
E.S. Gopi

Digital Signal 
Processing 
for Wireless 
Communication 
using Matlab



Digital Signal Processing for Wireless
Communication using Matlab





E.S. Gopi

Digital Signal Processing
for Wireless Communication
using Matlab

123



E.S. Gopi
Department of Electronics

and Communications Engineering
National Institute of Technology Trichy
Tamil Nadu, India

ISBN 978-3-319-20650-9 ISBN 978-3-319-20651-6 (eBook)
DOI 10.1007/978-3-319-20651-6

Library of Congress Control Number: 2015944983

Springer Cham Heidelberg New York Dordrecht London
© Springer International Publishing Switzerland 2016
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or
the editors give a warranty, express or implied, with respect to the material contained herein or for any
errors or omissions that may have been made.

Printed on acid-free paper

Springer International Publishing AG Switzerland is part of Springer Science+Business Media (www.
springer.com)

www.springer.com
www.springer.com


Dedicated to my wife G. Viji, my son
A.G. Vasig and my daughter A.G. Desna





Preface

Stochastic digital signal processing involved in wireless communication such
as mathematical modelling, detection theory, estimation theory and modulation
techniques are discussed in this book. Concepts such as coherent time, coherent
frequency, Doppler spread, delay spread, Bayes, mini-max, Neyman-Pearson,
MMSE, MMAE, MAP, Wiener filter, Kalman filter, MIMO, OFDM, CDMA, and
diversity techniques are illustrated using MATLAB for better understanding. The
book is written such that it is suitable for the beginners who are doing basic research
in wireless communication.

Tamil Nadu, India E.S. Gopi
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Chapter 1
Mathematical Model of the Time-Varying
Wireless Channel

Abstract In this chapter the mathematical model for four fundamental parameters
of the time-varying channel namely Doppler shift, coherence time, Doppler spread
and coherence frequency is discussed. Case studies on discrete time-varying channel
model (flat fading Rayleigh and Rician models, single tap with estimated filter
coefficient model) are also illustrated using MATLAB. Also spatial multiplexing
using decoupling of MIMO is demonstrated in this chapter.

1.1 Multi-Path Model

Let ei�2���f0�t (eigenfunction) be the signal transmitted from the transmitter, and
the corresponding received signal after subjected to multi-path transmission is
represented as follows:

ye.t/ D
jDJX

jD1

ˇj.t/e
i�2���f0�.t��j.t// (1.1)

where J is the total number of paths, ˇj.t/ is the attenuation in the jth path and
�j.t/ is the time delay in the jth path. It is noted that attenuation and time delay of
the jth path are functions of time. Observing (1.1) and noting that the input is the
eigenfunction for the typical value of f0, the value of the transfer function of the
multi-path channel at f0 is obtained as follows:

H.f0; t/ D
jDJX

jD1

ˇj.t/e
�i�2���f0��j.t/ (1.2)

For any arbitrary value of f , (1.2) is represented as (1.3) and is interpreted as the
transfer function of the time-varying channel:

H.f ; t/ D
jDJX

jD1

ˇj.t/e
�i�2���f ��j.t/ (1.3)

© Springer International Publishing Switzerland 2016
E.S. Gopi, Digital Signal Processing for Wireless Communication using Matlab,
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2 1 Mathematical Model of the Time-Varying Wireless Channel

Fig. 1.1 Illustration of the multi-path transmission

Thus the impulse response of the time-varying channel is obtained as follows:

h.�; t/ D
jDJX

jD1

ˇj.t/ı.� � �j.t// (1.4)

The response of the time-varying multi-path channel to the input signal
cos.2 � pi � f0 � t/ is given as y.t/ D <.

PjDJ
jD1 ˇj.t/e2���f0�.t��j.t///. This can also be

obtained using polar-form representation of the transfer function as follows. Let the
value of the transfer function of the time-varying (multi-path) channel at frequency
f D f0 in polar form be represented as jH.f0; t/je�j†.H.f0;t//. The response to the
signal cos.2�pi�f0 �t/ is obtained as y.t/ D jH.f0; t/j cos.2�pi�f0 �t�†.H.f0; t///
(refer Figs. 1.1, 1.2, 1.3, 1.4, 1.5).

%multipathmodel.m
%Response to the input signal cos(2*pi*f*t) with f=1
%nop->number of paths
%beta(i)->ith co-efficient in the multipath model.
%delay(i)->delay in the ith path in the multipath
model.
%In this experiment, delay is assumed as the variable
%that varies linearly with time and %beta is assumed
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Fig. 1.2 Transfer function of the time-varying channel for various time instances

%to be the constant for the particular path.

f=1
nop=10;
rxsignal=[];
t=0:1/100:1;
txsignal=cos(2*pi*f*t);
z=1;
for t=0:1/100:1

temp=0;
for p=1:1:nop

beta(p)=rand;
delay(p)=rand*t;

temp=temp+beta(p)*exp(j*2*pi*f*(t-delay(p)));
end
BETACOL{z}=beta;
DELAYCOL{z}=delay;
beta=0;



4 1 Mathematical Model of the Time-Varying Wireless Channel

7

6

5

4

4 6

4

2

0

3

3

2

1

0

7

6

5

4

3
0 20 40 60

f (Hz)
0 20 40 60

f (Hz)

0 20 40 60
f (Hz)

0 20 40 60
f (Hz)

t=0.01

t=0.05 t=0.07

t=0.03

Fig. 1.3 Zoomed version of the transfer function of the time-varying channel for the time instances
t D 0:01, t D 0:03, t D 0:05 and t D 0:07

delay=0;
rxsignal=[rxsignal temp];
z=z+1;
end
save CONSTANTS BETACOL DELAYCOL
figure(1)
subplot(4,1,1)
plot(txsignal)
subplot(4,1,2)
plot(real(rxsignal))
subplot(4,1,3)
plot(abs(fft(txsignal)))
subplot(4,1,4)
plot(abs(fft(real(rxsignal))))

load CONSTANTS
fs=100;
u=1;
for f=0:fs/101:(50*fs)/101
rxsignal=[]
temp=0;
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Fig. 1.4 Impulse response of the time-varying channel for various time instances

z=1;
for t=0:1/100:1

temp=0;
for p=1:1:nop
temp=temp+BETACOL{z}(p)*exp(j*2*pi*f*(t-DELAYCOL{z}
(p)));
end
rxsignal=[rxsignal temp];
z=z+1;
end
%The impulse response of the time-varying channel is
computed as follows.
t=0:1/100:1;
timevaryingTF_at_freq_f{u}=rxsignal.*exp
(-j*2*pi*f*t);
u=u+1;
end
TEMP=cell2mat(timevaryingTF_at_freq_f’);
for i=1:1:101
u=TEMP(:,i);
u1=[u;transpose(u(length(u):-1:2)’)];
timevaryingIR_at_time_t{i}=ifft(u1);
end
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Fig. 1.5 Zoomed version of the impulse response of the time-varying channel for the time
instances t D 0:01, t D 0:03, t D 0:05 and t D 0:07

TFMATRIX=abs(cell2mat(timevaryingTF_at_freq_f’));
IRMATRIX=cell2mat(timevaryingIR_at_time_t)
s=[2:2:8];
for i=1:1:4
figure(2)
subplot(2,2,i)
plot(IRMATRIX(1:1:101,s(i)))
title(strcat(’t=’,num2str((s(i)-1)/100)))
figure(3)
subplot(2,2,i)
plot(TFMATRIX(:,s(i)))
title(strcat(’t=’,num2str((s(i)-1)/100)))
end
s=[2:2:20 11:5:100];
for i=1:1:25
figure(4)
subplot(5,5,i)
plot(IRMATRIX(1:1:101,s(i)))
title(strcat(’t=’,num2str((s(i)-1)/100)))
figure(5)
subplot(5,5,i)
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plot(TFMATRIX(:,s(i)))
title(strcat(’t=’,num2str((s(i)-1)/100)))
end

1.2 Coherence Time and Doppler Spread

Let the time-varying propagation delay and attenuation of the particular path j be
represented respectively as follows:

�j.t/ D �0 C �
0

j t (1.5)

ˇj.t/ D ˇj (1.6)

) H.f ; t/ D
jDJX

jD1

ˇje
�i�2���f �.�0C�

0

j t/ (1.7)

) H.f ; t/ D
jDJX

jD1

ˇje
�i�2���f ��0e�i�2���f ��

0

j t (1.8)

Let Dj D �f � �
0

j , and rewriting (1.8), we get

H.f ; t/ D
jDJX

jD1

ˇje
�i�2���f ��0ei�2���Djt (1.9)

The response to the eigenfunction ei�2�pi�f0t is given as follows:

H.f0; t/ D
jDJX

jD1

ˇje
�i�2���f0��0ei�2���Djtei�2�pi�f0t (1.10)

) ye.t/ D
jDJX

jD1

ˇje
�i�2���f0��0ei�2���.DjCf0/t (1.11)

From (1.10), it is observed that there is a shift in the frequency in every path of the
transmission. For instance, the shift in the frequency in the jth path is given as DjCf0.
This is called Doppler shift. Let argj min.Dj/ D Dmin and argj.max.Dj// D Dmax.
The range of frequencies described as D D Dmax�Dmin is known as Doppler spread.
The response of the channel to the signal cos.2 � � � fo � t/ is given as follows:
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y.t/ D <
0

@
jDJX

jD1

ˇje
�i�2���f0��0ei�2���.DjCf0/t

1

A (1.12)

Let the value of the transfer function of the time-varying (multi-path) channel at
frequency f D f0 in polar form be represented as jH.f0; t/je�j†.H.f0;t//. The response
to the signal cos.2 � pi � f0 � t/ is obtained as y.t/ D jH.f0; t/j cos.2 � pi � f0 � t �
†.H.f0; t///. Assuming that the phase response †.H.f0; t// is slowly varying with
time. Ideally we expect jH.fo; t/j (envelope) to be the flat response. But because of
the presence of the Doppler spread, jH.fo; t/j varies with time. We would like to
have the rate at which jH.fo; t/j is changing with time should be minimal.

Case Study Consider the signal cos.2 � � � f0 � t/ (refer Fig. 1.6a) with f0 D 1

MHz (refer Fig. 1.6b) transmitted in the transmitter. Let the number of multiple
paths is assumed as 4. Also let the rate at which the delay .�j/ is changing with time
be randomly chosen as TAUJ D Œ0:62 1:84 0:86 0:37�. Hence the corresponding
Doppler shift for the frequency f0 in the corresponding paths is obtained as DJ D
�f0 � TAUJ and the actual shift in the frequency is given as fshift D jDJ C f0j D
Œ0:38 0:84 0:14 0:63�. Also the attenuation in the individual paths is given as

BETA D Œ0:23 0:17 0:23 0:44� (1.13)

Thus the received signal is represented as

4X

jD1

BETA.j/ cos.2 � � � fshift.j/ � t/ (1.14)

The received signal and the corresponding spectrum are given in the Fig. 1.6c,d. In
this case time shift at t D 0 is assumed as 0. The bandwidth of the received signal
for the single tone transmitted signal (f0 D 1 MHz) is the Doppler spread and is
obtained as 0:7072 MHz. This is typically for the fast fading scenario. The envelope
of the fast fading channel is given in Fig. 1.7.

Typical values for the slow fading (refer Figs. 1.8 and 1.9) and the observations
on the Figs. 1.8 and 1.9 are

1. TAUJ D Œ0:0042 0:0098 0:0030 0:0070�.
2. fshift D jDJ C f0j D Œ0:9958 0:9902 0:9970 0:9930�.
3. BETA D Œ0:2691 0:4228 0:5479 0:9427�.
4. The bandwidth of the received signal corresponding to the single tone transmitted

signal (f0 D1 MHz) is given as 6800 Hz.
5. The bandwidth of the spectrum in Fig. 1.8d is identified as the Doppler spread.
6. The envelope of the wave in Fig. 1.8c is identical with Fig. 1.9a.
7. The coherence time is computed as tcoh D 1

2D D 73 �s and is illustrated in
Fig. 1.10. It is the zoomed version of Fig. 1.9a.
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Fig. 1.6 (a) Transmitted signal, (b) corresponding spectrum of the transmitted signal, (c) received
signal after subjected to multi-path fast fading and (d) corresponding spectrum of the received
signal

%dopplerspread.m
TAU0=0;
%beta is assumed as the one that is not varying with time
%nop is the number of paths
%txsignal is the transmitted signal
%rxsignal is the received signal
%tv_tf_comp_at_f is the time varying transfer function
computed at the
%frequency f0
%TAUJ is the rate at which the delay is changing
%The f0 is in MHz and sampling time is in micro
seconds
f0=1;
nop=4;
BETA=rand(1,nop);
TAUJ=rand(1,nop)*2-1;
rxsignal=[];
tv_tf_comp_at_f=[];
t=0:(1/100):99.99;
txsignal=cos(2*pi*f*t);
z=1;
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Fig. 1.7 Illustration of the fast fading channel characteristics

for t=0:(1/100):99.99
temp=0;
temp1=0;

for p=1:1:nop
temp=temp+BETA(p)*exp(j*2*pi*f0*t)*
exp(-j*2*pi*f0*TAU0)*exp(-j*2*pi*f0*TAUJ(p)*t);
temp1=temp1+BETA(p)*exp(-j*2*pi*f0*TAU0)*exp
(-j*2*pi*f0*TAUJ(p)*t);
end
rxsignal=[rxsignal temp];
tv_tf_comp_at_f=[tv_tf_comp_at_f temp1];
end
figure
subplot(2,2,1)
plot(txsignal)
subplot(2,2,2)
freqval=(0:1:length(rxsignal)-1)/100;
plot(real(rxsignal),’r’)
subplot(2,2,3)
plot(freqval,abs(fft(txsignal)))
subplot(2,2,4)
plot(freqval,abs(fft(real(rxsignal))))
figure
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Fig. 1.8 (a) Transmitted signal, (b) corresponding spectrum of the transmitted signal, (c) received
signal after subjected to multi-path slow fading and (d) corresponding spectrum of the received
signal

subplot(2,1,1)
plot(abs(tv_tf_comp_at_f))
subplot(2,1,2)
plot(phase((tv_tf_comp_at_f)))

1.3 Coherence Frequency and Delay Spread

In the case of Doppler spread, we studied how fast the transfer function of the time-
varying channel changes with time for a fixed frequency. Doppler spread and the
coherence time are used for the same. In this section, we will study how fast the
transfer function of the time-varying channel changes with frequency at a particular
time instant. Rewrite the expression for the transfer function of the multi-path
channel model as
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Fig. 1.9 Illustration of the slow fading channel characteristics

H.f ; t/ D
jDJX

jD1

ˇj.t/e
�i�2���f ��j.t/ (1.15)

In this case, we would like to keep t as constant (t0) and analyse how fast H.f ; t/ is
changing with frequency. Substituting �j.t/ D �0 C �

0

j t and ˇj.t/ D ˇj in (1.15), we
get the following:

H.f ; t/ D
jDJX

jD1

ˇje
�i�2���f ��0e�i�2���f �� 0

j t (1.16)

Let the argj min.�j/ D �min and argj.max.�j// D �max. The range of delay described
as L D �max � �min is known as delay spread. The coherence frequency is computed
as 1

2L .

Case Study The variation of the transfer function with frequency at a particular
time instant t0 D 1 �s is shown in Fig. 1.11. The typical values used in the case
study are as follows:

1. TAUJ D Œ0:9143 � 0:0292 0:6006 � 0:7162�.
2. BETA D Œ0:9575 0:9649 0:1576 0:9706�.
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Fig. 1.10 Illustration of the computation of the coherence time using Doppler spread (D)

3. Delay spreadD L D 1:6306 and the coherence frequency is computed as fcoh D
1

2L D 306 KHz.

1.3.1 Observations on Figs. 1.10 and 1.11

1. From Fig. 1.10, we understand that the characteristics of the time-varying
channel are almost identical during the time duration of 73 �s when the 1

MHz single tone signal (or narrow band signal with carrier frequency 1 MHz)
is transmitted from the transmitter.

2. From Fig. 1.11, we understand that the transfer function of the time-varying
channel is almost flat for the frequency range of 356 KHz observed at the time
instant of 1 �s i.e. the frequency response is almost flat for a bandwidth of 356

KHz.
3. If the bandwidth of the bandpass signal is W (ranging from fc � W

2
to fc C W

2
) and

if W << fcoh, it is known as flat fading.
4. Let x.t/ be the narrow band signal with bandwidth W << fcoh. If the signal

is transmitted through the time-varying channel over the duration of tcoh, the
received signal y.t/ is obtained as Kx.t � tdelay/, where K is the attenuation
and tdelay is the transmission delay. This is known as flat fading narrow band
transmission.
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Fig. 1.11 Illustration of the computation of the coherence frequency using delay spread (L)

5. It is also observed that Doppler spread D depends on the frequency. If the
frequency of the transmitted signal or carrier frequency of the narrow band
transmitted signal is large, then D becomes larger and hence tcoh gets reduced
and fading is faster.

%delayspread.m
close all
clear all
%beta is assumed as the one that is not varying with
time
%nop is the number of paths
%txsignal is the transmitted signal
%rxsignal is the received signal
%tv_tf_comp_at_t0 is the time varying transfer
function as the function of frequency computed
at the
%time instant t0 (micro sec)
%TAUJ is the rate at which the delay is changing.

TAU0=0;
t0=1;
nop=4;
BETA=rand(1,nop);
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TAUJ=(rand(1,nop)*2-1);
rxsignal=[];
tv_tf_comp_at_t0=[];
z=1;
t1=1;
for f=0:(1/1000):0.999

temp=0;
temp1=0;

for p=1:1:nop
temp1=temp1+BETA(p)*exp(-j*2*pi*f*TAU0)*exp
(-j*2*pi*f*TAUJ(p)*t0);
end
tv_tf_comp_at_t0=[tv_tf_comp_at_t0 temp1];
end
figure
plot([0:(1/1000):0.999]*1000,abs(tv_tf_comp_at_t0))
title(’Time varying transfer function computed at the
time instant...
t0=1 micro secs.’);

1.4 Relationship Between the Time-Varying Impulse
Response of the Base Band and the Bandpass
Transmission

Let the complex eigenfunction ei�2���f0�t is transmitted through the time-varying
channel whose time-varying transfer function is represented as H.f ; t/. The cor-
responding received signal is obtained as H.f0; t/ei�2���f0�t. For some arbitrary
frequency f , the corresponding received signal is represented as

H.f ; t/ei�2���f �t (1.17)

Also, for the multi-path model, we know the response to the eigensignal ei�2���f �t

is represented as

jDJX

jD1

ˇj.t/e
i�2���f �te�i�2���f ��j.t/ (1.18)

Comparing (1.17) and (1.18), we obtain the time-varying transfer function

H.f ; t/ D
jDJX

jD1

ˇj.t/e
�i�2���f ��j.t/ (1.19)
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and the corresponding time-varying impulse response

h.�; t/ D
jDJX

jD1

ˇj.t/ı.t � �j.t// (1.20)

Consider the base band complex signal xbaseband.t/ with �W
2

< f < W
2

transmitted
through the time-varying channel (Practically possible if xbaseband.t/ is real). The
corresponding received signal ybaseband.t/ is obtained as follows:

x.t/ D
Z W

2

�W
2

Xbaseband.f /ei�2���f �tdf (1.21)

) ybaseband.t/ D
Z W

2

�W
2

Xbaseband.f /ei�2���f �t
jDJX

jD1

ˇj.t/e
�i�2���f ��j.t/df (1.22)

) ybaseband.t/ D
jDJX

jD1

ˇj.t/
Z W

2

�W
2

Xbaseband.f /ei�2���f �.t��j.t//df (1.23)

) ybaseband.t/ D
jDJX

jD1

ˇj.t/xbaseband.t � �j.t// (1.24)

Consider the bandpass signal (real) xbandpass.t/ transmitted through the time-varying
channel with bandwidth fc � W

2
< f < fc C W

2
. The corresponding received signal is

obtained as follows:

xbandpass.t/ D .xbaseband.t/ei�2���fc�t C x�
baseband.t/e�i�2���fc�t/

2
(1.25)

D 1

2

Z 1

�1
ŒXbaseband.f � fc/e

i�2���f �tdf C X�
baseband.�f � fc/e

i�2���f �tdf � (1.26)

where x�
baseband.t/ is the complex conjucate of xbaseband.t/.

The response to the first term is obtained as follows:

yIterm
bandpass D 1

2

Z W
2 Cfc

�W
2 Cfc

Xbaseband.f � fc/e
i�2���f �tH.f ; t/df (1.27)

yIterm
bandpass.t/ D ei�2�� fct 1

2

Z W
2

�W
2

Xbaseband.f /ei�2���f �tH.f C fc; t/df (1.28)
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Using (1.19), we get

yIterm
bandpass.t/ D 1

2
ei�2���fc�.t��j.t//

jDJX

jD1

ˇj.t/xbaseband.t � �j.t// (1.29)

yIterm
bandpass.t/ D 1

2

jDJX

jD1

ei�2���fc�tˇj.t/xbaseband.t � �j.t// (1.30)

Similarly the second term is obtained as

yIIterm
bandpass.t/ D 1

2

jDJX

jD1

e�i�2���fc�tˇj.t/x
�
baseband.t � �j.t// (1.31)

Thus the received signal is obtained as

ybandpass D
jDJX

jD1

ˇj.t/xbandpass.t � �j.t// (1.32)

In (1.24), it is assumed that the base band signal is directly transmitted through the
channel. But in practice, the base band signal is converted into bandpass signal
with carrier frequency fc and is transmitted through the channel. In this case
the impulse response of the base band transmission is obtained as follows. Let
the eigensignal ei�2���f �t with �W

2
< f < W

2
is modulated as trebandpass D

ei�2���f �tei�2���fc�t C e�i�2���f �te�i�2���fc�t to obtain the real bandpass signal to
be transmitted. The corresponding received signal is given as

rxebandpass.t/ D ei�2���.f Cfc/�tH.f Cfc; t/Ce�i�2���.f Cfc/�tH.�.f Cfc/; t/ (1.33)

Let xbaseband.t/ be the complex base band signal which is represented as follows:

xbaseband.t/ D
Z W

2

�W
2

Xbaseband.f /ej�2���f �tdf (1.34)

The received bandpass signal after transmitted through the channel is computed as
follows:

ybandpass.t/ D
Z W

2

�W
2

Xbaseband.f /basebandei�2���.f Cfc/�tH.f C fc; t/

Ce�i�2���.f Cfc/�tH.�.f C fc/; t/df (1.35)
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Consider the first term

yIterm
bandpass.t/ D ei�2���fc�t

Z W
2

�W
2

Xbaseband.f /ei�2���f �tH.f C fc; t/df (1.36)

Let G.f ; t/ D H.f C fc; t/, we get the following:

yIterm
bandpass.t/ D ei�2���fc�t

Z W
2

�W
2

Xbaseband.f /ei�2���f �tG.f ; t/df (1.37)

Similarly the yIIterm
bandpass.t/ is obtained as follows:

yIIterm
bandpass.t/ D e�i�2���fc�t

Z W
2

�W
2

X�
baseband.f /e�i�2���f �tG.�f ; t/df (1.38)

Comparing (1.35) with (1.25), we observe that the corresponding received base band
signal is given as

ybaseband.t/ D
Z W

2

�W
2

Xbaseband.f /ei�2���f �tG.f ; t/df : (1.39)

Substituting (1.19) in (1.39), we get the following:

ybaseband.t/ D
jDJX

jD1

Z W
2

�W
2

Xbaseband.f /ˇj.t/e
�i�2���fc��j.t/ei�2���f �.t��j.t// (1.40)

Substituting �j.t/ D ˇj.t/e�i�2���fc��j.t/, we get the following.

ybaseband.t/ D
jDJX

jD1

�j.t/xbaseband.t � �j.t// (1.41)

Thus linear time-variant impulse response of the base band� > bandpass� >

base band transmission is given as hb.�; t/ D PjDJ
jD1 �j.t/ı.t � �j.t//.

Summary

1. If the base band signal (real valued) is transmitted and received without
modulation, the impulse response of the base band signal transmission is given
as h.�; t/ D PjDJ

jD1 ˇj.t/ı.� � �j.t// (refer (1.24))
2. If the bandpass signal is transmitted and received, the impulse response of the

time-varying channel is given as h.�; t/ D PjDJ
jD1 ˇj.t/ı.� � �j.t// (refer (1.32))

3. If the base band signal is transmitted and received with modulation, impulse
response of the base band� > bandpass� > base band signal transmission is
given as hb.�; t/ D PjDJ

jD1 �j.t/ı.� � �j.t// (refer (1.41))



1.5 Discrete Complex Base Band Time Varying Channel Model for Wireless. . . 19

1.5 Discrete Complex Base Band Time Varying Channel
Model for Wireless Communication

In this section, we use the impulse response of the time-varying channel as hb.�; t/.
Consider a complex base band signal x.t/ having a bandwidth � W

2
< f < W

2
and

sampled with the sampling frequency Fs D W. Let the sampled version of the base
band signal be represented as x.kTs/ D xk, where k D � � � � 3; �2; �1; 0; 1; 2; � � � .
The base band signal is reconstructed using the sinc interpolation as follows:

x.t/ D
X

k

xksinc

�
t

Ts
� k

�
(1.42)

The base band received signal is obtained as follows:

y.t/ D
Z

l
hb.l; t/x.t � l/dl (1.43)

y.t/ D
Z

l
hb.l; t/

X

k

xksinc

�
t � l

Ts
� k

�
dl (1.44)

y.t/ D
X

k

xk

Z

l
hb.l; t/sinc

�
t � l

Ts
� k

�
dl (1.45)

Sampling the output at time instant t D mTs, we get the following:

y.mTs/ D ym D
X

k

xk

Z

l
hb.l; mTs/sinc

�
mTs � l

Ts
� k

�
dl (1.46)

ym D
X

k

xk

Z

l
hb.l; mTs/sinc

�
m � k � l

Ts

�
dl (1.47)

ym D
X

n

xm�n

Z

l
hb.l; mTs/sinc

�
n � l

Ts

�
dl (1.48)

Let hbn;m D R
l hb.l; mTs/sinc

�
n � l

Ts

�
dl, we get the following:

ym D
X

n

hbn;mxm�n (1.49)

Using hb.�; t/ D PjDJ
jD1 ˇj.t/ı.l� � �j.t//, hbn;m is obtained as follows:

hbn;m D
Z

l

jDJX

jD1

ˇj.mTs/ı.l � �j.mTs//sinc

�
n � l

Ts

�
dl (1.50)
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hn;m D
jDJX

jD1

ˇj.mTs/sinc

�
n � �j.mTs/

Ts

�
(1.51)

Similarly time-varying discrete impulse response of the baseband� >

bandpass� > base band transmission is given as

hbpn;m D
jDJX

jD1

�j.mTs/sinc

�
n � �j.mTs/

Ts

�
(1.52)

Thus hbn;m is interpreted as the linear combinations of shifted versions of the sinc
functions. The function sinc.k/ as a function of k is shifted �j.mTs/ for every j.
Linear combinations at integer points of the shifted sinc functions give the time-
varying impulse response hbn;m (refer Fig. 1.12). Note that n corresponds to filter tap
and m corresponds to the time instant. The delay spread L is the interval between the
smallest and the largest path delay. The number of taps are fixed based on the value
of L

T . If L
T << 1, only one tap is chosen and the corresponding channel is known

as flat-fading channel. Note that the bandwidth of the complex base band impulse
response is W

2
D 1

2T . If the coherence frequency fcoh >> W
2

, then the channel is
considered as flat fading channel as described below:

L

T
<< 1 ) fcoh D 1

2L
>>

W

2
(1.53)

It is also interpreted that the coherence time gives the information about how fast
the individual taps of the discrete taps are changing with respect to n.

1.6 Fading Channels

1.6.1 Case Study Using Flat Fading Rayleigh Model

In Rayleigh channel model, the real and imaginary parts of the complex coefficients
(tap gains) hpbn;m are modelled as independent and identically distributed Gaussian
random variables with mean zero and variance �2

n . It is noted that variance of the
random variable varies with tap n and not with time instant m. Let the random
vector associated with the complex coefficient hpbn;m for any arbitrary m and n is
represented as Gm;n D ŒRre Rim�T . The random variables Rre and Rim are independent
and Gaussian distributed with mean zero and variance �2

n . The joint probability
density function of random vector R is represented as follows:

fGm;n.rre; rim/ D 1

2��2
n

e
�r2re�r2im

2�2
n (1.54)
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Fig. 1.12 Illustration of discrete wireless time-varying model

Thus the probability density function of the random variable R D p
R2

re C R2
re is

Rayleigh distributed and is given as follows:

fGm;n.r/ D r

�2
n

e
�jrj2

2�2
n (1.55)

This model is called the Rayleigh fading model. Consider the impulse response of
the time-varying channel represented as

vm D
kD1X

kD�1
gkum�k (1.56)

Let us consider the discrete flat fading channel with single tap time-varying impulse
response g0 for illustration. Let um be the mth transmitted sample and vm be the
corresponding received sample. Let the two consecutive samples Œa 0� represent the
binary level 0, and Œ0 a� represents the binary level 1. They are related as vm D
g0um C nm. The real and imaginary parts of the time-varying impulse response g0

are modelled as independent and identically Gaussian distributed random variables
with mean zero and variance �2. The magnitude of g0 is Rayleigh distributed.
nm is also modelled as complex random variable with real and imaginary parts
as independent and identically distributed random variables with mean zero and
variance 1

2
N0

2
.2W/ D WN0

2
. Let the two consecutive received samples be represented

as the complex random vector V D Œvm vmC1�T . The conditional density function of
the complex random vector when 0 is sent is represented as V0 and is obtained as
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follows. Note that vm D vre
m C jvim

m and vmC1 D vre
mC1 C jvim

mC1. Thus the conditional
density of the random vector V is obtained as the product of conditional density of
vre

m , vre
mC1, vim

m and vim
mC1. Let g0 D gre C jgim.

When 0 is sent,

vre
m D agre C nre D P0 (1.57)

vim
m D agim C nim D Q0 (1.58)

vre
mC1 D 0gre C nre D nre D R0 (1.59)

vim
mC1 D 0gim C nim D nim D S0 (1.60)

Thus the conditional density of the received vector when 0 is sent is obtained
as the product of four Gaussian density functions fP0 .p/fQ0 .q/fR0 .r/fS0 .s/. It is also
observed that the conditional density functions fP0 .p/ and fQ0 .q/ are identical. Also
the conditional density functions fR0 .r/ and fS0 .s/ are identical. They are listed
below:

fP0 .p/ D 1p
�N0W

e
�p2

N0W (1.61)

fQ0 .q/ D 1p
�N0W

e
�q2

N0W (1.62)

fR0 .r/ D 1
q

2�.�2a2 C N0W
2

/

e
�r2

2.�2a2
C

N0W
2 / (1.63)

fS0 .s/ D 1
q

2�.�2a2 C N0W
2

/

e
�s2

2.�2a2
C

N0W
2 / (1.64)

Similarly the conditional density of the random vector V when 1 is sent (V1) is
obtained as follows:

vre
m D 0gre C nre D nre D P1 (1.65)

vim
m D 0gim C nim D nim D Q1 (1.66)

vre
mC1 D agre C nre D R1 (1.67)

vim
mC1 D agim C nim D S1 (1.68)

Thus the conditional density of the received vector when 1 is sent is obtained
as the product of four Gaussian density functions fP1 .p/f 1

Q.q/fR1 .r/fS1 .s/. It is also
observed that the conditional density functions fP1 .p/ and fQ1 .q/ are identical. Also
the conditional density functions fR1 .r/ and fS1 .s/ are identical. They are listed
below:
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fP1 .p/ D 1
q

2�.�2a2 C N0W
2

/

e
�p2

2.�2a2
C

N0W
2 / (1.69)

fQ1 .q/ D 1
q

2�.�2a2 C N0W
2

/

e
�q2

2.�2a2
C

N0W
2 / (1.70)

fR1 .r/ D 1p
�N0W

e
�r2
N0W (1.71)

fS1 .s/ D 1p
�N0W

e
�s2
N0W (1.72)

Assuming the binary data transmitted are equiprobable, the detection rule to decide
whether the transmitted binary data are 1 or 0 based on the observation of two
consecutive complex random variables or four variables p, q, r, s is obtained as
follows. Decide in favour of 1, when L.p; q; r; s/ � 0, 0 , otherwise. The function L
is obtained as follows:

L.p; q; r; s/ D log

�
fP1 .p/fQ1 .q/fR1 .r/fS1 .s/

fP0 .p/fQ0 .q/fR0 .r/fS0 .s/

�
(1.73)

From (1.61)–(1.64) and (1.69)–(1.72), L.p; q; r; s/ is computed as follows:

eL.p;q;r;s/ D
1

�N0W e
�.r2Cs2/

N0W 1

2�.�2a2C N0W
2 /

e
�.p2

Cq2/

2.�2a2
C

N0W
2 /

1
�N0W e

�.p2
Cq2/

N0W 1

2�.�2a2C N0W
2 /

e
�.r2Cs2/

2.�2a2
C

N0W
2 /

(1.74)

D e
.p2

Cq2
�r2�s2/

N0W e
�.�r2�s2Cp2Cq2/. 1

N0WC2�2a2 /
(1.75)

L(p,q,r,s)=

.p2 C q2 � r2 � s2/

N0W
� .�r2 � s2 C p2 C q2/

�
1

N0W C 2�2a2

�
(1.76)

H) L.p; q; r; s/ D .p2 C q2 � r2 � s2/K (1.77)

where K D . 1
N0W � 1

N0WC2�2a2 / is the positive constant. Thus the detection rule is

obtained as follows. Decide in favour of 1 if p2 C q2 > r2 C s2.
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1.6.2 Computation of the Probability of Error
of the Flat Fading Rayleigh Channel

Error occurs if P2
0 C Q2

0 > R2
0 C S2

0 (when 0 is sent). Let X0
1 D P2

0 C Q2
0 when

0 is sent and X0
2 D R2

0 C S2
0, when 0 is sent. The probability of error when 0 is

sent is computed as P.X0
1 > X0

2/. The probability density function of X0
1 and X0

2 are

obtained as follows. Consider the random variable U D
q

P2
0 C Q2

0 for U � 0. The
density function of U is rayleigh distributed and is given as

fU.u/ D 2u

N0W
e

�juj
2

N0W (1.78)

It is noted X0
1 D U2. Using change of random variable, the density function of X0

1

is obtained as fX0
1
.x0

1/ D 1
jJj fR.x0

1/. J is the Jacobian at U D u and is obtained as 2u.
Hence

fX0
1
.x0

1/ D 2u

2uN0W
e� x0

1
N0W (1.79)

D 1

N0W
e� x0

1
N0W (1.80)

Similarly the density function of X0
2 is obtained as

fX0
2
.x0

2/ D 1

2�2a2 C N0W
e

� x0
2

2�2a2
CN0W (1.81)

Thus P.X0
1 > X0

2/ is computed as follows. For simplicity let G D X0
1 and H D X0

2

P.G > H=H D h/ D P.G > H; H D h/

P.H D h/
(1.82)

) P.G > H; H D h/ D P.G > H=H D h/P.H D h/ (1.83)

) P.G > H/ D
X

H

P.G > H; H D h/ D
X

H

P.G > H=H D h/P.H D h/ (1.84)

In the case of continuous random variable, we get the following:

P.G > H/ D
Z

G
P.G > H=H D h/fH.h/dh (1.85)

P.G > H/ D
Z

G
P.G > h/

1

2�2a2 C N0W
e

� h
2�2a2

CN0W dg (1.86)

Flat fading Rayleigh channel is illustrated in the Figs. 1.13 and 1.14
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Fig. 1.13 Illustration of the flat fading Rayleigh model

P.G > h/ D
Z 1

h

1

N0W
e� g

N0W dg (1.87)

D e� h
N0W (1.88)

Hence P.G > H/ is computed as follows:

P.G > H/ D
Z

G
P.G > h/fH.h/dg (1.89)

D
Z

G
e� h

N0W
1

2�2a2 C N0W
e

� h
2�2a2

CN0W dh (1.90)

D 1

2 C 2�2a2

NoW

(1.91)

%rayleighdemo.m
DATA=round(rand(1,10000));
TX=[];
a=1;
%Let the bandwidth of the complex base band signal be W/2
W=2;
N0=0.01;
N0W=(N0/2)*W;
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Fig. 1.14 Illustration of the Flat-fading rayleigh model (cont. . . )

for i=1:1:length(DATA)
if(DATA(i)==0)

TX=[TX a 0];
else

TX=[TX 0 a];
end

end
%Gaussian noise with variance 0.01
g=sqrt(N0W)*randn(1,20000)+j*sqrt(N0W)*randn(1,20000);
%Flat-fading rayleigh channel with impulse response r
r=sqrt(0.1)*randn(1,20000)+j*sqrt(0.1)*randn(1,20000);
RX=r.*TX+g;
figure
subplot(2,2,1)
stem(TX(1:1:200))
title(’Typical transmitted samples’)
subplot(2,2,2)
[a,b]=hist(sqrt(abs(r)),100)
plot(b,a)
title(’histogram of the rayleigh distributed noise’)
subplot(2,2,3)
plot(real(RX(1:1:200)))
title(’Real part of the received samples’)
subplot(2,2,4)
plot(imag(RX(1:1:200)))
title(’Imaginary part of the received samples’)
%detection
DETDATA=[];
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for i=1:2:200
temp=[RX(i) RX(i+1)];
O=abs(temp(1))-abs(temp(2));
if(O>0)

DETDATA=[DETDATA 0];
else

DETDATA=[DETDATA 1];
end

end
figure
subplot(2,1,1)
stem(DATA(1:1:100))
title(’Transmitted data’)
subplot(2,1,2)
stem(DETDATA,’r’)
title(’Corresponding detected data’)

1.6.3 Case Study Using Flat Rician Fading Model

Like Rayleigh model, the impulse response of the Flat Rician model consists of
only one tap. The real part of the tap consists of one strong line of sight path and
mixtures of multiple path and hence real part of the tap is modelled as the Gaussian
distributed with mean m (positive quantity) and variance �2. But the imaginary part
of the tap is modelled as the Gaussian distributed with mean 0 and variance �2. In
this case, when 0 is sent, the input and the output of the two consecutive samples
ŒY0

1 Y0
2 �T are represented as follows:

Y0
1 D nre C jnim (1.92)

Y0
2 D agre C jagim C nre C jnim (1.93)

where a is the scalar, nre and nim are Gaussian distributed (additive noise) random
variables with variance N0W

2
and mean 0. gre and gim are Gaussian distributed

(channel coefficient) with mean m and 0, respectively, and with variance �2. Let
P0 D Y0

1re , Q0 D Y0
1im , R0 D Y0

2re , S0 D Y0
2im

fP0 .p/ D 1p
�N0W

e
�p2

N0W (1.94)

fQ0 .q/ D 1p
�N0W

e
�q2

N0W (1.95)
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fR0 .r/ D 1
q

2�.�2a2 C N0W
2

/

e
�.r�am/2

2.�2a2
C

N0W
2 / (1.96)

fS0 .s/ D 1
q

2�.�2a2 C N0W
2

/

e
�s2

2.�2a2
C

N0W
2 / (1.97)

Similarly when 1 is sent, the conditional density functions are obtained as follows.
Let P1 D Y1

1re , Q1 D Y1
1im , R1 D Y1

2re , S1 D Y1
2im

fP1 .p/ D 1
q

2�.�2a2 C N0W
2

/

e
�.p�am/2

2.�2a2
C

N0W
2 / (1.98)

fQ1 .q/ D 1
q

2�.�2a2 C N0W
2

/

e
�q2

2.�2a2
C

N0W
2 / (1.99)

fR1 .r/ D 1p
�N0W

e
�r2
N0W (1.100)

fS1 .s/ D 1p
�N0W

e
�s2
N0W (1.101)

Assuming the binary data transmitted are equiprobable, the detection rule to decide
whether the transmitted binary data are 1 or 0 based on the observation of two
consecutive complex random variables or four variables p, q, r, s is obtained as
follows. Decide in favour of 1, when L.p; q; r; s/ � 0, 0, otherwise. The function L
is obtained as follows:

L.p; q; r; s/ D log

�
fP1 .p/fQ1 .q/fR1 .r/fS1 .s/

fP0 .p/fQ0 .q/fR0 .r/fS0 .s/

�
(1.102)

From (1.94)–(1.101), L.p; q; r; s/ is computed as follows:

eL.p;q;r;s/ D
1

�N0W e
�.r2Cs2/

N0W 1

2�.�2a2C N0W
2 /

e
�.p�am/2Cq2

2.�2a2
C

N0W
2 /

1
�N0W e

�.p2
Cq2/

N0W 1

2�.�2a2C N0W
2 /

e
�.r�am/2Cs2

2.�2a2
C

N0W
2 /

(1.103)

D e
.p2

Cq2
�r2�s2/

N0W e
�.�r2�s2Cp2Cq2�2pamC2ram/. 1

N0WC2�2a2 /
(1.104)
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L.p; q; r; s/ D

D .p2 C q2 � r2 � s2/K C
�

1

N0W C 2�2a2

�
.2am.p � r// (1.105)

where K D . 1
N0W � 1

N0WC2�2a2 / is the positive quantity. (From 1.105), we get the

detection rule with p; q; r; s as follows. Decide in favour of 1 if p2 C q2 > r2 C s2.

1.6.4 Computation of Probability of Error for Flat Rician
Fading Channel Model

Error occurs if P2
0 C Q2

0 > R2
0 C S2

0 (when 0 is sent). Let G D P2
0 C Q2

0 and H D
R2

0 C S2
0. The probability of error when 0 is sent is computed as P.G > H/:

P.G > H=H D h/ D P.G > H; H D h/

P.H D h/
(1.106)

) P.G > H; H D h/ D P.G > H=H D h/P.H D h/ (1.107)

) P.G > H/ D
X

H

P.G > H; H D h/ D
X

H

P.G > H=H D h/P.H D h/

(1.108)

From (1.88), P.G > H=H D h/ D P.G > h/ is obtained as e� h
N0W D e� r20Cs20

N0W .
Hence P.G > H/ is computed as follows:

P.G > H/ D P.G > R2
0 C S2

0/ (1.109)

D
Z

R0

Z

S0

e� r20Cs20
N0W fR0 .r0/fS0 .s0/dr0ds0 (1.110)

D
Z

R0

Z

S0

e� r20Cs20
N0W

1

2�.�2a2 C N0W
2

/
e

�.r0�am/2

2.�2a2
C

N0W
2 / e

�s20

2.�2a2
C

N0W
2 / dr0ds0 (1.111)

D 1

2 C 2a2�2

WN0

e
� m2a2

2WN0C2�2a2 (1.112)

It is noted if m D 0, i.e. if there is no line of sight path, (1.112) becomes (1.91). In
other words, Flat Rician model becomes flat Rayleigh model.

Flat Rician model is illustrated in Figs. 1.15 and 1.16

%riciandemo.m
DATA=round(rand(1,10000));
TX=[];
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Fig. 1.15 Illustration of the Flat fading Rician model

Fig. 1.16 Illustration of the Flat fading Rician model (cont. . . )

a=1;
%Let the bandwidth of the complex base band signal be W/2
W=2;
N0=0.01;
N0W=(N0/2)*W;
for i=1:1:length(DATA)

if(DATA(i)==0)
TX=[TX a 0];
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else
TX=[TX 0 a];

end
end
m=1;
%Gaussian noise with variance 0.01
g=sqrt(N0W)*randn(1,20000)+j*sqrt(N0W)*randn(1,20000);
%Flat-fading rician channel with impulse response r
r=sqrt(0.1)*randn(1,20000)+1+j*sqrt(0.1)*randn(1,20000);
RX=r.*TX+g;
figure
subplot(2,2,1)
stem(TX(1:1:200))
title(’Typical transmitted samples’)
subplot(2,2,2)
[a,b]=hist(sqrt(abs(r)),100)
plot(b,a)
title(’histogram of the rician distributed noise’)
subplot(2,2,3)
plot(real(RX(1:1:200)))
title(’Real part of the received samples’)
subplot(2,2,4)
plot(imag(RX(1:1:200)))
title(’Imaginary part of the received samples’)
%detection
DETDATA=[];
for i=1:2:200

temp=[RX(i) RX(i+1)];
O=abs(temp(1))-abs(temp(2));
if(O>0)

DETDATA=[DETDATA 0];
else

DETDATA=[DETDATA 1];
end

end
figure
subplot(2,1,1)
stem(DATA(1:1:100))
title(’Transmitted data’)
subplot(2,1,2)
stem(DETDATA,’r’)
title(’Corresponding detected data’)
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1.6.5 Base Band Single Tap Channel with Known Estimated
Filter Coefficient g

In this case, the magnitude of the single tap filter coefficient is assumed to be known
constant mre C jnim. The variance of the filter is zero, i.e. �2 D 0. When 0 is sent,
the input and the output of the two consecutive samples ŒY0

1 Y0
2 �T are represented as

follows:

Y0
1 D nre C jnim (1.113)

Y0
2 D a.mre C jnim/ C nre C jnim (1.114)

where a is the scalar, nre and nim are Gaussian distributed (additive noise) random
variables with variance N0W

2
and mean 0. gre and gim are Gaussian distributed

(channel coefficient) with mean m and 0, respectively, and with variance �2. Let
P0 D Y0

1re , Q0 D Y0
1im , R0 D Y0

2re , S0 D Y0
2im

fP0 .p/ D 1p
�N0W

e
�p2

N0W (1.115)

fQ0 .q/ D 1p
�N0W

e
�q2

N0W (1.116)

fR0 .r/ D 1p
�N0W

e
�.r�amre/2

N0W (1.117)

fS0 .s/ D 1p
�N0W

e
�.s�amim/2

N0W (1.118)

Similarly when 1 is sent, the conditional density functions are obtained as follows.
Let P1 D Y1

1re , Q1 D Y1
1im , R1 D Y1

2re , S1 D Y1
2im

fP1 .p/ D 1p
�N0W

e
�.p�amre/2

N0W (1.119)

fQ1 .q/ D 1p
�N0W

e
�.q�amim/2

N0W (1.120)

fR1 .r/ D 1p
�N0W

e
�r2
N0W (1.121)

fS1 .s/ D 1p
�N0W

e
�s2
N0W (1.122)

Assuming the binary data transmitted are equiprobable, the detection rule to
decide whether the transmitted binary data are 1 or 0 based on the observation of
two consecutive complex random variables or four variables p, q, r, s is obtained as
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follows. Decide in favour of 1, when L.p; q; r; s/ � 0, 0, otherwise. The function L
is obtained as follows:

L.p; q; r; s/ D log.
fP1 .p/fQ1 .q/fR1 .r/fS1 .s/

fP0 .p/fQ0 .q/fR0 .r/fS0 .s/
/ (1.123)

From (1.61)–(1.64) and (1.69)–(1.72), L.p; q; r; s/ is computed as follows:

eL.p;q;r;s/ D
1p

�N0W
e

�.p�amre/2

N0W 1p
�N0W

e
�.q�amim/2

N0W 1p
�N0W

e
�r2
N0W 1p

�N0W
e

�s2
N0W

1p
�N0W

e
�p2

N0W 1p
�N0W

e
�q2

N0W 1p
�N0W

e
�.r�amre/2

N0W 1p
�N0W

e
�.s�amim/2

N0W

(1.124)

Thus the detection rule is obtained as follows. Decide in favour of 1 if p2 C q2 >

r2 C s2. The probability of error in this case can be obtained by substituting �2 D 0

(as the filter co-efficients are constant) in (1.112) and is obtained as 1
2
e� jmj

2a2

2WN0 . The
outline of the computation is as follows:

Fig. 1.17 Illustration of the Flat channel with known estimated filter co-efficient 2 C 3j and
additive complex Gaussian noise (variance D 0.1)

P.G > H/ D P.G > R2
0 C S2

0/ (1.125)

D
Z

R0

Z

R1

e� r20Cs20
N0W fR0 .r0/fS0 .s0/dr0ds0 (1.126)

D
Z

R0

Z

R1

e� r20Cs20
N0W

1

�N0W
e

�.r0�amre/2

N0W e
�.s0�amim/2

N0W dr0ds0 (1.127)

D 1

2
e� jmj

2a2

2WN0 (1.128)
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Flat channel with known estimated filter co-efficient is illustrated in Fig. 1.17.

%knownchanneldemo.m
%Flat channel (single tap) with known channel co-efficient
DATA=round(rand(1,10000));
TX=[];
a=1;
%Let the bandwidth of the complex base band signal be W/2
W=2;
N0=0.1;
N0W=(N0/2)*W;
for i=1:1:length(DATA)

if(DATA(i)==0)
TX=[TX a 0];

else
TX=[TX 0 a];

end
end
%Gaussian noise with variance 0.01
g=sqrt(N0W)*randn(1,20000)+j*sqrt(N0W)*randn(1,20000);
%Flat-fading known channel impulse response r
r=2*ones(1,20000)+j*3*ones(1,20000);
RX=r.*TX+g;
figure
subplot(3,1,1)
stem(TX(1:1:200))
title(’Typical transmitted samples’)
subplot(3,1,2)
plot(real(RX(1:1:200)))
title(’Real part of the received samples’)
subplot(3,1,3)
plot(imag(RX(1:1:200)))
title(’Imaginary part of the received samples’)

%detection
DETDATA=[];
for i=1:2:200

temp=[RX(i) RX(i+1)];
O=abs(temp(1))-abs(temp(2));
if(O>0)

DETDATA=[DETDATA 0];
else

DETDATA=[DETDATA 1];
end

end
figure
subplot(2,1,1)
stem(DATA(1:1:100))
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title(’Transmitted data’)
subplot(2,1,2)
stem(DETDATA,’r’)
title(’Corresponding detected data’)

1.7 Multiple Input Multiple Output (MIMO) Channel Model

The number of antennas in the transmitter section is assumed as M and the
corresponding number in the receiver section is represented as N. If N D M, it
is used for high data transmission. If N > M, we achieve both spatial diversity and
high speed transmission (this is mostly used). The link between the antenna r in the
transmitter section and the antenna s in the receiver section is assumed as flat fading
channel. Hence the model is represented as y D Gx C n (refer Fig. 3.13), where G is
the channel matrix (i.e. base band� >pass band� >base band with the assumption
that the channel is flat), x is the transmitter vector, y is the receiver vector and n
is the noise vector refer Fig. 1.18. The transmitter vector x is estimated using the
following techniques:

1. By using least square minimization (otherwise called as zero-forcing error),
we estimate x by minimizing ky � Gxk2. The solution is obtained as Ox D
.GTG/�1GTy. (refer Figs. 1.19, 1.20, 1.21, 1.22)

2. By using linear minimum mean square estimation (LMMSE), where E.kOx � xk2/

is minimized with Ox D CHy (with linear estimation), it is found that the optimal
value of C is obtained as E.yyH/�1E.yxH/. (refer Figs. 1.19, 1.20, 1.23, 1.24)

3. The covariance matrix of the noise vector is �2
n I and the covariance matrix of the

signal vector is PdI, the estimated vector is obtained as Ox D PdGH.PdGGH C
�2

n I/�1y D Pd.PdGHG C �2
n I/�1GH . This is the LMMSE computed using

the average signal power Pd. This estimation is optimal if the conditional
posterior probability density function of Ox given Oy is Gaussian and the estimation
mentioned here is the conditional mean, conditional median or conditional mode
of the posterior probability density function (refer Figs. 1.19, 1.20, 1.25, 1.26).

%mimodemo
%channel matrix
G=[0.8+0.27*j 0.12+0.95*j 0.6+0.15*j;

0.9+0.5*j 0.91+0.96*j 0.09+0.97*j]’;
TX1=2*round(rand(1,100))-1+j*(2*round(rand(1,100))-1);
TX2=2*round(rand(1,100))-1+j*(2*round(rand(1,100))-1);
TX=[TX1;TX2];
Y=G*TX+sqrt(0.01)*randn(3,100)+j*sqrt(0.01)*randn
(3,100);
%Detecting X using Least mean square estimation
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Fig. 1.18 Illustration of MIMO with channel matrix G (complex co-efficients
h11; h12; h13; h21; h22; h23) and additive complex random variable, n11 C jn12; n21 C jn22 and
n31 C jn32

Fig. 1.19 Transmitted data sequence in the MIMO set-up

XCAP_LS=inv(G’*G)*G’*Y;
RX1_LS=[sign(real(XCAP_LS(1,:)));sign
(imag(XCAP_LS(1,:)))];
RX2_LS=[sign(real(XCAP_LS(2,:)));sign
(imag(XCAP_LS(2,:)))];
figure
subplot(2,2,1)
stem(real(TX(1,:)))
title(’Real part of the transmitted sequence 1’)
subplot(2,2,2)
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Fig. 1.20 Received base band MIMO signal with additive Gaussian noise

Fig. 1.21 Least square estimation of the MIMO technique

stem(imag(TX(1,:)))
title(’Imaginary part of the transmitted sequence 1’)
subplot(2,2,3)
stem(real(TX(2,:)))
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Fig. 1.22 Detected data sequence in the MIMO set-up using least square estimator (which is
identical as that of Fig. 1.19, i.e. with zero error)

Fig. 1.23 Linear minimum mean square estimation (MMSE) of the MIMO technique

title(’Real part of the transmitted sequence 2’)
subplot(2,2,4)
stem(imag(TX(2,:)))
title(’Imaginary part of the transmitted sequence 2’)
figure
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Fig. 1.24 Detected data sequence in the MIMO set-up using linear MMSE estimator (which is
identical as that of Fig. 1.19, i.e. with zero error)

Fig. 1.25 Linear MMSE estimation (computed using Pd) of the MIMO technique

subplot(3,2,1)
plot(real(Y(1,:)))
title(’Real part of the received sequence 1’)
subplot(3,2,2)
plot(imag(Y(1,:)))
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Fig. 1.26 Detected data sequence in the MIMO set-up using Linear MMSE (computed using pd)
(which is identical as that of Fig. 1.19, i.e. with zero error)

title(’Imaginary part of the received sequence 1’)
subplot(3,2,3)
plot(real(Y(2,:)))
title(’Real part of the received sequence 2’)
subplot(3,2,4)
plot(imag(Y(2,:)))
title(’Imaginary part of the received sequence 2’)
subplot(3,2,5)
plot(real(Y(3,:)))
title(’Real part of the received sequence 3’)
subplot(3,2,6)
plot(imag(Y(3,:)))
title(’Real part of the received sequence 1’)

figure
subplot(2,2,1)
stem(real(TX(1,:)))
hold on
stem(real(XCAP_LS(1,:)),’r’)
title(’Real part of the estimated sequence 1 using
LSE’)
subplot(2,2,2)
stem(imag(TX(1,:)))
hold on
stem(imag(XCAP_LS(1,:)),’r’)
title(’Imaginary part of the estimated sequence 1
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using LSE’)
subplot(2,2,3)
stem(real(TX(2,:)))
hold on
stem(real(XCAP_LS(2,:)),’r’)
title(’Real part of the estimated sequence 2 using
LSE’)
subplot(2,2,4)
stem(imag(TX(2,:)))
hold on
stem(imag(XCAP_LS(2,:)),’r’)
title(’Imaginary part of the estimated sequence
2 using LSE’)
figure
subplot(2,2,1)
stem(RX1_LS(1,:))
title(’Real part of the detected sequence 1 using
LSE’)
subplot(2,2,2)
stem(RX1_LS(2,:))
title(’Imaginary part of the detected sequence
1 using LSE’)
subplot(2,2,3)
stem(RX2_LS(1,:))
title(’Real part of the detected sequence
2 using LSE’)
subplot(2,2,4)
stem(RX2_LS(2,:))
title(’Imaginary part of the detected sequence 2 using
LSE’)
RYY=0;
RYX=0;
for i=1:1:100

RYY=RYY+Y(:,i)*Y(:,i)’;
RYX=RYX+Y(:,i)*TX(:,i)’;

end
RYY=(1/99)*RYY;
RYX=(1/99)*RYX;
C=inv(RYY)*RYX;
XCAP_LE=C’*Y;
RX1_LE=[sign(real(XCAP_LE(1,:)));sign
(imag(XCAP_LE(1,:)))];
RX2_LE=[sign(real(XCAP_LE(2,:)));sign
(imag(XCAP_LE(2,:)))];

figure
subplot(2,2,1)
stem(real(TX(1,:)))
hold on
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stem(real(XCAP_LE(1,:)),’r’)
title(’Real part of the estimated sequence 1 using
LE’)
subplot(2,2,2)
stem(imag(TX(1,:)))
hold on
stem(imag(XCAP_LE(1,:)),’r’)
title(’Imaginary part of the estimated sequence 1
using LE’)
subplot(2,2,3)
stem(real(TX(2,:)))
hold on
stem(real(XCAP_LE(2,:)),’r’)
title(’Real part of the estimated sequence 2 using
LE’)
subplot(2,2,4)
stem(imag(TX(2,:)))
hold on
stem(imag(XCAP_LE(2,:)),’r’)
title(’Imaginary part of the estimated sequence 2
using LE’)

figure
subplot(2,2,1)
stem(RX1_LE(1,:))
title(’Real part of the detected sequence 1
using LE’)
subplot(2,2,2)
stem(RX1_LE(2,:))
title(’Imaginary part of the detected sequence 1
using LE’)
subplot(2,2,3)
stem(RX2_LE(1,:))
title(’Real part of the detected sequence 2 using
LE’)
subplot(2,2,4)
stem(RX2_LE(2,:))
title(’Imaginary part of the detected sequence 2
using LE’)

RXX=0;
RNN=0;
for i=1:1:100

RXX=RXX+(TX(:,i)-transpose(mean(transpose(TX))))*...
(TX(:,i)-transpose(mean(transpose(TX))))’;

end
RNN=diag([ones(1,3)*0.01*2]);
RXX=(1/99)*RXX;
Pd=RXX(1,1);
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XCAP_MMSE=Pd*G’*inv(Pd*G*G’+RNN)*Y;
RX1_MMSE=[sign(real(XCAP_LS(1,:)));sign
(imag(XCAP_LS(1,:)))];
RX2_MMSE=[sign(real(XCAP_LS(2,:)));sign
(imag(XCAP_LS(2,:)))];

figure
subplot(2,2,1)
stem(real(TX(1,:)))
hold on
stem(real(XCAP_MMSE(1,:)),’r’)
title(’Real part of the estimated sequence 1 using
Linear MMSE computed using average signal power (Pd)’)
subplot(2,2,2)
stem(imag(TX(1,:)))
hold on
stem(imag(XCAP_MMSE(1,:)),’r’)
title(’Imaginary part of the estimated sequence 1
using Linear MMSE computed using Pd’)
subplot(2,2,3)
stem(real(TX(2,:)))
hold on
stem(real(XCAP_MMSE(2,:)),’r’)
title(’Real part of the estimated sequence 2 using
MMSE computed using Pd’)
subplot(2,2,4)
stem(imag(TX(2,:)))
hold on
stem(imag(XCAP_MMSE(2,:)),’r’)
title(’Imaginary part of the estimated sequence 2
using MMSE computed using Pd’)

figure
subplot(2,2,1)
stem(RX1_MMSE(1,:))
title(’Real part of the detected sequence 1 using
MMSE computed using Pd’)
subplot(2,2,2)
stem(RX1_MMSE(1,:))
title(’Imaginary part of the detected sequence 1
using MMSE computed using Pd’)
subplot(2,2,3)
stem(RX2_MMSE(2,:))
title(’Real part of the detected sequence 2
using MMSE computed using Pd’)
subplot(2,2,4)
stem(RX2_MMSE(2,:))
title(’Imaginary part of the detected sequence 2
using MMSE computed using Pd’)
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1.7.1 Demonstration of Spatial Multiplexing Using Decoupling
of MIMO System

With N > M, we also achieve decoupling of MIMO system using SVD by replacing
G with U

P
VH , where

P
is a diagonal matrix. Rewrite y D Gx C n with

G D U
P

VH as follows:

y D Gx C n

y D U
X

VHx C n

UHy D
X

VHx C UHn

Representing p D UHy, q D VHx and w D UHn, we get the modified version of
MIMO as follows:

p D
X

q C w

Note that
P

is the diagonal matrix and hence we interpret the following:

p1 D k1q1 C w1

p2 D k2q2 C w2

p3 D k3q3 C w3

� � �
pm D kmqm C wm

This looks like collection of m parallel lines. This is known as spatial multiplex-
ing. This is realized practically as follows. Note that k1, k2, � � � km are the diagonal
elements of the matrix

P
. The illustration of the parallel transmission of the MIMO

setup is given in Figs 1.27–1.30.

1. Instead of transmitting the vector x, the modified vector is obtained as Vx and it
is transmitted through the channel with channel matrix G.

2. The received vector in the receiver is obtained as y D GVx C N D U
P

VHVx C
N D U

P
x C N.

3. In the receiver section, the received vector y D U
P

x is pre-multiplied withPH UH to obtain the estimation of x.

%parallelmimo.m
%Parallel transmission in MIMO technique
G=[0.8+0.27*j 0.12+0.95*j 0.6+0.15*j;

0.9+0.5*j 0.91+0.96*j 0.09+0.97*j]’;
[U,D,V]=svd(G);
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Fig. 1.27 Demonstration of parallel transmission of the MIMO set-up

Fig. 1.28 Demonstration of parallel transmission of the MIMO set-up (cont. . . )

%Note that G=UDV’
%Y=GX+N
TX1=2*round(rand(1,100))-1+j*(2*round(rand(1,100))-1);
TX2=2*round(rand(1,100))-1+j*(2*round(rand(1,100))-1);
TX=[TX1;TX2];
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Fig. 1.29 Demonstration of parallel transmission of the MIMO set-up (cont . . . )

Fig. 1.30 Demonstration of parallel transmission of the MIMO set-up (cont . . . )

%The channel matrix is considered as D
%The signal to be transmitted is modified as
TX_M=V*TX;
N=sqrt(0.01)*randn(3,100)+j*sqrt(0.01)*randn(3,100);
RX=G*TX_M+N;
%Detected signal is obtained as follows.
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DX=(U’*RX);
DX=[DX(1,:)/D(1,1);DX(2,:)/D(2,2)]

figure
subplot(2,2,1)
stem(real(TX(1,:)))
title(’Real part of the original data (data 1) to be
transmitted’)
subplot(2,2,2)
stem(real(TX_M(1,:)))
title(’Real part of the data 1 transmitted through
the channel’)
subplot(2,2,3)
stem(real(RX(1,:)))
title(’Real part of corresponding received data 1’)
subplot(2,2,4)
stem(real(DX(1,:)))
hold
stem(real(TX(1,:)),’r’)
title(’Real part of the detected data 1 sequence’)

figure
subplot(2,2,1)
stem(imag(TX(1,:)))
title(’Imaginary part of the original data (data 1)
to be transmitted’)
subplot(2,2,2)
stem(imag(TX_M(1,:)))
title(’Imaginary part of the data 1 transmitted
through the channel’)
subplot(2,2,3)
stem(imag(RX(1,:)))
title(’Real part of corresponding received data 1’)
subplot(2,2,4)
stem(imag(DX(1,:)))
hold
stem(imag(TX(1,:)),’r’)
title(’Real part of the detected data 2 sequence’)

figure
subplot(2,2,1)
stem(real(TX(2,:)))
title(’Real part of the original data (data 2)
to be transmitted’)
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subplot(2,2,2)
stem(real(TX_M(2,:)))
title(’Real part of the data 2 transmitted
through the channel’)
subplot(2,2,3)
stem(real(RX(2,:)))
title(’Real part of corresponding received data 2’)
subplot(2,2,4)
stem(real(DX(2,:)))
hold
stem(real(TX(2,:)),’r’)
title(’Real part of the detected data 2 sequence’)

figure
subplot(2,2,1)
stem(imag(TX(2,:)))
title(’Imaginary part of the original data (data 2)
to be transmitted’)
subplot(2,2,2)
stem(imag(TX_M(2,:)))
title(’Imaginary part of the data 2 transmitted
through the channel’)
subplot(2,2,3)
stem(imag(RX(2,:)))
title(’Real part of corresponding received data 2’)
subplot(2,2,4)
stem(imag(DX(2,:)))
hold
stem(imag(TX(2,:)),’r’)
title(’Real part of the detected data 2 sequence’)

1.7.2 Water Fill Algorithm to Obtain the Maximum
Channel Capacity

1. Consider the spatial multiplexing-based MIMO system represented using p DP
q C w.

P
is the diagonal matrix of size m � m. This shows m parallel

transmission channels are achieved using the MIMO technique. Assuming zero
mean noise power with variance E.w2/ D �2

n , the average signal power in the
ith channel is computed as follows. Note that ki is the .i; i/ element of the matrixP

, qi D VHxi and vi be the ith column of the matrix V .
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E.pip
�
i / D E..kiqi C wi/.kiqi C wi/

�/

D E.kiqiq
�
i k�

i / C E.kiqiw
�
i / C E.w.kiqi/

�/ C E.wiw
�
i /

D E.kiv
�
i xi.xi/

�vik
�
i / C �2

n

D jkij2E.jxij2/v�
i vi

D jkij2�2
xi

Considering xi and wi are independent with E.wi/ D 0, we get the following:

E.pip
�
i / D jkij2�2

xi
(1.129)

2. Thus the signal to noise ratio of the ith channel is computed as
jkij2�2

xi
�2

n

3. According to Shannon–Hartley theorem, the maximum information trans-
ferred through the ith channel (channel capacity) is obtained as Ci D
log2

�
1 C jkij2�2

xi
�2

n

�
.

4. Given the total average power of the transmitted signal P D Pm
i �2

xi
, the optimal

values for �2
xi

are chosen to maximize the total channel capacity
Pm

iD1 Ci of the
channel. This MIMO optimal power allocation is done using water fill algorithm
as described below:

a. Compute � D m

PCPiD1 iDm �2
n

ki

2 .

b. Compute the power allotted for the ith channel as �2
xi

D . 1
�

� �2
n

k2
i

)

c. Fig. 1.31 demonstrates the water fill algorithm used in MIMO techniques.

Fig. 1.31 Demonstration of water fill algorithm for power distribution in the MIMO set-up



50 1 Mathematical Model of the Time-Varying Wireless Channel

waterfillalgo.m
function [res,lambda,DATA]=waterfillalgo(D,P,n)
%D is the diagonal channel matrix
%p->Total average signal power of ’n’ channels
%n->average noise power
s=P;
DATA=[];
for i=1:1:length(D)
s=s+n/D(i,i)^{2};
DATA=[DATA n/D(i,i)];
end
lambda=length(D)/s;
for i=1:1:length(D)
res(i)=(1/lambda)-n/(D(i,i))^{2};
if(res(i)>=0)

res=res;
else

res=0;
end
end



Chapter 2
Detection Theory and Estimation Theory
for Wireless Communication

Abstract In this chapter, the detection theory (Bayes technique, mini-max tech-
nique, Neyman–Pearson technique) and Estimation theory (MMSE, MMAE, MAP,
Wiener filter, Kalman filter, etc.) are illustrated using MATLAB for better under-
standing.

2.1 Detection Theory for Binary Signal Transmission

Let the transmitted signal at a particular time instant be described by the random
variable X. Let the random variable X takes values CA and �A with probability
P.X D CA/ D p and P.X D �A/ D 1 � p, and let the transmitted signal be
corrupted by the additive noise which is described by the random variable W. The
corresponding received signal is described by the random variable Y D X C W.
Detection theory involves partitioning the possible values for the random variable
Y into two regions namely Ro and R1, such that if the value of the received random
variable Y D y belongs to region Ro, decision is done such that the transmitted
signal is X D �A i.e. the decision is done in favour of �A. Similarly if the value
of the received random variable Y D y belongs to region R1, the decision is done
in favour of CA. Thus the problem of detection theory involves in identifying the
regions Ro and R1. It is also noted Ro and R1 are mutually exclusive sets and Ro [R1

forms the sample space of the random variable Y .
Let the sample space of the random variable Y takes values from the complete

real line <. In this case, the probability of the random variable Y D y is not defined.
But, the probability of the form P.�1 < Y � a/ is defined for all values of a. This
is called Borel set and the complete Borel set (with total probability D1) forms the
subset of <. This subset is known as the field and the probabilities are assigned for
every event in the field. Given these probabilities, partitioning the region < into Ro

and R1 is the task in detection theory. This is known as decision rule. The regions
are identified such that the cost associated with the decision rule is minimized. The
Bayes cost associated with the decision rule is described as follows.

© Springer International Publishing Switzerland 2016
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2.1.1 Bayes Technique

Let cij be the cost associated with the decision rule such that the transmitted signal
is declared as i, when j is actually transmitted. Note that i and j take the value 0 or
1, which are the logical representation of the signal CA and �A, respectively. The
conditional Bayes costs are represented as B0 and B1 when 0 and 1 are transmitted,
respectively, which are computed as follows. Let the probability of deciding the
received signal as i when j is actually transmitted be represented as P.i=j/.

B0 D c00P.0=0/ C c10P.1=0/ (2.1)

B1 D c01p.0=1/ C c11p.1=1/ (2.2)

The total average Bayes cost is computed as

CB D pB0 C .1 � p/B1 (2.3)

Note that p is the prior probability of the transmitted signal 0. We would like to
obtain the decision rule such that the total average Bayes cost is minimized. This is
known as Bayes technique.

2.1.2 Mini-Max Technique

In the Bayes technique, the conditional costs namely B0 and B1 are fixed once the
decision rule is fixed. Also it is noted that the prior probabilities p and 1 � p are
needed to obtain the Bayes decision rule. Let the Bayes decision rule is formulated
for the particular prior probability p D p1.say/ and the corresponding Bayes cost is
computed as CB.p1/ D p1B0 C.1�p1/B1. Note that the values B0 D k1 and B1 D k2

are fixed once the decision rule is obtained. Rewriting Bayes cost using k1 and k2,
we get the following

CB D p1k1 C .1 � p1/k2 (2.4)

In the practical case, if the prior probability p1 is deviated from the assumed value
to any arbitrary value 0 � p � 1, the Bayes cost mentioned in (2.4) becomes the
function of p as follows:

CB D pk1 C .1 � p/k2 (2.5)

In (2.5), p is the variable and the equation CB is the equation of the line. Thus the
Bayes technique (designed for the assumed prior probabilities) is not the optimal
decision rule for the deviated prior probabilities. Hence there needs the decision
rule, which is suitable for any arbitrary prior probabilities i.e. the decision rule
that does not depend upon the prior probabilities. This technique is known as
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Fig. 2.1 Illustration of mini-max technique

mini-max technique. To explain this technique, we would like to plot the graph
between the minimal Bayes cost (designed for the arbitrary prior probability p) and
the corresponding prior probability p. This is represented as CB.p/. The following
observations are made on the nature of the plot CB.p/.

1. The plot CB.p/ is always convex. Let us consider the Bayes rule formulated
for the particular prior probability p1 (refer Fig. 2.1a). The corresponding Bayes
cost is given as (2.4). Consider the tangent line drawn at this point described
by (2.5). The points on this line are the actual cost obtained when the prior
probability is deviated from p1 to the arbitrary prior probability p. From Fig. 2.1a,
it is noted that the actual cost obtained when the prior probability is deviated to
p2 is lesser than the Bayes cost obtained for prior probability p2 (i.e. Bayes cost
obtained using the Bayes rule formulated with the prior probability p2). This is
contradicting the definition of the Bayes cost. (That is Bayes cost is the minimal
cost obtained for a particular prior probability. So the actual cost cannot be lesser
than the Bayes cost.) This implies that the graph cannot be of concave shape, and
it should be of convex shape.
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2. The line described by (2.5) is the tangent drawn at the point corresponding
to p D p1 to the curve CB.p/. Suppose the line described by (2.5) intersects the
concave curve at another point corresponding to the prior probability p D p2.
There exists a point (prior probability) in the middle (refer Fig. 2.1b) such that
Bayes cost is greater than the actual cost. This again contradicts the definition of
the Bayes cost and hence the line described by 2.5 should be the tangent line.

3. In (2.3), if p D 0, the corresponding Bayes cost (B1) is the conditional Bayes cost
when 1 is sent and similarly the conditional Bayes cost (B0) is obtained as the
Bayes cost when p D 1. If the Bayes rule is formulated for the prior probability
q1 (refer Fig. 2.1c), the conditional Bayes cost B1.q1/ (when the prior probability
is deviated from q1 to 0) is greater than the conditional Bayes cost B0.q1/ (when
the prior probability is deviated from q1 to 1). If we would like to choose another
prior probability q2, which helps to minimize the conditional Bayes cost B0.q2/,
the conditional Bayes cost B1.q2/ gets increased (refer Fig. 2.1d). We would like
to choose the optimal prior probability, to obtain the Bayes rule that minimizes
the maximum of the two conditional costs. From Fig. 2.1c,d, it is observed that
the optimal prior probability is the one corresponding to the maximum Bayes
cost. At this point, the conditional costs B1 and B0 are equal.

As the prior probability is chosen as the one that minimizes maximum of the two
conditional costs, it is known as mini-max technique. It also happens to be the Bayes
rule formulated at the particular prior probability corresponding to the maximum of
minimal cost (Bayes cost) obtained for various prior probabilities.

2.1.3 Neyman–Pearson Technique

In Radar applications, identification of the presence and absence of the particular
target can be viewed as the detection theory problem. The presence of the target is
represented as logical 1 and the absence of the target is represented as logical 0.
Declaring that the target is present when target is actually not present and declaring
that the target is absent when the target is actually absent are the two types of error.
They are measured in terms of probability and are referred to as probability of false
alarm pFA and probability of miss PM , respectively. In these types of applications,
we would like to fix the maximum bound for the probability of false alarm. This lead
to Neyman–Pearson technique. The Neyman–Pearson problem is formulated as the
optimization problem that maximizes the probability of detection pD D 1 � pM ,
subject the constraint PFA � ˛. The solution to the Neyman–Pearson problem is the
randomized decision rule ı.y/ with PFA D ˛ as described below. If the observation
variable y satisfies p.y=1/ > ˇp.y=0/ (where ˇ is the positive, non-zero constant),
decision is taken in favour of logical 1 (i.e. presence of the target) with probability 1.

Similarly if the observation variable y satisfies p.y=1/ D ˇp.y=0/, decision
is taken in favour of logical 1 with probability u.y/, i.e. out of N happenings
(observations) that y satisfies p.y=1/ D ˇp.y=0/, N � u.y/ times, decision is done
in favour of logical 1 (i.e. presence of the target) and the remaining N � N � u.y/,
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decision is done in favour of logical 0 (i.e. absence of the target). Note that u.y/ is
the function of the observation variable y.

Finally if the observation variable y satisfies p.y=1/ < ˇp.y=0/, decision is taken
in favour of logical 1 with probability 0 (logical 0 with probability 1, i.e. absence
of the target). This is mathematically represented as (2.6)–(2.8). Hence note that the
decision rule ı.y/ gives the probability of decision taken in favour of logical 1 as the
function of the random variable y:

ı.y/ D 1; if p.y=1/ > ˇp.y=0/ (2.6)

ı.y/ D u.y/; if p.y=1/ D ˇp.y=0/ (2.7)

ı.y/ D 0; if p.y=1/ < ˇp.y=0/ (2.8)

Computation of pFA and pD for the Randomized Decision Rule of the Form
(2.6) to (2.8) Probability of false alarm represented as pFA is the probability that
the decision is in favour of 1 (presence of the target), when logical 0 is true (i.e.
target is not present). In (2.6) to (2.8), we have three disjoint regions:

• R1 W p.y=1/ > ˇp.y=0/

• R2 W p.y=1/ D ˇp.y=0/

• R3 W p.y=1/ < ˇp.y=0/

Note that the decision is in favour of 1 with probability 1, u.y/ and 0, respectively,
if y belongs to regions R1, R2 and R3, respectively. It is also noted that the three
regions R1, R2 and R3 form the partition set. Let the probability of y belongs to the
region Ri when 0 is sent is represented as P0.Ri/. Thus the probability of false alarm
is computed as probability of y being in the region R1 when 0 is sent � probability
that the decision is done in favour of 1 + probability of y being in the region R2

when 0 is sent � probability that the decision is done in favour of 1 + probability
of y being in the region R3 when 0 is sent � probability that the decision is done in
favour of 1 = 1 � P0.R1/ C u.y/ � P0.R2/ C 0 � P0.R3/ D P0.R1/ C u.y/P0.R2/.
This is equivalently calculated as

pFA.ı/ D
Z 1

�1
ı.y/p.y=0/dy (2.9)

Similarly the probability of detection is computed as 1 � P1.R1/ C u.y/ � P1.R2/ C
0 � P1.R3/ D P1.R1/ C u.y/P1.R2/. This implies

P0.ı/ D
Z 1

�1
ı.y/p.y=1/dy (2.10)

Comments on the Neyman–Pearson Solution

1. Consider the randomized decision rule of the form (2.6)–(2.8) ı1.y/ with
probability of false alarm pFA.ı1/ less than or equal to ˛ and the corresponding
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probability of detection pD.ı1/. Also let the probability of false alarm and the
probability of detection associated with the randomized decision rule ı.y/ be
represented as pFA.ı/ D ˛ and pD.˛/, respectively. For regions R1 and R3,
ı.y/ � ı1.y/ D 0 and hence

R
R1

.ı.y/ � ı1.y//.p.y=1/ � ˇp.y=0//dy D 0 andR
R3

.ı.y/�ı1.y//.p.y=1/�ˇp.y=0//dy D 0. For region R2, p.y=1/�ˇp.y=0/ D 0

and hence
R

R2
.ı.y/ � ı1.y//.p.y=1/ � ˇp.y=0//dy D 0. As regions R1, R2 and R3

form the partition set

Z 1

�1
.ı.y/ � ı1.y//.p.y=1/ � ˇp.y=0//dy D 0 (2.11)

From (2.9), (2.10) and (2.11) and we obtain .pD.ı/ � pD.ı1// D ˇ.pFA.ı/ �
pFA.ı1//. But we know, ˇ is the positive quantity pFA.ı1/ � ˛ and hence

pFA.ı/ � pFA.ı1/ � 0 (2.12)

) .pD.ı/ � pD.ı1// � 0 (2.13)

) pD.ı/ � pD.ı1/ (2.14)

From (2.14), we understand that maximum probability of detection using the
Neyman–Pearson randomized decision rule (of the form (2.6)–(2.8)) is obtained
only when pFA D ˛ and not by choosing pFA < ˛.

2. Rewriting (2.9) as pFA D P1.R1/Cu.y/P1.R2/. This implies u.y/ can be obtained
as follows:

u.y/ D u D pFA � P1.R1/

P1.R2/
(2.15)

Equation (2.15) indicates that there exists the Neyman–Pearson rule of the form
(2.6)–(2.8) by choosing the value for u.y/ as constant u (computed using (2.15)).
Thus the Neyman–Pearson rule is written as follows:

ı.y/ D 1; if p.y=1/ > ˇp.y=0/ (2.16)

ı.y/ D u; if p.y=1/ D ˇp.y=0/ (2.17)

ı.y/ D 0; if p.y=1/ < ˇp.y=0/ (2.18)

3. Consider another Neyman–Pearson rule ı2.y/ with probability of detection
pD.ı/ D pD.ı2/ and pFA.ı/ D pFA.ı2/.This implies the following:

pD.ı/ � pD.ı2/ D
Z 1

�1
.ı.y/ � ı2.y//p.y=1/dy D 0 (2.19)

pFA.ı/ � pFA.ı2/ D
Z 1

�1
.ı.y/ � ı2.y//p.y=0/dy D 0 (2.20)



2.1 Detection Theory for Binary Signal Transmission 57

From (2.19) and (2.20), we get the following:

Z 1

�1
.ı.y/ � ı2.y//.p.y=1/ � ˇp.y=0// D 0

D
Z

R1

.ı.y/ � ı2.y//.p.y=1/ � ˇp.y=0//

C
Z

R2

.ı.y/ � ı2.y//.p.y=1/ � ˇp.y=0//

C
Z

R3

.ı.y/ � ı2.y//.p.y=1/ � ˇp.y=0//

Consider for the region R2, p.y=1/ � ˇp.y=0/ D 0 and hence

Z

R2

.ı.y/ � ı2.y//.p.y=1/ � ˇp.y=0// D 0 (2.21)

Consider
R

R1
.ı.y/ � ı2.y//.p.y=1/ � ˇp.y=0//. In this region, p.y=1/ � ˇp.y=0/

is positive and ı.y/ is 1, ı2.y/ can take the value as either 1, 0 or some constant
less than 1. In these cases, ı.y/ � ı2.y/ is the positive quantity. Hence

R
R1

.ı.y/ �
ı2.y//.p.y=1/ � ˇp.y=0// is always the positive quantity. Similarly for region R3,R

R3
.ı.y/ � ı2.y//.p.y=1/ � ˇp.y=0// is always the positive quantity. Hence we

conclude the following:

Z

R1

.ı.y/ � ı2.y//.p.y=1/ � ˇp.y=0// D 0 (2.22)

Z

R3

.ı.y/ � ı2.y//.p.y=1/ � ˇp.y=0// D 0 (2.23)

From (2.22), we obtain ı.y/ D ı2.y/ D 1 for region R1. Similarly from (2.23), we
obtain ı.y/ D ı2.y/ D 0 for region R3. From (2.21), as p.y=1/ � ˇp.y=0/ D 0,
ı.y/ need not be equal to ı2.y/. This implies that there may exist one or more
Neyman–Pearson rule (randomized rule of the form described by (2.16)–(2.18))
with the difference in the probability in region R2.

2.1.4 Illustration of the Bayes, Mini-Max and
Neyman–Pearson Detector for Discrete Channel

Bayes Technique Consider the binary channel modelled as shown in Fig. 2.2. Let
the transmitter symbol takes the value either 0 or 1 with prior probabilities p0 or p1,
respectively, and let p.i=j/ is the conditional probability of obtaining y D i, when
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Fig. 2.2 Illustration of
mini-max technique

0 0

1 1

p(0/0)

p(0/1)

p(1/0)

p(1/1)

x D j is sent. Note that i and j take value as either 1 or 0. For this model, the possible
detection rules are the following:

1. Rule 1 (RU1): Choose R1 D 1. (i.e. declare that the transmitted symbol as 1

when the symbol y D 1 is received). This implies that the transmitted symbol is
declared as 0 when the symbol y D 0 is received.

2. Rule 2 (RU2): Choose R1 D 0 (i.e. declare that the transmitted symbol as 1

when the symbol y D 0 is received). This implies that the transmitted symbol is
declared as 0 when the symbol y D 1 is received.

3. Rule 3 (RU3): Choose R1 D . (i.e. declare that the transmitted symbol as 1 when
the symbol y D is received). This implies that the transmitted symbol is declared
as 0 irrespective of whatever the symbol is received.

4. Rule 4 (RU4): Choose R1 D 1 (i.e. declare that the transmitted symbol as 1 when
the symbol y D 1; 0 is received). This also implies that the transmitted symbol is
declared as 1 irrespective of whatever the symbol is received.

The Bayes cost associated with the rules are summarized below:

1. RU1:p0 � p.1=0/ C p1 � p.0=1/

2. RU2:p0 � p.0=0/ C p1 � p.1=1/

3. RU3:p0 � p.=0/ C p1 � p.1; 0=1/ D p0 � 0 C p1 � 1 D p1 D 1 � p0

4. RU4:p0 � p.1; 0=0/ C p1 � p.=1/ D p0 � 1 C p1 � 0 D p0

For the typical values of prior probabilities and the channel matrix (conditional
probabilities), the Bayes cost associated with four rules are computed. Choose
the rule that has the minimum Bayes cost. The decision rules selected for various
combinations of p.0=0/ and p(1/1) are illustrated in Figs. 2.5 and 2.6.

Mini-Max Technique Mini-max technique is the Bayes rule computed with the
prior probability corresponding to the maximum Bayes cost. To obtain this, we
would like to plot the graph between the prior probability and the corresponding
Bayes cost. The plots for various choices for the channel matrix are shown in
Fig. 2.3. In all the subplots, blue coloured line corresponds to the Bayes cost
associated with the decision rule RU1 and violet coloured line corresponds to the
Bayes cost associated with the decision rule RU2. From subplots .a/ and .b/, it is
noted that pL is the value of p0 corresponding to intersection of the Bayes cost lines
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Fig. 2.3 Illustration of mini-max technique

associated with rule RU4 and rule RU1. Similarly from subplots .c/ and .d/, it is
noted that pL is the value of p0 that corresponds to intersection of the Bayes cost
lines associated with rule RU4 and rule RU2. pL in subplots (a) and (b) is computed
as follows:

pL � p.1=0/ C .1 � pL/ � p.0=1/ D pL (2.24)

) pL.1 � p.1=0/ C p.0=1// D p.0=1/ (2.25)

) pL D p.0=1/

.1 � p.1=0/ C p.0=1//
(2.26)

Similarly pL in subplots (c) and (d) is computed as follows:
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pL � p.0=0/ C .1 � p0/ � p.1=1/ D pL (2.27)

) pL.1 � p.0=0/ C p.1=1// D p.1=1/ (2.28)

) pL D p.1=1/

.1 � p.0=0/ C p.1=1//
(2.29)

From all the subplots, it is observed that the value of pH in general is computed as
the following:

pL D min

�
p.0=1/

.1 � p.1=0/ C p.0=1//
;

p.1=1/

.1 � p.0=0/ C p.1=1//

�
(2.30)

Similarly the value of pH in general is computed as the following:

pH D max

�
p.0=1/

.1 � p.1=0/ C p.0=1//
;

p.1=1/

.1 � p.0=0/ C p.1=1//

�
(2.31)

From Sect. 2.1.2, we understand that the mini-max rule is the Bayes rule
corresponding to the prior probability corresponding to the maximum of the
minimal cost (Bayes cost) obtained for various prior probabilities. From the figure,
mini-max rule corresponds to the prior probability pL or pH . In particular, in subplot
1, mini-max rule corresponds to the prior probability pL. In subplot 2, mini-max rule
corresponds to the prior probability pH . Similarly in case of subplots 3 and 4, mini-
max rule corresponds to the prior probability pH . The Bayes rule corresponding to
prior probabilities pL and pH is the randomized decision rule as described below.
From the subplots, the decision rule chosen for the particular prior probability
is summarized as follows. From Table 2.1, we understand that for any arbitrary
channel transition probabilities, rule RU4 is chosen if the prior probability p0 < pL

and RU3 is chosen if the prior probability p0 > pH . Also, we observe that if the prior
probability p0 is within the range pL < p0 < pH , rule RU1 or RU2 is chosen based
on the value of the channel transition probabilities. Let us assume the typical Bayes
cost versus the prior probability graph for the transition probabilities p.1=0/ D 0:2

and p.1=0/ D 0:3 (refer Fig. 2.4). In this case, rule RU3 is followed in region 1, RU1

is followed in region 2 and the rule RU4 is followed in region 3. At p0 D pL, the
decision rule RU3 is chosen with probability 	 and the decision rule RU1 is chosen
with probability 1 � 	. This implies that out of 100 symbols received, randomly
chosen 100 � 	 symbols are subjected to rule RU1 and the remaining symbols are

Table 2.1 Selection of decision rule

Subplot numbers in Fig. 2.3 p0 Decision rule selected

1; 2; 3; 4 p0 < pL R4

1; 2; 3; 4 p0 > pH R4

1 pL < p0 < pH R1

2 pL < p0 < pH R1

3 pL < p0 < pH R2

4 pL < p0 < pH R2
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subjected to rule RU3. The value for 	 is computed as follows by equating the
conditional costs at p0 D pL:

B0.pL/ D 	B0.p�
L / C .1 � 	/B0.pC

L / (2.32)

B1.pL/ D 	B1.p�
L / C .1 � 	/B1.pC

L / (2.33)

By equating (2.32) and (2.33), we get the following:

B0.pL/ D B1.pL/ (2.34)

) 	B0.p�
L / C .1 � 	/B0.pC

L / D 	B1.p�
L / C .1 � 	/B1.pC

L / (2.35)

) 	.B0.p�
L / � B0.pC

L / � B1.p�
L / C B1.pC

L // D B1.pC
L / C B0.pC

L / (2.36)

) 	 D B1.pC
L / � B0.pC

L /

.B0.p�
L / � B0.pC

L / � B1.p�
L / C B1.pC

L //
(2.37)

) 	 D B1.pC
L / � B0.pC

L /

.B1.pC
L / � B0.pC

L // � .B1.p�
L / � B0.p�

L //
(2.38)

The values for B0.p�
L /, B0.pC

L /, B1.p�
L / and B1.pC

L / are obtained as shown in
Fig. 2.4. The illustration of mini-max technique is given in Fig. 2.7.

Neyman–Pearson Technique Neyman–Pearson decision rule is the technique that
maximizes the probability of detection such that the probability of false alarm
is less than ˛. The solution to the Neyman–Pearson is the randomized decision
(refer Sect. 2.1.3) of the form described by (2.6)–(2.8) with probability of false
alarm pFA D ˛. In case of discrete binary channel, the following four possible
combinations of the Neyman–Pearson technique exist.

1. Case 1:

ı.y/ D 1; y D 1 (2.39)

Fig. 2.4 Illustration of
randomized rule
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ı.y/ D �; y D 0 (2.40)

In this case the probability of false alarm and the probability of detection are
computed as follows:

1 � p.1=0/ C � � p.0=0/ D ˛ (2.41)

) � D ˛ � p.1=0/

p.0=0/
(2.42)

The probability of detection is computed as 1 � p.1=1/ C � � p.0=1/. This case
is valid only when p.1=0/ � ˛.

2. Case 2:

ı.y/ D �; y D 1 (2.43)

ı.y/ D 0; y D 0 (2.44)

In this case the probability of false alarm and the probability of detection are
computed as follows:

� � p.1=0/ C 0 � p.0=0/ D ˛ (2.45)

) � D ˛

p.1=0/
(2.46)

The probability of detection is computed as � � p.1=1/ C 0 � p.0=1/. This case
is valid only when p.1=0/ � ˛.

3. Case 3:

ı.y/ D 1; y D 0 (2.47)

ı.y/ D �; y D 1 (2.48)

In this case the probability of false alarm and the probability of detection are
computed as follows:

1 � p.0=0/ C � � p.1=0/ D ˛ (2.49)

) � D ˛ � p.0=0/

p.1=0/
(2.50)

The probability of detection is computed as 1 � p.0=0/ C � � p.1=0/. This case
is valid only when p.0=0/ � ˛.

4. Case 4:

ı.y/ D �; y D 0 (2.51)
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ı.y/ D 0; y D 1 (2.52)

In this case the probability of false alarm and the probability of detection are
computed as follows:

� � p.0=0/ C 0 � p.1=0/ D ˛ (2.53)

) � D ˛

p.0=0/
(2.54)

The probability of detection is computed as � � p.0=0/ C 0 � p.1=0/. This case
is valid only when p.0=0/ � ˛.

Based on the values of the channel transition probabilities, one of the possible cases
of Neyman–Pearson rule is selected that maximizes the probability of detection. The
illustration of Neyman–pearson Binary channel model is given in Fig. 2.8.

binarychanneldetection.m
function [datatx,datarx,datadetected,bayesrule

selected,pl,ph,val_pl,val_ph,...
pd,gamma,pd_obtained_beforedetection,pfa_obtained
_beforedetection,...
pd_obtained_afterdetection,pfa_obtained
_afterdetection]...
=binarychanneldetection(x,y,z,len,p0,pfa)

datatx=[];
temp=round(rand(1,len));
for i=1:1:len

r=rand;
u=[p0 1];
test=u-r;
if(test(1)>0)
datatx=[datatx 0];
else
datatx=[datatx 1];
end

end
%x->vector [p(0/0) p(1/1)]
%y=[c01 c10];
%z->1:Bayes technique.
%z->2:Mini-max technique.
%z->3:Neyman-pearson technique needs probability of
false alarm pfa.
%p0->prior probability
%datatx->data transmitted
%datarx->data received
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Fig. 2.5 Illustration of Bayes rule with p.0=0/ D p00; p.1=1/ D p11; C00 D C11 D 0; C10 D
C01 D 1 and prior probability p0

%bayesruleselected
%pl-lower level probability used in mini-max
technique
%ph-upper level probability used in mini-max
technique
%val_pl-bayes cost at pl
%val_ph-bayes cost at ph
%pd-probability of detection computed for four
choices of Neyman-pearson
%technique.
%gamma-probabilities used in four choices of
Neyman-pearson
%technique.
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Fig. 2.6 (a) Data transmitted, (b) Data received and (c) data detected using Bayes technique.
Probability of detection and the probability of false alarm obtained are 0:8260 and 0:14,
respectively, with p00 D 0:2589 and p11 D 0:0678 and the Bayes rule selected is 2. The data
are generated with prior probability p0 D 0:5

%pd_obtained-probability of detection actually
obtained in the simulation.
%pfa_obtained-probability of false alarm actually
obtained in the
%simulation.
p00=x(1);
p10=1-x(1);
p11=x(2);
p01=1-x(2);
datarx=[];
for i=1:1:length(datatx)

if(datatx(i)==0)
r=rand;
u=[p00 1];
test=u-r;
if(test(1)>0)
datarx=[datarx 0];

else
datarx=[datarx 1];
end

else
r=rand;
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Fig. 2.7 Illustration of mini-max rule. Subplots in the first column are obtained by receiving the
bits described by the binary channel with the typical values p00 D p.0=0/ and p11 D p.1=1/

u=[p01 1];
test=u-r;
if(test(1)>0)
datarx=[datarx 0];

else
datarx=[datarx 1];
end

end
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Fig. 2.8 Illustration of Neyman–Pearson rule with the required probability of false � alarm D
0:01. Subplots in the first column are obtained by receiving the bits described by the binary channel
with the typical values p00 D p.0=0/ p11 D p.1=1/

end
switch(z)

case 1
pl=[];ph=[];val_pl=[];val_ph=[];pd=[];gamma=[];
r1cost=y(2)*p0*p10+y(1)*(1-p0)*p01;
r2cost=y(2)*p0*p00+y(1)*(1-p0)*p11;
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r3cost=1-p0;
r4cost=p0;
[u,v]=min([r1cost r2cost r3cost r4cost]);
bayesruleselected=v;
switch(v)

case 1
datadetected=datarx;

case 2
datadetected=[];
for i=1:1:length(datarx)

if(datarx(i)==0)
datadetected=[datadetected 1];

else
datadetected=[datadetected 0];

end
end

case 3
datadetected=zeros(1,length(datarx));

case 4
datadetected=ones(1,length(datarx));

end
case 2

%Mini-max technique
pd=[];gamma=[];
bayesruleselected=[];

pl=min((p11/(1-p00+p11)),(p01/(1-p10+p01)));
ph=max((p11/(1-p00+p11)),(p01/(1-p10+p01)));
r1costpl=y(2)*pl*p10+y(1)*(1-pl)*p01;
r2costpl=y(2)*pl*p00+y(1)*(1-pl)*p11;
r3costpl=1-pl;
r4costpl=pl;
[val_pl bayes_pl]=min([r1costpl r2costpl
r3costpl r4costpl]);
r1costph=y(2)*ph*p10+y(1)*(1-ph)*p01;
r2costph=y(2)*ph*p00+y(1)*(1-ph)*p11;
r3costph=1-ph;
r4costph=ph;
[val_ph bayes_ph]=min([r1costph r2costph
r3costph r4costph]);
[minimaxval minimaxpos]=max([val_pl val_ph]);
%Bayes rule corresponding to the p0 ranging
between pl and ph
pchoose=(pl+ph)/2;
r1costpchoose=y(2)*pchoose*p10+y(1)*
(1-pchoose)*p01;
r2costpchoose=y(2)*pchoose*p00+y(1)*



2.1 Detection Theory for Binary Signal Transmission 69

(1-pchoose)*p11;
r3costpchoose=1-pchoose;
r4costpchoose=pchoose;
[val_pchoose bayes_pchoose]=min([r1costpchoose
r2costpchoose ...

r3costpchoose r4costpchoose]);
if((ph==pl))

minimaxpos=3;
end

switch(minimaxpos)
case 1

%Randomized decision rule between the
region 1 and 2.
%Randomized decision rule between the
rule 4 with
%probability rho and rule described
%by the variable bayes_pchoose with
probability 1-rho
temp=(val_pl-val_ph+eps)/(ph-pl+eps);
rho=temp/(temp+1)
datadetected=[];

for w=1:1:len
t1=[rho 1];
u=t1-rand;
if(u(1)>0)

datadetected=
[datadetected 1];

else
switch(bayes_pchoose)

case 1
datadetected=[datadetected
datarx(w)];

case 2
if(datarx(w)==0)

datadetected=
[datadetected 1];

else
datadetected=
[datadetected 0];

end
end
end

end
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case 2
%Randomized decision rule between the
region 2 and 3.
%Randomized decision rule between the
rule described
%by the variable bayes_pchoose and
rule 3
temp=(val_ph-val_pl+eps)/(ph-pl+eps);
rho=1/(1+temp);
datadetected=[];

for w=1:1:len
t1=[rho 1];
u=t1-rand;
if(u(1)>0)

switch(bayes_pchoose)
case 1

datadetected=[datadetected
datarx(w)];

case 2
if(datarx(w)==0)

datadetected=
[datadetected 1];

else
datadetected=
[datadetected 0];

end
end
else

datadetected=
[datadetected 0];

end
end

case 3
datadetected=[];

for w=1:1:len
t1=[0.5 1];
u=t1-rand;
if(u(1)>0)

datadetected=
[datadetected 1];

else
datadetected=
[datadetected 0];

end
end
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end

case 3
%Neyman-pearson technique
pl=[];ph=[];val_pl=[];val_ph=[];pd=[];
%when the received signal is 1, decide it as in favour
of 1 with
%probability 1. when the received signal is 0, decide
it as in favour of 1
%with probability gamma(1).
gamma(1)=(pfa-p10)/p00;
pd(1)=p11+gamma(1)*p01;
%when the received signal is 1, decide it as in
favour of 1 with
%probability gamma(2). when the received signal is 0,
decide it
%as in favour of 1 with probability 0.
gamma(2)=pfa/p10;
pd(2)=gamma(2)*p11;
%when the received signal is 0, decide it as in
favour of 1 with
%probability 1. when the received signal is 1, decide
it as in favour of 1
%with probability gamma(3).
gamma(3)=(pfa-p00)/p10;
pd(3)=p00+gamma(3)*p10;
%when the received signal is 0, decide it as in
favour of 1 with
%probability gamma(4). when the received signal is 1,
decide
%it as in favour of 1 with probability 0.
gamma(4)=pfa/p00;
pd(4)=gamma(4)*p00+0*p10;
validpd=[];
for w=1:1:4
if(gamma(w)>=0)

validpd=[validpd pd(w)];
else

validpd=[validpd -1];
end
end
[p,q]=max(validpd);
switch(q)

case 1
datadetected=[];
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for c=1:1:length(datarx)
if(datarx(c)==1)

datadetected=[datadetected 1];
else
t1=[gamma(1) 1];
u=t1-rand;
if(u(1)>0)

datadetected=[datadetected 1];
else

datadetected=[datadetected 0];
end
end

end

case 2
datadetected=[];
for c=1:1:length(datarx)

if(datarx(c)==0)
datadetected=[datadetected 0];

else
t1=[gamma(2) 1];
u=t1-rand;
if(u(1)>0)

datadetected=[datadetected 1];
else

datadetected=[datadetected 0];
end
end

end

case 3
datadetected=[];

for c=1:1:length(datarx)
if(datarx(c)==0)

datadetected=[datadetected 1];
else
t1=[gamma(3) 1];
u=t1-rand;
if(u(1)>0)

datadetected=[datadetected 1];
else

datadetected=[datadetected 0];
end
end

end
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case 4
datadetected=[];

for c=1:1:length(datarx)
if(datarx(c)==1)

datadetected=[datadetected 0];
else
t1=[gamma(4) 1];
u=t1-rand;
if(u(1)>0)

datadetected=[datadetected 1];
else

datadetected=[datadetected 0];
end
end

end
end
bayesruleselected=[];
pl=[];ph=[];bayes_ph=[];bayes_pl=[];
end
pd_obtained_afterdetection=(length(find
((datadetected-datatx)==0))...
/length(datatx));
pd_obtained_beforedetection=(length(find
((datarx-datatx)==0))...
/length(datatx));
pfa_obtained_afterdetection=(length(find
((datadetected-datatx)==1))...
/length(datatx));
pfa_obtained_beforedetection=(length(find
((datarx-datatx)==1))...
/length(datatx));
figure(1)
subplot(3,1,1)
plot(datatx,’r’)
subplot(3,1,2)
plot(datarx,’g’)
subplot(3,1,3)
plot(datadetected,’b’)

bayes.m
close all
y=[1 1];
z=1;
len=1000;
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p0=0.5;
pfa=[];
CLUSTER1=[];
CLUSTER2=[];
CLUSTER3=[];
CLUSTER4=[];
for j=1:1:1000
x=[rand rand];
[datatx,datarx,datadetected,bayesruleselected,pl,ph,
val_pl,val_ph,...

pd,gamma,pd_obtained,pfa_obtained]...
=binarychanneldetection(x,y,z,len,p0,pfa)

v=bayesruleselected;
if(v==1)
CLUSTER1=[CLUSTER1;x];
elseif(v==2)
CLUSTER2=[CLUSTER2;x];
elseif(v==3)
CLUSTER3=[CLUSTER3;x];
else
CLUSTER4=[CLUSTER4;x];

%minimax.m
close all
y=[1 1];
z=2;
len=1000;
priorprob{1}=[0.8 0.7];
priorprob{2}=[0.4 0.8];
priorprob{3}=[0.7 0.2];
priorprob{4}=[0.4 0.2];
pfa=[];
for i=1:1:4
x=priorprob{i};
pdcol_before=[];
pfacol_before=[];
pdcol_after=[];
pfacol_after=[];
for p0=[0.1:1/1000:0.9]
[datatx,datarx,datadetected,bayesruleselected,
pl,ph,val_pl,val_ph,...

pd,gamma,pd_obtained_beforedetection,
pfa_obtained_beforedetection,...
pd_obtained_afterdetection,pfa_obtained_
afterdetection]...
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=binarychanneldetection(x,y,z,len,p0,pfa);
pdcol_before=[pdcol_before pd_obtained_
beforedetection];
pfacol_before=[pfacol_before pfa_obtained_
beforedetection];
pdcol_after=[pdcol_after pd_obtained_
afterdetection];
pfacol_after=[pfacol_after pfa_obtained_
afterdetection];

end
pdcol_beforefinal{i}=pdcol_before;
pfacol_beforefinal{i}=pfacol_before;
pdcol_afterfinal{i}=pdcol_after;
pfacol_afterfinal{i}=pfacol_after;
end
for i=1:1:4
figure(2*(i-1)+2)
plot(pfacol_beforefinal{i},pdcol_beforefinal{i},’*’)
figure(2*(i-1)+3)
plot(pfacol_afterfinal{i},pdcol_afterfinal{i},’*’)
end

close all
%neymanpearson.m
y=[1 1];
z=3;
pfa=0.01;
len=1000;
pdcolbeforedetection1=[];
pfacolbeforedetection1=[];
pdcolafterdetection1=[];
pfacolafterdetection1=[];
x=[0.8 0.7];
for p0=0.01:1/1000:0.99
[datatx,datarx,datadetected,bayesruleselected,
pl,ph,val_pl,val_ph,...
pd,gamma,pd_obtained_beforedetection,pfa_obtained_
beforedetection,...
pd_obtained_afterdetection,pfa_obtained_
afterdetection]...

=binarychanneldetection(x,y,z,len,p0,pfa);
pdcolbeforedetection1=[pdcolbeforedetection1
pd_obtained_beforedetection];
pfacolbeforedetection1=[pfacolbeforedetection1
pfa_obtained_beforedetection];
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pdcolafterdetection1=[pdcolafterdetection1 pd_
obtained_afterdetection];
pfacolafterdetection1=[pfacolafterdetection1
pfa_obtained_afterdetection];
end
figure
plot(pfacolbeforedetection1,pdcolbeforedetection1,’*’)
figure
plot(pfacolafterdetection1,pdcolafterdetection1,’*’)

pdcolbeforedetection2=[];
pfacolbeforedetection2=[];
pdcolafterdetection2=[];
pfacolafterdetection2=[];
x=[0.4 0.8];
for p0=0.01:1/1000:0.99
[datatx,datarx,datadetected,bayesruleselected,pl,
ph,val_pl,val_ph,...

pd,gamma,pd_obtained_beforedetection,pfa_obtained
_beforedetection,...
pd_obtained_afterdetection,pfa_obtained
_afterdetection]...
=binarychanneldetection(x,y,z,len,p0,pfa);

pdcolbeforedetection2=[pdcolbeforedetection2 pd_
obtained_beforedetection];
pfacolbeforedetection2=[pfacolbeforedetection2 pfa_
obtained_beforedetection];
pdcolafterdetection2=[pdcolafterdetection2 pd_
obtained_afterdetection];
pfacolafterdetection2=[pfacolafterdetection2 pfa_
obtained_afterdetection];
end
figure
plot(pfacolbeforedetection2,pdcolbeforedetection2,’*’)
figure
plot(pfacolafterdetection2,pdcolafterdetection2,’*’)

pdcolbeforedetection3=[];
pfacolbeforedetection3=[];
pdcolafterdetection3=[];
pfacolafterdetection3=[];
x=[0.7 0.2];
for p0=0.01:1/1000:0.99
[datatx,datarx,datadetected,bayesruleselected,pl,
ph,val_pl,val_ph,...
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pd,gamma,pd_obtained_beforedetection,pfa_obtained
_beforedetection,...
pd_obtained_afterdetection,pfa_obtained
_afterdetection]...
=binarychanneldetection(x,y,z,len,p0,pfa);

pdcolbeforedetection3=[pdcolbeforedetection3 pd_
obtained_beforedetection];
pfacolbeforedetection3=[pfacolbeforedetection3 pfa_
obtained_beforedetection];
pdcolafterdetection3=[pdcolafterdetection3 pd_
obtained_afterdetection];
pfacolafterdetection3=[pfacolafterdetection3 pfa_
obtained_afterdetection];
end
figure
plot(pfacolbeforedetection3,pdcolbeforedetection3,’*’)
figure
plot(pfacolafterdetection3,pdcolafterdetection3,’*’)

pdcolbeforedetection4=[];
pfacolbeforedetection4=[];
pdcolafterdetection4=[];
pfacolafterdetection4=[];
x=[0.4 0.2];
for p0=0.01:1/1000:0.99
[datatx,datarx,datadetected,bayesruleselected,pl,ph,
val_pl,val_ph,...

pd,gamma,pd_obtained_beforedetection,pfa_
obtained_beforedetection,...
pd_obtained_afterdetection,pfa_obtained
_afterdetection]...
=binarychanneldetection(x,y,z,len,p0,pfa);

pdcolbeforedetection4=[pdcolbeforedetection4 pd_
obtained_beforedetection];
pfacolbeforedetection4=[pfacolbeforedetection4 pfa_
obtained_beforedetection];
pdcolafterdetection4=[pdcolafterdetection4 pd_
obtained_afterdetection];
pfacolafterdetection4=[pfacolafterdetection4 pfa_
obtained_afterdetection];
end
figure
plot(pfacolbeforedetection4,pdcolbeforedetection4,’*’)
figure
plot(pfacolafterdetection4,pdcolafterdetection4,’*’)
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2.1.5 Illustration of the Bayes, Mini-Max
and Neyman–Pearson Detector for the Additive Gaussian
Noise Channel

Let the outcome of the binary sequence is modelled as the discrete random variable
(X) with p.X D level0/ D p0 and p.X D level1/ D 1 � p0. Let the additive
noise is modelled as continuous random with Gaussian distributed with mean 0 and
variance �2:

fN.x/ D 1p
2��2

e� x2

2�2 (2.55)

The received sequence is modelled as the continuous random variable Y D X C N.
The conditional density function of the random variable Y given X D level0 and
X D level1 is computed as follows:

FY=XDlevel0 .y/ D p.Y � y=X D level0/

D p.X C N � y=X D 1/ D p.N � y � level0/ D FN.y � level0/

) fY=XDlevel0 .y/ D fN.y � level0/

) fY=XDlevel0 .y/ D 1p
2��2

e� .y�level0/2

2�2 dy (2.56)

Similarly fY=XDlevel1 .y/ is computed as follows:

fY=XDlevel1 .y/ D 1p
2��2

e� .y�level1/2

2�2 dy (2.57)

Bayes Rule In this case, the sample space of the random variable Y is the set of all
real values ranging from �1 to 1. Bayes rule identifies regions R1 and R0 such
that the total average Bayes cost is minimized (refer Sect. 2.1.1). From (2.1)–(2.2),
the conditional Bayes costs are computed as follows:

B0 D c00P.Y 2 R0=X D level0/ C c10P.Y 2 R1=X D level0/ (2.58)

B1 D c01P.Y 2 R0=X D level1/ C c11P.Y 2 R1=X D level1/ (2.59)

The total average Bayes cost is computed as

CB D p � B0 C .1 � p/ � B1

CB D p � c00P.Y 2 R0=X D level0/ C p � c10P.Y 2 R1=X D level0/ C
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.1 � p/ � c01P.Y 2 R0=X D level1/ C .1 � p/ � c11P.Y 2 R1=X D level1/

) CB D p � c00.1 � P.Y 2 R1=X D level0// C p � c10P.Y 2 R1=X D level0/ C
.1 � p/ � c01.1 � P.Y 2 R1=X D level1// C .1 � p/ � c11P.Y 2 R1=X D level1/

) CB D p � c00 C .1 � p/ � c01 C .p � c10P.Y 2 R1=X D level0/

�p � c00P.Y 2 R1=X D level0/ C .1 � p/ � c11P.Y 2 R1=X D level1/

�.1 � p/ � c01P.Y 2 R1=X D level1// (2.60)

Note that p is the prior probability of the transmitted signal 0, i.e. X D level0. In
(2.60 ), p�c00 C .1�p/�c01 is positive and independent of the partition regions R0

and R1. Hence we would like to minimize the following function to obtain region R1:

g.R1/ D .p � c10P.Y 2 R1=X D level0/ � p � c00P.Y 2 R1=X D level0/ C
.1 � p/ � c11P.Y 2 R1=X D level1/ � .1 � p/ � c01P.Y 2 R1=X D level1//

) g.R1/ D p � .c10 � c00/P.Y 2 R1=X D level0/

�.1 � p/ � .c01 � c11/P.Y 2 R1=X D level1/

To minimize CB, we would like to make g.R1/ � 0. This implies the following:

p�.c10 � c00/p
2��2

Z

R1

e� .y�level0/2

2�2 dy �

.1 � p/�.c01 � c11/p
2��2

Z

R1

e� .y�level1/2

2�2 dy � 0

) p�.c10 � c00/
1p

2��2
e� .y�level0/2

2�2 �.1 � p/ � .c01 � c11/
1p

2��2
e� .y�level1/2

2�2 � 0

) e� .y�level0/2

2�2

e� .y�level1/2

2�2

� .1 � p/ � .c01 � c11/

p � .c10 � c00/

e
�.y�level0/2C.y�level1/2

2�2 � .1 � p/ � .c01 � c11/

p � .c10 � c00/

) e
2�y�level0�2�y�level1�level20Clevel21

2�2 � .1 � p/ � .c01 � c11/

p � .c10 � c00/
(2.61)
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Taking loge on both sides of (2.61), we get the following:

) 2 � y � level0 � 2 � ylevel1 � level20 C level21
2�2

� loge

�
.1 � p/ � .c01 � c11/

p � .c10 � c00/

�

) 2 � y � .level0 � level1/ C .level21 � level20/ �

2�2loge

�
.1 � p/ � .c01 � c11/

p � .c10 � c00/

�

) 2 � y � .level1 � level0/ C .level20 � level21/ �

2�2loge

�
p � .c10 � c00/

.1 � p/ � .c01 � c11/

�

) y � thbayes D
�2loge.

p�.c10�c00/

.1�p/�.c01�c11/
/

.level1 � level0/
C .level0 C level1/

2

Illustration of Bayes rule with additive Gaussian noise model is given in Fig. 2.9.

Mini-Max Rule From the section 2.1.2, we understand that the mini-max rule is
the Bayes rule at which the conditional costs are equal. From (2.58) and (2.59) and
equating the conditional costs, we obtain the following:

c00

Z thminimax

�1
fY=XDlevel0 .y/dy C c10

Z 1

thminimax

fY=XDlevel0 .y/dy

D c01

Z thminimax

�1
fY=XDlevel1 .y/dy C c11

Z 1

thminimax

fY=XDlevel1 .y/dy

For the uniform costs, i.e. c00 D c11 D 0 and c10 D c01 D 1. We obtain the thminimax

by equating the probability of miss and the probability of false alarm.
Illustration of Mini-max rule with additive Gaussian noise model is given in

Fig. 2.10.

Neyman–Pearson Rule Neyman–Pearson rule is obtained by maximizing the
probability of detection such that the probability of false alarm is less than the
specified value pfa. From Sect. 2.1.3, we understand that the solution to the Neyman–
Pearson rule is of the form as shown below with probability of false alarmD pfa:

ı.y/ D 1; if p.y=1/ > ˇp.y=0/ (2.62)

ı.y/ D u.y/; if p.y=1/ D ˇp.y=0/ (2.63)

ı.y/ D 0; if p.y=1/ < ˇp.y=0/ (2.64)

Choosing u.y/ D 1 and the Neyman–Pearson rule is rewritten as follows:

ı.y/ D 1; y � thnp (2.65)
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Fig. 2.9 Illustration of Bayes rule with additive Gaussian noise channel model

ı.y/ D 0; otherwise (2.66)

Thus the thnp for the specified probability of false alarm pfa is obtained by equatingR1
thnp

fY=XDlevel0 .y/dy D pfa. Illustration of Neyman-pearson technique for AWGN
channel is given in Fig. 2.11.

%gaussianchanneldetection.m
function [pd_expected,pf_expected,pd_obtained,pf_
obtained]=...
gaussianchanneldetection(x,y,len,p0,sigma,pfa,level0,
level1)
%1 is represented as +5 and 0 is represented as -5.
It is added with the
%gaussian noise with mean zero and variance ’var’.
%p0 is the prior probability of 0 in the transmitter.
%x->[c01 c10];
%y->1:Bayes technique.
%y->2:Mini-max technique
%y->3:Neyman-pearson technique
%p0->prior probability
%sigma->standard deviation of the gaussian noise
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Fig. 2.10 Illustration of mini-max rule with additive Gaussian noise channel model

%level0 ->amplitude that represents the data 0
%level1 ->amplitude that represents the data 1
%pfa->desired probability of false alarm such that
probability of
%detection is maximized in the case of Neyman-pearson
technique.
%We assume one sample for each binary data
%Generation of binary sequence with antipodal
representation and
%with the required prior probability p0.
data=[]; tx=[];
for i=1:1:len
temp=[p0 1];
r=temp-rand;
[val,pos]=find(r>=0);
switch pos(1)

case 1
data=[data 0];
tx=[tx level0];
case 2
data=[data 1];
tx=[tx level1];
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Fig. 2.11 Illustration of Neyman–Pearson technique with additive Gaussian noise channel model
with the desired probability of false alarm is 0.1

end
end
%Generation of gaussian noise with the variance var.
noise=randn(1,len)*sigma;
rx=tx+noise;
switch y

case 1
%Bayes technique.
threshold=((2*sigma^2)*log(p0*x(2)/(1-p0)

*x(1))-level0^2+level1^2)/...
(2*(level1-level0));
detected=[];
for i=1:1:len

if(rx(i)>=threshold)
detected=[detected 1];

else
detected=[detected 0];

end
end

pd_obtained=(length(find((data-detected)==0))/len);
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pf_obtained=(length(find((data-detected)==-1))/len);
subplot(5,1,1)
plot(data)
subplot(5,1,2)
plot(tx)
subplot(5,1,3)
plot(noise)
subplot(5,1,4)
plot(rx)
hold on
plot(ones(1,len)*threshold,’r’)
subplot(5,1,5)
plot(detected,’r’)
u1=(threshold-level0)/(sqrt(2)*sigma);
u2=(threshold-level1)/(sqrt(2)*sigma);
pf_expected=1-(1/2)-(1/2)*erf(u1);
pd_expected=1-(1/2)-(1/2)*erf(u2);
case 2
%Mini-max technique
%Threshold is obtained by equating probability
of false alarm (part1) and the
%probability of miss (part2). In this case uniform
costs are assumed
%i.e. x=[1 1];erf(alpha) is the error function that
computes the integration
%2/sqrt(pi)exp(-t^2) over the limit 0 to alpha.
mini=100;
for thresholdrange=-10:0.001:10;
u1=(thresholdrange-level0)/(sqrt(2)*sigma);
u2=(thresholdrange-level1)/(sqrt(2)*sigma);
part1=1-(1/2)-(1/2)*erf(u1);
part2=(1/2)+(1/2)*erf(u2);
if(abs(part1-part2)<=mini)

threshold=thresholdrange;
mini=abs(part1-part2);

end
end

detected=[];
for i=1:1:len

if(rx(i)>=threshold)
detected=[detected 1];

else
detected=[detected 0];

end
end
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pd_obtained=(length(find((data-detected)==0))/len);
pf_obtained=(length(find((data-detected)==-1))/len);
subplot(5,1,1)
plot(data)
subplot(5,1,2)
plot(tx)
subplot(5,1,3)
plot(noise)
subplot(5,1,4)
plot(rx)
hold on
plot(ones(1,len)*threshold,’r’)
subplot(5,1,5)
plot(detected,’r’)
u1=(threshold-level0)/(sqrt(2)*sigma);
u2=(threshold-level1)/(sqrt(2)*sigma);
pf_expected=1-(1/2)-(1/2)*erf(u1);
pd_expected=1-(1/2)-(1/2)*erf(u2);
case 3
%Neyman-pearson technique
%The threshold is obtained by maximizing the
probability of detection such
%that the probability of false-alarm is less than
pfa. The solution is to
%obtain the threshold such that the probability of
false-alarm is equal pfa.
mini=100;
threshold=0;
for thresholdrange=-10:0.001:10;
u1=(thresholdrange-level0)/(sqrt(2)*sigma);
part1=1-(1/2)-(1/2)*erf(u1);
if(abs(part1-pfa)<=mini)

threshold=thresholdrange;
mini=abs(part1-pfa);

end
end

detected=[];
for i=1:1:len

if(rx(i)>=threshold)
detected=[detected 1];

else
detected=[detected 0];

end
end

pd_obtained=(length(find((data-detected)==0))/len);
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pf_obtained=(length(find((data-detected)==-1))/len);
subplot(5,1,1)
plot(data)
subplot(5,1,2)
plot(tx)
subplot(5,1,3)
plot(noise)
subplot(5,1,4)
plot(rx)
hold on
plot(ones(1,len)*threshold,’r’)
subplot(5,1,5)
plot(detected,’r’)
u1=(threshold-level0)/(sqrt(2)*sigma);
u2=(threshold-level1)/(sqrt(2)*sigma);
pf_expected=1-(1/2)-(1/2)*erf(u1);
pd_expected=1-(1/2)-(1/2)*erf(u2);
end

2.2 Estimation Theory

2.2.1 Wiener Filter

From the received signal, in the case of detection theory, we would like to identify
one among the possible finite number of symbols transmitted in the transmitter. But
in the case of estimation theory, we would like to get back the original signal from
the corrupted signal. Let the transmitted signal be described by the random process
Xt and the received signal be described by the random process Yt. We assume that Xt

is the wide sense stationary random process and is passed through the channel. The
channel is modelled as the additive white noise filter and hence the received signal
is also modelled as W.S.S. random process (refer Fig. 2.12a). The transmitted signal
is estimated from the distorted received signal using the Wiener filter. The distorted
received signal is the input to the Wiener filter and the output of the Wiener filter is
the estimated transmitted signal (refer Fig. 2.12b). The Wiener filter can be chosen
as FIR filter or IIR causal filter.

2.2.1.1 FIR Wiener Filter

Let the discrete random processes Xn and Yn are obtained by sampling the contin-
uous random process (satisfying the sampling theorem). The random processes Xn

and Yn are described by the random variables obtained by collecting the outcome
across the corresponding random process at a particular time instant. Thus the
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Fig. 2.12 Illustration of
Neyman–Pearson technique
with additive Gaussian noise
channel model with the
desired probability of false
alarm is 0.1

random variables Yn and Xn are related as Yn D XnCWn. Note that in this case Yn and
Xn are the random variables obtained from the corresponding random process. The
random variable (obtained from the random process) bXn and the random variable Yn

are related as

bXn D
kDN�1X

kD0

h.k/Yn�k (2.67)

where h.k/ is the FIR Wiener filter coefficients. We have to obtain the coefficients
such that J D E..Xn � bXn/2/ is minimized. This is known as minimum mean square
error estimation. We assume that the filter coefficients are real and the random
variables Yn and Xn are real. The solution is obtained by differentiating the objective
function J as follows:

J D E

0

@
 

Xn �
kDN�1X

kD0

h.k/Yn�k

!2
1

A (2.68)

Differentiating (2.68) with respect the arbitrary filter coefficients h.p/ and equating
to zero, we get the following:

2E

  
Xn �

kDN�1X

kD0

h.k/Yn�k

!
Yn�p

!
D 0 (2.69)

) E.XnYn�p/ D
kDN�1X

kD0

h.k/E.Yn�kYn�p/ (2.70)

) rXY.p/ D
kDN�1X

kD0

h.k/rY.p � k/ (2.71)
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Let the matrix Ry be represented as follows: Ry D0

BBBBBBB@

rY.0/ rY.�1/ rY.�2/ rY.�3/ rY.�4/ � � � rY.1 � N/

rY.1/ rY.0/ rY.�1/ rY.�2/ rY.�3/ � � � rY.2 � N/

� � � � � � � � � � � � � � � � � � � � �
rY.N � 2/ rY.N � 3/ rY.N � 4/ rY.N � 5/ rY.N � 6/ � � � rY.�1/

rY.N � 1/ rY.N � 2/ rY.N � 3/ rY.N � 4/ rY.N � 5/ � � � rY.0/

1

CCCCCCCA

Also the vector rT and hT are represented as follows:

rT D �
rXY.0/ rXY.1/ � � � rXY.N � 1/

�

hT D �
hXY.0/ hXY.1/ � � � hXY.N � 1/

�

Using r, h and Ry, (2.71) is rewritten as

r D Ryh (2.72)

Solving (2.72), we obtain the FIR Wiener filter coefficients. Also rXY.p/ and rY.p/

are computed as follows:

rXY.p/ D E.XnYn�p/ D E.Xn.Xn�p C Wn�p//

D E.XnXn�p/ C E.XnWn�p/ D rX.p/ C rXW.p/

The random variables Xn and Wn are assumed as uncorrelated with E.Wn/ D 0 and
hence

E.XnWn�p/ D 0 (2.73)

Similarly

rY.p/ D E.Y.n/Yn�p/ D E..Xn C Wn/.Xn�p C Wn�p//

D rX.p/ C rXW.p/ C rWX.p/ C rW.p/ (2.74)

Substituting rWX.p/ D rXW.p/ D 0 in (2.74), we obtain rY D rX C rW . Note that the
illustration is done with white Gaussian noise as the additive noise (Fig. 2.13).

%wienerFIR.m
y=sin(2*pi*100*(0:1:20000)*(1/1000))’+sin(2*pi*10*
(0:1:20000)*(1/1000))’;
noise=0.8*randn(1,21000);
ref_tx=y(1:1:10000)’;
ref_rx=y(1:1:10000)’+noise(1:1:10000);
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Fig. 2.13 Illustration of FIR Wiener filter-based estimation

transmittedsignal=y(1:1:10000)’;
receivedsignal=y(1:1:10000)’+noise(1:1:10000);
%Assuming that the random process Xt is W.S.S.
and Ergodic.
%Ensemble autocorrelation is computed along the
process as follows.
rx=[];
for i=0:1:10000
data1=[zeros(1,i) ref_tx];
data2=[ref_tx zeros(1,i)];
rx=[rx sum(data1.*data2)/10000];
end
ry=rx+[0.64 zeros(1,length(rx)-1)];
%Formulating the matrix Ry
Ry=[ry(1) ry(2) ry(3) ry(4) ry(5) ry(6) ry(7) ry(8)

ry(9) ry(10) ry(11);...
ry(2) ry(1) ry(2) ry(3) ry(4) ry(5) ry(6) ry(7)
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ry(8) ry(9) ry(10);...
ry(3) ry(2) ry(1) ry(2) ry(3) ry(4) ry(5) ry(6)
ry(7) ry(8) ry(9);...
ry(4) ry(3) ry(2) ry(1) ry(2) ry(3) ry(4) ry(5)
ry(6) ry(7) ry(8);...
ry(5) ry(4) ry(3) ry(2) ry(1) ry(2) ry(3) ry(4)
ry(5) ry(6) ry(7);...
ry(6) ry(5) ry(4) ry(3) ry(2) ry(1) ry(2) ry(3)
ry(4) ry(5) ry(6);...
ry(7) ry(6) ry(5) ry(4) ry(3) ry(2) ry(1) ry(2)
ry(3) ry(4) ry(5);...
ry(8) ry(7) ry(6) ry(5) ry(4) ry(3) ry(2) ry(1)
ry(2) ry(3) ry(4);...
ry(9) ry(8) ry(7) ry(6) ry(5) ry(4) ry(3) ry(2)
ry(1) ry(2) ry(3);...
ry(10) ry(9) ry(8) ry(7) ry(6) ry(5) ry(4) ry(3)
ry(2) ry(1) ry(2);...
ry(11) ry(10) ry(9) ry(8) ry(7) ry(6) ry(5) ry(4)
ry(3) ry(2) ry(1);];

%Formulating the vector r
r=[rx(1:1:11)];
%Filter co-efficients are obtained as follows.
h=inv(Ry)*r’;
%The filtered signal is given as follows.
filteredsignal=conv(receivedsignal,h);
filteredsignal=filteredsignal/max(filteredsignal);
receivedsignal=receivedsignal/max(receivedsignal);
filteredsignal=filteredsignal/max(filteredsignal);
figure
subplot(2,1,1)
plot(receivedsignal(1:1:100),’b’)
hold on
plot(filteredsignal(1:1:100),’r’)
subplot(2,1,2)
plot([transmittedsignal(1:1:100)],’b’)
hold on
plot(filteredsignal(1:1:100),’r’)

2.2.1.2 IIR Wiener Filter

Causal IIR filter is obtained using the innovation process as described below. The
transmitted signal is treated as the random process. The random variable obtained
by tapping across the input random process is represented as Xn. The outcome of the



2.2 Estimation Theory 91

Fig. 2.14 Illustration of causal IIR Wiener filter-based estimation

random variable Xn is generated using auto-regressive model as Xn D UnCa0Xn�1C
a1Xn�2 C a3Xn�3 C � � � aNXn�NC1, where N is the order of the model. Un is the
random variable obtained by tapping across the white random process with variance
�2

U . The input random process Xn is added with the noise described by white random
process Wn with variance �2

V to obtain the random process Yn. The spectral density
of the random process Yn in Z-domain is represented as SY.Z/. Using the spectral
factorization, SY.Z/ is represented as SY.Z/ D �2

RG.Z/G. 1
Z / (refer Fig. 2.14), where

G.Z/ is the causal filter. The IIR causal Wiener filter is obtained as the cascade of
P.Z/ D 1

G.Z/
and Q.Z/C, i.e.

WIENER.Z/ D P.Z/Q.Z/ (2.75)

Q.Z/ is obtained by minimizing the E.D2
n/ as follows:

E..Xn � OXn/2/ D E

0

@
 

Xn �
kD1X

kD0

qkRn�k

!2
1

A (2.76)

Differentiating (2.76) with respect to qi and equate to zero, we get the following:

rXR.i/ D
kD1X

kD0

qkrR.i � k/ (2.77)

Taking Z-transformation of right sided sequence rXR.i/, we get the following:

SXR.Z/ D Q.Z/SR.Z/ (2.78)

ŒSXR.Z/�C D
1X

iD0

rXR
.i/
Z � i D

1X

iD0

1X

kD0

qkrR.i � k/z�i (2.79)

) Q.Z/ D ŒSXR.Z/�C
�2

R

.* rR.i � k/ D �2
k 8 i D k; 0; otherwise/ (2.80)
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SXR.Z/ is obtained by taking the Z-transformation of rXR.m/ as follows:

rXR.m/ D E.XnCmRn/ (2.81)

) rXR.m/ D E.XnCm

lD1X

lD�1
plYn�l/ (2.82)

) rXR.m/ D
lD1X

lD�1
plrXY.l C m/ (2.83)

) SXR.Z/ D SXY.Z/P.Z�1/ D SXY.Z/

G.Z�1/
(2.84)

Thus the transfer function of the Wiener filter is given below:

WIENER.Z/ D 1

�2
RG.Z/

�
SXY.Z/

G.Z�1/

	

C
(2.85)

The steps involved in computing the causal IIR Wiener filter is as follows (Illustra-
tion of IIR Wiener filter is described in Figs. 2.15, 2.16, 2.17):

1. The transmitted signal Xn is modelled using auto-regressive model.
2. The received signal Yn is modelled as Yn D Xn C Wn, where Wn is the white

noise. Note that in the illustration, white Gaussian noise is used.

Fig. 2.15 Illustration of the AR model of the transmitted message signal
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Fig. 2.16 Illustration of causal IIR Wiener filter-based estimation in time domain

3. The spectral density SY.Z/ is represented as the product of �2
i G.Z/G. 1

Z /, where
G.Z/ is the causal stable filter using spectral factorization.

4. Obtain SXY.Z/. If Xn and Wn are uncorrelated with E.Wn/ D 0, then SXY.Z/ D
SX.Z/.

5. Finally the transfer function of the causal Wiener filter is computed using (2.85).

%wienerIIR.m
%IIR wiener filter with the input signal modelled
using ...
%second order Auto-Regressive (AR) model
order=4;
txsignal=sin(2*pi*16*(0:1:2047)*(1/1024))’+sin
(2*pi*32*(0:1:2047)*(1/1024))’+...
sin(2*pi*64*(0:1:2047)*(1/1024))’;
z=ar(txsignal(33:1:64),order);
%finite prediction error
U=fpe(z);
[p]=polydata(z)
generatedsignal=filter(1,p,randn(1,256)*sqrt(U));
figure
subplot(2,1,1)
plot(txsignal(257:1:512))
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Fig. 2.17 Illustration of causal IIR Wiener filter-based estimation in frequency domain

subplot(2,1,2)
plot(generatedsignal,’r’)
%signal is added with the gaussian noise
(variance 0.81).
rxsignal=txsignal’+randn(1,length(txsignal))*0.9;
%iir wiener filter is designed to estimate the tx
signal from the rx
%signal.
SX_NUM_COEF=U*[1 zeros(1,order-1)];
SX_DEN_COEF=conv(p,p(length(p):-1:1));
L=length(conv(p,p(length(p):-1:1)));
temp=zeros(1,L);
temp(L-order+1)=1;
SY_NUM_COEF=U*temp+0.81*conv(p,p(length(p):-1:1));
SY_DEN_COEF=conv(p,p(length(p):-1:1));
SIGMARSQUARE=SY_NUM_COEF(1)/SY_DEN_COEF(1);
SY_NUM_COEF_MOD=SY_NUM_COEF/SY_NUM_COEF(1);
SY_DEN_COEF_MOD=SY_DEN_COEF/SY_DEN_COEF(1);
SYNUMR=roots(SY_NUM_COEF_MOD);
[P1,Q1]=find(abs(SYNUMR)<1);
GZ_NUM_COEF=poly(SYNUMR(P1));
SYDENR=roots(SY_DEN_COEF_MOD);
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[P2,Q2]=find(abs(SYDENR)<1);
GZ_DEN_COEF=poly(SYDENR(P2));
G_ZINV_NUM_COEF=prod(SYNUMR(P1))/prod(SYDENR(P2))...

*poly(1./SYDENR(P1));
G_ZINV_DEN_COEF=poly(1./SYDENR(P2));
SXTOG_INV_NUM_COEF=conv(SX_NUM_COEF,G_ZINV_DEN_COEF);
SXTOG_INV_DEN_COEF=conv(SX_DEN_COEF,G_ZINV_NUM_COEF);
%Computing causal part of SXTOG_INV
[R,P,K]=residue(SXTOG_INV_NUM_COEF,SXTOG_INV_
DEN_COEF);
[XPOS,YPOS]=find(abs(P)<1);
[B,A]=residue(R(XPOS),P(XPOS),[])
%%final transfer function
transferfunction_num=conv(GZ_DEN_COEF,[real(B) 0]);
transferfunction_den=SIGMARSQUARE*conv(GZ_NUM_COEF,
real(A));
%filtering using the designed filter
b=transferfunction_num;
a=transferfunction_den;
estimatedsignal=filter(b,a,rxsignal);
figure
subplot(3,1,1)
plot(txsignal(1:1:256))
subplot(3,1,2)
plot(rxsignal(1:1:256))
subplot(3,1,3)
plot(real(estimatedsignal(1:1:256)))
figure
subplot(3,1,1)
temp1=fft(txsignal);
plot(abs(temp1(1:1:1024)))
subplot(3,1,2)
temp2=fft(rxsignal);
plot(abs(temp2(1:1:1024)))
subplot(3,1,3)
temp3=fft(real(estimatedsignal));
plot(abs(temp3(1:1:1024)))

2.2.2 Minimum Mean Square Estimation (MMSE)

The transmitted signal described by the random variable X is distorted to obtain
the received signal described by the random variable Y . We would like to estimate
the signal variable X as OX based on the observation variable Y . The cost associated
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with the estimation is represented as J D C.X; OX.Y//. We would like to minimize
the cost as an average sense, i.e. EXY.C.X; OX.Y/// is minimized:

EXY.C.X; OX.Y/// D EY.EX.C.X; OX.Y//=Y D y// (2.86)

Thus the cost function J is minimized by minimizing EX.C.X; OX.Y//=Y D y/ for
every values of Y D y. Let the cost function C.X; OX.Y// D .X � OX.Y//T.X � OX.Y//.
This implies the following:

EX.C.X; OX.Y//=Y D y/ D EX..X � OX.Y//T.X � OX.Y//=Y D y/ (2.87)

Differentiating (2.88) with respect to vector OX.Y/ and equating to zero, we get the
following:

bX.Y D y/ D EX.X=Y D y/ (2.88)

This estimation is known as MMSE and the solution to the estimation is the
conditional mean estimation.

2.2.3 Minimum Mean Absolute Estimation (MMAE)

In this case, the cost function chosen is as follows:

C.X; OX.Y// D jX � OX.Y/j (2.89)

We would like to obtain the optimal value of OX.Y/ such that E.jX � OX.Y/j=Y D y/

is minimized. This implies the following:

Z OX.Y/

�1
�.X � OX.Y//fX=YDy.x/ C

Z 1

OX.Y/

.X � OX.Y//fX=YDy.x/ (2.90)

Differentiating (2.90) with respect to OX.Y/ and equating to zero, we get the
following:

Z OX.Y/

�1
fX=YDy.x/ �

Z 1

OX.Y/

fX=YDy.x/ D 0 (2.91)

)
Z OX.Y/

�1
fX=YDy.x/ D

Z 1

OX.Y/

fX=YDy.x/ (2.92)

From (2.92), it is noted that the estimation is the conditional mode estimate.
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2.2.4 Maximum A Posteriori Probability (MAP)

In this case, the cost function chosen is as follows:

C.X; OX.Y// D 1



; if jX � OX.Y/j � 


2

C.X; OX.Y// D 0; otherwise

) EX.C.X; OX.Y//=Y D y/ D 1



� 1



p

�
jX � OX.Y/j � 


2
=Y D y

�

D 1



� 1



p

�
�


2
� .X � OX.Y//




2
=Y D y

�

D 1



� 1



p

�



2
C OX.Y/ � X




2
� OX.Y/=Y D y

�

D 1



� 1




�
FX=YDy

�



2
C OX.Y/

�
� FX=YDy

�
OX.Y/ � 


2

��
(2.93)

Minimizing (2.93) is equivalent to maximizing

1




�
FX=YDy

�



2
C Ox.y/

�
� FX=YDy

�
OX.Y/ � 


2

��
(2.94)

Applying the limit 
� > 0 to (2.94), we get fX=YDy. OX.Y//

Thus OX.Y/ is obtained by maximizing a posteriori probability fX=YDy. Hence this
estimation is known as maximum a posteriori (MAP) estimation. As the estimation
is identifying X corresponding to the peak of the conditional density function
fX=YDy.x/, this is called as conditional mode estimation.

2.2.5 Log-Likelihood Estimation

In the MAP estimation technique described in the above section, the posterior
probability density function fX=YDy.x/ is computed as

fY=X.y/fX.x/

fY.y/
(2.95)

In (2.95), fY.y/ is fixed for the particular Y D Y . Hence obtaining the optimal
value for X given Y D y by maximizing (2.95) is equivalent to maximizing
fY=X.y/fX.x/. If the prior probability is not known, fX.x/ is assumed to be uniform
distribution and it is assumed as constant. Hence in this case maximizing (2.95) is
equivalent to maximizing fY=X.y/. Logarithm function is the increasing function and
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hence maximizing fY=X.y/ is equivalent to maximizing log.fY=X.y//. The estimation
that maximizes log-likelihood function log.fY=X.y// is known as log-likelihood
estimation.

2.3 Kalman Filter

Consider a time-varying flat-channel whose filter coefficient at time instant k is
represented as h.k/ and is related to h.k � 1/ as follows:

h.k/ D ah.k � 1/ C v.k/ (2.96)

where v.k/ is the additive Gaussian noise with variance �2
v and a is a constant.

Time-varying channel coefficient is treated as the discrete random process and
h.�1/ is treated as the random variable obtained from the random process sampling
across the process at time instant �1. The random variable h.�1/ is Gaussian
distributed with mean � and variance �2. Hence the random variable h.0/ is
Gaussian with mean a� and variance a2�2 C �2

w. Let the known pilot sequence
Œx.0/ x.1/ x.2/ � � � x.k/� is sent through the channel and the corresponding output
sequence Œy.0/ y.1/ y.2/ � � � y.k/� is obtained. They are related as follows:

y.k/ D h.k/x.k/ C w.k/ (2.97)

w.k/ is the additive Gaussian noise with variance �2
w. Given the sequence, estimating

represented as Oh is obtained as follows. Assuming the parameters a,� �2, �2
v and

�2
w, input sequence Œx.0/ x.1/ x.2/ � � � � and the corresponding output sequence

Œy.0/ y.1/ y.2/ � � � � are known, h.k/ for k D 1 2 � � � is estimated continuously
(tracking the channel) as follows. Let the estimation of the filter coefficient h.k/

based on the observation of the output sequence Œy.0/ y.1/ y.2/ � � � y.k � 1/� is
represented as Oh.k=k�1/. Similarly the estimation of the filter coefficient h.k/ based
on the observation of the output sequence Œy.0/ y.1/ y.2/ � � � y.k/� is represented as
Oh.k/. Note that the estimators Oh.k=k � 1/ and Oh.k/ are random variables. The mean
of both the estimators is the true value h.k/ and the variances of the corresponding
estimators are represented as p.k=k � 1/ and p.k/, respectively. The steps involved
in tracking the filter co-efficient h is summarized below. Refer Figs. 2.18 and 2.19
for illustration.

1. Initialize p.0/, Oh.0/ and k D 1

2. Compute p.k=k � 1/ D a2p.k � 1/ C �2
w

3. Kalmangain.k/ D x.k/p.k=k�1/

x2.k/p.k=k�1/C�2
v

4. Oh.k=k � 1/ D aOh.k � 1/

5. h.k/ D Kalmangain.k/.y.k/ � x.k//h.k=k � 1/

6. p.k/ D .1 � x.k/Kalmangain.k//p.k=k � 1/

7. k D k C 1 and go to step 2
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Fig. 2.18 Illustration of the kalman filter

%kalmanfilter.m
%Generation of Time-varying channel co-efficient
(real)
mu=1;
a=0.2;
sigma2=1;
sigmaw2=0.1;
sigmav2=1;
h=sqrt(sigmaw2+(a^2)*sigma2)*randn(1)+a*mu;
LEN=100;
for i=2:1:LEN

h(i)=a*h(i-1)+randn(1)*sqrt(sigmaw2);
end
%a,sigmaw2 and sigmav2 are known
%We would like to track the time varying channel
co-efficients based on the
%output corresponding to the pilot input signal and
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Fig. 2.19 Illustration of the kalman filter (continued)

the corresponding output.
x=(round(rand(1,LEN))*2-1)*2;
y=[];
for i=1:1:LEN

y=[y h(i)*x(i)+sqrt(sigmav2)*randn(1)];
end
%Initialize
p_n(1)=1; hcapn(1)=1.5;
for k=2:1:LEN
p_n_n_1(k)=(a^2)*p_n(k-1)+sigmaw2;
kalman(k)=x(k)*p_n_n_1(k)/((x(k)^2)*p_n_n_1(k)
+sigmav2);
hcapn_n_1(k)=a*hcapn(k-1);
residual(k)=y(k)-x(k)*hcapn_n_1(k);
hcapn(k)=kalman(k)*residual(k)+hcapn_n_1(k);
p_n(k)=(1-x(k)*kalman(k))*p_n_n_1(k);
end
figure
subplot(3,1,1)
plot(x(2:1:end))
title(’Input sequence’)
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subplot(3,1,2)
plot(y(2:1:end))
title(’Corresponding output sequence’)
subplot(3,1,3)
plot(2:1:LEN,h(2:1:end)/sqrt(sum(h(2:1:end).^2)))
hold on
plot(2:1:LEN,hcapn(2:1:end)/sqrt(sum(hcapn(2:1:end).
^2)),’r’)
title(’Actual and the estimated time varying filter
co-efficient’)
figure
subplot(5,1,1)
plot(2:1:LEN,p_n_n_1(2:1:end))
title(’Variance of the estimation of h(n) given y(1)
y(1)...y(n-1)’);
subplot(5,1,2)
plot(2:1:LEN,kalman(2:1:end))
title(’Kalman gain used to update the estimation of
h(n) given y(1)...y(n)’)
subplot(5,1,3)
plot(2:1:LEN,hcapn_n_1(2:1:end))
title(’Estimation of h(n) given y(1)...y(n-1)’);
subplot(5,1,4)
plot(2:1:LEN,residual(2:1:end))
title(’Residual to update the estimation of h(n)
given y(1)...y(n)’)
subplot(5,1,4)
plot(2:1:LEN,hcapn(2:1:end))
title(’Estimation of h(n) given y(1)...y(n-1)
y(n)’);
subplot(5,1,5)
plot(2:1:LEN,p_n(2:1:end))
title(’Variance of the estimation of h(n) given
y(1)...y(n)’);



Chapter 3
Modulation Techniques in Wireless
Communication

Abstract The mathematical steps involved in QPSK, MSK, OFDM, CDMA and
diversity techniques are demonstrated using MATLAB. The computation of spectral
density of base band and bandpass modulation techniques is illustrated using
MATLAB.

3.1 Autocorrelation and the Spectral Density of the Received
Base Band Signal Generated by the Pulse p.t/

Let the discrete samples transmitted through the channel are given as Xt DPkD1
kD�1 Akp.t � kTs/. Ak is the amplitude of the kth sample and p.t/ is the pulse

used to represent the discrete sample. Ak is the discrete wide sense stationary random
process with autocorrelation RA.k/. Assume that the received signal is the delayed
version of the transmitted signal and is represented as Yt D PkD1

kD�1 Akp.t�kTs��/,
where � is uniformly distributed between 0 and Ts. The autocorrelation of the
random variable Yt is computed as follows:

RY.�/ D E.YtC� Yt/

D Ea

 
E

 
kD1X

kD�1
Akp.t C � � kTs � a/

lD1X

lD�1
Alp.t � lTs � a/

!!

D Ea

 
kD1X

kD�1

lD1X

lD�1
E.AkAl/p.t C � � kTs � a/p.t � lTs � a/

!

D Ea

 
kD1X

kD�1

lD1X

lD�1
RA.k � l/p.t C � � kTs � a/p.t � lTs � a/

!

Let m D k � l, we get the following:

RY.�/ D Ea

 
kD1X

kD�1

mD1X

mD�1
RA.m/p.t C � � kTs � a/p.t � kTs C mTs � a/

!
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D
Z Ts

0

1

Ts

 
kD1X

kD�1

mD1X

mD�1
RA.m/p.t C � � kTs � a/p.t � kTs C mTs � a/

!
da

mD1X

mD�1
RA.m/

kD1X

kD�1

1

Ts

Z Ts

0

p.t C � � kTs � a/p.t � kTs C mTs � a/da

Let u D t � kTs � a, we get the following:

RY.�/ D
mD1X

mD�1
RA.m/

kD1X

kD�1

1

Ts

Z t�kTs�Ts

t�kTs

p.u C �/p.u C mTs/du

RY.�/ D
mD1X

mD�1
RA.m/

1

Ts

Z 1

�1
p.u C �/p.u C mTs/du

RY.�/ D 1

Ts

mD1X

mD�1
RA.m/Rp.� � mTs/ (3.1)

where Rp is the autocorrelation of the deterministic signal. RP.�/ D R1
�1 p.t C �/

p.t/dt. The spectral density of the received signal is obtained by taking Fourier
transformation of the autocorrelation RY as mentioned below:

SY.f / D 1

Ts

mD1X

mD�1
RA.m/e�j2� fmTs jP.f /j2 (3.2)

Note When RA.m/ D 1 for m D 0; 0, otherwise, we get

RY.�/ D 1

Ts
RP.�/ (3.3)

SY.f / D 1

Ts
jP.f /j2 (3.4)

3.2 Computation of Spectral Density of the Bandpass Signal

Consider the bandpass signal Xt represented as

Xt D XI
t cos.2� fct/ � XQ

t sin.2� fct/

where XI
t is the in-phase component of the bandpass signal and XQ

t is the quadrature
phase component of the bandpass signal. The corresponding received signal is
obtained as the shifted version of Xt as Yt D XI

t .t � �/. Autocorrelation and the
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spectral density of the bandpass signal Yt are computed as follows:

RY.�/ D E.YtC� Y�
t /

D Ea.E..XI
tC��a cos.2� fc.t C � � a// � XQ

tC��a sin.2� fc.t C � � a///

.XI
t�a cos.2� fc.t � a// � XQ

.t�a/ sin.2� fc.t � a///�//

I term:

Ea.E..XI
tC��a cos.2� fc.t C � � a///.XI

t�a cos.2� fc.t � a///�//

Ea

�
1

2
E..XI

tC��a.XI
t�a/�/ cos.2� fc.2t � 2a C �///

�

CEa

�
1

2
E..XI

tC��a.XI
t�a/�/ cos.2� fc�//

�

Note that Ea
�

1
2
E..XI

tC��a.XI
t�a/�/ cos.2� fc.2t � 2a C �///

� D 0 and hence the I
term is simplified as follows:

Ea

�
1

2
E..XI

tC��a.XI
t�a/�/ cos.2� fc�//

�

D Ea

�
1

2
RXI .�/ cos.2� fc�/

�

D 1

2
RXI .�/ cos.2� fc�/

II term:

Ea.�E..XI
tC��a cos.2� fc.t C � � a///.XQ

t�a sin.2� fc.t � a///�//

Ea

�
�1

2
E..XI

tC��a.XQ
t�a/�/ cos.2� fc.2t � 2a C �///

�

CEa

�
�1

2
E..XI

tC��a.XQ
t�a/�/ sin.2� fc�//

�

Note that Ea. 1
2
E..XI

tC��a.XI
t�a/�/ cos.2� fc.2t � 2a C �//// D 0 and hence the II

term is simplified as follows:

Ea

�
1

2
E..XI

tC��a.XQ
t�a/�/ sin.2� fc�//

�

D Ea

�
1

2
RXIQ.�/ sin.2� fc�/

�

D 1

2
RXIQ.�/ sin.2� fc�/
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Similarly III and IV terms are obtained as follows. III term: � 1
2
RXQI .�/ sin.2� fc�/;

IV term: 1
2
RXQ.�/ cos.2� fc�/. Thus the spectral density of the base band signal is

computed as follows:

SX.f / D 1

4
.SXI .f � fc/ C SXQ.f � fc/ C SXI .f C fc/ C SXQ.f C fc// C

1

4j
..SXIQ.f � fc/ � SXQI .f � fc/ � SXIQ.f C fc/ C SXQI .f C fc//

If XI
t and XQ

t are independent and zero mean random process, then

SX.f / D 1

4
.SXI .f � fc/ C SXQ.f � fc/ C SXI .f C fc/ C SXQ.f C fc// (3.5)

3.3 Pulse Shaping for Discrete Communication

In the base band transmission, the discrete samples are represented using the pulses
and are transmitted through the channel. Let the samples being transmitted through
the channel be represented as s.t/ D PkD1

kD�1 Akp.t � kTs/. Ak is the amplitude of
the kth sample being transmitted and p.t/ is the pulse used for transmission. Let
the impulse response of the channel be represented as c.t/. The received signal is
obtained as s.t/ � c.t/. Let the impulse response of the equalizer e.t/ is designed
such that e.t/ � c.t/ D bı.t/, where b is a constant. Thus the received signal (except
the delay) is represented as r.t/ D b

PkD1
kD�1 Akp.t � kTs/. Let the received signal

r.t/ is sampled at the time instant mTs and is rewritten as follows:

r.mTs/ D b
kD1X

kD�1
Akp.mTs � kTs/ (3.6)

The received signal can also be written as follows:

r.mTs/ D bAmp.0/ C b
X

k¤m

Akp.mTs � kTs/ (3.7)

We would like to get r.mTs/ as bAmp.0/ in the receiver section. The second term in
the expression is known as ISI (Inter Symbol Interference). We would like to choose
the pulse such that

P
k¤m Akp.mTs � kTs/ D 0. Thus the condition for zero ISI is as

given below:

p.mTs/ D 1 for m D 0 (3.8)

p.mTs/ D 0; otherwise (3.9)
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Let the pulse p.t/ is sampled with the sampling time Ts to obtain the sequence
p.mTs/. The spectrum of the sampled version of the pulse is represented as follows:

Fs

KD1X

KD�1
P.f � KFs/ (3.10)

It is noted that Fs is the rate at which the samples are being transmitted. Let the
sampled version of the pulse p.t/ with the sampling frequency Fs is as given below:

pı.t/ D
X

k

p.kTs/ı.t � kTs/ (3.11)

The Fourier transformation of (3.11) is computed as follows:
R1

�1 pı.t/ei�2���f �tdt (3.12)

) R1
�1

P
k p.kTs/ı.t � kTs/ei�2���f �tdt (3.13)

Applying conditions (3.8)–(3.9) in (3.13), we get the following:
Z 1

�1
p.0/ı.t/ei�2���f �tdt D p.0/ (3.14)

Using (3.10) and (3.14), the condition for zero ISI is given below:

Fs

KD1X

KD�1
P.f � KFs/ D p.0/ (3.15)

If p.0/ is chosen as 1, the condition for zero ISI is given as

KD1X

KD�1
P.f � KFs/ D 1

Fs
(3.16)

The ideal pulse with least bandwidth W D Fs
2

is the sinc pulse represented as
pnyquist D sinc.2Wt/ (refer Fig. 3.1a for 2W D 1) and the corresponding spectrum
given as Pnyquist.f / (refer Fig. 3.1b for 2W D 1) is the rectangular pulse with
amplitude Ts for �W � f � W, 0, otherwise. If the sampling frequency is
higher, the error in the sampling instance in the receiver leads to larger ISI. This is
circumvented using the modified pulse that satisfies condition (3.16) (refer Fig. 3.3).
The bandwidth of the modified pulse ranges between W and 2W. The equation of
the modified pulse (refer Fig. 3.2) in time and frequency domain is as given below:

pmod.t/ D .sinc.2Wt//

�
cos.2�˛Wt/

.1 � 16˛2W2t2/

�
(3.17)

Pmod.f / D 1

2W
for 0 � jf j < f1
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Fig. 3.1 (a) Truncated Nyquist pulse in time domain with Tb D 1; (b) Nyquist pulse in frequency
domain with W D 1=2
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Fig. 3.2 (a) Truncated modified pulse with Tb D 1 in time domain. (b) Modified pulse in
frequency domain with W D 1=2. It is noted that bandwidth increases from W to 2W as ˛ goes
from 0 to 1
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P(f-4W)

P(f+4W)
P(f)

Fig. 3.3 Illustration that for the modified pulse Pmod.f / with ˛ D 1, Pmod.f / C Pmod.f � 2W/ C
Pmod.f � 4W/ C Pmod.f C 2W/ C Pmod.f C 4W/ D 1 for �3W � f � 3W. This illustrates that
the modified pulse satisfies (3.16)

Pmod.f / D 1

4W

�
1 � sin

�
�.jf j � W/

2W � 2f1

��
for f1 � jf j < 2W � f1

Pmod.f / D 0; jf j � 2W � f1

The other pulses used in practice are obtained as the linear combinations of sinc
pulses. Few of them are listed below (refer Fig. 3.4):

p1.t/ D
sin.

�.t � Tb/

Tb
/

.
�.t � Tb/

Tb
/

(3.18)

p2.t/ D sin. � t
Tb

/

� t
Tb

C 2
sin.

�.t�Tb/

Tb
/

�.t�Tb/

Tb

C sin.
�.t�2Tb/

Tb
/

�.t�2Tb/

Tb

(3.19)
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Fig. 3.4 List of other pulses used in practice

p3.t/ D 2

sin.
� t

Tb
/

.
� t

Tb
/

C
sin.

�.t � Tb/

Tb
/

.
�.t � Tb/

Tb
/

�
sin.

�.t � 2Tb/

Tb
/

.
�.t � 2Tb/

Tb
/

(3.20)

p4.t/ D 2

sin.
� t

Tb
/

.
� t

Tb
/

�
sin.

�.t � 2Tb/

Tb
/

.
�.t � 2Tb/

Tb
/

(3.21)

3.4 Bandpass Modulation Techniques

3.4.1 Phase Shift Keying

In the bandpass digital transmission, every bit is represented using the pulse for the
duration 0 to Tb. Tb is the bit duration. In the phase shift keying modulation, the
binary levels 0 and 1 are represented using the signals p0.t/ and p1.t/, respectively
(refer (3.22) and (3.23)). fc D nc

Tb
is the carrier frequency and nc is some arbitrary

integer. The sample phase shift keying signal is represented in Fig. 3.5.
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Fig. 3.5 Typical phase shift keying signal

p0.t/ D
s�

2Eb

Tb

�
cos.2� fct/ (3.22)

p1.t/ D �
s�

2Eb

Tb

�
cos.2� fct/ (3.23)

3.4.2 Illustration of the Coherent Correlation Receiver (PSK)

The PSK signal St transmitted through the channel is added with the additive
Gaussian noise Nt with mean zero and variance N0

2
and is received as the signal Yt in

the receiver. To detect the first bit, the received signal (duration 0 to Tb) is multiplied

by the synchronized signal

r�
2Eb
Tb

�
cos.2� fct/ and integrated over the duration 0 to

Tb to obtain the random variable Y . The random variable Y is
p

.Eb/ C N when
1 is sent and �p.Eb/ C N when 0 is sent. Note that N is the Gaussian random
variable with mean zero and variance N0

2
. Note that the random variable Y is the

output of the correlation receiver. Assuming equal prior probability and uniform
costs, Bayes detection (refer Chap. 2) ends up with the threshold 0, i.e. the decision
rule is formulated as follows:

1; if Y � 0

0; otherwise

Similarly to detect the nth transmitted bit, the received signal for the duration
.n � 1/Tb to nTb is subjected to detection using the correlation receiver as described
above. Figure 3.6 shows the typical transmitted PSK signal and the received PSK
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Fig. 3.6 (a) PSK signal and (b) PSK signal with additive Gaussian noise (variance D 4)

signal with the additive Gaussian noise with variance 4. Figure 3.7a shows the
output of the correlation receiver obtained once in every bit duration Tb. The random
variable Y is treated as the 1D vector and the typical values are plotted to obtain the
signal-space diagram as shown in Fig. 3.7b. This is the geometrical interpretation of
the output of the correlation receiver (random variable Y). The transmitted binary
sequence and the corresponding detected received binary sequence are plotted in
Fig. 3.7c and d, respectively.

%psk.m
t=0:1/1000:1;
Eb=2;
Tb=1;
nc=4;
fc=nc/Tb;
TX=[];
BINSEQ=abs(round(rand(1,200)*2-1));
for m=1:1:200
if(BINSEQ(m)==1)
TX=[TX sqrt(2*Eb/Tb)*cos(2*pi*fc*t)];
else
TX=[TX -1*sqrt(2*Eb/Tb)*cos(2*pi*fc*t)];
end
end
%Adding noise to the band pass signal
RX=TX+sqrt(4)*randn(1,length(TX));
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Fig. 3.7 Demonstration of the PSK signal detection using the correlation receiver

%variance of the additive gaussian noise No/2=4
figure
subplot(2,1,1)
plot(TX(1:1:10001))
title(’PSK signal’)
subplot(2,1,2)
plot(RX(1:1:10001))
title(’PSK with noise ’)
%Coherent detection
LO=sqrt(2/Tb)*cos(2*pi*fc*t);
BINSEQDET=[];
CS=[];
for n=1:1:200

temp=RX([(n-1)*1001+1:1:(n-1)*1001+1001]);
S=sum(temp.*LO);
CS=[CS S];
if(S>0)

BINSEQDET=[BINSEQDET 1];
else

BINSEQDET=[BINSEQDET 0];
end

end
figure



114 3 Modulation Techniques in Wireless Communication

subplot(2,2,1)
stem(CS)
title(’Output of the correlation receiver’)
subplot(2,2,2)
scatter(CS,zeros(1,200))
title(’Signal-space diagram for the PSK signal’);
subplot(2,2,3)
stem(BINSEQ)
title(’Transmitted binary sequence’)
subplot(2,2,4)
stem(BINSEQDET)
title(’Detected binary sequence’)

Computation of Probability of Error for PSK The conditional density function
of Y when 0 is transmitted is represented as Y0 D �p.Eb/ C N. Hence Y0 is
Gaussian distributed with mean �p.Eb/ and variance N0

2
. The probability density

function of Y0 is as shown below:

fYO.y/ D 1p
�N0

e� .yC

p

Eb/2

N0 (3.24)

Similarly the pdf of Y1 (when 1 is sent) is as given below:

fY1 .y/ D 1p
�N0

e� .y�

p

Eb/2

N0 (3.25)

The probability of error pe is computed as p.e=0/p.0/ C p.e=1/p.1/, where p.e=0/

is the probability of error when 0 is sent, p.e=1/ is the probability of error when 1

is sent. p.0/ and p.1/ are the prior probabilities. Using the fact p.0/ D p.1/ and the
symmetric nature of the conditional density functions (fY0 .y/ and fY1 .y/), we obtain
p.e=0/ D p.e=1/ D p.e/. Hence to obtain p.e/, it is enough to compute p.e=0/.
Thus pe is computed as follows:

pe D p.e=0/ D
Z 1

0

1p
�N0

e� .yC

p

Eb/2

N0 (3.26)

Let

erfc.u/ D
p

.
2

�
/

Z 1

u
e�u2

du;
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where u � 0. Let Z D Y0Cp
Ebq

N0
2

, we get the following:

p.e/ D P.Y0 � 0/ D P

�
Z
q

N0

2
� p

Eb � 0

�

D P
�

Z �
q

Eb
N0

�

D R1q
Eb
N0

1p
2�

e
�u2

2

D 1
2
erfc

�q
Eb
N0

�

Computation of the Spectral Density of PSK The pulse (duration of Tb) used to
represent the single bit in PSK is represented as follows:

p0.t/ D
s

2Eb

Tb
cos.2� fct/ (3.27)

p1.t/ D �
s�

2Eb

Tb

�
cos.2� fct/ (3.28)

The in-phase and the quadrature components of the received bandpass PSK
signal (corresponding to the transmitted signal for the duration 0 <D t <D Tb)
are identified as follows:

YIPSK
t D ˙

s�
2Eb

Tb

�
u.t � �/ (3.29)

YQPSK
t D 0 (3.30)

where p.t/ D 1 for o � t � Tb, 0, otherwise. Thus YIPSK
t can be viewed as the

received base band signal refer Sect. 3.1 generated by the pulse y.t/ as shown below:

YIPSK
t D

kD1X

kD�1
Aku.t � kTb � �/ (3.31)

where Ak is the independent discrete random process and takes the value

r�
2Eb
Tb

�

or �
r�

2Eb
Tb

�
with equiprobable. From (3.2), the spectral density of the received YI

t

is computed as follows:

SYIPSK .f / D 1

Tb
jU.f /j2RA.0/
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Fig. 3.8 Spectral density of the PSK signal with Eb D 1 unit, Tb D 1 unit and fc D 10 units

where

U.f / D
Z Tb

0

e�j2� ftdt

D Tbsinc.fTb/e�j� fTb

) SYI
PSK

.f / D 2Ebsinc2.fTb/

Also SYQPSK .f / D 0. Using (3.3) (Note that YIPSK
t and YQPSK

t are independent and zero
mean), we obtain the spectral density of PSK signal as follows (Fig. 3.8):

SPSK.f / D 1

4
.SYIPSK .f � fc/ C SYQPSK .f � fc/ C SYIPSK .f C fc/ C SYQPSK .f C fc//

D 1

4
.2Ebsinc2..f � fc/Tb/ C 2Ebsinc2..f C fc/Tb//

D Eb

2
.sinc2..f � fc/Tb/ C sinc2..f C fc/Tb//

%pskspec.m
fc=10;
Tb=1;
res=[];
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Eb=1;
for f=-10:0.01:10

res=[res (sin(pi*f*Tb)/(pi*f*Tb))^2];
end
f=-10:0.01:10;
u=isnan(res);
[p,q]=find(u==1);
res(q)=1;
part1=(Eb/2)*[zeros(1,length(f)) res];
f1=f-fc;
f2=f+fc;
final=[f1 f2];
part2=(Eb/2)*[res zeros(1,length(f))];
figure
plot(final,part1)
hold on
plot(final,part2)

3.4.3 Frequency Shift Keying

In FSK, the binary symbols 0 and 1 are represented using the signals S0.t/ and S1.t/
for the duration 0 to Tb (refer (3.32) and (3.33)):

S0.t/ D
p

.
2Eb

N0

/ cos.2� f1t/ (3.32)

S1.t/ D
p

.
2Eb

N0

/ cos.2� f2t/ (3.33)

where f1 D ncC1
Tb

and f2 D ncC2
Tb

, Tb is the bit duration and nc is some integer.
Figure 3.9 shows the typical FSK signal. f1 and f2 are chosen such that the phase
shift is 0 once in Tb duration.

3.4.4 Illustration of the Coherent Correlation Receiver (FSK)

The FSK signal St transmitted through the channel is added with the additive
Gaussian noise Nt with mean zero and variance N0

2
and is received as the signal Yt in

the receiver. To detect the first bit, the received signal (duration 0 to Tb) is multiplied

by the synchronized signal

r�
2Eb
Tb

�
cos.2� f1t/ and is integrated over the duration

0 to Tb to obtain the random variable Y1. Similarly the received signal (duration 0
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Fig. 3.9 Typical frequency shift keying signal

to Tb) is multiplied by the synchronized signal

r�
2Eb
Tb

�
cos.2� f2t/ and is integrated

over the duration 0 to Tb to obtain the random variable Y2.
Consider the random variable Y D Y1 � Y2 consisting of addition of two

components. The first component is deterministic and is related to the signal. The
second component is related to the additive Gaussian noise. The first component
takes

p
.Eb/ when 0 is sent and �p.Eb/ when 1 is sent. The second component

is Gaussian random variable with mean zero and variance Œ1 � 1�AŒ1 � 1�T D N0,

where A D
N0

2
0

0 N0

2
:

Thus the FSK detection can be viewed as PSK detection with the random variable
Y D ˙p.Eb/ C N, where N is the Gaussian random variable with mean zero
and variance N0. Assuming equal prior probability and the uniform costs, Bayes
detection (refer Chap. 2) ends up with the threshold 0, i.e., the decision rule is
formulated as follows:

0; if Y D Y1 � Y2 � 0

1; otherwise

In other words, the decision rule is rewritten as follows:

0; if Y1 � Y2

1; otherwise

Similarly to detect the nth transmitted bit, the received signal for the duration
.n � 1/Tb to nTb is subjected to detection using the correlation receiver as described
above.

Figure 3.10 shows the typical transmitted FSK signal and the received FSK signal
with the additive Gaussian noise with variance 4. Figure 3.11a,b shows the output
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Fig. 3.10 (a) FSK signal. (b) FSK signal with additive Gaussian noise (variance D 4)

of the correlation receiver 1 (Y1) and 2 (Y2), respectively (obtained once in every
bit duration Tb). The typical values of the random vector ŒY1 Y2� are plotted to
obtain the signal-space diagram as shown in Fig. 3.11c. This is the geometrical
interpretation of the output of the correlation receiver (random vector ŒY1 Y2�).
The transmitted binary sequence and the corresponding detected received binary
sequence are plotted in Fig. 3.12a and b, respectively.

%fsk.m
t=0:1/1000:1;
Eb=2;
Tb=1;
nc=1;
fc=nc/Tb;
f1=fc+(1/Tb);
f2=fc+(2/Tb);
CS1=[];
CS2=[];
TX=[];
BINSEQ=abs(round(rand(1,200)*2-1));
for m=1:1:200
if(BINSEQ(m)==0)
TX=[TX sqrt(2*Eb/Tb)*cos(2*pi*f1*t)];
else
TX=[TX sqrt(2*Eb/Tb)*cos(2*pi*f2*t)];
end
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Fig. 3.11 (a) Output of the correlation receiver 1. (b) Output of the correlation receiver 2. (c)
Signal-space diagram for the FSK signal

end
%Adding noise to the band pass signal
RX=TX+sqrt(40)*randn(1,length(TX));
figure
subplot(2,1,1)
plot(TX)
title(’FSK signal’)
subplot(2,1,2)
plot(RX)
title(’FSK with noise ’)
%Coherent detection
LO1=sqrt(2/Tb)*cos(2*pi*f1*t);
LO2=sqrt(2/Tb)*cos(2*pi*f2*t);
BINSEQDET=[];
for n=1:1:200

temp=RX([(n-1)*1001+1:1:(n-1)*1001+1001]);
S1=sum(temp.*LO1);
CS1=[CS1 S1];
S2=sum(temp.*LO2);
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Fig. 3.12 Illustration of the transmitted binary sequence and the corresponding detected binary
sequence

CS2=[CS2 S2];
if(S1>S2)

BINSEQDET=[BINSEQDET 0];
else

BINSEQDET=[BINSEQDET 1];
end

end
figure
subplot(1,3,1)
stem(CS1)
title(’Output of the correlation receiver 1’)
subplot(1,3,2)
stem(CS2)
title(’Output of the correlation receiver 2’)
subplot(1,3,3)
scatter(CS1,CS2)
title(’Signal-space diagram for the FSK signal’);
figure
subplot(2,1,1)
stem(BINSEQ)
title(’Transmitted binary sequence’)
subplot(2,1,2)
stem(BINSEQDET,’r’)
title(’Received binary sequence’)
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3.4.5 Computation of Probability of Error (FSK)

Observing FSK with additive Gaussian noise with (variance N0

2
) as the PSK with

additive Gaussian noise with variance N0, the probability of error is computed as
1
2
erfc

�q
Eb
2N0

�
. For the identical variance, it is found that the probability of error is

minimum if PSK is used.

3.4.6 Computation of the Spectral Density of FSK

Rewrite the expressions for FSK with f1 D fc C 1
2Tb

and f2 D fc � 1
2Tb

as follows:

S0.t/ D
s�

2Eb

Tb

�
cos.2� f1t/

D
s�

2Eb

Tb

�
cos

�
2�

�
fc C 1

2Tb

�
t

�

D
s�

2Eb

Tb

�
cos.2� fct/ cos

�
2� t

2Tb

�
� sin..2�.fct/// sin

�
2� t

2Tb

�

S1.t/ D
s�

2Eb

Tb

�
cos.2� f2t/ D

s�
2Eb

Tb

�
cos

�
2�

�
fc � 1

2Tb

�
t

�

D
s�

2Eb

Tb

�
cos.2� fct/ cos

�
2� t

2Tb

�
C sin..2�.fct/// sin

�
2� t

2Tb

�

Thus the in-phase and the quadrature components of the received FSK signal are
obtained as follows:

YIFSK
t D

s�
2Eb

Tb

�
cos

�
2�.t � �/

2Tb

�
(3.34)

YQFSK
t D ˙

s�
2Eb

Tb

�
sin

�
2�.t � �/

2Tb

�
(3.35)

where � is uniformly distributed between 0 and Tb. The in-phase component is the

YIFSK
t D

r�
2Eb
Tb

�
cos

�
2�.t��/

2Tb

�
irrespective of whether the binary sequence is 1 or

0. Hence the autocorrelation I-phase component is computed as follows:
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RYI .�/ D E.YIFSK
tC� .YIFSK

t /�/ (3.36)

D E

  s�
2Eb

Tb

�
cos

�
2�.t C � C �/

2Tb

�!

�
 s�

2Eb

Tb

�
cos

�
2�.t � �/

2Tb

�!�1

A (3.37)

D E

�
2Eb

Tb

��
1

2

�
cos

�
2�.2t C � C �/

2Tb

�
C cos

�
2��

2Tb

���
(3.38)

D 0 C Eb

Tb
cos

�
2��

2Tb

�
(3.39)

The spectral density of the I-phase component is computed as follows:

SYIFSK .f / D Eb

2Tb

�
ı

�
f � 1

2Tb

�
C ı

�
f C 1

2Tb

��
(3.40)

Using (3.3) and (3.33), the spectral density of the Q-phase component is
computed as follows:

SYQFSK .f / D 2Eb

T2
b

ˇ̌
ˇ̌FT

�
sin

�
2��

2Tb

��ˇ̌
ˇ̌
2

D 8Eb cos2.�Tbf /

�2.4T2
b f 2 � 1/2

Using (3.3) (Note that YIFSK
t and YQFSK

t , are independent and zero mean), we
obtain the spectral density of FSK signal as follows.

SFSK.f / D 1

4
.SYIFSK .f � fc/ C SYQFSK .f � fc/ C SYIFSK .f C fc/ C SYQFSK .f C fc//

D Eb

8Tb

�
ı

�
f � fc � 1

2Tb

�
C ı

�
f � fc C 1

2Tb

��

C Eb

8Tb

�
ı

�
f C fc � 1

2Tb

�
C ı

�
f C fc C 1

2Tb

��

C2Eb cos2.�Tb.f � fc//

�2.4T2
b .f � fc/2 � 1/2

C 2Eb cos2.�Tb.f C fc//

�2.4T2
b .f C fc/2 � 1/2

%fskspec.m
fc=10;
Tb=1;
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res=[];
Eb=1;
for f=-10:0.01:10
res=[res 2*Eb*(cos(pi*Tb*f)^2)/(pi^2*(4*(Tb^2)*
(f^2)-1)^2)];
end
[p,q]=find(res==inf);
for i=1:1:length(p)

res(q(i))=(res(q(i)-1)+res(q(i)+1))/2
end
f=-10:0.01:10;
part1=[zeros(1,length(f)) res];
f1=f-fc;
f2=f+fc;
final=[f1 f2];
part2=[res zeros(1,length(f))];
figure
plot(final,part1)
hold on
plot(final,part2)
f1=fc+(1/2*Tb);
f2=fc-(1/2*Tb);
f3=-fc+(1/2*Tb);
f4=-fc-(1/2*Tb);
hold on,stem([f1 f2 f3 f4],[Eb/(8*Tb) Eb/
(8*Tb) Eb/(8*Tb) Eb/(8*Tb)]);

3.4.7 Minimum Shift Keying

In this technique the pulses used to represent the binary sequence are described
below:

1. The phase at �Tb is assumed as � �
2

. Identify the phase change once in every bit
duration based on the actual binary stream to be transmitted.

2. If the next bit is 0, the phase change of ��
2

is assumed to be happened and if the
next bit is 1, the phase change of �

2
is assumed to be happened.

3. For instance for the binary sequence Œ1 1 0 0 1 0 0 1 0 0 1�, the phase shift
information is identified as illustrated in Fig. 3.14.

4. The binary sequence is represented as the linear combinations of the sequence of
two orthogonal bases 1.t/ and 2.t/ (refer (3.41) and (3.42)). The time duration
of the individual basis is 2Tb.
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Fig. 3.13 Spectral density of the FSK signal with Eb D 1 unit, Tb D 1 unit and fc D 10 units

1.t/ D
s�

2

Tb

�
cos

�
� � t

2Tb

�
cos.2� fct/ for � Tb � t � Tb (3.41)

2.t/ D
s�

2

Tb

�
sin

�
� � t

2Tb

�
sin.2� fct/ for 0 � t � 2Tb (3.42)

5. The signal corresponding to two orthogonal bases of the MSK signal is illustrated
in Fig. 3.15. The typical MSK signal and the MSK signal with the additive
Gaussian noise is illustrated in Fig. 3.16.

6. Steps involved in detecting the transmitted binary sequence is as follows:

a. Two correlation receivers are used. The received MSK signal with noise (with
starting time �Tb) is multiplied with the periodic signal k1.t/ once in 2Tb and
is integrated to obtain the output of the correlation receiver 1. Similarly the
received MSK signal with noise (with starting time 0) is multiplied with the
periodic signal k1.t/ once in 2Tb and is integrated to obtain the output of
the correlation receiver 2 (refer Fig. 3.17).

b. Inverse cosines (in degree) of the sign of the correlation receiver 1 and
correlation receiver 2 are obtained.

c. They are interleaved to obtain the detected phase angle in degrees.
d. Difference between the consecutive (detected) phase signals is obtained.
e. sine of the obtained difference sequence is obtained to obtain the detected

binary sequence (refer Fig. 3.18).

%msk.m
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Fig. 3.14 Illustration of the minimum shift keying

bindata=[1 1 0 0 1 0 0 1 0 0 1];
basis1coef=[1 -1 1 1 1 -1]*sqrt(Eb);
basis2coef=[1 1 1 -1 -1 -1]*sqrt(Eb);
Eb=1/2;
Tb=1;
fc=2;
t1=-1:1/100:1;
phi1=sqrt(2/Tb)*cos(pi*t1/(2*Tb)).*cos(2*pi*fc*t1);
t2=0:1/100:2;
phi2=sqrt(2/Tb)*sin(pi*t2/(2*Tb)).*sin(2*pi*fc*t2);
temp1=[phi1 -1*phi1 phi1 phi1 phi1 -1*phi1 zeros
(1,100)]*sqrt(Eb);
temp2=[zeros(1,100) phi2 phi2 phi2 -1*phi2 -s1*phi2
-1*phi2]*sqrt(Eb);
txsignal=temp1+temp2;
figure
subplot(3,1,1)
xval=[-100:1:length(temp1)-101]./100;
plot(xval,temp1)
subplot(3,1,2)
plot(xval,temp2)
subplot(3,1,3)
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Fig. 3.15 Sample waveform of the MSK signal

plot(xval,txsignal)
rxsignal=txsignal+sqrt(4)*randn(1,length(txsignal));
subplot(2,1,1)
plot(txsignal)
title(’Typical MSK signal ’)
subplot(2,1,2)
plot(rxsignal)
title(’MSK signal with additive Gaussian noise
(variance=4) ’)
%Correlation receiver for MSK modulation
L1=length(phi1)
OUTPUTCR1=[];
OUTPUTCR2=[];
rxsignal1=rxsignal(1:1:6*201);
rxsignal2=rxsignal(101:1:length(rxsignal));
for i=1:1:6

temp1=rxsignal1((i-1)*L1+1:1:(i-1)*L1+L1);
temp2=rxsignal2((i-1)*L1+1:1:(i-1)*L1+L1);

OUTPUTCR1=[OUTPUTCR1 sum(temp1.*phi1)];
OUTPUTCR2=[OUTPUTCR2 sum(temp2.*phi2)];
end
figure
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Fig. 3.16 (a) Typical MSK signal. (b) MSK signal with additive Gaussian noise (variance D 4)

subplot(2,2,1)
stem(OUTPUTCR1)
title(’Output of the correlation receiver 1’)
subplot(2,2,2)
stem(OUTPUTCR2)
title(’Output of the correlation receiver 2’)
subplot(2,2,3)
stem(acos(sign(OUTPUTCR1)))
title(’Identified phase using the correlation
receiver 1’)
subplot(2,2,4)
stem(asin(sign(OUTPUTCR2)))
title(’Identified phase using the correlation
receiver 2’)
%title(’Inverse sine of the sign of the output of the
correlation receiver 2’)
deg1=acos(sign(OUTPUTCR1));
deg2=asin(sign(OUTPUTCR2));
SEQ=reshape([deg1;deg2],1,12);
figure
subplot(4,1,1)
stem(SEQ)
title(’detected sequence of phase angle in degree’)
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Fig. 3.17 Illustration of the output of the correlation receiver for MSK detection

subplot(4,1,2)
SEQ1=diff(SEQ);
stem(SEQ1)
title(’difference between the consecutive binary
stream’)
subplot(4,1,3)
stem(bindata*2-1)
title(’Transmitted binary sequence’)
subplot(4,1,4)
P=sin(SEQ1);
stem(P)
title(’Corresponding detected binary sequence’);

3.4.8 Computation of the Probability of Error
of the MSK Modulation

The binary sequence is detected based on the detection of the phase of the distorted
received signal at 0, Tb, 2Tb, etc. The phases at 0, 2Tb, 4Tb (even multiples of Tb),
etc. are obtained based on the output of the correlator receiver (CR1) by observing
the signal over the duration �Tb to Tb. Similarly the phases at the locations of odd
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Fig. 3.18 Steps involved in detecting binary sequence from MSK signal

multiples of Tb are obtained based on the output of the correlator receiver (CR2)
by observing the signal over the duration 0 to 2Tb. The outputs of the correlator
receivers CR1 and CR2 are obtained as follows. Let the received MSK signal is
represented as Yt D St C Nt.

Z Tb

�Tb

.St C Nt/

s�
2

Tb

�
cos

�
� � t

2Tb

�
: � cos.2� fct/ (3.43)

D
Z Tb

�Tb

.St C Nt/1.t/ D
p

.Eb/ cos.�.0// C N (3.44)

�.0/ takes either 0 or � and hence the receiver random variable is viewed as PSK
problem with additive Gaussian noise with variance N0

2
and hence the probability of

error in detecting the phase at 0 is obtained as 1
2
erfc. Eb

N0
/. Similarly the probability in

detecting the phase at 0, Tb, 2Tb, 3Tb, 4Tb, etc. is obtained identically as 1
2
erfc. Eb

N0
/.

Assuming the phase at 0 is identified correctly (it is the reference), the phase at
Tb determines the first bit. Thus the probability of error associated with identifying
the first bit is identical with the probability of error associated with identifying the
phase at Tb. Similarly the probability of error associated with identifying the second
bit is identical with the probability of error associated with identifying the phase
at 2Tb and so on. Hence the probability of error for MSK signal is identified as
1
2
erfc. Eb

N0
/.
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3.4.9 Computation of Spectral Density of MSK Signal

From (3.41) and (3.42), the in-phase and the quadrature phase components of the
received MSK signal for the durations �Tb to Tb and 0 to 2Tb are given as follows:

YIMSK
t D ˙

s�
2Eb

Tb

�
cos

�
� � .t � �/

2Tb

�
(3.45)

YQMSK
t D ˙

s�
2Eb

Tb

�
sin

�
� � .t � �/

2Tb

�
(3.46)

where � is uniformly distributed between 0 and 2Tb. Using (3.3) and (3.33), the
spectral density of the I-phase component is computed as follows:

SYIMSK .f / D 2Eb

2T2
b

ˇ̌
ˇ̌FT

�
cos

�
��

2Tb

��ˇ̌
ˇ̌
2

D 16Eb

�2

�
cos.2�Tbf /

16T2
b f 2 � 1

	2

Similarly the spectral density of the Q-phase component of the MSK signal is
computed as follows:

SYQMSK .f / D 2Eb

2T2
b

ˇ̌
ˇ̌FT

�
sin

�
��

2Tb

��ˇ̌
ˇ̌
2

D 16Eb

�2

�
cos.2�Tbf /

16T2
b f 2 � 1

	2

Using (3.3) (Note that YIMSK
t and YQMSK

t are independent and zero mean), we
obtain the spectral density of MSK signal as follows (Fig. 3.19):

SMSK.f / D 1

4
.SYIMSK .f � fc/ C SYQMSK .f � fc/ C SYIMSK .f C fc/ C SYQMSK .f C fc//

4Eb

�2

�
cos.2�Tb.f � fc//
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�2

�
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16T2
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	2
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�2

�
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16T2
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	2

D 8Eb

�2

�
cos.2�Tb.f � fc//

16T2
b .f � fc/2 � 1

	2

C 8Eb

�2

�
cos.2�Tb.f C fc//

16T2
b .f C fc/2 � 1

	2
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Fig. 3.19 Spectral density of the MSK signal with Eb D 1unit, Tb D 1unit and fc D 10units

%mskspec.m
fc=10;
Tb=1;
res=[];
Eb=1;
for f=-10:0.01:10

res=[res (8*Eb/pi^2)*(cos(2*pi*Tb*f)/(16*(Tb^2)*
(f^2)-1))^2];

end
f=-10:0.01:10;
[p,q]=find(res==inf);
for i=1:1:length(p)

res(q(i))=(res(q(i)-1)+res(q(i)+1))/2
end
part1=[zeros(1,length(f)) res];
f1=f-fc;
f2=f+fc;
final=[f1 f2];
part2=[res zeros(1,length(f))];
figure
plot(final,part1)
hold on
plot(final,part2)
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3.4.10 Quadrature Phase Shift Keying

1. In the quadrature phase shift keying, two consecutive bits (1 symbol) are
represented using the linear combinations of two bases namely 1.t/ Dp

. 2
Ts

/ cos.2� fct/ and 2.t/ D p
. 2

Ts
/ sin.2� fct/ as follows:

00 ) s1.t/ D �
r

E

2
1.t/ �

r
E

2
2.t/ (3.47)

01 ) s2.t/ D �
r

E

2
1.t/ C

r
E

2
2.t/ (3.48)

10 ) s3.t/ D
r

E

2
1.t/ �

r
E

2
2.t/ (3.49)

11 ) s4.t/ D
r

E

2
1.t/ C

r
E

2
2.t/ (3.50)

2. Note that E is the energy per symbol (i.e. per 2 bits) and Ts D 2Tb is the symbol
duration.

3. Figure 3.20 shows the typical QPSK signal and Fig. 3.21 shows the QPSK signal
with and without additive Gaussian noise (variance D 4).

4. Steps involved in detecting the binary sequence using the correlation receiver is
as follows:

a. Two coherent correlation receivers 1.t/ (COR 1) and 1.t/ (COR 2) are used.
b. The signal with additive Gaussian noise is multiplied with the correlation

receiver COR 1 for the duration 0 to Ts and is integrated to obtain the random
variable Y1 D ˙p. E

2
/ C N, where E is the energy of the signal per symbol

and N is the Gaussian random variable with mean zero and variance N0

2
. If the

bit corresponding to the coefficient of basis 1.t/ is 0 level, �p. E
2
/ C N is

obtained, otherwise
p

. E
2
/ C N is obtained. To detect the bit corresponding

to the coefficient of the basis 1.t/, the output of the correlation receiver 1 is
viewed as the PSK detection with Y1 D ˙p. E

2
/ C N. Assuming equal prior

probability and the uniform costs, Bayes detection (refer Chap. 2) ends up
with the threshold 0, i.e. decision rule is formulated as follows (Figs. 3.22,
3.23):

1 if Y1 � 0

0 ; Otherwise

c. Similarly to detect the bits corresponding the coefficient of the basis 2.t/,
output of the correlation receiver Y2 is subjected to detection rule as follows:

1 if Y2 � 0

0 ; Otherwise
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Fig. 3.20 Illustration of the typical QPSK signal
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Fig. 3.21 Typical QPSK signal with noise

%qpsk.m
t=0:1/1000:1;
E=2;
Ts=1;
nc=4;
fc=nc/Ts;
TX=[];
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Fig. 3.22 Illustration of the correlation receiver of the QPSK signal
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Fig. 3.23 Scatter diagram of the QPSK signal

BINSEQ=abs(round(rand(1,200)*2-1));
phi1=sqrt(2*E/Ts)*cos(2*pi*fc*t);
phi2=sqrt(2*E/Ts)*sin(2*pi*fc*t);
n=1;
for m=1:1:100
if(((BINSEQ(n)==0)& (BINSEQ(n+1)==0)))
TX=[TX -1*sqrt(1/2)*phi1-sqrt(1/2)*phi2];
n=n+2;
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hold on
plot([(m-1)*1001+1:1:(m-1)*1001+1001],-1*sqrt(1/2)*
phi1-1*sqrt(1/2)*phi2 ,’r’)
elseif(((BINSEQ(n)==0)& (BINSEQ(n+1)==1)))
TX=[TX -1*sqrt(1/2)*phi1+sqrt(1/2)*phi2];
n=n+2;
hold on
plot([(m-1)*1001+1:1:(m-1)*1001+1001],-1*sqrt(1/2)

*phi1+1*sqrt(1/2)*phi2 ,’b’)
elseif(((BINSEQ(n)==1)& (BINSEQ(n+1)==0)))
TX=[TX 1*sqrt(1/2)*phi1-sqrt(1/2)*phi2];
n=n+2;
hold on
plot([(m-1)*1001+1:1:(m-1)*1001+1001],1*sqrt(1/2)

*phi1-1*sqrt(1/2)*phi2 ,’g’)
else
TX=[TX 1*sqrt(1/2)*phi1+sqrt(1/2)*phi2];
n=n+2;
hold on
plot([(m-1)*1001+1:1:(m-1)*1001+1001],1*sqrt(1/2)

*phi1+sqrt(1/2)*phi2,’m’)
end
end
%Adding noise to the band pass signal
RX=TX+sqrt(40)*randn(1,length(TX));
figure
subplot(2,1,1)
plot(TX)
title(’QPSK signal’)
subplot(2,1,2)
plot(RX)
title(’QPSK with noise ’)
%Coherent detection
LO1=sqrt(2*E/Ts)*cos(2*pi*fc*t);
LO2=sqrt(2*E/Ts)*sin(2*pi*fc*t);
BINSEQDET=[];
COROUT1=[];
COROUT2=[];
for n=1:1:100

temp=RX([(n-1)*1001+1:1:(n-1)*1001+1001]);
S1=sum(temp.*LO1);
S2=sum(temp.*LO2);
COROUT1=[COROUT1 S1];
COROUT2=[COROUT2 S2];
if((S1<0)&(S2<0))



3.4 Bandpass Modulation Techniques 137

BINSEQDET=[BINSEQDET 0 0];
elseif ((S1<0)&(S2>0))

BINSEQDET=[BINSEQDET 0 1];
elseif ((S1>0)&(S2<0))

BINSEQDET=[BINSEQDET 1 0];
else

BINSEQDET=[BINSEQDET 1 1];
end

end
figure
scatter(COROUT1,COROUT2)
figure
subplot(2,2,1)
stem(COROUT1)
subplot(2,2,2)
stem(COROUT2)
subplot(2,2,3)
stem(BINSEQ)
subplot(2,2,4)
stem(BINSEQDET)

3.4.11 Computation of the Probability of Error
of the QPSK Signal

The probability of error associated with single symbol is computed as follows. Let
the detected first bit and second bit are represented as b1 and b2, respectively.

p.error/QPSK D 1 � p.correct decision/QPSK

p.correct decision/QPSK D p.b1 is identified correctly/p.b2 is identified correctly/

D .1 � p.error in identifying b1//.1 � p.error in identifying b2//

p.error in identifying b1/ D p.error in identifying b2/ D 1

2
erfc

�p
.

E

2N0

/

�

p.correct decision/QPSK D
�

1 � 1

2
erfc

�p
.

E

2N0

/

��2

D 1 C 1

4
erfc

�p
.

E

2N0

/

�2

� erfc

�p
.

E

2N0

/

�
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p.error/QPSK D 1 � .1 C 1

4
erfc

�p
.

E

2N0

/

�2

� erfc

�p
.

E

2N0

/

�

p.error/QPSK D erfc

�p
.

E

2N0

/

�
� 1

4
erfc

�p
.

E

2N0

/

�2

p.error/QPSK � erfc

�p
.

E

2N0

/

�
D erfc

�p
.

Eb

N0

/

�

Probability of error in the bit level is computed as 1
2
erfc

�p
. Eb

N0
/
�

.

3.4.12 Computation of Spectral Density of the QPSK Signal

From (3.46)–(3.49), the in-phase and quadrature components of the received QPSK
signal corresponding to the Transmitted signal for the duration 0 to Tb are obtained
as follows:

Y
IQPSK
t D ˙

p
.

E

Ts
/p.t � �/

Y
QQPSK
t D ˙

p
.

E

Ts
/p.t � �/

where p.t/ is the rectangular pulse for the duration 0 to Ts D 2Tb and � is uniformly
distributed between 0 and Ts. From (3.4), the spectral density of the in-phase and
the quadrature components of the QPSK signal is computed as follows (Fig. 3.24):

SYIFSK .f / D SYQFSK .f / D E

T2
s

jFT.p.t//j2 (3.51)

D 2ET2
s

T2
s

sinc2.fTs/ D 2Ebsinc2.2fTb/ (3.52)

If YI
t and YQ

t are independent and zero mean random process, then

SY.f / D 1

4
.SYIFSK .f � fc/CSYIFSK .f C fc/CSYQFSK .f � fc/CSYQFSK .f C fc// (3.53)

%qpskspec.m
fc=10;
Tb=1;
res=[];
Eb=1;
for f=-10:0.01:10
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Fig. 3.24 Spectral density of the QPSK signal with Eb D 1 unit, Tb D 1 unit and fc D 10 units

res=[res Eb*(sinc(2*f*Tb))^(2)];
end
u=isnan(res);
[p,q]=find(u==1)
for i=1:1:length(p)

res(q(i))=1;
end
f=-10:0.01:10;
part1=[zeros(1,length(f)) res];
f1=f-fc;
f2=f+fc;
final=[f1 f2];
part2=[res zeros(1,length(f))];
figure
plot(final,part1)
hold on
plot(final,part2)

SY.f / D Ebsinc2.2.f � fc/Tb/ C Ebsinc2.2.f C fc/Tb/ (3.54)
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3.5 Orthogonal Frequency Division Multiplexing (OFDM)

Let the real sequence ŒX1 X2 X3 � � � XN � is to be transmitted through the channel.
Let the spectrum utilized to send the sequence ŒX1 X2 X3 � � � XN � is divided into
N sub-bands and each sub-band is responsible for the individual samples. If X1

is represented by the rectangular pulse with the time duration T , the corresponding
spectrum is the sinc pulse. We can imagine that the complete sequence is represented
in the frequency domain with the shifted version of sinc pulses. This is achieved
by multiplying Xi with ej2� fit. This is equivalent to shifting the sinc pulse in the
frequency domain towards right with frequency fi. Thus the sub-band composite
signal is obtained as

c.t/ D
N
2X

iD� N
2

Xie
j2� fit (3.55)

Let the frequencies fi are selected such that the bandwidth of c.t/ occupies from
�W

2
to W

2
. Note that the spectrum is not symmetric with respect to y D 0-axis (after

shifting). The minimum sampling frequency required to sample the signal c.t/ so
that we can reconstruct the signal back without overlapping is W. Let the bandwidth
be W and each sub-band is occupying the bandwidth of W

N . Also fi be the centre

frequency of each band, i.e. fi D .i�1/W
N C W

2N with i D � N
2

C 1 to i D N
2

. Also let
the signal c.t/ is sampled with sampling frequency W. We get the following:

Fig. 3.25 Illustration of the Base band OFDM signal
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c.mT/ D cm D
N
2X

iD� N
2 C1

Xie
j2� fim

W (3.56)

Note that the sampling duration T D 1
W . c.mT/ is observed as the IDFT of the

sequence ŒX1 X2 X3 � � � XN �, except the scaling factor. This sampled version of the
composite signal, which is the IDFT of the sequence ŒX1 X2 X3 � � � XN �, is being sent
through the channel. As c.mT/ is the sampled version of c.t/, the spectrum of the
composite signal is repeated once in sampling frequency W. For one period, it has
the perfect sub-band arrangement refer Fig. 3.26. Instead of sending the composite
signal c.t/, the sampled version of the composite signal, i.e. c.mT/ is sent through
the channel. The sampled version of a c.t/ is actually sent by a sequence of pulses.
Thus the base band OFDM signal (refer Fig. 3.25) is represented as follows:

CBASEBABD
OFDM .t/ D

mDNX

mD1

cmp.t � mT/ (3.57)

For the specific sequence c.mT/, if the pulse p.t/ is chosen as the sinc pulse, the
spectrum of the actually transmitted signal CBASEBABD

OFDM .t/ is interpreted as follows:

P.f /

mDNX

mD1

cme�j2� fmT D P.f /DTFT.cm/ (3.58)

It is noted for the truncated sinc pulse (with sufficient larger duration) p.t/, P.f / is
almost constant and hence the spectrum of the actually transmitted OFDM signal is
the DTFT of the sequence cm, which is the periodic repetition (with period W) of
the spectrum of the sub-band composite signal c.t/ sampled with the sampling time
T . The base band composite OFDM signal is sent through the channel using base
band to bandpass conversion as follows (refer Figs. 3.27, and 3.28):

COFDM.t/ D CBASEBABD
OFDM .t/ej2� fct C .CBASEBABD

OFDM .t//�e�j2� fct (3.59)

3.5.1 Illustration of OFDM Signal

1. The Band pass OFDM signal with and without additive Gaussian noise is
illustrated in Fig. 3.29.

2. The OFDM signal for the duration 0 to T is multiplied with cos.2� fct/p.t/ and
is integrated to obtain the first element of the I-phase component. Similarly the
second element of the I-component is obtained using the OFDM signal for the
next T duration.
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Fig. 3.26 Illustration of the sub-band achieved using OFDM techniques (by computing the
spectrum of CBASEBAND

OFDM .t/)

Fig. 3.27 Illustration of the Base band OFDM signal

3. In the same way, the OFDM signal for the duration 0 to T is multiplied
with sin.2� fct/p.t/ and is integrated to obtain the first element of the Q-phase
component. Similarly the second element of the Q-component is obtained using
the OFDM signal for the next T duration.

4. Let the sequence of the reconstructed I-phase component is represented as RI and
the sequence of the reconstructed Q-phase component is represented as RQ.
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Fig. 3.28 Bandpass OFDM signal using sinc pulse to represent the in-phase and the quadrature
components

5. Form the complex sequence Z D RI C jRQ to obtain the received base band
sequence. Compute the Discrete Fourier Transform (DFT) of the sequence Z
to obtain the received sequence of the transmitted data RXDATA. The real
(RXDATARE) and imaginary parts (RXDATAIM) of the RXDATA are viewed as
the additive Gaussian noise model and the usual thresholding based detection is
applied to detect the real and imaginary parts of the transmitted sequence.

6. The real and imaginary parts of the detected data along with the corresponding
transmitted data are shown in Fig. 3.30.

%OFDMdemo.m
%OFDMdemo
RE=round(rand(1,8))*2-1;
IM=round(rand(1,8))*2-1;
figure
OFDMDATA=RE+j*IM;
TXDATA=ifft(OFDMDATA);
s=32768*2;
FS=s/2;
TS=1/FS;
fc=1000;
t=-1/2:1/(s-1):1/2;
pulse=sinc1(100*t);
R=[];
T1=[];
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Fig. 3.29 Bandpass OFDM signal with and without additive gaussian noise

Fig. 3.30 Illustration of the detection of I- and Q-component from the noisy received OFDM
signal
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T2=[];
for f=0:FS/s:(s-1)*FS/s

temp1=0;
temp2=0;
for r=0:1:length(TXDATA)-1
temp1=temp1+TXDATA(r+1)*exp(-j*2*pi*f*r*TS);
temp2=temp2+sinc1(100*(r-length(TXDATA)/2)*TS)*
exp(-j*2*pi*f*r*TS);
end
T1=[T1 temp1];
T2=[T2 temp2];
R=[R (temp1.*temp2)];

end
plot(abs(R))
BASEBAND=[];
for i=1:1:length(TXDATA)
BASEBAND=[BASEBAND TXDATA(i)*pulse];
end
figure
subplot(2,1,1)
plot(real(BASEBAND))
title(’Real part of the Base band OFDM signal
represented using sinc pulse’)
subplot(2,1,2)
plot(imag(BASEBAND))
title(’Imaginary part of the Base band OFDM
signal represented using sinc pulse’)
t1=-1/2:1/(s-1):1000;
t1=t1(1:1:length(BASEBAND));
BANDPASSTX=BASEBAND.*exp(j*2*pi*fc*t1)+conj(BASEBAND).

*exp(-j*2*pi*fc*t1);
figure
plot(BANDPASSTX)
title(’Bandpass OFDM signal’)
%OFDM receiver
BANDPASSRX=BANDPASSTX+sqrt(0.1)*rand(1,length
(BANDPASSTX));
subplot(2,1,1)
plot(BANDPASSTX(1:1:2*s))
title(’Typical OFDM signal without noise’)
subplot(2,1,2)
plot(BANDPASSRX(1:1:2*s))
title(’Typical OFDM signal with additive Gaussian
noise (variance=0.1)’)
%Detecting In-phase component
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IDC=[];
QDC=[];
for i=1:1:8

temp=BANDPASSRX((i-1)*s+1:(i-1)*s+s);
IDC=[IDC sum(temp.*cos(2*pi*fc*t1(1:1:s)).*pulse)];
QDC=[QDC sum(temp.*(-1*sin(2*pi*fc*t1(1:1:s))).

*pulse)];
end
RXBASEBAND=IDC+j*QDC;
RXDATA=fft(RXBASEBAND);
RXIDATA=quantiz(real(RXDATA),0)*2-1
RXQDATA=quantiz(imag(RXDATA),0)*2-1
figure
subplot(2,2,1)
stem(RE)
subplot(2,2,2)
stem(RXIDATA)
subplot(2,2,3)
stem(IM)
subplot(2,2,4)
stem(RXQDATA)

3.5.2 Cyclic Prefix in OFDM

Let us consider the discrete level base band transmission of the sequence Xn through
the channel whose impulse response is represented as Œh0 h1 h2�. The steps involved
in transmitting the OFDM signal are as follows:

1. The sequence is divided into sub-blocks of size 8 (say).
2. IFFT of the sequence is obtained as Œx0 x1 x2 x3 x4 x5 x6 x7�.
3. Cyclic prefix is done to obtain Œx6 x7 x0 x1 x2 x3 x4 x5 x6 x7�. This is treated as

one frame.
4. The received samples (3rd to 10th samples) corresponding to the first frame is

computed as follows (Illustrations of discrete OFDM transmission are given in
Figs. 3.31 and 3.32.)

y0 D h0x0 C h1x7 C h2x6 C n0

y1 D h0x1 C h1x0 C h2x7 C n1

y2 D h0x2 C h1x1 C h2x0 C n2

y3 D h0x3 C h1x2 C h2x1 C n3

y4 D h0x4 C h1x3 C h2x2 C n4
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Fig. 3.31 Typical discrete transmitted OFDM signal with and without additive noise

Fig. 3.32 Illustration of discrete data transmission using OFDM
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y5 D h0x5 C h1x4 C h2x3 C n5

y6 D h0x6 C h1x5 C h2x4 C n6

y7 D h0x7 C h1x6 C h2x5 C n7

5. Let x D Œx0 x1 x2 x3 � � � x7�T , h D Œh0 h1 h2 0 0 0 � � � 0 � � � 0�T , y D
Œy0 y1 y2 y3 � � � y7�T and n D Œn0 n1 n2 n3 � � � n7�T .

6. From the above expression, we identify y D x ˇ h C n.
7. The DFT of the received samples are computed as Y D diagonal.H/X C N,

where Y , H and N are the DFT of y, h and n, respectively. Also diagonal.x/ is
the diagonal matrix with diagonal elements obtained from the elements of the
vector x.

8. The least square estimation of X (original signal to be transmitted) is obtained

as OX D Y
H

.

%ofdmcyclicprefix
Tx1=[];
Tx2=[];
for i=1:1:4
Tx1=[Tx1 round(rand(1,8))*2-1 ] ;
Tx2=[Tx2 round(rand(1,8))*2-1];
end

Tx=Tx1+j*Tx2;
%The impulse response of the linear time-invariant
base band channel is h
h=rand(1,3)+j*rand(1,3);
H=fft(h,8);
%Actually transmitted data
TDATA=[];
for i=1:1:4

temp1=Tx((i-1)*8+1:1:(i-1)*8+8);
temp2=ifft(temp1);

%Introducing cyclic prefix
temp=[temp2(7) temp2(8) temp2];
TDATA=[TDATA temp];
end
RDATA=conv(TDATA,h)
%RDATAWN is the transmitted data with additive
gaussian noise
RDATAWN=RDATA+sqrt(0.01)*randn(1,length(RDATA))...
+j*sqrt(0.01)*randn(1,length(RDATA));
DDATA=[];
for i=1:1:4
temp=RDATAWN((i-1)*10+1:1:(i-1)*10+10);
temp=temp(3:1:10);
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Detectedsignal=fft(temp)./H;
DDATA=[DDATA Detectedsignal];
end
figure
subplot(2,2,1)
stem(real(TDATA))
title(’Real part of the actually transmitted sequence
without noise’)
subplot(2,2,2)
stem(real(RDATAWN))
title(’Real part of the received sequence with noise’)
subplot(2,2,3)
stem(imag(TDATA))
title(’Imaginary part of the actually transmitted
sequence without noise’)
subplot(2,2,4)
stem(imag(RDATAWN))
title(’Imaginary part of the received sequence with
noise’)

figure
subplot(2,1,1)
stem(real(Tx))
title(’Real part of the transmitted sequence and
the corresponding detected sequence’)
hold on
stem(real(DDATA),’r’)
subplot(2,1,2)
stem(imag(Tx))
title(’Imaginary part of the transmitted sequence
and the corresponding detected sequence’)
hold on
stem(imag(DDATA),’r’)

3.6 Coherent Versus Non-coherent Receiver

Consider the FSK signal for illustration. In FSK, the binary symbols 0 and 1 are
represented using the signals S0.t/ and S1.t/ for the duration 0 to Tb:

S0.t/ D
p

.
2Eb

N0

/ cos.2� f1t/ (3.60)

S1.t/ D
p

.
2Eb

N0

/ cos.2� f2t/ (3.61)
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where f1 D ncC1
Tb

and f2 D ncC2
Tb

, Tb is the bit duration and nc is some integer. Thus
the FSK signal transmitted through the channel is modelled as y.t/ D St C n.t/ for
one bit duration, where St takes either S0.t/ or S1.t/ and n.t/ is the additive Gaussian
noise with mean zero and variance N0

2
. In the coherent detection, the received signal

y.t/ is multiplied with
p

. 2
N0

/ cos.2� f1t/ and integrated for the duration 0 to Tb to

obtain the random variable Y1 D X1 C N, where X1 takes the value
p

.Eb/ if S0.t/
is sent or 0 if S1.t/ is sent. Also N is the Gaussian random variable with mean 0 and
variance N0

2
. Similarly the received signal y.t/ is multiplied with

p
. 2

N0
/ cos.2� f2t/

and integrated for the duration 0 to Tb to obtain the random variable Y2 D X2 C N,
where X2 takes the value

p
.Eb/ if S1.t/ is sent or 0 if S0.t/ is sent. The transmitted

binary symbols are detected based on the sample values of the random variable
Y1 and Y2. In this technique, it is assumed that the phase difference between the
carrier frequency used in the transmitter and the receiver is zero. But in practice,
the carrier frequency generated in the local oscillator used in the receiver is having
the phase difference of  with that of the transmitted carrier frequencies. They are

represented as
p

Eb
No

cos.2� f1t C /. In this case, non-coherent detection is used to
detect the transmitted binary symbols as described below.

1. Multiply the received signal y.t/ with
p

. 2
N0

/ cos.2� f1t C/ and integrate for the
duration 0 to Tb to obtain the random variable Y11 D X11 C N, where X11 takes
the value

p
.Eb/ cos./ if S0.t/ is sent or 0 if S1.t/ is sent. Similarly multiply the

received signal y.t/ with
p

. 2
N0

/ sin.2� f1t C / and integrate for the duration 0

to Tb to obtain the random variable Y12 D X12 C N, where X12 takes the valuep
.Eb/ sin./ if S0.t/ is sent or 0 if S1.t/ is sent. We would like to get the term

independent of . Hence the resultant output is obtained as Z1 D
q

Y2
11 C Y2

12. In

this case, the random variable Z1 takes the value
p

Eb C R if S0.t/ is sent and R
if S1.t/ is sent. R is the Rayleigh-distributed random variable.

2. Similarly multiply the received signal y.t/ with
p

. 2
N0

/ cos.2� f2t C / and
integrate for the duration 0 to Tb to obtain the random variable Y21 D X21 C N,
where X21 takes the value

p
.Eb/ cos./ if S1.t/ is sent or 0 if S0.t/ is sent.

Similarly multiply the received signal y.t/ with
p

. 2
N0

/ sin.2� f2t/ C  and
integrate for the duration 0 to Tb to obtain the random variable Y22 D X22 C N,
where X22 takes the value

p
.Eb/sin./ if S1.t/ is sent or 0 if S0.t/ is sent.

We would like to get the term independent of . Hence the resultant output is

obtained as Z2 D
q

Y2
21 C Y2

22. In this case, the random variable Z2 takes the

value
p

Eb C R if S1.t/ is sent and R if S0.t/ is sent. R is the Rayleigh-distributed
random variable.

3. The transmitted binary symbol is detected based on the observation of the random
variable Z D Z1 � Z2. Decision is taken in favour of the symbol 0 if Z � 0.
Otherwise symbol 1 is decided.
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3.6.1 Computation of the Probability of Error
for the Non-coherent Detection

Let the conditional random variable Z1 and Z2 when 1 is sent are represented as Z1
1

and Z1
2 , respectively. Probability of error when the symbol 1 is sent (P1

e) is computed
as follows:

P1
e D P.Z1

1 � Z1
2/

D
Z 1

�1
P.Z1

1 � ˛/fZ1
2
.˛/d˛

From the above discussion, it is observed that Z1
1 is Rayleigh distributed with

probability density function as mentioned below:

fZ1
1
.x/ D 2x

N0

e�x2=N0 (3.62)

Thus P.Z1
1 � ˛/ is computed as follows:

P.Z1
1 � ˛/ D

Z 1

˛

fZ1
1
.x/dx

D e� ˛2

N0

As the detection (decision about the symbol transmitted) does not depend upon ,
probability of error is identical for all values of . For simplicity we consider  D 0.

We know Z2 D
q

Y2
21 C Y2

22. The random variable Z1
2 is the conditional random

variable Z2 when 1 is sent. This is equivalent to Y1
21 D p

Eb C N and Y1
22 D N.

Note that Y1
21 and Y1

22 are the conditional random variables Y21 and Y22, respectively,
when 1 is sent. It is also noted that

p D
Z

R
g.r/f .r/dr (3.63)

f .r/ is the density function of the random variable R and g.r/ is the arbitrary function
of r. Let g.r/ D k.x; y/. The probability p is computed as follows:

p D
Z

X

Z

Y
k.x; y/fxy.x; y/dxdy (3.64)

Using the above-mentioned property, we obtain the probability of error P1
e D

P.Z1
1 � Z1

2/ as follows. Let p D Y1
21 and q D Y1

21. p and q are Gaussian random
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variables with mean
p

Eb and 0, respectively. The variances of p and q are identical
and are equal to N0

2
.

P1
e D P.Z1

1 � Z1
2/ (3.65)

Z 1

�1
e� ˛2

N0 fZ1
2
.˛/d˛ (3.66)

D
Z 1

�1

Z 1

�1
e� p2

N0 e� q2

N0 e� .p�

p

Eb/2

N0 e� .q/2

N0 dpdq (3.67)

D 1

2
e

�Eb
2 (3.68)

3.6.2 Non-coherent Detection Using Matched Filter
and Envelope Detector

In this technique, the received signal is convolved with the matched filter 1 (matched
with the signal S0.t/ D p

. 2Eb
N0

/ cos.2� f1t/. It is followed by envelope detector to
sample the value at t D Tb. This is the alternative method to obtain the sample value
of the random variable Z1 as described above. Note that random variable Z1 takes
the value

p
Eb C R if S0.t/ is sent and R if S1.t/ is sent. R is the Rayleigh-distributed

random variable. Similarly the received signal is convolved with the matched filter
2 (matched with the signal S1.t/ D p

. 2Eb
N0

/ cos.2� f2t/. It is followed by envelope
detector to sample the value at t D Tb. This is the alternative method to obtain
the sample value of the random variable Z2 as described above. Note that random
variable Z2 takes the value

p
Eb C R if S1.t/ is sent and R if S0.t/ is sent. R is the

Rayleigh-distributed random variable. The transmitted binary symbol is detected
based on the observation of the random variable Z D Z1 � Z2. Decision is taken in
favour of the symbol 0 if Z � 0. Otherwise symbol 1 is decided (refer Figs. 3.32,
3.33, 3.34, 3.35).

%noncoherent.m
t=0:1/1000:1;
Eb=2;
Tb=1;
nc=1;
fc=nc/Tb;
f1=fc+(1/Tb);
f2=fc+(2/Tb);
CS1=[];
CS2=[];
TX=[];
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Fig. 3.33 (a) Received noisy FSK signal corresponding to symbol 0. (b) Impulse response of
the matched filter 1 (corresponding to symbol 0). (c) Output of the matched filter 1. (d) Impulse
response of the matched filter 2 (corresponding to symbol 1). (e) Output of the matched filter 2

BINSEQ=abs(round(rand(1,200)*2-1));
for m=1:1:200
if(BINSEQ(m)==0)
TX=[TX sqrt(2*Eb/Tb)*cos(2*pi*f1*t)];
else
TX=[TX sqrt(2*Eb/Tb)*cos(2*pi*f2*t)];
end
end
%Adding noise to the band pass signal
RX=TX+sqrt(40)*randn(1,length(TX));
figure
subplot(2,1,1)
plot(TX)
title(’FSK signal’)
subplot(2,1,2)
plot(RX)
title(’FSK with noise ’)
%Non-coherent detection using correlators
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Fig. 3.34 (a) Output of the bank of correlator receiver 1. (b) Output of the bank of correlator
receiver 2. (c) Scatter diagram of the typical received FSK (detected using correlators)

1000

1000

500

500

1500

1500

2000

2000

2500

0
0

2000
(1) (2) (3)

1800

1600

1400

1200

1000

800

600

400

200

200100
0

2000

1800

1600

1400

1200

1000

800

600

400

200

0
0 50 100 150 200 0

Fig. 3.35 (a) Sampled values of the envelope detector after subjected to matched filter 1.
(b) Sampled values of the envelope detector after subjected to matched filter 1. (c) Scatter diagram
of the typical received FSK (detected using matched filters, followed by envelope detectors)
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phase=2*pi*rand;
LO11=sqrt(2/Tb)*cos(2*pi*f1*t+phase);
LO12=sqrt(2/Tb)*sin(2*pi*f1*t+phase);
LO21=sqrt(2/Tb)*cos(2*pi*f2*t+phase);
LO22=sqrt(2/Tb)*sin(2*pi*f2*t+phase);
BINSEQDET=[];
for n=1:1:200

temp=RX([(n-1)*1001+1:1:(n-1)*1001+1001]);
S11=sum(temp.*LO11);
S12=sum(temp.*LO12);
CS1=[CS1 sqrt(S11^2+S12^2)];
S21=sum(temp.*LO21);
S22=sum(temp.*LO22);
CS2=[CS2 sqrt(S21^2+S22^2)];
if(CS1(n)>CS2(n))

BINSEQDET=[BINSEQDET 0];
else

BINSEQDET=[BINSEQDET 1];
end

end
figure
subplot(1,3,1)
stem(CS1)
title(’Output of the correlation receiver 1
(Non-coherent detection)’)
subplot(1,3,2)
stem(CS2)
title(’Output of the correlation receiver 2
(Non-coherent detection)’)
subplot(1,3,3)
scatter(CS1,CS2)
title(’Signal-space diagram for the received FSK
signal(Non-coherent detection)’);
figure
subplot(2,1,1)
stem(BINSEQ)
title(’Transmitted binary sequence’)
subplot(2,1,2)
stem(BINSEQDET,’r’)
title(’Received binary sequence (Non-coherent
detection)’)
%Non-coherent detection using matched filter and
envelopedetector
%Impulse response of the matched filter
ED1=[];
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ED2=[];
h1=sqrt(2/Tb)*cos(2*pi*f1*t+phase);
h1=h1(end:-1:1);
h2=sqrt(2/Tb)*cos(2*pi*f2*t+phase);
h2=h2(end:-1:1);
BINSEQDET=[];
for n=1:1:200

temp=RX([(n-1)*1001+1:1:(n-1)*1001+1001]);
S1=conv(temp,h1);
ED1=[ED1 abs(S1(1001))];
S2=conv(temp,h2);
ED2=[ED2 abs(S2(1001))];
if(ED1(n)>ED2(n))

BINSEQDET=[BINSEQDET 0];
else

BINSEQDET=[BINSEQDET 1];
end

end
figure
subplot(1,3,1)
stem(ED1)
title(’Output of the sampled version of the Envelope
detector (ED) 1’)
subplot(1,3,2)
stem(ED2)
title(’Output of the sampled version of the ED 2’)
subplot(1,3,3)
scatter(CS1,CS2)
title(’Signal-space diagram for the FSK signal
(Non-coherent detection using ED)’);
figure
subplot(2,1,1)
stem(BINSEQ)
title(’Transmitted binary sequence’)
subplot(2,1,2)
stem(BINSEQDET,’r’)
title(’Received binary sequence
(Non-coherent detection using ED’)

3.7 Code Division Multiple Access

Code Division Multiple Access is the method of sharing the channel based on
the unique codes assigned to the individual users. Let the base band QPSK signal
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corresponding to user 1 and user 2 are represented as s1.t/ and s2.t/, respectively.
Let s1.t/ and s2.t/ take values p.t/Cip.t/, p.t/�ip.t/, �p.t/Cip.t/ and �p.t/�ip.t/
to represent the dibits (1,1), (1,0), (0,1) and (0,0) for one symbol duration. Note that
p.t/ is the pulse with the duration 0 to Tb with amplitude A. The codes assigned
to the corresponding users are represented as c1.t/ and c2.t/, respectively. For
user 1, the signal transmitted is represented as s1.t/c1.t/. Similarly for user 2, the
signal transmitted is represented as s2.t/c2.t/. Thus the actual signal transmitted
through the channel is represented as y.t/ D s1.t/c1.t/ C s2c2.t/ C n.t/, where n.t/
is the additive complex white Gaussian noise (AWGN). The signal s1.t/ and s2.t/
are detected as follows. Multiplying the received signal y.t/ with c1.t/ and integrate
to obtain the following:

Z Tb

0

.s1.t/c1.t/ C s2c2.t/ C n.t//c1.t/dt (3.69)

D
Z Tb

0

c2
1.t/s1.t/dt C

Z Tb

0

s1.t/c1.t/c2.t/s1.t/dt C
Z Tb

0

n.t/c1.t/dt (3.70)

The codes c1.t/ and c2.t/ (orthogonal codes) are chosen such that the second term

Z Tb

0

s1.t/c1.t/c2.t/s1.t/dt D 0 (3.71)

is zero.
Thus the received random variable after taking integration is represented as Y D

˙KATb ˙ jKATb CN. Based on the sign of the real and imaginary components of Y ,
the actual dibits transmitted from the transmitter is detected. Note K is the constant
introduced due to the amplitude of the code. In practice, instead of orthogonal codes,
maximal generated uncorrelated PN sequences are also used as the codes assigned
to the individual users (Figs. 3.36, 3.37, 3.38, 3.39, 3.40).

%cdma.m
%Generating orthonormal codes
C=[1 1;-1 1];
for i=1:1:5

C=[C C;-C C];
end
C=C/8;
%Generating qpsk baseband signal
%64 samples of the code forms 1 bit duration
for i=1:1:64
R{i}=round(rand(1,10))*2-1;
I{i}=round(rand(1,10))*2-1;
end
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Fig. 3.37 Illustration of 64 orthogonal codes used in the CDMA

%CDMA base band signal (Spreading)
for i=1:1:64
UD{i}=[];
end
for k=1:1:64
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Fig. 3.38 Typical bandpass CDMA signal for 10 symbols with 64 users
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Fig. 3.39 Scatter plot of the base band CDMA signal (64 users) before despreading without
additive Gaussian noise
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Fig. 3.40 Scatter plot of the base band CDMA signal (64 users, with 10 instants from each user)
before despreading with additive Gaussian noise (variance D 0.1)

for i=1:1:10
UD{k}=[UD{k} (R{k}(i)+j*I{k}(i))*C(k,:)];
end
end
%Bandpass signal
BPSIGNAL=0;
fc=1;
t=0:0.01:1;
t=t(1:1:100);
for k=1:1:64
temp=[];

for l=1:1:640
temp=[temp real(UD{k}(l))*cos(2*pi*fc*t)-imag(UD{k}
(l))*sin(2*pi*fc*t)];

end
BPSIGNAL=BPSIGNAL+temp;
end
%Detecting complex base pass representation from
the received signal using
%coherent detection
DRE=[];
DI=[];
for i=1:1:640

temp=BPSIGNAL((i-1)*100+1:(i-1)*100+100);
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DRE=[DRE sum(temp.*cos(2*pi*fc*t))];
DI=[DI sum(temp.*sin(2*pi*fc*t))];

end
figure
scatter(DRE,DI)
title(’scatter diagram of the cdma signal of 64 users
without additive gaussian noise’)
%Adding gaussian noise
RBANDPASS=BPSIGNAL+sqrt(0.1)*randn(1,64000);
figure
subplot(2,1,1)
plot(BPSIGNAL)
title(’Band pass signal before adding noise’)
subplot(2,1,2)
plot(RBANDPASS)
title(’Band pass signal after adding noise’)
%Detecting complex base pass representation from
the received signal using
%coherent detection
NDRE=[];
NDI=[];
for i=1:1:640

temp=RBANDPASS((i-1)*100+1:(i-1)*100+100);
NDRE=[NDRE sum(temp.*cos(2*pi*fc*t))];
NDI=[NDI sum(temp.*sin(2*pi*fc*t))];

end
figure
scatter(NDRE,NDI)
title(’scatter diagram of the cdma signal of 64 users
with additive gaussian noise’)
RX=NDRE+j*NDI;
figure
%Despreading
for i=1:1:64
UDD{i}=[];
end
for k=1:1:64
for i=1:1:10
UDD{k}=[UDD{k} sum(RX((i-1)*64+1:1:(i-1)*64+64).

*C(k,:))];
end
subplot(8,8,k)
scatter(real(UDD{k}),imag(UDD{k}))
end
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figure
for i=1:1:64

subplot(8,8,i)
plot(C(i,:))
end

3.8 Diversity Techniques for Receiver

3.8.1 Spatial Diversity

In one of the spatial diversity technique, the input signal transmitted from the base
station is received using multiple antennas instead of single antenna (refer Fig. 3.42).
Assume the channel link between the transmitter and the receiver i is flat and is
having known channel coefficient hi. Let the channel matrix be represented as C D
Œh1 h2 h3 h4 h5�T . The output signal vector Y D Œy1 y2 y3 y4 y5�T at time instant n is
related to the input X at time instant n as Y D CXCN. N is the uncorrelated Gaussian
random vector. The zero-forcing estimation of the transmitted variable X is obtained

as OXwith diversity D .CHC/�1CHY D h�

1 y1Ch�

2 y2Ch�

3 y3Ch�

4 y4Ch�

5 y5

.jh1j2Cjh2j2Cjh3j2Cjh4j2Cjh5j2/
. Suppose the zero-

forcing estimation is done based on one received signal Y1 as OXwithout diversity D Y1

h1
.

The signal to noise ratio of the estimated signal is computed as follows (Fig. 3.41):

OXwith diversity D .jh1j2 C jh2j2 C jh3j2 C jh4j2 C jh5j2/x

.jh1j2 C jh2j2 C jh3j2 C jh4j2 C jh5j2/

C h�
1 n1 C h�

2 n2 C h�
3 n3 C h�

4 n4 C h�
5 n5

.jh1j2 C jh2j2 C jh3j2 C jh4j2 C jh5j2/

) SNRwith diversity D .jh1j2 C jh2j2 C jh3j2 C jh4j2 C jh5j2/�2
x

.�n/2

Signal to noise ratio without diversity (with single receiving antenna) is computed as

SNRwithout diversity D .jh1j2/�2
x

.�n/2
(3.72)

Thus the signal to noise ratio with spatial diversity is larger when compared with
signal to noise ratio without spatial diversity. This is illustrated in Figs. 3.43 and
3.44.

The estimation of the random variable X using h�

1 y1Ch�

2 y2Ch�

3 y3Ch�

4 y4Ch�

5 y5

.jh1j2Cjh2j2Cjh3j2Cjh4j2Cjh5j2/

involves maximal-ratio combining. Let us represent hi D jhij†hi. If jhij is
assumed constant (say 1), the estimation of the random variable X ends up with
e�j†h1 y1Ce�j†h2 y2Ce�j†h3 y3Ce�†h4 y4Ce�†h5 y5

5
. This is known as equal gain combining.

The phase of the channel co-efficient varies slowly with time and hence equal gain
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Fig. 3.41 Scatter plot of the detected base band for 64 users (with 10 samples from each user)
after despreading. Less than four clusters in some of the subplots implies that the corresponding
user data do not have all the four varieties

combining helps to increase the time interval between two consecutive estimation
of the channel co-efficient. In the third technique, we choose the estimation Yi

hi
that

has maximum signal to noise ratio. This is known as selection combining

%spatialdiversity.m
%Generation of pilot signals
LEN=100;
x=(round(rand(1,LEN))*2-1) +j*(round(rand(1,LEN))

*2-1);
for i=1:1:5
h(i)=sqrt(0.1)*randn+j*sqrt(0.1)*randn;
end
h=transpose(h);
%received signal
for k=1:1:length(x)

s=[];
for i=1:1:5
s=[s x(k)*h(i)+sqrt(0.005)*randn+j*sqrt(0.005)*randn];
end
y{k}=s;
end
y1=transpose(cell2mat(transpose(y)));
%Estimation of the input signal
for k=1:1:LEN
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Fig. 3.42 Illustration of
spatial diversity

X
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y3

y2

y1

Fig. 3.43 Demonstration of spatial diversity showing the actual and the estimated real parts of the
transmitted base band sequence

xest(k)=pinv(h’*h)*h’*transpose(y{k});
end
figure
plot(real(xest)/sum(real(xest)),’m’)
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Fig. 3.44 Demonstration of spatial diversity showing the actual and the estimated imaginary parts
of the transmitted base band sequence

hold on
plot(real(y1(1,:)./h(1))/sum(real(y1(1,:)./h(1))),’r’)
plot(real(x)/sum(real(x)),’b’)
figure
plot(imag(xest),’m’)
hold on
plot(imag(y1(2,:)./h(2)’),’r’)
plot(imag(x),’b’)

3.8.2 Time Diversity

Consider the flat fading Rayleigh-distributed time-varying channel with channel co-
efficient represented as h. Suppose the binary data (to be transmitted through the
channel) 0 and 1 are represented as ŒA 0� and Œ0 A�, respectively. If the binary level
0 is sent we get ŒAh 0� C ŒN1 N2� as the two consecutive samples. Note that N1 and
N2 are the two independent complex Gaussian random variables associated with
noise. Similarly when the binary level 1 is sent, we get Œ0 Ah� C ŒN1 N2� as the
two consecutive samples. Let the two consecutive samples of the received signal be
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Fig. 3.45 Demonstration of detection of binary sequence with time-varying Rayleigh channel
(order 2), showing a detection rate of 75 %

represented as Y1 and Y2. By intuition, we understand that if jY1j2 � jY2j2, decision
is done in favour of 0, else 1 is decided.

Suppose that the channel is frequency selective and let us assume two-tap time-
varying Rayleigh-distributed channel. Consider the impulse response of the time-
varying base band channel represented as the complex random variables which are
represented as h1 and h2, respectively. The absolute values of the coefficients h1

and h2 are assumed to be Rayleigh distributed. If the binary data to be transmitted
through the channel assume a similar pattern as discussed earlier, i.e ŒA 0� for 0

and Œ0 A� for 1, then samples are subjected to Inter Symbol Interference. This is
circumvented using time diversity by representing the binary data 0 as ŒA 0 0 0� and
1 as Œ0 0 A 0�.

Consider the binary sequence Œ0 0 1 1 0� to be transmitted through the channel.
The corresponding received sequence is obtained as follows:
ŒAh1 Ah2 0 0 Ah1 Ah2 0 0 0 0 Ah1 Ah2 0 0 Ah1 Ah2 Ah1 Ah2 0 0 0� C N where N is
the complex Gaussian distributed noise vector. The decision on the first bit is done
based on the observation of the first four received samples. Let the first four received
samples be represented as ŒR1 R2 R3 R4�. If R2

1 C R2
2 > R2

3 C R2
4, decide in favour of

0 or decide in favour of 1. Similarly the next four samples decide the next bit and so
on. This helps to improve the detection rate (refer Figs. 3.45 and 3.46).

%timediversitydemo.m
%Binary data generation
DATA=round(rand(1,40))*2-1;
%time varying impulse response
TX=[];
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Fig. 3.46 Demonstration of detection of binary sequence with time-varying Rayleigh channel
(order 2) using time-diversity, showing a detection rate of 100 %

RX=[];
A=100;
TIMEVARYINGCHANNEL_TAP1=sqrt(0.001)*randn(1,4*length
(DATA)+1)+...
j*sqrt(0.001)*randn(1,4*length(DATA)+1);
TIMEVARYINGCHANNEL_TAP2=sqrt(0.1)*randn(1,4*length
(DATA)+1)+...
j*sqrt(0.1)*randn(1,4*length(DATA)+1);
NOISE=sqrt(0.01)*randn(1,4*length(DATA)+1)+...
j*sqrt(0.01)*randn(1,4*length(DATA)+1);
for k=1:1:length(DATA)
if(DATA(k)==1)

temp=[A 0];
TX=[TX temp];

else
temp=[0 A];
TX=[TX temp];

end
end
TX=[0 TX];
for k=2:1:length(TX)
tempr=TX(k)*TIMEVARYINGCHANNEL_TAP2(k)+...
TX(k-1)*TIMEVARYINGCHANNEL_TAP1(k)+NOISE(k);
RX=[RX tempr];
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end
DETECTDATA=[];
for m=1:2:length(RX)

if(abs((RX(m)^2)>abs(RX(m+1)^2)))
DETECTDATA=[DETECTDATA 1];

else
DETECTDATA=[DETECTDATA -1];
end
end
figure
subplot(2,2,1)
stem(DATA)
title(’Input data’)
subplot(2,2,2)
stem(abs(TX.^2))
title(’Transmitted data’)
subplot(2,2,3)
stem(abs(RX.^2))
title(’Received data’)
subplot(2,2,4)
stem(DETECTDATA)
title(’Detected data without time-diversity’)
DETECTIONRATE_WITHOUTTD=(length(find(
(DATA-DETECTDATA)==0))/
length(DATA))*100
TX=[];
RX=[];
for k=1:1:length(DATA)
if(DATA(k)==1)

temp=[A 0 0 0];
TX=[TX temp];

else
temp=[0 0 A 0];
TX=[TX temp];

end
end
TX=[0 TX];
for k=2:1:length(TX)
tempr=TX(k)*TIMEVARYINGCHANNEL_TAP2(k)+TX(k-1)*
TIMEVARYINGCHANNEL_TAP1(k)...
+NOISE(k);
RX=[RX tempr];
end
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DETECTDATA=[];
for m=1:4:length(RX)

if((abs(RX(m)^2)+abs(RX(m+1)^2))>=(abs(RX(m+2)^2)
+abs(RX(m+3)^2)))

DETECTDATA=[DETECTDATA 1];
else

DETECTDATA=[DETECTDATA -1];
end
end
figure
subplot(2,2,1)
stem(DATA)
title(’Input data’)
subplot(2,2,2)
stem(abs(TX.^2))
title(’Transmitted data’)
subplot(2,2,3)
stem(abs(RX.^2))
title(’Received data’)
subplot(2,2,4)
stem(DETECTDATA)
title(’Detected data using time-diversity’)
DETECTIONRATE_WITHTD=(length(find((DATA-
DETECTDATA)==0))/length(DATA))*100
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