Fig. 11.1.

Point represents zero-dimensional geometries denoting a single location in
space. A point can be used to represent, for instance, a village in a country.

Line represents one-dimensional geometries denoting a set of connected
points defined by a continuous curve in the plane. A line can be used to
represent, for instance, a road in a road network. A line is closed if it has no
identifiable extremities (i.e., its start point is equal to its end point).

OrientedLine represents lines whose extremities have the semantics of a
start point and an end point (the line has a given direction from the start
point to the end point). It is a specialization of Line and can be used to
represent, for instance, a river in a hydrographic network.

Surface represents two-dimensional geometries denoting a set of connected
points that lie inside a boundary formed by one or more disjoint closed lines.
If the boundary consists of more than one closed line, one of the closed lines
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Fig. 11.1 Spatial data types

contains all the others, and the latter represent holes in the surface defined
by the former line. In simpler words, a surface may have holes but no islands
(no exterior islands and no islands within a hole).

SimpleSurface represents surfaces without holes. For example, the extent
of a lake may be represented by a surface or a simple surface, depending on
whether the lake has islands or not.

SimpleGeo is a generic spatial data type that generalizes the types
Point, Line, and Surface. SimpleGeo is an abstract type, that is, it is never
instantiated as such: Upon creation of a SimpleGeo value, it is necessary
to specify which of its subtypes characterizes the new element. A SimpleGeo
value can be used, for instance, to generically represent cities, whereas a small
city may be represented by a point and a bigger city by a simple surface.

Several spatial data types are used to describe spatially homogeneous sets.
PointSet represents sets of points, for instance, tourist points of interest.
LineSet represents sets of lines, for example, a road network. OrientedLineSet
(a specialization of LineSet) represents a set of oriented lines, for example,
a river and its tributaries. SurfaceSet and SimpleSurfaceSet represent sets
of surfaces with or without holes, respectively, for example, administrative
regions.

ComplexGeo represents any heterogeneous set of geometries that may
include sets of points, sets of lines, and sets of surfaces. ComplexGeo may
be used to represent a water system consisting of rivers (oriented lines),
lakes (surfaces), and reservoirs (points). ComplexGeo has PointSet, LineSet,
OrientedLineSet, SurfaceSet, and SimpleSurfaceSet as subtypes.

Finally, Geo is the most generic spatial data type, generalizing the types
SimpleGeo and ComplexGeo; its semantics is “this element has a spatial
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extent” without any commitment to a specific spatial data type. Like
SimpleGeo, Geo is an abstract type. It can be used, for instance, to represent
the administrative regions of a country, where regions may be either a Surface
or a SurfaceSet.

It is worth noting that empty geometries are allowed, that is, geometries
representing an empty set of points. This is needed in particular to express
the fact that the intersection of two disjoint geometries is also a geometry,
although it may be an empty one.

Spatial data types have a set of operations, which can be grouped in classes.
Table 11.1 shows the most common operations.

Table 11.1 Classes of operations on spatial types

Class Operations
Topological operations Intersects, Disjoint, Equals, Overlaps, Contains,

Within, Touches, Covers, CoveredBy, Crosses
Predicates IsEmpty, OnBorder, InInterior
Unary operations Boundary, Buffer, Centroid, ConvexHull
Binary operations Intersection, Union, Difference, SymDifference
Numeric NoComponents, Length, Area, Perimeter

Distance, Direction

Topological operations are based on the well-known topological relation-
ships, which specify how two spatial values relate to each other. They are
extensively used in spatial applications since they can be used to test, for
instance, whether two states have a common border, a highway crosses a
state, or a city is located in a state.

The definitions of the topological relationships are based on the definitions
of the boundary, the interior, and the exterior of spatial values. Intuitively,
the exterior of a spatial value is composed of all the points of the underlying
space that do not belong to the spatial value. The interior of a spatial value is
composed of all its points that do not belong to the boundary. The boundary
is defined for the different spatial data types as follows. A point has an empty
boundary, and its interior is equal to the point. The boundary of a line is
given by its extreme points, provided that they can be distinguished (e.g.,
a closed line has no boundary). The boundary of a surface is given by the
enclosing closed line and the closed lines defining the holes.

Intersects/Overlaps Disjoint
Equals Contains/Within
Covers/CoveredBy Touches
Crosses

Fig. 11.2 Icons for the various topological relationships
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We describe next the topological relationships; the associated icons are
given in Fig. 11.2 and examples are shown in Fig. 11.3.

Touches

Overlaps Contains/Within

Covers/CoveredBy

Crosses

Fig. 11.3 Examples of the various topological relationships. The two objects in the
relationship are drawn in black and in gray, respectively

Intersects/Disjoint: Intersects and Disjoint are inverse relationships: When one
applies, the other does not. Two geometries are disjoint if the interior and
the boundary of one object intersects only the exterior of the other object.

Equals: A geometry equals another one if they share exactly the same set of
points.

Overlaps: Two geometries overlap if the interior of each one intersects both
the interior and the exterior of the other one.

Contains/Within: Contains andWithin are symmetric relationships: a Contains
b if and only if b Within a. A geometry contains another one if the inner
object is located in the interior of the other object and the boundaries of
the two objects do not intersect.

Touches: Two geometries meet if they intersect but their interiors do not.
Covers/CoveredBy: Covers and CoveredBy are symmetric relationships: a

Covers b if and only if b CoveredBy a. A geometry covers another one
if it includes all points of the other, inner geometry. This means that the
first geometry contains the inner one, as defined previously, but without
the restriction that the boundaries of the geometries do not intersect.

Crosses: One geometry crosses another if they intersect and the dimension of
this intersection is less than the greatest dimension of the geometries.

Predicates return a Boolean value. IsEmpty determines whether a geometry
is empty. OnBorder and InInterior determine, respectively, whether a point
belongs to the boundary or the interior of another geometry.
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Unary operations take one spatial value and return a new one. Boundary
returns the exterior ring of a surface. Buffer returns a geometry containing
all points whose distance to the geometry passed as parameter is less than
or equal to a given distance. Centroid returns the center point of a geometry.
ConvexHull returns the minimum convex geometry that encloses a geometry.

Binary operations take two (or more) spatial values and return a new
spatial value. Intersection, Union, Difference, and SymDifference operate as
in usual set theory and return a geometry obtained by applying the
corresponding operation to the geometries given as argument.

Numeric operations take one or two geometries and return a numeric
value. NoComponents returns the number of disjoint maximal connected
subsets of a geometry, for instance, the number of points for a point set,
the number of connected components for a line set, or the number of faces
for a surface. Length returns the length of a line. Area returns the area of a
surface. Perimeter returns the length of the boundary of a surface. Distance
determines the minimum distance among all pairs of points of two geometries.
Finally, Direction returns the angle of the line between two points, measured
in degrees, that is, a value between 0 and 360.

11.1.2 Continuous Fields

Continuous fields are phenomena that change continuously in space and/or
time. Examples include altitude and temperature, where the former varies
only in space and the latter varies in both space and time. In this chapter,
we cover only nontemporal fields, leaving temporal fields for the next chapter.
At a conceptual level, a continuous field can be represented as a function that
assigns to each point in space a value of a domain, for example, an integer
for altitude. Continuous fields are represented with field types, which capture
the variation in space of base types (such as integers and reals). They are
obtained by applying a constructor field(·). Hence, a value of type field(real)
(e.g., representing altitude) is a continuous function f : point→ real.

Notice that continuous fields are partial functions, that is, they could be
undefined at some points in space. Consider, for example, a field AltitudeBE
defining the altitude in Belgium. Since there are several enclaves and exclaves
between Belgium, the Netherlands, and Germany, the altitude of an enclave
of Germany within Belgium will be undefined.

Field types have associated operations, which can be grouped into several
classes, as shown in Table 11.2. We discuss next some of these operations.

First, there are operations that perform the projection into the domain
and range. Operations DefSpace and RangeValues return, respectively, the
projection of a field type into its domain and range. For instance, Def-
Space(AltitudeBE) and RangeValues(AltitudeBE) will result, respectively, in
a region covering Belgium and the range of values [−4m, 694m].
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Table 11.2 Classes of operations on field types

Class Operations
Projection to domain/range DefSpace, RangeValues
Interaction with domain/range IsDefinedAt, HasValue, AtGeometry, At,

AtMin, AtMax, Concave, Convex, Flex
Rate of change PartialDer x, PartialDer y
Field aggregation Integral, Area, Surface, FAvg,

FVariance, FStDev, FMin, FMax
Lifting All new operations inferred

Another set of operations allow the interaction with domain and range.
The IsDefinedAt predicate checks whether the spatial function is defined at
a given point or is somewhere defined at a subset of the space defined by a
spatial value. Analogously, predicate HasValue checks whether the function
takes somewhere (one of) the value(s) from the range given as the second
argument. Operation AtGeometry restricts the function to a given subset of
the space defined by a spatial value. For example, these operations can be
used to restrict the AltitudeBE field to a point corresponding to the Grand
Place in Brussels, to the highway E411, or to the province of Namur.

Operation At restricts the function to a point or to a point set (a range) in
the range of the function. For example, this allows us to restrict the AltitudeBE
field to the values between 100 and 200m. Predicates AtMin and AtMax reduce
the function to the points in space where its value is minimal or maximal,
respectively. For the AltitudeBE field, these predicates will yield, respectively,
a field defined at multiple points at the West of Veurne (the lowest points in
Belgium), or a field defined only at the Signal de Botrange in Hautes Fagnes
(the highest point in Belgium). Operations Concave and Convex restrict the
function to the points where it is concave or convex, respectively. Finally,
operation Flex restricts the function to the points where convexity changes.

Rate of change operations compute how a continuous field changes across
space. Functions PartialDer x and PartialDer y give, respectively, the partial
derivative of the function defining the field with respect to one of the axes x
and y. For example, PartialDer x is defined by

∂f

∂x
(x, y) = lim

δ→0

f(x+ δ, y)− f(x, y)

δ
.

There are three basic field aggregation operations that take as argument a
field over numeric values (integer or real) defined over a spatial extent S and
return a real value. Integral returns the volume under the surface defined by
the function, Area returns the area of the spatial extent on which the function
is defined, and Surface returns the area of the (curved) surface defined by the
function. These operations are defined as follows:
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• Integral:
∫∫

S f(x, y) dx dy .
• Area:

∫∫
S dx dy .

• Surface:
∫∫

S

√

1 +
(

∂f
∂x

)2

+
(

∂f
∂y

)2

dx dy .

From these operations, other derived operations can be defined. These are
prefixed with an ‘F ’ (field) in order to distinguish them from the usual
aggregation operations generalized to fields, which we discuss below.

• FAvg: Integral/Area.

• FVariance:
∫∫

S

(f(x,y)−FAvg)2

Area dx dy .

• FStDev:
√
FVariance.

Finally, FMin and FMax return, respectively, the minimum and maximum
value taken by the function. These are obtained by Min(RangeValues(·)) and
Max(RangeValues(·)), where Min and Max are the classic operations over
numeric values.

All operations on basic types are generalized for field types. This is called
lifting. An operation op for basic types is lifted to allow any of the arguments
to be replaced by a field type and returns a field type. As an example, the less
than (<) operation has lifted versions where one or both of its arguments can
be field types and the result is a Boolean field type. Intuitively, the semantics
of such lifted operations is that the result is computed at each point in space
using the nonlifted operation. For example, applying the lifted ‘<’ operation
to two fields that describe the temperature at 2 days will result in a Boolean
field that states at each point whether the temperature of the first field is
smaller than the one in the second. When two fields are defined on different
spatial extents, the result of a lifted operation is defined in the intersection
of both extents and undefined elsewhere.

Aggregation operations are also lifted. For instance, a lifted Avg operation
combines several fields, yielding a new field where the average is computed
at each point in space. Lifted aggregation operations are used in particular
for granularity transformations. For example, a lifted average could be used
to transform a temperature field of granularity day to granularity month.

11.2 Conceptual Modeling of Spatial Data
Warehouses

In this section, we explain the spatial extension of the MultiDim model. For
this, we use as example the GeoNorthwind data warehouse, which is the
Northwind data warehouse extended with spatial types. As shown in the
schema in Fig. 11.4, pictograms are used to represent spatial information.
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Fig. 11.4 Conceptual schema of the GeoNorthwind data warehouse

Since the spatially extended MultiDim model can contain both spatial
and nonspatial elements, the definitions of schemas, levels, hierarchies,
cardinalities, and facts with measures remain the same as those presented
in Sect. 4.1.
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A spatial level is a level for which the application needs to store spatial
characteristics. This is captured by its geometry, which is represented using
one of the spatial data types described in Sect. 11.1.1. In Fig. 11.4, we have
seven spatial levels: Supplier, Customer, City, State, Region, Country, and
Continent. On the other hand, Product and Time are nonspatial levels.

A spatial attribute is an attribute whose domain is a spatial data type.
For example, CapitalGeo is a spatial attribute of type point, while Elevation
is a spatial attribute of type field of reals. Attributes representing continuous
fields are identified by the ‘f( )’ pictogram.

A spatial level is represented using the icon of its associated spatial type to
the right of the level name. A level may be spatial independent of the fact that
it has spatial attributes (see Fig. 11.5). For example, depending on application
requirements, a level such as State may be spatial (Fig. 11.5a,b) or not
(Fig. 11.5c) and may have spatial attributes such as CapitalGeo (Fig. 11.5b,c).

State

StateName
StatePopulation
StateArea
CapitalName

State

StateName
StatePopulation
StateArea
CapitalName
CapitalGeo

State

StateName
StatePopulation
StateArea
CapitalName
CapitalGeo

a b c

Fig. 11.5 Examples of levels with spatial characteristics. (a) Spatial level. (b)
Spatial level with a spatial attribute. (c) Nonspatial level with a spatial attribute

A spatial hierarchy is a hierarchy that includes at least one spatial level.
For example, in Fig. 11.4, we have two spatial hierarchies in the Supplier and
Customer dimensions, which share the levels from City to Continent. Spatial
hierarchies can combine nonspatial and spatial levels. Similarly, a spatial
dimension is a dimension that includes at least one spatial hierarchy.

Two related spatial levels in a spatial hierarchy may involve a topological
constraint, expressed using the various topological relationships given in
Sect. 11.1.1. To represent them, we use the pictograms shown in Fig. 11.2. For
example, in Fig. 11.4, the geometry of each state is covered by the geometry
of its corresponding region or country, depending on which level a state rolls
up to. Note that in Fig. 11.4, there is no topological constraint between the
Supplier and City levels since the location of the supplier is obtained from its
address through geocoding and the location of the city corresponds to the
center of the city.

A spatial fact is a fact that relates several levels, two or more of
which are spatial. A spatial fact may also have a topological constraint
that must be satisfied by the related spatial levels: An icon in the fact
indicates the topological relationship used for specifying the constraint. In the



11.2 Conceptual Modeling of Spatial Data Warehouses 437

Segment
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SpeedLimit
...

Time

Date
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...
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...
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...

RoadCoating
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CoatingType
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...
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CountyName
CountyPopulation
CountyArea 
...

Location
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StatePopulation
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Capital
...

Length
CommonArea
NoCars
RepairCost

Maintenance

Fig. 11.6 A spatial data warehouse for analyzing the maintenance of highways

GeoNorthwind data warehouse, the Sales fact does not impose any constraint
between its spatial dimensions Supplier and Customer. As an example of a
spatial fact with an associated topological constraint, consider the schema
of Fig. 11.6, which can be used for the analysis of highway maintenance
costs. The spatial fact Maintenance relates two spatial levels: County and
Segment. This fact includes an Overlaps topological constraint, indicating
that a segment and a county related to a fact member must overlap.

Facts, whether spatial or not, may contain measures that represent data
that are meaningful for leaf members that are aggregated when a hierarchy
is traversed. Measures can be numeric or spatial, where the latter are
represented by a geometry. Note that numeric measures can be calculated
using spatial operations such as distance and area. For example, Fig. 11.6
contains two measures. Length is a numerical measure obtained using spatial
operations, representing the length of the part of a highway segment that
belongs to a county, and CommonArea represents the geometry of the
common part.

Measures require the specification of the function used for aggregation
along the hierarchies. By default, we assume sum for numerical measures
and spatial union for spatial measures. For example, in Fig. 11.6, when users
roll up from the County to the State level, for each state the measures Length,
NoCars, and RepairCost of the corresponding counties will be summed, while
the CommonArea measure will be a LineSet resulting from the spatial union
of the lines representing highway segments for the corresponding counties.
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In the following sections, we refer in more detail to the various spatial
elements of the MultiDim model.

11.2.1 Spatial Hierarchies

All the types of hierarchies we have discussed in Sect. 4.2 apply also to spatial
hierarchies. We give next some examples of them.
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CountyPopulation
CountyArea
...

State

StateName
StatePopulation
StateArea
...

Store
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Fig. 11.7 A balanced spatial hierarchy

Figure 11.7 shows an example of a balanced spatial hierarchy. Note
that different spatial data types are associated with the levels of the hierarchy:
point for Store, surface for County, and surface set for State. Further, a
Covers topological constraint holds in the parent-child relationships forming
the hierarchy.
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Condition
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Address
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CityName
CityPopulation
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State
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StatePopulation
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Fig. 11.8 A generalized spatial hierarchy

The example in Fig. 11.8 shows a generalized spatial hierarchy
containing multiple exclusive paths that share some levels. In the example,
a road segment is related either to a district or to a company in charge of
its maintenance. The special case of ragged hierarchies is shown in the
Geography hierarchy in the GeoNorthwind data warehouse (Fig. 11.4). In the
example, a city is related either to a state or to a country. Similarly, a state
is related either to a region or to a country.
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Figure 11.9 shows an alternative spatial hierarchy composed of several
nonexclusive spatial hierarchies sharing some levels. This example represents
part of the set of hierarchies used by the US Census Bureau. There are two
hierarchies, one representing the usual subdivision of the territory and the
other is the subdivision used for American Indian, Alaska Native, and Native
Hawaiian Areas (AIANNHAs).
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Fig. 11.9 An alternative spatial hierarchy

Figure 11.10 shows a parallel spatial hierarchy with two independent
hierarchies, Location and OrganizStructure, accounting for different analysis
criteria.
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Fig. 11.10 Parallel independent spatial hierarchies

Analogous to the nonspatial case, a spatial hierarchy is nonstrict if it has
at least one many-to-many relationship. Figure 11.11 shows an example. The
many-to-many cardinality represents the fact that a lake may belong to more
than one city. Most nonstrict hierarchies arise when a partial containment
relationship exists, for example, when only part of a lake belongs to a city or
when only part of a highway belongs to a state.
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Lo
ca

tio
n City

CityName
CityPopulation
...

State

StateName
StatePopulation
...

Lake

LakeName
AcidLevel
CarbonDioxide
...

Fig. 11.11 A nonstrict spatial hierarchy

11.2.2 Spatiality and Measures

Spatial measures are measures represented by a geometry. For example,
Fig. 11.6 shows a spatial measure CommonArea, which represents the geom-
etry (a line) of the part of a highway segment belonging to a county. The
MultiDim model allows spatial measures independently of the fact that there
are spatial dimensions.
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Fig. 11.12 A fact with a spatial measure

Various kinds of aggregation functions for spatial data have been defined.
For example, spatial distributive functions include convex hull, spatial union,
and spatial intersection. Examples of spatial algebraic functions are the center
of n points and the center of gravity, and examples of spatial holistic functions
are the equipartition and the nearest-neighbor index. In the MultiDim model,
the spatial union is used by default for aggregating spatial measures, as we
already explained.

Spatial measures allow richer analysis than nonspatial measures do. For
example, consider the schema in Fig. 11.12, which is used for analyzing
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the locations of road accidents taking into account the various insurance
categories (full coverage, partial coverage, and so on) and the client data. This
schema includes a spatial measure representing the locations of accidents. We
can use, for example, the default aggregate function (the spatial union) to roll
up to the InsuranceCategory level in order to display the accident locations
corresponding to each category aggregated and represented as a set of points.
Other aggregation functions can also be used for this, such as the center of
n points.
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Fig. 11.13 A variant of the schema in Fig. 11.12

An alternative schema for the analysis of road accidents is shown in
Fig. 11.13. In this schema, there is no spatial measure; the focus of analysis has
been changed to the amount of insurance payments according to the various
geographic locations. This is reflected by the spatial hierarchy Address→ City
→ State.

Although the schemas in Figs. 11.12 and 11.13 are similar, different
analyses can be performed when a location is represented as a spatial measure
or as a spatial hierarchy. For example, in Fig. 11.12, the locations of accidents
can be aggregated (by using spatial union) when a roll-up operation over the
Time or Insurance hierarchies is executed. However, this aggregation cannot
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be done with the schema in Fig. 11.13. The dimensions are independent, and
traversing a hierarchy along one of them does not aggregate data in another
hierarchy. Further, an analysis of the amounts of insurance payments made
in different geographic zones is not supported by the alternative using spatial
measures since in this case only the exact locations of the accidents are known.
The same occurs when we want to analyze the amount of insurance payments
in some specific geographic area.

11.3 Implementation Considerations for Spatial Data

The object-based and field-based models that we presented in Sect. 11.1 are
used to represent spatial data at an abstract level. Two common implemen-
tations of these abstract models are, respectively, the vector model and the
raster model. Both models are implemented in PostGIS, the spatial extension
to the PostgreSQL database management system, which we introduce next.

PostgreSQL is a widely used open-source, object-relational database
management system. It allows us to store complex types of objects and
to define new custom data types, functions, and operators to manipulate
them. PostgreSQL supports various languages for writing database functions,
in particular SQL, PL/PGSQL, and C. Among other advanced features,
PostgreSQL supports arrays and table inheritance. As a consequence, it is
easily extensible with new types and operators, which is the main reason why
it was chosen as the platform for PostGIS.

PostGIS extends PostgreSQL with spatial data types, spatial operators,
and spatial functions. In addition, indexing capabilities are provided by
PostgreSQL through the GIST index for spatial objects.

In this section, we study how the spatial data types supporting the vector
and raster models are implemented in PostGIS. First, we need to introduce
some additional concepts.

11.3.1 Spatial Reference Systems

The Earth is a complex surface whose shape and dimension cannot be
described with mathematical formulas. There are two main reference surfaces
to approximate the shape of the Earth: the geoid and the ellipsoid.

The geoid is a reference model for the surface of the Earth that coincides
with the mean sea level and its imaginary extension through the continents.
It is used in geodesy to measure precise surface elevations. However, the geoid
is not very practical to produce maps. The ellipsoid is a mathematically
defined surface that approximates the geoid. The most common reference
ellipsoid used is the one defined by the World Geodetic System in 1984 and
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last revised in 2004, usually referred to as WGS 84. This ellipsoid is used by
the Global Positioning System (GPS). Nevertheless, different regions of the
world use different reference ellipsoids, minimizing the differences between
the geoid and the ellipsoid.

The ellipsoid is used to measure the location of points of interest using
latitude and longitude. These are measures of the angles (in degrees) from
the center of the Earth to a point on the Earth’s surface. Latitude measures
angles in the North–South direction, while longitude measures angles in the
East–West direction. While an ellipsoid approximates the shape of the Earth,
a datum defines where on the Earth to anchor the ellipsoid.

To produce a map, the curved reference surface of the Earth, approximated
by an ellipsoid, must be transformed into the flat plane of the map by means of
a map projection. Thus, a point on the reference surface of the Earth with
geographic coordinates expressed by latitude and longitude is transformed
into Cartesian (or map) coordinates (x, y) representing positions on the map
plane. However, as a map projection necessarily causes deformations, different
projections are used for different purposes, depending on which information
is preserved, namely, shapes and angles, area, distance, or directions. These
four features are conflicting (e.g., it is not possible to preserve both shapes
and angles as well as area), and thus, the importance placed on each of these
features dictates the choice of a particular projection.

A spatial reference system (SRS) assigns coordinates in a mathematical
space to a location in real-world space. An SRS defines at least the units of
measure of the underlying coordinate system (such as degrees or meters),
the maximum and minimum coordinates (also referred to as the bounds),
the default linear unit of measure, whether data are planar or spheroid, and
projection information for transforming the data to other SRSs. SRSs are
in general good for only a specific region of the globe. If two geometries are
in the same SRS, they can be overlaid without distortion. If this is not the
case, they must be transformed. As there are thousands of SRSs, each one is
identified by a spatial reference system identifier (SRID).

11.3.2 Vector Model

The spatial data types described in Sect. 11.1.1 were defined at the conceptual
level, describing spatial features from an abstract perspective, without taking
into consideration how these will be implemented into actual systems.
The vector model provides a collection of data types for representing
spatial objects into the computer. Thus, for example, while at an abstract
level a linear object is defined as an infinite collection of points, at the
implementation level such a line must be approximated using points, lines,
and curves as primitives. A point is represented by coordinates such as (x, y)
or (x, y, z) depending on the number of dimensions of the underlying space.
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More complex linear and surface objects use structures (lists, sets, or arrays)
based on the point representation.

The standard ISO/IEC 13249 SQL/MM is an extension of SQL:2003
for managing multimedia and application-specific packages. Part 3 of the
standard defines how to store, retrieve, and manipulate spatial data in a
relational database system. It defines how zero-, one-, or two-dimensional
spatial data values are represented on a two-dimensional (R2), three-
dimensional (R3), or four-dimensional (R4) coordinate space. We describe
next the spatial data types defined by SQL/MM, which are used and extended
in PostGIS.
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Fig. 11.14 Hierarchy of spatial types in SQL/MM

Figure 11.14 shows the type hierarchy defined in the SQL/MM standard
for geometric features. ST Geometry is the root of the hierarchy, and
it is an abstract type. ST Point represents 0-dimensional geometries.
ST Curve is an abstract type representing 1-dimensional geometries. Several
subtypes of ST Curve are defined. ST LineString represents line segments
defined by a sequence of points using linear interpolation. ST CircularString
represents arc segments defined by a sequence of points using circular
interpolation. ST CompoundCurve represents a combination of linear and
circular strings. ST Circle represents circles defined by three noncollinear
points. ST GeodesicString represents arcs defined by a sequence of points
interpolated by geodesic curve segments. ST EllipticalCurve represents a single
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curve segment having elliptical interpolation. ST NURBSCurve represents a
nonuniform rational BSpline defined by a polynomial. ST Clothoid represents
a single curve segment having clothoid interpolation. ST SpiralCurve
represents a single curve segment having spiral interpolation.

ST Surface is an abstract type representing 2-dimensional geometries
composed by simple surfaces consisting of a single patch whose boundary is
specified by one exterior ring and zero or more interior rings if the surface has
holes. In the type ST CurvePolygon, the boundaries are any curve, while in the
type ST Polygon, the boundaries must be linear strings. ST Triangle, represent
polygons composed of three linear strings. ST PolyhedrlSurface represents
surfaces formed by stitching together simple surfaces along their boundaries,
while ST TIN represents polyhedral surfaces composed only of triangles.

ST GeomCollection represents collections of zero or more ST Geometry
values. ST MultiPoint represents a collection of single points, not necessarily
distinct (i.e., a bag of points). Similarly, ST MultiCurve represents a bag
of ST Curve and ST MultiLineString a bag of ST LineString. Notice that
there are no types ST MultiCircularString and ST MultiCompoundCurve. The
types ST MultiSurface and ST MultiPolygon represent, respectively, sets of
curve polygons and sets of polygons with linear boundaries. In addition,
ST MultiSurface constrains its values to contain only disjoint surfaces.

The standard also defines a rich set of spatial methods and functions.
These can be grouped in several categories.

There are methods that retrieve properties or measures from a geometry.
Examples are ST Boundary for retrieving the boundary of a geometry and
ST Length for the length of a line string of a multiline string.

There are also methods that convert between geometries and external data
formats. Three external data formats are supported: well-known text repre-
sentation (WKT), well-known binary representation (WKB), and Geography
Markup Language (GML). For GML, for example, there are functions like
ST LineFromGML or ST MPointFromGML, which return, respectively, a line
or a multipoint value from its GML representation.

There are methods that compare two geometries with respect to their
spatial relation. These are ST Equals, ST Disjoint, ST Within, ST Touches,
ST Crosses, ST Intersects, ST Overlaps, and ST Contains. All these methods
return an integer value that can be 1 (true) or 0 (false).

There are also methods that generate new geometries from other ones.
The newly generated geometry can be the result of a set operation on
two geometries (e.g., ST Difference, ST Intersection, ST Union) or can be
calculated by some algorithm applied to a single geometry (e.g., ST Buffer).

Finally, the SQL/MM standard defines an information schema that
provides a mechanism to determine the available spatial features. It consists
of the following four views:

1. ST GEOMETRY COLUMNS lists all columns in all tables that are of
type ST GEOMETRY or one of its subtypes as well as the optional SRS
associated with the column.
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2. ST SPATIAL REFERENCE SYSTEMS describes the available SRSs.
3. ST UNITS OF MEASURE describes the different units of measures that

can be used, for example, to calculate distances, lengths, or areas.
4. ST SIZINGS contains the spatial-specific metavariables and their values.

An example is the maximum length that can be used for a WKT of a
geometry.

To conclude this section, it is important to remark that PostGIS provides
a GEOGRAPHY data type, which uses geodetic coordinates instead of
Cartesian coordinates. Coordinate points in the GEOGRAPHY type are
always represented in the WGS 84 SRS (SRID 4326). Thus, this type can
be used to load data using latitude and longitude coordinates. However, as
many tools do not yet support the GEOGRAPHY data type, in the remainder
of this book we will only cover the GEOMETRY data type.

11.3.3 Raster Model

The data model that we presented in Sect. 11.1.2 is used to represent
continuous fields at an abstract level. At a logical level, continuous fields
must be represented in a discrete way. For this, we need first to partition the
spatial domain into a finite number of elements. This is called a tessellation.
Then, we must assign a value of the field to a representative point in
each partition element. Furthermore, since values of the field are known
only at a finite number of points (called sampled points), the values at
other points must be inferred using an interpolation function. In practice,
different tessellations and different interpolation functions may be used. The
most popular representation is the raster tessellation, which supports the
raster model. This model is structured as an array of cells, where each cell
represents the value of an attribute for a real-world location. Usually, cells
represent square areas of the underlying space, but other shapes can also
be used.

PostGIS introduces a new data type called RASTER that stores raster data
in a binary format in PostgreSQL. PostGIS provides functions to manipulate
raster data and to combine it with vector data. Rasters are composed of
bands, also called channels. Although rasters can have many bands, they are
normally limited to four, each one storing integers. For example, a picture
such as a JPEG, PNG, or TIFF is generally composed of one to four bands,
expressed as the typical red green blue alpha (RGBA) channels. A pixel in
raster data is generally modeled as a rectangle with a value for each of its
bands. Each rectangle in a raster has a width and a height, both representing
meters/feet/degrees of the geographic space in the SRS.

When raster data are stored in PostGIS, the pixels are allocated to a data
column of type RASTER, similar to how geometries are stored in a column of
type GEOMETRY or GEOGRAPHY. A full raster file can be stored in a single
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record in a single column or can be split into tiles, where each tile is stored as
a separate record. Finally, efficient access to raster data requires these data
to be indexed. The RASTER type uses GIST indexes like the GEOMETRY
and GEOGRAPHY data types do. GIST indexes use the notion of minimal
bounding boxes to define indexed regions in space.

We describe next some of the functions provided by PostGIS to manipulate
raster data. For a complete description of all the functions, we refer to the
reference manual.

Several functions allow to query the properties of a raster. For example, the
function ST BandNoDataValue has as parameters a raster and a band number
and returns the value used to represent cells whose actual values are unknown,
referred to as no data. Similarly, the function ST SetBandNoDataValue sets
the value that represents no data in a band. Another function is ST Value,
which returns the value in a location of the raster for a given band. Similarly,
the ST SetValue function returns a new raster, with the value at the specified
location set to the argument value.

Other functions convert between rasters and external data formats. For
example, the function ST AsJPEG returns selected bands of the raster as a
single JPEG image. Analogously, the functions ST AsBinary and ST AsPNG
return the binary and PNG representations of the raster, respectively.

Another group of functions converts between rasters and vector formats.
The function ST AsRaster converts a GEOMETRY to a RASTER. To convert
a raster to a polygon, the function ST Polygon is used, which unions all the
pixels in a raster that are not equal to the no data value of the band. The
function ST Envelope returns the minimum bounding box of the extent of the
raster, represented as a polygon.

There are functions that compare two rasters or a raster and a geometry
with respect to their spatial relation. For example, the Boolean function
ST Intersects, which takes two raster bands or a raster band and a geometry
as input, returns true if the two raster bands intersect or if the raster intersects
the geometry, respectively.

Another group of functions generates new rasters or geometries from other
ones. For example, ST Intersection takes two rasters as arguments and returns
another raster. Also, the ST Union function returns the union of a set of raster
tiles into a single raster composed of one band. The extent of the resulting
raster is the extent of the whole set.

Finally, there are several aggregation functions for rasters. These include
ST Min4ma, ST Max4ma, ST Sum4ma, ST StdDev4ma, and ST Mean4ma,
which calculate, respectively, the minimum, maximum, sum, mean, or
standard deviation of pixel values in a neighborhood.

We finish this section by comparing the functions provided by Post-
GIS against the operations defined for the field data type introduced in
Sect. 11.1.2.

With respect to the operations that perform the projection over domain
and range, we can see that DefSpace and ST Polygon are equivalent
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operations and that RangeValues could be easily constructed using
ST Value. With respect to the operations that allow the interaction
between domain and range, IsDefinedAt can be constructed using ST Value
and ST BandNoDataValue. Analogously, HasValue can be constructed
with ST Value, and AtGeometry can be constructed with ST Value and
ST Intersection, for example. The other operations are not implemented at
all or cannot be easily implemented using the currently provided operations.
This is the case, for instance, of At, AtMin, and AtMax, and the other
operations. The same occurs with the rate of change operations like the
partial derivatives. Although the built-in functions like ST Min4ma compute
aggregations in a neighborhood, they do not implement the functionality
required by the aggregation operations of Table 11.2 such as the FMin and
FMax operations.

11.4 Relational Representation of Spatial Data
Warehouses

In this section, we explain how a conceptual multidimensional schema is
translated into a relational schema in the presence of spatial data. As an
example, Fig. 11.15 shows the relational representation of the GeoNorthwind
conceptual schema given in Fig. 11.4. In the figure, the spatial attributes are
written in boldface for better readability. We explain next this translation
based on the rules given in Sect. 5.3.

11.4.1 Spatial Levels and Attributes

A level is mapped to the relational model using Rule 1 given in Sect. 5.3.
However, since in the conceptual model the spatial support is repre-
sented implicitly (i.e., using pictograms), spatial levels require an additional
attribute for storing the geometry of their members. In addition, both
nonspatial and spatial levels may contain spatial attributes. Thus, we need
to generalize this rule to account for spatial levels and attributes as follows:

Rule 1S: A level L, provided it is not related to a fact with a one-to-
one relationship, is mapped to a table TL that contains all attributes
of the level. A surrogate key may be added to the table, otherwise the
identifier of the level will be the key of the table. For each spatial attribute,
an appropriate spatial data type must be chosen to store its geometry.
Further, if the level is spatial, an additional attribute of a spatial data type
is added to represent the geometry of its members. Note that additional
attributes will be added to this table when mapping relationships using
Rule 3S below.
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Fig. 11.15 Logical representation of the GeoNorthwind data warehouse in Fig. 11.4

We remark that the abstract spatial types presented in Sect. 11.1.1 must
be mapped into corresponding spatial types provided by the implementation
platform at hand. For instance, while at the conceptual level the Line
data type in Fig. 11.1 represents arbitrary curves, such curves can only
be approximated with one of the subtypes of the ST Curve data type in
Fig. 11.14. In addition, current systems differ in the set of spatial types
provided. For instance, while PostGIS provides types similar to those of the
SQL/MM standard presented in Sect. 11.3.2, Oracle provides a unique data
type SDO Geometry that must be parameterized for defining different types
of geometries.
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We illustrate the mapping above using the State level shown in Fig. 11.15.
The PostGIS definition for this table is given next, where the definition of
some columns is elided for readability:

CREATE TABLE State (
StateKey INTEGER PRIMARY KEY NOT NULL,
StateName VARCHAR (30) NOT NULL,
. . .
CapitalGeo GEOMETRY(POINT, 4326),
StateGeo GEOMETRY(POLYGON, 4326),
. . .
CONSTRAINT CapitalInState

CHECK(ST COVERS(StateGeo, CapitalGeo)))

To account for the implicit geometry indicated by a pictogram in the
conceptual schema, a column StateGeo of type POLYGON is used for storing
the geometry of states. Further, the spatial attribute CapitalGeo of type
POINT is used for storing the geometry of the capital cities of states. Both
spatial columns are defined in the WGS84 SRS, whose identifier in PostGIS
is 4326. Finally, notice that a check constraint ensures that the geometry
of a state covers the geometry of its capital.

Now, we can insert, for example, the state of Florida as follows:

INSERT INTO State (StateKey, StateName, . . . , CapitalGeo, StateGeo, . . . )
VALUES (12345, 'Florida', . . . , ST GeomFromText('POINT(1 -1)'),

ST GeomFromText('POLYGON((0 0, 1 1,. . . ,1 -1, 0 0))'), . . . );

Figure 11.15 illustrates an alternative mapping of spatial attributes. Here,
the raster attribute Elevation is not included in table Country, but it is placed
instead in another table CountryElevation. This is done for optimization
reasons: The raster data could be voluminous and therefore slow down
significantly the queries involving the Country level. Moreover, most of those
queries will not require the elevation information. Notice that this approach
can be used for all spatial attributes.

The table CountryElevation can be created as follows:

CREATE TABLE CountryElevation (
CountryKey INTEGER, Elevation RASTER,
FOREIGN KEY (CountryKey) REFERENCES Country(CountryKey));

The table contains a foreign key to the Country dimension table and an
attribute of the RASTER data type. This attribute will store a raster that
covers the spatial extent of each country.

11.4.2 Spatial Facts, Measures, and Hierarchies

The mapping of a fact to the relational model is performed using Rule 2
introduced in Sect. 5.3, which we extend here for coping with spatial features:
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Rule 2S: A fact F is mapped to a table TF that includes as attributes all
measures of the fact. Further, a surrogate key may be added to the table.
Spatial measures must be mapped to attributes having a spatial type. In
addition, if the fact has an associated topological constraint, a trigger may
be added to ensure that the constraint is satisfied for all fact members.
Note that additional attributes will be added to this table when mapping
relationships using Rule 3S below.

A relationship is mapped using Rule 3 given in Sect. 5.3. This rule is
extended below for coping with spatial features:

Rule 3S: A relationship between either a fact F and a dimension level L or
between dimension levels LP and LC (standing for the parent and child
levels, respectively) can be mapped in three different ways, depending on
its cardinalities:

Rule 3a: If the relationship is one-to-one, the table corresponding to the
fact (TF ) or to the child level (TC) is extended with all the attributes of
the dimension level or the parent level, respectively. Spatial attributes
must be mapped to attributes having a spatial type.

Rule 3b: If the relationship is one-to-many, the table corresponding to
the fact (TF ) or to the child level (TC) is extended with the surrogate
key of the table corresponding to the dimension level (TL) or the parent
level (TP ), respectively, that is, there is a foreign key in the fact or child
table pointing to the other table.

Rule 3c: If the relationship is many-to-many, a new table TB (standing
for bridge table) is created that contains as attributes the surrogate keys
of the tables corresponding to the fact (TF ) and the dimension level (TL)
or the parent (TP ) and child levels (TC), respectively. If the relationship
has a distributing attribute, an additional attribute is added to the table
to store this information.

Further, if the relationship has an associated topological constraint, a
trigger may be added to ensure that the constraint is satisfied by all
instances of the relationship.

For example, applying the above rules to the spatial fact Maintenance
given in Fig. 11.6 will result in a table that contains the surrogate keys of
the four dimensions Segment, RoadCoating, County, and Time, as well as the
corresponding referential integrity constraints. Further, the table contains
attributes for the measures Length and CommonArea, where the latter is a
spatial attribute. The table can be created as follows:

CREATE TABLE Maintenance (
SegmentKey INTEGER NOT NULL,
RoadCoatingKey INTEGER NOT NULL,
CountyKey INTEGER NOT NULL,
TimeKey INTEGER NOT NULL,
Length INTEGER NOT NULL,
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CommonArea GEOMETRY(LINESTRING, 4326),
FOREIGN KEY (SegmentKey) REFERENCES Segment(SegmentKey),
/* Other foreign key constraints */ );

As an example of mapping of spatial hierarchies, Fig. 11.15 shows the
mapping of the relationship between the Region and Country levels in
Fig. 11.4. We see that the Region table includes an attribute RegionKey
referencing the parent level Country.

11.4.3 Topological Constraints

We conclude this section studying how a topological constraint in a fact
or between two spatial levels is mapped to the relational model. These
constraints restrict either the geometries of spatial members related to a
fact or the geometry of children members with respect to the geometry of
their associated parent member. For example, the spatial fact Maintenance in
Fig. 11.6 has an Overlaps relationship that states that a segment and a county
related to each other in a fact member must overlap. Similarly, in Fig. 11.4,
a CoveredBy relationship exists between the Region and Country levels, which
indicates that the geometry of a region is covered by the geometry of a
country.

The trigger that enforces the topological constraint in the spatial fact
Maintenance can be written as follows:

CREATE OR REPLACE FUNCTION SegmentOverlapsCounty()
RETURNS TRIGGER AS $SegmentOverlapsCounty$

DECLARE
SegmentGeo GEOMETRY;
CountyGeo GEOMETRY;

BEGIN
/* Retrieve the geometries of the associated segment and county */
SegmentGeo = (SELECT S.SegmentGeo FROM Segment S

WHERE NEW.SegmentKey = S.SegmentKey);
CountyGeo = (SELECT C.CountyGeo FROM County C

WHERE NEW.CountyKey = C.CountyKey);
/* Raise error if the topological constraint is violated */
IF NOT ST OVERLAPS(SegmentGeo, CountyGeo) THEN

RAISE EXCEPTION 'The segment and the county must overlap';
END IF;
RETURN NEW;

END;
$SegmentOverlapsCounty$ LANGUAGE plpgsql;

CREATE TRIGGER SegmentOverlapsCounty
BEFORE INSERT OR UPDATE ON Maintenance
FOR EACH ROW EXECUTE PROCEDURE SegmentOverlapsCounty();
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Notice that in the above example, the topological constraint involves only two
spatial levels. It is somewhat more complex to enforce a topological constraint
that involves more than two spatial dimensions.

A topological constraint between spatial levels can be enforced either at
each insertion of a child member or after the insertion of all children members.
The choice among these two solutions depends on the kind of topological
constraint. For example, a topological constraint stating that a region is
located inside the geometry of its country can be enforced each time a city is
inserted, while a topological constraint stating that the geometry of a country
is the spatial union of all its composing regions must be enforced after all of
the regions and the corresponding country have been inserted.

As an example of the first solution, a trigger can be used to enforce the
CoveredBy topological constraint between the Region and Country levels in
Fig. 11.4. This trigger should raise an error if the geometry of a region member
is not covered by the geometry of its related country member. Otherwise, it
should insert the new data into the Country table. The trigger is as follows:

CREATE OR REPLACE FUNCTION RegionInCountry()
RETURNS TRIGGER AS $RegionInCountry$

DECLARE
CountryGeo GEOMETRY;

BEGIN
/* Retrieve the geometry of the associated country */
CountryGeo = (SELECT C.CountryGeo FROM Country C

WHERE NEW.CountryKey = C.CountryKey);
/* Raise error if the topological constraint is violated */
IF NOT ST COVERS(CountryGeo, NEW.RegionGeo) THEN

RAISE EXCEPTION 'A region cannot be outside its country';
END IF;
RETURN NEW;

END;
$RegionInCountry$ LANGUAGE plpgsql;

CREATE TRIGGER RegionInCountry
BEFORE INSERT OR UPDATE ON Region
FOR EACH ROW EXECUTE PROCEDURE RegionInCountry();

In the second solution, child members are inserted without activating a
trigger. When all children members have been inserted, the verification is
performed. For the GeoNorthwind case study, suppose that the geometries of
Region partition the geometry of Country. When all regions of a country have
been inserted into the warehouse, the following query can be used to look for
countries whose regions do not partition the geometry of the country.

SELECT CountryKey, CountryName
FROM Country C
WHERE NOT ST EQUALS(C.CountryGeo,

(SELECT ST UNION(R.RegionGeo)
FROM Region R WHERE R.CountryKey = C.CountryKey))
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11.5 GeoMondrian

GeoMondrian1 is a spatial OLAP (SOLAP) server. It is a spatially extended
version of Pentaho Analysis Services, also known as Mondrian, which we
have discussed in Sect. 5.10. The open-source version of GeoMondrian only
supports PostGIS-based data warehouses, while the commercial version adds
support for Oracle, SQL Server, and MySQL.

GeoMondrian integrates spatial objects into the OLAP data cube struc-
ture. It implements a native geometry data type and provides spatial
extensions to the MDX query language, thus enabling spatial analysis
capabilities into analytical queries. The geospatial extensions to the MDX
query language include inline geometry constructors, filtering of members
based on topological predicates, spatial calculated members and measures,
and calculations based on scalar attributes derived from spatial features.

As it is the case in Mondrian, a cube schema is defined in GeoMondrian
using an XML syntax.2 GeoMondrian adds the Geometry data type for
member properties. For example, the spatial hierarchy of the Customer
dimension in the GeoNorthwind cube (Fig. 11.4) is defined as follows:

<Hierarchy primaryKey=''CustomerKey'' primaryKeyTable=''Customer''>
. . .
<Level name=''Continent'' table=''Continent'' column=''ContinentName'' />
<Level name=''Country'' table=''Country'' column=''CountryName''>

. . .
<Property name=''CountryGeo'' column=''CountryGeo type=''Geometry'' />

</Level>
<Level name=''Region'' table=''State'' column=''RegionName''>

. . .
</Level>
<Level name=''State'' table=''State'' column=''StateName''>

. . .
<Property name=''CapitalGeo'' column=''CapitalGeo'' type=''Geometry'' />
<Property name=''StateGeo''column=''StateGeo'' type=''Geometry'' />

</Level>
<Level name=''City'' table=''City'' column=''CityName''>

. . .
<Property name=''CityGeo'' column=''CityGeo'' type=''Geometry'' />

</Level>
<Level name=''Customer'' table=''Customer'' column=''CompanyName''>

. . .
<Property name=''CustomerGeo'' column=''CustomerGeo''

type=''Geometry'' />
</Level>

</Hierarchy>

1http://www.spatialytics.org/projects/geomondrian/
2Note that in Sect. 5.10 we described Mondrian version 4.0. The current version of
GeoMondrian uses version 3.0 of the Mondrian metamodel.

http://www.spatialytics.org/projects/geomondrian/
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Geometry properties map to PostGIS GEOMETRY columns in the dimension
tables. As can be seen, spatial dimensions are typically defined as snowflake
dimensions because star schemas induce a redundancy of geometries located
at higher levels of a hierarchy, which would require much storage space and
would slow down queries.

Once the spatial cube is defined, MDX queries containing spatial predicates
and functions can be addressed to GeoMondrian, as we will see in the next
section.

11.6 Querying the GeoNorthwind Cube in MDX

We now show through a series of examples how a spatial data warehouse can
be queried with MDX. For this, we use the GeoNorthwind data warehouse.

Query 11.1. Total sales in 1997 to customers located in cities that are
within an area whose extent is a polygon drawn by the user.

SELECT Measures.SalesAmount ON COLUMNS,
FILTER(Customer.Geography.City.MEMBERS,
ST Within(Customer.Geography.CURRENTMEMBER.Properties('CityGeo'),
ST GeomFromText('POLYGON ((200.0 50.0, 300.0 50.0,
300.0 80.0, 200.0 80.0, 200.0 50.0))'))) ON ROWS

FROM Sales
WHERE OrderDate.[1997]

The above query uses the spatial predicate ST Within to filter mem-
bers according to their location. The polygon given as argument to the
ST GeomFromText function will be defined by the user with the mouse in
a graphical interface showing a map.

Query 11.2. Total sales to customers located in a state that contains the
capital city of the country.

SELECT { Measures.SalesAmount } ON COLUMNS,
NON EMPTY FILTER(Customer.Geography.State.MEMBERS,
ST Contains(Customer.Geography.CURRENTMEMBER.
Properties('StateGeo'),Customer.Geography.CURRENTMEMBER.
PARENT.PARENT.Properties('CapitalGeo'))) ON ROWS

FROM Sales

The above query uses the function ST Contains to verify that the geometry
of a state contains the geometry of the capital of its country.

The following query defines a calculated member that is a geometry.

Query 11.3. Spatial union of the states in the USA where at least one
customer placed an order in 1997.
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WITH MEMBER Measures.GeoUnion AS
ST UnionAgg(Customer.Geography.CURRENTMEMBER.CHILDREN,
'StateGeo')

SELECT { Measures.SalesAmount, Measures.GeoUnion } ON COLUMNS,
{ Customer.Geography.Country.[USA] } ON ROWS

FROM Sales
WHERE OrderDate.[1997]

Here, we use the function ST UnionAgg to perform the spatial union of all
the states of the USA that satisfy the query condition. The second argument
of the function states the name of the property (i.e., StateGeo) containing
the geometries that will be aggregated.

Query 11.4. Distance between the customers’ locations and the capital of
the state in which they are located.

WITH MEMBER Measures.Distance AS
ST Distance(Customer.Geography.CURRENTMEMBER.
Properties('CustomerGeo'), Customer.Geography.
CURRENTMEMBER.PARENT.PARENT.Properties('CapitalGeo'))

SELECT { Measures.Distance } ON COLUMNS,
Customer.Geography.Customer.MEMBERS ON ROWS

FROM Sales

The above query defines a calculated measure Distance, which is a numerical
value obtained by computing with the function ST Distance the distance from
the geometries of the customer and the capital of its state.

Query 11.5. For each customer, total sales amount to its closest supplier.

WITH MEMBER Measures.Distance AS
ST Distance(
Customer.Geography.CURRENTMEMBER.Properties('CustomerGeo'),
Supplier.Geography.CURRENTMEMBER.Properties('SupplierGeo'))

SELECT Measures.SalesAmount ON COLUMNS,
GENERATE(Customer.Geography.Customer.MEMBERS,
BOTTOMCOUNT(Customer.Geography.CURRENTMEMBER *
Supplier.Geography.Supplier.MEMBERS, 1, Measures.Distance)) ON ROWS

FROM Sales

In the above query, we use the GENERATE function to obtain for each
customer the closest supplier. The latter is obtained by applying the
BOTTOMCOUNT function with respect to the calculated measure Distance.

Query 11.6. Total sales amount for customers that have orders delivered
by suppliers such that their locations are less than 200km from each other.

SELECT { Measures.[Sales Amount] } ON COLUMNS,
GENERATE(Customer.Geography.Customer.MEMBERS,
FILTER(Customer.Geography.CURRENTMEMBER *
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Supplier.Geography.Supplier.MEMBERS, ST Distance(
Customer.Geography.CURRENTMEMBER.Properties('CustomerGeo'),
Supplier.Geography.CURRENTMEMBER.Properties('SupplierGeo'))
< 200 AND Measures.SalesAmount > 0 )) ON ROWS

FROM Sales

This query uses the GENERATE and the FILTER functions to obtain for
each customer the suppliers that are at less than 200km from the customer
and such that they are related through at least one order, that is, their
SalesAmount measure is greater than 0.

Query 11.7. Distance between the customer and supplier for customers
that have orders delivered by suppliers of the same country.

WITH MEMBER Measures.CustomerCountry AS
Customer.Geography.CURRENTMEMBER.PARENT.
PARENT.PARENT.NAME

MEMBER Measures.SupplierCountry AS
Supplier.Geography.CURRENTMEMBER.PARENT.
PARENT.PARENT.NAME

MEMBER Measures.Distance AS
ST Distance(Customer.Geography.CURRENTMEMBER.
Properties('CustomerGeo'), Supplier.Geography.
CURRENTMEMBER.Properties('SupplierGeo'))

SELECT { Measures.Distance } ON COLUMNS,
GENERATE( Customer.Geography.Customer.MEMBERS,
FILTER( Customer.Geography.CURRENTMEMBER *
Supplier.Geography.Supplier.MEMBERS,
SupplierCountry = CustomerCountry AND
[Sales Amount] > 0) ) ON ROWS

FROM Sales

In the above query, we use the GENERATE function to obtain for each
customer the suppliers located in the same country. For this, we use the
FILTER function to keep only couples of customer and supplier located in the
same country and such that the customer has an order in which the supplier is
involved. Note that the expression Customer.Geography.Customer.MEMBERS,
although somehow awkward, first points to the name of the dimension
(Customer); then, for this dimension, it looks for the Geography hierarchy
and goes up again to look for the Customer, actually the first level in the
hierarchy.

Query 11.8. Number of customers from European countries with an area
larger than 50,000km2.

WITH MEMBER Measures.CountryArea AS
ST Area(Customer.Geography.CURRENTMEMBER.
Properties('CountryGeo'))

MEMBER Measures.CustomerCount AS
COUNT(EXISTING Customer.Geography.Customer)
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SELECT Measures.CustomerCount ON COLUMNS,
FILTER(Customer.Geography.Country.MEMBERS,
CountryArea > 50000 AND Customer.Geography.
CURRENTMEMBER.PARENT.NAME = 'Europe') ON ROWS

FROM Sales

In this query, the calculated measure CountryArea uses the function ST Area
for obtaining the area of a country. The calculated measure CustomerCount
uses the keyword EXISTING to force the set of customers to be evaluated
within the current context, that is, the current country. Finally, the function
FILTER allows to select European countries whose area is greater than 50,000.

Query 11.9. For each supplier, number of customers located at more than
100km from the supplier.

WITH MEMBER Measures.CustomerCount AS
COUNT(FILTER(Supplier.Geography.CURRENTMEMBER *
Customer.Geography.Customer.MEMBERS, ST Intersect(ST Buffer(
Supplier.Geography.CURRENTMEMBER.Properties('SupplierGeo'), 100)
Customer.Geography.CURRENTMEMBER.Properties('CustomerGeo'))
AND Measures.SalesAmount > 0 ))

SELECT { Measures.CustomerCount } ON COLUMNS,
Supplier.Geography.Supplier.MEMBERS ON ROWS

FROM Sales

The calculated measure CustomerCount uses the function ST Buffer to
produce a circle of 100km radius centered in the location of the current
supplier. The function ST Intersects then verifies that this circle intersects
with the location of the customer. The function FILTER selects for each
supplier the customers that satisfy the topological constraint and that are
related through at least one order, and, finally, the function COUNT is used
to obtain the number of selected customers.

Query 11.10. For each supplier, distance between the location of the
supplier and the centroid of the locations of all its customers.

WITH MEMBER Measures.CustomerLocations AS
ST UnionAgg(FILTER(Customer.Geography.Customer.MEMBERS,
Measures.SalesAmount > 0 ), 'CustomerGeo'))

MEMBER Measures.CentroidCustomers AS
ST Centroid(CustomerLocations)

MEMBER Measures.DistanceCentroid AS
ST Distance(CentroidCustomers,
Supplier.Geography.CURRENTMEMBER.Property('SupplierGeo'))

SELECT { Measures.DistanceCentroid } ON COLUMNS,
Supplier.Geography.Supplier.MEMBERS ON ROWS

FROM Sales
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In the calculated measure CustomerLocations, the function FILTER is used
for selecting the customers of the current supplier. Then, the ST UnionAgg
function is used for aggregating into a single geometry all the locations of
the selected customers. In the calculated measure CentroidCustomers, the
function ST Centroid function is used to compute the centroid of the locations
of the customers of the current supplier. Finally, in the calculated measure
DistanceCentroid, the distance between the location of the supplier and the
centroid of all its customers is computed.

11.7 Querying the GeoNorthwind Data Warehouse
in SQL

Analogously to what we did in Chap. 6, we show that MDX queries can also be
expressed in SQL. Given that in this book we have covered SQL extensively,
we do not comment on the queries, which are straightforward.

Query 11.1. Total sales in 1997 to customers located in cities that are
within an area whose extent is a polygon drawn by the user.

SELECT C.CustomerName, SUM(S.SalesAmount)
FROM Sales S, Customer C, City Y, Time T
WHERE S.CustomerKey = C.CustomerKey AND C.CityKey = Y.CityKey AND

S.TimeKey = T.TimeKey AND T.Year = 1997 AND
ST Within(C.CityGeo, ST GeomFromText('POLYGON((200.0 50.0,
300.0 50.0, 300.0 80.0, 200.0 80.0, 200.0 50.0))')

GROUP BY C.CustomerName

Query 11.2. Total sales to customers located in a state that contains the
capital city of the country.

SELECT C.CustomerName, SUM(S.SalesAmount)
FROM Sales S, Customer C, City Y, State A, Country O
WHERE S.CustomerKey = C.CustomerKey AND

C.CityKey = Y.CityKey AND Y.StateKey = A.StateKey AND
A.CountryKey = O.CountryKey AND
ST Contains(A.StateGeo,O.CapitalGeo)

GROUP BY C.CustomerName

Query 11.3. Spatial union of the states in the USA where at least one
customer placed an order in 1997.

SELECT ST Union(DISTINCT A.StateGeo)
FROM Sales S, Customer C, City Y, State A, Country O, Time T
WHERE S.CustomerKey = C.CustomerKey AND C.CityKey = Y.CityKey AND

Y.StateKey = A.StateKey AND A.CountryKey = O.CountryKey AND
O.CountryName = 'United States' AND
S.TimeKey = T.TimeKey AND T.Year = 1997
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Query 11.4. Distance between the customers’ locations and the capital of
the state in which they are located.

SELECT DISTINCT C.CompanyName AS CustomerName,
ST Distance(C.CustomerGeo,CS.CapitalGeo) AS Distance

FROM Sales S, Customer C, City AS CC, State AS CS
WHERE S.CustomerKey = C.CustomerKey AND

C.CityKey = CC.CityKey AND CC.StateKey = CS.StateKey
ORDER BY C.CompanyName

Query 11.5. For each customer, total sales amount to its closest supplier.

SELECT C.CustomerName, SUM(S.SalesAmount)
FROM Sales S, Customer C, Supplier U
WHERE S.CustomerKey = C.CustomerKey AND

S.SupplierKey = U.SupplierKey AND
ST Distance(C.CustomerGeo,U.SupplierGeo) <= (
SELECT MIN(ST Distance(C.CustomerGeo,U1.SupplierGeo)
FROM Sales S1, Supplier U1
WHERE S1.CustomerKey = C.CustomerKey AND

S1.SupplierKey = U1.SupplierKey )
GROUP BY C.CustomerName

Query 11.6. Total sales amount for customers that have orders delivered
by suppliers such that their locations are less than 200km from each other.

SELECT C.CustomerName, SUM(S.SalesAmount)
FROM Sales S, Customer C, Supplier U
WHERE S.CustomerKey = C.CustomerKey AND

S.SupplierKey = U.SupplierKey AND
ST Distance(C.CustomerGeo,U.SupplierGeo) < 200

GROUP BY C.CustomerName

Query 11.7. Distance between the customer and supplier for customers
that have orders delivered by suppliers of the same country.

SELECT DISTINCT C.CompanyName AS CustomerName,
U.CompanyName AS SupplierName,
ST Distance(C.CustomerGeo,U.SupplierGeo) AS Distance

FROM Sales S, Customer C, City AS CC, State AS CS,
Supplier U, City AS SC, State AS SS

WHERE S.CustomerKey = C.CustomerKey AND
C.CityKey = CC.CityKey AND CC.StateKey = CS.StateKey AND
S.SupplierKey = U.SupplierKey AND U.CityKey = SC.CityKey AND
SC.StateKey = SS.StateKey AND SS.CountryKey = CS.CountryKey

ORDER BY C.CompanyName, U.CompanyName

Query 11.8. Number of customers for European countries with an area
larger than 50,000km2.
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SELECT C.CountryName, COUNT(DISTINCT S.CustomerKey)
FROM Sales S, Customer U, City Y, State T, Country C, Continent A
WHERE S.CustomerKey = U.CustomerKey AND U.CityKey = Y.CityKey AND

Y.StateKey = T.StateKey AND T.CountryKey = C.CountryKey AND
ST Area(C.CountryGeo) > 50000 AND
C.ContinentKey = A.ContinentKey AND A.ContinentName = 'Europe'

GROUP BY C.CountryName

Query 11.9. For each supplier, number of customers located at more than
100km from the supplier.

SELECT P.SupplierName, COUNT(DISTINCT C.CustomerKey)
FROM Sales S, Supplier P, Customer C
WHERE S.SupplierKey = P.SupplierKey AND

S.CustomerKey = C.CustomerKey AND
ST Distance(P.SupplierGeo,C.CustomerGeo) > 100

GROUP BY P.SupplierName

Query 11.10. For each supplier, distance between the location of the
supplier and the centroid of the locations of all its customers.

SELECT P.SupplierName, ST Distance(P.SupplierGeo,
ST Centroid(ST Union(DISTINCT C.CustomerGeo)))

FROM Sales S, Supplier P, Customer C
WHERE S.SupplierKey = P.SupplierKey AND S.CustomerKey = C.CustomerKey
GROUP BY P.SupplierName

11.8 Spatial Data Warehouse Design

In this section, we extend the method studied in Chap. 10 to support
spatial data. Recall that the method includes the phases of requirements
specification, conceptual design, logical design, and physical design. We
revisit these phases, describing how to take spatial support into account.
Similar to traditional data warehouse design, this method is independent of
the conceptual model used. We will use the MultiDim model extended with
spatial data studied in the present chapter.

There is not yet a well-established method for the design of spatial data
warehouses. In general, the four phases described for designing traditional
data warehouses can be applied for spatial data warehouses. Two main
approaches can be distinguished. In the first one, spatial elements are included
in the initial conceptual schema. In the other approach, the nonspatial schema
is initially developed, and it is augmented afterward with spatial elements.
In both cases, the spatially extended conceptual schema is then translated
into logical and physical schemas using mapping rules. Nevertheless, owing
to the lack of a well-accepted conceptual model for the design of spatial data
warehouses, in many situations the phase of conceptual design is skipped,
starting the design process with the logical schema.
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11.8.1 Requirements Specification and Conceptual
Design

Like for traditional data warehouses, spatial data warehouses can be designed
on the basis of the analysis requirements of the users, the data available
in the source systems, or both. This leads to three approaches for spatial
data warehouse design, referred to as the analysis-driven, source-driven, and
analysis/source-driven approaches.

An aspect that distinguishes spatial data warehouse design from conven-
tional data warehouse design is the need to define when we will consider
spatial support during the design process. If spatial support is considered in
the early steps of the requirements specification phase, we are in the case of
early inclusion of spatial support. Otherwise, we are in the case of late
inclusion of spatial support. As we will see, the choice between these
two options depends on the users’ knowledge of spatial data features and
the presence of spatial data in the source systems. Further, this choice is
independent of which of the three approaches above is used. For example,
a particular data warehouse project might choose a source-driven approach
with early inclusion of spatial support in order to integrate existing spatial
applications into a decision-support infrastructure that is used by experts
cognizant of spatial databases.

Analysis-Driven Approach

In the analysis-driven approach to spatial data warehouse design, the
requirements specification phase is driven by the analysis needs of the users.
Figure 11.16a shows the steps required in this approach. As can be seen in
that figure, in the first step of the requirements specification phase, users
at various management levels are identified to ensure that the requirements
will express the goals of the organization. These users will help the developer
team to understand the purpose of having a spatial data warehouse and to
determine the analysis needs, which are collected in the second step. The
information gathered and the corresponding metadata are documented in
the third step and serve as a basis for the next phase.

We next analyze how the two design choices for including spatial support
affect the requirements and conceptual modeling processes.

Early Inclusion of Spatial Support

In this case, we assume that the users are familiar with concepts related to
spatial data, including its manipulation and some kinds of spatial analysis.
Therefore, from the beginning of the requirements specification process, the



11.8 Spatial Data Warehouse Design 463

users may be able to express what spatial data they require in order to
exploit the features of multidimensional models and to perform various kinds
of spatial analysis, and the design process may be performed following the
same steps as those for traditional data warehouse design.

Identify users
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Document 
requirements 
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Check data 
availability and 

specify mappings

Define final 
conceptual 

schema and 
mappings

Define initial 
conceptual 

schema

Add
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b

Fig. 11.16 Steps of the analysis-driven approach for spatial data warehouses. (a)
Requirements specification phase. (b) Conceptual design phase

The conceptual design phase (Fig. 11.16b) starts with the development
of the initial spatial data warehouse schema. Note that this schema already
includes spatial elements since we assume that the users are able to refer
to spatial data when expressing their specific analysis needs. Therefore, we
follow the lower path of Fig. 11.16b. In the following step, we must determine
whether the data are available in the source systems. Then, the corresponding
mappings with data warehouse elements must be specified. Note, however,
that external sources may be needed if the required spatial support does not
exist in the source systems. In the last step, the final schema is developed; it
includes all data warehouse elements for which the corresponding data exists
in the source systems (whether internal or external). Additionally, the final
mapping between the two kinds of systems is delivered.

Late Inclusion of Spatial Support

It may happen that users are not familiar with spatial data management
or that they prefer to start by expressing their analysis needs related to
nonspatial elements and include spatial support later on. In this case, the
requirements specification and conceptual-design phases proceed as for a
traditional data warehouse, ignoring spatial features until the initial schema
is checked with respect to the data available in the source systems. As
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shown in Fig. 11.16b, prior to the development of the final schema and the
corresponding mappings, there is an additional step to add spatial support.
In this step, the designers present the conceptual schema to the users and
ask them for indications about the spatial support required.

If the MultiDim model is used as a conceptual model for designing a
spatial data warehouse, in the first step the designers may consider each
level and decide whether that level, some of its attributes, or both should
be represented spatially. Then, if a hierarchy includes two related spatial
levels, a topological constraint between them may be specified. If a fact
relates two or more spatial dimensions, the designers can help the users to
determine whether a topological constraint exists between these dimensions.
Finally, the inclusion of spatial measures may be considered. Note that the
elements of the multidimensional schema could be analyzed in a different
order, depending on the designers’ skills and their knowledge about spatial
data warehouses and the particularities of the conceptual model used. Similar
to the previous case, the step of checking data availability may require access
to external sources since spatial data may not be present in the underlying
source systems. The final schema should include the modified mappings.

As an example, consider the schema in Fig. 4.2, developed for a traditional
data warehouse following the method described in Chap. 10. When this
schema was shown to the users, they required the possibility to visualize
on maps the geographic hierarchies for Customer, Supplier, and Employee
dimensions. Figure 11.4 shows the addition of geographic properties to the
hierarchies in the initial conceptual schema. We use the spatial extension of
the MultiDim model described in Sect. 11.2. The spatial elements are then
checked against the data available in the source systems. Since the operational
data do not include spatial components, external sources were used to obtain
the corresponding information for these spatial hierarchies.

Source-Driven Approach

As explained in Chap. 10, this approach relies on the data in the source
systems. Like in the analysis-driven approach, spatial support may be
included either early or late in the design process. Since the operational
databases are the driving force in this approach, the choice between early
or late inclusion of spatial requirements depends on whether these databases
are spatial or not.

Early Inclusion of Spatial Support

If the source systems include spatial data, steps similar to those for traditional
data warehouse design can be applied. They are indicated in Fig. 11.17a
and the lower path of Fig. 11.17b. Requirements specification starts with
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Fig. 11.17 Steps of the source-driven approach for spatial data warehouses. (a)
Requirements specification phase. (b) Conceptual design phase

the identification of the source systems that may serve as data providers for
the spatial data warehouse. External sources are not considered at this stage.
In the second step, these sources are analyzed to discover multidimensional
schema elements. No semiautomatic or automatic procedure has been
proposed in the literature for deriving the schema of a spatial data warehouse
from the schemas of source systems. Thus, this derivation process should be
conducted manually and must rely on the designers’ knowledge of the business
domain and of spatial data warehouse concepts. The multidimensional
schema obtained, as well as the corresponding metadata, are documented
in the third step of the requirements specification phase.

In the first step of the conceptual design phase, a conceptual schema with
spatial elements is developed. This schema is shown to the users to determine
their interest and to identify elements that are important for analysis. The
users’ recommendations for changes will be reflected in the final schema
obtained in the last step, where mappings between the source and data
warehouse schemas are also developed.

Late Inclusion of Spatial Support

This case occurs when the source systems do not include spatial data or
they do contain spatial data but the derivation process is complex and the
designers prefer to focus first on nonspatial elements and to address spatial
support later on. Thus, the design process proceeds as for a traditional data
warehouse with the addition of a step for adding spatial support. Note that
this support is considered only for the previously chosen elements of the
multidimensional schema. This is shown in Fig. 11.17a and the upper path of
Fig. 11.17b.
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If the MultiDim model is used to represent the traditional data warehouse
schema, the analysis of which elements can be spatially represented can be
conducted in a way similar to that in the analysis-driven approach above.
If spatial support is not provided by the underlying operational systems,
external sources may deliver the required spatial data. The corresponding
mapping should be included as part of the final schema.

We do not include an example to illustrate this approach since such an
example would proceed in the same way as for the creation of a schema using
the source-driven approach in the case of a traditional data warehouse and
for adding spatial support in the analysis-driven approach above.

Analysis/Source-Driven Approach
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Fig. 11.18 Steps of the analysis/source-driven approach for spatial data warehouses.
(a) Requirements specification phase. (b) Conceptual design phase

This approach combines the two previously described approaches which
may be used in parallel, as mentioned in Sect. 10.3.5. Two chains of activities,
corresponding to the analysis-driven and source-driven approaches, can be
distinguished, as it can be seen in Fig. 11.18. The figure shows the steps of
the analysis/source-driven approach for spatial data warehouses. Similarly
to the previous cases, we propose two different solutions, the choice of which
depends on whether the users are familiar with concepts related to spatial
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data and whether the source systems include spatial data. The discussion
about early or late inclusion of spatial support in this approach is analogous
to the ones in previous sections, therefore we omit it.

11.8.2 Logical and Physical Design

The logical and physical design of a spatial data warehouse should consider
the various aspects mentioned in Sects. 10.5 and 10.6 for traditional data
warehouses, which refer to the mapping of a conceptual schema into a logical
and a physical schema and to the ETL process, all of these also extensively
discussed previously in this book. To avoid redundancy, we do not repeat the
explanations here.

11.9 Summary

In this chapter, we studied how data warehouses can be extended with
spatial data. For this, we presented a spatial extension of the MultiDim
conceptual model with spatial types and field types and defined a set of
operations that can be performed upon them. We extended the hierarchies
studied in Chaps. 4 and 5 to include spatial data, yielding spatial hierarchies.
We also generalized the rules for translating conceptual to logical models
to account for spatial data. Then, we addressed the vector and raster
models for explaining how spatial abstract data types can be represented
at the logical level. As in the rest of the book, we used as example the
Northwind data warehouse, which we extended with spatial data. We called
this extension the GeoNorthwind data warehouse. We implemented the above
concepts using PostGIS, the spatial extension of the PostgreSQL database,
and GeoMondrian, the spatial extension of the Mondrian OLAP server. We
also showed how the GeoNorthwind data warehouse can be queried using
a spatial extension of MDX and with SQL extended with spatial functions.
We finally described a method for the design of spatial data warehouses,
which extends the method for traditional data warehouse design presented in
the previous chapter. As in the traditional case, we presented three different
approaches, depending on whether the driving force is the analysis needs,
the information in the source systems, or both. For each one of these three
approaches, we considered two situations, depending on when spatial data
are included in the process.
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11.10 Bibliographic Notes

There are many books on spatial databases and geographic information sys-
tems (GIS). Popular books in these topics are [174,187,229,234]. SQL/MM,
the spatial extension of SQL, is an ISO standard [94], which is also described
in [132, 134]. The ISO 19123:2005 standard [93] defines a conceptual schema
for coverages, which are logical implementations of continuous fields such as
rasters and TINs. A book introducing the main features of PostGIS is [146].
The book [143] describes GRASS, an open-source GIS that includes advanced
capabilities for manipulating raster data.

The spatial extension of the MultiDim model presented in this chapter is
based on the spatial data types of MADS [155], a spatiotemporal conceptual
model, and on the work on field types by the present authors [69, 212, 214].
The notion of SOLAP was introduced in [176], and it is reviewed in [11]. Other
relevant work on SOLAP can be found in [13, 14, 224]. A book introducing
Mondrian is [10]. Although not much work has been done on the topic of
OLAP analysis of continuous fields (see [5, 6]), this kind of data has been
under study for many years in GISs. An algebra for fields was defined in the
classic book of Tomlin [202] and continued by the work of several authors [24,
34, 138, 154].

Since spatial data warehousing is a relatively recent research area,
methodological aspects of their design have not been much addressed in the
literature (see, for instance, [63, 64, 125]).

11.11 Review Questions

11.1 What are spatial databases? Describe two complementary ways of
modeling spatial data in database applications.

11.2 Describe the various spatial data types at a conceptual level, giving
for each one of them an example of its use.

11.3 Define the various topological relationships in terms of the boundary,
interior, and exterior of spatial values.

11.4 What are continuous fields? How are they implemented at a concep-
tual level?

11.5 Give examples of operations associated with field types. Explain the
rate-of-change operations for field types.

11.6 Explain why traditional operations must be lifted for field types.
Illustrate this with examples.

11.7 Discuss the following concepts: spatial dimension, spatial level, spatial
attribute, spatial fact, spatial measure, spatial hierarchy, and topolog-
ical relationship.
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11.8 What are the differences between a spatial level, a spatial level with
spatial attributes, and a nonspatial level with spatial attributes?

11.9 Give an example of each of the following spatial hierarchies: balanced,
unbalanced, and generalized hierarchies.

11.10 What is the difference between alternative and parallel spatial hierar-
chies?

11.11 Why are n-ary topological relationships needed in spatial facts? Are
such relationships usual in spatial databases?

11.12 How does a spatial measure differ from a numerical measure computed
with spatial operations? Does a spatial measure require to be related
to spatial dimensions?

11.13 Give an example of a multidimensional schema containing a spatial
measure. Transform the spatial measure into a spatial dimension.
Compare the two schemas with respect to the various queries that
can be addressed to them.

11.14 Define the geoid and the ellipsoid. What are they used for? What are
the differences between them? What is a datum?

11.15 What are SRSs?
11.16 What is the difference between the vector and the raster data models

for representing spatial data?
11.17 Describe the spatial data types implemented in SQL/MM.
11.18 Describe how field types are implemented in PostGIS. How does this

implementation differ from the abstract definition of field types?
11.19 Discuss the mapping rules for translating a spatial MultiDim schema

into a relational schema. State the advantages and disadvantages of
alternative mappings.

11.20 How is a topological relationship between spatial levels represented in
a logical schema?

11.21 How can one check in a logical schema the topological relationship of
a fact?

11.22 Describe from a methodological perspective how spatial data can be
included in data warehouses.

11.12 Exercises

11.1 Consider the GeoFoodmart cube, whose schema is given in Fig. 11.19.
Write in MDX the following queries:

(a) For each store, give the total sales to customers from the same city
as the store.

(b) For each store, obtain the ratio between the sales to customers from
the same state and its total sales in 2013.
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Fig. 11.19 Conceptual schema of the GeoFoodmart cube

(c) Display the unit sales by product brand, considering only sales to
customers from a country different from the country of the store.

(d) Display all measures summarized for the stores located in California
or Washington, considering only stores in California that are less
than 200km from Los Angeles and stores in Washington that are
less than 200km from Seattle.

(e) Total sales of stores located at less than 5 km from the city center
against total sales for all stores in their state.

(f) For each store, list total sales to customers living closer than 10 km
from the store against total sales for the store.
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(g) For each city, give the store closest to the city center and its best-
sold brand name.

(h) Give the spatial union of all the cities that have more than one
store with a surface of more than 10,000 square feet.

(i) Give the spatial union of the states such that the average of the
total sales by customer in 1997 is greater than $60 per month.

(j) Give the spatial union of all the cities where all customers have
purchased for more than $100.

(k) Display the spatial union of the cities whose sales count accounts
for more than 5% of all the sales.

11.2 Consider the GeoFoodmart data warehouse, whose relational schema
is given in Fig. 11.20. Write in SQL the queries stated in the previous
exercise.

11.3 Add spatial data to the data warehouse schema you created as a
solution of Ex. 5.9 for the AirCarrier application. You must analyze
the dimensions, facts, and measures and define which of them can
be extended with spatial features. You should also consider adding
continuous field data representing altitude so you can enhance the
analysis trying to find a correlation between the results and the
elevation of the geographic sites.

11.4 Consider the logical schema obtained as a solution of Ex. 11.3. Using the
reverse engineering technique you prefer, produce a multidimensional
schema from it.

11.5 Write in MDX the following queries over the schema of the cube
obtained in Ex. 11.4:

(a) For each carrier and year, give the number of scheduled and
performed flights.

(b) For each airport, give the number of scheduled and performed flights
in the last 2 years.

(c) For each carrier and distance group, give the total number of seats
sold in 2012 per carrier.

(d) Give the total number of persons arriving to or departing from
airports closer than 15 km from the city center in 2012.

(e) Give by year the ratio between flights in airports closer than 15 km
from the city center and flights in airports located between 15 and
40 km from the city center.

(f) Display the spatial union of all airports with more than 5,000
departures in 2012.

(g) Display the spatial union of all airports where more than 100
carriers operate.

(h) For cities operated by more than one airport, give the total number
of arriving and departing passengers.
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Fig. 11.20 Relational schema of the GeoFoodmart data warehouse
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(i) For cities operated by more than one airport, give the total number
of arriving and departing passengers at the airport closest to the
city center and the ratio between this value and the city total.

(j) Display the spatial union of all airports located at more than
1,000m above sea level.

(k) Compare the number of departed and scheduled flights for airports
located above and below 1,000m above sea level in 2012.

11.6 Write in SQL the queries of Ex. 11.5 over the logical schema obtained
in Ex. 11.3.



Chapter 12

Trajectory Data Warehouses

The previous chapter focused on the analysis of the spatial features of static
objects such as stores, cities, or states, where by static we mean that the
spatial features of these objects do not change (or change exceptionally)
across time. However, there is a wide range of applications that require the
analysis of the so-called moving objects, that is, objects that continuously
change their position in space and time. This is called mobility data analysis.
The interest in mobility data analysis has expanded dramatically with the
availability of embedded positioning devices like GPS. With these devices,
traffic data, for example, can be captured as a collection of sequences of
positioning signals transmitted by the cars’ GPS along their itineraries. Since
such sequences can be very long, they are often processed by dividing them
in segments. For instance, the movement of a car can be segmented with
respect to the duration of the time intervals in which it stops at a certain
location. These segments of movement are called trajectories, and they are
the unit of interest in the analysis of movement data. Trajectory analysis can
be applied, for example, in traffic management, which requires to monitor
and analyze traffic flows to capture their characteristics. Other applications
aim at tracking the position of the users of social networks recorded by the
electronic devices they carry, like smartphones or tablets, in order to analyze
their behavior. As we have seen throughout this book, data warehouses
and OLAP techniques have been successfully used for transforming detailed
data into valuable knowledge for decision-making purposes. Extending data
warehouses to cope with trajectory data leads to trajectory data warehouses,
which we study in this chapter.

We start this chapter in Sect. 12.1 motivating mobility data analysis. Then,
in Sect. 12.2, we define temporal types, which provide a way to represent at
a conceptual level values that evolve in time, while in Sect. 12.3 we give a
possible implementation for these types in PostGIS. In Sect. 12.4, we present
the Northwind trajectory data warehouse. Finally, Sect. 12.5 is devoted to
querying trajectory data warehouses.

A. Vaisman and E. Zimányi, Data Warehouse Systems, Data-Centric
Systems and Applications, DOI 10.1007/978-3-642-54655-6 12,
© Springer-Verlag Berlin Heidelberg 2014
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12.1 Mobility Data Analysis

Nowadays, with the massification of positioning devices such as GPS, we
are able to collect huge amounts of mobility data, which may be extremely
valuable in many application areas. A typical application scenario is the
analysis of the activities carried out by tourists in a city. During their
stay, tourists visit museums, parks, and several different attractions. They
also consume many services like accommodation, restaurants, shops, and so
on. From the point of view of an analyst, these tourist places and services
are denoted places of interest. A tourist trajectory consists in moving from
one place of interest to another, stopping for some time at some of them.
Data about these trajectories can be collected and analyzed, for example, to
optimize the offer of services or to plan tourist itineraries within the city.
As another example, large industrial cities with high car ownership rates are
suffering a decrease in their air quality. Normally, stations are located at
different points in these cities in order to measure air quality at regular time
intervals. It is not hard to guess that the techniques that we have studied in
this book can be very useful for understanding and analyzing the evolution
of the quality of the air and the effects of corrective measures that the
governments may take to keep pollution below certain limits. For example, we
can analyze the trajectories followed by cars, trucks, and buses and correlate
them with the air quality measures. Or we can study the population being
exposed to heavy pollution loads and when this occurs.

In Chap. 11, we have studied how the spatial features of objects can
be represented in databases and data warehouses. Although these spatial
features can change in time, these changes are typically considered as
discrete. For example, a parcel can be merged with another one at a certain
instant. Similarly, the borders of a state or a country can change in time.
In this chapter, we are interested in objects whose spatial features change
continuously in time. These are called moving objects. While we will deal
with moving points in this chapter, many applications must also deal with
moving regions, for example, to monitor the trajectory of polluting clouds,
or stains in sea bodies, as in our previous example. Trajectories can be
represented in a continuous or a discrete way. A continuous trajectory
is composed of the movement track of an object, occurring within a certain
interval, enriched with interpolation functions that allow us to compute,
with a reasonable degree of confidence, the spatiotemporal position of the
moving object for any instant in this interval. On the other hand, a discrete
trajectory is composed of the finite sequence of spatiotemporal positions in
a certain interval. The main difference between a discrete and a continuous
trajectory is that in the former there is no plausible interpolation function
between two points. As a typical example, consider the case of a web site
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of a social network like Foursquare web site.1 A user checks in at a place
at 2 p.m. The next day, she does the same at 1 p.m., and at 4 p.m. she
checks in at another place. Interpolation between these three spatiotemporal
points will be most likely useless for any application that wants to analyze
the movement of this user. However, an application aimed at analyzing the
presence of people in a given area may find this information useful. Note that
the difference between discrete and continuous trajectories has to do with
the application semantics rather than with the time between two consecutive
trajectory points. For example, if we want to perform a long-term analysis of
the positions of people, then it may be the case that the random check-ins
at Foursquare could be considered a continuous trajectory.

Spatiotemporal databases or moving object databases store and
query the positions of moving objects. For example, a typical query to a
moving object database would be “When will the next train from Rome
arrive?”, which is a query about a moving point. We can also query moving
regions and ask questions such as “At which speed is the Amazon rain forest
shrinking?”. However, these databases do not support analytical queries such
as “Total number of deliveries started in Brussels in the last quarter of
2012” or “Average duration of deliveries by city.” These queries can be
more efficiently handled if mobility data are stored in a data warehouse.
Conventional data warehouses can be extended in order to support moving
object data, leading to the concept of spatiotemporal or trajectory data
warehouses which, in addition to alphanumeric and spatial data, contain
data about the trajectories of moving objects. Trajectories are typically
analyzed in conjunction with other data, for instance, spatial data like
a road network configuration or continuous field data like temperature,
precipitation, or elevation.

Like in Chap. 11, to support spatiotemporal data we make use of a
collection of data types that capture the evolution over time of base types
and spatial types. We denote these types as temporal, and we study them in
detail in the next section.

12.2 Temporal Types

Temporal types represent values that change in time, for instance, to keep
track of the evolution of the salaries of employees. Conceptually, temporal
types are functions that assign to each instant a value of a particular domain.
They are obtained by applying a constructor temporal(·). Hence, a value
of type temporal(real) (e.g., representing the evolution of the salary of an
employee) is a continuous function f : instant→ real.

1http://www.foursquare.com

http://www.foursquare.com
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In what follows, the time dimension is assumed to represent valid time.
In the field of temporal databases, valid time is the time when the values
in a certain tuple are valid in the database, while transaction time is the
time when a tuple is recorded in the database. For example, if the salary of
an employee is recorded in the database on December 28, 2013, this will be
stored as its transaction time, but if it holds for the employee from January
1, 2014, the latter date will be recorded as the valid time for this attribute.

2012-01-01

20 30

2012-04-01 2012-10-01 2013-04-01

60

2012-07-01 2013-01-01

Salary
John

Salary
Mary

Fig. 12.1 Examples of temporal reals representing the evolution of salaries

Temporal types are partial functions, that is, they may be undefined for
certain periods of time. As an example, SalaryJohn and SalaryMary are values
of type temporal(real), which represent the evolution of the salary of two
employees as depicted in Fig. 12.1. For instance, John has a salary of 20 in
the period [2012-01-01, 2012-07-01) and a salary of 30 in the period [2012-
10-01, 2013-01-01), while the salary remains undefined in between 2012-07-01
and 2012-09-30. We denote by ‘⊥’ this undefined value. As a convention, we
use closed-open intervals.

Table 12.1 Classes of operations on temporal types

Class Operations
Projection to domain/range DefTime, RangeValues, Trajectory
Interaction with domain/range IsDefinedAt, HasValue, AtInstant, AtPeriod,

InitialInstant, InitialValue, FinalInstant,
FinalValue, At, AtMin, AtMax

Rate of change Derivative, Speed, Turn
Temporal aggregation Integral, Duration, Length, TAvg,

TVariance, TStDev, TMin, TMax
Lifting All new operations inferred

Temporal types have an associated set of operations, which can be grouped
into several classes, as shown in Table 12.1. We discuss next these operations.

First, there are operations that perform the projection into the domain
and range of the function defining the temporal type. Operations DefTime
and RangeValues return, respectively, the projection of a temporal type
into its domain and range. For example, DefTime(SalaryJohn) and RangeVal-
ues(SalaryJohn) return, respectively, {[2012-01-01, 2012-07-01), [2012-10-01,
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2013-01-01)} and {20,30}. We will explain the Trajectory operation when we
discuss the temporal spatial types below.

Another set of operations allows the interaction with the domain and
range. The IsDefinedAt predicate is used to check whether the temporal
function is defined at an instant or is ever defined during a given set of
intervals. Analogously, the predicate HasValue checks whether the function
ever assumed one of the values given as second argument. The operations
AtInstant and AtPeriod restrict the function to a given time or set of time
intervals. The operations InitialInstant and InitialValue return, respectively,
the first instant at which the function is defined and the corresponding value.
The operations FinalInstant and FinalValue are analogous. The Operation At
restricts the temporal type to a value or to a range of values in the range
of the function. The operations AtMin and AtMax reduce the function to the
instants when its value is minimal or maximal, respectively.

For example, IsDefinedAt(SalaryJohn, 2012-06-15) and HasValue
(SalaryJohn, 25) result, respectively, in the Boolean values true and false.
Furthermore, AtInstant(SalaryJohn, 2012-03-15) and AtInstant(SalaryJohn,
2012-07-15) return, respectively the value 20 and ‘⊥’, because John’s salary
is undefined at the latter date. Similarly, AtPeriod(SalaryJohn, [2012-04-01,
2012-11-01)) results in a temporal real with value 20 at [2012-04-01, 2012-
07-01) and 30 at [2012-10-01, 2012-11-01), where the periods have been
projected to the intervals given as parameter of the operation. Further,
InitialInstant(SalaryJohn) and InitialValue(SalaryJohn) return 2012-01-01 and
20 which are, respectively, the initial time and value of the temporal value.
Moreover, At(SalaryJohn, 20) and At(SalaryJohn, 25) return, respectively, a
temporal real with value 20 at [2012-01-01, 2012-07-01) and ‘⊥’, because
there is no salary with value 25 whatsoever. Finally, AtMin(SalaryJohn) and
AtMax(SalaryJohn) return, respectively, a temporal real with value 20 at
[2012-01-01, 2012-07-01) and a temporal real with value 30 at [2012-10-01,
2013-01-01).

An important property of any temporal value is its rate of change,
computed by the Derivative operation, which takes as argument a temporal
integer or real and yields as result a temporal real given by the following
expression:

f ′(t) = lim
δ→0

f(t+ δ)− f(t)

δ
.

For example, Derivative(SalaryJohn) results in a temporal real with value 0 at
[2012-01-01, 2012-07-01) and [2012-10-01, 2013-01-01). The other operations
of this class will be described in the context of temporal spatial types later
in the chapter.

There are three basic temporal aggregation operations that take
as argument a temporal integer or real and return a real value. Integral
returns the area under the curve defined by the function, Duration returns the
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duration of the temporal extent on which the function is defined, and Length
returns the length of the curve defined by the function. These operations are
defined as follows:

• Integral:
∫
T
f(x) dx .

• Duration:
∫
T
dx .

• Length:

∫
T

√

1 +
(

dy
dx

)2

dx .

From these operations, other derived operations can be defined. These are
prefixed with a 'T' (temporal) in order to distinguish them from the usual
aggregation operations generalized to temporal types, which we discuss
below.

• TAvg: Integral/Duration.

• TVariance:
∫
T

(f(x)−TAvg)2

Duration dx .

• TStDev:
√
TVariance.

For example, the operation TAvg computes the weighted average of a
temporal value, taking into account the duration in which the function
takes a value. In our example, TAvg(SalaryJohn) will yield 23.25, given that
John had a salary of 20 during 182 days and a salary of 30 during 92
days. Further, TVariance and TStDev compute the variance and the standard
deviation of a temporal type. Finally, TMin and TMax return, respectively,
the minimum and maximum value taken by the function. These are obtained
by Min(RangeValues(·)) and Max(RangeValues(·)) where Min and Max are the
classic operations over numeric values.

The generalization of the operations on nontemporal types to temporal
types is called lifting. Lifting an operation over nontemporal types replaces
any of its argument types by the respective temporal type and returns a
temporal type. As an example, the less than (<) operation has lifted versions
where one or both of its arguments can be temporal types and the result is a
temporal Boolean. Intuitively, the semantics of such lifted operations is that
the result is computed at each instant using the nonlifted operation.

Several definitions of an operation may be applied when combining two
temporal types defined on different temporal extents. A first solution could
be that the result is defined in the intersection of both extents and undefined
elsewhere. Another solution could be that the result is defined on the union
of the two extents, and a default value (like 0, for the addition) is used for
the extents that belong to only one temporal type. For the lifted operations,
we assume that the result is defined in the intersection of both extents.

Analogously, aggregation operations can also be lifted. For example, a lifted
Avg operation combines a set of temporal reals and results in a new temporal
real where the average is computed at each instant. As an example, given the
two temporal values above, Avg({SalaryJohn, SalaryMary}) gives as result a
temporal real whose graphical representation is given in Fig. 12.2.
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Fig. 12.2 Graphical representation of the temporal average

12.2.1 Temporal Spatial Types

All operations for temporal types discussed so far are also valid for spatial
types. For example, a value of type temporal(point), which can represent the
trajectory of a truck, is a continuous function f : instant→ point.

We will present now some of the specific operations of Table 12.1 for
the spatial case. We will use as example two temporal points RouteT1 and
RouteT2, which keep track of the delivery routes followed by two trucks T1
and T2 on the same day, say, January 10, 2012. A graphical representation
of the trajectories of the two trucks is given in Fig. 12.3. We can see, for
instance, that truck T1 took 10min to go from point (0,0) to point (2,2),
and then it stopped for 15min at that point. In this example, we assume a
constant speed between pairs of points. Thus, truck T1 traveled a distance
of
√
8 = 2.83 in 10min, while truck T2 traveled a distance of

√
5 = 2.23 in

the first 10min and a distance of 1 in the following 5min.

1 2 3 X
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Fig. 12.3 Graphical representation of the trajectories of two trucks

The operation Trajectory projects temporal geometries into the plane (see
Table 12.1). The projection of a temporal point into the plane may consist of
points and lines, while the projection of a temporal line into the plane may
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consist of lines and regions. Finally, the projection of a temporal region into
the plane consists in a region. In our example, Trajectory(RouteT1) will result
in the leftmost line in Fig. 12.3, without any temporal information.

All operations over nontemporal spatial types are lifted to allow any of the
arguments to be a temporal type and return a temporal type. As an example,
the Distance function, which returns the Cartesian minimum distance between
two geometries, has lifted versions where one or both of its arguments can be
temporal points and the result is a temporal real. Intuitively, the semantics
of such lifted operations is that the result is computed at each instant using
the nonlifted operation. That means the lifted Distance function returns
the distance between two spatial objects at any given point in time. In
our example, Distance(RouteT1, RouteT2) returns a temporal real shown in
Fig. 12.4, where, for instance, the function has a value 1.5 at 8:10 and 1.41
at 8:15.

t

1

2

8:108:05 8:15 8:20

d

Fig. 12.4 Distance between the trajectories of the two trucks in Fig. 12.3

Topological operations can also be lifted. In this case, the semantics is
that the operation returns a temporal Boolean that computes the topological
relationship at each instant. For example, Intersects(RouteT1, RouteT2) will
return a temporal Boolean with value false during [8:05, 8:20] since the two
trucks were never at the same point at any instant of their route.

A common request is to ask whether two temporal points satisfy a topo-
logical relationship at a particular instant or at a particular time period. This
can be easily obtained by applying first the AtInstant or AtPeriod operations
and then by verifying the traditional topological relationship. For example,
we could ask if the two trucks T1 and T2 intersected each other at 8:30 with
the expression Intersects(AtInstant(RouteT1, 8:30), AtInstant(RouteT2, 8:30)).
Notice that here the Intersects operation applied is the nonlifted one. In our
example, the result returns false. However, note that the reason could be the
imprecision of the measures in time and/or space. One solution to this could
be to define a buffer in time and space. This can be stated as follows:

Intersects(Buffer(RouteT1, 0.6, 0:10), Buffer(RouteT2, 0.6, 0:10))
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The term Buffer(RouteT1, 0.6, 0:10) defines an elliptic cylinder, or cylindroid,
around the trajectory of the truck, with a half-axis of 0.6 over the spatial
dimension and a half-axis of 10min over the temporal dimension. In this
case, the initial points of the trajectories RouteT1 and RouteT2 will satisfy
the query, since they are at distance 1; that means two circles with radius
0.6 and with centers, respectively, in point (0,0) at 8:00 and in point (1,0)
at 8:05 have non-null intersection if the time tolerance is 10min. The same
occurs with the ending points of both trajectories.

As we have seen, aggregation operations can also be lifted. For example,
Union(RouteT1, RouteT2) will result in a single temporal geometry composed
of the two lines in Fig. 12.3.

We define four operations for computing the rate of change for points.
Operation Speed yields the usual concept of speed of a temporal point at any
instant as a temporal real, defined as follows:

f ′(t) = lim
δ→0

fdistance(f(t+ δ), f(t))

δ
.

Operation Direction returns the direction of the movement, that is, the angle
between the x-axis and the tangent to the trajectory of the moving point.
Operation Turn yields the change of direction at any instant, defined as
follows:

f ′(t) = lim
δ→0

fdirection(f(t+ δ), f(t))

δ
.

Finally, Derivative returns the derivative of the movement as a temporal real.
We gave the definition of Derivative in the previous section. Note that we
can get the acceleration of a temporal point P by Derivative(Speed(P)). For
example:

• Speed(RouteT1) yields a temporal real with values 16.9 at [8:00, 8:10] and
0 at [8:10, 8:25].

• Direction(RouteT1) yields a temporal real with value 45 at [8:00, 8:10].
• Turn(RouteT1) yields a temporal real with value 0 at [8:00, 8:10].
• Derivative(RouteT1) yields a temporal real with value 1 at [8:00, 8:10].

Notice that during the stop of the truck, the direction and turn are undefined.

12.2.2 Temporal Field Types

Temporal fields represent phenomena that vary both on time and space. As
shown in Fig. 12.5a, a temporal field can be conceptualized as a function
that assigns a value to each point of a spatiotemporal space. Temporal fields
are obtained by composing the temporal and field constructors. For example,
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Fig. 12.5 Three possible ways to conceptualize temporal fields

a value of type temporal(field(real)), which defines a function f : instant →
(point → real), can be used to represent temperature, which varies in
time and space. Notice that the types temporal(field(real)) (Fig. 12.5b) and
field(temporal(real)) (Fig. 12.5c) are equivalent, that is, they associate a real
value to a point in a spatiotemporal space.

All operations defined for temporal types apply for temporal fields,
although some of them must be redefined, as we will see next. Suppose that
Temperature is a temporal field defined over Belgium and covering the period
[2010-01-01, 2012-12-31]. DefTime(Temperature) yields the period above, and
RangeValues(Temperature) yields the range defined by the minimum and max-
imum temperature at all instants in the period above and all points located
in Belgium. Similarly, AtInstant(Temperature, 2011-01-01 08:00) yields a non-
temporal field corresponding to the temperature at that particular instant,
while AtPeriod(Temperature, [2012-04-01, 2012-04-03]) returns a temporal
field projected over the given interval. Finally, InitialInstant(Temperature) and
InitialValue(Temperature) return the first instant for which a temperature is
defined, along with the nontemporal field corresponding to that instant.

We have seen that the operations AtMin and AtMax reduce the function
defining a temporal value to the instants when its value is minimal or
maximal, respectively. These operations have as argument a temporal value
and return a temporal value. As temporal fields vary both on space and time,
two versions of these operations must be considered, depending on whether
the operation is applied instant by instant or point by point. For example,
AtMin t applied to a temporal(field(real)) (see Fig. 12.5b) operates instant by
instant and applies the operation AtMin to the field of reals valid at that
instant, thus restricting it to the points in space where its value is minimum.
On the other hand, AtMin s applied to a field(temporal(real)) (see Fig. 12.5c)
operates point by point and applies the operation AtMin to the temporal
real valid at that point, thus restricting it to the instants where its value is
minimum.

Similarly, lifted aggregation operations must be renamed to differentiate
those that operate on space or on time. For example, Sum s and Sum t
correspond to the Sum operation lifted in space and in time, respectively.
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Thus, given a set of temporal fields ti representing the number of trucks
of type i that are present at a location in space at a particular instant,
Sum s({ti}) will result in a temporal field t obtained by applying the
operation Sum t to each point in space, since each point in space defines a
temporal real. Similarly, Sum t({ti}) will result in a temporal field t obtained
by applying the operation Sum s to each instant, since each instant defines a
field of reals.

Other operations take a temporal field and return either a nontemporal
field or a temporal value. This is performed by the global aggregation
operations. Suppose we want a nontemporal field giving at each point in
space the minimum temperature value at that point ever. For this, we
apply the FMin operation that we have seen in Chap. 11. At each point,
this operation applies the TMin operation to the temporal real valid at that
point yielding a real value. As a result, we obtain a value of type field(real).
Analogously, suppose we want a temporal real giving at each instant the
minimum temperature value at any point in space. For this, we apply the
TMin operation discussed earlier, which at each instant applies the F Min to
the field of reals valid at that instant yielding a real value. As a result, we
obtain a value of type temporal(real).

In addition, new spatiotemporal operations have to be defined. For
example, operation AtTGeometry restricts the field to a given subset of
the spatiotemporal cube defined by a temporal spatial value. In particular,
projecting a temporal field to a temporal point will keep only the points in the
field that belong to the moving track of the point, that is, a three-dimensional
line in the cube. For example, AtTGeometry(Temperature, RouteT1) results
in a field defining the temperature during the trajectory of the truck.

12.3 Implementation of Temporal Types in PostGIS

Current DBMSs do not provide support for temporal types. Some prototypes
provide this support; the most prominent one is Secondo, a database system
designed at the FernUniversität in Hagen. Secondo can handle moving
objects, that is, continuously changing geometries. In this section, we show
a possible implementation in PostgreSQL/PostGIS of the temporal types
we presented in Sect. 12.2. Our implementation is based on the approach
followed by Secondo. Nevertheless, the reader should be aware that such
temporal types are not yet supported by PostgreSQL/PostGIS. The authors
of this book have explored this extension in a prototypical way, based on
a preliminary temporal extension of PostgreSQL,2 which defines a PERIOD
data type and its associated operations.

2Available at http://temporal.projects.pgfoundry.org/

http://temporal.projects.pgfoundry.org/
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It is worth noting that temporal support has been introduced in the
SQL:2011 standard and has been implemented in DB2, Oracle, and Teradata.
However, such functionality adds temporality to tables, thus associating a
period to each row. However, to cope with the needs of trajectory data
warehousing, we need an alternative approach which adds temporality to
attributes, thus associating a period to an attribute value.

We have seen that, conceptually, a temporal type is a function from the
time domain to a base or spatial type. Thus, for each data type D, where
D is a base type (e.g., INTEGER, REAL, or BOOLEAN) or a spatial type
(e.g., GEOMETRY or its subtypes), there are associated temporal types
T D(P,Q), where P is either PERIOD or INSTANT and Q is either DATE,
TIME, or TIMESTAMP. In other words, P states whether the values are
recorded by intervals or by instants, whereas Q represents the granularity
at which data are represented in the period or instant P. For example, a type
T INTEGER(PERIOD,DATE) can be used to represent the evolution of the
salaries of employees shown in Fig. 12.1. On the other hand, a value of a type
T FLOAT(INSTANT,TIME) can represent, for example, that the temperature
was 15.5◦C at 8:00 a.m. and was 17◦C at 9:00 a.m. In this case, we can use
(linear) interpolation functions to compute the value of temperature at any
time that is not explicitly recorded. As we have said, the time dimension is
assumed to represent valid time.

Temporal types are partial functions that may be undefined for certain
periods of time. We use the value NULL as undefined value. For example, in
Fig. 12.1, the salary of John is NULL between 2012-07-01 and 2012-09-30.

Consider, for example, the following table definition:

CREATE TABLE Employees (
SSN INTEGER PRIMARY KEY,
FirstName VARCHAR(30),
LastName VARCHAR(30),
BirthDate DATE,
SalaryHist T INTEGER(PERIOD,DATE) )

A tuple can be inserted in this table as follows:

INSERT INTO Employee VALUES ( 123456789, 'John', 'Smith', '1980-01-01',
T INTEGER( 20 PERIOD('2012-01-01', '2012-07-01'),

30 PERIOD('2012-10-01', '2013-01-01') ) )

The value of SalaryHist above corresponds to the uppermost value shown in
Fig. 12.1. For defining values of temporal types, we use the PERIOD data
type defined in the temporal extension of PostgreSQL mentioned above. The
periods above define closed-open intervals. Thus, for instance, the value 20
covers the period starting on 2012-01-01 up until the day before 2012-07-01.
Note that instead of a continuous function, we use two temporal attributes,
FromDate and ToDate, to indicate the validity interval of each tuple. Note
also that we use closed-open intervals.
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We show next how some of the operations for temporal types defined in
Table 12.1 can be expressed extending PostgreSQL/PostGIS. For example,
given the above table with the single tuple inserted, the query

SELECT DefTime(E.SalaryHist), RangeValues(E.SalaryHist)
FROM Employee E

returns, respectively, the array of periods {PERIOD('2012-01-01', '2012-07-
01'), PERIOD('2012-10-01', '2013-01-01')} and the array of integers {20,30}.
Here, we use the ARRAY type provided by PostgreSQL. Similarly, the query

SELECT AtInstant(E.SalaryHist, '2012-03-15'), AtInstant(E.SalaryHist, '2012-07-15'),
FROM Employee E

will return, respectively, the values 20 and NULL, because the salary of the
employee is undefined on 2012-07-15. The following query

SELECT AtPeriod(E.SalaryHist, PERIOD('2012-04-01', '2012-11-01'))
FROM Employee E

returns

T INTEGER( 20 PERIOD('2012-04-01', '2012-07-01'),
30 PERIOD('2012-10-01', '2012-11-01') )

where the periods have been projected to the intervals given in the query.
Furthermore, the query

SELECT AtMin(E.SalaryHist), AtMax(E.SalaryHist)
FROM Employee E

will give as result

T INTEGER(20 PERIOD('2012-01-01', '2012-07-01')
T INTEGER(30 PERIOD('2012-10-01', '2013-01-01')

that is, the minimum and maximum values and the time intervals when they
occurred.

We show next the usage of lifted operations. Recall that for these
operations, the semantics is such that the nonlifted operation is applied at
each instant. For example, assume a second tuple is inserted in table Employee
as follows:

INSERT INTO Employee VALUES ( T2666, 'Mary', 'Warner', '1980-01-01',
T INTEGER( 60 PERIOD('2012-04-01', '2013-03-01') ) )

The value of SalaryHist in the tuple above corresponds to the lowermost value
shown in Fig. 12.1. Then, the query

SELECT E1.SalaryHist < E2.SalaryHist
FROM Employee E1, Employee E2
WHERE E1.FirstName = 'John' and E2.FirstName = 'Mary'

results in the value
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T BOOLEAN( 'True' PERIOD('2012-04-01', '2012-07-01')
'True' PERIOD('2012-10-01', '2013-01-01') )

Notice that the comparison is performed only on the time instants that are
shared by the two temporal values. Similarly, the query

SELECT AVG(E.SalaryHist)
FROM Employee E

will result in the value

T REAL( 20 PERIOD('2012-01-01', '2013-04-01')
40 PERIOD('2012-04-01', '2012-10-01')
60 PERIOD('2012-10-01', '2012-10-01')
45 PERIOD('2012-10-01', '2013-01-01')
60 PERIOD('2013-01-01', '2013-04-01') )

A graphical representation of this result was shown in Fig. 12.2.
In order to show the operations for spatial types, we will use the following

table, which keeps track of the delivery routes followed by trucks:

CREATE TABLE Delivery (
TruckId CHAR(6) PRIMARY KEY,
DeliveryDate DATE,
Route T POINT(INSTANT,TIMESTAMP) )

We insert now two tuples in this table, containing information of two
deliveries performed by two trucks T1 and T2 on the same day, January
10, 2012:

INSERT INTO Delivery VALUES ( 'T1', '2012-01-10',
T POINT( Point(0 0) '08:00', Point(2 2) '08:10', Point(2 2) '08:25' ) )

INSERT INTO Delivery VALUES ( 'T2', '2012-01-10',
T POINT( Point(1 0) '08:05', Point(3 1) '08:15', Point(3 2) '08:20' ) )

A graphical representation of the trajectories of the two trucks was shown
in Fig. 12.3. As we are working with continuous trajectories, we assume
linear interpolation between any two consecutive points and a constant speed
between pairs of points.

We show next examples of lifted spatial operations. The following query
computes the distance of the two trucks at every instant:

SELECT ST Distance(D1.Route, D2.Route)
FROM Delivery D1, Delivery D2
WHERE D1.TruckId = T1 AND D2.TruckId = T2

This query returns

T REAL( 1 '08:05', 1.5 '08:10', 1.41 '08:25', 1 '08:20' )

whose graphical representation was given in Fig. 12.4. Similarly, the following
query computes a buffer of 0.6 km and 10min around the trajectories:
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SELECT ST Buffer(Route, 0.6, 0:10)
FROM Delivery

The result is composed of spatiotemporal cylindroids around the trajectories
of the trucks. As we have seen in Sect. 12.2, we can use this operation
combined with the lifted intersection topological operation for testing
whether the routes of the two trucks intersect, as follows:

SELECT ST Intersects(ST Buffer(D1.Route, 0.6, 0:10),
ST Buffer(D2.Route, 0.6, 0:10))

FROM Delivery D1, Delivery D2
WHERE D1.TruckId = T1 AND D2.TruckId = T2

Finally, the following query computes the union of two moving points:

SELECT ST Union(D1.Route, D2.Route)
FROM Delivery D1, Delivery D2
WHERE D1.TruckId = T1 AND D2.TruckId = T2

The result of the query is given next:

T MULTIPOINT(
( Point(0 0) '08:00', Point(2 2) '08:10', Point(2 2) '08:25' )
( Point(1 0) '08:05', Point(3 1) '08:15', Point(3 2) '08:20' ) )

For implementing temporal fields, we use temporal rasters defined by the
type T RASTER(P,Q), where P and Q are defined as above. We give next an
example that combines geometries and rasters. For this, we create a table
LandPlot describing parcels of land as follows:

CREATE TABLE LandPlot (
Id INT PRIMARY KEY,
Geom GEOMETRY(POLYGON),
SoilType RASTER,
Temp T RASTER(INSTANT,DATE) )

Here, the attribute Geom contains the geometry of the land plot, SoilType
contains a raster identifying the kinds of soil in the land plot, and Temp
contains a temporal raster reporting the temperatures in the land plot on a
daily basis. The query

SELECT L.Id, AtPeriod(L.Temp, PERIOD('2012-04-01', '2012-04-04'))
FROM LandPlot L

returns for each land plot a temporal raster with the temperature for each
of the 3 days in the interval. Analogously, the following query returns for
each land plot the first day at which the temperature is reported and the
nontemporal raster of that day:

SELECT L.Id, InitialInstant(L.Temp), InitialValue(L.Temp)
FROM LandPlot L
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We can see that the operations are applied to temporal fields in the same
way as they are applied to other temporal data types. The following query
computes for each land plot a nontemporal raster reporting the average
temperature during March 2012 at each point in the land plot:

SELECT L.Id, AVG S(AtPeriod(L.Temp, PERIOD('2012-03-01', '2012-04-01')),
FROM LandPlot L

Here, the temperature field is restricted to March 2012 with function
AtPeriod. Then, the AVG S is applied to the resulting temporal raster, which
obtains at each point in space the average temperature over the month.

Finally, the following query selects land plots with an average temperature
greater than 10◦C in March 2012:

SELECT L.Id
FROM LandPlot L
WHERE FAvg(Avg S(AtPeriod(T.Temp, PERIOD('2012-03-01', '2012-04-01')))) > 10

In the above query, the temperature field, restricted to March 2012 with the
AtPeriod operation, is aggregated with the Avg S operation resulting in a
nontemporal field reporting the average temperature over the month at each
point. Then, the field aggregation operation FAvg is applied to obtain the
average as a real value, which is then compared to 10.

12.4 The Northwind Trajectory Data Warehouse

We are now ready to study how a conventional data warehouse (or a spatial
data warehouse) can be extended with temporal types in order to support
the analysis of trajectory data. We will use the Northwind case study in order
to introduce the main concepts. Let us state the problem.

The Northwind company wants to build a trajectory data warehouse
that keeps track of the deliveries of goods to their customers in order to
optimize the shipping costs. Spatial data in the warehouse include the road
network, the delivery locations, and the geographical information related
to these locations (city, state, country, and area). Nonspatial data include
the characteristics of the trucks performing the trajectories. In addition, we
have the trajectories followed by the trucks, that means, moving object data.
Figure 12.6 shows the conceptual schema depicting the above scenario using
the MultiDim model, which we introduced in Chap. 4 and extended to support
spatial data in Chap. 11 (although any other conceptual model could be used
instead). In order to support spatiotemporal data, we extended the MultiDim
model with spatial types and temporal types.

We would like to analyze the deliveries by trucks, days, roads, and delivery
locations. Therefore, we need to split the trajectories into segments such
that each segment is related to a single truck, day, road, start location, and
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Fig. 12.6 Conceptual schema of the Northwind trajectory data warehouse

end location. Since we need to keep track of all segments belonging to a
single delivery, we define an additional dimension Delivery that groups the
data belonging to each trajectory as a whole.

As shown in the figure, there is a fact, Segment, which is related to five
dimensions: Truck, Time, Road, Delivery, and Location. The fact is related
to the Location dimension through two roles: StartLocation and EndLocation.
Dimensions are composed of levels and hierarchies. For example, the Road
dimension has only one level, and the Location dimension is composed of
five levels, with a one-to-many parent-child relationship defined between
each couple of levels. Levels have attributes that describe their instances
or members. For example, level Road has attributes RoadId, RoadName, and
Length. If a level or an attribute is spatial, it has an associated geometry
(e.g., point, line, or region) which is indicated by a pictogram, as studied
in the previous chapter. In our example, dimensions Road and Location are
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spatial, and a geometry is associated with each level in both dimensions. On
the other hand, StartLocation and EndLocation are spatial attributes of the
Delivery dimension, and their geometry is of type point.

There are seven measures attached to the fact Segment: Route, Distance,
Duration, AvgSpeed, Volume, Weight, and RiskLevel. The first one, Route,
keeps the movement track of the segment. It is a spatiotemporal measure
of type temporal point, as indicated by the symbol ‘t(•)’. The other measures
are numerical, where Distance, Duration, and AvgSpeed are computed from
Route.

Topological constraints are represented using pictograms in facts and
in parent-child relationships. For example, the topological constraint in the
fact Segment indicates that whenever a road and a location are related in
an instance of the relationship, they must overlap. Similarly, the topological
constraint in the hierarchy of dimension Location indicates that a location
is included in its parent City and similarly for the other parent-child
relationships in the hierarchy.

As stated before, the movement tracks within segments are kept in the
measure Route, while data describing the whole trajectories are kept in
dimension Delivery. Alternatively, we could have represented segments or even
whole deliveries in a dimension. Our model is flexible enough to represent
various situations, where trajectories can be aggregated along spatial and
alphanumeric dimensions or facts can be aggregated over a trajectory
dimension. The choice among these representations depends on the queries
to be addressed. Indeed, the complexity of the queries and their execution
time will depend on how much the information requested is precomputed in
measures, as data warehouses are optimized for aggregating measures along
dimensions. In other words, although it is possible to aggregate data from
dimensions, queries will be more elaborated to write and less efficient to
execute.

Finally, the schema in Fig. 12.6 includes several continuous fields. As
explained in Chap. 11, nontemporal fields are identified by the ‘f( )’ pic-
togram, while temporal ones are identified by the ‘f( ,    )’ pictogram. There
are four field attributes in the State level as follows. Elevation and LandUse
are nontemporal fields. The former could be used, for example, to analyze
the correlation between speed of trajectories and elevation (or slope), and the
latter to select trajectories starting in a residential area and finishing on an
industrial area. Further, there are two temporal fields Temp (temperature)
and Precip (precipitation). In addition, numerical measures can be calculated
from field data. For example, measure RiskLevel, which represents knowledge
from domain experts about the relative risk of the segments, can be computed
from the measure Route and the four fields. For example, a segment with high
speed in descending slopes, in residential areas, with frozen temperatures, or
with high precipitation will have high risk level. Fields can also be included
as measures in facts, although this is beyond the scope of this chapter.
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Fig. 12.7 An alternative segmentation of trajectories with respect to delivery zones

The data warehouse of Fig. 12.6 segments trajectories with respect to
days, roads, trucks, start locations, and end locations. An alternative schema,
shown in Fig. 12.7, segments trajectories with respect to the delivery zones in
which they occur. Notice that, as stated by the many-to-many relationship
between zones and cities, a delivery zone can span several cities, and a city
can be split in several delivery zones. Notice also that the time granularity
in Figs. 12.6 and 12.7 differs. In the former case, the granularity is day,
although we keep the movement track in the Routemeasure with a timestamp
granularity. In the latter case, we relate each segment with its initial and final
timestamps. The choice among the two alternative data warehouse schemas
depends on application requirements and the typical OLAP queries to be
addressed.

When trajectories are used as measures, the problem of aggregation
arises. In the examples of Figs. 12.6 and 12.7, we kept the movement track
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of the trajectory segments in a temporal point. Thus, we can aggregate
such segments along the different dimensions. Another use of trajectory
aggregation identifies “similar” trajectories and merges them in a class. This
aggregation may come together with an aggregate function, which may be the
COUNT function in the simplest case, although more complex ones may be
used. Thus, we can ask queries like “Total number of trajectories by class,” or
“List all the trajectories similar to the one followed by truck T1 on November
25, 2012.” The main problem consists in adopting an appropriate notion
of trajectory similarity, through the definition of a similarity measure,
for instance, a distance function. The simplest approach to define similarity
between two trajectories is viewing them as vectors and using the Euclidean
distance as similarity measure. The problem of this technique is that it cannot
be easily applied to trajectories having different length or sampling rate,
and it is not effective in the presence of noise in the data. A typical way
of aggregating trajectories is clustering them together, considering different
distance functions or other characteristics (e.g., same starting point, same
ending point, etc.). Discovering trajectories with the same pattern is another
way of aggregating trajectories.

Fig. 12.8 Extending the Northwind trajectory data warehouse with global fields

In Fig. 12.6, we associated the field types to the level State. This allows
a more efficient manipulation of fields when the focus of analysis is at the
state level. However, as we will see later, for some queries it is necessary to
keep the overall fields covering all the space of interest, without partitioning.
Figure 12.8 extends our example with such global fields. Thus, a global
temporal field such as Temperature can be seen as a spatiotemporal cube that
associates a real value to any given point in space and time. In this case, such
fields are related to facts or dimensions through spatial or spatiotemporal
operations.
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12.5 Querying the Northwind Trajectory Data
Warehouse in SQL

In order to address queries to the Northwind trajectory data warehouse, we
first translate the conceptual schema in Fig. 12.6 into a snowflake schema, as
shown in Fig. 12.9. To express our queries, we use the temporal types and
their associated operations as defined in Sect. 12.3.

Fig. 12.9 Relational representation of the Northwind trajectory data warehouse in
Fig. 12.6

We start with a conventional OLAP query.

Query 12.1. Total number of segments, by road, covered by Volvo trucks
in February 2012.
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SELECT R.RoadKey, COUNT(*)
FROM Segment S, Road R, Time T, Truck U
WHERE S.RoadKey = R.RoadKey AND S.TimeKey = T.TimeKey AND

S.TruckKey = U.TruckKey AND U.TruckBrand = 'Volvo' AND
T.Date >= '2012-02-01' AND T.Date < '2012-03-01'

GROUP BY RoadKey

This query addresses the fact table Segment and some of its associated
dimensions. The query does not involve temporal data types, not even
geometric characteristics of spatial dimensions. The query can be used to
identify the segments most frequently used by Northwind trucks.

We give next an example of an OLAP query involving the Delivery
dimension and two possible solutions for it.

Query 12.2. Average duration of deliveries that have one segment which
started in the city of Brussels in the last quarter of 2012.

SELECT AVG(D.TotalDuration)
FROM Delivery D
WHERE EXISTS (

SELECT *
FROM Segment S, StartLocation L, City C, Time T
WHERE S.DeliveryKey = D.DeliveryKey AND

S.StartLocationKey = L.LocationKey AND
L.CityKey = C.CityKey AND C.CityName = 'Brussels' AND
S.TimeKey = T.TimeKey AND T.Quarter = 'Q4 2012'

Here, for each instance of the Delivery dimension, the inner query verifies
that at least one segment of the delivery started in the city of Brussels and
occurred on the last quarter of 2012. Notice that the total duration of the
deliveries is precomputed in the Delivery dimension and therefore it is possible
to apply the function average to them. If the duration of the whole deliveries
must be calculated from the measure Duration of the fact table, then the
query would be written as follows:

WITH DeliveryTotal AS (
SELECT D.DeliveryKey, SUM(Duration) AS TotalDuration
FROM Delivery D, Segment S
WHERE D.DeliveryKey = S.DeliveryKey
GROUP BY D.DeliveryKey )

SELECT AVG(TotalDuration)
FROM DeliveryTotal D
WHERE EXISTS (

SELECT *
FROM Segment S, StartLocation L, City C, Time T
WHERE S.DeliveryKey = D.DeliveryKey AND

S.StartLocationKey = L.LocationKey AND
L.CityKey = C.CityKey AND C.CityName = 'Brussels' AND
S.TimeKey = T.TimeKey AND T.Quarter = 'Q4 2012'

In the version above, a temporary table DeliveryTotal computes the total
duration of a delivery by adding the duration of all its segments. Then, the
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average is computed as in the previous query. Note that this solution would
be used if the information of the deliveries is not precomputed in the Delivery
dimension table, that is, if the attribute TotalDuration is not present in such
table.

We consider now the spatial data types and their associated operations,
which we studied in Chap. 11. These kinds of queries are denoted SOLAP
queries. For example, the predicate ST Intersects can be used to test whether
two geometries intersect.

Query 12.3. Number of deliveries in the last quarter of 2012, for each road
that intersects Brussels.

SELECT RoadKey, COUNT(DISTINCT DeliveryKey) AS NoDeliveries
FROM Road R, Delivery D
WHERE EXISTS (

SELECT *
FROM City C
WHERE C.CityName = 'Brussels' AND

ST Intersects(R.RoadGeom,C.CityGeom) ) AND
EXISTS (
SELECT *
FROM Segment S, Time T
WHERE S.RoadKey = R.RoadKey AND

S.DeliveryKey = D.DeliveryKey AND
S.TimeKey = T.TimeKey AND T.Quarter = 'Q4 2012' )

GROUP BY RoadKey

The first inner query selects the roads that intersect the city of Brussels
using the ST Intersects predicate, which determines if a pair of geometries
intersect. The second inner query selects the deliveries that have a segment
that occurred on the road in the last quarter of 2012. Then, the outer query
groups for each road all the selected deliveries and then counts the number
of distinct ones.

Spatiotemporal OLAP accounts for the case when the spatial objects
evolve over time, that is, they involve temporal spatial types as introduced
above. As an example, the following query includes the Route measure, that
is, the movement track of a segment.

Query 12.4. For each road, give the geometry of the segments of the road
on which at least one delivery passed on May 1, 2012.

WITH SegmentTrajs AS (
SELECT S.SegmentKey, Trajectory(S.Route) AS Trajectory
FROM Segment S )

SELECT R.RoadKey, ST Union(S.Trajectory)
FROM Road R, SegmentTraj S, Time T
WHERE R.RoadKey = R.RoadKey AND S.TimeKey = T.TimeKey AND

T.Date = '2012-05-01' )
GROUP BY R.RoadKey
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In the definition of the temporary table SegmentTrajs, we suppose that there
is an operation Trajectory (see Table 12.1) that takes as argument a temporal
point and returns the line containing all the points traversed by the former.
Then, the query performs a spatial union on all the geometries thus obtained.
Notice that a function ST Union that acts as an aggregate function (e.g., as
COUNT) is not defined by the OGC, but it is available in PostGIS.

We next present another example of a spatiotemporal OLAP query.

Query 12.5. Number of deliveries that started in Brussels on May 1, 2012.

SELECT COUNT(D.DeliveryKey)
FROM Delivery D, City C
WHERE C.CityName = 'Brussels' AND

CONVERT(DATE, D.StartDateTime) = '2012-05-01' AND
ST Intersects(D.StartLocation,C.CityGeom)

Notice that since D.StartDateTime returns a timestamp, the CONVERT
function is applied for obtaining the corresponding day. The reader could
be asking herself/himself that this is actually not a spatiotemporal query.
This is, however, because the query takes advantage of the fact that the start
time and the start location of trajectories are precomputed in the Delivery
dimension. If this were not the case, the query would read

WITH DeliveryFull AS (
SELECT D. DeliveryKey, InitialValue(S.Route) AS StartLocation,

InitialInstant(S.Route) AS StartDateTime
FROM Delivery D, Segment S
WHERE D.DeliveryKey = S.DeliveryKey AND NOT EXISTS (

SELECT *
FROM Segment S1

S1.DeliveryKey = D.DeliveryKey AND
InitialInstant(S1.Route) < InitialInstant(S.Route) ) )

SELECT COUNT(D.DeliveryKey)
FROM DeliveryFull D, City C
WHERE C.CityName = 'Brussels' AND

CONVERT(DATE, D.StartDateTime) = '2012-05-01' AND
ST Intersects(D.StartLocation,C.CityGeom)

In the definition of the temporary table DeliveryFull, the functions InitialValue
and InitialValue return, respectively, the starting point and the starting
instant of the moving point geometry S.Route. The inner query of the
temporary table definition ensures that segment S is the first segment of
a delivery by verifying that its start time is the smallest among all those of
the segments composing the delivery. This is done with the help of function
InitialInstant. Finally, the query counts the deliveries that started in the city
of Brussels on May 1, 2012. Since attribute StartDateTime is a timestamp,
the CONVERT function is applied for obtaining the corresponding day.

Our next example query involves the LandUse field.
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Query 12.6. Average duration of the deliveries that started in a residential
area and ended in an industrial area on February 1, 2012.

SELECT D.TotalDuration
FROM Delivery D, Location L1, Location L2, City C1, City C2,

State S1, State S2
WHERE CONVERT(DATE,D.StartDateTime) = '2012-02-01' AND

CONVERT(DATE,D.EndDateTime) = '2012-02-01' AND
D.StartLocation = L1.LocationGeom AND
D.EndLocation = L2.LocationGeom AND
L1.CityKey = C1.CityKey AND L2.CityKey = C2.CityKey AND
C1.StateKey = S1.StateKey AND C2.StateKey = S2.StateKey AND
ST Intersects(D.StartLocation,At(S1.LandUse,'Residential')) AND
ST Intersects(D.EndLocation,At(S2.LandUse,'Industrial'))

Since it is supposed that attributes StartDateTime and EndDateTime are
of type timestamp, the function CONVERT is used for obtaining the
corresponding dates. Then, the query selects the members L1 and L2 of the
Location level corresponding to the start and end locations of the delivery,
and the subsequent joins obtain the correspond states. Further, the function
At (see Table 12.1) projects the land use fields of the corresponding states to
the values of type residential or industrial. Finally, the function ST Intersects
ensures that the start and end locations of the delivery are included in the
filtered rasters. Notice that, as is the case in PostGIS, the ST Intersects
predicate can compute not only if two geometries intersect but also if a
geometry and a raster intersect.

The above query involved the (partitioned) land use field in level State.
We could have used, instead, the global LandUse field in Fig. 12.8. In this
case, the query would be written as follows:

SELECT D.TotalDuration
FROM Delivery D, LandUse L
WHERE CONVERT(DATE,D.StartDateTime) = '2012-02-01' AND

CONVERT(DATE,D.EndDateTime) = '2012-02-01' AND
ST Intersects(D.StartLocation,At(L,'Residential')) AND
ST Intersects(D.EndLocation,At(L,'Industrial'))

In this case, we can see that it is more efficient to use the global field rather
than the partitioned field. However, there are cases that working the other
way round is more efficient.

Note that the query above does not involve temporal data since it does
not mention a temporal geometry such as measure Route nor a temporal field
such as Temperature. The next query involves both temporal attributes.

Query 12.7. Average speed and maximum temperature during the seg-
ment, for trajectory segments that occurred on February 1, 2012.

SELECT S.SegmentKey, S.AvgSpeed, TMax(AtMGeometry(E,S.Route))
FROM Segment S, Time T, Temperature E
WHERE S.TimeKey = T.TimeKey AND T.Date = '2012-02-01'
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In the query above, we use the global Temperature field shown in Fig. 12.8.
Otherwise, we would need to make the union of the fields in attribute Temp
of level State for all states traversed by the truck. Function AtMGeometry
projects the temporal field to the movement track of the segment, resulting
in a temporal real. In other words, the function computes the position of
the trajectory segment at each time instant, and then from the field valid at
that instant, it obtains the temperature. Finally, function TMax obtains the
maximum temperature value during the segment.

Our next example query involves field aggregation.

Query 12.8. Average temperature by month and by state.
Here, we need an auxiliary function that, given a month and a year, returns

the period composed of all the days of the month. The function, denoted
PeriodMonth, is defined as follows:

CREATE OR REPLACE FUNCTION PeriodMonth(Month int, Year int)
RETURNS PERIOD AS $PeriodMonth$

DECLARE
PerStart CHAR(10);
PerEnd CHAR(10);

BEGIN
PerStart = CAST($2 as CHAR(4)) || '-' || CAST($1 as CHAR(2)) || '-01';
IF $1 < 12 THEN

PerEnd = CAST($2 as CHAR(4)) || '-' || CAST($1+1 as CHAR(2)) || '-01';
ELSE

PerEnd = CAST($2+1 as CHAR(4)) || '-01-01'
END IF;
RETURN PERIOD(PerStart,PerEnd);

END;
$PeriodMonth$ LANGUAGE plpgsql;

Then, the query is as follows:

WITH Month AS (
SELECT DISTINCT MonthNo, Year
FROM Time T )

SELECT S.StateName, M.MonthNo, M.Year,
FAvg(Avg S(AtPeriod(S.Temp,PeriodMonth(M.MonthNo, M.Year))))

FROM State S, Month M

Here, it is supposed that the period of time covered by the time dimension
is the same as the one in which the temperature temporal field is defined. In
the query, a temporary table Month is defined in the WITH clause containing
all months of the Time dimension. The main query starts by combining each
state with each month. Then, the temperature field of the state is projected
to the corresponding month with function AtPeriod. Function Avg S is then
used to compute the average of the temperature values during the month
at each point in the state, resulting in a nontemporal field. Finally, function
FAvg obtains the average temperature over the nontemporal field, which is
a real.
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The next query combines a field and a trajectory.

Query 12.9. Deliveries that have driven along more than 50 km of roads at
more than 1,000m of altitude.

SELECT D.DeliveryNumber
FROM Delivery D
WHERE ( SELECT SUM(ST Length(DefSpace(AtGeometry(

At(T.Elevation,Range(1000,6000)), Trajectory(S.Route)))))
FROM Segment S, State T
WHERE S.DeliveryKey = D.DeliveryKey AND

ST Intersects(T.StateGeom,Trajectory(S.Route)) ) > 50

For each delivery, the inner query collects the composing segments and the
states traversed during the segment. This is done by verifying in the WHERE
clause that the geometry of the state and the trajectory of the route intersect.
Then, for each couple of segment and state, the elevation field of the state
is projected to the range of values between 1,000 and 6,000 (it is supposed
that the latter is the maximal value) with function At and then projected to
the trajectory of the route with function AtGeometry. The part of the route
at more than 1,000m is obtained by function DefSpace, and then the length
of this route is computed. The SUM aggregation operation is then used to
compute the sum of the lengths of all the obtained routes and finally the
outer query verifies that this sum is greater than 50.

The two next queries combine a temporal field and a trajectory.

Query 12.10. Deliveries that have driven along more 50 km on rainy
conditions during July 2013 in Belgium.

SELECT D.DeliveryNumber
FROM Delivery D
WHERE ( SELECT SUM(ST Length(DefSpace(AtGeometry(

AtPeriod(At(T.Precip,Range(1,100)),
PERIOD('2013-07-01','2013-08-01')), Trajectory(S.Route)))))

FROM Segment S, State T, Country C
WHERE S.DeliveryKey = D.DeliveryKey AND

T.CountryKey = C.CountryKey AND
C.CountryName = 'Belgium'
ST Intersects(T.StateGeom,Trajectory(S.Route)) ) > 50

In the above query, it is supposed that rainy conditions mean between 1mm
(moderate rain) and 100mm (extreme rain) per hour. For each delivery,
the inner query collects the composing segments and the states in Belgium
traversed during the segment. Then, for each couple of segment and state,
the precipitation field of the state is projected to the range of values between
1 and 100 with function At, then projected to the month of July 2013
with function AtPeriod, and then projected to the trajectory of the route
with function AtGeometry. The part of the route satisfying the conditions is
obtained by function DefSpace, and then the length of this route is computed.
The SUM operation is then used to add up the lengths of all the obtained
routes, and finally the outer query verifies that this sum is greater than 50.
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Query 12.11. For each delivery, give the total time when it has driven on
rainy conditions at more than 70 km/h.

SELECT D.DeliveryNumber, SUM(Duration(DefTime(AtPeriod(
AtMGeometry(At(T.Precip,Range(1,100),S.Route)),
DefTime(At(Speed(S.Route),Range(70,150)))))))

FROM Delivery D, Segment S, State T
WHERE S.DeliveryKey = D.DeliveryKey AND

ST Intersects(T.StateGeom,Trajectory(S.Route))
GROUP BY D.DeliveryNumber

For each delivery, the composing segments and the states traversed during
the segment are collected. Then, for each couple of segment and state, the
precipitation field of the state is projected to the range of values between 1
and 100 with function At, then projected to the moving point with function
AtMGeometry, and then projected to the period of time in which the speed
of the trajectory was between 70 and 150 km/h with function AtPeriod. The
function DefTime computes the time period during which the route satisfies
the conditions and then the duration of this period is computed. Finally, the
SUM operation is used to add up the durations of all the obtained periods.

12.6 Summary

We have discussed data warehousing techniques that applied to trajectory
data help to improve the decision-making process. For this, we first defined
temporal types, which capture the variation of a value across time. Applying
temporal types to spatial data leads to the notion of temporal spatial types,
which provide a conceptual view of trajectories. Finally, applying temporal
types to field data types produces spatiotemporal field data types, which
model temporal continuous fields. At the logical level, we studied how these
conceptual data types can be implemented in PostGIS. We presented a
concrete case extending the Northwind data warehouse with trajectory data
and show how to query this data warehouse using PostGIS extended with
temporal types of different kinds.

12.7 Bibliographic Notes

An overall perspective of the current state of the art in trajectory manage-
ment can be found in the books [173,240]. A state of the art in spatiotemporal
data warehousing, OLAP, and mining can be found in [70]. This chapter is
based on previous research work on spatiotemporal data warehousing and
continuous fields performed by the authors [212, 213].
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The data type system for temporal types follows the approach of [75].
The system Secondo developed by Güting et al. is described in [233]. An
SQL extension for spatiotemporal data is proposed in [223]. The view of
continuous fields as cubes was introduced in [69]. The GeoPKDD trajectory
data warehouse, its associated ETL process, and the double-counting problem
during aggregation are studied in [151]. A good discussion on trajectory
data warehouses is presented in [129, 161]. Analysis tools for trajectory data
warehouses can be found in [167]. A survey on spatiotemporal aggregation is
given in [222], while a state-of-the-art analysis on trajectory aggregation is
provided in [7].

12.8 Review Questions

12.1 What are moving objects? How are they different from spatial objects?
12.2 Give examples of different types of moving objects, and for each of

these types, illustrate a scenario in which the analysis of them is
important.

12.3 What is a trajectory?
12.4 Discuss different criteria that can be used to segment movement. How

do analysis requirements impact on this segmentation?
12.5 What is the difference between continuous and discrete trajectories?
12.6 Define the terms trajectory databases and trajectory data warehouses.

Mention the main differences between the two concepts.
12.7 What are temporal types? How are they constructed?
12.8 Define valid time and transaction time.
12.9 Give an example of a temporal base type, a temporal spatial type,

and a temporal field type.
12.10 Give examples of operations associated with each of the temporal

types in the previous question.
12.11 Explain why traditional operations must be lifted for temporal types.

Illustrate this with examples.
12.12 Give a hint about how temporal types can be implemented in a

platform such as PostGIS. How does this implementation differ from
the abstract definition of temporal types?

12.13 Discuss how temporal types can be added to a multidimensional
schema.

12.14 Discuss the implications of including trajectories as dimensions or
measures in a data warehouse.

12.15 What does the term similarity of trajectories mean? State why this
concept is important in data warehouse context.

12.16 Comment on two different ways to include field types in a multidi-
mensional schema. Give examples of queries that take advantage of
one representation over the other.
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12.9 Exercises

12.1 Consider the train company application described in Ex. 3.2 and whose
conceptual multidimensional schema was obtained in Ex. 4.3. Add
spatiotemporal data to this schema to transform it into a trajectory
data warehouse. You must analyze the dimensions, facts, and measures,
and define which of them can be extended with spatiotemporal features.

12.2 Transform the conceptual schema obtained as solution for Ex. 12.1
into a relational one. This schema should correspond to the relational
schema without spatiotemporal features obtained in Ex. 5.3.

12.3 Write in SQL the following queries on the relational schema obtained
in Ex. 12.2:

(a) Give the trip number, origin, and destination of trips that contain
segments with a duration of more than 3 h and whose length is
shorter than 200 km.

(b) Give the trip number, origin, and destination of trips that contain
at least two segments served by trains from different constructors.

(c) Give the trip number of trips that cross at least three cities in less
than 2 h.

(d) Give the total number of trips that cross at least two country
borders in less than 4 h.

(e) Give the average speed by train constructor. This should be
computed taking the sum of the durations and lengths of all
segments with the same constructor and obtaining the average. The
result must be ordered by average speed.

(f) For each possible number of total segments, give the number of
trips in each group and the average length, ordered by number of
segments. The result should look like (5, 50, 85; 4, 30, 75; . . . ),
meaning that there are 50 trips with 5 segments with an average
length of 85 km, 30 trips with 4 segments of average length of 75 km,
and so on.

(g) Give the trip number and origin and destination stations for trips
such that at least one segment of the trip runs for at least 100 km
within Germany.

12.4 Consider an application that monitors air quality measuring the values
of a set of pollutants (such as particulate matter or sulfur dioxide) at a
fixed number of stations. Measures are collected hourly or daily and are
expressed both in traditional units (like micrograms per cubic meter,
or parts per million) or using an air quality index, which in Europe has
5 levels using a scale from 0 (very low) to greater than 100 (very high).
Stations are typically located alongside roads and obviously located in
districts. Finally, there is also field data corresponding to land use and
temperature.
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Fig. 12.10 A multidimensional schema for analyzing air quality

The conceptual multidimensional schema of this application is given in
Fig. 12.10. Translate the schema into a logical schema.

12.5 Write in SQL the following queries on the relational schema obtained
in Ex. 12.4:

(a) For pollutants belonging to the organic category, give the maximum
value by station and month.

(b) For stations located on the Autostrada del Sole, give the average
values of lead registered in the last quarter of 2010.

(c) For stations located at a distance of at most 1 km of the Autostrada
del Sole, give the average values of lead registered in the last quarter
of 2010.

(d) For zones with at least 20% of industrial land use, give the average
value for carbon monoxide on February 1, 2012.

(e) Roads located in industrial zones, such that the average tempera-
ture in 2012 along the road was higher than 20◦C.

(f) Maximum temperatures by land use type in 2012.
(g) Maximum temperatures in 2012 in stations where organic pollu-

tants were over the limit more than five times.
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12.6 Consider the alternative Northwind trajectory data warehouse given
in Fig. 12.7, which is obtained by partitioning the deliveries into zones
instead of into roads. Translate the conceptual schema into a logical
one.

12.7 Write in SQL the following queries on the relational schema obtained
in Ex. 12.6:

(a) For each truck, give the total number of hours serviced per country.
(b) For each delivery and each zone, give the total time driven in the

zone and the average and maximum speed within the zone.
(c) List the deliveries that started and ended in the same zone and

have passed through a zone different from the former.
(d) Give the deliveries, together with their length, for deliveries that

started in a zone that belongs to two different states and ended in
a zone that belongs to exactly one state.

(e) Total number of deliveries that started in a zone that contains the
city of Brussels, drove for at least 2 h within France, and ended in
a zone belonging to Antwerp.

(f) For each delivery and each zone, give the total number of hours
that the delivery drove within the zone in rainy conditions and at
more than 20◦C.

(g) Trucks that drove in March 2012 in zones such that more than 50%
of their area is at more than 1,000m above sea level.



Chapter 13

New Data Warehouse Technologies

Big data refers to large collections of data that may be unstructured or
may grow so large and at such a high pace that it is difficult to manage
them with standard database systems or analysis tools. Examples of big data
include web logs, radio-frequency identification tags, sensor networks, and
social networks, among other ones. It has been reported as of the time of
writing this book that 7 and 10 terabytes of data are added and processed,
respectively, by Twitter and Facebook every day. Approximately 80% of these
data are unstructured, and 90% of them have been created in the last 2
years. Management and analysis of these massive amounts of data demand
new solutions that go beyond the traditional processes or software tools. All
of these have great implications on the way data warehousing practice is
going to be performed in the future. For instance, big data analytics requires
in many cases the data latency (the time elapsed between the moment
some data are collected and the action based on such data is taken) to
be dramatically reduced. Thus, near real-time data management techniques
must be developed. Also, external data sources like the semantic web may
need to be queried.

Technology has started to give answers to the challenges introduced by
big data: massive parallel processing, column-store databas systems, and in-
memory database systems (IMDBSs) are some of these answers that we will
discuss in this chapter. In Sect. 13.1, we present the MapReduce framework
and its most popular implementation, Apache Hadoop. In Sect. 13.2, we
study Hive and Pig Latin, two high-level languages that make it easier to
write the MapReduce code. We then study two architectures increasingly
used in data warehousing: column-store database systems (Sect. 13.3) and
IMDBSs (Sect. 13.4). To give a complete picture, in Sect. 13.5 we briefly
describe several database systems that exploit the architectures above. We
conclude the chapter with a study of real-time data warehousing (Sect. 13.6)
and the extraction, loading, and transformation paradigm (ELT), which
is challenging the traditional ETL process (Sect. 13.7). These new data
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warehousing paradigms are built on the technologies that we study in the
first part of the chapter.

13.1 MapReduce and Hadoop

MapReduce is a processing framework originally developed by Google to
perform web search on a very large number of commodity machines.
MapReduce can be implemented in many languages over many data formats.
It works on the concept of divide and conquer, breaking a task into smaller
chunks and processing them in parallel over a collection of identical machines
(a cluster). Data in each processor are typically stored in the file system,
although data in database management systems (DBMSs) are supported
by several extensions, like HadoopDB. A MapReduce program consists of
two phases, namely, Map and Reduce, which run in parallel in clustered
commodity servers as we will see below.

Among the many MapReduce implementations, the most popular one is
Hadoop, an open-source framework written in Java. It has the capability
to handle structured, unstructured, or semistructured data using commodity
hardware, dividing a task into parallel chunks of jobs and data. Hadoop
runs on its distributed file system (HDFS) but can also read and write
other file systems. Hadoop uses blocks (typically of 128MB) to store files
on the file system. One block of Hadoop may consist of many blocks of the
underlying operating system. Moreover, blocks can be replicated in several
different nodes. For example, block1 can be stored in node1 and node3, block2
in node2 and node4, and so on. There are two main pieces of software that
handle MapReduce jobs:

• The job tracker receives all the jobs from clients, schedules the Map
and Reduce tasks to appropriate task trackers, monitors failing tasks, and
reschedules them to different task tracker nodes. One job tracker exists in
each Hadoop cluster.

• The task trackers are the modules that execute the job. There are many
task trackers in a Hadoop cluster to manage parallelism in Map and Reduce
tasks. They continuously send messages to the job tracker to let the latter
know that they are alive and asking for a task.

The process and elements involved in a MapReduce job can be succinctly
described as follows:

• The MapReduce program tells a job client to run a MapReduce job. The
job client sends a message to a job tracker and gets an ID for the job.

• The job client copies the job resources (e.g., a .jar file) to the shared file
system, usually HDFS.

• The job client sends a request to the job tracker to start the job. The job
tracker computes the ways of splitting the data so that it can send each
chunk of job to a different mapper process to maximize throughput.
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Map Shuffle Reduce with
function MAX

p1, 100
p2, 200
p1, 200
p1, 300

...

(p1, 100)
(p2, 200)
(p1, 200)
(p1, 300)

...

p1, 300
p2, 200
p4, 200
p3, 300

...

(p1, 300)
(p2, 200)
(p4, 200)
(p3, 300)

...

p2, 200
p3, 500
p1, 200
p4, 100

...

(p2, 200)
(p3, 500)
(p1, 200)
(p4, 100)

...

(p1, [100, 200, 
        300, 300])
(p2, [200, 200])
(p3, [300])
(p4, [200, 300])
...

(p1, [200])
(p2, [200])
(p3, [500])
(p4, [100])
...

(p1, 200)
(p2, 200)
(p3, 500)
(p4, 100)
...

(p1, 300)
(p2, 200)
(p3, 300)
(p4, 300)
...

Fig. 13.1 A MapReduce process for products

• The job tracker sends a Map task or a Reduce task to a task tracker for
execution. The task trackers, based on the job ID, retrieve the job resources
from the distributed file system.

• Finally, the task trackers launch a Java virtual machine with a child process
which runs the Map or Reduce code.

Figure 13.1 shows an example of how MapReduce works. Consider that
orders in the Northwind database come from many sources, each from one
country.We are interested in analyzing product sales. The files in this example
contain pairs of the form (ProductKey, Quantity). In a Map phase, the input
is divided into a list of key-value pairs with the ProductKey as a key and
the Quantity as a value. This list is then sent as an input to the so-called
Shuffle phase in which it is sorted such that values with the same ProductKey
are put together. The output from the shuffle phase is a collection of tuples
of the form (key, list-of-values). This is forwarded into a Reduce phase where
many different operations like average, sum, or count can be performed. Since
the key-list pairs are independent from each other, they can be forwarded to
multiple task trackers for parallel execution.

The following table summarizes the format of the input and output of the
phases of a MapReduce process:

Input Output
Map (k1,v1) (List(k2,v2))

Shuffle (List(k2,v2)) (k2,List(v2))
Reduce (k2,List(v2)) (List(k3,v3))
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13.2 High-Level Languages for Hadoop

Using Hadoop is not easy for end users not familiar with MapReduce.
Users need to write MapReduce code even for simple tasks like counting
or averaging. A solution for this is to use high-level languages, which allow
programmers to work at a higher level of abstraction than in Java or
other lower-level languages supported by Hadoop. The most commonly used
such languages are Hive and Pig Latin. Both of them are translated into
MapReduce jobs, resulting in programs that are much smaller than the
equivalent Java ones. Besides, these languages can be extended, for example,
writing user-defined functions in Java. This can work the other way round:
programs written in high-level languages can be embedded in other languages
as well.

13.2.1 Hive

Hive, developed at Facebook, brings the concepts of tables, columns,
partitions, and SQL to the Hadoop architecture, keeping the extensibility
and flexibility of Hadoop. Hive organizes data in tables and partitions. Like
in relational systems, partitions can be defined according to time intervals,
allowing Hive to prune data while processing a query. In addition, Hive
provides an SQL dialect called Hive Query Language (HiveQL) for querying
data stored in a Hadoop cluster. HiveQL is not only a query language but also
a data definition and manipulation language. The data definition language
is used to create, alter, and delete databases, tables, views, functions, and
indexes. The data manipulation language is used to insert, update, and delete
at the table level; these operations are not supported at the row level.

The Hive data model includes primitive data types like BOOLEAN and
INT and collection data types as STRUCT, MAP, and ARRAY. Collection
data types allow, for example, many-to-many relationships to be represented,
avoiding foreign key relationships between tables. On the other hand, they
introduce data duplication and do not enforce referential integrity. As an
example, we show below a simplified representation of table Employees from
the Northwind database in Fig. 2.4, where the attributes composing a full
address are stored in a STRUCT and the Territories attribute is an ARRAY
that contains the set of territory names to which the employee is related.
Hive has no control over how data are stored and supports different file and
record formats. The table schema is applied while the data are read from
storage, implementing what is known as schema on read. The example below
includes the file format definition (TEXTFILE in this case) and the delimiter
characters needed to parse each record:

CREATE TABLE Employees (
EmployeeID INT, Name STRING,
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Address STRUCT<Street:STRING, City:STRING,
Region:STRING, PostalCode:STRING, Country:STRING>,

Territories ARRAY<STRING> )
ROW FORMAT
DELIMITED FIELDS TERMINATED BY ','
COLLECTION ITEMS TERMINATED BY '|'
LINES TERMINATED BY '\n'
STORED AS TEXTFILE;

HiveQL allows to implement the typical relational operations. The query
below performs a projection over the Name and City attributes:

SELECT Name, Address.City
FROM Employees;

A selection operation that obtains employees related to more than four
territories is expressed as follows:

SELECT *
FROM Employees
WHERE Size(Territories) > 4;

HiveQL supports different join operations, such as INNER JOIN, OUTER
JOIN, and LEFT SEMI JOIN, among others. Below, we join tables Employees
and Orders:

SELECT *
FROM Employees E JOIN Orders O ON E.EmployeeID = O.EmployeeID

HiveQL also supports other SQL-like clauses, for example, GROUP BY,
HAVING, and ORDER BY.

Hive also supports computations that go beyond SQL-like languages,
for example, generating machine learning models. For this, Hive provides
language constructs that allow users to plug in their own transformation
scripts in an SQL statement. This is done through the MAP, REDUCE,
TRANSFORM, DISTRIBUTE BY, SORT BY, and CLUSTER BY keywords
in the SQL extensions. As an example, we show how we can write a Hive
program to count the occurrences of products in an input file, like in the
example of Fig. 13.1. This is a variant of the typical word count example:

CREATE TABLE Products (Content STRING);
FROM (MAP Products.Content

USING 'tokenizerScript' AS ProductID, Count
FROM Products
CLUSTER BY ProductID) mapOut
REDUCE mapOut.ProductID, mapOut.Count
USING 'countScript' AS ProductID, Count;

The scripts tokenizerScript and countScript can be implemented in any
language, like Python or Java. The former script produces a tuple for each
new product in the input; the latter script counts the number of occurrences
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of each product. The CLUSTER BY clause tells Hive to distribute the Map
output (mapOut) to the reducers by hashing on ProductID.

13.2.2 Pig Latin

Pig is a high-level data flow language for querying data stored on HDFS. It
was developed at Yahoo! Research and then moved to the Apache Software
Foundation. There are three different ways to run Pig: (a) as a script, just by
passing the name of the script file to the Pig command; (b) using the grunt
command line; and (c) calling Pig from Java in its embedded form. A Pig
Latin program is a collection of statements, which can either be an operation
or a command. For example, the LOAD operation with a file name as an
argument loads data from a file. A command could be an HDFS command
used directly within Pig Latin, such as the ls command to list all files in the
current directory. The execution of a statement does not necessarily result in
a job running on the Hadoop cluster.

Pig does not require schema information, which makes it suitable for
unstructured data. If a schema of the data is available, Pig will make use of it,
both for error checking and optimization. However, if no schema is available,
Pig will still process the data making the best guesses it can. Pig data types
can be of two kinds. Scalar types are the usual data types, like INTEGER,
LONG, FLOAT, and CHARARRAY. On the other hand, three kinds of complex
types are supported in Pig, namely, TUPLE, BAG, and MAP, where the latter
is a set of key-value pairs. For example, depending on schema availability, we
can load employee data in several ways as follows:

Employees = LOAD 'Employees' AS (Name:chararray, City:chararray, Age:int);
Employees = LOAD 'Employees' AS (Name, City, Age);
Employees = LOAD 'Employees';

corresponding, respectively, to whether there is explicit schema and data
types, explicit schema without data types, or no schema.

As an example, we show how relational algebra operations can be
implemented in Pig, using the Northwind database of Fig. 2.4. We start
with the projection. Suppose we have loaded the Employees table into the
EmployeeLoad.txt text file:

EmployeeLoad = LOAD '/user/northwind/Employees.txt' AS
(EmployeeID, LastName, FirstName, Title, ... , PhotoPath);

EmployeeData = FOR EACH EmployeeLoad GENERATE
EmployeeID, LastName, FirstName;

DUMP EmployeeData;
STORE EmployeeData INTO '/home/results/projected';

Most of the steps are self-explanatory. The GENERATE instruction projects
the first three attributes in the file Employees.txt stored in the variable
EmployeeLoad.
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A selection would be coded as:

EmployeeThree = FILTER EmployeeLoad BY EmployeeID == '3';
DUMP EmployeeThree;

Aggregation is also supported in Pig through the GROUP BY operation.
Assume we have the EmployeeLoad relation already loaded, and we want to
compute aggregates from these data. For this, we have to group the rows into
buckets. Over these grouped data, we can then run the aggregate functions.
For example, we can group employee data by FirstName:

byFirstName = GROUP EmployeeLoad BY FirstName;

The result of this operation is a new relation with two columns: one named
group and the other one with the name of the original relation. The former
contains the schema of the group, in our case a column of CHARARRAY type
containing all first names in the original table. This column can be directly
accessed as group.FirstName. The second column has the name of the original
relation and contains a bag of all the rows in such relation that match the
corresponding group, that is, the rows corresponding to employees with the
same first name.

The results can be then processed using the classic aggregate functions,
for example, COUNT, and the FOREACH operator, which performs a loop
over each bag, as follows:

FirstNameCount = FOREACH byFirstName GENERATE
GROUP AS FirstName
COUNT(EmployeeLoad),

We conclude with an example of a join operation. We want to join the files
storing orders and employees. The join must be performed on two attributes,
the ID of the employee and the postal code, in order to obtain the employees
that handled orders shipped to the place where they live. Finally, a projection
is performed:

Employees = LOAD '/user/northwind/Employees.txt' AS
(EmployeeID, LastName, ... , PhotoPath);

Orders = LOAD './northwind/Orders.txt' AS
(OrderID, CustomerID, EmployeeID, ... , ShipCountry);

Joined = JOIN Employees BY (EmployeeID, PostalCode),
Orders BY (EmployeeID, ShipPostalCode);

Projected = FOR EACH Joined GENERATE
Employees::EmployeeID, Employees::PostalCode,
Orders::CustomerID;

DUMP Projected;

The first two statements load the two files into two variables, Employees and
Orders. The JOIN BY statement performs the join, similarly to SQL, and
GENERATE performs the projection.

The left and right outer joins are performed in a similar way, adding the
keywords LEFT OUTER and RIGHT OUTER, respectively, after the JOIN BY
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clause. For example, in the query above, we would write JOIN Employees BY
(EmployeeID, PostalCode) LEFT OUTER.

13.3 Column-Store Database Systems

So far, we have assumed DBMS architectures with the typical record-oriented
storage, where attributes of a record are placed contiguously in disk pages.
Thus, a disk page contains a certain number of database tuples, which at the
moment of being queried are accessed either sequentially or through some
of the indexes studied in Chap. 7. These architectures are appropriate for
OLTP systems. For systems oriented to ad hoc querying large amounts of
data (like in OLAP), other structures can do better, for example, column-
store databases, where the values for each column (or attribute) are stored
contiguously in the disk pages, such that a disk page will contain a number of
database columns. Thus, a database record is scattered into many different
disk pages. We study this architecture next.

Figure 13.2a shows the row-store organization, where records are stored in
disk pages. Figure 13.2b shows the column-store alternative. In most systems,
a page contains a single column. However, if a column does not fit in a page,
it will be stored in as many pages as needed. When evaluating a query over
a column-store architecture, a DBMS just needs to read the values of the
columns involved in the query, thus avoiding to load into memory irrelevant
attributes. For example, consider a typical data warehouse query over the
Northwind data warehouse as follows:

SELECT CustomerName, SUM(SalesAmount)
FROM Sales S, Customer C, Product P, Time T, Employee E
WHERE S.CustomerKey = C.CustomerKey AND

S.ProductKey = P.ProductKey AND S.TimeKey = T.TimeKey AND
S.EmployeeKey = E.EmployeeKey AND
P.Discontinued = 'Yes' AND T.Year= '2012' AND E.City = 'Berlin'

GROUP BY C.CustomerName

Depending on the query evaluation strategy, the query above may require
accessing all columns of all the tables in the FROM clause, totaling 51
columns. The number of columns can increase considerably in a real-world
enterprise data warehouse. However, only 12 of them are actually needed
to evaluate this query. Therefore, a row-oriented DBMS will read into main
memory a large number of columns that do not contribute to the result
and which will probably be pruned by a query optimizer. On the contrary,
a column-store database system will just look for the pages containing the
columns actually used in the query. Further, it is likely that the values for
E.City, T.Year, and P.Discontinued will fit in main memory.
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rows

Page 1

...

Page n

C1 C2 C3 C4 C5 C6 C7 C8 C1 C2 C3 C4 C5 C6 C7 C8

...

pages

C1 C2 C3 C4 C5 C6 C7 C8

a

b

Fig. 13.2 Row-store (a) versus column-store (b) database systems

To save space, column-store database systems normally store columns in
pages in a compressed form. For example, consider the portion of the Sales
fact table, shown in Fig. 13.3a. Figure 13.3b–d shows a possible encoding
scheme for the columns EmployeeKey, CustomerKey, and ProductKey, respec-
tively. Compression is based on run-length encoding, already discussed in
Chap. 7. For example, Fig. 13.3b shows a three-column table, with attributes
f, v, and l, where f indicates the first of l consecutive records with value v. For
instance, the first row in Fig. 13.3b tells that in column EmployeeKey there
is a run of length five that starts in the first position and whose value is e1.
Analogously, the next record tells that there are three e2 in positions 6–8.

Although efficient for the above scenarios, there are still many problems to
be solved by column-store database systems, for example, provide them with
capabilities to support updating in an efficient manner, a problem largely
solved by mature relational DBMSs (RDBMSs).
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RowId EmployeeKey CustomerKey ProductKey · · ·
1 e1 c1 p1 · · ·
2 e1 c1 p4 · · ·
3 e1 c2 p4 · · ·
4 e1 c2 p4 · · ·
5 e1 c2 p4 · · ·
6 e2 c2 p5 · · ·
7 e2 c2 p5 · · ·
8 e2 c2 p1 · · ·
9 e3 c3 p2 · · ·
10 e3 c3 p2 · · ·
· · · · · · · · · · · · · · ·

a

b c d
f v l
1 e1 5
6 e2 3
9 e3 2
... ... ...
... ... ...
... ... ...

f v l
1 c1 2
3 c2 6
9 c3 2
... ... ...
... ... ...
... ... ...

f v l
1 p1 1
2 p4 4
6 p5 2
8 p1 1
9 p2 2
... ... ...

Fig. 13.3 Storing columns of a fact table one table per column. (a) Fact table Sales.
(b) Column EmployeeKey. (c) Column CustomerKey. (d) Column ProductKey

13.4 In-Memory Database Systems

An IMDBS is a DBMS that stores data in main memory, opposite to
traditional database systems, which store data on persistent media such as
hard disks. Because working with data in memory is much faster than writing
to and reading from a file system, IMDBSs can run applications orders of
magnitude faster. IMDBSs come in many flavors: they can be DBMSs that
only use main memory to load and execute real-time analytics, they can
be used as a cache for disk-based DBMSs, or they can be commercialized
as software–hardware licensed packages, called appliances, particularly for
business intelligence applications. In most cases, they are combined with
column-store technology.

The typical way in which traditional DBMSs operate is based on reading
data from disk to buffer pages located in main memory. When a query is
submitted, data are first fetched in these buffers, and, if not found, new data
are loaded from disk into main memory. If there is an update, the modified
page is marked and written back to disk. The process where disk-based
databases keep frequently accessed records in memory for faster access is
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called caching. Note, however, that caching only speeds up database reads,
while updates or writes must still be written through the cache to disk.
Therefore, the performance benefit only applies to a subset of database tasks.
In addition, managing the cache is itself a process that requires substantial
memory and CPU resources. An IMDBS reduces to a minimum these data
transfers, since data are mainly in memory. It follows that the optimization
objectives of disk-based database systems are opposed to those of an IMDBS.
Traditional DBMSs try to minimize input/output (I/O) using the cache,
consuming CPU cycles to maintain this cache. In addition, as we have seen,
they keep redundant data, for example, in index structures, to enable direct
access to records without the need to go down to the actual data. On the
contrary, an IMDBS is designed with the optimization goal of reducing both
memory consumption and CPU cycles.

Like traditional DBMSs, typical IMDBSs support the ACID properties,
namely, atomicity, consistency, isolation, and durability. The first three ones
are supported as in traditional DBMSs. Since the main memory is volatile,
durability is supported by transaction logging, in which snapshots of the
database are called periodically at certain time instants (called savepoints or
checkpoints, depending on the technology and the vendor) and are written
to nonvolatile media. If the system fails and must be restarted, the database
either rolls back to the last completed transaction or rolls forward to complete
any transaction that was in progress when the system failed. IMDBSs also
support durability by maintaining one or more copies of the database, which,
as in traditional systems, is called replication. Nonvolatile RAM provides
another means of in-memory database persistence.

Finally, disk-based storage can be applied selectively in an IMDBS. For
example, certain record types can be written to disk, while others are
managed entirely in memory. Functions specific for disk-based databases, such
as cache management, are applied only to records stored on disk, minimizing
the impact of these activities over performance and CPU demands.

Figure 13.4 depicts the typical data storage architecture of an IMDBS.1

The database is stored in main memory, and it is composed of three main
parts. The main store contains data stored in a column-oriented fashion.
For query optimization reasons, some products also store together groups
of columns that are usually accessed together. These are called combined
columns. The buffer store is a write-optimized data structure that holds
data that have not yet been moved to the main store. That means that a
query can need data from both the main store and the buffer. The special
data structure of the buffer normally requires more space per record than
the main store. Thus, data are periodically moved from the buffer to the
main store, a process that requires a merge operation. There are also data
structures used to support special features. Examples are inverted indexes

1This figure is inspired by the SAP HANA architecture (described later in the
chapter), although most IMDBSs follow a similar architecture.
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Fig. 13.4 A typical IMDBS architecture

for fast retrieval of low cardinality data, like primary key columns, or object
data guides (in the case of SAP), which allow complex data objects stored
as a hierarchy of elements to be reconstructed. Finally, although data in the
database are stored in main memory, to save memory space, IMDBSs also
store data persistently. This is done as follows. The most recent data are
kept in main memory, since these are the data most likely to be accessed
and/or updated. These data are called active. Opposite to this, passive
data are data not currently used by a business process, used mostly for
analytical purposes. Passive data are stored on nonvolatile memory, even
using traditional DBMSs. This supports so-called time-travel queries, which
allow the status of the database as of a certain point in time to be known.
Data partition between active and passive data is performed by data aging
algorithms. Nonvolatile memory is also used to guarantee consistency and
recovery under failure: data updates are written in a log file, and database
snapshots are kept in nonvolatile memory, to be read in case of failure. This
combination of main and nonvolatile memory is supposed to allow IMDBSs to
support OLTP transactions and OLAP analysis at the same time. However,
this capability is currently being questioned by researchers and practitioners.
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13.5 Representative Systems

We now comment on some representative systems that use column-store and
in-memory database technologies. This does not pretend to be an exhaustive
list and does not express any preference from the authors about any particular
vendor. We just aim at showing how the general architecture and ideas
presented above are implemented in real-world products. In this section, we
first introduce three examples of column-store database systems, namely,
Vertica, MonetDB, and MonetDB/X100. We then show three examples of
IMDBSs, namely, SAP HANA, Oracle TimesTen, and Oracle Exalytics. We
conclude with Microsoft’s approach based on column-store indexes called
xVelocity.

13.5.1 Vertica

Vertica2 is a distributed massively parallel relational DBMS, which is based
on the C-Store research project carried out around the year 2005. Although
Vertica supports the INSERT, UPDATE, and DELETE SQL operations, it is
mainly designed to support analytical workloads. Vertica has a hybrid in-
memory/on-disk architecture. This is the main difference with our general
architecture in Fig. 13.4, where the main store and buffer store reside in
memory and only passive data are stored on disk. Vertica groups data on disk
by column rather than by row, with the advantages already commented for
analytical queries. Further, data are compressed using different techniques,
not only run-length encoding.

Vertica organizes data into sorted subsets of the attributes of a table.
These are called projections. Normally, there is one large projection called a
super projection (which contains every column in the table) and many small
projections. Note that this can be considered analogous to the combined
columns in Fig. 13.4. Vertica also supports prejoin projections, although it
has been reported that actually they are not frequently used. Vertica has two
read- and write-optimized stores, which are somehow variants of the main
and buffer stores of Fig. 13.4. The write-optimized store (WOS) is an in-
memory structure which is optimized for data inserts, deletes, and updates.
Data in the WOS are uncompressed, unsorted, and segmented and could
be stored in a row- or column-oriented manner. This allows low latency for
fast real-time data analysis. The read-optimized store (ROS) is a disk-
based store where most of the data reside. Data in the ROS are stored
as sets of index-value pairs, called ROS containers. Each ROS container is
composed of two files per database column: one containing the column itself

2http://www.vertica.com/

http://www.vertica.com/
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and the other containing the position index. At the ROS, partitioning and
segmentation are applied to facilitate parallelism. The former, also called
intra-node partitioning, splits data horizontally, based on data values, for
example, by date intervals. Segmentation (also called internode partitioning)
splits data across nodes according to a hash key. When the WOS is full, data
are moved to the ROS by a moveout function. To save space in the ROS,
a mergeout function is applied (this is analogous to the merge operation in
Fig. 13.4).

Finally, although inserts, deletes, and updates are supported, Vertica
may not be appropriate for update-intensive applications, like heavy OLTP
workloads that, roughly speaking, exceeds 10% of the total load.

13.5.2 MonetDB

MonetDB3 is a column-store IMDBS developed at the Centrum Wiskunde
& Informatica (CWI)4 in the Netherlands. The main characteristics of
MonetDB are a columnar storage; a bulk query algebra, which allows fast
implementation on modern hardware; cache-conscious algorithms; and new
cost models, which account for the cost of memory access.

Usually, in RDBMS query processing, when executing a query plan we
typically need to scan a relation R and filter it using a condition φ. The
format of R is only known at query time; thus, an expression interpreter is
needed. The idea of MonetDB is based on the fact that the CPU is basically
used to analyze the query expression; thus, processing costs can be reduced
by optimizing CPU usage. To simplify query interpretation, the relational
algebra was replaced by a simpler algebra.

MonetDB also uses vertical partitioning, where each database column
is stored in a so-called binary association table (BAT). A BAT is a two-
column table where the left column is called the head (actually an object
identifier) and the right column the tail (the column value). The query
language of MonetDB is a column algebra called MIL (Monet Interpreter
Language). The parameters of the operators have a fixed format: they are
two-column tables or constants. The expression calculated by an operator is
also fixed, as well as the format of the result.

However, performance is not optimal since each operation consumes
materialized BATs and produces a materialized BAT. Therefore, on the
one hand, since it uses a column-at-a-time evaluation technique, MIL does
not have the problem of spending 90% of its query execution time in a
tuple-at-a-time interpretation overhead, like in traditional RDBMSs, because
calculations work on entire BATs, and the layout of these arrays is known at

3http://www.monetdb.org/
4http://www.cwi.nl/

http://www.monetdb.org/
http://www.cwi.nl/
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compile time. On the other hand, queries that contain complex calculations
over many tuples materialize an entire result column for each function in
the expression, even when they are not required in the query result, but just
as input to other functions in the expression. If the intermediate results are
small, materialization is not actually necessary and produces a large overhead.

13.5.3 MonetDB/X100

To solve the drawbacks of MonetDB, a new query processor, called X100,
was devised. Here, columns are fragmented vertically and compressed.
These fragments are efficiently processed using a technique called vectorized
processing, which operates over small vertical chunks of data items in the
cache rather than single records. X100 uses a variant of the relational algebra
as query language. The relational operations can process multiple columns
at the same time. The primitives of MonetDB/X100 algebra resemble the
ones in an extended relational algebra: Scan, Select, Project, Join, Aggr (for
aggregation), TopN, and Order. All operators, except for Order,TopN, and
Select, return a data flow with the same format as the input. A typical query
scans one column at a time, and then the column is passed to the query tree,
where the operators above are applied to the data flow.

Main
memory

Column data

Storage

Column buffer manager

CPU

Decompression

Query tree

X100 Execution 
Engine

Cache

Scan

DiskDisk Disk

Fig. 13.5 MonetDB/X100 architecture

Figure 13.5 depicts the general data storage architecture of Mon-
etDB/X100. All tables are stored in a vertically fragmented form. A storage
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manager called column buffer manager (ColumnBM) was developed. The
main difference with MonetDB is that the former stores each BAT in a
single contiguous file, while ColumnBM partitions those files in columns (or
chunks) and applies compression to optimize the usage of the CPU cache.
Compression and decompression are managed by the buffer manager. The
figure shows also the flow corresponding to each column, from disk until it is
scanned by the query processor and passed on to the query tree. Thus, instead
of single tuples, entire vectors of values flow upward in the tree. This is called
vectorized execution. As a consequence, materialization of intermediate
results as in MonetDB is not needed. Besides, the entire execution happens
within the CPU cache, since this is where the vectors scanned by the query
processor are taken from. As shown in Fig. 13.5, main memory is only used as
an I/O buffer managed by ColumnBM. This is called in-cache processing.

As occurs with many systems, a problem with vertical storage is an
increased update cost: a single row update or delete must perform one I/O
for each column. MonetDB/X100 avoids this by considering the vertical
fragments as objects that do not change. For this, updates are applied to data
in so-called delta structures (i.e., structures that store new data). A delete
is handled by adding the tuple identifier to a deletion list and an insert as
an append in separate delta columns. ColumnBM stores all delta columns
together. Thus, both operations only imply one I/O operation. Updates are
treated simply as a deletion followed by an insertion. When the column size
exceeds a threshold, data storage must be reorganized, which consists in
making the vertical storage up to date and the delta columns empty.

13.5.4 SAP HANA

The SAP approach to business intelligence, known as HANA,5 is based on
two main components:

1. The SAP HANA database (also called SAP IMDBS), a hybrid IMDBS
that combines row-based, column-based, and object-based technologies,
optimized for taking advantage of parallel processing.

2. The SAP HANA appliance (SAP HANA), used for analyzing large volumes
of data in real time without the need to materialize aggregations. It is a
combination of hardware and software delivered by SAP in cooperation
with hardware partners, like IBM.

The core of the SAP HANA database are two relational database engines.
The first one is a column-based engine, holding tables with large amounts of
data that can be aggregated in real time and used in analytical operations.
The second one is a row-based engine, optimized for row operations, such

5http://www.saphana.com

http://www.saphana.com
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as frequent inserts and updates. The latter has a lower compression rate
and lower query performance compared to the column-based engine. This
architecture allows mixed workloads to be supported in the same server, per-
forming complex analytical computations without the need of materializing
tables. Both relational engines support SQL and MDX. Calculations can be
performed in the database without moving the data into the application layer,
through an SQL script language that can be used to push down data-intensive
application logic into the database. Row or column storage can be selected at
the time a table is created but can be changed afterward. Both engines share
a common persistence layer (the nonvolatile data store in Fig. 13.4), where
page management and logging are supported like in traditional databases.

The data storage architecture is similar to the generic one depicted
in Fig. 13.4, with an optimized column-store area and a nonoptimized buffer
area to allow insertions and updates. Insertions, deletions, and updates are
handled in HANA following the notion of lifetime management of a data
record. A level L1 delta storage, organized as a row-oriented storage area, is
used for individual updates. Bulk updates bypass level L1 and are managed
at a level L2 delta storage, organized in compressed columns, although it
is less optimized than the main storage area. Finally, the main store is the
highly compressed in-memory column storage explained above. Typically,
records are moved during their life cycle from level L1, to level L2, and to
the main store.

Regarding partitioning, data are divided into subsets and stored in a
cluster of servers, conforming a distributed database. This approach is called
scale-out. An individual database table can be placed on different servers
within a cluster or can be split into several partitions, either horizontally (a
group of rows per partition) or vertically (a group of columns per partition),
with each partition residing in a separate server within the cluster.

Atomicity, consistency, and isolation are ACID properties that are
not affected by in-memory storage. However, as explained above, durability
cannot be met by just storing data in main memory since this is volatile
storage. To make data persistent, it must reside on nonvolatile storage such
as hard drives or flash devices. HANA divides the main memory into pages.
When a transaction changes data, the affected pages are marked and written
to nonvolatile storage at regular intervals. In addition, a database log captures
all changes made by transactions. Each committed transaction generates a
log entry that is written to nonvolatile storage, ensuring that all transactions
are permanent. SAP HANA stores changed pages at savepoints, which are
asynchronously written to persistent storage at regular intervals (by default,
every 5min). A transaction does not commit before the corresponding log
entry is written to persistent storage, to meet the durability requirement
(in traditional database management, this is called write-ahead log). After
a power failure, the database can be restarted from the savepoints like a
disk-based database: the database logs are applied to restore the changes
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that were not captured in the savepoints, ensuring that the database can be
restored in memory to the same state as before the failure.

Finally, compression is performed using data dictionaries. The idea is
that each attribute value in a table is replaced by an integer code and the
correspondence of codes and values is stored in a dictionary. For example, in
the City column of the Customer table, the value Berlin can be encoded as
‘1’, and the tuple (Berlin,1) will be stored in the dictionary. Thus, if needed,
the corresponding value (Berlin, in this case) will be accessed just once.
Therefore, data movement is reduced without imposing additional CPU load
for decompression. The compression factor achieved by this method is highly
dependent on the data being compressed. Attributes with few distinct values
compress well (e.g., if we have many customers from the same city), while
attributes with many distinct values do not benefit as much.

13.5.5 Oracle TimesTen

Oracle TimesTen6 is an in-memory RDBMS that also supports transaction
processing. TimesTen stores all its data in optimized data structures in
memory and includes query algorithms designed for in-memory processing.

TimesTen can be used as a stand-alone RDBMS or as an application-tier
cache that works together with traditional disk-based RDBMS, for example,
the Oracle database itself: existing applications over an Oracle database can
use TimesTen to cache a subset of the data to improve response time. In this
way, read and write operations can be performed on the cache tables using
SQL and PL/SQL with automatic persistence, transactional consistency, and
synchronization with the Oracle database. In addition, TimesTen can be used
to replicate an entire data warehouse if it fits entirely in memory.

Unlike in traditional DBMSs, where query optimizers are based on disk
input/output costs, namely, the number of disk accesses, the cost function
of the TimesTen optimizer is based on the cost of evaluating predicates.
TimesTen’s cache provides range, hash, and bitmap indexes and supports
typical join algorithms like nested-loop join and merge-join. Also, the
optimizer can create temporary indexes as needed and accepts hints from
the user, like in traditional databases.

Two key features of the TimesTen data storage architecture are the
in-memory database cache and the data aging algorithms. The in-memory
database cache (IMDB cache) creates a real-time updatable cache where a
subset of the tables are loaded. For instance, in the Northwind database, the
cache can be used to store recent orders, while data about customers can be
stored in a traditional Oracle database. Thus, the information that requires
real-time access is stored in the IMDB cache, while the information needed for

6http://www.oracle.com/us/products/database/timesten/overview/index.html

http://www.oracle.com/us/products/database/timesten/overview/index.html
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longer-term analysis, auditing, and archival is stored in the Oracle database.
This is analogous to the general architecture depicted in Fig. 13.4. Moreover,
the scenario above can be distributed. For example, the Northwind company
may have a centralized Oracle database and many applications running at
several application server nodes in various countries. To perform analysis of
orders and sales in near real time, we may install an IMDB cache database
at each node. On the contrary, the customer profiles do not need to be stored
at every node. When a node addresses a sales order, the customer’s profile is
uploaded from the most up-to-date location, which could be either a node or
the central database. When the transaction is finished, the customer’s profile
is updated and stored back into the central database. The IMDB cache can
also be used as a read-only cache, for example, to provide fast access to
auxiliary data structures, like lookup tables. On the other hand, data aging
is an operation that removes data that are no longer needed. There are two
general types of data aging algorithms: the ones that remove old data based
on a timestamp value and the ones that remove the least recently used data.

Like the other systems commented in this chapter, TimesTen uses
compression of tables at the column level. This mechanism provides
space reduction for tables by eliminating duplicate values within columns,
improving the performance of SQL queries that must perform full table scans.

Finally, TimesTen achieves durability in a similar way as SAP HANA,
that is, through transaction logging over a disk-based version of the database.
TimesTen maintains the disk-based version using a checkpoint operation
that occurs in the background, with low impact on database applications.
TimesTen also has a blocking checkpoint that does not require transaction
log files for recovery and must be initiated by the application. TimesTen uses
the transaction log to recover transactions under failure, undo transactions
that are rolled back, replicate changes to other TimesTen databases and/or
to Oracle tables, and enable applications to detect changes to tables.

In addition to the above, Oracle also commercializes an appliance called
Oracle Exalytics In-Memory Machine,7 similar to the SAP HANA
appliance studied in Sect. 13.5.4. Exalytics is composed of hardware, business
intelligence software, and an Oracle TimesTen IMDBS. The hardware consists
in a single server configured for in-memory analytics of business intelligence
workloads. Exalytics comes with the Oracle BI Foundation Suite and Essbase,
a multidimensional OLAP server enhanced with a more powerful MDX syntax
and a high-performance MDX query engine. Oracle Exalytics complements
the Oracle Exadata Database Machine, which supports high performance for
both OLAP and OLTP applications.

7http://www.oracle.com/us/solutions/ent-performance-bi/business-intelligence/
exalytics-bi-machine/overview/index.html

http://www.oracle.com/us/solutions/ent-performance-bi/business-intelligence/exalytics-bi-machine/overview/index.html
http://www.oracle.com/us/solutions/ent-performance-bi/business-intelligence/exalytics-bi-machine/overview/index.html
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13.5.6 SQL Server xVelocity

Microsoft’s approach to column-store technology differs from the ones
described above. Microsoft decided to keep SQL Server as its only database
product and to incorporate the column-store technology in the form of an
optional index. Microsoft SQL Server includes a collection of in-memory and
memory-optimized data management technologies denoted xVelocity.8 The
xVelocity in-memory analytics engine, formerly known as VertiPaq,
is an in-memory column-store engine for analytic queries, which uses the
four main techniques we discussed above: columnar storage, compression
techniques, in-memory caching, and highly parallel data scanning and
aggregation algorithms. The xVelocity engine works with the tabular models
of PowerPivot for Excel, SharePoint, and Analysis Services, but not with the
multidimensional and data mining tools of Analysis Services.

The xVelocity engine provides column-store indexes, which aim at
enhancing query processing in SQL Server data warehouses. Each column
is stored separately as in a column-store database. In addition, xVelocity
includes a vector-based query execution technology called batch processing
to further speed up query processing. Data are brought to a memory-
optimized cache on demand, although full in-memory query performance is
achieved when all data needed by a query is already in main memory. The
xVelocity column-store index groups and stores data for each column and
then joins all the columns to complete the whole index. The SQL Server
query processor can then take advantage of this kind of index to significantly
improve query execution time.

A key feature of column-store indexes is that they are built in into SQL
Server, which is a general-purpose row-store RDBMS, and the indexes can
be defined as any other one. Given the performance gain which this approach
achieves for many kinds of data warehouse queries, we can even get rid of the
need of building and maintaining summary tables. However, these features
come together with some limitations we discuss later.

The syntax for creating a column-store index was introduced in Chap. 7.
As an example, we index the columns of the Sales fact table in the Northwind
data warehouse as follows:

CREATE NONCLUSTERED COLUMNSTORE INDEX CSIdx Sales
ON Sales (ProductKey, EmployeeKey, CustomerKey);

Column-store indexes are organized as follows. The Sales fact table is
stored as groups of rows. Given the column-store index defined above, for each
row group and each column, a segment is built containing each column in a
group in compressed form. That means, in our example, if the table contains
ten groups, there will be thirty segments of compressed data. Each segment is

8http://msdn.microsoft.com/en-us/library/hh922900.aspx

http://msdn.microsoft.com/en-us/library/hh922900.aspx
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Fig. 13.6 Row batch query processing

stored in a BLOB (binary large object). There is also a segment directory
allowing to quickly find all segments of a given column. In addition, the
directory contains metadata, like number of rows, minimum and maximum
values, and so on.

The main element in batch processing is the row batch (see Fig. 13.6),
an object that contains about one thousand rows. Each column within the
batch is represented internally as a vector of fixed size elements. There is
an additional vector denoted qualifying rows bitmap vector used as follows.
For example, to evaluate a condition such as ProductKey < 1, we need to
scan the column ProductKey in the batch, perform the comparison, and,
for each qualifying element, set the corresponding bit in the qualifying
rows vector. Efficient vector-based algorithms reduce the CPU overhead of
database operations. It is reported that this reduction can be of up to forty
times compared with row-based processing methods.

It is worth remarking that SQL Server column-store indexes and column-
based query processing are optimized for typical queries in data warehouses
with a large fact table and small- to medium-sized dimension tables, following
a star schema configuration. Since these queries include a star join, selection
predicates over dimension attributes, and a final aggregation, they typically
return a small result set. However, when the result set is large (e.g., if data are
not aggregated or there is no join or filtering), performance may be poor since
batch processing is not applied, and the benefit from the column-store index
is just due to compression and the scanning of fewer columns. Performance
may decrease when (a) two large tables are joined so that they require large
hash tables that do not fit into memory and must be dumped to disk; (b)
many columns are returned, and thus most of the column-store index must be
retrieved; and (c) a join condition over a column-store indexed table includes
more than one column.

In SQL Server, a table over which a column-store index has been defined
cannot be updated. To overcome this problem, some ad hoc techniques can
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be applied. For example, we can drop the column-store index; perform the
required INSERT, DELETE, or UPDATE operations; and then rebuild the
column-store index. Of course, building the index on large tables can be
costly, and if this procedure has to be followed on a regular basis, it may not
be plausible. As another option, we can allocate data identified as static (or
rarely changing) into a main table with a column-store index defined over it.
Recent data, which are likely to change, can be stored into a separate table
with the same schema but which does not have a column-store index defined.
Then, we can apply the updates. Note that this requires rewriting a query
as two queries, one against each table, and then combining the two result
sets with UNION ALL. The updating technique above shows one of the trade-
offs of having column storage as an index in a row-oriented database: the ad
hoc updating procedures described are performed automatically in most of
the other products we described in this chapter. On the other hand, those
products are normally not appropriate for heavy transactional workloads.

13.6 Real-Time Data Warehouses

Many current data warehousing applications must handle large volumes of
concurrent requests while maintaining adequate query response time and
must scale up as the data volume and number of users grow. This is
quite different from the early days of data warehousing, when just a few
number of users accessed the data warehouse. Moreover, most of these
applications need to remain continuously available, without a refreshing
time window. These applications require a new approach to the extraction,
transformation, and loading (ETL) process studied in Chap. 8. Recall that
ETL processes periodically pull data from source systems to refresh the data
warehouse. This process is acceptable for many real-world data warehousing
applications. However, the new database technologies studied in this chapter
make nowadays possible to achieve real-time data warehouses, where there
are continuous data warehouse feeds from production systems, and at the
same time obtain consistent, reliable data analysis results.

As studied in this book, the life cycle of a data record in a business
intelligence environment starts with a business event taking place. ETL
processes then deliver the event record to the data warehouse. Finally,
analytical processing turns the data into information to help the decision-
making process, and a business decision leads to a corresponding action. To
approach real time, the time elapsed between the event and its consequent
action, called the data latency, needs to be minimized. Making rapid
decisions based on large volumes of data requires achieving low data latency,
sometimes at the expense of potential data inconsistency (e.g., late and/or
missing data) and specialized hardware. In the general case, it is the data
acquisition process that introduces most of the data latency.
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Note that data latency requirements differ between application scenarios.
For example, collaborative filtering, with queries such as “People who like
X also like Y,” requires a data freshness in the range of hours, while fraud
detection, for instance, in credit card usage, needs a data latency in the
order of minutes or seconds. However, most applications do not require these
stringent latency levels. In these cases, the common strategy in practice
consists just in increasing the frequency of ETL operations using so-called
mini-batch ETL processes, for example, loading data every 10min.

Several strategies have been devised to achieve real-time ETL for reducing
data latency. The simplest one, which requires the least effort in terms of
changes to existing architectures, is the one called near real-time ETL,
which simply increases the frequency of ETL processes. Most of the research
work in the field follows this approach. However, this is not enough when
data latency must be drastically reduced.

A classic solution to reduce data latency consists in defining real-time
partitions for fact tables. In this case, real-time and static data are stored
in separate tables. Real-time partitions are subject to special update and
query rules and must have the same schema as the fact tables. Ideally, they
must:

• Contain all updates occurred since the last refresh of the fact table.
• Have the same granularity as the fact table.
• Be lightly indexed in order to efficiently handle input data.
• Support high-performance querying.

Query tools should be able to distinguish between both kinds of tables and
know where to find data. That means these tools must formulate a query
over the static fact tables and the real-time partitions. This capability is not
always achieved by commercial tools, however. Note also that this technique
is orthogonal to the database technology used. Thus, real-time partitions
could be stored in traditional RDBMS, column-store database systems, or
IMDBSs.

There are three types of real-time partitions depending on their granular-
ity, which can be transaction, periodic snapshot, and accumulating snapshot
granularity. We explain these types next.

A transaction-granularity real-time partition contains one record for each
individual transaction in the source system since the beginning of the
recording period. The real-time partition has the same structure as its
underlying static fact table, but it just contains the transactions that have
occurred since the last data warehouse refresh. In addition, the real-time
partition should not be indexed in order to be always ready for loading.
Although the static fact tables are usually big and heavily indexed, real-time
partitions may fit in main memory, and thus, there is no need of indexing
them. As an example, let us consider a simplified version of the Sales fact
table below.
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TimeKey EmployeeKey CustomerKey ProductKey SalesAmount
t1 e1 c1 p1 100
t2 e2 c2 p1 150
t3 e1 c3 p3 210
t4 e2 c4 p4 80

Suppose that this table is refreshed once a day and that we need current
fact data. We show below a transaction-granularity real-time partition, called
Partition Sales, storing the transactions that occurred during the last day,
which have not been loaded into the fact table.

TimeKey EmployeeKey CustomerKey ProductKey SalesAmount
t5 e1 c1 p1 30
t6 e2 c2 p1 125
t7 e3 c3 p3 300

A query asking for total sales by employee and customer would need to
access both tables, as follows:

SELECT EmployeeKey, CustomerKey, SUM(SalesAmount)
FROM (SELECT EmployeeKey, CustomerKey,

SUM(SalesAmount) AS SalesAmount
FROM Employee E, Customer C, Sales S
WHERE E.EmployeeKey = S.EmployeeKey AND

C.CustomerKey = S.CustomerKey
GROUP BY EmployeeKey, CustomerKey
UNION
SELECT EmployeeKey, CustomerKey,

SUM(SalesAmount) AS SalesAmount
FROM Employee E, Customer C, Partition Sales S
WHERE E.EmployeeKey = S.EmployeeKey AND

C.CustomerKey = S.CustomerKey
GROUP BY EmployeeKey, CustomerKey) AS FactFull

GROUP BY FactFull.EmployeeKey, FactFull.CustomerKey

A periodic-snapshot real-time partition is related to a fact table with
coarser granularity (e.g., week). The real-time partition contains all trans-
actions of the current snapshot period (in this case, the current week).
Data are added continuously to this partition and summarized at the
granularity of the fact table until the period completes, thus maintaining
a rolling summarization of the data that has not yet been loaded into the
static fact table. Suppose that in the simplified Sales fact table above the
time granularity is week. As new orders arrive, we perform in the real-
time partition a rolling summarization of the measure SalesAmount for the
combination of employee, customer, product, and week. This means that the
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partition contains summarized data up to the current moment of the week.
When the week closes, the partition is loaded to the fact table.

Finally, accumulating snapshot real-time partitions are used for short
processes, like order handling. The real-time partition accumulates frequent
updates of facts, and the fact table is refreshed with the last version of these
facts. For example, suppose that in the Northwind case study the Sales fact
table is refreshed once a day. This table contains records about order lines,
and their data (e.g., the due date or the quantity) can change during a day.
These updates are performed on the real-time partition, which typically is
small and can fit in main memory. At the end of the day, the records in the
partition are loaded into the fact table.

There are several alternative approaches for achieving real-time data
warehouses, which make use of the real-time partitions studied above. One
of such approaches is called direct trickle feed, where new data from
operational sources are continuously fed into the data warehouse. This is
done by either inserting data in the fact tables or into separate real-time
partitions of the fact tables. A variant of this strategy, which addresses the
mixed workload problem (i.e., updates and queries over the same table),
is called trickle and flip. Here, data are continuously fed into staging
tables that are an exact copy of the warehouse tables. Periodically, feeding
is stopped, and the copy is swapped with the fact table, bringing the data
warehouse up to date. Another strategy called real-time data caching
avoids mixed workload problems: a real-time data cache consists in a
dedicated database server for loading, storing, and processing real-time data.
In-memory database technologies studied in this chapter could be used when
we have large volumes of real-time data (in the order of hundreds or thousands
of changes per second) or extremely fast query performance requirements. In
this case, real-time data are loaded into the cache as they arrive from the
source system. A drawback of this strategy is that, since the real-time and
historical data are separately stored, when a query involves both kinds of
data, the evaluation could be costly.

We have commented above that not all applications have the same latency
requirements. In many situations, part of the data must be loaded quickly
after arrival, while other parts can be loaded at regular intervals. However,
there are many situations where we would like data to be loaded when needed,
but not necessarily before that. Right-time data warehousing follows this
approach. Here, right time may vary from right now (i.e., real time) to several
minutes or hours, depending on the required data latency. The key idea is
that data are loaded when needed, avoiding the cost of providing real time
when it is not actually needed.

The RiTE (Right-Time ETL) system is a middleware aimed at achieving
right-time data warehousing. In RiTE, a data producer continuously inserts
data into a data warehouse in bulk fashion, and, at the same time, data
warehouse user queries get access to fresh data on demand. The main
component of the RiTE architecture is called the catalyst, a software module
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which provides intermediate storage in main memory for data warehouse
tables selected by the user. More in detail, a data consumer (transparently
to the user) tells the catalyst which rows from a table should be ready
for querying, defining a time period (e.g., “I need all data from at most
10 min ago”). Then, the catalyst requests the data to the producer, and
when data are received they are stored in main memory. These noncommited
and nonpersistent data thus become available to the consumer, who accesses
them through table functions. Other data are bulk loaded directly to the
data warehouse. Eventually, the data at the catalyst are committed and
moved to their final target, the physical data warehouse tables. Note that
in this scheme, only data needed in real time are queried from the memory
tables, while data with coarser latency can be queried directly from the data
warehouse, and all these happens transparently to the user.

Besides the catalyst, there are two modules: the producer and the
consumer. In the former, and also at every consumer, specialized database
drivers are located. The driver at the producer handles INSERT and COMMIT
operations. The consumer uses a specialized JDBC database driver that
registers and deregisters with the catalyst, indicating which rows from the
memory tables are used. Rows are fetched from the catalyst by using a
PostgreSQL table function (a stored procedure returning a set of rows).

13.7 Extraction, Loading, and Transformation

New paradigms are emerging in the data warehouse domain, many of them
sustained in the possibilities offered by the technologies studied in this
chapter. One of them, called the MAD analysis, promotes a change in the
way data analytics is being performed. This paradigm claims for a magnetic,
agile, and deep analysis. The term magnetic refers to the ability to “attract”
data sources. In the traditional data warehouse methodology studied in this
book, new data sources are not incorporated into the data warehouse until
they are carefully cleansed and integrated. In some sense, this approach is
said to “repel” new data sources. This may not be appropriate, for example,
when external and volatile data sources need to be considered, for example,
in a semantic web scenario that we will present in Chap. 14. In the MAD
approach, a data warehouse is required to be “magnetic”, that is, it should
attract all the data sources regardless their data quality. The term agile calls
for a data warehouse that, instead of a careful and detailed design, allows
analysts to rapidly and easily load and produce data. Finally, the term deep
refers to the use of modern data analysis techniques and statistical methods
that go beyond the typical OLAP operations. This amounts to incorporate
techniques like the ones studied in Chap. 9, which also requires large amounts
of data to be loaded into the warehouse. In addition to the above, we have
seen that many applications require real-time, near-real-time, or right-time
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Fig. 13.7 (a) Extraction, transformation, and loading (ETL) process. (b) Extrac-
tion, loading, and transformation (ELT) process

data warehousing. Further, the amount of operational data produced daily is
constantly increasing due, among other reasons, to business globalization and
the explosion of the number of transactions over the web. In this scenario,
it is likely that the time needed to refresh the data warehouse using the
traditional ETL process exceeds the allocated updating window.

The above discussion aims at explaining why some practitioners and
vendors are proposing a different data loading paradigm: the extraction,
loading, and transformation (ELT) process. We discuss this next.

Consider Fig. 13.7, which provides a detailed look of the data staging phase
in the back-end tier of the architecture depicted in Fig. 3.5. The figure shows
that during the ETL process, data are loaded from the sources into a staging
database, where the necessary data transformations occur, as described in
Chap. 8. After this process, the transformed data are loaded into the data
warehouse. The process guarantees that only data relevant to the solution will
be extracted and processed, potentially reducing development, extraction,
and processing overhead. This also, in some sense, simplifies the management
of data security and therefore the data administration overhead. On the other
hand, accounting just for relevant data implies that any future requirements
that may need data not included in the original design will need to be added to
the ETL routines. This may lead to important redevelopment tasks. Besides,
the use of third-party tools to implement ETL processes requires learning of
new scripting languages and processes.
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On the other hand, the new requirements discussed at the beginning of
this section led to the ELT paradigm, depicted in Fig. 13.7b. Here, data are
extracted from the data sources into the staging database using any available
data connectivity tool not just specialized ETL middleware. At this staging
database, integrity and business rule checks can be applied, and relevant
corrections can be made. After this, the source data are loaded into the
warehouse, which provides a validated off-line copy of the source data in
the data warehouse. Once in the warehouse, transformations are performed
to take the data to their target output format. We can see that while ETL
transformation happens at the ETL tool, ELT transformation happens at the
database. In this way, the extraction and loading processes can be isolated
from the transformation process, allowing the user to include data that may
be needed in the future. Even the whole data source could be loaded into the
warehouse. This, combined with the isolation of the transformation process,
means that future requirements can easily be incorporated into the warehouse
structure, minimizing the risk of a project. Further, the tools provided with
the database engine can be used for this process, reducing the need to
implement and learn specialized ETL tools.

We must keep in mind that ELT is an emerging paradigm that, although
promising, still needs to be developed further. This paradigm relies, in part, in
high-speed data loading, probably using large parallel DBMSs, for example,
taking advantage of technologies like MapReduce, studied in Sect. 13.1.

13.8 Summary

We have studied the changes that big data analytics requirements are
introducing in the data warehousing world and the answers that the academia
and the industry have devised for them. We presented the MapReduce
model and its most popular implementation, Hadoop. We also presented
two high-level query languages for Hadoop, namely, Pig Latin and HiveQL.
We also studied two database architectures that are gaining momentum
in data warehousing and business intelligence: column-store databases and
IMDBSs. We described the main characteristics of some of the database
systems based on these technologies: Vertica, MonetDB, SAP HANA,
Oracle TimesTen, and Microsoft xVelocity. Finally, we discussed two modern
paradigms increasingly used in data warehousing and business intelligence:
real-time data warehousing and ELT. Both paradigms are possible thanks to
the technologies studied in this chapter.
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13.9 Bibliographic Notes

There is a wide corpus of academic literature and industrial white papers
on the topics covered in this chapter. An interesting study about the new
requirements for data warehousing is given in [193]. The authors of this
book explore new challenges in data warehousing in [215], where also many
references can be found. The work by Dean et al. [36] gives a good description
of MapReduce. Hadoop is described, for example, in [226]. Hive is discussed
in [25, 201] and Pig Latin in [61]. A discussion on MapReduce and column-
store databases is provided in [195]. An example of the use of MapReduce
in the ETL process is given in [118]. C-Store, one of the first column-store
databases, is discussed in [194]. Its commercial version Vertica is studied
in [111]. MonetDB is reviewed in [89]. IMDBSs are studied in [164], where
SAP HANA is also discussed. Oracle TimesTen is described in [109]. There are
several works on real-time data warehousing and real-time ETL [21,185,220].
Real-time partitions are discussed in the books [102,103]. The notion of right-
time data warehousing is proposed in [200]. The ELT approach has been
introduced in a paper by Cohen et al. [33].

13.10 Review Questions

13.1 What is big data? How can we characterize this notion?
13.2 What are the challenges that big data poses to the future of data

warehousing?
13.3 Describe the main characteristics of the MapReduce paradigm.
13.4 Describe the main features of Hadoop.
13.5 What is Hive? What is Pig Latin? Compare Hive and Pig Latin

proposing dimensions for this comparison.
13.6 Explain the main characteristics of column-store databases.
13.7 How do column-store databases achieve better efficiency than row-

store databases in the case of data warehouses? Is this the case for
OLTP databases?

13.8 How do column-store database systems compress the data?
13.9 What are IMDBSs? Which kinds of them have we studied in this

chapter?
13.10 What are business intelligence appliances?
13.11 How do optimization techniques differ between IMDBSs and disk-

based database systems?
13.12 Describe a typical IMDBS architecture.
13.13 Describe similarities and differences between SAP HANA, MonetDB,

and Vertica.
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13.14 How do IMDBSs guarantee the ACID properties? Give an answer for
each property.

13.15 What is the main difference between the approach of SQL Server’s
xVelocity and the systems above?

13.16 What are real-time data warehouses? Explain the different alterna-
tives for modeling real-time fact tables.

13.17 How can we achieve real-time ETL? Do we always need real-time
ETL? Why? Explain.

13.18 Explain the concept of right-time data warehouses and how it differs
from real-time data warehouses. Explain an approach to achieve right-
time data warehouses.

13.19 How does ELT differ from ETL? Choose an application scenario you
are familiar with for motivating the use of ELT.

13.11 Exercises

13.1 Consider that the Northwind database has been loaded into the HDFS.
We want to implement the relational algebra operations over this
database using Pig Latin as follows:

(a) Express the projection over the last name of the Employees table.
(b) Express the selection of EmployeeID=3 on the Employees table.
(c) Over the Orders table, obtain the number of deliveries grouped by

shipper.
(d) List the Orders table in descending order of ShipName.
(e) Perform the natural join between the Orders and Employee tables

on EmployeeID.
(f) Perform the left outer join between the Orders and Employee tables

on PostalCode and ShipPostalCode on Orders.
(g) Same as (e) for the right outer join, but joining also by EmployeeID.

13.2 Using the Northwind database of Ex. 13.1:

(a) Define the database in HiveQL.
(b) Express the queries of Ex. 13.1 in HiveQL.

13.3 Consider the Northwind database and the following query:

SELECT CustomerName, SUM(SalesAmount)
FROM Sales S, Customer C, Product P, Time T, Employee E
WHERE S.CustomerKey = C.CustomerKey AND

S.ProductKey = P.ProductKey AND
P.Discontinued = 'Yes' AND
S.TimeKey = T.TimeKey AND T.Year = '2012' AND
S.EmployeeKey = E.EmployeeKey AND E.City = 'Berlin'

GROUP BY C.CustomerName
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Assume that there are 100,000 tuples in the Sales fact table, 2,000 in
Customer, 30,000 in Product, 500 in Time, and 1,000 in Employee. The
Northwind database is stored in a column-store database system. Each
disk block has a size of 1MB. You can assume all data you consider
necessary to answer the following questions:

• How many disk access will take the evaluation of the query above?
• Assume a row-oriented database, with a block size of 32K. What

would be the answer to the previous question?



Chapter 14

Data Warehouses and the Semantic Web

The availability of enormous amounts of data from many different domains
is producing a shift in the way data warehousing practices are being carried
out. Massive-scale data sources are becoming common, posing new challenges
to data warehouse practitioners and researchers. The semantic web, where
large amounts of data are being stored daily, is a promising scenario for data
analysis in a near future. As large repositories of semantically annotated data
become available, new opportunities for enhancing current decision-support
systems will appear. In this scenario, two approaches are clearly identified.
One focuses on automating multidimensional design, using semantic web
artifacts, for example, existing ontologies. In this approach, data warehouses
are (semi)automatically designed using available metadata and then popu-
lated with semantic web data. The other approach aims at analyzing large
amounts of semantic web data using OLAP tools. In this chapter, we tackle
the latter approach, which requires the definition of a precise vocabulary
allowing to represent OLAP data on the semantic web. Over this vocabulary,
multidimensional models and OLAP operations for the semantic web can
be defined. Currently, there are two proposals in this direction. On the one
hand, the data cube vocabulary (also denoted QB) follows statistical data
models. On the other hand, the QB4OLAP vocabulary follows closely the
classic multidimensional models for OLAP studied in this book.

In this chapter, we first introduce in Sect. 14.1 the basic semantic web
concepts, including the RDF and RDFS data models, together with a study of
RDF representation of relational data and a review of R2RML, the standard
language to define mappings from relational to RDF data. In Sect. 14.2, we
give an introduction to SPARQL, the standard query language for RDF data.
In Sect. 14.3, we discuss the representation and querying of multidimensional
data in RDF, including an in-depth discussion of the QB and QB4OLAP
vocabularies. We continue in Sect. 14.4 showing how the Northwind data
cube can be represented using both vocabularies. We conclude in Sect. 14.5
by showing how to query the QB4OLAP representation of the Northwind
data warehouse in SPARQL.

A. Vaisman and E. Zimányi, Data Warehouse Systems, Data-Centric
Systems and Applications, DOI 10.1007/978-3-642-54655-6 14,
© Springer-Verlag Berlin Heidelberg 2014
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14.1 Semantic Web

The semantic web is a proposal oriented to represent web content in a
machine-processable way. The basic layer for data representation on the
semantic web recommended by the World Wide Web Consortium (W3C)
is the resource description framework (RDF). In a semantic web scenario,
domain ontologies are used to define a common terminology for the concepts
involved in a particular domain. These ontologies are expressed in RDF or in
languages defined on top of RDF like the Web Ontology Language (OWL)1

and are especially useful for describing unstructured, semistructured, and
text data. Many applications attach metadata and semantic annotations to
the information they produce (e.g., in medical applications, medical images,
and laboratory tests). We expect that, in the near future, large repositories
of semantically annotated data will be available, opening new opportunities
for enhancing current decision-support systems.

14.1.1 Introduction to RDF and RDFS

The resource description framework (RDF)2 is a formal language for
describing structured information. One of the main goals of RDF is to
enable the composition of distributed data to allow data exchange over the
web. To uniquely identify resources, RDF uses internationalized resource
identifiers (IRIs). IRIs generalize the concept of universal resource
locators (URLs) since they do not necessarily refer to resources located
on the web. Further, IRIs generalize the concept of the uniform resource
identifiers (URIs): while URIs are limited to a subset of the ASCII character
set, IRIs may contain Unicode characters.

RDF can be used to express assertions over resources. These assertions
are expressed in the form of subject-predicate-object triples, where subject are
resources or blank nodes, predicate are resources, and object are resources
or literals (i.e., data values). Blank nodes are used to represent resources
without an IRI, typically with a structural function, for example, to group
a set of statements. A set of RDF triples or RDF data set can be seen as a
directed graph where subjects and objects are nodes and predicates are arcs.

RDF provides a way to express statements about resources using named
properties and values. However, sometimes it is also needed to define kinds
or classes of resources and the specific properties describing those resources.
A set of reserved words, called RDF Schema (RDFS),3 is used to define

1http://www.w3.org/2004/OWL/
2http://www.w3.org/TR/rdf11-concepts/
3http://www.w3.org/TR/rdf-schema/

http://www.w3.org/2004/OWL/
http://www.w3.org/TR/rdf11-concepts/
http://www.w3.org/TR/rdf-schema/
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properties and represent relationships between resources, adding semantics
to the terms in a vocabulary. Intuitively, RDF allows us to describe instances,
while RDFS adds schema information to those instances. A comprehensive
study of the formal semantics of RDFS is beyond the scope of the book, but
we provide below the basic concepts we will use in the next sections.

Among the many terms in the RDFS vocabulary, the fragment which
represents the essential features of RDF is the subset composed of the
following terms: rdf:type, rdf:Class, rdfs:Resource, rdfs:Property, rdfs:range,
rdfs:domain, rdfs:subClassOf, and rdfs:subPropertyOf. For example, a triple
Employee rdf:type Class tells that Employee is a class that aggregates objects
of the same kind, in this case employees (we leave syntactic issues to be
presented later, since actually all resources must be defined using IRIs).
The triple Davolio rdf:type Employee tells that Davolio is a member of the
class Employee. The term rdfs:Resource denotes the class of all resources, and
rdf:Property the class of all properties. Importantly, class membership is not
exclusive, since a resource may belong to several different classes. Elements
belonging to the class rdf:Property represent relationships between resources,
used in the predicate part of RDF triples. For example, hasSalary can be
defined as a property of an employee using the statement hasSalary rdf:type
rdf:Property. The predicate rdfs:subClassOf allows us to define generalization
relationships between classes. For example, the triple TemporaryEmployee
rdf:subClassOf Employee tells that every temporary employee is also an
employee. Analogously, the predicate rdfs:subPropertyOf allows us to define
generalization relationships between properties. For example, hasLowSalary
rdfs:subPropertyof hasSalary indicates a subproperty to describe employees
with low salaries. A rule system can be defined using these and other
predicates, thus allowing to infer knowledge from an RDF graph. The
RDF Semantics4 specification defines a precise semantics and corresponding
complete systems of inference rules for RDF and RDFS. Finally, let us remark
that, in general, triples representing schema and instance data coexist in RDF
data sets.

14.1.2 RDF Serializations

An RDF graph is a collection of triples given in any order, which suggests
many ways of serialization. Two widely used notations are RDF/XML,5

which defines an XML syntax for RDF, and Turtle,6 which provides a simple
way of representing RDF triples.

4http://www.w3.org/TR/rdf11-mt/
5http://www.w3.org/TR/rdf-syntax-grammar/
6http://www.w3.org/TR/turtle/

http://www.w3.org/TR/rdf11-mt/
http://www.w3.org/TR/rdf-syntax-grammar/
http://www.w3.org/TR/turtle/
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http://example.org/NWDW#hasEmployee

http://example.org/NWDW#FirstName

http://example.org/NWDW#iri http://example.org/NWDW#employee1

1992-05-01 Nancy

http://example.org/NWDW#LastName

Davolio

http://example.org/NWDW#HireDate

Fig. 14.1 An example of an RDF graph

Figure 14.1 depicts an RDF graph representing an employee of the
Northwind company, her first name, last name, and hire date. The following
piece of RDF/XML code describes this graph.

<xml version ''1.0'' encoding= ''utf8''?>
<rdf:RDF

xmlns:rdf=''http://www.w3.org/1999/02/22-rdf-syntax-ns#' '
xmlns:ex=''http://example.org/NWDW#''>
<rdf:Description rdf:about=''http://example.org/NWDW#iri''>

<ex:hasEmployee>
<rdf:Description rdf:about=''http://example.org/NWDW#employee1''>

<ex:FirstName>Nancy</ex:FirstName>
<ex:LastName>Davolio</ex:LastName>
<ex:HireDate>1992-05-01</ex:HireDate>

</rdf:Description>
</ex:hasEmployee>

</rdf:Description>
</rdf:RDF>

The first line is the typical XML heading line, and the document starts
with the RDF element. The xmlns attribute is used to define XML namespaces
composed of a prefix and an IRI, making the text less verbose. The subject
and object of the triple representing the company and its employee are within
Description elements, where the attribute rdf:about indicates the IRIs of the
resources. The ex prefix refers to the Northwind data warehouse.

The same triple will be written as follows using Turtle:

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
@prefix ex: <http://example.org/NWDW#> .

ex:iri ex:hasEmployee ex:employee1 .
ex:employee1 rdf:type ex:Employee ; ex:FirstName ''Nancy'' ;

ex:LastName ''Davolio'' ; ex:HireDate ''1992-05-01' ' .

Note that Turtle provides a much simpler, less verbose syntax, compared to
RDF/XML, so we use Turtle in the remainder of the chapter.

Data types are supported in RDF through the XML data type system.
For example, by default ex:HireDate would be interpreted as a string value
rather than a date value. To explicitly define the data types for the example
above, we would write in Turtle:
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@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
@prefix ex: <http://example.org/NWDW#> .
@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .
ex:iri ex:hasEmployee ex:employee1 .
ex:employee1 rdf:type ex:Employee ; ex:FirstName ''Nancy''∧∧xsd:string ;

ex:LastName ''Davolio''∧∧xsd:string ; ex:HireDate ''1992-05-01' '∧∧xsd:date .

To further simplify the notation, Turtle allows rdf:type to be replaced with
‘a’. Thus, instead of

ex:employee1 rdf:type ex:Employee ;

we could write

ex:employee1 a ex:Employee ;

Also, the xml:lang attribute allows us to indicate the language of the text
in the triple. For example, to indicate that the name of the employee is an
English name, we may write in Turtle:

ex:employee1 ex:FirstName ''Nancy''@en ; ex:LastName ''Davolio''@en .

Finally, blank nodes are represented either explicitly with a blank node
identifier of the form :name or with no name using square brackets. The latter
is used if the identifier is not needed elsewhere in the document. For example,
the following triples state that the employee identified by ex:employee1, who
corresponds to Nancy Davolio in the triples above, has a supervisor who is
an employee called Andrew Fuller:

ex:employee1 a ex:Employee ;
ex:Supervisor [ a ex:Employee ; ex:FirstName ''Andrew'' ; ex:LastName ''Fuller'' ] .

In this case, the blank node is used as object, and this object is an anonymous
resource; we are not interested in who this person is.

A blank node can be used as subject in triples. If we need to use the blank
node in other part of the document, we may use the following Turtle notation:

ex:employee1 a ex:Employee ; ex:Supervisor :employee2 .
:employee2 a ex:Employee ; ex:FirstName ''Andrew''; ex:LastName ''Fuller'' .

14.1.3 RDF Representation of Relational Data

In this section, we describe how relational data can be represented in RDF
in order to be used and shared on the semantic web.

Suppose that the Northwind company wants to share their warehouse data
on the web, for example, to be accessible to all their branches. The Northwind
data warehouse is stored in a relational database. For our example, we will
use the Sales fact table and the Product dimension table of Fig. 14.2, which
are simplified versions of the corresponding data warehouse tables. Note that
we added an identifier SalesKey for each tuple in the Sales fact table.
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SalesKey ProductKey CustomerKey TimeKey Quantity
s1 p1 c1 t1 100
s2 p1 c2 t2 100
· · · · · · · · · · · · · · ·

ProductKey ProductName QuantityPerUnit UnitPrice Discontinued CategoryName
p1 prod1 25 60 No c1
p2 prod2 45 60 No c1
· · · · · · · · · · · · · · · · · ·

a

b

Fig. 14.2 An excerpt of a simplified version of the Northwind data warehouse.
(a) Sales fact table. (b) Product dimension table

The World Wide Web Consortium (W3C) has proposed two ways of
mapping relational data to RDF: the direct mapping and the R2RML
mapping, which we present next.

Direct Mapping

The direct mapping7 defines an RDF graph representation of the data in a
relational database. This mapping takes as input the schema and instance of a
relational database and produces an RDF graph called the direct graph, whose
triples are formed concatenating column names and values with a base IRI.
In the examples below, the base IRI is <http://example.org/>. The mapping
also accounts for the foreign keys in the databases being mapped. The direct
mapping for the Sales fact table and the Product dimension table in Fig. 14.2
results in an RDF graph, from which we show below some triples:

@base <http://example.org/>
@prefix rdf:<http://www.w3.org/1999/02/22-rdf-syntax-ns#>

<Sales/SalesKey=''s1''> rdf:type <Sales> .
<Sales/SalesKey=''s1''> <Sales#SalesKey> ''s1'' .
<Sales/SalesKey=''s1''> <Sales#ProductKey> ''p1'' .
<Sales/SalesKey=''s1''> <Sales#ref-ProductKey> <Product/ProductKey=''p1''> .
<Sales/SalesKey=''s1''> <Sales#CustomerKey> ''c1'' .
<Sales/SalesKey=''s1''> <Sales#ref-CustomerKey>

<Customer/CustomerKey=''c1''> .
<Sales/SalesKey=''s1''> <Sales#TimeKey> ''t1'' .
<Sales/SalesKey=''s1''> <Sales#ref-TimeKey> <Time/TimeKey=''t1''> .
<Sales/SalesKey=''s1''> <Sales#Quantity> ''100'' .
. . .

7http://www.w3.org/TR/rdb-direct-mapping/

http://www.w3.org/TR/rdb-direct-mapping/
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<Product/ProductKey=''p1''> rdf:type <Product> .
<Product/ProductKey=''p1''> <Product#ProductKey> ''p1'' .
<Product/ProductKey=''p1''> <Sales#ProductName> ''prod1'' .
<Product/ProductKey=''p1''> <Sales#QuantityPerUnit> ''25'' .
<Product/ProductKey=''p1''> <Sales#UnitPrice> ''60'' .
<Product/ProductKey=''p1''> <Sales#Discontinued> ''No'' .
<Product/ProductKey=''p1''> <Sales#CategoryKey> ''c1'' .
<Product/ProductKey=''p1''> <Sales#ref-CategoryKey>

<Category/CategoryKey=''c1''> .
. . .

Each row in Sales produces a set of triples with a common subject. The
subject is an IRI formed from the concatenation of the base IRI, the table
name, the primary key column name (SalesKey), and the primary key value
(s1 for the first tuple). The predicate for each column is an IRI formed as
the concatenation of the base IRI, the table name, and the column name.
The values are RDF literals taken from the column values. Each foreign
key produces a triple with a predicate composed of the foreign key column
names, the referenced table, and the referenced column names. The object of
these triples is the row identifier for the referenced triple. The reference row
identifiers must coincide with the subject used for the triples generated from
the referenced row. For example, the triple

<Sales/SalesKey=''s1''> <Sales#ref-ProductKey> <Product/ProductKey=''p1''>

tells that the subject (the first row in Sales) contains a foreign key in the
column ProductKey (the predicate in the triple) which refers to the triple iden-
tified in the object (the triple whose subject is<Product/ProductKey=''p1''>).

As can be seen, the direct mapping is very straightforward, although
rigid, in the sense that it does not allow any kind of customization. Indeed,
the structure of the resulting RDF graph directly reflects the structure of
the database, the target RDF vocabulary directly reflects the names of
database schema elements, and neither the structure nor the vocabulary can
be changed.

R2RML Mapping

R2RML8 is a language for expressing mappings from relational databases
to RDF data sets. Such mappings provide the ability to view relational data
in RDF using a customized structure and vocabulary. As with the direct
mapping, an R2RML mapping results in an RDF graph.

An R2RML mapping is an RDF graph written in Turtle syntax, called
the mapping document. The main object of an R2RML mapping is the so-
called triples map. Each triples map is a collection of triples, composed of a

8http://www.w3.org/TR/r2rml

http://www.w3.org/TR/r2rml
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logical table, a subject map, and zero or more predicate object maps. A logical
table is either a base table or a view (using the predicate rr:tableName) or
an SQL query (using the predicate rr:sqlQuery). A predicate object map is
composed of a predicate map and an object map. Subject maps, predicate
maps, and object maps are either constants (rr:constant), column-based
maps (rr:column), or template-based maps (rr:template). Templates use brace-
enclosed column names as placeholders. As an example, Fig. 14.3 shows how
a portion of the dimension table Product is mapped to RDF using R2RML.
This mapping can be then applied to any instance of the table to produce
the triples. We next show the mapping document, which, together with the
instance of the table, will produce the RDF graph:

#TriplesMap_Product

UnitPrice

Product ../{ProductKey}

ProductName

rr:logicalTable rr:subjectMap rr:predicateObjectMap

rr:tableName rr:predicate
rr:objectMap

rr:column

ex:product

rr:template rr:class

ex:productName ex:unitPrice

rr:predicate
rr:objectMap

rr:column

Fig. 14.3 R2RML mapping of the Product dimension

@prefix rr: <http://www.w3.org/ns/r2rml#> .
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .
@prefix ex: <http://example.org/> .

<#TriplesMap Product>
a rr:TriplesMap ;
rr:logicalTable [ rr:tableName ''Product'' ] ;
rr:subjectMap [

rr:template ''http://example.org/product/{ProductKey}'' ;
rr:class ex:product ] ;

rr:predicateObjectMap [
rr:predicate ex:productName ;
rr:objectMap [ rr:column ''ProductName'' ; rr:language ''en'' ] ; ] ;

rr:predicateObjectMap [
rr:predicate ex:unitPrice ;
rr:objectMap [ rr:column ''UnitPrice'' ; rr:datatype rdfs:integer ] ; ] .

The triples map above (corresponding to the table Product) is called
<#TriplesMap Product>. The logical table is the table Product, and the
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subject is the template for the key, ProductKey. Applied to the input
table, this will produce the subject of the triples. For each such subject,
the predicate-object mapping will produce the mapping of the columns we
wish to map. For example, rr:predicate ex:productName will map the column
ProductName. Note that this procedure allows us to customize the name of
the column, for example, according to a given vocabulary. Below, we show
some of the triples produced by this mapping when applied to the table
Product in Fig. 14.2b:

<http://example.org/product/p1>
a <http://example.org/product> ;
<http://example.org/productName> ''prod1''@en ;
<http://example.org/unitPrice> ''60''∧∧

<http://www.w3.org/2000/01/rdf-schema#integer>
. . . . ;

Foreign keys are handled through referencing object maps, which use the
subjects of another triples map as the objects generated by a predicate-object
map:

<#TriplesMap Sales>
rr:predicateObjectMap [

rr:predicate ex:product ;
rr:objectMap [

rr:parentTriplesMap <#TriplesMap Product> ;
rr:joinCondition [

rr:child ''ProductKey'' ;
rr:parent ''ProductKey'' ] ; ] ; ] .

The rr:parentTriplesMap predicate references an existing triples map in the
same mapping file that generates the desired resource. In the example above,
in the mapping file for the Sales fact table, when mapping the foreign key
for the table Product, we reference the mapping for the latter (which we
have called <#TriplesMap Product>). The join condition (rr:joinCondition)
contains two elements, namely, rr:child and rr:parent. The former is associated
with a column name of the logical table of the triples map containing the
referencing object map. The latter is associated with a logical column name
of the referenced triples map.

14.2 SPARQL

SPARQL9 is the standard query language for RDF graphs. SPARQL queries
are built using variables, which are denoted using either ‘?’ or ‘$’ as a prefix,
although the former is normally used. The query evaluation mechanism of

9http://www.w3.org/TR/sparql11-query/

http://www.w3.org/TR/sparql11-query/
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SPARQL is based on subgraph matching, where the selection criteria is
expressed as a graph pattern. This pattern is matched against an RDF graph
instantiating the variables in the query.

In what follows, we will work with the Northwind data warehouse
represented as an RDF graph, as studied in Sect. 14.1.3. Let us analyze the
following SPARQL query, which asks for names and hire date of employees:

PREFIX ex:<http://example.org/NWDW#>
PREFIX rdf:<http://www.w3.org/1999/02/22-rdf-syntax-ns#>

SELECT ?firstName ?lastName ?hireDate
WHERE { ?emp a ex:Employee .

?emp ex:Employee#FirstName ?firstName .
?emp ex:Employee#LastName ?lastName .
?emp ex:Employee#HireDate ?hireDate . }

There are three parts in the query. A sequence of PREFIX clauses declare
the namespaces. The SELECT clause indicates the format of the result. The
WHERE clause in this case contains a graph pattern composed of four triples
in Turtle notation. The triples in the query are matched against the triples in
an RDF graph that instantiates the variables in the pattern. In our case, this
is the default RDF graph that represents the Northwind data warehouse. If
we want to include other graphs, a FROM clause must be added, followed by
a list of named graphs. As we have seen, the query above (without the prefix
part) can be more succinctly written as follows:

SELECT ?firstName ?lastName ?hireDate
WHERE { ?emp a ex:Employee ; ex:Employee#FirstName ?firstName ;

ex:Employee#LastName ?lastName ; ex:Employee#HireDate ?hireDate . }

To evaluate the above query, we instantiate the variable ?emp with an
IRI whose type is http://example.org/NWDW#Employee. Then, we look if
there is a triple with the same subject and property ex:Employee#FirstName,
and, if so, we instantiate the variable ?firstName. We proceed similarly to
instantiate the other variables in the query and return the result. Note that
in this case the result of the query is not an RDF graph, but a set of literals.
Alternatively, the CONSTRUCT clause can be used to return an RDF graph
built by substituting variables in a set of triple templates.

From now on, we omit the prefix clauses in queries for brevity. The keyword
DISTINCT must be used to remove duplicates in the result. For example,
the following query returns the cities of the Northwind customers, without
duplicates:

SELECT DISTINCT ?city
WHERE { ?customer a ex:Customer ; ex:Customer#City ?city . }

The FILTER keyword selects patterns that meet a certain condition. For
example, the query “First name and last name of the employees hired between
1992 and 1994” reads in SPARQL as follows:

http://example.org/NWDW#Employee
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SELECT ?firstName ?lastName
WHERE { ?emp a ex:Employee ; ex:Employee#FirstName ?firstName ;

ex:Employee#LastName ?lastName ; ex:Employee#HireDate ?hireDate .
FILTER( ?hireDate >= ''1992-01-01' '∧∧xsd:date &&
?hireDate <= ''1994-12-31''∧∧xsd:date) }

Filter conditions are Boolean expressions constructed using the logical
connectives && (and), || (or), and ! (not).

The FILTER keyword can be combined with the NOT EXISTS keyword to
test the absence of a pattern. For example, the query “First name and last
name of employees without supervisor” reads in SPARQL as follows:

SELECT ?firstName ?lastName
WHERE { ?emp a ex:Employee ; ex:Employee#FirstName ?firstName ;

ex:Employee#LastName ?lastName .
FILTER NOT EXISTS { ?emp ex:Employee#Supervisor ?sup . } }

The OPTIONAL keyword is used to specify a graph pattern for which the
values will be shown if they are found. For example, the query “First and
last name of employees, along with the first and last name of her supervisor,
if she has one” can be written in SPARQL as follows:

SELECT ?empFirstName ?empLastName ?supFirstName ?supLastName
WHERE { ?emp a ex:Employee ; ex:Employee#FirstName ?empFirstName ;

ex:Employee#LastName ?empLastName .
OPTIONAL { ?emp ex:Employee#Supervisor ?sup .

?sup a ex:Employee ; ex:Employee#FirstName ?supFirstName ;
ex:Employee#LastName ?supLastName . } }

Notice that the OPTIONAL keyword behaves in a way similar to an outer
join in SQL.

Aggregation and Sorting in SPARQL

Aggregate functions summarize information from multiple triple patterns
into a single one. SPARQL provides the usual aggregate functions COUNT,
SUM, MAX, MIN, and AVG. In addition, along the lines of SQL, before
summarization, triples may be grouped using the GROUP BY keyword, and
then the aggregate function is applied to every group. Furthermore, filtering of
groups may also be performed with the HAVING keyword, like it is done with
the FILTER clause for ungrouped sets. Finally, the result can be sorted with
the ORDER BY clause, where every attribute in the list can be ordered either
in ascending or descending order by specifying ASC or DESC, respectively.

Consider the query “Total number of orders handled by each employee, in
descending order of number of orders. Only list employees that handled more
than 100 orders.” This query is expressed in SPARQL as follows:
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SELECT ?emp (COUNT(DISTINCT ?orderNo) AS ?ordersByEmployee)
WHERE { ?sales a ex:Sales ; ex:Sales#Employee ?emp ;

ex:Sales#OrderNo ?orderNo .
?emp a ex:Employee . }

GROUP BY ?emp
HAVING COUNT(DISTINCT ?orderNo) > 100
ORDER BY DESC(COUNT(DISTINCT ?orderNo))

The GROUP BY clause collects the orders associated with each employee, the
HAVING clause keeps only the employees who have more than 100 distinct
orders, and the ORDER BY clause orders the result in descending order
according to the number of orders.

Consider now the query “For customers from San Francisco, list the total
quantity of each product ordered. Order the result by customer key, in
ascending order, and by quantity of products ordered, in descending order.”

SELECT ?cust ?prod (SUM(?qty) AS ?totalQty)
WHERE { ?sales a ex:Sales ; ex:Sales#Customer ?cust ;

ex:Sales#Product ?prod ; ex:Sales#Quantity ?qty .
?cust a ex:Customer ; ?ex:Customer#City ?city .
?city a ex:City ; ex:City#Name ?cityName .
FILTER(?cityName = ''San Francisco'') }

GROUP BY ?cust ?prod
ORDER BY ASC(?cust) DESC(?totalQty)

This query defines a graph pattern linking sales to customers and cities. Prior
to grouping, we need to find the triples satisfying the graph pattern and select
the customers from San Francisco. We then group by pairs of ?cust and ?prod
and, for each group, take the sum of the attribute ?qty. Finally, the resulting
triples are ordered.

Subqueries

In SPARQL, a subquery is used to look for a certain value in a database and
then use this value in a comparison condition. A subquery is a query enclosed
into curly braces used within a WHERE clause. The external query is called
the outer query.

As an example, let us consider the query “For each customer compute
the maximum sales amount among all her orders.” The query is written as
follows:

SELECT ?cust (MAX(?totalSales) as ?maxSales)
WHERE { {

SELECT ?cust ?orderNo (SUM(?sales) as ?totalSales)
WHERE { ?sales a ex:Sales ; ex:Sales#Customer ?cust ;

ex:Sales#OrderNo ?orderNo ; ex:Sales#SalesAmount ?sales .
?cust a ex:Customer . }

GROUP BY ?cust ?orderNo } }
GROUP BY ?cust
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The inner query computes the total sales amount for each customer and
order. Then, in the outer query, for each customer we select the maximum
sales amount among all its orders.

Subqueries are commonly used with the UNION and MINUS keywords.
The UNION combines graph patterns so that one of several alternative graph
patterns may match. For example, the query “Products that have been
ordered by customers from San Francisco or supplied by suppliers from San
Jose” can be written as follows:

SELECT DISTINCT ?prodName
WHERE { {

SELECT ?prod
WHERE { ?sales a ex:Sales ; ex:Sales#Product ?prod ;

ex:Sales#Customer ?cust .
?cust a ex:Customer ; ex:Customer#City ?custCity .
?custCity a ex:City ; ex:City#Name ?custCityName .
FILTER(?custCityName = ''San Francisco'') } }

UNION {
SELECT ?prod
WHERE { ?sales a ex:Sales ; ex:Sales#Product ?prod ;

ex:Sales#Supplier ?sup .
?sup a ex:Supplier ; ex:Supplier#City ?supCity .
?supCity a ex:City ; ex:City#Name ?supCityName .
FILTER(?supCityName = ''San Jose'') } } }

Analogously, the MINUS operation computes the difference between the
results of two subqueries. An example is the query: “Products that have not
been ordered by customers from San Francisco,” which can be written as
follows:

SELECT DISTINCT ?prod
WHERE { ?sales a ex:Sales ; ex:Sales#Product ?prod .

MINUS { {
SELECT ?prod
WHERE { ?sales a ex:Sales ; ex:Sales#Product ?prod ;

ex:Sales#Customer ?cust .
?cust a ex:Customer ; ex:Customer#City ?city .
?city a ex:City ; ex:City#Name ?cityName .
FILTER(?cityName = ''San Francisco'') } } } }

The inner query computes the products ordered by customers from San
Francisco. The outer query obtains all products that have been ordered and
subtracts from them the products obtained in the inner query.

14.3 RDF Representation of Multidimensional Data

We are now ready to study two approaches to represent multidimensional
data in RDF, namely, QB and QB4OLAP. Suppose that the Northwind
company wants to analyze sales data against economic and demographic data,
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published as open data on the web. Instead of loading and maintaining those
data permanently in the local data warehouse, it could be more efficient to
either temporarily load them into the warehouse for analysis or to operate
over a cube directly in RDF format, as we will study in the next sections.
Being able to publish data cubes in RDF will also allow the company to
publish data over the web to be shared by all the company branches.

In our study, we will use an ontology from the Ordnance Survey containing
administrative geography and civil voting areas in Great Britain.10 In this
ontology, the administrative units are defined as classes, and the geographic
relationship between them is defined through properties. For example,
GovernmentOfficeRegion (GOR) and UnitaryAuthority (UA) are classes, while
hasGORCode, hasUACode, and hasName are properties. The relationship
between UA, GOR, and countries (in the UK) is given at the instance
level, rather than at the schema level. For instance, the Unitary Authority
of Reading, with code 00MC, is contained in the South East Government
Office Region. As an example, we show below a portion of the ontology
corresponding to Reading:

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
@prefix id: <http://data.ordnancesurvey.co.uk/id/>
@prefix admgeo: <http://data.ordnancesurvey.co.uk/ontology/admingeo/>
@prefix skos: <http://www.w3.org/2004/02/skos/core#>

<http://data.ordnancesurvey.co.uk/id/7000000000038895>
a admgeo:Borough ; a admgeo:UnitaryAuthority ;
rdf:label ''The Borough of Reading'' ; admgeo:gssCode ''E06000038' ' ;
admgeo:hasAreaCode ''UTA'' ; admgeo:hasUACode ''00MC'' ;
skos:prefLabel ''The Borough of Reading'' .

The IRI in the fifth line represents the resource (Reading), and it is the
subject of the triples formed with the predicate-object pairs below it (telling,
e.g., that the area code of Reading is UTA).

In addition, associated with the geographic data above, we have yearly
data about household in the UK. With these data, we build a data
cube denoted HouseholdCS with a measure Household and two dimensions,
Geography and Time. Dimension Geography is organized into the following
hierarchy of levels: UnitaryAuthority → GovernmentOfficeRegion → Country
→ All. We show examples of instances in Fig. 14.4. Dimension Time has the
hierarchy Year → All. Figure 14.5 shows an instance of this data cube, in
tabular format. For example, a cell corresponding to the household in Reading
in 2006 has value 58. In the next sections, we show how this data cube can
be defined in RDF.

10http://data.ordnancesurvey.co.uk/ontology/admingeo/

http://data.ordnancesurvey.co.uk/ontology/admingeo/
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all

South
East

Milton
Keynes

Reading

Wales

Bourne-
mouth

South
West

England Wales

Cardiff NewportUnitary
Authority

Government
OfficeRegion

All

Country

Fig. 14.4 Examples of instances of the dimension Geography

Year
Country GOR UA 2006 2007 2008

Milton Keynes 92 94 96
South East

Reading 58 58 60England

South West Bournemouth 71 72 73
Cardiff 132.1 134.2 136.7

Wales Wales
Newport 58.7 59.6

Fig. 14.5 An instance of the HouseholdCS data cube in tabular format

14.3.1 RDF Data Cube Vocabulary

The RDF data cube vocabulary11 or QB provides the means to publish
statistical data and metadata on the web using RDF. This vocabulary is com-
patible with the cube model underlying the Statistical Data and Metadata
eXchange (SDMX)12 standard, an ISO standard for exchanging and sharing
statistical data and metadata among organizations. Figure 14.6 depicts the
QB vocabulary. Capitalized terms represent RDF classes, and noncapitalized
terms represent RDF properties. Classes in external vocabularies are depicted
in light gray font in Fig. 14.6.

QB provides constructs to represent the structure and instances of
statistical data. A data structure definition (DSD), defined as an instance
of the class qb:DataStructureDefinition, specifies the schema of a data set,
defined as an instance of the class qb:DataSet. This structure can be shared
among different data sets. The DSD of a data set is defined by means of the
qb:structure property. The DSD has component properties for representing

11http://www.w3.org/TR/vocab-data-cube/
12http://sdmx.org/?page id=10

http://www.w3.org/TR/vocab-data-cube/
http://sdmx.org/?page_id=10
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qb:observation

qb:DataStructureDefinition qb:ComponentSpecification

qb:DataSet

qb:Sliceqb:Observation

qb:SliceKey qb:ComponentProperty

qb:DimensionProperty

qb:AttributeProperty

qb:MeasureProperty

qb:CodedProperty

skos:ConceptScheme

sdmx:CodeList

sdmx:ConceptRole

sdmx:Concept

skos:Concept

qb:componentProperty

qb:componentRequired : boolean
qb:componentAttachment : rdf:Class
qb:order : xsd:int

qb:concept

qb:componentProperty

qb:component

qb:subSlice

qb:dataSet

qb:structure qb:sliceKey qb:dimension
qb:attribute
qb:measure

qb:codeList

qb:sliceStructureqb:slice

sdmx:FrequenceRole
sdmx:CountRole
sdmx:EntityRole
sdmx:TimeRole

sdmx:MeasureTypeRole
sdmx:NonObsTimeRole

sdmx:IdentityRole
sdmx:PrimaryMeasureRole

Fig. 14.6 Outline of the QB vocabulary

dimensions, measures, and attributes, called qb:dimension, qb:measure, and
qb:attribute, respectively. Component specifications are linked to DSDs via
the property qb:component. For example, the schema of the HouseholdCS data
cube of Fig. 14.5 can be defined as follows:

ex:Geography a qb:DimensionProperty, qb:CodedProperty .
ex:Time a qb:DimensionProperty, qb:CodedProperty .
ex:Household a qb:MeasureProperty .
ex:HouseholdCS a qb:DataStructureDefinition ;

qb:component [qb:dimension ex:Geography] ;
qb:component [qb:dimension ex:Time] ;
qb:component [qb:measure ex:Household] ;
qb:component [qb:attribute sdmx-attribute:unitMeasure] .

For clarity, we omit above the declaration of the prefixes. First, the Geography
and Time dimensions as well as the Household measure are defined. Then,
the data cube schema, called ex:HouseholdCS, is declared as an instance of
qb:DataStructureDefinition. Dimensions, measures, and attributes are defined
using the qb:component property and using blank nodes.

Observations, which are instances of qb:Observation, represent points in a
multidimensional data space. They are grouped in data sets by means of the
qb:dataSet property. An observation is linked to a value in each dimension
of the DSD using properties defined as instances of qb:DimensionProperty.
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A set of measure values and attributes is associated with an observation
using the properties qb:MeasureProperty and qb:AttributeProperty in the DSD,
respectively. An instance of the above cube is defined as follows:

ex:dataset-hh a qb:DataSet ; rdfs:label ''Household in UK''@en ;
qb:structure ex:HouseholdCS .

ex:o1 a qb:Observation ; qb:dataSet ex:dataset-hh ; ex:Geography ns0:00mc ;
ex:Time <http://dbpedia.org/resource/2007> ; ex:Household 58 ;
sdmx-attribute:unitMeasure <http://dbpedia.org/resource/Thousand> .

Here, we define a data set ex:dataset-hh, whose structure is ex:HouseholdCS.
The observation ex:o1 belongs to this data set. Values for the dimensions are
also given. Note that the year 2007 is represented using an IRI.

QB provides the qb:concept property, which links components to the
concept they represent. The latter are modeled using the skos:Concept class
defined in the SKOS13 (Simple Knowledge Organization System) vocabulary.

Multidimensional Data Representation in QB

QB does not provide a mechanism to represent a multidimensional schema,
but it allows us to represent hierarchical relationships between members
of dimension levels using the SKOS vocabulary. A SKOS concept scheme
defines the semantic relationships between concepts. Concepts are linked
to the concept schemes they belong to via the skos:inScheme property.
For example, skos:broader and skos:narrower enable the representation of
hierarchical relationships. For instance, the triple country skos:narrower
region represents a hierarchical relationship where region is at a lower level
than country. To provide an entry point to the broader/narrower concept
hierarchies, SKOS defines a skos:hasTopConcept property. Thus, hierarchical
relationships between dimension members are represented in QB as an
instance of qb:DimensionProperty with an associated skos:ConceptScheme.
Particular concepts in the concept scheme can be associated with the property
skos:hasTopConcept, indicating that these values correspond to members at
the highest level of granularity in the dimension hierarchy. Members at lower
levels of granularity can be reached using the skos:narrower property. All of
the above imply that dimension members in QB may only be navigated from
higher granularity concepts down to finer granularity concepts. Note that in
general common OLAP operations (except drill down) traverse dimension
hierarchies in the opposite direction.

We show next an excerpt of a dimension Geography constructed from the
Ordnance Survey ontology introduced above, represented using QB:

ex:Geography a qb:DimensionProperty, qb:CodedProperty ; qb:codeList ex:geo .
ex:geo a skos:ConceptScheme ; skos:hasTopConcept ns2:921 .

13http://www.w3.org/2009/08/skos-reference/skos.html

http://www.w3.org/2009/08/skos-reference/skos.html
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ns2:921 a adgeo:Country ; rdfs:label ''England''@en ;
skos:inScheme ex:geo ; skos:narrower ns1:J .

ns1:J a adgeo:GovernmentOfficeRegion ; rdfs:label ''South East''@en ;
skos:inScheme ex:geo ; skos:narrower ns0:00mc .

ns0:00mc a adgeo:UnitaryAuthority ; rdfs:label ''The Borough of Reading''@en ;
skos:inScheme ex:geo .

The dimension is denoted ex:Geography, and it is defined as member of the
classes qb:DimensionProperty and qb:CodedProperty. This dimension is asso-
ciated to a concept scheme ex:geo, a member of the class skos:ConceptScheme,
using the qb:codeList property. Intuitively, this code list represents the set of
values of the dimension, organized hierarchically using the concept scheme.
The dimension member ns2:921 is defined as the top concept in ex:geo using
the property skos:hasTopConcept. It is also stated that such element is an
instance of the adgeo:Country class, labeled England. Hierarchical relation-
ships between members are stated using the skos:narrower property, from the
most general concepts down to most specific ones, namely, from adgeo:Country
through adgeo:GovernmentOfficeRegion to adgeo:UnitaryAuthority. We remark,
once more, that the hierarchical relationships are given at the instance level.

OLAP Operations over QB

In a multidimensional model, facts represent points in a multidimensional
space, where dimension coordinates are given at the lowest levels of each
participating dimension (we have seen, however, in Chaps. 4 and 5, that we
may sometimes have facts at different granularities). The QB specification
allows observations at different granularity levels to coexist in a data set,
which makes the OLAP operations difficult to implement. A solution could be
to split the original observations into different data sets, each one containing
observations at the same granularity level, which is not possible, since
aggregation levels are not modeled in QB, as we have already seen. As a
consequence, the QB vocabulary does not provide direct support for OLAP
operations. Moreover, the possibility of implementing OLAP operations over
data represented using QB has some limitations, described next.

The roll-up operation is not supported in QB because of the following.
First, rolling-up requires traversing a dimension hierarchy from a base level
up to a target level. Since dimension levels are not modeled in QB, this
navigation is not supported. Second, the relationship between level members
is modeled from the most general concept down to more specific concepts.
Finally, aggregate functions for each measure are not modeled, and these
functions are needed to implement the roll-up operation. Although in OLAP
tools, each measure is associated with an aggregation function, this is not
addressed in QB. Analogous observations apply to the drill-down operation.

Slicing is not supported in QB due to the fact that aggregate functions for
a given measure are not modeled, and these functions are required to reduce
to a single value the dimension to be dropped, as explained in Chap. 3.
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Dicing is supported by QB. For instance, the FILTER clause in SPARQL
can be used to implement a dicing condition.

Given the limitations commented above, in order to be able to define
and implement OLAP operations, we must extend QB to support dimension
hierarchies. We next explain how this can be done.

14.3.2 QB4OLAP Vocabulary

The QB4OLAP vocabulary14 aims at giving a solution to the problems
of the QB vocabulary discussed in the previous section. Multidimensional
data can be published in QB4OLAP from scratch, or data already published
using QB can be extended with dimension levels, level members, dimension
hierarchies, and the association of aggregate functions to measures without
affecting the existing observations. Therefore, data cubes already published
using QB can also be represented using QB4OLAP without affecting existing
applications developed over QB data cubes.

Figure 14.7 depicts the QB4OLAP vocabulary. Classes and proper-
ties added to QB (with prefix qb4o) are depicted with light gray back-
ground and black font. The class qb4o:LevelProperty models dimension
levels. Relations between dimension levels are represented using the property
qb4o:parentLevel. Level members are represented as instances of the class
qb4o:LevelMember, and relations between them can be expressed using the
property skos:broader. Level attributes are defined via the qb4o:hasAttribute
property. Level properties are stated in the data structure definition. The
class qb4o:AggregateFunction represents aggregate functions. The association
between measures and aggregate functions is represented using the property
qb4o:hasAggregateFunction. This property, together with the concept of
component sets, allows a given measure to be associated with different
aggregate functions in different cubes.

Multidimensional Data Representation in QB4OLAP

We next show how QB4OLAP can be used to publish multidimensional data
from scratch. The definition of the schema of the Geography dimension using
QB4OLAP is shown next:

ex:Geography a qb:DimensionProperty .
ex:UnitaryAuthority a qb4o:LevelProperty ; qb4o:inDimension ex:Geography ;

qb4o:parentLevel ex:GovernmentOfficeRegion .
ex:GovernmentOfficeRegion a qb4o:LevelProperty ; qb4o:inDimension ex:Geography ;

qb4o:parentLevel ex:Country .

14http://purl.org/qb4olap/cubes

http://purl.org/qb4olap/cubes
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Fig. 14.7 Outline of the QB4OLAP vocabulary

ex:Country a qb4o:LevelProperty ; qb4o:inDimension ex:Geography ;
skos:closeMatch adgeo:Country .

The levels ex:UnitaryAuthority, ex:GovernmentOfficeRegion, and ex:Country are
defined as instances of the class qb4o:LevelProperty, and the relationship
between them is defined by the property qb4o:parentLevel.

An instance of the Geography dimension is shown next:

ns0:00mc qb4o:inLevel ex:UnitaryAuthority ;
rdfs:label ''The Borough of Reading''@en ; skos:broader ns1:J .

ns1:J qb4o:inLevel ex:GovernmentOfficeRegion ;
rdfs:label ''South East''@en ; skos:broader ns2:921 .

ns2:921 qb4o:inLevel ex:Country ; rdfs:label ''England''@en .

The property qb4o:inLevel indicates the level in the hierarchy to which
belongs a level member, while skos:broader defines the parent of a
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level member. For instance, it is stated that the member ns1:J belongs
to level ex:GovernmentOfficeRegion and that such member aggregates over
the member ns2:921 in level ex:Country. Note that the dimension instances
are treated analogously to QB, using the SKOS vocabulary.

The data cube of Fig. 14.5 can be represented using QB4OLAP as follows:

ex:Geography a qb:DimensionProperty .
ex:Time a qb:DimensionProperty .
ex:Year a qb4o:LevelProperty ; skos:closeMatch db:Year ; qb4o:inDimension ex:Time .
ex:Household a qb:MeasureProperty .
ex:HouseholdCS a qb:DataStructureDefinition ;

qb:component [qb4o:level ex:UnitaryAuthority] ;
qb:component [qb4o:level ex:Year] ;
qb:component [qb:measure ex:Household ; qb4o:hasAggregateFunction qb4o:sum] .

There are some relevant differences with the QB data cube shown in
the previous section. The data cube schema is declared as an instance
of the class qb:DataStructureDefinition. The level property qb4o:level is
used to specify the levels in the cube schema. For example, the triple
ex:HouseholdCS qb:component [qb4o:level ex:Year] tells that ex:Year is a
level of the cube. Analogously, the triple ex:Household a qb:MeasureProperty
tells that ex:Household is a measure in the cube, like in QB. In addition,
the aggregate function corresponding to this measure is defined using the
property qb4o:hasAggregateFunction.

An instance of the cube is represented in QB4OLAP as follows:

ex:dataset-hh a qb:DataSet ; qb:structure ex:HouseholdCS ;
rdfs:label ''Household in UK''@en .

ex:o1 a qb:Observation ; qb:dataSet ex:dataset-hh ;
ex:UnitaryAuthority ns0:00mc ; ex:Year db:2007 ; ex:Household 58 .

The data set ex:dataset-hh is defined as an instance of the class qb:DataSet,
linked to the data cube using the property qb:structure. Further, an observa-
tion ex:o1 is defined as an instance of the class qb:Observation. The instance
represents the cell in the cube with values ns0:00mc for UA, 2007 for Year,
and 58 for the measure Household. Note that observations are defined using
QB classes and properties. Therefore, the observations in an existing cube
expressed in QB do not need to be changed in order to express the cube in
QB4OLAP.

OLAP Operations over QB4OLAP

We now show a possible implementation of some of the OLAP operations
over a data cube defined using the QB4OLAP vocabulary. The operations
are written in SPARQL.
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We start with the ROLLUP operation. As an example, consider the query
“Total household by Government Office Region.” This is expressed using the
operations introduced in Chap. 3 as

ROLLUP(HouseholdCS, Geography → GOR, SUM(Household)).

The structure of the result represented as a QB4OLAP schema denoted
by ex:HouseholdByGOR is shown next:

ex:HouseholdByGOR a qb:DataStructureDefinition ;
qb:component [qb4o:level ex:GovernmentOfficeRegion] ;
qb:component [qb4o:level ex:Year] ;
qb:component [qb:measure ex:Household ; qb4o:hasAggregateFunction qb4o:sum] .

ex:dataset-hh1 a qb:DataSet ; rdfs:label ''Household in UK by GOR''@en ;
qb:structure ex:HouseholdByGOR .

The SPARQL query that implements the operation is shown next:

CONSTRUCT { ?id a qb:Observation ; qb:dataSet ex:dataset-hh1 ; ex:Year ?year ;
ex:GovernmentOfficeRegion ?gor ; ex:Household ?sumHhold . }

WHERE { {
SELECT ?gor ?year (SUM(?hhold) AS ?sumHhold)

(iri(concat(''http://example.org/hhold#Roll-upGOR '',
strafter(?gor, ''http://example.org/hhold#''), '' '',
strafter(?year, ''http://example.org/hhold#''))) AS ?id)

WHERE { ?o qb:dataSet ex:dataset-hh ; ex:Year ?year ;
ex:Household ?hhold ; ex:UnitaryAuthority ?ua .
?ua skos:broader ?gor .
?gor qb4o:inLevel ex:GovernmentOfficeRegion . }

GROUP BY ?gor ?year } }

In theWHERE clause of the subquery, a graph pattern matching is performed.
From the matching triples, the values that instantiate the ?gor and ?year
variables are returned and aggregated in the SELECT clause. It is important
to remark that new IRIs must be generated to identify each one of the new
observations resulting from the application of the operation. This is done in
the SELECT clause of the subquery with the strafter function, which returns
the substring of the first parameter that appears after the string in the second
parameter. Further, in the outer query, the CONSTRUCT clause is used since
it returns a graph, opposite to the SELECT clause, which returns literals.

Let us consider now the following slice operation:

SLICE(Sales, Geography, Country=''England''),

which drops the dimension Geography by fixing a value in it. As in the previous
case, we first need to define the schema of the resulting cube as follows:

ex:HouseholdSlice a qb:DataStructureDefinition ;
qb:component [qb4o:level ex:Year] ;
qb:component [qb:measure ex:Household ; qb4o:hasAggregateFunction qb4o:sum] .

ex:dataset-hh2 a qb:DataSet ; rdfs:label ''Household in England by Year''@en ;
qb:structure ex:HouseholdSlice .



14.4 Representation of the Northwind Cube in QB4OLAP 561

We denote this cube as ex:HouseholdSlice. We can see that the resulting cube
has only the Time dimension (level ex:Year) and the ex:Household measure.
The SPARQL query that implements the slice operation is shown next:

CONSTRUCT { ?id a qb:Observation ; qb:dataSet ex:dataset-hh2 ; ex:Year ?year ;
ex:Household ?sumHhold . }

WHERE { {
SELECT ?year (SUM(?hhold) AS ?sumHhold)

(iri(concat(''http://example.org/hhold#SliceGeo '',
strafter(?year, ''http://example.org/hhold#''))) AS ?id)

WHERE { ?o qb:dataSet ex:dataset-hh ; ex:Year ?year ;
ex:UnitaryAuthority ?ua ; ex:Household ?hhold .
?ua: qb4o:inLevel ex:UnitaryAuthority ; skos:broader ?gor .
?gor: qb4o:inLevel ex:GovernmentOfficeRegion ;
skos:broader ?country .
?country: qb4o:inLevel ex:Country ; rdfs:label ?countryLabel .
FILTER(?countryLabel = ''England''@en) }

GROUP BY ?year } }
Since observations are at the granularity of unitary authority, in the subquery
we must roll up to the country level. Then, the FILTER condition implements
the slice operation. The SELECT clause of the subquery aggregates all
observations pertaining to England at the year level. As in the previous query,
the IRIs of the new query are generated in the SELECT clause of the subquery.

Finally, consider the following dice operation:

DICE(HouseholdCS, Time.Year > 2007),

which obtains a subcube from the HouseholdCS data cube containing only
data from 2007 onward. This is implemented by the following query:

CONSTRUCT { ?id a qb:Observation ; qb:dataSet ex:dataset-hh ;
ex:Year ?year ; ex:UnitaryAuthority ?ua ; ex:Household ?hhold . }

WHERE { {
SELECT ?ua ?year ?hhold

(iri(concat(''http://example.org/hhold#Dice '',
strafter(?ua, ''http://example.org/hhold#''), '' '',
strafter(?year, ''http://example.org/hhold#''))) AS ?id)

WHERE { ?o qb:dataSet ex:dataset-hh ; ex:Year ?year ;
ex:Household ?hhold ; ex:UnitaryAuthority ?ua .
FILTER (?year >= 2007) } } }

As shown above, the dice condition is implemented by the FILTER clause.
Note that the output schema is identical to the cube schema.

14.4 Representation of the Northwind Cube
in QB4OLAP

In this section, we show how the Northwind data cube can be represented in
RDF using the QB4OLAP vocabulary. The Northwind data cube has been
introduced in Fig. 4.2. We show it again in Fig. 14.8 to ease readability.
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Fig. 14.8 Conceptual schema of the Northwind data warehouse (repeated from
Fig. 4.2)

We start by defining the namespace prefixes as follows:

@prefix qb: <http://purl.org/linked-data/cube#>.
@prefix qb4o: <http://purl.org/qb4olap/cubes#> .
@prefix nw: <http://dwbook.org/cubes/schemas/northwind#> .
@prefix nwi: <http://dwbook.org/cubes/instances/northwind#> .
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .
@prefix sdmx-concept: <http://purl.org/linked-data/sdmx/2009/concept#> .
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@prefix sdmx-dimension: <http://purl.org/linked-data/sdmx/2009/dimension#> .
@prefix skos: <http://www.w3.org/2004/02/skos/core#> .
@prefix db: <http://dbpedia.org/resource/> .

Dimensions are defined using the property qb:DimensionProperty as follows:

nw:Employee a rdf:Property, qb:DimensionProperty ; rdfs:label ''Employee''@en .
nw:OrderDate a rdf:Property, qb:DimensionProperty ; rdfs:label ''Order Date''@en ;

rdfs:subPropertyOf sdmx-dimension:refPeriod ;
qb:concept sdmx-concept:refPeriod .

nw:DueDate a rdf:Property, qb:DimensionProperty ; rdfs:label ''Due Date''@en ;
rdfs:subPropertyOf sdmx-dimension:refPeriod ;
qb:concept sdmx-concept:refPeriod .

nw:ShippedDate a rdf:Property, qb:DimensionProperty ;
rdfs:label ''Shipped Date''@en ; rdfs:subPropertyOf sdmx-dimension:refPeriod ;
qb:concept sdmx-concept:refPeriod .

nw:Product a rdf:Property, qb:DimensionProperty ; rdfs:label ''Product''@en .
nw:Order a rdf:Property, qb:DimensionProperty ; rdfs:label ''Order''@en .
nw:Shipper a rdf:Property, qb:DimensionProperty ; rdfs:label ''Shipper''@en .
nw:Customer a rdf:Property, qb:DimensionProperty ; rdfs:label ''Customer''@en .
nw:Supplier a rdf:Property, qb:DimensionProperty ; rdfs:label ''Suppliers''@en .

A cube is defined using the property qb:DataStructureDefinition, and its
dimensions are defined using the property qb4o:level, as follows:

nw:Northwind a qb:DataStructureDefinition ;
qb:component [qb4o:level nw:Employee] ;
qb:component [qb4o:level nw:OrderDate] ;
qb:component [qb4o:level nw:DueDate] ;
qb:component [qb4o:level nw:ShippedDate] ;
qb:component [qb4o:level nw:Product] ;
qb:component [qb4o:level nw:Order] ;
qb:component [qb4o:level nw:Shipper] ;
qb:component [qb4o:level nw:Supplier] ;
qb:component [qb4o:level nw:Customer] ;

Measures are defined using the property qb:measure, where the aggre-
gate function associated with each measure is defined using the property
qb4o:hasAggregateFunction:

qb:component [qb:measure nw:Quantity ;
qb4o:hasAggregateFunction qb4o:sum] ;

qb:component [qb:measure nw:UnitPrice ;
qb4o:hasAggregateFunction qb4o:avg] ;

qb:component [qb:measure nw:Discount ;
qb4o:hasAggregateFunction qb4o:avg] ;

qb:component [qb:measure nw:SalesAmount ;
qb4o:hasAggregateFunction qb4o:sum] ;

qb:component [qb:measure nw:Freight ;
qb4o:hasAggregateFunction qb4o:sum] ;

qb:component [qb:measure nw:NetAmount ;
qb4o:hasAggregateFunction qb4o:sum] .
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Next, we use the Product dimension to illustrate how to define dimensions.
The attributes of the levels are defined with the property qb:AttributeProperty
as follows:

nw:ProductKey a qb:AttributeProperty ; rdfs:comment ''Product Key''@en .
nw:ProductName a qb:AttributeProperty ; rdfs:comment ''Product Name''@en .
nw:QuantityPerUnit a qb:AttributeProperty ; rdfs:comment ''Quantity per Unit''@en .
nw:UnitPrice a qb:AttributeProperty ; rdfs:comment ''Unit Price''@en .
nw:Discontinued a qb:AttributeProperty ; rdfs:comment ''Discontinued''@en .
nw:CategoryName a qb:AttributeProperty ; rdfs:comment ''Category Name''@en .
nw:Description a qb:AttributeProperty ; rdfs:comment ''Description''@en .

A dimension is defined with the property qb:DimensionProperty. A dimension
level is defined with the property qb4o:LevelProperty, and the associated
dimension is defined with the property qb4o:inDimension. The property
qb4o:hasAttribute is used to associate the attributes with a dimension level.
The definition of the Product dimension is shown next:

nw:ProductDim a rdf:Property, qb:DimensionProperty ;
rdfs:label ''Product Dimension''@en ;

nw:Product a qb4o:LevelProperty ; qb4o:inDimension nw:ProductDim ;
qb4o:hasAttribute nw:ProductKey ; qb4o:hasAttribute nw:ProductName ;
qb4o:hasAttribute nw:QuantityPerUnit ; qb4o:hasAttribute nw:Discontinued ;
qb4o:parentLevel nw:Category .

nw:Category a qb4o:LevelProperty ; qb4o:inDimension nw:ProductDim ;
qb4o:hasAttribute nw:CategoryName ; qb4o:hasAttribute nw:Description .

The other dimensions and levels are defined analogously.

14.5 Querying the Northwind Cube in SPARQL

Given the schema of the Northwind cube in Fig. 14.8 expressed in QB4OLAP,
we revisit the queries of Sect. 4.4 in SPARQL.

Query 14.1. Total sales amount per customer, year, and product category.

SELECT ?custName ?catName ?yearNo (SUM(?sales) AS ?totalSales)
WHERE { ?o qb:dataSet nwi:dataset1 ; nw:Customer ?cust ;

nw:OrderDate ?odate ; nw:Product ?prod ; nw:SalesAmount ?sales .
?cust qb4o:inLevel nw:Customer ; nw:companyName ?custName .
?odate qb4o:inLevel nw:OrderDate ; skos:broader ?month .
?month qb4o:inLevel nw:Month ; skos:broader ?quarter .
?quarter qb4o:inLevel nw:Quarter ; skos:broader ?sem .
?sem qb4o:inLevel nw:Semester ; skos:broader ?year .
?year qb4o:inLevel nw:Year ; nw:year ?yearNo .
?prod qb4o:inLevel nw:Product ; skos:broader ?cat .
?cat qb4o:inLevel nw:Category ; nw:categoryName ?catName . }

GROUP BY ?custName ?catName ?yearNo
ORDER BY ?custName ?catName ?yearNo
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In this query, we select the customer, order date, product, and sales amount
of all sales, roll up the date to the year level, roll up the product to the
category level, and aggregate the sales amount measure.

Query 14.2. Yearly sales amount for each pair of customer country and
supplier countries.

SELECT ?custCountryName ?supCountryName ?yearNo (SUM(?sales) AS ?totalSales)
WHERE { ?o qb:dataSet nwi:dataset1 ; nw:Customer ?cust ; nw:Supplier ?sup ;

nw:OrderDate ?odate ; nw:SalesAmount ?sales .
?cust qb4o:inLevel nw:Customer ; skos:broader ?custCity .
?custCity qb4o:inLevel nw:City ; skos:broader ?custState .
?custState qb4o:inLevel nw:State .
{ ?custState skos:broader ?custRegion .
?custRegion qb4o:inLevel nw:Region ; skos:broader ?custCountry . }
UNION { ?custState skos:broader ?custCountry . }
?custCountry qb4o:inLevel nw:Country ; nw:countryName ?custCountryName.
?sup qb4o:inLevel nw:Supplier ; skos:broader ?supCity .
?supCity qb4o:inLevel nw:City ; skos:broader ?supState .
?supState qb4o:inLevel nw:State .
{ ?supState skos:broader ?supRegion .
?supRegion qb4o:inLevel nw:Region ; skos:broader ?supCountry . }
UNION { ?supState skos:broader ?supCountry . }
?supCountry qb4o:inLevel nw:Country ; nw:countryName ?supCountryName.
?odate qb4o:inLevel nw:OrderDate ; skos:broader ?month .
?month qb4o:inLevel nw:Month ; skos:broader ?quarter .
?quarter qb4o:inLevel nw:Quarter ; skos:broader ?sem .
?sem qb4o:inLevel nw:Semester ; skos:broader ?year .
?year qb4o:inLevel nw:Year ; nw:year ?yearNo . }

GROUP BY ?custCountryName ?supCountryName ?yearNo
ORDER BY ?custCountryName ?supCountryName ?yearNo

The above query performs a roll-up of the customer and supplier dimen-
sions to the country level and a roll-up of the order date to the year level and
then aggregates the measure sales amount. Since a state rolls up to either a
region or a country, the patterns between curly brackets before and after the
UNION operator are needed to take into account both alternative aggregation
paths.

Query 14.3. Monthly sales by customer state compared to those of the
previous year.

SELECT ?stateName ?yearNo ?monthNo ?totalSales ?salesPrevYear
WHERE {

# Monthly sales by state
{ SELECT ?stateName ?yearNo ?monthNo (SUM(?sales) AS ?totalSales)
WHERE { ?o qb:dataSet nwi:dataset1 ; nw:Customer ?cust ;

nw:OrderDate ?odate ; nw:SalesAmount ?sales .
?cust qb4o:inLevel nw:Customer ; skos:broader ?city .
?city qb4o:inLevel nw:City ; skos:broader ?state .
?state qb4o:inLevel nw:State ; nw:stateName ?stateName .
?odate qb4o:inLevel nw:OrderDate ; skos:broader ?month .
?month qb4o:inLevel nw:Month ; skos:broader ?quarter ;
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nw:monthNumber ?monthNo .
?quarter qb4o:inLevel nw:Quarter ; skos:broader ?sem .
?sem qb4o:inLevel nw:Semester ; skos:broader ?year .
?year qb4o:inLevel nw:Year ; nw:year ?yearNo . }

GROUP BY ?stateName ?yearNo ?monthNo }
# Monthly sales by state for the previous year
OPTIONAL {
{ SELECT ?stateName ?yearNo1 ?monthNo

(SUM(?sales1) AS ?salesPrevYear)
WHERE { ?o1 qb:dataSet nwi:dataset1 ; nw:Customer ?cust1 ;

nw:OrderDate ?odate1 ; nw:SalesAmount ?sales1 .
?cust1 qb4o:inLevel nw:Customer ; skos:broader ?city1 .
?city1 qb4o:inLevel nw:City ; skos:broader ?state .
?state qb4o:inLevel nw:State ; nw:stateName ?stateName .
?odate1 qb4o:inLevel nw:OrderDate ; skos:broader ?month1 .
?month1 qb4o:inLevel nw:Month ; skos:broader ?quarter1 ;
nw:monthNumber ?monthNo .
?quarter1 qb4o:inLevel nw:Quarter ; skos:broader ?sem1 .
?sem1 qb4o:inLevel nw:Semester ; skos:broader ?year1 .
?year1 qb4o:inLevel nw:Year ; nw:year ?yearNo1 . }

GROUP BY ?stateName ?yearNo1 ?monthNo }
FILTER ( ?yearNo = ?yearNo1 + 1) } }

ORDER BY ?stateName ?yearNo ?monthNo

The first inner query computes the monthly sales by state by rolling up the
customer dimension to the state level and the order date dimension to the
month level. Then, after the OPTIONAL keyword, the second inner query
computes again the monthly sales by state. The FILTER condition makes the
join of the two inner queries relating the sales amount of a month and that
of the corresponding month of the previous year.

Query 14.4. Monthly sales growth per product, that is, total sales per
product compared to those of the previous month.

SELECT ?prodName ?yearNo ?monthNo ?totalSales ?prevMonthSales
(?totalSales - ?prevMonthSales AS ?salesGrowth)

WHERE {
# Monthly sales by product
{ SELECT ?prodName ?yearNo ?monthNo (SUM(?sales) AS ?totalSales)
WHERE { ?o qb:dataSet nwi:dataset1 ; nw:Product ?prod ;

nw:OrderDate ?odate ; nw:SalesAmount ?sales .
?prod qb4o:inLevel nw:Product ; nw:productName ?prodName .
?odate qb4o:inLevel nw:OrderDate ; skos:broader ?month .
?month qb4o:inLevel nw:Month ; nw:monthNumber ?monthNo ;
skos:broader ?quarter .
?quarter qb4o:inLevel nw:Quarter ; skos:broader ?sem .
?sem qb4o:inLevel nw:Semester ; skos:broader ?year .
?year qb4o:inLevel nw:Year ; nw:year ?yearNo . }

GROUP BY ?prodName ?yearNo ?monthNo }
# Monthly sales by product for the previous month
OPTIONAL {
{ SELECT ?prodName ?yearNo1 ?monthNo1

(SUM(?sales1) AS ?prevMonthSales)
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WHERE { ?o1 qb:dataSet nwi:dataset1 ; nw:Product ?prod ;
nw:OrderDate ?odate1 ; nw:SalesAmount ?sales1 .
?prod qb4o:inLevel nw:Product ; nw:productName ?prodName .
?odate1 qb4o:inLevel nw:OrderDate ; skos:broader ?month1 .
?month1 qb4o:inLevel nw:Month ; nw:monthNumber ?monthNo1 ;
skos:broader ?quarter1 .
?quarter1 qb4o:inLevel nw:Quarter ; skos:broader ?sem1 .
?sem1 qb4o:inLevel nw:Semester ; skos:broader ?year1 .
?year1 qb4o:inLevel nw:Year ; nw:year ?yearNo1 . }

GROUP BY ?prodName ?yearNo1 ?monthNo1 }
FILTER( ( (?monthNo = ?monthNo1 + 1) && (?yearNo = ?yearNo1) ) ||
( (?monthNo = 1) && (?monthNo1 = 12) &&
(?yearNo = ?yearNo1+1) ) ) } }

ORDER BY ?prodName ?yearNo ?monthNo

The first inner query computes the monthly sales by product. Then, after the
OPTIONAL keyword, the second inner query computes again the monthly
sales by product. The FILTER condition makes the join of the two inner
queries relating the sales amount of a month and that of the previous month.
The condition must take into account whether the previous month is in the
same year or in the previous year.

Query 14.5. Three best-selling employees.

SELECT ?fName ?lName (SUM(?sales) AS ?totalSales)
WHERE { ?o qb:dataSet nwi:dataset1 ; nw:Employee ?emp ; nw:SalesAmount ?sales .

?emp qb4o:inLevel nw:Employee ; nw:firstName ?fName ;
nw:lastName ?lName . }

GROUP BY ?fName ?lName
ORDER BY DESC (?totalSales)
LIMIT 3

This query computes the total sales by employee, sorts them in descending
order of total sales, and keeps the first three results.

Query 14.6. Best-selling employee per product and year.

SELECT ?prodName ?yearNo ?maxSales ?fName ?lName
WHERE {

# Maximum employee sales per product and year
{ SELECT ?prodName ?yearNo (MAX(?totalSales) as ?maxSales)
WHERE {

{ SELECT ?prodName ?yearNo ?emp (SUM(?sales) AS ?totalSales)
WHERE { ?o qb:dataSet nwi:dataset1 ; nw:Product ?prod ;
nw:OrderDate ?odate ; nw:Employee ?emp ;
nw:SalesAmount ?sales .
?prod qb4o:inLevel nw:Product ; nw:productName ?prodName .
?emp qb4o:inLevel nw:Employee .
?odate qb4o:inLevel nw:OrderDate ; skos:broader ?month .
?month qb4o:inLevel nw:Month ; skos:broader ?quarter .
?quarter qb4o:inLevel nw:Quarter ; skos:broader ?sem .
?sem qb4o:inLevel nw:Semester ; skos:broader ?year .
?year qb4o:inLevel nw:Year ; nw:year ?yearNo . }
GROUP BY ?prodName ?yearNo ?emp } }
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GROUP BY ?prodName ?yearNo }
# Sales per product, year, and employee
{ SELECT ?prodName ?yearNo ?fName ?lName

(SUM(?sales1) AS ?empSales)
WHERE { ?o1 qb:dataSet nwi:dataset1 ; nw:Product ?prod ;

nw:OrderDate ?odate1 ; nw:Employee ?emp1 ;
nw:SalesAmount ?sales1 .
?prod qb4o:inLevel nw:Product ; nw:productName ?prodName .
?emp1 qb4o:inLevel nw:Employee ; nw:firstName ?fName ;
nw:lastName ?lName .
?odate1 qb4o:inLevel nw:OrderDate ; skos:broader ?month1 .
?month1 qb4o:inLevel nw:Month ; skos:broader ?quarter1 .
?quarter1 qb4o:inLevel nw:Quarter ; skos:broader ?sem1 .
?sem1 qb4o:inLevel nw:Semester ; skos:broader ?year .
?year qb4o:inLevel nw:Year ; nw:year ?yearNo . }

GROUP BY ?prodName ?yearNo ?fName ?lName }
FILTER ( ?maxSales = ?empSales ) }

ORDER BY ?prodName ?yearNo

The first inner query computes the maximum employee sales by product and
year. Then, the second inner query computes the sales per product, year,
and employee. The FILTER condition makes the join of the two inner queries
relating the maximum sales with the employee that realized those sales.

Query 14.7. Countries that account for top 50% of the sales amount.
For simplicity, in this query we compute the top 50% of the sales amount

by state, instead of by country. In this case, we must not take care of the fact
that states roll up to either regions or countries. This can be taken care by
using a UNION operator as was we did in Query 14.2.

SELECT ?stateName ?totalSales ?cumSales
WHERE { ?state qb4o:inLevel nw:State ; nw:stateName ?stateName .

# Total sales and cumulative sales by state
{ SELECT ?state ?totalSales (SUM(?totalSales1) AS ?cumSales)
WHERE {

# Total sales by state
{ SELECT ?state (SUM(?sales) AS ?totalSales)
WHERE { ?o qb:dataSet nwi:dataset1 ; nw:Customer ?cust ;

nw:SalesAmount ?sales .
?cust qb4o:inLevel nw:Customer ; skos:broader ?city .
?city qb4o:inLevel nw:City ; skos:broader ?state .
?state qb4o:inLevel nw:State . }

GROUP BY ?state }
# Total sales by state
{ SELECT ?state1 (SUM(?sales1) AS ?totalSales1)
WHERE { ?o qb:dataSet nwi:dataset1 ; nw:Customer ?cust1 ;

nw:SalesAmount ?sales1 .
?cust1 qb4o:inLevel nw:Customer ; skos:broader ?city1 .
?city1 qb4o:inLevel nw:City ; skos:broader ?state1 .
?state1 qb4o:inLevel nw:State . }

GROUP BY ?state1 }
FILTER ( ?totalSales <= ?totalSales1 ) }
GROUP BY ?state ?totalSales }
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# Minimum cumulative sales >= 50% of the overall sales
{ SELECT (MIN(?cumSales2) AS ?threshold)
WHERE {

# 50% of the overall sales
{ SELECT (0.5 * SUM(?sales) AS ?halfOverallSales)
WHERE { ?o qb:dataSet nwi:dataset1 ;

nw:SalesAmount ?sales . } }
# Total sales and cumulative sales by state
{ SELECT ?state2 ?totalSales2

(SUM(?totalSales3) AS ?cumSales2)
WHERE {

{ SELECT ?state2 (SUM(?sales2) AS ?totalSales2)
WHERE { ?o2 qb:dataSet nwi:dataset1 ;
nw:Customer ?cust2 ; nw:SalesAmount ?sales2 .
?cust2 qb4o:inLevel nw:Customer ; skos:broader ?city2 .
?city2 qb4o:inLevel nw:City ; skos:broader ?state2 .
?state2 qb4o:inLevel nw:State . }
GROUP BY ?state2 }
{ SELECT ?state3 (SUM(?sales3) AS ?totalSales3)
WHERE { ?o3 qb:dataSet nwi:dataset1 ;
nw:Customer ?cust3 ; nw:SalesAmount ?sales3 .
?cust3 qb4o:inLevel nw:Customer ; skos:broader ?city3 .
?city3 qb4o:inLevel nw:City ; skos:broader ?state3 .
?state3 qb4o:inLevel nw:State . }
GROUP BY ?state3 }
FILTER ( ?totalSales2 <= ?totalSales3 ) }
GROUP BY ?state2 ?totalSales2 }

FILTER(?cumSales2 >= ?halfOverallSales) } }
FILTER(?cumSales <= ?threshold) }

ORDER BY DESC(?totalSales)

The first inner query computes for each country the total sales and the
cumulative sales of all countries having total sales greater than or equal to
the total sales of the country. The second inner query computes the threshold
value, which represents the minimum cumulative sales greater than or equal
to the 50% of the overall sales. Finally, the FILTER selects all countries whose
cumulative sales are less than or equal to the threshold value.

Query 14.8. Total sales and average monthly sales by employee and year.

SELECT ?fName ?lName ?yearNo (SUM(?monthlySales) AS ?totalSales)
(AVG(?monthlySales) AS ?avgMonthlySales)

WHERE {
# Monthly sales by employee
{ SELECT ?fName ?lName ?month (SUM(?sales) AS ?monthlySales)
WHERE { ?o qb:dataSet nwi:dataset1 ; nw:Employee ?emp ;

nw:OrderDate ?odate ; nw:SalesAmount ?sales .
?emp qb4o:inLevel nw:Employee ; nw:firstName ?fName ;
nw:lastName ?lName .
?odate qb4o:inLevel nw:OrderDate ; skos:broader ?month .
?month qb4o:inLevel nw:Month . }

GROUP BY ?fName ?lName ?month }
?month skos:broader ?quarter .
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?quarter qb4o:inLevel nw:Quarter ; skos:broader ?sem .
?sem qb4o:inLevel nw:Semester ; skos:broader ?year .
?year qb4o:inLevel nw:Year ; nw:year ?yearNo . }

GROUP BY ?fName ?lName ?yearNo
ORDER BY ?fName ?lName ?yearNo

In the query above, the inner query computes the total sales amount by
employee and month. The outer query rolls up the previous result to the year
level while computing the total yearly sales and the average monthly sales.

Query 14.9. Total sales amount and total discount amount per product
and month.

SELECT ?prodName ?yearNo ?monthNo (SUM(?sales) AS ?totalSales)
(SUM(?unitPrice * ?qty * ?disc) AS ?totalDiscAmount)

WHERE { ?o qb:dataSet nwi:dataset1 ; nw:Product ?prod ;
nw:OrderDate ?odate ; nw:SalesAmount ?sales ;
nw:Quantity ?qty ; nw:Discount ?disc ; nw:UnitPrice ?unitPrice .
?prod qb4o:inLevel nw:Product ; nw:productName ?prodName .
?odate qb4o:inLevel nw:OrderDate ; skos:broader ?month .
?month qb4o:inLevel nw:Month ; nw:monthNumber ?monthNo ;
skos:broader ?quarter .
?quarter qb4o:inLevel nw:Quarter ; skos:broader ?sem .
?sem qb4o:inLevel nw:Semester ; skos:broader ?year .
?year qb4o:inLevel nw:Year ; nw:year ?yearNo . }

GROUP BY ?prodName ?yearNo ?monthNo
ORDER BY ?prodName ?yearNo ?monthNo

In this query, we roll up to the month level and then compute the requested
measures.

Query 14.10. Monthly year-to-date sales for each product category.

SELECT ?catName ?yearNo ?monthNo (SUM(?totalSales1) AS ?YTDSales)
WHERE { ?cat qb4o:inLevel nw:Category ; nw:categoryName ?catName .

?month qb4o:inLevel nw:Month ; nw:monthNumber ?monthNo ;
skos:broader ?quarter .
?quarter qb4o:inLevel nw:Quarter ; skos:broader ?sem .
?sem qb4o:inLevel nw:Semester ; skos:broader ?year .
?year qb4o:inLevel nw:Year ; nw:year ?yearNo.
{ SELECT ?catName ?yearNo ?monthNo1 (SUM(?sales1) AS ?totalSales1)
WHERE { ?o1 qb:dataSet nwi:dataset1 ; nw:Product ?prod1 ;

nw:OrderDate ?odate1 ; nw:SalesAmount ?sales1 .
?prod1 qb4o:inLevel nw:Product ; skos:broader ?cat1 .
?cat1 qb4o:inLevel nw:Category ; nw:categoryName ?catName .
?odate1 qb4o:inLevel nw:OrderDate ; skos:broader ?month1 .
?month1 qb4o:inLevel nw:Month ; nw:monthNumber ?monthNo1 ;
skos:broader ?quarter1 .
?quarter1 qb4o:inLevel nw:Quarter ; skos:broader ?sem1 .
?sem1 qb4o:inLevel nw:Semester ; skos:broader ?year1 .
?year1 qb4o:inLevel nw:Year ; nw:year ?yearNo. }

GROUP BY ?catName ?yearNo ?monthNo1 }
FILTER( ?monthNo >= ?monthNo1 ) }

GROUP BY ?catName ?yearNo ?monthNo
ORDER BY ?catName ?yearNo ?monthNo
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This query starts by selecting the category, month, and year levels. Then,
for each category, month, and year, the query selects all facts whose order
date is in the same year but whose month is less than or equal to the current
month.

Query 14.11. Moving average over the last 3 months of the sales amount
by product category.

SELECT ?catName ?yearNo ?monthNo (AVG(?totalSales1) AS ?MovAvgSales)
WHERE { ?cat qb4o:inLevel nw:Category ; nw:categoryName ?catName .

?month qb4o:inLevel nw:Month ; nw:monthNumber ?monthNo ;
skos:broader ?quarter .
?quarter qb4o:inLevel nw:Quarter ; skos:broader ?sem .
?sem qb4o:inLevel nw:Semester ; skos:broader ?year .
?year qb4o:inLevel nw:Year ; nw:year ?yearNo.
OPTIONAL {
{ SELECT ?catName ?yearNo1 ?monthNo1 (SUM(?sales1) AS ?totalSales1)
WHERE { ?o1 qb:dataSet nwi:dataset1 ; nw:Product ?prod1 ;

nw:OrderDate ?odate1 ; nw:SalesAmount ?sales1 .
?prod1 qb4o:inLevel nw:Product ; skos:broader ?cat1 .
?cat1 qb4o:inLevel nw:Category ; nw:categoryName ?catName .
?odate1 qb4o:inLevel nw:OrderDate ; skos:broader ?month1 .
?month1 qb4o:inLevel nw:Month ; nw:monthNumber ?monthNo1 ;
skos:broader ?quarter1 .
?quarter1 qb4o:inLevel nw:Quarter ; skos:broader ?sem1 .
?sem1 qb4o:inLevel nw:Semester ; skos:broader ?year1 .
?year1 qb4o:inLevel nw:Year ; nw:year ?yearNo1. }

GROUP BY ?catName ?yearNo1 ?monthNo1 }
FILTER( (( ?monthNo >= 3 && ?yearNo = ?yearNo1 &&
?monthNo >= ?monthNo1 && ?monthNo-2 <= ?monthNo1 ) ||
( ?monthNo = 2 && (( ?yearNo = ?yearNo1 && ?monthNo1 <= 2 ) ||
( ?yearNo = ?yearNo1+1 && ?monthNo1 = 12 ))) ||
( ?monthNo = 1 && ((?yearNo = ?yearNo1 && ?monthNo1 = 1 ) ||
(?yearNo = ?yearNo1+1 && ?monthNo1 >= 11 ))))) } }

GROUP BY ?catName ?yearNo ?monthNo
ORDER BY ?catName ?yearNo ?monthNo

This query starts by selecting the category, month, and year levels. Then,
for each category, month, and year, the query selects all facts whose order
date is within a 3-month window from the current month. This selection
involves an elaborated condition in the FILTER clause, which covers three
cases, depending on whether the month is March or later, the month is
February, or the month is January.

Query 14.12. Personal sales amount made by an employee compared with
the total sales amount made by herself and her subordinates during 1997.

SELECT ?fName ?lName ?persSales ?subordSales
WHERE { ?emp qb4o:inLevel nw:Employee; nw:firstName ?fName ;

nw:lastName ?lName .
{ SELECT ?emp (SUM(?sales) AS ?persSales)
WHERE { ?o qb:dataSet nwi:dataset1 ; nw:Employee ?emp ;

nw:OrderDate ?odate ; nw:SalesAmount ?sales .
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?odate qb4o:inLevel nw:OrderDate ; skos:broader ?month .
?month qb4o:inLevel nw:Month ; skos:broader ?quarter .
?quarter qb4o:inLevel nw:Quarter ; skos:broader ?sem .
?sem qb4o:inLevel nw:Semester ; skos:broader ?year .
?year qb4o:inLevel nw:Year ; nw:year ?yearNo .
FILTER(?yearNo = 1997) }

GROUP BY ?emp }
{ SELECT ?emp (SUM(?sales1) AS ?subordSales)
WHERE { ?subord nw:supervisor* ?emp .

?o1 qb:dataSet nwi:dataset1 ; nw:Employee ?subord ;
nw:OrderDate ?odate1 ; nw:SalesAmount ?sales .
?odate1 qb4o:inLevel nw:OrderDate ; skos:broader ?month1 .
?month1 qb4o:inLevel nw:Month ; skos:broader ?quarter1 .
?quarter1 qb4o:inLevel nw:Quarter ; skos:broader ?sem1 .
?sem1 qb4o:inLevel nw:Semester ; skos:broader ?year1 .
?year1 qb4o:inLevel nw:Year ; nw:year ?yearNo1 .
FILTER(?yearNo1 = 1997) }

GROUP BY ?emp } }
ORDER BY ?emp

The first inner query computes by employee the personal sales in 1997.
The second inner query exploits the recursive hierarchy Supervision with
a property path expression in SPARQL. The ‘*’ character states that the
transitive closure of the supervision hierarchy must be taken into account for
obtaining all subordinates of an employee. Then, the sales in 1997 of all these
subordinates are aggregated.

Query 14.13. Total sales amount, number of products, and sum of the
quantities sold for each order.

SELECT ?orderNo (SUM(?sales) AS ?totalSales)
(COUNT(?prod) AS ?nbProducts) (SUM(?qty) AS ?nbUnits)

WHERE { ?o qb:dataSet nwi:dataset1 ; nw:Order ?order ;
nw:Product ?prod ; nw:SalesAmount ?sales ; nw:Quantity ?qty .
?order qb4o:inLevel nw:Order ; nw:orderNo ?orderNo . }

GROUP BY ?orderNo
ORDER BY ?orderNo

In this query, we group sales by order number and then compute the requested
measures.

Query 14.14. For each month, total number of orders, total sales amount,
and average sales amount by order.

SELECT ?yearNo ?monthNo (COUNT(?orderNo) AS ?nbOrders)
(SUM(?totalSales) AS ?totalSalesMonth)
(AVG(?totalSales) AS ?avgSalesOrder)

WHERE {
{ SELECT ?orderNo ?odate (SUM(?sales) AS ?totalSales)
WHERE { ?o qb:dataSet nwi:dataset1 ; nw:Order ?order ;

nw:OrderDate ?odate ; nw:SalesAmount ?sales .
?order qb4o:inLevel nw:Order ; nw:orderNo ?orderNo . }

GROUP BY ?orderNo ?odate }
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?odate qb4o:inLevel nw:OrderDate ; skos:broader ?month .
?month qb4o:inLevel nw:Month ; nw:monthNumber ?monthNo ;
skos:broader ?quarter .
?quarter qb4o:inLevel nw:Quarter ; skos:broader ?sem .
?sem qb4o:inLevel nw:Semester ; skos:broader ?year .
?year qb4o:inLevel nw:Year ; nw:year ?yearNo . }

GROUP BY ?yearNo ?monthNo
ORDER BY ?yearNo ?monthNo

Here, the inner query computes the total sales by order. The outer query then
rolls up the previous result to the month level and computes the requested
measures.

Query 14.15. For each employee, total sales amount, number of cities, and
number of states to which she is assigned.

SELECT ?fName ?lName (SUM(?sales)/COUNT(DISTINCT ?city) AS ?totalSales)
(COUNT(DISTINCT ?city) AS ?noCities)
(COUNT(DISTINCT ?state) AS ?noStates)

WHERE { ?o qb:dataSet nwi:dataset1 ; nw:Employee ?emp ; nw:SalesAmount ?sales .
?emp qb4o:inLevel nw:Employee ; nw:firstName ?fName ;
nw:lastName ?lName ; skos:broader ?city .
?city qb4o:inLevel nw:City ; skos:broader ?state .
?state qb4o:inLevel nw:State . }

GROUP BY ?fName ?lName
ORDER BY ?fName ?lName

Recall that there is a many-to-many relationship between employees and
cities. Thus, the above query rolls up to the city and state levels and then
groups the result by employee. Then, in the SELECT clause, we sum the sales
amount measure and divide it by the number of distinct cities assigned to an
employee. This solves the double-counting problem to which we referred in
Sect. 4.2.6.

14.6 Summary

In this chapter, we studied how OLAP techniques can be applied over the
semantic web. We first introduced the main concepts of RDF and RDFS,
the languages used to represent data and metadata on the semantic web,
and SPARQL, the standard language to query such data. Then, we studied
how to represent relational data in RDF. We then showed how OLAP
techniques can be directly applied to RDF data sets without the need of first
transforming semantic web data into OLAP data cubes. For this, we need
vocabularies that allow us to represent OLAP data and metadata. We studied
and compared two of these vocabularies: the Data Cube Vocabulary (QB) and
the QB4OLAP vocabulary. We studied the limitations of the former when
trying to define the OLAP operations and showed, based on a portion of a
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real-world case study, how these operations can be implemented in SPARQL.
Finally, we applied QB4OLAP to the Northwind data cube and query the
resulting RDF cube using SPARQL.

14.7 Bibliographic Notes

There are many books explaining the basics of the semantic web, for example,
[82]. A book entirely devoted to SPARQL is [41]. At the time of writing
this book, there is no much work on the topic of applying OLAP directly
over RDF data. Section 14.3 of this chapter is based on research work by
Etcheverry and Vaisman on QB4OLAP [52, 53]. Kämpgen and Harth [99]
also propose to apply OLAP operations on top of QB, although this approach
does not solve the limitations discussed in this chapter regarding the absence
of dimension structure in QB. In a sequel [100], the same authors proposed
to load statistical linked data into an RDF triple store and to answer OLAP
queries using SPARQL. For this, they implement an OLAP to SPARQL
engine which translates OLAP queries into SPARQL.

We also mentioned that another research approach studies how to extract
multidimensional data from the semantic web, and then analyze these data
using traditional OLAP techniques. The methods to do this are based on
ontologies, which allow us to extract data in a semiautomatic fashion. The
idea is to use ontologies to identify facts and dimensions that can populate a
data cube. We briefly mention next some of this work.

Niinimäki and Niemi [145] use ontology mapping to convert data sources
to RDF and then query this RDF data with SPARQL to populate the
OLAP schema. The ETL process is guided by the ontology. In addition,
the authors create an OLAP ontology, somehow similar to the vocabularies
discussed in this chapter. Ontologies are expressed in RDF and OWL.
Along the same lines, Romero and Abelló [180] address the design of the
data warehouse starting from an OWL ontology that describes the data
sources. They identify the dimensions that characterize a central concept
under analysis (the fact concept) by looking for concepts connected to it
through one-to-many relationships. The same idea is used for discovering the
different levels of the dimension hierarchies, starting from the concept that
represents the base level. The output of the method is a star or snowflake
schema that guarantees the summarizability of the data, suitable to be
instantiated in a traditional multidimensional database. Finally, Nebot and
Berlanga [142] proposed a semiautomatic method for extracting semantic
data on demand into a multidimensional database. In this way, data could
be analyzed using traditional OLAP techniques. Here, the authors assume
that data are represented as an OWL ontology. A portion of this ontology
contains the application and domain ontology axioms, while the other part
contains the actual instance store. A multidimensional schema must first be



14.9 Exercises 575

created from the requirements and the knowledge that can be inferred from
the ontologies. This schema is then semiautomatically populated from the
ontology.

14.8 Review Questions

14.1 What are the two main approaches to perform OLAP analysis with
semantic web data?

14.2 Briefly describe RDF and RDFS and their main constructs.
14.3 Give an example of the RDF/XML and Turtle serializations of RDF

data.
14.4 What is SPARQL? How does its semantics differ from the one of SQL?
14.5 Give an example of a SPARQL query, describe its elements, and

discuss how it will be evaluated.
14.6 Explain the two standard approaches to represent relational data in

RDF. How do they differ from each other?
14.7 How can we represent multidimensional data in RDF?
14.8 Briefly explain the data cube vocabulary QB.
14.9 How can hierarchies be represented in QB?

14.10 Is it possible to perform a roll-up operation on data represented in
QB?

14.11 How does the QB4OLAP vocabulary overcome the limitations above?
14.12 Analyze and discuss the implementation of roll-up in QB4OLAP.
14.13 Explain how to perform OLAP queries in SPARQL.

14.9 Exercises

14.1 Given the Northwind data cube, show the QB representation of the
Sales fact. Provide at least two observations.

14.2 Given the Northwind data cube, show the QB4OLAP representation
of the dimension Customer.

14.3 Do the same as Ex. 14.2 for the dimension Employee.
14.4 Write the R2RML mapping that represents the Northwind data

warehouse using the QB4OLAP vocabulary.
14.5 Show the SPARQL query implementing the operation

ROLLUP(Northwind, Product → Category, SUM(SalesAmount)).

14.6 Show the SPARQL query implementing the operation

SLICE(Northwind, Customer, City='Paris').
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Sales
product id time id customer id promotion id store id store sales store cost unit sales

219 738 567 0 1 7.16 2.4344 3
684 738 567 0 1 12.88 5.0232 2
551 739 639 7 2 5.20 2.236 4

Product
product id product name brand name product class id

219 Best Choice Corn Chips Best Choice 12
551 Fast Low Fat Chips Fast 12
684 Gorilla Blueberry Yogurt Gorilla 6

Product class
product class id product subcategory product category product department product family

6 Yogurt Dairy Dairy Food
12 Chips Snack Foods Snack Foods Food

Time by day
time id the date the day the month the year day of month week of year month of year quarter

738 1998-01-07 Wednesday January 1998 7 4 1 Q1
739 1998-01-08 Thursday January 1998 8 4 1 Q1

Customer

cust id fname mi lname city state country marital
status

yearly
income gender education

567 Charles L. Christensen Santa Fe DF Mexico S $50K-$70K F Bachelors
639 Michael J. Troyer Kirkland WA USA M $30K-$50K M High School

Promotion
prom id prom name media type

0 No Promotion No Media
7 Fantastic Discounts Sunday paper, Radio, TV

Store
store id store type store name store city store state store country store sqft

1 Supermarket Store 1 Acapulco Guerrero Mexico 23593
2 Small Grocery Store 2 Bellingham WA USA 28206

Fig. 14.9 An instance of the Foodmart data warehouse

14.7 Represent the Foodmart cube schema using the QB4OLAP vocabulary.
14.8 Consider the Foodmart table instances given in Fig. 14.9a. Represent

sales facts as observations, adhering to the Data Structure Definition
specified in the previous exercise.

14.9 Write in SPARQL the queries over the Foodmart cube given in Ex. 4.9.



Chapter 15

Conclusion

In this book, we have provided an in-depth coverage of the most relevant
topics in data warehouse design and implementation. Even though in
Chaps. 11–14 we covered advanced and very recent developments, there are
many other important ones that have been consciously left out for space
reasons in favor of mature technologies. We conclude this book with some
brief comments on these topics, which we believe will become increasingly
relevant in the near future. We refer to a recent book [144] where further
perspectives on business intelligence can be found.

15.1 Temporal Data Warehouses

Inmon’s classic definition of data warehouses, presented in Sect. 1.1, mentions
their nonvolatile and time-varying characteristics. However, in traditional
data warehouses, these features apply only to measures, not to dimensions.
Indeed, although data warehouses include a time dimension that is used for
aggregation (using the roll-up operation) or for filtering (using the slice and
dice operations), the time dimension cannot be used to keep track of changes
in other dimensions, for example, when a product changes its category. This
situation leaves to the application layer the responsibility of representing
changes in dimensions. Temporal data warehouses aim at solving this
problem by extending the data definition and manipulation languages with
temporal semantics. In a temporal data warehouse, changes may occur at
the instance level (as in the example of the product changing its category
mentioned above) or at a schema level, for example, when a dimension level is
added or deleted. Moreover, when the bottom level of a dimension is added or
deleted, the associated fact table is affected, and its schema must be modified.
All of these changes must be automatically handled by the data definition
language. The semantics of the query language must also account for these
changes to produce the correct aggregations.

A. Vaisman and E. Zimányi, Data Warehouse Systems, Data-Centric
Systems and Applications, DOI 10.1007/978-3-642-54655-6 15,
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Temporal data warehouses aim at applying the results of many years of
research in temporal databases to the data warehouse field. Temporal
databases provide structures and mechanisms for representing and managing
information that varies over time. In short, temporal databases allow past
or future data to be stored in a database as well as the time instants when
the changes in these data occurred or will occur. Thus, temporal databases
enable users to know the evolution of information required for solving complex
problems in many application domains in which time is naturally present, for
example, land management, financial, and healthcare applications.

Temporal data warehouses raise many issues, including consistent aggrega-
tion in the presence of time-varying data, temporal queries, storage methods,
and temporal view materialization. Further, very little attention has been
given by the research community to the conceptual and logical modeling
of temporal data warehouses or to the analysis of the temporal support
that should be included in data warehouses. Some of these issues have been
addressed in the literature to various extents.

Golfarelli and Rizzi provide a survey of temporal data warehouses [66].
With a focus on conceptual modeling of temporal data warehouses, Mali-
nowski and Zimányi [124, 127] introduced time-varying (i.e., temporal) data
types for keeping the history of data warehouse dimensions and extended the
MultiDim model studied in this book to address temporal data warehouses.
Also, translation rules from the conceptual to the relational and object-
relational models are given. Logical data models have also been proposed
for temporal data warehouses [42–44,136,137]. For example, Mendelzon and
Vaisman [136, 137] introduced TOLAP, a data model and query language
where the schema and the instances of the relationships between levels in a
hierarchy are timestamped with their validity intervals. These timestamps
define how dimension-level members are aggregated. In this way, we can
aggregate measures according to the dimension schema and instances that
existed when the corresponding facts occurred.

It is worth remarking that slowly changing dimensions, studied in Chap. 5,
address the problem above in a limited way and are only one variant of
temporal data warehouses. Further, the slowly changing dimensions solutions
do not take into account all the research that has been done in the field
of temporal databases. We have seen that some of the solutions for slowly
changing dimensions do not preserve the entire history of the data and are
difficult to implement. One of the main differences between the temporal
models discussed above and the slowly changing dimensions approach is that
the semantics of the updates to dimension hierarchies is ignored by the latter.
Thus, the valid path at a certain instant in a temporal hierarchy must be
computed manually at the moment of writing the query rather than being
accounted for automatically by the query language.

Another approach to temporal data warehousing is multiversioning. For
example, Ravat et al. [170] defined a multiversion multidimensional model
that consists of a set of star versions, each one associated with a temporal
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interval and including one version for a fact and one version for each
dimension associated with a fact. Whenever changes to dimensions or facts
occur at the schema level, a new star version is created. A similar approach
was taken by Wrembel and Bebel [230], where each change at the schema
or instance level results in the creation of a new schema version even
though that version has the same structure as the original one in the case
of changes at the instance level. Other proposals on this topic are, for
example, [31, 140, 208, 231]. The subtle interrelationship between temporal
data warehouses and multiversioning still needs to be investigated. For
example, a schema update of a source table may trigger a change in the data
warehouse schema, hence a new data warehouse version is created. However,
it would not be reliable to create a new data warehouse version each time
an instance changes. For this, timestamping the association between levels
would clearly be a better option. On the other hand, if the data source were
a temporal database, a temporal data warehouse that accounts for instance
and schema changes appears natural.

In spite of the progress made in the field, temporal databases have not been
adopted by database practitioners, and as a consequence, the same occurs in
the data warehouse field. This is the main reason why we did not include
temporal data warehouses in this book. However, it is worth noting that the
last version of the SQL standard released in 2011 has temporal facilities.
Further, current database management systems such as Oracle, Teradata,
and DB2 also provide temporal support. The availability of such features
implies that temporal data warehouse systems will become a reality in the
near future, but for that to happen, temporal databases need to become more
used than they have been so far.

15.2 3D/4D Spatial Data Warehouses

In our study of spatial and spatiotemporal data warehouses (Chaps. 11
and 12), we had not addressed their extension to manage three- and four-
dimensional (3D/4D) objects, which would lead to 3D/4D spatial data
warehouses.

Many modern applications require the integration of 2D and 3D spatial
data (see a comprehensive review in [20]). For example, applications such
as facility management and disaster management in cities require not only
information about the locations but also information about the interior of
buildings. In cadastral surveys and insurance, the volume of a building might
also be of interest. In spite of the need of such integration between the 2D
and 3D worlds, typically the 2D world is digitally represented as a map and
the 3D world as a 3D model, both being implemented in completely different
data models and minimally integrated. However, nothing should prevent to
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integrate a 2D city map with a 3D city model in a spatial database by using
a unified modeling approach.

Further, in recent years, we have witnessed an increasing interest in
4D (i.e., 3D plus time) spatial database systems. For example, there is an
urgent need to move from old 2D cadastral systems to 4D ones [40]. Climate
modeling and disaster prevention are other applications that depend on 4D
modeling. In most cases, going from a 3D to a 2D model is possible, but
moving up from 2D to 3D or 4D is not. Therefore, 3D geomodeling is a
research area that is urgently required to produce new 3D/4D geoinformation
systems. Further, the design and implementation of geometric and topological
database operations for moving 3D (i.e., 4D) objects is a focus of interest for
research and industry. Although several conceptual models supporting 3D
objects have been proposed in the literature considering both geometrical and
topological aspects (e.g., [106, 112, 241]), no current database management
system supports 3D topological models, yet many support 2D topologies. A
key need for this consists in developing spatial indexes for topological models.

In summary, the directions in this field are the seamless integration
between 2D and 3D data models to be usable in both worlds and the
development of 3D/4D geographic information systems. A step in this
direction is CityGML,1 an open information model for representing, storing,
and exchanging 3D city and landscape models. CityGML is implemented
as an application schema for the Geography Markup Language (GML)
[110], the standard for spatial data exchange issued by the Open Geospatial
Consortium, and provides a standard for describing the geometry, topology,
and semantics of 3D objects. CityGML is highly scalable supporting not
only buildings but also whole sites, districts, cities, regions, and countries.
CityGML provides 3D content, allowing visualization through several appli-
cations, but it also allows users to share virtual 3D city and landscape
models for sophisticated analysis, for example, environmental simulations,
energy demand analysis, city management, and disaster management. As an
example, the application of CityGML to a case study in the Netherlands can
be found in [216]. There is a series of conferences specifically devoted to 3D
GeoInformation. The volumes of these conferences are published by Springer,
the last one being [165].

Given the discussion above, the reader should at this point not be surprised
to know that very few publications have addressed the combination of data
warehouses and 3D objects. As an example, the BioMap data warehouse
[121, 122] integrates biological data sources in order to provide integrated
sequence/structure/function resources that support analysis, mining, and
visualization of functional genomic data. Extending conceptual models for
data warehousing in this direction requires first the definition of 3D spatial

1http://www.citygml.org/

http://www.citygml.org/
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data types, 3D topological operators, and spatial operations and functions
that can operate on 3D data types. After that, issues such as the aggregation
of spatial measures should be addressed. Thus, there is fertile land for research
in the field of 3D spatial data warehouses. Combining these with trajectory
data warehouses such as the ones we studied in Chap. 12 would lead to 4D
spatial data warehouses.

Another important issue in this respect is to cope with multiple
representations of spatial data, which means to allow the same real-world
object to have several geometries. Dealing with multiple representations is a
common requirement in spatial databases, in particular as a consequence of
dealing with multiple levels of spatial resolution. This is also an important
aspect in data warehouses since spatial data may be integrated from source
systems containing data at various different spatial resolutions. In this book,
we have implicitly assumed that we have selected one representation from
those available. However, we may need to support multiple representations
in a multidimensional model. Again, conceptual models should be extended
to allow multiple representations of spatial data, as it is the case for the spa-
tiotemporal model MADS [155]. However, this raises some important issues.
For example, if levels forming a hierarchy can have multiple representations,
additional conditions are necessary to establish meaningful roll-up and drill-
down operations.

15.3 Text Analytics and Text Data Warehouses

Other topics that we envision to be important in the future are text
analytics and text data warehouses. This follows clearly from statistics
that report that only 20% of corporate data are in transactional systems and
the remaining 80% are in other formats, mainly text [171, 206]. In addition,
the advent of social media has produced enormous amounts of text data, and
the tools studied in Chap. 13 have made possible the analysis of these data.
Text data warehouses can help to perform this task, as we explain next.

Automatic extraction of structured information from text has been studied
for a long time. There are two main approaches for information extraction:
the machine learning approach and the rule-based one. Most systems in both
categories were built for academic settings to be used by specialists and are,
in general, not scalable to heavy workloads.

In the machine learning approach, techniques like the ones studied
in Chap. 9 are used. For example, automatic text classification has been
extensively addressed mainly using supervised learning techniques, where
predefined category labels are assigned to documents. Examples are the
Rocchio algorithm, k-nearest neighbor, decision trees, näıve Bayes algorithm,
neural networks, and support vector machines, among other ones. More
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recently, the combination of different learning methods is increasingly being
used. A survey of these techniques can be found in [54].

An example of a rule-based information extraction system is SystemT-
IE [107,172], a result from research carried out at the IBM Almaden Research
Center. This system is now included as part of the InfoSphere BigInsights
suite of products. SystemT-IE comes with an SQL-like declarative language
denoted Annotation Query Language (AQL) [30] for specifying text analytics
extraction programs (called extractors) with rule semantics. Extractors
obtain structured information from unstructured or semistructured text. For
this, AQL extends SQL with the EXTRACT statement. Data in AQL are
stored in relations where all tuples have the same schema, analogous to
SQL relational tables. In addition, AQL includes statements for creating
tables, views, user-defined functions, and dictionaries. However, AQL does
not support advanced SQL features like correlated subqueries and recursive
queries. After the extractors are generated, an optimizer produces an efficient
execution plan for them in the form of an annotation operator graph. The
plan is finally executed by a runtime engine, which takes advantage of parallel
architectures.

Information extraction techniques like the one introduced above can be
used to populate a data warehouse for multidimensional text analysis using
OLAP. Typically, an ETL process will extract textual data from various
sources and, after cleansing and transformation, will load such data into
the warehouse. The phases of this process will include textual data and
metadata extraction from documents; transformation of the extracted data
through classic text retrieval techniques like cleaning texts, stemming, term
weighting, language modeling, and so on; and loading the data resulting from
the transformation phase into the data warehouse. In a recent book [92], W.H.
Inmon details, at a high abstraction level, the tasks required to be performed
by an ETL process for text data warehouses.

We next discuss some proposals in the field of text data warehouses.
In one of the earliest works in the field, Tseng and Chou [206] propose

a document warehouse for multidimensional analysis of textual data. Their
approach is to combine text processing with numeric OLAP processing. For
this, they organize unstructured documents into structured data consisting
of dimensions, hierarchies, facts, and measures. Dimensions are composed of
a hierarchy of keywords referring to a concept, which are obtained using
text mining tools. Facts include the identifiers of the documents under
analysis and the number of times that a combination of keywords appears
in such documents. For example, suppose we are analyzing documents in
order to discover products and cities appearing together. A hierarchy of
keywords referring to products can be represented in a Product dimension
with schema (ProductKey, Keyword, KeywordLevel, Parent), where ProductKey
is the surrogate key of the keyword, Keyword is a word in the document,
KeywordLevel is the level of Keyword in the hierarchy, and Parent is the parent
KeywordLevel. For example, a hierarchy of keywords such as TV → Appliance
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→ All Products can be represented by the tuples ( p1, All Products, 1, 1),
(p2, Appliance, 2, 1), and (p3, TV, 3, 2). The last tuple tells, for instance,
that the TV keyword belongs to the hierarchy level 3 and its parent is in
level 2. Dimension City would be analogous and could contain, for example,
a tuple (c4, Brussels, 3, 2). The fact table is composed of the keys from
the dimensions Product and City, the identifier of a document containing
a combination of a product and a city, and the number of times that this
combination appears in the document. For example, a tuple in the fact table
can be (p3, c4, d1, 3), indicating that the combination of keywords TV and
Brussels appears three times in document d1. Over this structure, OLAP
operations can be performed as usual.

In [117], Lin et al. present the notion of Text Cube, a data cube for
textual data, while in [39] Ding et al. study the problem of keyword-based
top-k search in text cubes, that is, given a keyword query, find the top-k
most relevant cells in a text cube. The text cube contains both structural
information (i.e., conventional dimensions) and textual information. Thus,
a text cube is a traditional OLAP data cube extended to summarize and
navigate structured and unstructured text data. A cell in the text cube
aggregates a set of documents that contain a combination of keywords
and attribute values on the cube dimensions. For example, suppose we
want to analyze reviews of television models. We can design a text cube
with schema (Brand,Model,Price,Review), where the first three attributes
are dimensions and the last one is the measure representing the review
documents. Consider three cells in the cube, namely, c1:(Sony, S1, 400, {d1}),
c2 : (Sony, S2, 800, {d2}), and c3 : (Panasonic,P1, 400, {d3}). Also, assume
that documents d1, d2, and d3 contain the keywords {light, cheap,modern},
{expensive,modern}, and {cheap, durable}, respectively. If a user wants to
find out the cells in the cube that are most relevant to the keywords cheap
and durable, the answer will be c3 since the review includes the two terms.
Cells can also be aggregated. For example, cells c1 and c3 above have as
parent cell (∗, ∗, 400, {d1, d2}), which contains the reviews aggregated by
price. Aggregated cells can also be included in the answer to a query by
analyzing the keywords present in the union of the documents.

There are other approaches along similar lines, like the ones of Zhang
et al. [237,238], where the authors introduce the notion of Topic Cube, which
combines OLAP with a probabilistic topic model. We omit the description of
these proposals here.

15.4 Multimedia Data Warehouses

New and complex kinds of data are posing new challenges to data analysis.
For example, we would like to perform OLAP operations over image or
music data and, in general, over multimedia data. For this, multimedia
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data warehouses must be designed in a way similar to traditional data
warehouses. Possible dimensions for image and video data can be the size of
the image or video, the width and height of the frames, the creation date,
and so on. Many of these dimensions also apply to other kinds of multimedia
data.

The main problem in multimedia data warehouses is their high dimen-
sionality. This is due to the fact that multimedia objects like images are
represented in a database by descriptors, which can be of two types: content-
based (or feature) descriptors and description-based (or textual) descriptors.
The former represent the intrinsic content of data (like color, texture, or
shape). The latter represent alphanumeric data like acquisition date, author,
topic, and so on. Most of the content-based descriptors are set oriented rather
than single valued. This would have as a consequence, for example, that we
may need to define each different color as a dimension. Given this high-
dimensional scenario, the main challenge is to be able to perform multimedia
analysis in reasonable execution time.

Image OLAP aims at supporting multidimensional on-line analysis of
image data. An example of the efforts in this field is the work by Jin et
al. [97], who proposed Visual Cube to perform multidimensional OLAP on
image collections such as web images indexed by search engines, product
images (e.g., from online shops), and photos shared on social networks. Visual
Cube defines two kinds of dimensions: metainformation dimensions such as
date, title, file name, owner, URL, tag, description, and GPS location and
visual dimensions (based on image visual features) such as image size, major
colors, face dimension (indicating the existence of faces), and a color/texture
histogram. To solve the dimensionality problem commented above, the
authors propose two kinds of schemes, namely, a multiple-dimension scheme
(MDS) and a single-dimension scheme (SDS). In an MDS representation, each
possible value of a feature is considered a dimension. For example, Sunny can
be a dimension. Each record corresponding to an image of a sunny day will
contain a ‘1’ in this dimension. On the other hand, in an SDS representation,
the many possible features will be replaced by a dimension denoted Tag. Thus,
an image of a sunny day will contain the value sunny on the Tag dimension.
In addition, a set-valued attribute will contain the identifiers of the images
with that feature, and a single-valued attribute will contain the total number
of such identifiers. The measures in Visual Cube can be a representative
image in a cluster or the number of elements in such a cluster. Clusters
are computed using techniques like the ones studied in Chap. 9. Records
in a cluster have a combination of descriptors corresponding to the cube
dimensions. In this way, OLAP operations can be performed. For example,
drill-down can be performed by clicking on an image to find others in the
cluster. Open questions are, for example, efficient evaluation of top-k queries
(given a query cell, find the top-k similar cells measured by the similarity
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of their images) and incremental update of Visual Cube (given new images,
efficiently update the cube).

In the medical domain (as is also the case, e.g., in bioinformatics),
multimedia data constitute valuable information for the decision-making
process. Arigon et al. [8, 9] have applied the idea of multimedia data
warehouses for analyzing electrocardiograms (ECGs). This work aims at
extending clinical decision-support systems with multimedia information.
This requirement poses many challenges. On the one hand, advanced
modeling features such as those studied in this book are needed. Examples
include the support of complex hierarchies (a pathology could belong to many
classes), many-to-many relationships (a patient may have many pathologies
and vice versa), and so on. On the other hand, complex multimedia data,
and probably also textual data, must be supported. To deal with these
data, first users need to develop efficient algorithms (e.g., based on signal
or image processing, pattern recognition, statistical methodologies, among
other ones) in order to transform the initial raw data (e.g., an ECG or an
X-ray) into data descriptors. Selecting an appropriate set of descriptors is
a challenge and depends on the domain under analysis. In the work we are
commenting, the authors use the star and snowflake schemas as modeling
tools. In these schemas, the dimensions are the descriptors of these data.
There are three dimensions related to the patient: principal pathology, age,
and gender (description-based descriptors) and two dimensions related to
ECG acquisition: time and technology. Finally, two dimensions are related to
the content of the ECGs: the QT duration (the time after the ventricles are
repolarized) and the noise level (content-based descriptors). The fact table is
composed of the foreign key of such descriptors and the ECG signal. Thus, we
can, for example, count the number of ECGs that have a given characteristics,
or compute an average over a list of ECGs that have a given characteristics
in order to obtain a “medium ECG”. Note the similarity to the Visual Cube
approach described above.

Along similar lines, music data warehouses are starting to attract the
attention of researchers and the industry, arising from the interest in so-
called music information retrieval. The work by Deliège and Pedersen [37,38]
envisions an extension of data warehouse technologies to music warehouses
that integrate a large variety of music-related information, including both
low-level features and high-level musical information. The authors define
a music warehouse as a dedicated data warehouse optimized for storing
and analyzing music content. The work analyzes the features that a music
warehouse must support and the dimensions that a music cube must contain,
including a classification of music metadata in four categories: (a) editorial,
which covers administrative and historical information; (b) cultural, defined
as knowledge produced by the environment (like reviews, for instance); (c)
acoustic, which refers to acoustic features, like spectral analysis, or wavelets,
which describe the music content; and (d) physical, which refers to the storage
medium. Music data warehouses can be built based on these characteristics.
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There are many open issues to solve in order to make music warehouses
a reality. Further, there is still no clear data model and query language.
Finally, the authors identify ten challenges for music warehouses. Some of
them are the definition of appropriate aggregation functions for acoustic
data, precision-aware retrieval, support of various kinds of hierarchies, and
integration of new data types. As it can be seen, most of the problems already
solved in traditional data warehouses are still open in the music setting, thus
opening an interesting research field for the years to come.

15.5 Graph Analytics and Graph Data Warehouses

Graph analytics has been steadily gaining momentum in the data man-
agement community in recent years since many real-world applications
are naturally modeled as graphs, in particular in the domain of social
network analysis. A graph database management system [178] is a database
management system that allows creating, reading, updating, and deleting a
graph data model. Some systems use native graph storage, which means
they are optimized and designed for storing and managing graph data
structures. Others serialize the graph data into a relational or an object-
relational database. Graph databases provide better support for graph data
management than relational databases. This is mainly due to the fact that
relational databases deal just implicitly with connected data, while graph
databases store actual graphs. Representative graph databases like Neo4J2

and Titan3 have their own data model. They also have their own query
language, called Cypher and Gremlin, respectively.

Given the extensive use of graphs to represent practical problems,
multidimensional analysis of graph data and graph data warehouses
are promising fields for research and application development. There is a
need to perform graph analysis from different perspectives and at multiple
granularities. This poses new challenges to the traditional OLAP technology.
Graphs whose nodes are of the same kind are referred to as homogeneous.
Heterogeneous graphs, on the other hand, can have nodes of different kinds.
We next comment on some proposals based on homogeneous graphs since
work on heterogeneous graphs (e.g., [235]) is at a preliminary stage.

A first framework and classification of OLAP for graphs was proposed
in [28,29]. This framework, called Graph OLAP, presents a multidimensional
and multilevel view of graphs. As an example, consider a set of authors
working in a given field, say data warehouses. If two persons coauthored
x papers in a conference, say DaWaK 2009, then a link is added between

2http://www.neo4j.org/
3http://thinkaurelius.github.io/titan/

http://www.neo4j.org/
http://thinkaurelius.github.io/titan/
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them, which has a collaboration frequency attribute x. For every conference
in every year, we may have a coauthor graph describing the collaboration
patterns among researchers. Thus, each graph can be viewed as a snapshot
of the overall collaboration network. These graphs can be aggregated in
an OLAP style. For instance, we can aggregate graphs in order to obtain
collaborations by conference type and year for all pairs of authors. For this,
we must aggregate the nodes and edges in each snapshot graph according to
the conference type (like database conferences) and the year. For example, if
there is a link between two authors in the SIGMOD and VLDB conferences,
the nodes and the edge will be in the aggregated graph corresponding to
the conference type Databases. More complex patterns can be obtained,
for example, by merging the authors belonging to the same institution,
enabling to obtain patterns of collaboration between researchers of the same
institutions.

Taking the above concepts into account, in Graph OLAP, dimensions
are classified as informational and topological. The former are close to the
traditional OLAP dimension hierarchies using information of the snapshot
levels, for example, Conference→ Field→ All. They can be used to aggregate
and organize snapshots as explained above. On the other hand, topological
dimensions can be used for operating on nodes and edges within individual
networks. For example, a hierarchy for authors like AuthorId → Institution
will belong to a topological dimension since author institutions do not
define snapshots. These definitions yield two different kinds of Graph OLAP
operations. A roll-up over an informational dimension overlays and joins
snapshots (but does not change the objects), while a roll-up over a topological
dimension merges nodes in a snapshot, modifying its structure.

Graph Cube [239] is a model for graph data warehouses that supports
OLAP queries on large multidimensional networks, accounting for both
attribute aggregation and structure summarization of the networks. A multi-
dimensional network consists of a collection of vertices, each containing a set
of multidimensional attributes describing the nodes’ properties. For example,
in a social network, the nodes can represent persons, and multidimensional
attributes may include UserID, Gender, City, etc. Thus, multidimensional
attributes in the graph vertices define the dimensions of the graph cube.
Measures are aggregated graphs summarized according to some criteria.
Note that the problem here is different from Graph OLAP, where there are
several snapshots. In Graph Cube, we have only one large network, thus we
have a graph summarization problem. For example, suppose that we have
a small social network with three nodes. Two of them correspond to male
individuals in the network, while the third corresponds to a female. A graph
that summarizes the connections between genders will have two nodes, one
labeled male and the other labeled female. The edges between them will be
annotated with the number of connections of some kind. For instance, if in the
original graph there were two connections between two male persons (in both
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directions), the summarized graph will contain a cycle over the male node,
annotated with a ‘2’. If there was just one connection between a woman and
a man, there will be an edge between nodes male and female annotated with
a ‘1’.

Note that from a modeling point of view, there is no agreement upon a
conceptual model for graph databases. To fill this gap, in [62] the authors
introduce a conceptual model for graph databases, oriented to allow analysts
to perform data analysis over graphs not only in an OLAP style but also
using more sophisticated analysis like data mining, for instance. For this,
as usual, measures and dimensions must be defined. The authors identified
two kinds of measures: informational measures, which are calculated from
the attributes of the edges and nodes, and structural measures, which result
from the algorithms performed on the structural properties of the graph. A
structural measure could be, for instance, a subgraph containing the shortest
path between two nodes or a numerical value computing the length of the
path. Graph evolution is central to this model. This would allow, for example,
to study the evolution of the shortest path between users and products or
the shortest path between two members of a group in a social network.
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Graphical Notation

In the following, we summarize the graphical notation used in this book.

A.1 Entity-Relationship Model

identifier attribute

simple monovalued 
attributes

name Client

ClientId
FirstName (1,1)
LastName
BirthDate
SalaryRange
NoChildren (0,1)
Profession (1,n)
Address 
     Street
     City
Hobbies (0,n)
     Name
     Rank

multivalued attribute
composite attribute

component attributes

Clientname

Entity type
(short description)

multivalued composite 
attribute
component attributes

cardinalities

default cardinality

Section

Weak entity type
(short description)

Entity type 
(with attributes and identifiers shown)
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Weak entity type
(with attributes and partial identifiers shown)

(0,n)

Customer

CustomerId
CustomerName
CustomerAddress
BranchName

Company

TypeName
SectorName

Person

ProfessionName
ClassName

Generalization/specialization 
relationship type

supertype

subtypes

Participate
(1,n)

cardinalities

name
Relationship type
(short description)

name

Relationship type
(with attributes shown)

StartDate
EndDate
Salary

attributes

Participate

CouSec

Semester
Year
Homepage (0,1) 

Section

(0,n) (1,n)

cardinalities

(1,n)(0,n)

Identifying relationship type
(short description)

CouSec
(1,n)(0,n)

Semester
Year

Identifying relationship type 
(with attributes shown)
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A.2 Relational Model

primary key
attribute

attributes

name

Relational table 
(with attributes and keys shown)

Product

ProductKey
ProductNumber 
ProductName
Description

Category

CategoryKey
CategoryName
Description

Product

ProductKey
ProductNumber 
ProductName
Description
CategoryKey

Referential integrity

primary key 
attribute

Product

Relational table with instances

name
primary key 

attribute 

attributes

foreign key
attribute

foreign key 
attribute

instances
1
2 QD555

QB876 Milk
Soup ...

...

DescriptionProduct
Name

Product
Number

Product
Key

C2
C1

Category 
Key

primary key 
attribute

AK: ProductNumberalternate key

A.3 MultiDim Model for Data Warehouses

Product

ProductNumber
ProductName
Description
Size

Level
(with attributes and identifiers shown)

identifier attribute 

descriptive attributes

Productname

Level
(short description)

name
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P
ro

du
ct

G
ro

up
s

Balanced hierarchy

Product

ProductNumber 
ProductName
Description
Size

cardinalitiescriterion

Cardinalities

Category

CategoryName
Description

Department

DepartmentName
Description

leaf level root level

(0,n)
(1,n)

(0,1)
(1,1)

Fact
(with measures shown)

measures

name

Fact
(short description)

name Sales

Quantity
Amount

Sales
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Population
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StateName
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Country
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Product

ProductId
ProductName
QuantityPerUnit

Fact with multiple granularities
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A.5 BPMN Notation for ETL

Types of events

Terminate

End event

Message CancelCompensation

Exclusive
Types of gateways

Inclusive Parallel Complex

Splitting and merging gateways

Splitting Merging

Looping
Subprocess

+

Looping
Activity

Looping

Intermediate
event

Start event

Time

Continent Country State Load

Continent Load Country Load State Load

Continent
Country State

Load
+

Subprocess

Product Load

Activity

Sequence flow

Message flow Association

Conditional
sequence flow

Default sequence
flow

Connecting objects
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Convert
Column

Insert Data

Input Data Insert Data

Remove
Duplicates

Add Column

Update
ColumnAdd Column

Input Data

Drop Column

Sort

Agreggate

Unary data tasks

Input Data

Update Data Delete Data

Multicast

Rename
Column

Update
Column

Columns:
Date: Date
DayNbWeek: Smallint

Database: NorthwindDW
Table: Time
Mappings:
TimeKey->OrderDateKey
Options: Append

File: Time.xls
Type: Excel

File: BadCities.txt
Type: Text
Options: Headers, Empty

Column: SalesAmount =
D.UnitPrice * (1-Discount) *
Quantity

Column: Description =
Trim(Description)

Column: Freight
Database: NorthwindDW
Query: < SQL Query >

Database: Northwind
Query: < SQL Query >

Column: Picture

Columns:
OrderDate, Amount DESC

Group By: OrderNo
Columns: Cnt=Count(*),
TotalSales=Sum(SalesAmount)

Database: Northwind
Table: Customers

Database: NorthwindDW
Table: Product
Columns: To=Now()
Where: ProductKey
Matches: ProductKey

Database: NorthwindDW
Table: Product
Where: ProductKey
Matches: ProductKey

Input: EmployeeKey, CityKey
Output*: EmployeeKey,
CityKey

Column: Region->State

Column: Freight
Database: NortwhindDW
Query: <SQL query>

Canceled

Canceled and compensated activities

Activity

Send
Message

Correct
Error

Activity

Compensated
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DifferenceUnion

Lookup

N-ary data tasks

Join

Lookup LookupLookup

Input*: CityName,
StateKey, CountryKey
Output: CityName,
StateKey, CountryKey

Input*: CityName,
StateKey, CountryKey
Output: CityName,
StateKey, CountryKey
Keep Duplicates: No

Retrieve: StateKey
Database: NorthwindDW
Query: State Join Country
Where: State, Country
Matches: StateName,
CountryName

Condition:
EmployeeID = EmployeeKey
Join Type: Left Outer Join

Retrieve: CountryKey
Database: NorthwindDW
Table: Country
Where: Country
Matches: CountryName

Replace: StateKey
Database: NorthwindDW
Query: State Join Country
Where: State, Country
Matches: StateName,
CountryName

Replace: CountryKey
Database: NorthwindDW
Table: Country
Where: Country
Matches: CountryName

Shorthand notation for lookup

Lookup
Found

NotFound

Lookup
Y

N

Retrieve: CountryKey
Database: NorthwindDW
Table: Country
Where: Country
Matches: CountryName

Retrieve: CountryKey
Database: NorthwindDW
Table: Country
Where: Country
Matches: CountryName

Condition:
Found?
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40. F. Döner, R. Thompson, J. Stoter, Ch. Lemmen, P. van Oosterom, H. Ploeger,
S. Zlatanova, Solutions for 4D cadastre - with a case study on utility networks.
Int. J. Geographical Inf. Sci. 25(7), 1173–1189 (2011)

41. B. DuCharme, Learning SPARQL: Querying and Updating with SPARQL 1.1,
2nd edn. (O’Reilly Media, 2013)

42. J. Eder, C. Koncilia, Changes of dimension data in temporal data warehouses,
in Proceedings of the 3rd International Conference on Data Warehousing and
Knowledge Discovery, DaWaK’01. Lecture Notes in Computer Science, vol. 2114
(Springer, 2001), pp. 284–293

43. J. Eder, C. Koncilia, T. Morzy, The COMET metamodel for temporal data
warehouses, in Proceedings of the 14th International Conference on Advanced
Information Systems Engineering, CAiSE’02. Lecture Notes in Computer
Science, vol. 2348 (Springer, 2002), pp. 83–99

44. J. Eder, K. Wiggisser, Modeling transformations between versions of a temporal
data warehouse, in Proceedings of the ER 2008 Workshops. Lecture Notes in
Computer Science, vol. 5232 (Springer, 2008), pp. 68–77
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Building real-world trajectory warehouses, in Proceedings of the 7th ACM
International Workshop on Data Engineering for Wireless and Mobile Access
(ACM, 2008), pp. 8–15

130. J.-N. Mazón, J. Trujillo, M. Serrano, M. Piattini, Designing data warehouses:
From business requirement analysis to multidimensional modeling, in Pro-
ceedings of the 1st International Workshop on Requirements Engineering for
Business Need and IT Alignment, REBN’05, 2005, pp. 44–53

131. M. Mehta, R. Agrawal, J. Rissanen, SLIQ: a fast scalable classifier for data
mining, in Proceedings of the 5th International Conference on Extending
Database Technology, EDBT’96. Lecture Notes in Computer Science, vol. 1057
(Springer, 1996), pp. 18–32

132. J. Melton, Advanced SQL:1999. Understanding Object-Relational and Other
Advanced Features (Morgan Kaufmann, 2003)

133. J. Melton, SQL:2003 has been published. SIGMOD Rec. 33(1), 119–125 (2003)
134. J. Melton, A. Eisenberg, SQL multimedia and application packages (SQL/MM).

SIGMOD Rec. 30(4), 97–102 (2001)
135. J. Melton, A. Simon, SQL:1999. Understanding Relational Language Compo-

nents (Morgan Kaufmann, 2002)
136. A. Mendelzon, A.A. Vaisman, Temporal queries in OLAP, in Proceedings of the

26th International Conference on Very Large Data Bases, VLDB’00 (Morgan
Kaufmann, 2000), pp. 243–253

137. A. Mendelzon, A.A. Vaisman, Time in multidimensional databases, in Multidi-
mensional Databases: Problems and Solutions, ed. by M. Rafanelli (Idea Group,
2003), pp. 166–199

138. J. Mennis, R. Viger, C.D. Tomlin, Cubic map algebra functions for spatio-
temporal analysis. Cartography Geographic Inf. Sci. 32(1), 17–32 (2005)

139. D. Moraschi, Business Intelligence with MicroStrategy Cookbook (Packt Pub-
lishing, 2012)

140. T. Morzy, R. Wrembel, On querying versions of multiversion data warehouse, in
Proceedings of the 7th ACM International Workshop on Data Warehousing and
OLAP, DOLAP’04 (ACM, 2004), pp. 92–101

141. I.S. Mumick, D. Quass, B.S. Mumick, Maintenance of data cubes and summary
tables in a warehouse, in Proceedings of the ACM SIGMOD International
Conference on Management of Data, SIGMOD’97 (ACM, 1997), pp. 100–111

142. V. Nebot, R. Berlanga Llavori, Building data warehouses with semantic web
data. Decis. Support Syst. 52(4), 853–868 (2011)

143. M. Neteler, H. Mitasova, Open Source GIS: A GRASS GIS Approach, 3rd edn.
(Springer, 2008)

144. R.T. Ng et al., Perspectives on Business Intelligence. Synthesis Lectures on Data
Management (Morgan & Claypool, 2013)
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ACID properties
in in-memory databases, 517
in Oracle TimesTen, 525
in SAP HANA, 523

Additive measures, 58, 93
Ad hoc queries, 79
Agglomerative algorithm, 338
Algebraic measures, 59
Alternate keys, 23
Alternative hierarchies, 98–99

in Analysis Services, 160
logical representation, 134
spatial, 439

Analysis-driven design, 81, 387, 415–416
conceptual design, 402–407, 462–464
requirements specification, 389–395,

462–464
Analysis Services, 82, 152–163

attribute hierarchies, 155
Business Intelligence Semantic Model,

82
data members, 159
data mining, 350–362
data source views, 152
data sources, 152
diagrams, 153
fact dimensions, 154
HOLAP storage, 271
implementation of hierarchies,

158–161
key performance indicators (KPIs),

366–370
many-to-many dimensions, 154,

158
measure groups, 161
measures, 161
MOLAP storage, 271

multilevel or user-defined hierarchies,
155

named calculations, 152
named queries, 152
parent-child hierarchies, 159
partitioning, 269–273
physical design, 269–275
query performance, 274–275
ragged hierarchies, 160
reference dimensions, 154
regular dimensions, 154, 155
ROLAP storage, 270
role-playing dimensions, 154
semiadditive measures, 161

Analysis/source-driven design, 81, 387,
417–418

conceptual design, 409–410, 466–467
requirements specification, 401–402,

466–467
Analytical dashboards, 372
Apriori algorithm, 340
Association rules, 338–347

in Analysis Services, 359–362
confidence, 339
defined, 339
hierarchical, 343
interesting rules, 339
itemset, 339
pattern growth mining, 344–347
support, 339

Attribute hierarchies
in Analysis Services, 155
in Mondrian, 168

Attributes, 18
derived, 19
of dimensions, 55
of levels, 91
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mandatory vs. optional, 18
monovalued vs. multivalued, 18
nonprime, 29
prime, 29
of relations, 21
simple vs. complex, 19
spatial, 436, 448–450

Back-end tier, 76–77
Balanced hierarchies, 57, 95

in Analysis Services, 159
logical representation, 129–130
spatial, 438

Base IRI, 544
Binary relationship types, 18
Bitmap compression, 259–260
Bitmap filters, 269
Bitmap indexes, 235, 257–260
Bottom-up design, 14, 80, 386
Boyce-Codd normal form, 30
BPMN (Business Process Modeling

Notation), 286–309
activities, 286
annotations, 290
artifacts, 290
associations, 289
cancel events, 288
compensation events, 288
complex gateways, 288
conditional sequence flows, 289
connecting objects, 289
control tasks, 292
data object, 290
data tasks, 292
default flows, 289
end events, 288
events, 288
exclusive gateways, 287
flow objects, 286
for ETL, 291–295
gateways, 287
group, 290
inclusive gateways, 287
lanes, 290
loops, 289
message events, 288
message flows, 289
n-ary data tasks, 293
parallel gateways, 288
pools, 290
row operations, 293
rowset operations, 293
sequence flows, 289

start events, 288
subprocesses, 287
swimlanes, 290
terminate events, 289
time events, 288
unary data tasks, 293

Bridge tables, 135
B+-trees, 46
B-trees, 46
Buckets, 45
Buffer, 44
Business intelligence, 3
Business metadata, 78, 392

Caching, 45
in in-memory databases, 517
in Mondrian, 277–278
in MonetDB/X100, 522
in Oracle TimesTen, 524
real-time, 531

Cardinalities
of attributes, 18
between facts and levels, 91
of parent-child relationships, 93
of roles, 18

Cartesian product operation, 32
Cells, See Facts
Check constraints, 23, 133, 450
Checkpoints, 517

in Oracle TimesTen, 525
Child levels, 56, 93
Classification, 331

supervised, 333–336
unsupervised, see Clustering

Client tools, 76
Clustered indexes, 45
Clustering, 331, 336–338

in Analysis Services, 355–358
between cluster variation, 337
defined, 336
distance, 337
hierarchical, 338
score function, 337
within cluster variation, 337

Collision, 45
Column-store databases, 514–515

compression, 515
indexes, 526–527
MonetDB, 520–522
Vertica, 519–520

Column-store indexes, 269, 526–527
Columns, See Attributes
Complex attributes, 19
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Composite keys, 23
Composite partitioning, 266
Compression

in column-store databases, 515
in MonetDB/X100, 522
in Oracle TimesTen, 525
in SAP HANA, 524

Conceptual design
analysis-driven, 402–407, 462–464
analysis/source-driven, 409–410,

466–467
for databases, 5, 14, 16–21
for data warehouses, 89–115, 402–418
source-driven, 407–409, 464–466
for spatial data warehouses, 434–442,

462–467
Conceptual models, 5, 14
Conceptual schemas, 89
Constellation schemas, 125
Constraints

topological, 436–437, 452–453, 492
Continuous fields, 432–434
Continuous trajectories, 476
Counting algorithm, 237
Cube size estimation, 250–251

analytical algorithm, 250
probabilistic counting algorithm, 251
sampling-based algorithm, 251

Cubes, See Data cubes
CWM (Common Warehouse Model), 115

Dashboards, 7, 370–378
analytical, 372
defined, 371
operational, 372
in Reporting Services, 373–378
strategic, 371

Data aging, 518
in Oracle TimesTen, 525

Data analytics, 3, 7
Database(s), 13
Database blocks, 44
Database pages, 44
Data cubes, 54

lattice, 246
partial computation, 251–255
size estimation, 250–251
sparse vs. dense, 55

Data extraction, 76
Data independence, 15

logical vs. physical, 15
Data latency, 528
Data loading, 77

Data marts, 74, 76, 78, 386
Data mining, 3, 7, 330–362

defined, 330
models, 331
patterns, 331
tools, 79

Data mining in Analysis Services,
350–362

association rules, 359–362
clustering, 355–358
content query, 353
decision trees, 352–355
prediction query, 353

Data models
ER (entity-relationship), 16–21
multidimensional, 5, 53–72
relational, 21–36

Data refreshing, 77
Data sources, 76

internal vs. external, 76
Data staging area, 76
Data storage architecture, 517

in in-memory databases, 517
in MonetDB/X100, 521
in Oracle TimesTen, 524
in SAP HANA, 523

Data transformation, 76
Data types, 22

fields, 432–434
spatial, 428–432
temporal, 477–490

Data warehouses, 3, 4, 54, 72–80
architecture, 76–80
comparison with operational

databases, 74–75
defined, 72
enterprise, 76, 77
indexes for, 256–261
integrated, 5
loading of, 77
nonvolatile, 5
real-time, 528–532
refreshing of, 77
right-time, 531
spatial, 427–468
subject-oriented, 4
tier, 76–78
time-varying, 5
trajectory, 475–503
virtual, 80

Datum, 443
DBMSs (database management

systems), 13
DDL (data definition language), 35
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3D/4D spatial data warehouses, 579–581
Decision-support systems, 3
Decision trees, 334

in Analysis Services, 352–355
Degenerate dimensions, See Fact

dimensions
Dense data cubes, 55
Dense indexes, 46
Dependencies

functional, 28
multivalued, 28

Derived attributes, 19
Derived measures, 93
Descriptive models, 331
Design method

bottom-up, 14, 80, 386
top-down, 14, 80, 386

Difference operation, 32
Dimensions, 5, 54, 90

attributes of, 55
fact, 127, 154
instance of, 56
levels, 55
many-to-many, 106–110, 138–139,

154
members, 55
role-playing, 93, 127, 154, 168
schema of, 56
slowly changing, 139–145
spatial, 436
tables, 123

Discrete trajectories, 476
Disjoint generalizations, 21
Disk blocks, 44
Disk pages, 44
Disk storage, 43
Distributing attributes, 94, 104
Distributive measures, 59
Divisive algorithms, 338
DML (data manipulation language), 35
DMX (data mining extensions), 82, 350

content queries, 350
for the Northwind case study, 353–362
prediction queries, 350

Domains, 22
Double counting, 103–110
Dynamic multilevel indexes, 46

Early inclusion of spatial support, 462
Ellipsoid, 442
ELT (extraction, loading, and

transformation), 532–534

Enterprise data warehouses, 76, 77
Entities, 16
Entity types, 16

identifying, 19
population of, 16
strong vs. weak, 19

ER (entity-relationship) model, 16–21
transforming into the relational

model, 24–27
ETL (extraction, transformation, and

loading), 7, 76, 413
tools, 76

Exclusive parent-child relationships, 94
Exploratory data analysis, 331
External data sources, 76

Fact dimensions, 127, 158
in Analysis Services, 154, 158
in Mondrian, 171

Fact members, 91
Fact tables, 123
Facts, 5, 55, 91

spatial, 436, 450–453
with multiple granularities, 106,

137–138
Fast Update algorithm, 341–343
Field types, 432–434

lifting of operations, 434
rate of change operations, 433–434
temporal, 483–485

Fields of a record, 44
File organization, 45

defined, 45
hash files, 45
heap files, 45
ordered files, 45
sequential files, 45
unordered files, 45

Files, 44
First normal form, 29
Foreign keys, 23
Fourth normal form, 30
FP-tree

pattern growth mining, 344
Fragmentation, See Partitioning
Frequent itemsets, 339
Front-end tier, 76, 79
Full outer join operation, 34
Functional dependencies, 28

partial, 29
transitive, 29

Functional requirements, 391
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Generalization relationships, 20
disjoint vs. overlapping, 21
total vs. partial, 21

Generalized hierarchies, 96–98
in Analysis Services, 160
logical representation, 132–134
spatial, 438

Geoid, 442
Geometry, 436
GeoMondrian, 454–459
GeoNorthwind case study, 434–438,

454–461
querying in MDX, 455–459
querying in SQL, 459–461

Gini index, 335
GISs (geographic information systems),

8
Graph analytics, 586
Graph data warehouses, 586–588

Hadoop, 508
job tracker, 508
task tracker, 508

Hash files, 45
Hash functions, 45
Hash partitioning, 265
Heap files, 45
Hierarchical association rules, 343
Hierarchical clustering, 338

agglomerative algorithms, 338
divisive algorithms, 338

Hierarchies, 6, 56, 93–106, 129–135
alternative, 98–99, 134, 439
balanced, 57, 95, 129–130, 438
generalized, 96–98, 132–134, 438
implementation in Analysis Services,

158–161
logical representation, 129–135
nonstrict, 102–106, 135–136, 439
parallel, 99–102, 134–135, 439
ragged, 98, 134
recursive or parent-child, 66, 95–96,

131
spatial, 436, 438–439, 450–453
strict vs. nonstrict, 102
unbalanced, 95–96, 130–131

Hierarchy name, 93
Hive, 510–512
HOLAP (hybrid OLAP), 122

in Analysis Services, 271
Holistic measures, 59
Horizontal partitioning, 235, 264
Hypercubes, See Data cubes

ID3 algorithm, 335
Identifiers, 19

of entity types, 19
of levels, 91
partial, 20

Identifying entity types, 19
Identifying relationship types, 19
Incremental view maintenance, 236
Indexed views, 266–268

partition-aligned, 267–268
Indexes, 45–46, 234–235

bitmap, 235, 257–260
clustered vs. nonclustered, 45
column-store, 269, 526–527
defined, 45
dynamic multilevel, 46
for data warehouses, 256–261
join, 235, 260–261
primary vs. secondary, 45
single-column vs. multiple-column, 45
single-level vs. multilevel, 46
sparse vs. dense, 46
unique vs. nonunique, 45

Indexing, 414
Indexing fields, 45
Inheritance, 20
In-memory databases, 516–518

active vs. passive data, 518
caching, 517
data aging, 518
Oracle TimesTen, 524–525
SAP HANA, 522–524

Inner vs. outer join operations, 34
Instances

of dimensions, 56
of entity types, 16
of facts, see Fact members
of levels, see Members
of relationship types, 18

Integration Services, 82, 309–310,
312–319

Integrity constraints, 23–24
check constraints, 23, 133, 450
for generalized hierarchies, 133
keys, 23
non-null, 23
referential integrity, 23, 123, 124

Internal data sources, 76
IRI (internationalized resource

identifier), 540
is-a relationships, See Generalization

relationships
Itemset

association rules, 339
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Join indexes, 235, 260–261
Join of partitioned tables, 264
Join operation, 33
Joining levels, 97

Kettle, 83, 311–312, 319–324
Keys, 23

alternate, 23
primary, 23
simple vs. composite, 23

K-means algorithm, 337
Knowledge discovery in databases, 330
KPIs (key performance indicators), 7,

362–370
in Analysis Services, 366–370
classification, 363–364
defined, 362

Late inclusion of spatial support, 462
Latitude, 443
Leaf levels, 93
Left outer join operation, 34
Levels, 90

child, 93
dimensions, 55
joining, 97
leaf, 93
parent, 93
root, 93
spatial, 436, 448–450
splitting, 97

Lifting of operations, 434, 480, 482–485
List partitioning, 265
Logical data independence, 15
Logical design

for databases, 5, 6, 14, 21–30
for data warehouses, 121–135,

410–413
for spatial data warehouses, 467

Logical models, 14
Longitude, 443

MAD analysis, 532
Mandatory attributes, 18
Mandatory roles, 18
Many-to-many dimensions

in Analysis Services, 154
Many-to-many relationship types, 18
Map projection, 443
MapReduce, 508–514
Materialized views, 234–240, 415

defined, 234
query rewriting, 234
selection of, 234
update of, 234

MDX (multidimensional expressions),
82, 179–216

for defining KPIs, 367–370
for spatial data, 455–459

Measures, 5, 55, 57–59, 92
additive, 58, 93
algebraic, 59
derived, 93
distributive, 59
holistic, 59
nonadditive, 58, 93
semiadditive, 58, 93
spatial, 437, 440–442, 450–453
spatiotemporal, 492

Members, 55, 90
Metadata, 78

business, 78, 392
repository, 76
technical, 78, 392, 397

Minidimensions, 143
MOLAP (multidimensional OLAP), 122

in Analysis Services, 271
Mondrian, 83, 164–172

aggregate tables, 276–277
attribute hierarchies, 168
caching, 277–278
calculated columns, 166
calculated measures, 172
closure tables, 277, 319
cube schema, 164
data members, 170
fact dimensions, 171
measure groups, 172
measures, 172
multilevel hierarchies, 167
parent-child hierarchies, 169
physical design, 276–278
physical schemas, 165
ragged hierarchies, 170
role-playing dimensions, 168
shared dimensions, 165, 168
snowflake schemas, 166, 169

MonetDB, 520–521
binary association table, 520

MonetDB/X100, 521–522
column buffer manager, 522
compression, 522
data storage architecture, 521
in-cache processing, 522
vectorized execution, 522
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Monovalued attributes, 18
Monovalued roles, 18
Moving object databases, 477
Moving objects, 9, 476
MultiDim model, 6, 89–115

logical representation, 126–135,
448–453

spatial extension, 434–442
Multidimensional models, 5, 53–72
Multidimensional normal forms, 107
Multidimensional schemas, 90
Multilevel indexes, 46
Multimedia data warehouses, 583–586
Multiple granularities, 106, 137–138
Multiple representations, 581
Multiple-column indexes, 45
Multivalued attributes, 18
Multivalued dependencies, 28
Multivalued roles, 18
Music data warehouses, 585

n-ary relationship types, 18
Near real-time ETL, 529
Non-null constraints, 23
Nonadditive measures, 58, 93
Nonclustered indexes, 45
Nonfunctional requirements,

392
Nonprime attributes, 29
Nonstrict hierarchies, 102–106

in Analysis Services, 160
logical representation, 135–136
spatial, 439

Nonunique indexes, 45
Normal forms, 29

Boyce-Codd, 30
first, 29
fourth, 30
multidimensional, 107
second, 29
third, 29

Normalization, 27–30
Northwind case study

conceptual data warehouse design,
404–409, 464

conceptual ETL process, 295–309
cube definition in Analysis Services,

152–163
cube definition in Mondrian, 164–172
dashboards in Reporting Services,

373–378
database conceptual schema, 17

database logical schema, 22
data mining in Analysis Services,

350–362
data preparation for data mining,

332–333
description, 15–16
ETL process in Integration Services,

312–319
ETL process in Kettle, 319–324
extended with spatial data, 434–438,

454–461
KPIs in Analysis Services, 366–370
logical data warehouse design,

411–413
physical data warehouse design,

413–415
querying in MDX, 207–216, 455–459
querying in SPARQL, 564–573
querying in SQL, 216–225, 459–461,

495–502
querying using the OLAP operations,

110–114
RDF representation, 561–564
requirements specification, 392–395,

398–401, 464
trajectory data warehouse, 490–502

Null values, 23

OLAP (online analytical processing), 3,
54

servers, 76
tools, 79

OLAP operations, 59–72
add measure, 64, 68
cumulative aggregation functions, 69
dice, 64, 67
difference, 72
drill-across, 64, 68
drill-down, 63, 66
drill-through, 72
drop measure, 68
filtering aggregation functions, 69
max, 64
pivot or rotate, 64, 67
rename, 67
roll-up, 59, 65
slice, 64, 67
sort, 64, 66
sum, 64
top percent, 64
union, 71

OLAP tier, 76, 78–79
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OLTP (online transaction processing),
54

One-to-many relationship types, 18
One-to-one relationship types, 18
Operational dashboards, 372
Operational databases, 4, 54

comparison with data warehouses,
74–75

Operational data store, 77
Optional attributes, 18
Optional roles, 18
Oracle Exalytics, 525
Oracle TimesTen, 524–525

ACID properties, 525
checkpoints, 525
compression, 525
data aging, 525
data storage architecture, 524
in-memory database cache, 524

Ordered files, 45
Ordering fields, 45
Overlapping generalizations, 21
Owner entity types, See Identifying

entity types

Parallel hierarchies, 99–102
in Analysis Services, 160
independent vs. dependent, 99
logical representation, 134–135
spatial, 439

Parent-child hierarchies, 66, 95–96, 131
in Analysis Services, 159
in Mondrian, 169

Parent-child relationships, 93
exclusive, 94

Parent levels, 56, 93
Partial computation of a data cube,

251–255
Partial functional dependencies, 29
Partial generalizations, 21
Partial identifiers, 20
Partition-aligned indexed views, 267–268
Partition pruning, 264
Partitioning, 235, 263–266, 414

in Analysis Services, 269–273
defined, 235
horizontal, 235, 264
in MonetDB, 520
real-time, 529
in SAP HANA, 523
in Vertica, 520
vertical, 235, 264

Pattern discovery, 332

Pattern growth mining, 344–347
FP-tree, 344

Peak load, 43
Pentaho Business Analytics, 83–84

Aggregation Designer, 84
Analysis Services or Mondrian, 83,

164–172, 276–278
Business Analytics Platform, 83
Data Integration or Kettle, 83,

311–312, 319–324
Data Mining or Weka, 83
Metadata Editor, 84
Report Designer, 83
Schema Workbench, 84

Physical data independence, 15
Physical design

in Analysis Services, 269–275
for databases, 5, 6, 14, 43–46
for data warehouses, 233–279,

413–415
indexing, 414
materialized views, 415
in Mondrian, 276–278
partitioning, 414
for spatial data warehouses, 467
storage modes, 414

Physical models, 14
Physical schemas

in Mondrian, 165
Pig Latin, 512–514
PipeSort algorithm, 247
Population

of entity types, 16
inclusion, 20
of relationship types, 18

Predefined queries, 79
Predictive models, 331
Primary indexes, 45
Primary keys, 23
Prime attributes, 29
Projection operation, 31

QB4OLAP vocabulary, 557–561
OLAP operations, 559–561

QB vocabulary, 553–557
OLAP operations, 556–557

Query rewriting, 234
Query-update trade-off, 44

Ragged hierarchies, 98
in Analysis Services, 160
logical representation, 134
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in Mondrian, 170
spatial, 438

Range partitioning, 265
Raster model, 446–448
Rate of change operations, 433–434, 483
RDF (resource description framework),

540
RDF representation of relational data,

543–547
direct mapping, 544
R2RML, 545–547

RDFS (RDF Schema), 540
RDF/XML, 541
Real-time data warehouses, 10, 528–532

data caching, 531
direct trickle feed, 531
trickle and flip, 531

Real-time partitions, 529
Records, 44
Recursive hierarchies, See Parent-child

hierarchies
Recursive relationship types, 18
Referential integrity, 23

in snowflake schemas, 124
in star schemas, 123

Refresh algorithm, 242
Regression, 331
Regular relationship types, 19
Relational algebra, 30–35

basic vs. derived operations, 30
Cartesian product, 32
difference, 32
full outer join, 34
inner vs. outer joins, 34
join, 33
left outer join, 34
projection, 31
rename, 31
right outer join, 34
selection, 31
unary vs. binary operations, 30
union, 32

Relational model, 21–36
Relational schema, 21
Relations, 21
Relationship types, 16

binary, 18
identifying, 19
n-ary, 18
one-to-one, one-to-many, and

many-to-many, 18
population of, 18
recursive, 18
regular, 19

Relationships, 18
topological, 8, 430–431

Rename operation, 31
Replication, 517
Reporting Services, 82

dashboards, 373–378
Reporting tools, 79
Requirements specification

analysis-driven, 387, 389–395,
462–464

analysis/source-driven, 387, 401–402,
466–467

for databases, 5, 14
for data warehouses, 389–402
source-driven, 387, 396–401, 464–466
for spatial data warehouses, 462–467

Response time, 43
Right outer join operation, 34
Right-time data warehouses, 531
Right-time ETL, 531
ROLAP (relational OLAP), 122

in Analysis Services, 270
Role-playing dimensions, 93, 127

in Analysis Services, 154
in Mondrian, 168

Roles, 18
monovalued vs. multivalued, 18
in multidimensional schemas, 91
names of, 18
optional vs. mandatory, 18

Root levels, 93
Rows, See Tuples
Run-length encoding, 259

SAP HANA, 522–524
ACID properties, 523
compression, 524
data storage architecture, 523
partitioning, 523
savepoints, 523

Savepoints, 517
in SAP HANA, 523

Schemas
conceptual, 89
of dimensions, 56
multidimensional, 90

Second normal form, 29
Secondary indexes, 45
Secondary storage, 44
Segmentation of trajectories, 490, 493
Selection operation, 31
Self-maintainable aggregate functions,

241
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Self-maintainable views, 239
Semantic web, 10, 540
Semiadditive measures, 58, 93
Sequential files, 45
Sequential pattern mining, 348
Sequential patterns, 332, 347–349
Similarity of trajectories, 494
Simple attributes, 19
Simple keys, 23
Single-column indexes, 45
Single-level indexes, 46
Slowly changing dimensions, 139–145
Snowflake schemas, 6, 124, 129, 130

in Mondrian, 166, 169
Source-driven design, 81, 387, 416–417

conceptual design, 407–409, 464–466
requirements specification, 396–401,

464–466
Space-time trade-off, 43
SPARQL, 547–551

aggregation and sorting, 549–550
subqueries, 550–551

Sparse data cubes, 55
Sparse indexes, 46
Spatial attributes, 436

relational implementation, 448–450
Spatial data, 8
Spatial data types, 428–432

temporal, 481–485
Spatial data warehouses, 8, 427–468
Spatial databases, 8
Spatial dimensions, 436
Spatial facts, 436

relational implementation, 450–453
Spatial hierarchies, 436, 438–439

alternative, 439
balanced, 438
generalized, 438
nonstrict, 439
parallel, 439
ragged, 438
relational implementation, 450–453

Spatial levels, 436
relational implementation, 448–450

Spatial measures, 437, 440–442
relational implementation, 450–453

Spatial models
field-based, 428, 432–434
object-based, 428–432
raster, 446–448
vector, 443–446

Spatial objects, 428
descriptive component, 428
discrete changes, 476

spatial component, 428
Spatial reference systems, 442–443
Spatial values

boundary, 430
exterior, 430
interior, 430

Spatiotemporal databases, 477
Spatiotemporal data warehouses, 477
Spatiotemporal measures, 492
Splitting levels, 97
SQL (structured query language), 35–43

aggregation and sorting, 38–40
common table expressions, 42–43
creating relational schemas, 35–36
DDL (data definition language), 35
DML (data manipulation language),

35
SQL/MM, 443–446
SQL/OLAP, 145–151
subqueries, 40–41
views, 41–42

SQL Server, 82–83
Analysis Services, 82, 152–163,

269–275, 350–362, 366–370
column-store indexes, 269
indexed views, 266–268
Integration Services, 82, 309–310,

312–319
Management Studio, 82
Reporting Services, 82, 373–378
SQL Server Data Tools, 82

SQL Server xVelocity, 526–528
batch processing, 526, 527
column-store indexes, 526
segment directory, 527

Starflake schemas, 125
Star queries, 261–263
Star schemas, 6, 123, 130
Statistical tools, 79
Strategic dashboards, 371
Strict hierarchies, 102
Strong entity types, 19
Strong rules, 339
Substitutability, 20
Subtypes, 20
Summarizability, 57
Summary-delta algorithm, 241
Summary-delta table, 241
Summary tables, 240
Supertypes, 20
Supervised classification, 333–336

class identity, 333
test set, 333
training set, 333
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Tables, See Relations
Technical metadata, 78, 392, 397
Temporal databases, 478, 578
Temporal data warehouses, 577–579
Temporal types, 477–490

aggregation operations, 479
field, 483–485
implementation in PostGIS, 485–490
lifting of operations, 480, 482–485
rate of change operations, 479, 483
spatial, 481–485

Tessellation, 446
Text analytics, 581
Text data warehouses, 581–583
Third normal form, 29
Top-down design, 14, 80, 386
Topological constraints, 436–437,

452–453, 492
Topological relationships, 8, 430–431
Total generalizations, 21
Trajectories, 9

continuous vs. discrete, 476
segmentation of, 490, 493
similarity of, 494

Trajectory data warehouses, 9, 475–503
Transactional databases, 4
Transaction throughput, 43
Transaction time, 478
Transitive functional dependencies, 29
Triggers, 24
Tuples, 23
Turtle, 541

Unbalanced hierarchies, 95–96
in Analysis Services, 159
logical representation, 130–131

Union operation, 32

Unique indexes, 45
Unordered files, 45
Unsupervised classification, See

Clustering
URI (universal resource identifier), 540
URL (universal resource locator), 540

Valid time, 478, 486
Vector model, 443–446
Vertica, 519–520

partitioning, 520
read-optimized store, 519
segmentation, 520
write-optimized store, 519

Vertical partitioning, 235, 264
Vertipaq, See SQL Server xVelocity
View maintenance, 236
View Materialization Benefit algorithm,

253
Views, 41–42

defined, 234
distinguished attribute, 240
exposed attribute, 240
incremental maintenance, 236
indexed, 266–268
maintenance, 236
materialized, 234–240
self-maintainable, 239

View Selection algorithm, 253

Weak entity types, 19
Weka, 83
Window framing, 150
Window ordering, 149
Window partitioning, 149
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