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Time lives inside us and we live inside Time.

Vasil Levski-Apostola (1837–1873)
Bulgarian Educator and Revolutionary



To my mother Kapka Nikolova
Mankova-Kasabova (1920–2012) and my
father Kiril Ivanov Kasabov (1914–1996),
who gave me the light of life, and for those
who came earlier in time; to my family,
Diana, Kapka and Assia, who give me the
light of love; and to those who will come later
in time; I hope they will enjoy the light of life
and the light of love as much as I do.



Foreword

Professor Furber is ICL Professor of Computer Engineering in the School of
Computer Science at the University of Manchester, UK. After completing his
education at the University of Cambridge (BA, MA, MMath, Ph.D.), he spent the
1980s at Acorn Computers, where he was a principal designer of the BBC Micro
and the ARM 32-bit RISC microprocessor. As of 2018, over 120 billion variants
of the ARM processor have been manufactured, powering much of the world’s
mobile computing and embedded systems. He pioneered the development of
SpiNNaker, a neuromorphic computer architecture that enables the implementation
of massively parallel spiking neural network systems with a wide range of
applications.

The last decade has seen an explosion in the deployment of artificial neural
networks for machine learning applications ranging from consumer speech recog-
nition systems through to vision systems for autonomous vehicles. These artificial
neural systems differ from biological neural systems in many important aspects, but
most notably in their use of neurons with continuously varying outputs where
biology predominantly uses spiking neurons—neurons that emit a pure
electro-chemical unit impulse in response to recognising an input pattern. The
continuous output of the artificial neuron can be thought of as representing the
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mean firing rate of its biological equivalent, but in using rates rather than spikes, the
artificial network loses the ability to access the detailed spatio-temporal information
that can be conveyed in a time sequence of spikes. Biological systems can clearly
access this information, but how they use it effectively remains a mystery to
science.

Nik Kasabov has done as much as anyone to begin to unlock the secrets of the
biological spatio-temporal patterns of spikes, and in this book, he reveals what he
has learnt about those secrets and how he has applied that knowledge in exciting
new ways. This is deep knowledge, and if we can harness such knowledge in
brain-inspired AI systems, then the explosion in AI witnessed over the last decade
will look like a damp squib in comparison with what is to follow. This book is not
just a record of past work, but also a guidebook for an exciting future!

Steve Furber
CBE, FRS, FREng

Computer Science Department
University of Manchester, UK
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Preface

Everything exists and evolves within time–space and time–space is within every-
thing, from a molecule to the universe. Understanding the complex relationship
between time and space has been one of the biggest scientific challenges of all
times, including the understanding and modelling the time–space information
processes in the human brain and understanding life. This is the strive for deep
knowledge that has always been the main goal of the human race.

Now that an enormous amount of time–space data is available, science needs
new methods to deal with the complexity of such data across domain areas. Risk
mitigation strategies from health to civil defence often depend on simple models.
But recent advances in machine learning offer the intriguing possibility that dis-
astrous events, as diverse as strokes, earthquakes, financial market crises, or
degenerative brain diseases, could be predicted early if the patterns hidden deeply in
the intricate and complex interactions between spatial and temporal components
could be understood. Although such interactions are manifested at different spatial
or temporal scales in different applications or domain areas, the same information-
processing principles may be applied.

A radically new approach to modelling such data and to obtaining deep
knowledge is needed that could enable the creation of faster and significantly better
machine learning and pattern recognition systems, offering the realistic prospect of
much more accurate and earlier event prediction, and a better understanding of
causal time–space relationships.

The term time–space coined in this book has two meanings:

– The problem space, where temporal processes evolve in time;
– The functional space of time, as it goes by.

This book looks at evolving processes in time–space. It talks about how deep
learning of time–space data is achieved in the human brain and how this results in
deep knowledge, which is taken as inspiration to develop methods and systems for
deep learning and deep knowledge representation in spiking neural networks
(SNN). And furthermore, how this could be used to develop a new type of artificial
intelligence (AI) systems, here called brain-inspired AI (BI-AI). In turn, these BI-AI

xi



systems can help us understand better the human brain and the universe and for us
to gain new deep knowledge.

BI-AI systems adopt structures and methods from the human brain to intelli-
gently learn time–space data. BI-AI systems have six main distinctive features:

(1) They have their structures and functionality inspired by the human brain; they
consist of spatially located neurons that create connections between them
through deep learning in time–space by exchanging information—spikes. They
are built of spiking neural networks (SNNs), as explained in Chaps. 4–6 in the
book.

(2) Being brain-inspired, BI-AI systems can achieve not only deep learning, but
deep knowledge representation in time–space.

(3) They can manifest cognitive behaviour.
(4) They can be used for knowledge transfer between humans and machines as a

foundation for the creation of symbiosis between humans and machines, ulti-
mately leading to the integration of human intelligence and artificial intelli-
gence (HI+AI) as discussed in the last chapter of the book.

(5) BI-AI systems are universal data learning machines, being superior to tradi-
tional machine learning techniques when dealing with time–space data.

(6) BI-AI systems can help us understand, protect and cure the human brain.

At the more technical level, the book presents background knowledge, new
generic methods for SNN, evolving SNN (eSNN) and brain-inspired SNN
(BI-SNN) and new specific methods for the creation of BI-AI systems for mod-
elling and analysis of time–space data across applications.

I strongly believe that progress in information sciences is mostly an evolutionary
process, that is, building up on what has already been created. In order to under-
stand the principles of deep learning and deep knowledge, SNN and BI-AI, to
properly apply them to solve problems, one needs to know some basic science
principles established in the past, such as epistemology by Aristotle, perceptron by
Rosenblatt, multilayer perceptron by Rumelhart, Amari, Werbos and others,
self-organising maps by Kohonen, fuzzy logic by Zadeh, quantum principles by
Einstein and Rutherford, von Neumann computing and Atanassoff ABC machine
and of course the human brain. All these principles are briefly covered in the book,
giving a proper foundation for a better understanding of SNN and BI-AI and how
they can be used to understand the time–space puzzles of nature and life and to gain
new, deep knowledge.

I have been lucky to meet and talk with some of the pioneers in the fields, such
as Shun-ichi Amari, Teuvo Kohonen, Walter Freeman, John Taylor, Lotfi Zadeh,
Takeshi Yamakawa, Steve Grossberg, John Andreae, Janus Kacprzyk, Steve
Furber, to mention only few of them, who gave me inspiration to go deep in this
research. My humble view is that we should not forget our pioneers and teachers
who gave us the light of knowledge.
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Some of the new methods presented in the book are developed by the author and
have already appeared partially in various publications in collaboration with my
students and colleagues in the period 2005–2018. I would like to acknowledge the
contribution of my colleagues and postdoctoral fellows Lubica Benuskova, Michail
Defoin-Platel, Enmei Tu, Zeng-Guang Hou and his students Nelson and James, Jie
Yang and his students Lei Zhou and Chengie Gu, Giacomo Indiveri, Qun Song,
Paul Pang, Israel Espinosa, Weiqi Yan, Denise Taylor, Grace Wang, Valery Feigin,
Rita Krishnamurthi, Carlo Morabito, Nadia Mammone, Veselka Boeva, Marley
Vellasco, Andreas Koenig, Mario Fedrizzi, Plamen Angelov, Dimitar Filev, Petia
Georgieva, Georgi Bijev, Petia Koprinkova, Chrisina Jayne, Seiichi Ozawa, Cesare
Alippi, and many others.

I was privileged to have a large number of Ph.D. students in this period who also
contributed to publications used in this book. I acknowledge the contribution of my
Ph.D. students Maryam Doborjeh, Neelava Sengupta, Zohre Doborjeh, Anne
Abbott, Kaushalya Kumarasinghe, Akshay Gollohalli, Clarence Tan, Vinita Kumar,
Wei Cui, Vivienne Breen, Fahad Alvi, Reggio Hartono, Elisa Capecci, Nathan
Scott, Norhanifah Murli, Muhaini Othman, Paul Davidson, Kshitij Dhoble,
Nuttapod Nuntalid, Linda Liang, Haza Nuzly, Maggie Ma, Gary Chen, Harya
Widiputra, Raphael Hu, Stefan Schliebs, Anju Verma, Peter Hwang, Snejana Soltic,
Vishal Jain, Simei Wysosky, Liang Goh, Raphael Hu, Gary Chen and others.
Special acknowledgement to Helena Bahrami who helped me with the references
and the formatting of each of the 22 chapters.

During my long-time work on various topics included in this book and during
the writing of the book, I have received a tremendous support and help from my
wife Diana and my daughters Kapka and Assia. I thank them and love them!

I did some work on SNN while on a visiting professorship, funded by EU Funding
named after the great scientistMaria Salomea Skłodowska-Curie (b.1867–d.1934).
My fellowship was hosted by the Institute for Neuroinformatics (INI) at ETH and
University of Zurich, working in collaboration with Giacomo Indiveri. I am grateful
for this wonderful opportunity named after a remarkable scientist.

I did all the work on the book while maintaining my research, teaching and
administrative duties at Auckland University of Technology (AUT). I acknowledge
the generous funding and support I have received from this vibrant University since
my appointment in 2002, and still continuing. As the Founding Director of the
Knowledge Engineering and Discovery Research Institute (KEDRI) at AUT for 16
years now, that allowed me to take a leadership in research, I have been helped
tremendously by the KEDRI Administrative Manager Joyce D’Mello.
I acknowledge the support and the excellent work by the team of the Springer
Series of Bio- and Neurosystems—the series editorial manager Leontina, and also
Arun Kumar, Sabine and the whole team involved in this series.
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If I have to summarise the philosophy of this book in one sentence as a moto, I
would say:

Inspired by the oneness in nature in time–space, we aim to achieve oneness in
data modelling using brain-inspired computation.

August 2018 Nikola K. Kasabov
Fellow IEEE, Fellow RSNZ,

Fellow IITP NZ, DVF RAE UK

Director
Knowledge Engineering and Discovery

Research Institute (KEDRI)
Auckland University of Technology

Auckland, New Zealand

xiv Preface



About the Book Content by Topics and Chapters
and The Pathway of Knowledge

Foundations              ECOS and SNN methods         Applications             Future directions 

Brain 
information 
processing
(Chapter 3)

Molecular 
information 
processing
(Chapter 15)

Evolutionary 
Computation (EC)
(Chapter 7)

Bioinformatics 
data modelling 
(Chapters 15,17)

Deep learning and 
deep knowledge 
from brain data 
(EEG, fMRI, DTI)
(Chapters 8–11)

ANN and ECOS 
computational 
methods 
(Chapter 2) 

Evolving processes and 
their representation as 
data, information and 
knowledge (Chapter 1)

SNN methods 
(Chapter 4)

Quantum 
inspired 
computation 
(Chapters 7, 22) 

SNN, eSNN, BI-
SNN parameter 
optimisation with EC 
(Chapter 7)

Brain-Computer 
Interfaces with BI-
SNN
(Chapter 14)

Audio- and visual 
information 
processing
(Chapters 12, 13)

SNN for 
neuroinformatics 
and personalised 
modelling 
(Chapters 16, 18)

Affective 
computation  
(Chapters 9, 14)

Neuromorphic 
systems 
(Chapter 20)

Predictive 
modelling in 
ecology 
(Chapter 19)
(Chapter 15)

New spike-time 
information 
theory for data 
compression
(Chapter 21)

Information 
theory 
(Chapters 1, 21) 

Computational 
architectures 
(Chapter 20)

Evolving SNN 
(eSNN) 
(Chapter 5)

Brain-inspired SNN 
(BI-SNN) and the 
design of BI-AI 
(Chapter 6)

Predictive 
modelling in 
transport 
(Chapter 19)

Predictive 
modelling in 
environment 
(Chapter 19)

Integrated 
quantum-
neurogenetic-
brain- inspired 
models   
(Chapter 22)

Towards 
Integrated Human 
Intelligence and 
Artificial 
Intelligence 
(HI+AI)
(Chapter 22)

xv



Contents

Part I Time-Space and AI. Artificial Neural Networks

1 Evolving Processes in Time-Space. Deep Learning and Deep
Knowledge Representation in Time-Space. Brain-Inspired AI . . . . 3
1.1 Evolving Processes in Time-Space . . . . . . . . . . . . . . . . . . . . . . 3

1.1.1 What Are Evolving Processes? . . . . . . . . . . . . . . . . . . 4
1.1.2 Evolving Processes in Living Organisms . . . . . . . . . . . 5
1.1.3 Spatio-temporal and Spectro-temporal Evolving

Processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.2 Characteristics of Evolving Processes: Frequency, Energy,

Probability, Entropy and Information . . . . . . . . . . . . . . . . . . . . 9
1.3 Light and Sound . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
1.4 Evolving Processes in Time-Space and Direction . . . . . . . . . . . 18
1.5 From Data and Information to Knowledge . . . . . . . . . . . . . . . . 19
1.6 Deep Learning and Deep Knowledge Representation

in Time-Space. How Deep? . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
1.6.1 Defining Deep Knowledge in Time-Space . . . . . . . . . . 22
1.6.2 How Deep? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
1.6.3 Examples of Deep Knowledge Representation

in This Book . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
1.7 Statistical, Computational Modelling of Evolving Processes . . . 26

1.7.1 Statistical Methods for Computational Modelling . . . . . 27
1.7.2 Global, Local and Transductive (“Personalised”)

Modelling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
1.7.3 Model Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

1.8 Brain-Inspired AI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
1.9 Chapter Summary and Further Readings for Deeper

Knowledge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

xvii



2 Artificial Neural Networks. Evolving Connectionist
Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
2.1 Classical Artificial Neural Networks: SOM, MLP,

CNN, RNN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
2.1.1 Unsupervised Learning in Neural Networks.

Self-organising Maps (SOM). . . . . . . . . . . . . . . . . . . . 40
2.1.2 Supervised Learning in ANN. Multilayer

Perceptron and the Back Propagation Algorithm . . . . . 44
2.1.3 Convolutional Neural Networks (CNN) . . . . . . . . . . . . 48
2.1.4 Recurrent and LSTM ANN . . . . . . . . . . . . . . . . . . . . . 49

2.2 Hybrid and Knowledge-Based ANN . . . . . . . . . . . . . . . . . . . . 50
2.3 Evolving Connectionist Systems (ECOS) . . . . . . . . . . . . . . . . . 52

2.3.1 Principles of ECOS . . . . . . . . . . . . . . . . . . . . . . . . . . 52
2.3.2 Evolving Self-organising Maps . . . . . . . . . . . . . . . . . . 53
2.3.3 Evolving MLP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

2.4 Evolving Fuzzy Neural Networks. EFuNN . . . . . . . . . . . . . . . . 60
2.5 Dynamic Evolving Neuro-fuzzy Inference

Systems—DENFIS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
2.6 Other ECOS Methods and Systems . . . . . . . . . . . . . . . . . . . . . 75
2.7 Chapter Summary and Further Readings for Deeper

Knowledge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

Part II The Human Brain

3 Deep Learning and Deep Knowledge Representation
in the Human Brain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
3.1 Time-Space in the Brain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
3.2 Learning and Memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
3.3 Neural Representation of Information . . . . . . . . . . . . . . . . . . . . 95
3.4 Perception in the Brain Is Always Spatio/Spectro-temporal . . . . 97
3.5 Deep Learning and Deep Knowledge Representation

in Time-Space in the Brain . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
3.6 Information and Signal Processing in Neurons

and in the Brain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
3.6.1 Information Coding . . . . . . . . . . . . . . . . . . . . . . . . . . 107
3.6.2 Molecular Basis of Information Processing . . . . . . . . . 109

3.7 Measuring Brain Activities as Spatio/Spectro-temporal
Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
3.7.1 General Notions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
3.7.2 Electroencephalogram (EEG) Data . . . . . . . . . . . . . . . 113
3.7.3 MEG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

xviii Contents



3.7.4 CT and PET . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
3.7.5 fMRI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

3.8 Chapter Summary and Further Readings for Deeper
Knowledge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

Part III Spiking Neural Networks

4 Methods of Spiking Neural Networks . . . . . . . . . . . . . . . . . . . . . . . 127
4.1 Information Representation as Spikes. Spike Encoding

Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
4.1.1 Rate Versus Spike Time Information

Representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
4.1.2 Spike Encoding Algorithms . . . . . . . . . . . . . . . . . . . . 129

4.2 Spiking Neuron Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
4.2.1 Hodgkin-Huxley Model (HHM) . . . . . . . . . . . . . . . . . 137
4.2.2 Leaky Integrate-and-Fire Model (LIFM) . . . . . . . . . . . 138
4.2.3 Izhikevich Model (IM) . . . . . . . . . . . . . . . . . . . . . . . . 140
4.2.4 Spike Response Model (SRM) . . . . . . . . . . . . . . . . . . 140
4.2.5 Thorpe’s Model (TM) . . . . . . . . . . . . . . . . . . . . . . . . . 142
4.2.6 Probabilistic and Stochastic Spiking

Neuron Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
4.2.7 Probabilistic Neurogenetic Model of a Neuron . . . . . . . 143

4.3 Methods for Learning in SNN . . . . . . . . . . . . . . . . . . . . . . . . . 145
4.3.1 SpikeProp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
4.3.2 Spike-Time Dependent Plasticity (STDP) . . . . . . . . . . . 147
4.3.3 Spike-Driven Synaptic Plasticity (SDSP) . . . . . . . . . . . 149
4.3.4 Rank Order (RO) Learning Rule . . . . . . . . . . . . . . . . . 149
4.3.5 Learning in Dynamic Synapses . . . . . . . . . . . . . . . . . . 150

4.4 Spike Pattern Association Neurons and Neural Networks . . . . . 151
4.4.1 Principles of Spike Pattern Association Learning.

The SPAN Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
4.4.2 Case Study Examples . . . . . . . . . . . . . . . . . . . . . . . . . 155
4.4.3 Memory Capacity of SPAN . . . . . . . . . . . . . . . . . . . . 158
4.4.4 SPAN for Classification Problems . . . . . . . . . . . . . . . . 160

4.5 Why Use SNN? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162
4.6 Summary and Further Readings for Deeper Knowledge . . . . . . 163
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

5 Evolving Spiking Neural Networks . . . . . . . . . . . . . . . . . . . . . . . . . 169
5.1 Principles and Methods of Evolving SNN (ESNN) . . . . . . . . . . 169
5.2 Convolutional ESNN (CeSNN) . . . . . . . . . . . . . . . . . . . . . . . . 175
5.3 Dynamic Evolving SNN (DeSNN) . . . . . . . . . . . . . . . . . . . . . . 179
5.4 Fuzzy Rule Extraction from ESNN . . . . . . . . . . . . . . . . . . . . . 183

Contents xix



5.4.1 Fuzzy Rule Extraction from ESNN . . . . . . . . . . . . . . . 183
5.4.2 A Case Study of Fuzzy Rule Extraction

from Water Tastant Sensory Data . . . . . . . . . . . . . . . . 188
5.5 Evolving SNN for Reservoir Computing . . . . . . . . . . . . . . . . . 193

5.5.1 Reservoir Architectures. Liquid State
Machines (LSM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193

5.5.2 ESNN/DeSNN as Classification/Regression
Systems for Reservoir Architectures . . . . . . . . . . . . . . 195

5.6 Chapter Summary and Further Readings for Deeper
Knowledge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198

6 Brain-Inspired SNN for Deep Learning in Time-Space and Deep
Knowledge Representation. NeuCube . . . . . . . . . . . . . . . . . . . . . . . 201
6.1 Brain Inspired SNN (BI-SNN). The BI-SNN NeuCube

as a Generic Spatio-temporal Data Machine . . . . . . . . . . . . . . . 201
6.1.1 A General Architecture of a BI-SNN . . . . . . . . . . . . . . 201
6.1.2 The BI-SNN NeuCube as a Generic Spatio-temporal

Data Machine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203
6.1.3 Mapping Input Temporal Variables into a 3D

SNNcube Based on Graph Matching Optimisation
Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211

6.2 Deep Learning in Time-Space and Deep Knowledge
Representation in NeuCube . . . . . . . . . . . . . . . . . . . . . . . . . . . 217
6.2.1 Deep Unsupervised Learning in Time-Space and

Deep Knowledge Representation from Temporal
or Spatio/Spectro Temporal Data (TSTD) . . . . . . . . . . 217

6.2.2 Deep Supervised Learning in Time-Space . . . . . . . . . . 220
6.2.3 Deep Learning in Time-Space for Predictive

Modelling in NeuCube. The EPUSSS Algorithm . . . . . 221
6.3 Modelling Time in NeuCube: The Past, the Present,

the Future,… and Back to the Past . . . . . . . . . . . . . . . . . . . . . 226
6.3.1 Event-Based Modelling. External Versus Internal

Time. Past-, Present- and Future Time . . . . . . . . . . . . . 226
6.3.2 Tracing Events Back in Time . . . . . . . . . . . . . . . . . . . 227

6.4 A Design Methodology for Application Oriented
Spatio-temporal Data Machines . . . . . . . . . . . . . . . . . . . . . . . . 227
6.4.1 Design Methodology for Implementing Application

Oriented Spatio-temporal Data Machines
as BI-AI Systems in NeuCube . . . . . . . . . . . . . . . . . . 229

6.4.2 Input Data Encoding . . . . . . . . . . . . . . . . . . . . . . . . . . 230
6.4.3 Spatial Mapping of Input Variables . . . . . . . . . . . . . . . 232
6.4.4 Unsupervised Training of the SNNcube . . . . . . . . . . . . 233

xx Contents



6.4.5 Supervised Training and Classification/Regression of
Dynamic Spiking Patterns of the SNNcube in a SNN
Classifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233

6.4.6 3D Visualisation of the SNNcube . . . . . . . . . . . . . . . . 234
6.4.7 Optimisation of NeuCube Structure

and Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235
6.4.8 Model Interpretation, Rule Extraction,

Deep in Time-Space Knowledge Representation . . . . . . 236
6.5 Case Studies of the Design and Implementation of

Classification and Regression Spatio-temporal
Data Machines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 236
6.5.1 A Case Study on the Design of a Classification

Spatio-temporal Data Machine in NeuCube . . . . . . . . . 237
6.5.2 A Case Study on the Design a Regression/Prediction

Spatio-temporal Data Machine in NeuCube . . . . . . . . . 237
6.6 Chapter Summary and Further Readings for Deeper

Knowledge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 238
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 242

7 Evolutionary- and Quantum-Inspired Computation. Applications
for SNN Optimisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245
7.1 Principles of Evolution and Methods of Evolutionary

Computation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 246
7.1.1 The Origin and the Evolution of Life . . . . . . . . . . . . . 246
7.1.2 Methods of Evolutionary Computation (EC) . . . . . . . . 247
7.1.3 Genetic Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . 249
7.1.4 Evolutionary Strategies (ES) . . . . . . . . . . . . . . . . . . . . 251
7.1.5 Particle Swarm Optimisation . . . . . . . . . . . . . . . . . . . . 252
7.1.6 Estimation of Distribution Algorithms (EDA) . . . . . . . . 254
7.1.7 Artificial Life Systems . . . . . . . . . . . . . . . . . . . . . . . . 255

7.2 Quantum Inspired Evolutionary Computation: Methods and
Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 256
7.2.1 Principles of Quantum Information Processing . . . . . . . 256
7.2.2 Principles of Quantum Inspired Evolutionary

Algorithms (QEA) . . . . . . . . . . . . . . . . . . . . . . . . . . . 259
7.2.3 Quantum Inspired Evolutionary Algorithm (QiEA) . . . . 259
7.2.4 Versatile QiEA (VQiEA) . . . . . . . . . . . . . . . . . . . . . . 262
7.2.5 Extension of the VQiEA to Deal with Continuous

Value Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 265
7.3 Quantum Inspired Evolutionary Computation for the

Optimisation of SNN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 268
7.3.1 A Quantum-Inspired Representation of a SNN . . . . . . . 268
7.3.2 Application of QiEA for the Optimisation

of ESNN Classifier on Ecological Data . . . . . . . . . . . . 271

Contents xxi



7.3.3 Integrative Computational Neuro Genetic Model
(CNGM) Utilising Quantum-Inspired
Representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 272

7.4 Quantum Inspired Particle Swarm Optimisation . . . . . . . . . . . . 274
7.4.1 Quantum Inspired Particle Swarm Optimisation

Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 274
7.4.2 Quantum Inspired Particle Swarm Optimisation

Algorithm (QiPSO) for the Optimisation of ESNN . . . . 275
7.4.3 Dynamic QiPSO. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 277
7.4.4 Application of DQiPSO for Feature Selection and

Model Optimisation . . . . . . . . . . . . . . . . . . . . . . . . . . 278
7.5 Chapter Summary and Further Readings for Deeper

Knowledge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 282
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 285

Part IV Deep Learning and Deep Knowledge Representation of
Brain Data

8 Deep Learning and Deep Knowledge Representation
of EEG Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 291
8.1 Time-Space Brain Data. EEG Data . . . . . . . . . . . . . . . . . . . . . 291

8.1.1 Spatio-temporal Brain Data . . . . . . . . . . . . . . . . . . . . . 291
8.1.2 Brain Atlases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 292
8.1.3 EEG Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 295

8.2 Deep Learning and Deep Knowledge Representation
of EEG Data in BI-SNN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 300

8.3 Deep Learning, Recognition and Modelling of Cognitive
Tasks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 306
8.3.1 System Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 306
8.3.2 Case Study Cognitive EEG Data . . . . . . . . . . . . . . . . . 309
8.3.3 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . 309
8.3.4 Model Interpretation . . . . . . . . . . . . . . . . . . . . . . . . . . 311

8.4 Deep Learning, Recognition and Expression of Emotions
in a BI-SNN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 312
8.4.1 General Notions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 312
8.4.2 Using a NeuCube Model for Emotion Recognition . . . . 313
8.4.3 A Case Study of EEG Data for Emotion Recognition

from Facial Expression . . . . . . . . . . . . . . . . . . . . . . . . 314
8.4.4 Analysis of the Connectivity in a Trained SNNcube

When a Person Is Perceiving Emotional Face and
When a Person Is Expressing Such Emotions . . . . . . . . 314

8.4.5 Can We Teach a Machine to Express Emotions? . . . . . 317
8.5 Deep Learning and Modelling of Peri-perceptual Processes

in BI-SNN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 317

xxii Contents



8.5.1 The Psychology of Sub-conscious Brain Processes . . . . 318
8.5.2 Experimental Setting and EEG Data Collection . . . . . . 319
8.5.3 The Design of a NeuCube Model . . . . . . . . . . . . . . . . 321

8.6 Modelling Attentional Bias in BI-SNN . . . . . . . . . . . . . . . . . . . 328
8.6.1 Attentional Bias . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 328
8.6.2 Experimental Settings . . . . . . . . . . . . . . . . . . . . . . . . . 328
8.6.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 328

8.7 Chapter Summary and Further Readings for Deeper
Knowledge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 330

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 333

9 Brain Disease Diagnosis and Prognosis Based on EEG Data . . . . . 339
9.1 SNN for Modelling EEG Data to Assess a Potential

Progression from MCI to AD . . . . . . . . . . . . . . . . . . . . . . . . . 339
9.1.1 Design of the Study and Data Collection . . . . . . . . . . . 340
9.1.2 Design of a NeuCube Model . . . . . . . . . . . . . . . . . . . . 340
9.1.3 Classification Results . . . . . . . . . . . . . . . . . . . . . . . . . 343
9.1.4 Analysis of Functional Changes in Brain Activity

from MCI to AD . . . . . . . . . . . . . . . . . . . . . . . . . . . . 344
9.2 SNN for Predictive Modelling of Response to Treatment

Using EEG Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 344
9.2.1 Conceptual Design . . . . . . . . . . . . . . . . . . . . . . . . . . . 345
9.2.2 The Case Study Problem Specification and Data

Collection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 345
9.2.3 Modelling the EEG Data in a NeuCube Model . . . . . . 348
9.2.4 Comparative Analysis of Brain Activities of MMT

Subjects Under Different Drug Doses Versus CO
and OP Subjects. Modelling and Understanding the
Information Exchange Between Brain Areas
Measured Through EEG Channels . . . . . . . . . . . . . . . . 352

9.2.5 Analysis of Classification Results . . . . . . . . . . . . . . . . 355
9.3 Chapter Summary and Further Readings for Deeper

Knowledge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 356
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 357

10 Deep Learning and Deep Knowledge Representation
of fMRI Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 361
10.1 Brain fMRI Data and Their Analysis . . . . . . . . . . . . . . . . . . . . 361

10.1.1 What Are fMRI Data? . . . . . . . . . . . . . . . . . . . . . . . . 361
10.1.2 Traditional Methods for fMRI Data Analysis . . . . . . . . 363
10.1.3 Selecting Features from FMRI Data . . . . . . . . . . . . . . 365

Contents xxiii



10.2 Deep Learning and Deep Knowledge Representation
of fMRI Data in NeuCube . . . . . . . . . . . . . . . . . . . . . . . . . . . . 366
10.2.1 Why Use SNN for Modelling of fMRI

Spatio-temporal Brain Data? . . . . . . . . . . . . . . . . . . . . 366
10.2.2 A Methodology for Deep Learning and Deep

Knowledge Representation of fMRI Data
in BI-SNN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 367

10.3 Mapping, Learning and Classification of fMRI Data in
NeuCube on the Case Study of STAR/PLUS Data . . . . . . . . . . 370
10.3.1 The STAR/PLUS Benchmark fMRI Data . . . . . . . . . . . 370
10.3.2 fMRI Data Encoding, Mapping and Learning

in a NeuCube SNN Model . . . . . . . . . . . . . . . . . . . . . 371
10.3.3 Classification of the fMRI Data in a NeuCube-Based

Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 377
10.4 Algorithms for Modelling fMRI Data that Measure Cognitive

Processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 379
10.4.1 Algorithm for Encoding Dynamic STBD into Spike

Sequences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 380
10.4.2 Connectivity Initialization and Deep Learning in a

SNN Cube . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 380
10.4.3 Deep Knowledge Representation in a Trained SNN

Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 383
10.4.4 A Case Study Implementation on the STAR/PLUS

Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 383
10.5 Chapter Summary and Further Readings for Deeper

Knowledge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 388
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 391

11 Integrating Time-Space and Orientation. A Case Study on
fMRI + DTI Brain Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 397
11.1 Introduction and Background Work . . . . . . . . . . . . . . . . . . . . . 397
11.2 A Personalised Modelling Architecture for fMRI and DTI Data

Integration Based on the NeuCube BI-SNN . . . . . . . . . . . . . . . 400
11.3 Orientation-Influence Driven STDP (oiSTDP) Learning in

SNN for the Integration of Time-Space and Direction,
Illustrated on fMRI and DTI Data . . . . . . . . . . . . . . . . . . . . . . 402
11.3.1 Architecture, Mapping and Initialization Scheme . . . . . 403
11.3.2 Neuron Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 403
11.3.3 Unsupervised Weight Adaptation of Synapses . . . . . . . 406

11.4 Experimental Results on Synthetic Data . . . . . . . . . . . . . . . . . . 412
11.4.1 Data Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . 412
11.4.2 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . 412

11.5 Using oiSTDP Learning for the Classification of Responding
and Non-responding Schizophrenic Patients to Clozapine
Monotherapy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 414

xxiv Contents



11.5.1 Problem Specification and Data Preparation . . . . . . . . . 414
11.5.2 Modelling and Experimental Results . . . . . . . . . . . . . . 417

11.6 Chapter Summary and Further Readings for Deeper
Knowledge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 420

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 421

Part V SNN for Audio-Visual Data and Brain-Computer Interfaces

12 Audio- and Visual Information Processing in the Brain and Its
Modelling with Evolving SNN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 431
12.1 Audio and Visual Information Processing

in the Human Brain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 431
12.1.1 Audio Information Processing . . . . . . . . . . . . . . . . . . . 432
12.1.2 Visual Information Processing . . . . . . . . . . . . . . . . . . . 434
12.1.3 Integrated Audio and Visual Information

Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 437
12.2 Modelling Audio-, Visual and Audio-Visual Information

Processing with Convolutional Evolving Spiking Neural
Networks (CeSNN) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 440
12.2.1 Issues with Modelling Audio-Visual Information with

SNN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 440
12.2.2 Convolutional eSNN (CeSNN) for Modelling Visual

Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 442
12.2.3 Convolutional eSNN (CeSNN) for Modelling

Audio Information . . . . . . . . . . . . . . . . . . . . . . . . . . . 443
12.2.4 Convolutional eSNN (CeSNN) for Integrated

Audio-Visual Information Processing . . . . . . . . . . . . . . 444
12.3 Case Studies, Experiments and Results . . . . . . . . . . . . . . . . . . . 448

12.3.1 Data Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 448
12.3.2 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . 449

12.4 Chapter Summary and Further Readings for Deeper
Knowledge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 453

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 455

13 Deep Learning and Modelling of Audio-, Visual-, and Multimodal
Audio-Visual Data in Brain-Inspired SNN . . . . . . . . . . . . . . . . . . . 457
13.1 Deep Learning of Sound in Brain-Inspired SNN . . . . . . . . . . . . 457

13.1.1 Deep Learning of Audio Data in the Brain . . . . . . . . . 457
13.1.2 A BI-SNN Using Tonotopic and Stereo Mapping and

Learning of Sound . . . . . . . . . . . . . . . . . . . . . . . . . . . 459
13.1.3 Deep Learning and Recognition of Music . . . . . . . . . . 459
13.1.4 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . 460

13.2 Deep Learning and Recognition of Visual Data in a
Brain-Inspired SNN for Fast Moving Object Recognition
and for Gender Recognition . . . . . . . . . . . . . . . . . . . . . . . . . . . 462

Contents xxv



13.2.1 Two Approaches to Visual Information Processing . . . . 462
13.2.2 Applications for Fast Moving Object Recognition . . . . 463
13.2.3 Applications for Gender and Age Group

Classification Based on Face Recognition . . . . . . . . . . 464
13.3 Retinotopic Mapping and Learning of Dynamic Visual

Information in a Brain-Like SNN Architecture on the Case
Study of Moving Object Recognition . . . . . . . . . . . . . . . . . . . . 467
13.3.1 General Principles . . . . . . . . . . . . . . . . . . . . . . . . . . . 467
13.3.2 The Brain-Inspired SNN and the Proposed

Retinotopic Mapping . . . . . . . . . . . . . . . . . . . . . . . . . 467
13.3.3 Unsupervised and Supervised Learning

of Dynamic Visual Patterns . . . . . . . . . . . . . . . . . . . . . 469
13.3.4 Design of an Experiment for the MNIST-DVS

Benchmark Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . 470
13.3.5 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . 471
13.3.6 Model Interpretation for a Better Understanding of the

Processes Inside the Visual Cortex . . . . . . . . . . . . . . . 472
13.3.7 Summary of the Proposed BI-SNN Retinotopic

Mapping Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . 473
13.4 Chapter Summary and Further Readings for Deeper

Knowledge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 473
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 474

14 Brain-Computer Interfaces Using Brain-Inspired SNN . . . . . . . . . . 479
14.1 Brain-Computer Interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . 479

14.1.1 General Notions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 479
14.1.2 BCI Based on EEG . . . . . . . . . . . . . . . . . . . . . . . . . . 481
14.1.3 Types and Applications of BCI . . . . . . . . . . . . . . . . . . 481

14.2 A Framework for Brain-Inspired BCI (BI-BCI) . . . . . . . . . . . . 485
14.2.1 The NeuCube BI-SNN Architecture . . . . . . . . . . . . . . . 485
14.2.2 A Brain-Inspired Framework for BCI (BI-BCI) with

Neurofeedback . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 488
14.3 BI-BCI for Detecting Motor Execution and Motor Intention

from EEG Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 489
14.3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 489
14.3.2 Design of an Experimental BI-BCI System . . . . . . . . . 491
14.3.3 Classification Results . . . . . . . . . . . . . . . . . . . . . . . . . 492
14.3.4 Analysis of the Results . . . . . . . . . . . . . . . . . . . . . . . . 492

14.4 BI-BCI for Neurorehabilitation with a Neurofeedback
and for Neuro-prosthetics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 494
14.4.1 General Notions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 494
14.4.2 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 496

14.5 From BI-BCI to Knowledge Transfer Between Humans
and Machines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 498

xxvi Contents



14.6 Chapter Summary and Further Readings for Deeper
Knowledge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 499

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 499

Part VI SNN in Bio- and Neuroinformatics

15 Computational Modelling and Pattern Recognition in
Bioinformatics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 505
15.1 Bioinformatics Primer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 505

15.1.1 General Notions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 505
15.1.2 DNA, RNA and Proteins. The Central Dogma of

Molecular Biology and the Evolution of Life. . . . . . . . 506
15.1.3 Phylogenetics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 512
15.1.4 The Challenges of Molecular Data Analysis . . . . . . . . . 513

15.2 Biological Databases. Computational Modelling of
Bioinformatics Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 516
15.2.1 Biological Databases . . . . . . . . . . . . . . . . . . . . . . . . . 516
15.2.2 General Information About Bioinformatics Data

Modelling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 517
15.2.3 Gene Expression Data Modelling and Profiling . . . . . . 519
15.2.4 Clustering of Time Series Gene Expression Data . . . . . 521
15.2.5 Protein Data Modelling and Structure Prediction . . . . . 523

15.3 Gene and Protein Interaction Networks and the System
Biology Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 524
15.3.1 General Notions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 524
15.3.2 Gene Regulatory Network Modelling . . . . . . . . . . . . . 526
15.3.3 Protein Interaction Networks . . . . . . . . . . . . . . . . . . . . 527

15.4 Brain-Inspired SNN Architectures for Deep Learning of Gene
Expression Time Series Data and for the Extraction of Gene
Regulatory Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 529
15.4.1 General Notions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 529
15.4.2 A SNN Based Methodology for Gene Expression

Time Series Data Modelling and Extracting GRN . . . . 530
15.4.3 Extracting GRN from a Trained Model . . . . . . . . . . . . 532
15.4.4 A Case Study Experimental Modelling of Gene

Expression Time Series Data . . . . . . . . . . . . . . . . . . . . 533
15.4.5 Extracting GRN Form a Trained Model and Analysis

of the GRN for New Knowledge Discovery . . . . . . . . . 535
15.4.6 Discussions on the Method . . . . . . . . . . . . . . . . . . . . . 538

15.5 Chapter Summary and Further Readings . . . . . . . . . . . . . . . . . 539
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 540

Contents xxvii



16 Computational Neuro-genetic Modelling . . . . . . . . . . . . . . . . . . . . . 545
16.1 Computational Neurogenetics . . . . . . . . . . . . . . . . . . . . . . . . . 545

16.1.1 General Notions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 545
16.2 Probabilistic Neurogenetic Model (PNGM) of a Spiking

Neuron . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 548
16.2.1 The PNGM of a Spiking Neuron . . . . . . . . . . . . . . . . . 548
16.2.2 Using the PNGM of a Neuron to Build SNN . . . . . . . . 551

16.3 Computational Neurogenetic Modelling (CNGM)
Architectures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 552
16.3.1 CNGM Architectures . . . . . . . . . . . . . . . . . . . . . . . . . 552
16.3.2 The NeuCube Architecture as a CNGM . . . . . . . . . . . . 553

16.4 Applications of CNGM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 555
16.4.1 Modelling Brain Diseases . . . . . . . . . . . . . . . . . . . . . . 555
16.4.2 CNGM for Cognitive Robotics and Emotional

Computing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 556
16.5 Life, Death and CNGM. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 557
16.6 Chapter Summary and Further Readings for Deeper

Knowledge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 558
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 559

17 A Computational Framework for Personalised Modelling.
Applications in Bioinformatics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 563
17.1 A Framework for PM and Person Profiling Based on

Integrated Feature and Model Parameter Optimisation . . . . . . . . 563
17.1.1 Introduction: Global, Local and Personalise

Modelling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 563
17.1.2 A Framework for Personalised Modelling (PM) Based

on Integrated Feature and Model Parameter
Optimisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 565

17.2 PM for Gene Expression Data Classification Using Traditional
ANN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 573
17.2.1 Problem and Data Specification, Feature Extraction . . . 573
17.2.2 Classification Accuracy and Comparative Analysis . . . . 573
17.2.3 Profiling of Individuals and Personalised Knowledge

Extraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 576
17.3 PM on Biomedical Data Using Evolving SNN . . . . . . . . . . . . . 576

17.3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 576
17.3.2 Using SNN and ESNN for PM . . . . . . . . . . . . . . . . . . 578
17.3.3 An ESNN Method for PM on Biomedical Data . . . . . . 580
17.3.4 A Case Study of PM for Chronic Kidney Disease

Data Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . 585

xxviii Contents



17.4 Chapter Summary and Further Readings for Deeper
Knowledge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 587

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 588

18 Personalised Modelling for Integrated Static and Dynamic Data.
Applications in Neuroinformatics . . . . . . . . . . . . . . . . . . . . . . . . . . 593
18.1 A Framework for PM Based on BI-SNN Architecture for

Integrated Static and Dynamic Data Modelling . . . . . . . . . . . . . 593
18.1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 593
18.1.2 A NeuCube-Based Framework for PM of Integrated

Static and Dynamic Data . . . . . . . . . . . . . . . . . . . . . . 595
18.1.3 Comparative Analysis of the NeuCube Based Method

with Other Methods for PM . . . . . . . . . . . . . . . . . . . . 598
18.2 Personalised Deep Learning and Knowledge Representation in

Time-Space. A Case on Individual Stroke Risk Prediction . . . . . 599
18.2.1 The Case Study Data for Individual Stroke Risk

Prediction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 599
18.2.2 Personalised Deep Learning and Knowledge

Representation in NeuCube on the Case of Stroke . . . . 601
18.3 PM for Predicting Response to Treatment Using Personal Data

and EEG Spatio-Temporal Data . . . . . . . . . . . . . . . . . . . . . . . . 604
18.3.1 The Case Study Problem and Data . . . . . . . . . . . . . . . 604
18.3.2 The NeuCube Based PM Model . . . . . . . . . . . . . . . . . 605
18.3.3 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . 606
18.3.4 Discussions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 607

18.4 Chapter Summary and Further Readings for Deeper
Knowledge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 609

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 610

Part VII Deep in Time-Space Learning and Deep Knowledge
Representation of Multisensory Streaming Data

19 Deep Learning of Multisensory Streaming Data for Predictive
Modelling with Applications in Finance, Ecology, Transport and
Environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 619
19.1 A General Framework for Deep Learning and Predictive

Modelling of Multisensory Time-Space Streaming Data with
SNN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 619
19.1.1 The Challenges of Pattern Recognition and Modelling

of Multisensory Streaming Data . . . . . . . . . . . . . . . . . 620
19.1.2 Modelling Streaming Data in Evolving

SNN (eSNN) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 621
19.1.3 A General Methodology for Modelling Multisensory

Streaming Data in Brain-Inspired SNN for
Classification and Regression . . . . . . . . . . . . . . . . . . . 622

Contents xxix



19.2 Stock Market Movement Prediction Using On-Line Predictive
Modelling with eSNN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 628

19.3 SNN for Deep Learning and Predictive Modelling of
Ecological Streaming Data . . . . . . . . . . . . . . . . . . . . . . . . . . . 631
19.3.1 Early Event Prediction in Ecology:

General Notions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 631
19.3.2 A Case Study on Predicting Abundance of Fruit Flies

Using Spatio-temporal Climate Data . . . . . . . . . . . . . . 632
19.4 SNN for Deep Learning and Predictive Modelling of Transport

Streaming Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 638
19.4.1 A Case Study Transport Modelling Problem . . . . . . . . 638
19.4.2 NeuCube Model Creation and Modelling Results . . . . . 638

19.5 SNN for Predictive Modelling of Seismic Data . . . . . . . . . . . . . 642
19.5.1 The Challenge of Predicting Hazardous Events . . . . . . 642
19.5.2 Predictive Modelling of Seismic Data for Earthquake

Forecasting Using NeuCube . . . . . . . . . . . . . . . . . . . . 642
19.5.3 Experiment Design . . . . . . . . . . . . . . . . . . . . . . . . . . . 644
19.5.4 Discussions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 648

19.6 Future Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 649
19.6.1 Modelling Multisensory Air Pollution

Streaming Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 649
19.6.2 Wind Energy Prediction from Wind Turbines . . . . . . . 651
19.6.3 SNN for Radio-Astronomy Data Modelling . . . . . . . . . 651

19.7 Chapter Summary and Further Readings for Deeper
Knowledge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 651

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 655

Part VIII Future Development in BI-SNN and BI-AI

20 From von Neumann Machines to Neuromorphic Platforms . . . . . . 661
20.1 Principles of Computation. The von Neumann Machines and

Beyond . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 661
20.1.1 General Notions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 661
20.1.2 The von Neumann Computation Principle and the

Atanassov’s ABC Machine . . . . . . . . . . . . . . . . . . . . . 662
20.1.3 Going Beyond von Neumann Principles and ABC

Computer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 664
20.2 Neuromorphic Computation and Platforms . . . . . . . . . . . . . . . . 664

20.2.1 General Principles . . . . . . . . . . . . . . . . . . . . . . . . . . . 664
20.2.2 Hardware Platforms for Neuromorphic

Computation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 665
20.3 SNN Development Systems. NeuCube as a Development

System for Spatio-temporal Data Machines . . . . . . . . . . . . . . . 667

xxx Contents



20.3.1 A Brief Overview of SNN Development Systems . . . . 667
20.3.2 The NeuCube Development System for

Spatio-temporal Data Machines . . . . . . . . . . . . . . . . . . 669
20.3.3 Implementation of NeuCube-Based Spatio-temporal

Data Machines on Traditional and on Neuromorphic
Hardware Platforms . . . . . . . . . . . . . . . . . . . . . . . . . . 672

20.4 Chapter Summary and Further Readings . . . . . . . . . . . . . . . . . 673
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 674

21 From Claude Shannon’s Information Entropy to Spike-Time
Data Compression Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 679
21.1 Claude Shannon’s Classical Information Theory . . . . . . . . . . . . 679
21.2 The Proposed Information Theory for Temporal Data

Compression for Classification Tasks Based on Spike-Time
Encoding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 681

21.3 A Spike-Time Encoding and Compression Method for fMRI
Spatio-Temporal Data Classification . . . . . . . . . . . . . . . . . . . . . 685

21.4 Chapter Summary and Further Readings . . . . . . . . . . . . . . . . . 695
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 697

22 From Brain-Inspired AI to a Symbiosis of Human Intelligence
and Artificial Intelligence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 701
22.1 Towards Integrated Quantum-Molecular-Neurogenetic-Brain-

Inspired Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 701
22.1.1 Quantum Computation . . . . . . . . . . . . . . . . . . . . . . . . 702
22.1.2 The Concept of an Integrated Quantum-Neurogenetic-

Brain-Inspired Model Based on SNN . . . . . . . . . . . . . 704
22.2 Towards a Symbiosis Between Human Intelligence and

Artificial Intelligence (HI + AI), Led by HI . . . . . . . . . . . . . . . 707
22.2.1 Some Notions About AGI . . . . . . . . . . . . . . . . . . . . . . 707
22.2.2 Towards a Symbiosis Between Human Intelligence

and Artificial Intelligence (HI + AI), Led by HI . . . . . . 707
22.3 Summary and Further Readings for a Deeper Knowledge . . . . . 711
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 711

Epilogue . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 715

Glossary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 717

Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 735

Contents xxxi



About the Author

Nikola K. Kasabov is Professor of neural networks and knowledge engineering and
Director of the Knowledge Engineering and Discovery Research Institute (KEDRI) at the
Auckland University of Technology (AUT), New Zealand. Born in Bulgaria, he has
worked previously at the TU Sofia, University of Essex and University of Otago. He is
fellow of IEEE, Fellow of the Royal Society (Academy) of New Zealand (RSNZ),
Distinguished Fellow of the Royal Academy of Engineering UK and Visiting Professor at
several universities, including: Shanghai Jia-Tong University; ETH and University of
Zurich; RGU Scotland UK; University of Trento; University of Kaiserslautern;

xxxiii



Universities of Twente and Maastricht. Prof Kasabov originated methods and systems for
intelligent information processing, including: evolving connectionist systems, hybrid
neuro-fuzzy systems, evolving- and brain–inspired spiking neural network architectures,
quantum-inspired methods, methods for personalised modelling in bio and neuroinfor-
matics, published in more than 600 works. He is Past President of the International Neural
Network Society (INNS) and the current President of the Asia-Pacific Neural Network
Society (APNNS). Prof Kasabov has received the INNS Ada Lovelace and Gabor
Awards, APNNS Outstanding Achievements Award, RSNZ Medal, AUT Medal,
Honourable Fellowship of the Bulgarian and the Greek Computer Societies, Pavlikeni
Honourable Citizenship and other awards. He has been the editor of the Springer
Handbook of Bio-/Neuro-informatics published by Springer in 2014 and of the related
book series Springer Series on Bio- and Neurosystems.

xxxiv About the Author



Part I
Time-Space and AI. Artificial Neural

Networks



Chapter 1
Evolving Processes in Time-Space.
Deep Learning and Deep Knowledge
Representation in Time-Space.
Brain-Inspired AI

This chapter presents the challenges to information sciences when dealing with
complex evolving processes in time-space. The emphasis here is on processes/
systems that evolve/develop/unfold/change in time-space and what characterises
them. To model such processes, to extract deep knowledge that drives them and to
trace how this knowledge changes over time, are among the main objectives of the
brain-like approach that we take in this book by using SNN. And before going to
SNN in the next chapters, we introduce how evolving processes can be represented
as data, information and knowledge, and more specifically, what is deep knowledge
that we will target to achieve through deep learning in SNN.

This chapter consists of the following sections:

1:1. Evolving processes in time-space.
1:2. Characteristics of evolving processes: Frequency, energy, probability, entropy,

and information.
1:3. Light and sound.
1:4. Evolving processes in Time-Space and Direction.
1:5. From data and information to knowledge.
1:6. Deep learning and deep knowledge representation in time-space. How deep?
1:7. Statistical, computational modelling of evolving processes.
1:8. Brain-inspired AI (BI-AI).
1:9. Chapter summary and further readings for deeper knowledge.

1.1 Evolving Processes in Time-Space

Time is defined in the Oxford Dictionary as “The indefinite continued progress of
existence, events, etc., in past, present and future regarded as a whole …”. Time has
been studied for many years by the most prolific scientists and cosmologists [1, 2].
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Space is defined in the Oxford Dictionary as “A continuous, unlimited area of
expanse which may or may not contain objects …”.

Science aims at understanding Nature and the humanity. Processes in Nature are
evolving in both space and time (Fig. 1.1). To understand them humans create
models, initially only mental models, as at the time of Aristotle (4c BC) and now
mathematical and computational models to extract information and knowledge, and
more specifically deep knowledge as defined here.

1.1.1 What Are Evolving Processes?

We call evolving processes or evolving systems those that change, develop, unfold
in time. Most evolving processes evolve both in time-space. Evolving
spatio-temporal processes are characterised by sometimes complex interaction
between space and time components in a continuous manner. This interaction may
change over time. Such processes may also interact with other processes in the
environment. It may not be possible to determine in advance the course of inter-
action, unless we discover the important features, the spatio-temporal patterns and
rules that drive such processes and their evolution in time.

Evolving spatio-temporal processes are difficult to model because some of their
evolving rules (laws) may not be known a priori, they may dynamically change due

Fig. 1.1 All processes in Nature are evolving in time-space, from the emergence of the universe
to life and the human brain (after [43])
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to unexpected perturbations, and therefore they may not be strictly predictable in a
longer term. Thus, modelling of such processes is a challenging task with a lot of
practical applications in life sciences and engineering.

When processes are evolving, their models need to be evolving too, i.e. to trace
the dynamics of the processes and to adapt to changes in these processes over time.
For example, a speech recognition system has to be able to adapt to various new
accents, and to learn new languages incrementally. A system that models cognitive
tasks of the human brain, needs to be adaptive, as all cognitive processes are
evolving by nature. (We never stop learning!) In bioinformatics, gene expression
modelling systems have to be able to adapt to new information that would define
how for example a gene could become inhibited by another gene, the latter being
triggered by a third gene, etc. There is an enormous number of tasks from life
sciences where the processes evolve and change over time.

It would not be an overstatement to say that everything in nature evolves in
time-space. But what are the rules, the laws that drive these processes, and how
these rules change over time, how do they evolve? If we knew these rules, we could
create computational models that can evolve in a similar manner as the real
evolving processes, and use these models to make predictions and to better
understand the processes. But if we do not know these rules, we can still try to
uncover them from the data collected from these processes using machine learning.
This was not possible during the time of Aristotle (4 century BC), but it is possible
now as it is demonstrated in the book.

The term “evolving” is used here in a broader sense than the term “evolution-
ary”. The latter is related to a population of individual systems traced over gen-
erations [3–5], while the former, as it is used in this book, is mainly concerned with
the development of the structure and functionality of an individual system in space
and/or time during its lifetime [6]. An evolutionary (population/generation) opti-
misation of the parameters of this system can be applied as well.

1.1.2 Evolving Processes in Living Organisms

The most obvious example of an evolving process is life, defined in the Concise
Oxford English Dictionary (1983) as “a state of functional activity and continual
change peculiar to organized matter, and especially to the portion of it constituting
an animal or plant before death, animate existence, being alive”. Continual change
in space and time, along with certain stability, is what characterizes life. Modelling
living systems requires that the continuous changes are represented in the model,
i.e. the model adapts in a life-long mode and at the same time preserves features and
principles that are characteristic to the process. The “stability–plasticity” dilemma is
a well-known principle of life that is also widely used in connectionist computa-
tional models [7].
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Perhaps, the most complex information system evolved so far is the human
brain. Many interrelated evolving processes are observed at different “levels” of
brain functionality (Fig. 1.2).

At the quantum level, particles are in a complex evolving state in space and time,
being at several locations at the same time, which is defined by probabilities.
General evolving rules are defined by several principles, such as entanglement,
superposition, etc. [8, 9] (see also Chaps. 7 and 22).

At a molecular level, RNA and protein molecules, for example, evolve and
interact in a continuous way based on the DNA information and on the environ-
ment. The central dogma of molecular biology constitutes a general evolving rule,
but there are specific rules for different species and individuals. Different
spatio-temporal folding and unfolding of proteins in a 3D space define different
functions cells in the same organism—Fig. 1.3 [9, 10] (for details see Chap. 15).

At the cellular level (e.g. a neuronal cell) all the metabolic processes, the cell
growing, cell division etc., are evolving processes in time-space. At the level of cell
ensembles, or at a biological neural network level, an ensemble of cells (neuros)
operates in a concert, defining the function of the ensemble or the network through
learning, for instance—perception of sound, perception of an image, or learning
languages. An example of a general evolving rule is the Hebbian learning rule [11]
where neurons create connections between them in space when they are activated
together in time [9].

In the human brain, complex dynamic interactions between groups of neurons
can be observed when certain cognitive functions are performed, e.g. speech and
language learning, visual pattern recognition, reasoning, and decision making [9].
When a person is performing a task brain activities are observed in different parts of
the brain over time—Fig. 1.4 (see Chap. 3 for details).

At the level of population of individuals, species evolve through evolution A
biological system evolves its structure and functionality through both lifelong
learning of an individual and the evolution of populations of many such individuals

6.  Evolutionary (population/generation) processes 
__________________________________________________
5.   Brain cognitive processes  
 _________________________________________________ 
4.  System information processing (e.g. neural ensemble)  
___________ _____________________________________ 
3.   Information processing in a cell (neuron) 
_________________________________________________
2 Molecular information processing (genes, proteins)
_________________________________________________      
1.    Quantum information processing

Fig. 1.2 Many interrelated evolving processes are observed at different “levels” of brain
functionality (after [30, 42])
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[4, 5]. In other words, an individual is a result of the evolution of many generations
of populations, as well as a result of its own developmental lifelong learning
processes. The Mendelian and Darwinian rules of evolution have inspired the
creation of computational modelling techniques called evolutionary computation
(EC) [5, 12] (see Chap. 7 for details).

Interaction in time-space is what makes a living organism a complex one, and
that is also a challenge for computational modelling. For example, there are com-
plex interactions between genes in a genome, and between proteins and DNA.
There are complex interactions between the genes and the functioning of each
neuron, a neural network, and the whole brain. Abnormalities in some of these
interactions are known to have caused brain diseases and many of them are

Fig. 1.3 Evolving processes
at a molecular level: Different
spatio-temporal folding and
unfolding of proteins in a 3D
space define different
functions of cells in the
organism (after [9, 17, 30])

Fig. 1.4 When a person is
performing a task brain
activities are observed in
different spatially located
parts of the brain at different
times (after [43])
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unknown at present. An example of interactions between genes and neuronal
functions is the observed dependence between long-term potentiation (learning) in
the synapses and the expression of the immediate early genes and their corre-
sponding proteins such as Zif/268 [13]. Genetic reasons for several brain diseases
have been already discovered, where some genes are expressed at a later time in live
through interactions with other genes in the genome (see Chaps. 15 and 16).

1.1.3 Spatio-temporal and Spectro-temporal Evolving
Processes

The physical interaction between parts of the earth is measured as spatio-temporal
seismic data (Fig. 1.5) but what are these deep patterns of interaction in time-space
that would trigger an earthquake? (see Chap. 19 for details).

A sound signal represents a spectro-temporal evolving process in time, e.g.
music as shown in Fig. 1.6. as a wave form in time (see Chaps. 12 and 13).

Several sources of signals located at different locations, represent a spatio/
spectro-temporal process.

The processes of buying/selling shares on the stock market are spatio-temporal,
sometimes presented as only spectro- temporal, i.e. the change of the stock prices in
time.

To properly model and understand evolving processes, it is important to first
understand their characteristics as discussed in the next section.

Fig. 1.5 Geophysical processes are both spatio-temporal and spectro-temporal: a Spatially
located seismic sites in New Zealand. b Temporal seismic activities at four selected seismic sites
(spatially located) around Christchurch area manifest different frequency (spectral) characteristics.
c Sea level at different harbours of New Zealand over time demonstrate both spatial and spectral
characteristics (from: http://www.geonet.co.nz)

8 1 Evolving Processes in Time-Space …

http://www.geonet.co.nz


1.2 Characteristics of Evolving Processes: Frequency,
Energy, Probability, Entropy and Information

Evolving processes are characterised by common characteristics, the most impor-
tant ones being frequency, entropy, energy and information as explained below.

Frequency: Frequency, is defined as the number of a signal/event changes over a
period of time (seconds, minutes, centuries, etc.). Some processes have stable
frequencies (they are periodic), but other—change their frequencies over time.
Different processes are characterised by different frequencies, defined by their
physical parameters. Usually, a process is characterised by a spectrum of fre-
quencies. For example, different frequency spectrums are observed as brain activ-
ities (e.g. alpha, beta, gamma and delta waves), speech signals, image and video
data, seismic processes, music, quantum processes, etc.

Frequency reflects on the changes in the signal (the data) in time. Evolving
processes can manifest different behaviour, such as:

– Random: there is no rule that governs changes of the process in time and the
process is not predictable.

Fig. 1.6 A wave form of a segment from Mozart’s music, represented as intensity of the sound
over time
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– Chaotic: the process is predictable but only in a short time ahead, as the changes
of the process at a time moment depends on the process changes at previous
time moments via a non-linear function.

– Quasy-periodic: the process is manifesting similarity of its changes over time,
but slightly modified each time.

– Periodic: the process repeats same patterns of changes over time and is fully
predictable (there are fixed rules that govern the process and the rules do not
change over time).

Many complex processes in engineering, social sciences, physics, mathematics,
economics and other sciences are evolving by nature and can be analysed using the
above classification. Some dynamic time series in nature manifest chaotic beha-
viour, i.e. there are some vague patterns of repetition over time, and the time series
are approximately predictable in the near future, but not in the long run [14–17].
Chaotic processes are usually described by mathematical equations that use some
parameters to evaluate the next state of the process from its previous states. Simple
formulae may describe a very complicated behaviour over time: e.g. a formula that
describes fish population growth F tþ 1ð Þ is based on the current fish population F
(t) and a parameter g [14]:

F tþ 1ð Þ ¼ 4gF tð Þ 1� F tð Þð Þ ð1:1Þ

When g[ 0:89, the function becomes chaotic.
A chaotic process is defined by evolving/changing rules, so that the process lies

on the continuum of “orderness” somewhere between random processes (not pre-
dictable at all) and quasi-periodic processes (predictable in a longer time-frame, but
only to a certain degree). Modelling a chaotic process in reality, especially if the
process changes its rules over time, is a task for an adaptive system that captures the
changes in the process in time, e.g. the value for the parameter g from the formula
above.

All problems from engineering, economics and social sciences that are charac-
terised by evolving processes require continuously adapting models to model them.
A speech or sound recognition system (Chaps. 12 and 13), an image recognition
system (Chaps. 12 and 13), a multimodal information processing system, a stock
prediction system, an intelligent robot, a system that predicts the emergence of
insects based on climate (Chap. 19), etc. should always adjust its structure and
functionality for a better performance over time. This book offers one approach to
achieving this using spiking neural networks (SNN).

Everything is evolving, living organisms for sure, but what are the evolving
rules, the laws that govern these processes? Are there any common evolving rules
for every material item and for every living organism, along with their specific
evolving rules? And what are the specific rules? Do these rules change over time,
i.e. do they evolve as well? These are questions that we will address in this book to
certain degree, as the process of addressing these issues is also evolving, with our
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improved understanding of both the processes and the methods that we can use to
deal with them.

An evolving process, characterised by its evolving, governing rules, manifests
itself in a certain way and produces data that in many cases, can be measured.
Through analysis of this data, one can extract patterns of relationship, rules that
describe the processes at a certain time, but do they describe the evolving process in
the future?

Here, in addition to frequency, we introduce other main characteristics of
evolving processes, used in the chapters of the book.

Energy

Energy is a major characteristic of any object and organism. It is a quantitative
entity that they need to do some work, to move, to heat, to stay alive. There are
many aspects of energy under this general definition, including quantum, physical,
chemical, thermal, biological etc.

The Albert Einstein’s most celebrated energy formula defines energy E that is
needed to move and accelerate an object from a stationary position as depending on
the mass of the object m and the speed of light c:

E ¼ m : c2 ð1:2Þ

The speed of light is used as a constant. It is appr. 300,000 km/s. Energy is
associated with mass and the speed of light in vacuum.

Some characteristics of light are important to note as they are used in some of the
methods in this book and discussed in the next section.

Probability, entropy and information

Having data measuring an evolving process, the question is how do we measure the
information contained in the data? There are several ways to define and to measure
information depending on the processes. One way is to use a measure of changes in
a process called entropy, calculated with the use of a measure of uncertainties in
these changes called probability, as explained below.

The formal theory of probability relies on the following three axioms, where
p(E) is the probability of an event E to happen and p(¬E) is the probability of an
event not to happen. E1, E2, …, Ek is a set of mutually exclusive events that form
an universe U of all possible events, also called problem space:

Axiom 1. 0� p Eð Þ� 1
Axiom 2.

P
p Eið Þ ¼ 1; E1[E2[ � � � [Ek ¼ U, U-problem space

Corollary: p Eð Þþ p :Eð Þ ¼ 1
Axiom 3. p E1 _ E2ð Þ ¼ p E1ð Þþ p E2ð Þ, where E1 and E2 are mutually
exclusive events.
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Probabilities are defined as:

• Theoretical—some rules are used to evaluate a probability of an event.
• Experimental—probabilities are learned from data and experiments, e.g. throw

dice 1000 times and measure how many times the event “getting the number 6”
has happened.

• Subjective—probabilities are based on common sense human knowledge, such
as defining that the probability of getting number 6” after throwing dice is 1/6th,
without really throwing it at all.

A random variable x is characterized at any moment of time by its uncertainty in
terms of what value this variable will take in the next moment—its entropy.
A measure of uncertainty h(xi) can be associated with each random value xi of a
random variable x, and the total uncertainty H(x), called entropy, measures our lack
of knowledge, the seeming disorder in the space of the variable x:

H Xð Þ ¼
X

i¼1;...;n

pi : h xið Þ; ð1:3Þ

where: pi is the probability of the variable x taking the value of xi;
h xið Þ ¼ logð1=piÞ.

The following axioms for the entropy H(x) apply:

– monotonicity: if n[ n0 are number of events (values) that a variable x can take,
then Hn xð Þ[Hn0 xð Þ, so the more values x can take, the greater the entropy.

– additivity: if x and y are independent random variables, then the joint entropy
H(x, y), meaning H(x AND y), is equal to the sum of H(x) and H(y).

The following log function satisfies the above two axioms:

h xið Þ ¼ log 1=pið Þ ð1:4Þ

If the log has a basis of 2, the uncertainty is measured in [bits], and if it is the
natural logarithm ln, then the uncertainty is measured in [nats].

H Xð Þ ¼
X

i¼1;...;n

pi : h xið Þð Þ ¼ �c �
X

i¼1;...;n

pi : log pið Þ; ð1:5Þ

where c is a constant.
Based on the Claude Shannon’s measure of uncertainty—entropy, we can cal-

culate an overall probability for a successful prediction for all states of a random
variable x, or the predictability of the variable as a whole:

P xð Þ ¼ 2�H xð Þ ð1:6Þ
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The max entropy is calculated when all n values of a random variable x are
equiprobable, i.e. they have the same probability 1/n—a uniform probability
distribution:

H Xð Þ ¼ �
X

i¼1;...;n

pi : log pi � log n ð1:7Þ

Joint entropy between two random variables x and y (for example, an input and
an output variable in a system) is defined by the formulas:

H x; yð Þ ¼ �
X

i¼1;...;n

p xi ANDyj
� �

: log p xi ANDyj
� �

ð1:8Þ

H x; yð Þ�H xð ÞþH yð Þ ð1:9Þ

Conditional entropy, i.e. measuring the uncertainty of a variable y (output
variable) after observing the value of a variable x (input variable), is defined as
follows:

H yjxð Þ ¼ �
X

i¼1;...;n

p xi; yj
� �

: log p yjjxi
� �

ð1:10Þ

0�H yjxð Þ�H yð Þ ð1:11Þ

Entropy can be used as a measure of the information associated with a random
variable x, its uncertainty, and its predictability.

The mutual entropy between two random variables, also simply called infor-
mation, can be measured as follows:

I y; xð Þ ¼ H yð Þ � H yjxð Þ ð1:12Þ

The process of on-line information entropy evaluation is important as in a time
series of events, after each event has happened, the entropy changes and its value
needs to be re-evaluated.

Bayesian conditional probability is calculated using the following formula,
which represents the conditional probability between two events C and A in terms
of event A to happen if the event C has happened (Tamas Bayes, 18 century):

p AjCð Þ ¼ p CjAð Þ : p Að Þ=p Cð Þ ð1:13Þ

It follows from the equations:

p A ^ Cð Þ ¼ p C ^ Að Þ ¼ p AjCð Þp Cð Þ ¼ p CjAð Þ p Að Þ ð1:14Þ

1.2 Characteristics of Evolving Processes: Frequency, Energy, Probability … 13



Measuring information as correlation between variables

Correlation coefficients represent the relationship between variables. For every
variable xi (i = 1, 2, …, d1) its correlation coefficients Corr(xi, yj) with all other
variables, including output variables yj (j = 1, 2, …, d2), are calculated. The fol-
lowing is the formula to calculate the Pearson correlation between two variables x
and y based on n values for each of them:

Corr ¼ SUMi xi �Mxð Þ yi �Myð Þð Þ= n� 1ð ÞStdx : Stdy½ �; ð1:15Þ

where: Mx and My are the mean values of the two variables x and y, and Stdx and
Stdy are their respective standard deviations.

Measuring the level (the value) of information carried in a variable (its importance)

The t-test and the SNR methods evaluate how important a variable is to discriminate
samples belonging to different classes. For a case of two class problem, a SNR
ranking coefficient for a variable x is calculated as an absolute difference between
the mean value M1x of the variable for class 1 and the mean M2x of this variable
for class 2, divided to the sum of the respective standard deviations:

SNR x ¼ abs M1x�M2xð Þ= Std1xþ Std2xð Þ ð1:16Þ

A similar formula is used for the t-test:

Ttest x ¼ abs M1x�M2xð Þ= Std1x2=N1þ Std2x2=N2
� � ð1:17Þ

where: N1 and N2 are the numbers of samples in class 1 and class 2 respectively.

Transformation of data from one information space to another

A set of variables measured to carry information for an evolving process form the
problem space, or the information space, the variables representing the dimensions
of the space. These variables can be used to create another set of variables in a new
information space, that retains the main information from the original problem
space but potentially reduces the dimensionality of the space into a smaller set of
variables. Two of the most common transformations are Principal Component
Analysis (PCA) and Linear Discriminant Analysis (LDA).

Principal Component Analysis (PCA)

PCA aims at finding a representation of a problem space X defined by its variables
X = {x1, x2, …, xn} into another orthogonal space having a smaller number of
dimensions defined by another set of variables Z = {z1, z2, …, zm}, such that
every data vector x from the original space is projected into a vector z of the new
space, so that the distance between different vectors in the original space X is
maximally preserved after their projection into the new space Z.
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Linear Discriminant Analysis (LDA)

LDA is a transformation of classification data from the original space into a new
space of LDA coefficients that has an objective function to preserve the distance
between the samples using also the class label to make them more distinguishable
between the classes.

1.3 Light and Sound

Light and Sound are of a special importance as they, first, affect how we perceive
the world, and second, the way we perceive them can be used as inspiration for
SNN architectures and for brain-inspired AI that deal with visual and audio
information (Chaps. 12 and 13).

Light is important electromagnetic radiation that is characterised by certain
frequencies and energy. Figure 1.7 shows a spectrum of electromagnetic radiations
with light being part of it.

Visible light is having wavelengths in the range of 400–700 nanometres (nm), or
4.00 � 10−7 to 7.00 � 10−7 m, between the infrared (with longer wavelengths)
and the ultraviolet (with shorter wavelengths). This wavelength means a frequency
range of roughly 430–750 terahertz (THz). The speed of light is used as an uni-
versal constant. It is 299,792,458 m/s.

The primary properties of visible light are: intensity, propagation direction,
frequency or wavelength spectrum, polarization, energy.

Fig. 1.7 The frequencies and the wavelengths of electromagnetic radiation, visible light being
part of a small spectrum [43]
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Light has the properties of both:

– electromagnetic waves characterised by frequencies;
– quantum particles, called ‘photons’—that is the energy transferred from the

light.

When white light illuminates an object or a face, the reflected light at different
pixels may have different brightness as the reflected light has different frequencies
(see Fig. 1.8). Different brightness means different frequencies of the wave that
reaches our retinas. The brightest spots activate earliest the corresponding cells and
they send the first signals (spikes) to the brain. This principle is used in some SNN
models described in Chaps. 4, 5 and 6 as Rank Order Coding.

The human brain perceives visual information as a trajectory of activation of
brain areas in time-space (Chap. 3). The creation of computational models for
visual information processing is a subject of computer vision. The way visual
information is perceived in the human brain is discussed in Chap. 3 and used in
Chap. 13.

In Chaps. 12 and 13 of the book SNN models are developed for both visual and
audio information processing and for their integration.

Sound is an oscillation under pressure, that is spread as waves in a medium.
Sound waves are characterised by:

– Frequency,
– Amplitude
– Speed
– Direction.

Sound that is perceptible by humans has frequencies from about 20 Hz to
20,000 Hz (see Fig. 1.9).

Original Image(a) (b)

Fig. 1.8 Original image (a) is represented as different intensities of brightness that represent the
different frequencies of reflecting light at these pixels—(b). And this is how it activates the retina,
first brighter pixels are perceived as shown on the z axis of the figure (b)
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In air, corresponding wavelengths of sound waves range from 17 m to 17 mm.
Sometimes speed and direction are combined as a velocity vector; wave number
and direction are combined as a wave vector and power of the signal at different
frequencies over time is represented as spectrum (Fig. 1.10). A power spectrum
represents frequencies of the signal and their power in time. Figure 1.10 shows a
spectrogram of the Mozart’s music from Fig. 1.6, representing the power of fre-
quencies (on the y axis) over time (on the x axis) as spectro-temporal data.

The way sound is perceived in the human brain is discussed in Chap. 3 and used
in Chap. 13.

Fig. 1.9 Some sound frequencies with their approximate ranges for different uses (from [43])

Fig. 1.10 A spectrogram of the Mozart’s music from Fig. 1.6, representing the power of
frequencies (on the y axis) over time (on the x axis) as spectro-temporal data
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1.4 Evolving Processes in Time-Space and Direction

Many evolving processes (in addition to light and sound as discussed above) are
characterised by direction (or orientation) in which the signals or the waves spread.
Examples are the spread of brain signals and the spread of seismic signals as
illustrated below.

Deep learning trajectories of time-space directed connections are created during
learning and recall in the brain as discussed in Chap. 3. Chapter 11 introduces a method
for modelling time-space and direction on the case study of fMRI (functional Magnetic
Resonance Image) and DTI (Difussion Tensor Image) data (see also Fig. 1.11).

Figure 1.11 shows orientational information from a DTI image. Left image
shows an axial slice of a single subject’s DTI data, registered to structural and MNI
standard space. The right image shows a close-up of the right posterior corpus
callosum. Directions corresponding to each colour are as follows: Red—left to right
or right to left; green—anterior to posterior or posterior to anterior and blue—
superior to inferior or inferior to superior (see Chap. 11).

Before an earthquake happens, tectonic pressure, measured at one seismic centre,
causes a pressure at another, etc. a chain of such reactions eventually manifested as
an earthquake at a final place. Detecting time-space and direction of changes of
seismic data may enable a better earthquake prediction. Figure 1.12 shows the map
of New Zealand seismic centers and the created map of the direction of changes in
these seismic data as edges of a graph developed in a SNN in Chap. 19 of the book.
Spike-time learning in SNN allows for directions of changes in the data to be

Fig. 1.11 Orientation information from DTI image. Left image shows an axial slice of a single
subject’s DTI data, registered to structural and MNI standard brain template. The Right image
shows a close-up of the right posterior corpus callosum. Directions corresponding to each colour
are as follows: Red—left to right or right to left; green—anterior to posterior or posterior to
anterior and blue—superior to inferior or inferior to superior
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learned as directed connections between spiking neurons, showing which event
happens first (a neuron Ni spikes) and which one follows (a neuron Nj spikes after).

Spike-time learning rules, such as STDP (Spike-Time Dependent Plasticity), to
learn time-space and direction of events and changes in the data are discussed in
Chaps. 4, 5 and 6 and applied across several applications in other chapters of the book.

Chapter 19 discusses also the detection of radio signals in space-time and
direction from objects in the Universe called Pulsars. It also discusses recognition
of fast moving objects in time-space and direction.

1.5 From Data and Information to Knowledge

Generally speaking, data are raw entities: numbers, symbols etc., e.g., 36.
Information is labelled, understood, interpreted data, e.g., the temperature of the

human body is 36 °C.
Knowledge is the understanding of a human, the way we do things, interpretable

information in different situations, general information; e.g.:

IF the human temperature is between 36 and 37 °C,
THEN it is most likely that human body is in a healthy state.

Some basic ways to represent data, information and knowledge of evolving
processes are presented in this section, while next section discusses ways to

Fig. 1.12 Before an earthquake happens, tectonic pressure measured at one seismic centre, causes
a pressure at another, also measured there etc. as a chain reaction that eventually manifests as an
earthquake at a final place. Detecting the direction of changes of the seismic data may enable a
better earthquake prediction. Left figure shows the map of New Zealand seismic centers. Right
figures show created maps of direction of seismic changes in the corresponding centres as edges of
graphs representing deep knowledge as a result of deep learning in Brain-inspired SNN (Chap. 19)
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represent deep knowledge, both acquired by humans and incorporated in a com-
puter system.

The ultimate goal of information processing is the creation of knowledge. The
process of knowledge acquisition from Nature is a continuous process that will
never end. This knowledge is then used to understand Nature, to preserve it. From
data and information, to knowledge discovery and back. This is what science is
concerned with (Fig. 1.13). As shown in Fig. 1.13, modelling evolving processes
requires a sequence of procedures that involve dealing with data, information and
knowledge, e.g.:

• Searching for data: Observe phenomena; collect data; store data;
• Analyse data and extract information (e.g. pre-process data, filter, select fea-

tures, visualise, label data);
• Create a model (learning, reasoning, validation);
• Extract knowledge (create/extract rules; reasoning with the knowledge—de-

ductive, inductive);
• Adapt the model (accommodate new data and knowledge).

Extracting knowledge through observation of evolving processes has a long
history. At the beginning, there was a school of learning that assumed that
understanding of nature and its knowledge representation and articulation would
not change with time. Aristotle was perhaps the most pronounced philosopher and
encyclopaedist of this school.

Aristoteles (384-322 BC) was a pupil of Plato and teacher of Alexander the
Great. He is credited with the earliest introduction of formal logic. Aristoteles
introduced the theory of deductive reasoning.
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Fig. 1.13 From data and information to knowledge representation through computational
modelling (after [42])
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Example:

All humans are mortal (i.e. IF human THEN mortal)
New fact: Socrates is a human
Deducted inference: Socrates is mortal.

Aristoteles introduced epistemology, which is based on the study of particular
phenomena which leads to the articulation of knowledge (rules, formulas) across
sciences: botany, zoology, physics, astronomy, chemistry, meteorology, psychol-
ogy, etc. [18, 19]. According to Aristotle this knowledge was not supposed to
change. In places, Aristotle went too far in deriving ‘general laws of the universe
from simple observations and over-stretched the reasons and conclusions. Because
he was perhaps the philosopher most respected by European thinkers during and
after the Renaissance, these thinkers, along with institutions, often took Aristotle’s
erroneous positions, such as defining inferior roles of women in society, which held
back science and social progress for a long time.

Over many years after Aristotle, the logic he introduced was further developed
into logic systems and rule based systems as a foundation of knowledge-based
systems and AI. But this happened due to pioneers in programming analytical
devices.

Perhaps the first one was the brilliant British mathematician Ada Lovelace
(1815–1852) who is considered not only the first programmer, but the first person
who demonstrated that an analytical device cannot only be used to crunch numbers,
but to deal with symbols as well.

Based on symbolic representation several knowledge representation and rea-
soning theories and models were developed [6], such as:

• Relations and implications, e.g.: A ! (implies) B.
• Propositional (true/false) logic, e.g.: IF (A and B) or C THEN D.
• Boolean logic (George Boole).
• Predicate logic: PROLOG.
• Probabilistic logic: e.g. Bayes formula: p(A/C)) = p(C/A) � p(A)/p(C), where p

(A/C denotes the conditional probability for an event A to happen if event C has
already happened.

• Rule based systems, expert systems, e.g. MYCIN [6].

All above knowledge representations could not deal well with uncertainty of
events. Human cognitive behaviour and reasoning is not always based on exact
numbers and fixed rules. In 1965 Lotfi Zadeh (1920–2018) introduced fuzzy logic
[20, 21] that represents information uncertainties and tolerance in a linguistically
expressed rules. He introduced fuzzy rules, containing fuzzy propositions and fuzzy
inference.

Fuzzy propositions can have truth values between true (1) and false (0), e.g. the
proposition “washing time is short” is true to a degree of 0.8 if the time is 4.9 min,
where Short is represented as a fuzzy set with its membership function—see
Fig. 1.14.
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Fuzzy rules can be used to represent human knowledge and reasoning, e.g.

IF washing load is small
THEN washing time is short.

Fuzzy inference systems calculate exact outputs based on input data and a set of
fuzzy rules. However, fuzzy rules need to be articulated in the first instance, they
need to change, adapt, evolve through learning, to reflect the way human knowl-
edge evolves. And that is what artificial neural networks (ANN) can do as discussed
in Chap. 2. In principle, logic systems and rules, while useful, could be too rigid in
some cases to represent the uncertainty in the natural phenomena and some cog-
nitive behaviour. They are often difficult to articulate, and in principle not adaptive
to change. 24 centuries after Aristotle, ANN can automate the process of knowledge
discovery as they can learn from data and represent the essence of that as rules.

We call the rules discussed above “flat rules”, as they represent only single
events represented as “flat” vectors of features and there is no time or space of series
of events defined in their relationship in time-space.

1.6 Deep Learning and Deep Knowledge Representation
in Time-Space. How Deep?

1.6.1 Defining Deep Knowledge in Time-Space

In contrast to the “flat rules” as discussed in the previous section, deep knowledge,
as introduced here, represents an informative spatio-temporal pattern of events that
happen in space and time in their interaction. This pattern constitutes knowledge
that can be interpreted for a better understanding of evolving processes in
time-space and for predicting future events.

Continuous learning of time-space data, to capture dynamically changing and
informative patterns, ‘hidden’ deep in time and space, and to predict future events,
has been a fundamental science challenge. We call this here deep learning in time-
space. Inspired by the deep learning capabilities of the human brain, we introduce

Short   Medium         Long

0.8

4.9 min                                             Time [min]

Fig. 1.14 Fuzzy sets
representing fuzzy terms of
short, medium and long
washing time, used to
articulate and implement
fuzzy rules, such as: IF
Washing load is Small THEN
Time of washing is Short
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here the concept of deep knowledge in time-space. This is also related to concept
formation from multimodal data.

The concept of deep knowledge has been previously studied in different aspects
[22–24]. In [23] deep knowledge is defined as ‘…knowledge that is concerned with
underlying meanings and principles; integration of facts and feelings with previ-
ously acquired knowledge; fundamental knowledge with general applicability, such
as the laws of physics, which can be used in conjunction with other deep knowledge
to link evidence and conclusions …’.

Here we define deep knowledge in time-space in a brain-inspired, computational
way and that is how it is used in the rest of the book.

Let is consider a set of events E = {E1, E2, …, En}. Each event Ei is defined as:

Ei ¼ Fi; Si;Ti; Pið Þ; ð1:18Þ

where: Fi is a function that defines an operation; Si is the space for function
operation; Ti is the time of the function operation; Pi is probability of the function
operation to take place.

An event could be a simple change in the value of a variable (e.g. increase above
a threshold), or a complex cognitive process (e.g. reading a sentence), or an
earthquake, etc.

Time can be in the past, in the present or in the future.
Deep knowledge can be represented in several ways. One way to represent deep

knowledge is through deep rules as explained below.
Events Ei and Ej of an evolving process are represented by corresponding

functions Fi and Fj, by spatial locations Si and Sj, by times of the events Ti and Tj,
by probabilities of the events to happen Pi and Pj, and also by the strength of the
relationship (association) between the events Wi, j:

W ¼ Wi; jf g; i ¼ 1; . . .; n; j ¼ 1; . . .; n: ð1:19Þ

All parameters of an event can be represented as crisp or as fuzzy values with
corresponding membership functions (see Fig. 1.14), e.g.:

– Location is around Si;
– Time is about Ti;
– Probability is about Pi (see fuzzy probabilities in [6, 21]);
– Strength is around Wi, j; or strength is High.

A hypothetical example of deep knowledge represented as a deep fuzzy rule is given
below:
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IF event E1 : function F1; location around S1; time about T1; probability about P1ð Þ
AND ðstrengthW1; 2;Þ
ðevent E2 : function F2; location around S2; time about T2; probability about P2Þ
AND ðstrengthW2; 3;Þ
ðevent E3 : function F3; location around S3; time about T3; probability about P3Þ
AND . . .

. . .

ðevent En : function Fn; location around Sn; time about Tn; probability about PnÞ
THEN ðAn informative pattern Q from themeasured evolving process is recognised;

that may be used to predict a future eventÞ
ð1:20aÞ

The fuzzy rule above allows for the event/task/process Q to be recognised even
if only partial match of new data is entered and the rule is applied. This is a
brain-inspired principle. For example, we end up with crisp movements as a result
of the activation of slightly different clusters of neurons at slightly different times in
their sequence, as a reaction to crisp of fuzzy stimuli.

As a partial case, no fuzzy terms will be used, but crisp ones, e.g. the following
deep crisp rule:

IF event E1 : function F1; location S1; time T1ð Þ
AND ðstrengthW1; 2;Þ
ðevent E2 : function F2; location S2; time T2Þ
AND ðstrengthW2; 3;Þ
ðevent E3 : function F3; location S3; time T3Þ
AND. . .

. . .

ðevent En : function Fn; location Sn; time TnÞ
THEN ðTask=event Q is recognisedÞ

ð1:20bÞ

Crisp rules would be a case when activities of single neurons are measured in the
brain at exact milliseconds time.

Deep knowledge is characterised by the following features:

(1) It represents informative patterns of multimodal data, deep in time (theoretically
unconstrained) and in space (when dealing with spatio-temporal data);

(2) The knowledge is adaptable in an incremental, theoretically ‘life-long’ way;
(3) The knowledge is not restricted by fixed structures;
(4) The knowledge is obtained in supervised-, unsupervised or semi-supervised

modes;
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(5) The knowledge is interpretable for a better understating of the data and the
processes that generated it;

(6) The knowledge can be used for early and accurate future event prediction.

Deep knowledge is what the human brain learns and manifests all the time,
exemplified by:

– Listening or/and playing musical pieces;
– Playing a game;
– Visual perception;
– Predicting the movement of a predator;
– All sorts of cognition;
– Decision making;
– Consciousness;
– …and everything else the brain does.

1.6.2 How Deep?

Deep knowledge acquired in the human brain is manifested from hundreds of
events in time and space activity of the brain, to hundreds of thousands, depending
on the chosen scale to represent this knowledge. In terms of how deep in time the
knowledge is represented, it can be represented at every month, or at every 100 ms
or even at every single millisecond. In terms of how deep in space the knowledge
can be represented, it can be at every large brain area or at every small neuronal
cluster, or event at every single neuron.

We can define here the terms time resolution and space resolution of deep
knowledge representation. Other terms that relate to time and space resolution are
temporal and spatial depth of knowledge. Indeed, how deep knowledge repre-
sentation can be or should be?

In terms of brain data, deep knowledge that represents an informative pattern of
brain activity, can be discovered at a time resolution of a millisecond for various
lengths of the brain signals. For example for a time length of 5 min, the events are
totalling to 300,000 (300,000 ms), or for 1 s, totalling to 1000 ms, or for a time
resolution of 500 ms, totalling to 600 events for a 5 min duration. And this is the
temporal dept of the deep knowledge. The spatial dept of this knowledge will be
defined by the spatial resolution of the measured brain activities and the size of the
areas each measurement (e.g. an EEG channel or fMRI voxel) covers.

Listening to music (e.g. the 2 min piece by Mozart in Fig. 1.10) and measuring
EEG brain activities every millisecond, will result in a deep spatio-temporal pattern
of brain activities of 120,000 events. What about learning to play and then perform
a musical piece without looking at notes for 4 h? That will involve tens of millions
of brain activity events at a millisecond resolution. And this is deep knowledge
representation that musicians learn.
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In terms of seismic environmental data (see Figs. 1.5 and 1.12), deep knowledge
that represents a pattern of seismic activity that is detected before an earthquake,
can be discovered at a time resolution of a second totalling to 3153,600 time-point
events for one year pattern before the earthquake, or to 1800 events 5 h before the
earthquake, or to 60 events 1 min before the earthquake. And this is the dept in time
of deep seismic knowledge related to risk of earthquake. The spatial dept of this
knowledge will be defined by the spatial resolution of the measured seismic
activities and the size of the areas each measurement (seismic variable) covers.

Groups of events that happen in a similar time at a similar place can be inte-
grated together in larger knowledge “granules” (chunks of information), thus the
term deep knowledge granularity.

Optimal spatio-temporal resolution and spatio-temporal depth of the patterns and
granularity of knowledge representation for a given task are difficult to define. They
vary across tasks and problems and are often restricted by the measured data as
illustrated in some of the chapters of this book.

Illustration of deep rules as a result of deep learning in the human brain are given
in Chap. 3 (extracted from data measuring brain activities). In Chaps. 6, 8, 10, 13,
18, 19 and in other chapters of the book deep rules are extracted from a deep trained
brain-inspired SNN using time-space data.

1.6.3 Examples of Deep Knowledge Representation in This
Book

Some elements of deep knowledge are manifested in computational models and
systems, some of them presented in the book, such as:

– Hidden Markov Models (next section);
– Deep brain EEG and fMRI patterns representing brain perception or cognitive

activities (Chaps. 8–11);
– Gene-regulatory networks in Bioinformatics and Neurogenetics (Chap. 17);
– Deep personalised patterns related to individual stroke prediction (Chap. 18)
– Deep climate patterns related to ecological events (Chap. 19);
– Deep geological patterns related to earthquake events (Chap. 19).

1.7 Statistical, Computational Modelling of Evolving
Processes

Computational modelling of evolving processes aims at the development of
mathematical and computational models that capture the essence of the dynamics of
the processes and facilitate acquiring of knowledge.
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1.7.1 Statistical Methods for Computational Modelling

Here some of the most popular methods are presented, also used in other chapters of
the book for a comparative analysis between their performance and the performance
of new methods based on SNN.

Hidden Markov Models (HMM) are techniques for modelling the temporal
structure of a time series signal, or of a sequence of events [25]. It is a probabilistic
pattern matching approach which models a sequence of patterns as the output of a
random process. A HMM consists of an underlying Markov chain.

P q tþ 1ð Þjq tð Þ; q t� 1ð Þ; q t� 2ð Þ; . . .; q t� nð Þð Þ � P q tþ 1ð Þjq tð Þð Þ; ð1:20Þ

where q(t) is state q sampled at a time t.

Multiple linear regression methods (MLR)

The purpose of multiple linear regression is to establish a quantitative relationship
between a group of p predictor variables (X) and a response, y. This relationship is
useful for:

– Understanding which predictors have the greatest effect.
– Knowing the direction of the effect (i.e., increasing x increases/decreases y).
– Using the model to predict future values of the response when only the pre-

dictors are currently known.

A linear model takes its common form of:

y ¼ XAþ b ð1:21Þ

where: p is the number of the predictor variables; y is an n-by-1 vector of obser-
vations; X is an n-by-p matrix of regressors; A is a p-by-1 vector of parameters; b is
an n-by-1 vector of random disturbances. The solution to the problem is a vector, A′
which estimates the unknown vector of parameters.

Support vector machines

This is a statistical learning technique introduced by Vapnik [26, 27] which first
transforms the data from the original space to a higher dimensional space where
data belonging to different classes (outputs) can be discriminated by a hyperplane
defined by a set of bordering new data points called support vectors. This is
illustrated in Fig. 1.15.

Evaluating the error and accuracy of the computational models

One way is to use the least squares solution, so that the model approximates the data
with the least root mean square error (RMSE) as follows:
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RMSE ¼ SQRTðSUM i ¼ 1; 2; . . .; nð yi�yi
0ð Þ2Þ=nÞ ð1:22Þ

where: yi is the desired value from the data set corresponding to an input vector
xi; yi

0 is the value obtained through the model for the same input vector xi and n is
the number of the samples (vectors) in the data set.

Another error measure is also used to evaluate the performance of a regression
model—a non-dimensional error index (NDEI)—the RMSE divided to the standard
deviation of the data set:

NDEI ¼ RMSE=Std ð1:23Þ

A popular method to measure the accuracy of a computational model is the area
under the curve (AUC, or also called ROC)—Fig. 1.16, with a value of 1.0 being
the best and 0.5 being the worst.

1.7.2 Global, Local and Transductive (“Personalised”)
Modelling [28]

Most of learning models and systems in artificial intelligence developed and
implemented so far, are based on inductive inference methods, where a model (a
function) is derived from data representing the problem space and this model is
further applied on new data. The model is usually created without taking into

Fig. 1.15 SVM hyperplane
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account any information about a particular new data vector (test data). An error is
measured to estimate how well the new data fits into the model.

The models are in most cases global models, covering the whole problem space.
Such models are for example: regression functions; some ANN models, and also—
some support-vector machine (SVM) models, depending on the kernel function
they use. These models are difficult to update on new data without using old data,
previously used to derive the models. Creating a global model (function) that would
be valid for the whole problem space is a difficult task, and in most cases—it is not
necessary to solve.

Some global models may consist of many local models, that collectively cover
the whole space and can be adjusted incrementally on new data. The output for a
new vector is calculated based on the activation of one or several neighbouring
local models. Such systems are the evolving connectionist systems (ECOS), for
example—EFuNN and DENFIS (Chap. 2).

Transductive modelling

In contrast to the inductive learning and inference methods, transductive inference
methods estimate the value of a potential model (function) only in a single point of
the space (the new data vector) utilizing additional information related to this point
[26]. This approach seems to be more appropriate for clinical and medical applica-
tions of learning systems, where the focus is not on the model, but on the individual
patient. Each individual data vector (e.g.: a patient in the medical area; a future time
moment for predicting a time series; or a target day for predicting a stock index) may
need an individual, local model that best fits the new data, rather then—a global
model. In the latter case the new data is matched into a model without taking into
account any specific information about this data when creating the model.

Transductive inference is concerned with the estimation of a function in a single
point of the space only. For every new input vector xi that needs to be processed for
a prognostic task, the Ni nearest neighbours, which form a sub-data set Di, are

Fig. 1.16 ROC curve is used
to measure the accuracy of a
computational model, with
1.0 being the best and 0.5
being the worst (from [43])
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derived from an existing data set D and, if necessary, generated from an existing
model M. A new model Mi is dynamically created from these samples to
approximate the function around point xi. The system is then used to calculate the
output value yi for this input vector xi.

A simple transductive inference method is the k-nearest neighbour method
(K-NN). In the K-NN method, the output value yi for a new vector xi is calculated
as the average of the output values of the k nearest samples from the data set Di. In
the weighted K-NN method (WKNN) the output yi is calculated based on the
distance of the Ni nearest neighbour samples to xi:

yi ¼
PNi

j¼1 wjyjPNi
j¼1 wj

ð1:24Þ

where: yj is the output value for the sample xj from Di and wj are their weights
measured as:

wj ¼
max dð Þ � dj �min dð Þ� �

maxðdÞ ð1:25Þ

The vector d = [d1, d2, … dNi] is defined as the distances between the new input
vector xi and Ni nearest neighbours xj, for j = 1 to Ni; max(d) and min(d) are the
maximum and minimum values in d respectively. The weights wj have the values
between min(d)/max(d) and 1; the sample with the minimum distance to the new
input vector has the weight value of 1, and it has the value min(d)/max(d) in case of
maximum distance.

Distance is usually measured as Euclidean distance:

x� ykk ¼ 1
P

XP
j¼1

xj � yj
�� ��2" #1

2

ð1:26Þ

Distance can be also measured as Pearson correlation distance, Hamming distance,
cosine distance, etc. [27].

WWKNN: Weighted examples, weighted variables K-NN [28]

In the WKNN above the calculated output for a new input vector depends not only
on the number of its neighboring vectors and their output values (class labels), as it
is in the KNN method, but on the distance between these vectors and the new vector
which is represented as a weight vector (W). It is assumed that all v input variables
are used and the distance is measured in a v-dimensional Euclidean space with all
variables having the same impact on the output variable.

But when the variables are ranked in terms of their discriminative power of class
samples over the whole v-dimensional space, we can see that different variables
have different importance to separate samples from different classes, therefore—a
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different impact on the performance of a classification model. If we measure the
discriminative power of the same variables for a sub-space (local space) of the
problem space, the variables may have a different ranking.

Using the ranking of the variables in terms of a discriminative power within the
neighborhood of K vectors, when calculating the output for the new input vector, is
the main idea behind the WWKNN algorithm [28], which includes one more weight
vector to weigh the importance of the variables. The Euclidean distance dj between
a new vector xi and a neighbouring one xj is calculated now as:

dj ¼ SQR SUM l ¼ 1 to v ci; l xi; l� xj; lð Þð ÞSQ2½ � ð1:27Þ

where: SQR denotes square root; SQ denotes square; SUM denotes summation
function; ci, l is the coefficient weighing variable xl for in neighbourhood of xi. It
can be calculated using a Signal-to-Noise Ratio (SNR) procedure that ranks each
variable across all vectors in the neighborhood set Di of Ni vectors Ci = (ci, 1;
ci, 2; …; ci, v)

ci; l ¼ Sl=SUM Slð Þ; for: l ¼ 1; 2; . . .; v; ð1:28Þ

where: Sl ¼ abs Ml class 1ð Þ �Ml class 2ð Þð Þ= Stdl class 1ð Þþ Stdl class 2ð Þð Þ ð1:29Þ

Here Ml (class 1) and Stdl (class 1) are respectively the mean value and the standard
deviation of variable xl for all vectors in Di that belong to class 1.

The new distance measure, that weighs all variables according to their impor-
tance as discriminating factors in the neighborhood area Di, is the new element in
the WWKNN algorithm when compared to the WKNN.

Using the WWKNN algorithm, a “personalized” profile of the variable impor-
tance can be derived for any new input vector that represents a new piece of
“personalised” knowledge. Weighting variables in personalized models is used in
the TWNFI models (Transductive Weighted Neuro-Fuzzy Inference) in [29].

There are several open problems related to transductive learning and reasoning,
e.g. how to choose the optimal number of vectors in a neighbourhood and the
optimal number of variables, which for different new vectors may be different [30].

1.7.3 Model Validation

When a machine learning model is built based on a data set S, it needs to be
validated in terms of its generalisation ability to produce good results on new,
unseen data samples. There are several ways to validate a model:

– Train-test split of data: Splitting the data set S into two sets: Str for training, and
Sts for testing the model;

– N-fold cross validation (e.g. 3, 5, 10): in this case the data set S is split randomly
into k sub-sets S1, S2,…, Sk and i = 1, 2,… k times a model Mi is created on a
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the data set S−Si and tested on the set Si; the mean accuracy across all k
experiments is calculated.

– Leave-one-out cross validation (a partial case of the above method when the
data set S is split N times, in each sub-set there is only one sample).

What concerns the whole task of feature selection, model creation and model
validation, the above methods can be applied in two different ways:

– A “biased” way—features are selected from the whole set S using a filtering
based method, and then a model is created and validated on the selected already
features.

– An “un-biased” way—for every data subset Si in a cross validation procedure,
first—features Fi are selected from the set S after set Si is removed from S
(using some of the above discussed methods, e.g. SNR) and then—a model is
created based on the feature set Fi; the model Mi is validated on Si using
features Fi.

1.8 Brain-Inspired AI

Artificial Intelligence (AI) is part of the interdisciplinary information sciences area
that develops and implements methods and systems that manifest cognitive beha-
viour [31–39].

Main features of AI are:

– learning,
– adaptation,
– generalisation,
– inductive and deductive reasoning,
– human-like communication.

Some more features are currently being developed:

– consciousness,
– self-assembly,
– self-reproduction,
– AI social networks.

Marvin Minsky (1961) [40] articulated the term Artificial Intelligence as com-
puter systems that are able to perform: search, pattern recognition, learning, plan-
ning, inductive reasoning.

In [41] AI is defined as computer systems that exhibit human like intelligence. It
is a group of science fields and technologies concerned with creating machines that
take intelligent actions based on inputs. And also in [41] AI is defined as “…
advanced digital technologies that enable machines to reproduce or surpass abilities
that would require intelligence if humans were to perform them. This includes
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technologies that enable machines to learn and adapt, to sense and interact, to
reason and plan, to optimise procedures and parameters, to operate autonomously,
to be creative and to extract knowledge from large amounts of data….”

There is a trend in AI called Artificial General Intelligence (AGI) that considers
machines to become able to perform any intellectual task that humans can do.

Another trend in AI is called Technological Singularity. This trend argues that
machines will become super intelligent that they take over from humans and
develop on their own, beyond which point the human societies can collapse in their
present forms, which may ultimately lead to the perish of humanity.

Stephen Hawking (b.1942–d.2018) commented: “I believe there is no real
difference between what can be achieved by a biological brain and what can be
achieved by a computer. AI will be able to redesign itself at an ever-increasing rate.
Humans, who are limited by slow biological evolution, couldn’t compete and could
be superseded by AI. AI could be either the best or the worst thing ever to happen to
humanity…”

A new trend in AI is the Brain-Inspired AI (BI-AI), which is being developed
and presented in this book. BI-AI systems use principles of deep learning in the
human brain to reveal deep knowledge and to enable machines to manifest cog-
nitive functions. BI-AI systems adopt structures and methods from the human brain
to intelligently learn spatio-temporal data.

BI-AI systems have six distinctive features:

(1) They have their structures and functionality inspired by the human brain; they
consist of spatially located neurons that create connections between them
through deep learning in time-space by exchanging information—spikes. They
are built of spiking neural networks (SNN), as explained in Chaps. 4–6 in the
book.

(2) Being brain-inspired, BI-AI systems can achieve not only deep learning, but
deep knowledge representation as well. They are transparent.

(3) They can manifest cognitive behaviour.
(4) They can be used for knowledge transfer between humans and machines as a

foundation for the creation of symbiosis between humans and machines, ulti-
mately leading to the integration of human intelligence and artificial intelli-
gence (HI + AI) as discussed in the last chapter of the book.

(5) BI-AI systems are universal data learning machines, being superior than tra-
ditional machine learning techniques when dealing with time-space data.

(6) BI-AI systems can help understand-, protect-, and cure the human brain.

Box 1.1 elaborates further on the main features above and lists 20 features of
BI-AI as presented and demonstrated in various chapters of the book. Some of them
are in a preliminary stage of development and more can be expected in the future.
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______________________________________________________________________________

Box 1.1. Twenty structural, functional and cognitive features of BI-AI systems 
_____________________________________________________________________________________

Structural Features:

1. The structure and organisation of a system follows the structure and organisation of the human 

brain, for example through using a 3D brain template. 

2. Input data and information is encoded and processed in the system as spikes over time.  

3. A system is built of spiking neurons and connections, forming SNN.    

4. A system is scalable, from hundreds to billions of neurons and trillions of connections.    

5. Inputs are mapped spatially into the 3D system structure. 

6. Output information is also presented as spike sequences.

       Functional Features 

7. A system operates in a highly parallel mode, potentially all neurons operating in parallel.

8. A system can be implemented on various computer platforms, but more efficiently on 

neuromorphic highly parallel platforms and on quantum computers (if available). 

9. Self-organised unsupervised, supervised and semi-supervised deep learning is performed using 

brain-inspired spike-time learning rules.  

10. The learned spatio-temporal patterns represent deep knowledge.

11. A system operates in a fast, incremental and predictive learning mode.

12. Different time scales of operation, e.g. nanoseconds, milliseconds, minutes, hours, days, 

millions of years (e.g. genetics), can be represented, possibly in their integration.  

13. A system can process multimodal d

Cognitive features

14. A system can communicate with humans in a natural language. 

15. A system can make abstractions and discover new knowledge (e.g. rules) through self-

observing its structure and functions.

16. A system can process all kinds of sensory information that is processed by the human brain, 

including:  visual-, auditory-, sensory-, olfactory-, gustatory, if necessary in their integration.  

17. A system can manifest both sub-conscious and conscious processing of stimuli. 

18. A system can recognise and express emotions and consciousness. 

19. Deep knowledge can be transferred between humans and machines using brain signals and 

other  relevant information, e.g. visual, etc.   

20. BI-AI systems can form societies and communicate between each other and with humans 

achieving a constructive symbiosis between humans and machines.   

_____________________________________________________________________________

ata from all levels of functionality per Fig. 1.1 

(e.g. quantum; genetic;neuronal; ensembles of neurons; etc.), possibly in their integration.
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We will argue and will demonstrate in this book that BI-AI systems, if properly
developed and used, can bring a tremendous technological progress across all areas
of human activities and sciences and technologies, such as:

– Early disease diagnosis and disease prevention (Chap. 18);
– Affective robots for homes and for elderly (Chaps. 8 and 14);
– Improved decision support and productivity (Chap. 20);
– Improved human intelligence and creativity (Chaps. 12, 13 and 22);
– Improved lives and longevity (Chaps. 17 and 18);
– Predicting and preventing hazardous events (Chap. 19);
– And many more.

Some of the above applications are developed and illustrated in the book.

1.9 Chapter Summary and Further Readings for Deeper
Knowledge

This chapter discusses fundamentals of evolving processes in space and time and
some of the challenges to model them and to acquire deep knowledge. All methods
and concepts presented in this chapter are used in different chapters of the book as a
fundamental information. More about this topic can be found in [17, 42].

With the large scale data collection across all science, technology and social
areas, machine learning from data to create models and extract rules and knowledge
became a necessity. This led to the establishment of artificial neural networks as
major machine learning techniques that borrows some basic principle of informa-
tion processing and learning from the brain (Chap. 2).

But, the human brain learns data in a deep learning mode and understands the
evolving processes through the acquired deep knowledge (Chap. 3). How this could
be used to create brain-inspired SNN systems is discussed in Chaps. 4–7 and how
SNN can be used to create BI-AI application systems is presented in Chaps. 8–19.
Chapters 20, 21 and 22 present some new directions of research in SNN and BI-AI.

Further recommended readings on specific topics can include:

– Aristoteles’ epistemology [18, 19];
– Fuzzy logic [20, 21];
– Hidden Markov Models [25];
– Statistical Learning Theory [26, 27];
– Neuro-fuzzy systems [6, 28–30].

In [42] the author has expressed a view that in 20 years time or so AI will
become common tools, perhaps as the spreadsheets are now, but scientists and
technologists have to work hard in order to make this happened.

Acknowledgements Some of the material in this chapter was first published by the author in
[6, 9, 30].
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Chapter 2
Artificial Neural Networks. Evolving
Connectionist Systems

Classical artificial neural networks (ANN) were developed to learn from data.
Evolving connectionist systems (ECOS) were further developed by the author and
taken further by other researchers not only to learn in an adaptive, incremental way
from data that measure evolving processes, but to extract rules and knowledge from
the trained systems. Both methods were initially inspired by some principles of
learning in the brain, but then they were developed mainly as machine learning and
AI tools and techniques, with a wider scope of applications. Many of the archi-
tectures and learning methods of ANN and ECOS were used in the development of
SNN, deep learning systems and brain-inspired AI discussed in other chapters of
the book.

The chapter is organised in the following sections:

2:1. Classical Artificial Neural Networks: SOM, MLP, CNN, RNN.
2:2. Hybrid and knowledge-based ANN: Opening the “black box”.
2:3. Evolving Connectionist Systems.
2:4. Evolving Fuzzy Neural Networks. EFuNN.
2:5. Dynamic Evolving Neuro Fuzzy Systems. DENFIS.
2:6. Other ECOS methods and systems.
2:7. Summary and further readings for deeper knowledge.

2.1 Classical Artificial Neural Networks: SOM, MLP,
CNN, RNN

ANNs are computational models that mimic the nervous system in its main function
of adaptive learning and generalization. ANNs are universal computational models.
One of the most popular artificial neuron models is the McCulloch and Pitts neuron
developed in 1943. It was used in early ANNs, such as Rosenblatt’s Perceptron [1]
and multilayer perceptron [2–5]. A simple example is given in Fig. 2.1.
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Various types of ANN architectures and learning algorithms have been devel-
oped, e.g.:

– Self-Organising maps (SOM) and unsupervised learning algorithms [6–8];
– Multilayer perceptrons (MLP) and back propagation supervised learning algo-

rithm [3–5];
– Adaptive Resonance Theory (ART) [9];
– Recurrent ANN and reinforcement learning [10];
– Convolutional and deep learning ANN [11–13].

This section covers some classical models of ANN. They have also influenced the
development of the brain-like spiking neural networks (SNN) and brain-inspired AI
techniques presented in other chapters of the book.

2.1.1 Unsupervised Learning in Neural Networks.
Self-organising Maps (SOM)

Unsupervised learning is concerned with finding structures in the data. Techniques
include:

– Clustering of data;
– Vector quantisation.

A basic technique to apply when finding structures in data is measuring distance (or
similarity) between data vectors (data samples).

Measuring distance (or similarity) is a fundamental issue in all statistical and
ANN learning methods. The following are some of the most used methods for
measuring distance, illustrated on two, n-dimensional data vectors x = (x1, x2, …,
xn) and y = (y1, y2, …, yn):

– Euclidean distance:

D x; yð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX

i¼1;...;n
xi � yið Þ2

� �
=n

h ir
ð2:1Þ

Fig. 2.1 A diagram of a
simple artificial neuron
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– Hamming distance (for binary vectors):

D x; yð Þ ¼
X

i¼1;...;n
xi � yij j

� �
=n ð2:2Þ

where absolute values of the difference between the two vectors are used.
– Local fuzzy normalized distance [14–17]:

A local normalized fuzzy distance between two fuzzy membership vectors xf and
yf that represent the membership degrees to which two real vector data x and
y belong to pre-defined fuzzy membership functions is calculated as:

D xf ; yfð Þ ¼ xf � yfk k= xf þ yfk k; ð2:3Þ

where xf � yfk k denotes the sum of all the absolute values of a vector that is
obtained after vector subtraction (or summation in case of xf � yfk k) of two vectors
xf and yf of fuzzy membership values; “/” denotes division.

– Cosine distance:

D ¼ 1� SUMð
ffiffiffiffiffiffiffi
xiyi

p
/

ffiffiffiffiffiffi
xi2

p ffiffiffiffiffiffi
yi2

p
Þ ð2:4Þ

– Correlation distance:

D ¼ 1�
Xn

i¼1
ðxi� xiÞðyi� yiÞ=

Xn

i¼1
xi� xi
� �2

yi� yi
� �2 ð2:5Þ

where xi is the mean value of the variable xi.

Many unsupervised learning neural network methods are based on clustering of
input data. Clustering is the process of defining how data are grouped together
based on similarity.

Clustering results in the following outcomes:

– Cluster centres: these are the geometrical centres of the data grouped together;
their number can be either pre-defined (batch-mode clustering), or not defined a
priori but evolving;

– Membership values, defining for each data vector to what cluster it belongs to.
This can be either a crisp value of 1 (the vector belongs to a cluster), or 0—it
does not belong to a cluster (as it is in the k-means method), or a fuzzy value
between 0 and 1 showing the level of belonging—in this case the clusters may
overlap (fuzzy clustering).

Self-organizing Maps—SOMs

Here, the principles of the traditional SOMs are outlined first, and then some
modifications that allow for dynamic, adaptive node creation, are presented.
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Self-organizing maps belong to the vector quantisation methods where proto-
types are found in a prototype (feature) space (map) of dimension l rather than in
the input space of dimension d, l < d. In Kohonen’s self-organizing feature map
(SOM) [7, 8, 18, 19] the new space is a topological map of 1-, 2-, 3-, or more
dimensions (Fig. 2.2).

The main principles of learning in SOM are as follows:

• Each output neuron specializes during the training procedure to react to similar
input vectors from a group (cluster) of input data. This characteristic of SOM
tends to be biologically plausible as some evidences show that the brain is
organised into regions which correspond to similar sensory stimuli. A SOM is
able to extract abstract information from multi-dimensional primary signals and
to represent it as a location, in one-, two-, and three- etc. dimensional space.

• The neurons in the output layer are competitive ones. Lateral interaction
between neighbouring neurons is introduced in such a way, that a neuron has a
strong excitatory connection to itself, and less excitatory connections to its
neighbouring neurons in a certain radius; beyond this area, a neuron either
inhibits the activation of the other neurons by inhibitory connections, or does
not influence it. One possible neighbouring rule that implements the described
strategy is the so called “Mexican hat” rule. In general, this is “the winner-takes
all” scheme, where only one neuron is the winner after an input vector was fed,
and a competition between the output neurons has taken place. The fired neuron
represents the class, the group (cluster), the label, or the feature to which the
input vector belongs.

• SOMs transform or preserve similarity between input vectors from the input
space into topological closeness of neurons in the output space represented as a
topological map. Similar input vectors are represented by near points (neurons)
in the output space. Example is given in Fig. 2.3.

The unsupervised algorithm for training a SOM, proposed by Teuvo Kohonen, is
outlined in Box 2.1. After each input pattern is presented, the winner is established
and the connection weights in its neighbourhood area Nt increase, while the

x1 x2

Fig. 2.2 Example of a simple
SOM architecture of 2 input
neurons and 2D output
topological map (after [17,
20])

42 2 Artificial Neural Networks. Evolving Connectionist Systems



connection weights outside the area are kept unchanged. a is a learning parameter.
Training is done through a number of training iterations so that at each iteration the
whole set of input data is propagated through the SOM and the connection weights
are adjusted.

SOMs learn statistical features. The synaptic weight vectors tend to approximate
the density function of the input vectors in an orderly fashion. Synaptic vectors wj

converge exponentially to centres of groups of patterns and the nodes of the output
map represent to a certain degree the distribution of the input data. The weight
vectors are also called reference vectors, or reference codebook vectors. The whole
weight vector space is called a reference codebook.

In SOM the topology order of the prototype nodes are pre-determined and the
learning process is to “drag” (in terms of connection weights of the output nodes to
the input variables) the ordered nodes onto the appropriate positions in the low
dimensional feature map. As the original input manifold can be complicated and an
inherent dimension larger than that of the feature map (usually set as 2 for visu-
alization purpose), the dimension reduction in SOM may become inappropriate for
complex data analysis tasks.

Fig. 2.3 An example of SOM topological map trained on macroeconomic annual data of
European countries. Countries with similar economic parameters are clustered together. The
change in the economic development of Ireland is traced over years on the map (after [17])
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Some of the principles of SOM, such as topological mapping, are used and
further developed in the evolving SOM (further section in this chapter) and to
certain degree in the brain-inspired SNN as discussed in Chap. 6.

2.1.2 Supervised Learning in ANN. Multilayer Perceptron
and the Back Propagation Algorithm

Connectionist systems for supervised learning learn from pairs of data (x, y), where
the desired output vector y is known for an input vector x.

If the model is incrementally adaptive, new data will be used to adapt the
system’s structure and function incrementally. If a system is trained incrementally,
the generalization error of the system on the next new input vector (or vectors) from
the input stream is called here local incrementally adaptive generalization error.
The local incrementally adaptive generalization error at the moment t, for example,
when the input vector is x(t), and the calculated by the system output vector is y(t)′,
is expressed as ErrðtÞ ¼ yðtÞ � yðtÞ0�� ��.

The local incrementally adaptive root mean square error, and the local incre-
mentally adaptive non-dimensional error index LNDEI(t) can be calculated at each
time moment t as:
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LRMSEðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX

i¼1;2...;t
ðErrðiÞ2Þ=t

� �
;

r
ð2:6Þ

LNDEIðtÞ ¼ LRMSEðtÞ=stdðyð1Þ : yðtÞÞ; ð2:7Þ

where std(y(1):y(t)) is the standard deviation of the output data points from time
unit 1 to time unit t.

In a general case, the global generalization root mean square error RMSE and the
non-dimensional error index are evaluated on a set of p new (future) test examples
from the problem space as follows:

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX

i¼1;2;...p
½ yi � y0i
� �2�=p� �

;

r
ð2:8Þ

NDEI ¼ RMSE=std y1: yp
� �

; ð2:9Þ

where std(y1: yp), is the standard deviation of the data from 1 to p in the test set.
After a system is evolved on a sufficiently large and representative part of the

whole problem space Z, its global generalization error is expected to become sat-
isfactorily small, similar to the off-line, batch mode learning error.

Multilayer perceptron (MLP) trained with a backpropagation algorithm (BP) use
a global optimization function in both incrementally adaptive (pattern mode)
training, and in a batch mode training [2, 4, 5]. The batch mode, off-line training of
a MLP is a typical learning method. Figures 2.4 and 2.5 depict a typical MLP
architecture and Box 2.2 depicts the batch mode backpropagation algorithm.

In the incremental, pattern learning mode of the backpropagation algorithm, after
each training example is presented to the system and propagated through it, an error
is calculated and then all connections are modified in a backward manner. This is
one of the reasons for the phenomenon called catastrophic forgetting—if examples
are presented only once, the model may adapt to them too much and “forget”
previously learned examples, if the model is a global model. This phenomenon is

Fig. 2.4 An example of a simple feedforward ANN (after [17])
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illustrated on Fig. 2.6a, where after training a MLP on a data set A it is trained on
data set B and it ‘forgets’ a lot about data set A, etc.

In an incrementally adaptive learning mode, same or very similar examples from
the past need to be presented many times again, in order for the system to properly
learn new examples without forgetting them. The process of learning new examples
and presenting previously used ones is called “rehearsal” training [21].

MLP can be trained in an incrementally adaptive mode, but they have limitations
in this respect as they have a fixed structure and the weight optimisation is a global
one if a gradient descent algorithm is used for this purpose.

A very attractive feature of the MLP is that they are universal function
approximators (see [22, 23]) even though in some cases they may converge in a
local minimum.

Some connectionist systems, that include MLP, use local objective (goal)
function to optimise the structure during the learning process. In this case when a
data pair (x, y) is presented, the system optimises its functioning always in a local
vicinity of x from the input space X, and in the local vicinity of y from the output
space Y [24].

oj

(desired
output)

hi wij

wkixk

X
Signal Error

| yj - oj |

Input Layer Hidden Layer Output Layer

yj

Fig. 2.5 A schematic diagram used to explain the error backpropagation algorithm (after [17])

Error
for set A

for set B

Iterations
1000 2000 3000

Error

Etest

Etrain

Number of iterations

(a) (b)

Fig. 2.6 a Illustration of learning with catastrophic forgetting in MLP (after [17]). b Illustration of
overfitting the data in MLP (after [17])
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When a MLP is trained for too many iterations, its generalization ability (to
recognize new data) may deteriorate which is known as overfitting (see Fig. 2.6b)

Principles of MLP and backpropagation algorithms are used and further devel-
oped for multiple layers as illustrated in Fig. 2.7, called deep ANN.

Fig. 2.7 Multiple layers of MLP (also called deep ANN) as a simple example
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2.1.3 Convolutional Neural Networks (CNN)

Fukushima proposed a biologically inspired MLP in which the first layer performs
feature extraction from subspace of the image data and the other layers combine
these features, similar to the visual cortex. He called these ANN Cognitron (1975)
and Neocognitron (1980) [11, 12]—Fig. 2.8. This is perhaps the first deep NN
structure that was inspired by the structure and functionality of the visual cortex.

The Neocognitron principles were further developed in a series of ANN called
convolutional ANN (CNN) illustrated in Fig. 2.9a and multiple layer convolutional
MLP—Fig. 2.9b.

CNN and deep ANN have been successfully developed for large scale image
classification (e.g. 14 mln images in the ImageNet data set), recognizing spoken
words from a large corpus of data (e.g. TIMIT), structuring large repositories of
data in the IBM Watson question-answering systems, playing games such as Go
with human masters, etc. [26–32].

The CNN and the deep ANN are excellent tools for vector, frame-based data
(e.g. image recognition), but not much for spatio-temporal data that measure
evolving processes, as these models can manifest catastrophic forgetting when
trained on new data incrementally. There is no time of asynchronous events learned
in the models and they are difficult to adapt to new data and change their structures.
Even though this approach allows for deep learning of vector based data across
many layers of neurons, it still lacks methods for deep knowledge representation in
time-space as defined in Chap. 1.

Knowledge representation in an ANN was achieved in the knowledge–based
ANN and more specially in the evolving connection systems (ECOS) as presented
in the next sections. It was also achieved in evolving spiking neural networks
(eSNN) in Chap. 5. Deep learning and deep knowledge representation in
time-space as defined in Chap. 1 is achieved in the brain-inspired SNN as discussed
in Chap. 6 and in other chapters of the book.

Fig. 2.8 Fukushima’s
neocognitron CNN (after [12]
and also [25])

48 2 Artificial Neural Networks. Evolving Connectionist Systems



2.1.4 Recurrent and LSTM ANN

Recurrent ANN (RNN) have feedforward, feedback and later connections [13, 26]
—as illustrated with a simple example in Fig. 2.10.

As a further continuation of the RNN, the so called Long-Short Term Memory
(LSTM), was developed [34, 35]. A LDTM RNN consists of units, each unit
consisting of a cell, an input gate, an output gate and a forget gate. The cell is

Fig. 2.9 a Illustration of the principle of convolutional ANN (CNN) (after [25]). b Illustration of
the principle of CNN and MLP with multiple layers (after [25])

Feedforward
connections

Feedback
connections

Lateral 
connections

Fig. 2.10 Recurrent ANN have feedforward, feedback and later connections (after [33])
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responsible for remembering input data over time. Each of the three gates can be
thought of as an artificial neuron, as in a multi-layer (or feedforward) neural net-
work. They compute an activation based on a weighted sum. There are connections
between these gates and the cell (see [25, 33–35] for more explanation).

2.2 Hybrid and Knowledge-Based ANN

Some of the ANN discussed above are considered ‘black boxes’ as it was difficult
to interpret their internal structures and to articulate the essential knowledge
learned. That led to the development of hybrid and rule based ANN that can both
incorporate and extract essential information from the data and reveal new
knowledge about the modelled processes.

In order to incorporate human knowledge into an intelligent system, an ANN
module can be combined with a rule-based module in the same system. The rules
can be fuzzy rules as a partial case [20]. An exemplar system is shown in Fig. 2.11,
where, at a lower level, an ANN module predicts the next day value of a stock index
and, at a higher level, a fuzzy reasoning module combines the predicted values with
some macro-economic variables, using the following types of fuzzy rules [20]:

IF <the stock value predicted by the ANN module is high>

AND <the economic situation is good>

THEN <buy stock>

Hybrid systems can also use crisp propositional rules, along with fuzzy rules [36].
The type of hybrid systems illustrated in from Fig. 2.11 are suitable to use when
decision rules are available to integrate with a machine learning module that learns
from incoming data.

Fuzzified data

Current price

Yesterday's price
(crisp values)

Predicted price

(crisp value)

Trading rules

(fuzzy)

Political situation

Economic situation
(fuzzy values)

Decision (buy/sell/hold)
(fuzzy & crisp values)

Rules
extraction
module

Neural
network

Neural
network

Fuzzy
rule based
decision

Fig. 2.11 A hybrid ANN-fuzzy rule-based expert system for financial decision support [20]
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Another group of ANN methods can be used not only to learn from data, but to
extract rules from a trained ANN and/or also insert rules into an ANN as initial-
ization procedure. These are the knowledge-based neural networks (KBNN).

Types of Rules used in KBNN

Different KBNNs are designed to represent different types of rules, some of them
listed below:

(1) Simple propositional rules (e.g., IF x1 is A AND/OR x2 is B THEN y is C,
where A, B and C are constants, variables, or symbols of true/false type) (see
for example, [37–39]. As a partial case, interval rules can be used, for example:
IF x1 is in the interval [x1min, x1max] AND x2 is in the interval [x2min,
x2max] THEN y is in the interval [ymin, ymax], with Nr1 examples associated
with this rule.

(2) Propositional rules with certainty factors (e.g., IF x1 is A (CF1) AND x2 is B
(CF2) THEN y is C (CFc)), (see for example [40]).

(3) Zadeh-Mamdani fuzzy rules (e.g., IF x1 is A AND x2 is B THEN y is C, where
A, B and C are fuzzy values represented by their membership functions) (see
for example Fig. 2.12 and [41, 42]).

(4) Takagi-Sugeno fuzzy rules (for example, the following rule is a first order rule:
IF x1 is A AND x2 is B THEN y is a � x1 + b � x2 + c, where A and B are
fuzzy values and a, b and c are constants) ([43, 44]). More complex functions
are possible to use in higher-order rules.

(5) Fuzzy rules with degrees of importance and certainty degrees (e.g.; IF x1 is A
(DI1) AND x2 is B (DI2) THEN y is C (CFc), where DI1 and DI2 represent the
importance of each of the condition elements for the rule output, and the CFc
represents the strength of this rule) (see [20]).

(6) Fuzzy rules that represent associations of clusters of data from the problem
space (e.g., Rule j: IF [an input vector x is in the input cluster defined by its
centre (x1 is Aj, to a membership degree of MD1j, AND x2 is Bj, to a
membership degree of MD2j) and by its radius Rj-in] THEN [y is in the output
cluster defined by its centre (y is C, to a membership degree of MDc) and by its
radius Rj-out, with Nex(j) examples represented by this rule]. These are the
EFuNN rules discussed in a next section.

(7) Temporal rules (e.g., IF x1 is present at a time moment t1 (with a certainty
degree and/or importance factor of DI1) AND x2 is present at a time moment t2
(with a certainty degree/importance factor DI2) THEN y is C (CFc)).

(8) Temporal, recurrent rules (e.g., IF x1 is A (DI1) AND x2 is B (DI2) AND y at
the time moment (t − k) is C THEN y at a time moment (t + n) is D (CFc)).

(9) Type-2 fuzzy rules, that are fuzzy rules of the form of: IF x is A* AND y is B*

THEN z is C*, where A*, B*, and C* are type-2 fuzzy membership func-
tions using intervals rather than single membership values [45].

The integration of ANN and fuzzy systems into one system attracted many
researchers. The integration of fuzzy rules into a single neuron model and then into

2.2 Hybrid and Knowledge-Based ANN 51



larger neural network structures, tightly coupling learning and fuzzy reasoning rules
into connectionists structures, was initiated by Professor Takeshi Yamakawa and other
Japanese scientists [46]. Many models of fuzzy neural networks are developed based on
these principles [20, 47, 48]. These are adaptive neural networks for incremental
learning and rule extraction: The neuro-fuzzy systems (no more the “black box curse”).
As a general case, input and/or output variables can be non-fuzzy (crisp) or fuzzy.
Example of fuzzy Gaussian membership functions is shown in Fig. 2.12.

Hybrid connections systems can incorporate fuzzy rules. They can also be used to
extract fuzzy rules from already trained ANN called fuzzy neural networks as it is the case
with the ECOS discussed in the next section. An example of a fuzzy rule is given below:

IF Input 1 is High and Input 2 is Low THEN Output is Very High
A typical example of hybrid ANN are ECOS, presented in the next section.

2.3 Evolving Connectionist Systems (ECOS)

2.3.1 Principles of ECOS

In the evolving connectionist systems (ECOS), introduced by the author, instead of
training a fixed ANN through changing its connection weights, the connectionist
structure and its functionality are evolving from incoming data, often in an on-line,
one-pass learning mode and then it can be used to extract rules as knowledge
representation [14–17, 49].

ECOS are modular connectionist based systems that evolve their structure and
functionality in a continuous, self-organized, on-line, adaptive, interactive way
from incoming information [14]. They can process both data and knowledge in a
supervised and/or unsupervised way. ECOS learn local models from data through
clustering of the data and associating a local output function for each cluster rep-
resented in a connectionist structure. They can learn incrementally single data items
or chunks of data and also incrementally change their input features [15–17].
Elements of ECOS have been proposed as part of the classical neural network
models, such as Self-Organizing Maps, Radial Basis Functions, Fuzzy ARTMap,

Fig. 2.12 Example of fuzzy Gaussian membership functions that represent a variable Height
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growing neural gas, neuro-fuzzy systems, Resource Allocation Network (for a
review see [17]). Other ECOS models, along with their applications, have been
reported in [50, 51].

The principle of ECOS is based on local learning—neurons are allocated as
centers of data clusters and the system creates local models in these clusters.
Methods of fuzzy clustering, as means to create local knowledge-based systems,
were developed by Bezdek, Yager, Filev and others [52, 53].

To summarize, the following are the main principles of ECOS as stated in [14]:

(1) Fast learning from large amount of data, e.g. using “one-pass” training, starting
with little or no prior knowledge;

(2) Adaptation in real-time and in an on-line mode where new data is accommo-
dated as it comes based on local learning;

(3) “Open”, evolving structure, where new input variables (relevant to the task),
new outputs (e.g. classes), new connections and neurons are added/evolved “on
the fly”;

(4) Both data learning and knowledge representation is facilitated in a compre-
hensive and flexible way, e.g., supervised learning, unsupervised learning,
evolving clustering, “sleep” learning, forgetting/pruning, fuzzy rule insertion
and extraction;

(5) Active interaction with other ECOSs and with the environment in a
multi-modal fashion;

(6) Representing both space and time in their different scales, e.g., clusters of data,
short- and long-term memory, age of data, forgetting, etc.;

(7) System’s self-evaluation in terms of behavior, global error and success, and
related knowledge representation.

2.3.2 Evolving Self-organising Maps

Several methods, such as: Dynamic Topology Representing Networks [54] and
Evolving Self-organizing Maps (ESOM) [55] further developed the principles of
SOM. These methods allow prototype nodes to evolve quickly in the original data
space X, and at the same time acquire and keep a topology representation. The
neighbourhood of the evolved nodes (neurons) is not pre-defined as it is in SOM. It
is defined in an on-line mode according to the current distances between the nodes.
These methods are free of the rigid topological constraints in SOM. They do not
require searching for neighbourhood ranking as in the neural gas algorithm, thus
improving the speed of learning.

Here, the ESOM method is explained in more detail.
Given an input vector x, the activation on the ith node in ESOM is defined as:
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ai ¼ e� x�wik k2=e2 ð2:10Þ

where e is a radial. Here ai can be regarded as a matching score for the i-th
prototype vector wi onto the current input vector x. The closer they are, the bigger
the matching score is.

The following on-line stochastic approximation of the error minimization
function is used:

Eapp ¼
X
i¼1;n

ai x� wik k2 ð2:11Þ

where n is the current number of nodes in ESOM upon arrival of the input vector x.
To minimize the criterion function above, weight vectors are updated by

applying a gradient descent algorithm. From Eq. (2.11) it follows:

@Eapp

@wi
¼ ai wi � xð Þþ x� wik k2@ai=@wi ð2:12Þ

For the sake of simplicity, we assume that the change of the activation will be rather
small each time when the weight vector is updated, so that ai can be treated as a
constant. This leads to the following simplified weight-updating rule:

Dwi ¼ cai x� wið Þ; for i ¼ 1; 2; . . .; n ð2:13Þ

Here c is a learning rate held as a small constant.
The likelihood of assigning the current input vector x onto the ith prototype wi is

defined as:

Pi x;wið Þ ¼ ai=
X

k¼1;2;...;n

ðakÞ ð2:14Þ

Evolving the Feature Map

During on-line learning, the number of prototypes in the feature map is usually
unknown. For a given data set the number of prototypes may be optimum at a
certain time but later it may become inappropriate as when new samples are arriving
the statistical characteristics of data may change. Hence it is highly desirable for the
feature map to be dynamically adaptive to the incoming data.

The approach here is to start with a null map, and gradually allocate new
prototype nodes when new data samples cannot be matched well onto existing
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prototypes. During learning, when old prototype nodes become inactive for a long
time, they can be removed from the dynamic prototype map.

If for a new data vector x none of the prototype nodes are within a distance
threshold, then a new node wnew is inserted representing exactly the poorly matched
input vector wnew = x, resulting in a maximum activation of this node for x.

The ESOM learning algorithm is given in Box 2.3 (from [55]).

Visualising the Feature Map

Sammon projection or other dynamic visualisation techniques [17] can be used to
visualize the evolving nodes of an ESOM at each time of incremental, evolving
learning [55].
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2.3.3 Evolving MLP

A simple evolving MLP method is called here eMLP and presented in Fig. 2.13 as a
simplified graphical representation [17, 51]. An eMLP consists of three layers of
neurons, the input layer, with linear transfer functions, an evolving layer, and an output
layer with a simple saturated linear activation function. It is a simplified version of the
evolving fuzzy neural network (EFuNN), presented later in this chapter.

The evolving layer is the layer that will grow and adapt itself to the incoming
data, and is the layer with which the learning algorithm is most concerned. The
meaning of the incoming connections, activation and forward propagation algo-
rithms of the evolving layer all differ from those of classical connectionist systems.

If a linear activation function is used, the activation A of an evolving layer node
n is determined by Eq. (2.15)

An ¼ 1� Dn ð2:15Þ

where An is the activation of the node n and; Dn is the normalised distance between
the input vector and the incoming weight vector for that node.

Other activation functions, such as a radial basis function could be used. Thus,
examples which exactly match the exemplar stored within the neurons incoming
weights will result in an activation of 1 while examples that are entirely outside of
the exemplars region of input space will result in an activation of near 0.

The preferred form learning algorithm is based on accommodating, within the
evolving layer, new training examples by either modifying the connection weights
of the evolving layer nodes, or by adding a new node. The algorithm employed is
presented in Box 2.4 (from [17, 51]).

Fig. 2.13 A schematic
diagram of a simple eMLP
[17, 51]
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When a node is added, its incoming connection weight vector is set to the input
vector I, and its outgoing weight vector is set to the desired output vector Od .

The incoming weights to the winning node j are modified according to
Eq. (2.16), while the outgoing weights from node j are modified according
Eq. (2.17)

Wi;jðtþ 1Þ ¼ Wi;jðtÞþ g1ðIi �Wi;jðtÞÞ ð2:16Þ

where

Wi;jðtÞ is the connection weight from input i to j at time t
Wi;jðtþ 1Þ is the connection weight from input i to j at time tþ 1
g1 is the learning rate one parameter
Ii is the ith component of the input vector I

Wj;pðtþ 1Þ ¼ Wj;pðtÞþ g2ðAj � EpÞ ð2:17Þ

where

Wj;pðtÞ is the connection weight from j to output p at time t
Wi;pðtþ 1Þ is the connection weight from j to p at time tþ 1
g2 is the learning rate two parameter
Aj is the activation of j
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Ep ¼ OdðpÞ � OcðpÞ ð2:18Þ

where Ep is the error at p; OdðpÞ is the desired output at p; OcðpÞ is the calculated
output at p.

The distance measure Dn in Eq. (2.15) above is preferably calculated as the
normalised Hamming distance, as shown in Eq. (2.19):

Dn ¼
PI

i Ei �Wij jPI
i Ei þWij j ð2:19Þ

where I is the number of input nodes in the eMLP, E is the input vector, W is the
input to evolving layer weight matrix.

Aggregation of nodes in the evolving layer can be employed to control the size
of the evolving layer during the learning process. The principle of aggregation is to
merge those nodes which are spatially, in terms of connection weights, close to each
other. Aggregation can be applied for every (or after every n) training examples. It
will generally improve the generalisation capability of EMLP. The aggregation
algorithm is as follows:

FOR each rule node rj; j ¼ 1: n; where n is the number of nodes in the evolving
layer and W1 is the connection weights matrix between the input and evolving
layers and W2 is the connection weights matrix between the evolving and output
layers.

• find a subset R of nodes in evolving layer for which the normalised Euclidean
distances DðW1rj;W1raÞ and DðW2rj;W2raÞrj; ra 2 R are below the thresholds
Wthr.

• merge all the nodes from the subset R into a new node rnew and update W1rnew
and W2rnew using the following formulae:

W1rnew ¼
P

ra 2 RðW1raÞ
m

ð2:20Þ

W2rnew ¼
P

ra 2 RðW2raÞ
m

ð2:21Þ

where m denotes the number of nodes in the subset R.
• delete the nodes ra 2 R

Node aggregation is an important regularization. It is highly desirable in some
application areas, such as speech or image recognition systems. In speech recog-
nition, vocabulary of recognition systems needs to be customised to meet individual
needs. This can be achieved by adding words to the existing recognition system or
removing words from existing vocabulary.

eMLP are also suitable for on-line output space expansion because it uses local
learning which tunes only the connection weights of the local node, so all the
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knowledge that has been captured in the nodes in the evolving layer will be local
and only covering a “patch” of the input-output space. Thus, adding new class
outputs or new input variables does not require re-training of the whole system on
both the new and old data as it is required for traditional neural networks.

Based on the above theoretical considerations, the task here is to introduce an
algorithm for on-line expansion and reduction of the output space in eMLP. As
described above the eMLP is a three layer network with two layers of connections.
Each node in the output layer represents a particular class in the problem domain.
This local representation of nodes in the evolving layer enables eMLP to accom-
modate new classes or remove an already existing class from its output space.

In order to add a new node to the output layer, the structure of the existing eMLP
first needs to be modified to encompass the new output node. This modification
affects only the output layer and the connections between the output layer and the
evolving layer. The graphical representation of this process is shown in Fig. 2.13.
The connection weights between the new output in the output layer and the
evolving layer are initialised to zero. In this manner the new output node is set by
default to classify all previously seen classes as negative. Once the internal
structure of the eMLP is modified to accommodate the new output class, the eMLP
is further trained on the new data. As a result of the training process new nodes are
created in the evolving layer to represent the new class.

The process of adding new output nodes to eMLP is carried out in a supervised
manner. Thus, for a given input vector, a new output node will be added only if it is
indicated that the given input vector is a new class. The output expansion algorithm
is as follows:

FOR every new output class:

1. Insert a new node into the output layer;
2. FOR every node in the evolving layer ri; i ¼ 1:n, where n is the number of

nodes in the evolving layer, modify W2 the outgoing connection weights from
the evolving to output layer by expanding W2i;j with set of zeros to reflect the
zero output.

This is equivalent to allocating a part of the problem space for data that belong to
new classes, without specifying where this part is in the problem space.

It is also possible to remove a class from an eMLP. It only affects the output and
evolving layer of eMLP architecture:

FOR every output class o to be removed,

1. Find set of nodes S in the evolving layer which are committed to that output o
2. Modify W1 the incoming connection from input layer to evolving layer by

deleting Si; i ¼ 1:n, where n is the number of nodes in the set S committed to
output o

3. Modify W2 the outgoing connection weights from the evolving to output layer
by deleting output node o.

The above algorithm is equivalent to dis-allocating a part of the problem space
which had been allocated for the removed output class. In this manner, there will be
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no space allocated for the deleted output class in the problem space. In other words
the network is unlearning a particular output class.

The eMLP is further studied and applied in [56, 57].

2.4 Evolving Fuzzy Neural Networks. EFuNN

Here the concept of ECOS is illustrated on two implementations: the evolving fuzzy
neural network (EFuNN) [49] and the dynamic evolving neuro-fuzzy inference
system (DENFIS) [16]. In ECOS, clusters of data are created based on similarity
between data samples either in the input space (this is the case in some of the ECOS
models, e.g., DENFIS), or in both the input and output space (this is the case, e.g.,
in the EFuNN models). Samples (examples) that have a distance to an existing node
(cluster center, rule node) less than a certain threshold are allocated to the same
cluster. Samples that do not fit into existing clusters form new clusters. Cluster
centers are continuously adjusted according to new data samples, and new clusters
are created incrementally. ECOS learn from data and automatically create or update
a local fuzzy model/function, e.g.:

IF \data is in a fuzzy cluster Ci [ THEN\the model is Fi [

where Fi can be a fuzzy value, a logistic or linear regression function or ANN
model [16, 17].

Generally speaking, fuzzy neural networks are connectionist structures that can
be interpreted in terms of fuzzy rules [20, 46, 47, 58]. Fuzzy neural networks are
NN, with all the NN characteristics of training, recall, adaptation, etc. while
neuro-fuzzy inference systems are fuzzy rule based systems and their associated
fuzzy inference mechanism that are implemented as neural networks for the purpose
of learning and rule optimisation. The evolving fuzzy neural network (EFuNN)
presented here is of the former type, while DENFIS systems are of the latter type.
Some authors do not separate the two types that makes the transition from one to
the other type more flexible and also broadens the interpretation and the application
of each of these systems.

EFuNNs have a five-layer structure (Fig. 2.14). Here nodes and connections are
created/connected as data examples are presented. An optional short-term memory
layer can be used through a feedback connection from the rule (also called, case)
node layer. The layer of feedback connections could be used if temporal relation-
ships of input data are to be memorized structurally.

The input layer represents input variables. The second layer of nodes (fuzzy
input neurons, or fuzzy inputs) represents fuzzy quantisation of each input variable
space (similar to the factorizable RBF networks). For example, two fuzzy input
neurons can be used to represent “small” and “large” fuzzy values. Different
membership functions (MF) can be attached to these neurons.

The number and the type of MF can be dynamically modified. The task of the
fuzzy input nodes is to transfer the input values into membership degrees to which
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they belong to the corresponding MF. The layers that represent fuzzy MF are
optional, as a non-fuzzy version of EFuNN can also be evolved with only three layers
of neurons and two layers of connections as it is used in eMLP in the section above.

The third layer contains rule (case) nodes that evolve through supervised and/or
unsupervised learning. The rule nodes represent prototypes (exemplars, clusters) of
input-output data associations that can be graphically represented as associations of
hyper-spheres from the fuzzy input and the fuzzy output spaces. Each rule node r is
defined by two vectors of connection weights—W1(r) and W2(r), the latter being
adjusted through supervised learning based on the output error, and the former
being adjusted through unsupervised learning based on similarity measure within a
local area of the problem space. A linear activation function, or a Gaussian function,
is used for the neurons of this layer.

The fourth layer of neurons represents fuzzy quantization of the output variables,
similar to the input fuzzy neuron representation. Here, a weighted sum input
function and a saturated linear activation function is used for the neurons to cal-
culate the membership degrees to which the output vector associated with the
presented input vector belongs to each of the output MFs. The fifth layer represents
the values of the output variables. Here a linear activation function is used to
calculate the defuzzified values for the output variables.

A partial case of EFuNN would be a three layer network without the fuzzy input
and the fuzzy output layers (e.g. eMLP, or an evolving simple RBF network). In
this case a slightly modified versions of the algorithms described below are applied,
mainly in terms of measuring Euclidean distance and using Gaussian activation
functions.

The evolving learning in EFuNNs is based on either of the following two
assumptions:

(1) No rule nodes exist prior to learning and all of them are created (generated)
during the evolving process; or

(2) There is an initial set of rule nodes that are not connected to the input and
output nodes and become connected through the learning (evolving) process.
The latter case is more biologically plausible as most of the neurons in the

Inputs
Output

Rule (case) nodesFig. 2.14 A simplified
architecture of EFuNN
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human brain exist before birth, and become connected through learning, but
still there are areas of the brain where new neurons are created during learning
if “surprisingly” different stimuli from previously seen are presented (see [59]
as biological references for ECOS).

The EFuNN evolving algorithm presented next does not make a difference
between these two cases.

Each rule node, e.g. rj, represents an association between a hyper-sphere from
the fuzzy input space and a hyper-sphere from the fuzzy output space (see
Fig. 2.15), the W1(rj) connection weights representing the co-ordinates of the
centre of the sphere in the fuzzy input space, and the W2 (rj)—the co-ordinates in
the fuzzy output space. The radius of the input hyper-sphere of a rule node rj is
defined as Rj = 1 − Sj, where Sj is the sensitivity threshold parameter defining the
minimum activation of the rule node rj to a new input vector x from a new example
(x, y) in order the example to be considered for association with this rule node.

The pair of fuzzy input-output data vectors (xf, yf) will be allocated to the rule
node rj if xf falls into the rj input receptive field (hyper-sphere), and yf falls in the rj
output reactive field hyper-sphere. This is ensured through two conditions, that a
local normalised fuzzy difference between xf and W1(rj) is smaller than the radius
Rj, and the normalised output error Err ¼ y � y0k k=Nout is smaller than an error
threshold E. Nout is the number of the outputs and y′ is the produced by EFuNN
output. The error parameter E sets the error tolerance of the system.

Yf
W2

rj
(1) rj

(2)

Xf

W1 xf
rj

 (1) rj
(2)

Rj

Fig. 2.15 EFuNN maps
clusters from the input space
to clusters in the output
problem space, where the
radii of the clusters can
change during learning
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Definition. A local normalised fuzzy distance between two fuzzy membership
vectors d1f and d2f that represent the membership degrees to which two real vector
data d1 and d2 belong to pre-defined MFs, is calculated as:

D d1f ; d2fð Þ ¼ d1f � d2fk k= d1f þ d2fk k; ð2:22Þ

where x� yk k denotes the sum of all the absolute values of a vector that is obtained
after vector subtraction (or summation in case of x� yk k) of two vectors x and y; “/”
denotes division. For example, if d1f = (0, 0, 1, 0, 0, 0) and d2f = (0, 1, 0, 0, 0, 0),
than D(d1, d2) = (1 + 1)/2 = 1 which is the maximum value for the local nor-
malised fuzzy difference. In EFuNNs the local normalised fuzzy distance is used to
measure the distance between a new input data vector and a rule node in the local
vicinity of the rule node.

In RBF networks Gaussian radial basis functions are allocated to the nodes and
used as activation functions to calculate the distance between the node and the input
vectors.

Through the process of associating (learning) of new data points to a rule node rj,
the centres of this node hyper-spheres adjust in the fuzzy input space depending on
the distance between the new input vector and the rule node through a learning rate
lj, and in the fuzzy output space depending on the output error through the
Widrow-Hoff lest mean square (LMS) delta algorithm [60]. This adjustment can be
represented mathematically by the change in the connection weights of the rule

node rj from W1ðrðtÞj Þ and W2ðrðtÞj Þ to W1ðrðtþ 1Þ
j Þ and W2ðrðtþ 1Þ

j Þ respectively,
employing the following vector operations:

W1 rðtþ 1Þ
j

� �
¼ W1 rðtÞj

� �
þ lj � xf �W1 rðtÞj

� �� �
W2 rðtþ 1Þ

j

� �
¼ W2 rðtÞj

� �
þ lj � yf � A2ð Þ � A1 rðtÞj

� � ð2:23Þ

where A2 = f2(W2 � A1) is the activation vector of the fuzzy output neurons in the

EFuNN structure when x is presented; A1ðrðtÞj Þ ¼ f2ðD ðW1 ðrðtÞj Þ; xfÞÞ is the acti-

vation of the rule node rðtÞj ; a simple linear function can be used for f1 and f2, e.g.

A1ðrðtÞj Þ ¼ 1� D ðW1 ðrðtÞj Þ; xfÞ; lj is the current learning rate of the rule node rj
calculated for example as lj = 1/Nex(rj), where Nex(rj) is the number of examples
currently associated with rule node rj.

The statistical rationale behind this is that the more examples are currently
associated with a rule node, the less it will “move” when a new example has to be
accommodated by this rule node, i.e. the change in the rule node position is pro-
portional to the number of already associated example to the new, single example.
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When a new example is associated with a rule node rj not only its location in the
input space changes, but also its receptive field expressed as its radius Rj, and its
sensitivity threshold Sj:

Rjðtþ 1Þ ¼ RjðtÞ þD W1 rðtþ 1Þ
j

� �
;W1 rðtÞj

� �� �
; respectively ð2:24Þ

Sjðtþ 1Þ ¼ SjðtÞ � D W1 rðtþ 1Þ
j

� �
;W1 rðtÞj

� �� �
ð2:25Þ

The learning process in the fuzzy input space is illustrated in Fig. 2.16 on four data
points d1, d2, d3 and d4. Figure 2.16 shows how the centre rj

(1) of the rule node rj
adjusts (after learning each new data point) to its new positions rj

(2), rj
(3), rj

(4) when
one pass learning is applied. Figure 2.16 shows also how the rule node position
would move to new positions rj

(2(2), rj
(3(2), and rj

(4(2), if another pass of learning was
applied. If the two learning rate l1 and l2 have zero values, once established, the
centres of the rule nodes will not move.

The weight adjustment formulas (Eq. 2.23) define the standard EFuNN that has
the first part updated in an unsupervised mode, and the second part—in a super-
vised mode similar to the RBF networks. But here the formulas are applied once for
each example (x, y) in an incrementally adaptive mode, that is similar to the RAN
model [61] and its modifications. The standard supervised/unsupervised learning
EFuNN is denoted as EFuNN-s/u. In two other modifications of EFuNN, namely
double pass learning EFuNN (EFuNN-dp), and gradient descent learning EFuNN
(EFuNN-gd), slightly different update functions are used as explained in the next
section.

rj
(4)

Rj=1 – Sj

d1

d2 d3

d4

rj
 (1)

Fig. 2.16 Adjusting the rule
nodes during learning of 4
data points in EFuNN ([17])
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The learned temporal associations can be used to support the activation of rule
nodes based on temporal pattern similarity. Here, temporal dependencies are
learned through establishing structural links. These dependencies can be further
investigated and enhanced through synaptic analysis (at the synaptic memory level)
rather than through neuronal activation analysis (at the behavioural level). The ratio
spatial similarity/temporal-correlation can be balanced for different applications
through two parameters Ss and Tc such that the activation of a rule node r for a new
data example dnew is defined through the following vector operations:

A1 rð Þ ¼ 1� Ss � D W1 rð Þ; dnewfð ÞþTc �W3 rðt�1Þ
max ; r

� ���� ���
0;1½ �

ð2:26Þ

where ∣.∣[0,1] is a bounded operation in the interval [0, 1]; D(W1(r), dnewf) is the
normalised local fuzzy distance value and rmax

(t−1) is the winning neuron at the pre-
vious time moment. Here temporal connections can be given a higher importance in
order to tolerate a higher distance. If Tc = 0, then the supervised learning in EFuNN
is based on the above explained principles, so when a new data example d = (x,
y) is presented, the EFuNN either creates a new rule node rn to memorize the two
input and output fuzzy vectors W1(rn) = xf and W2(rn) = yf, or adjusts an existing
rule node rj.

After a certain time (when certain number of examples have been presented)
some neurons and connections may be pruned or aggregated.

The supervised learning algorithms above allow for an EFuNN system to always
evolve and learn when a new input-output pair of data becomes available. This is an
active learning mode.

EFuNN Sleep Learning Rules

In another mode, passive or sleep learning, learning is performed when there is no
input pattern presented. This may be necessary to apply after an initial learning has
been performed. In this case existing connections, that store previously fed input
patterns, are used as “echo” to reiterate the learning process. This type of learning
may be applied in case of a short initial presentation of the data, when only small
portion of data is learned in one-pass, incrementally adaptive mode, and then the
training is refined through the sleep learning method when the system consolidates
what it has learned before.

Sleep learning in EFuNN and in some other connectionist models is illustrated
on several examples in [62].

One-pass versus multiple-passes learning

The best way to apply the above learning algorithms is to draw randomly examples
from the problem space, propagate them through the EFuNN and tune the
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connection weights and the rule nodes, change and optimise the parameter values,
etc., until the error becomes a desirably small one. In a fast learning mode, each
example is presented only once to the system. If it is possible to present examples
twice, or more times, the error may become smaller, but that depends on the
parameter values of the EFuNN and on the statistical characteristics of the data.

The evolved EFuNN can perform inference when recalled on new input data.
The EFuNN inference method consists of calculating the output activation value
when a new input vector is applied. This is part of the EFuNN supervised learning
method when only an input vector x is propagated through the EFuNN. If the new
input vector falls in the receptive field of the winning rule node (the closest rule
node to the input vector) one-of-n mode of inference is used that is based on the
winning rule node activation (one rule inference). If the new input vector does not
fall in the receptive filed of the closest to it rule node, than m-of-n mode is used,
where m rule nodes (rules) are used in the EFuNN inference process, with an usual
value of m being 3.

Different pruning rules can be applied for a successful pruning of unnecessary
nodes and connections. One of them is given below:

IF (Age(rj) > OLD) AND (the total activation TA(rj) is less than a pruning
parameter Pr times Age (rj)) THEN prune rule node rj,

where Age(rj) is calculated as the number of examples that have been presented
to the EFuNN after rj had been fist created; OLD is a pre-defined age limit; Pr is a
pruning parameter in the range [0,1], and the total activation TA(rj) is calculated as
the number of examples for which rj has been the correct winning node (or among
the m winning nodes in the m-of-n mode of operation).

The above pruning rule requires that the fuzzy concepts of OLD, HIGH, etc. are
defined in advance. As a partial case, a fixed value can be used, e.g. a node is OLD
if it has existed during the evolving of a FuNN from more than p examples. The
pruning rule and the way the values for the pruning parameters are defined, depend
on the application task.

One of the learning algorithms for EFuNN is shown in Box 2.5 [17].
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At any time (phase) of the evolving (learning) process of an EFuNN fuzzy or
exact rules can be inserted and extracted. Insertion of fuzzy rules is achieved
through setting a new rule node rj for each new rule, such that the connection
weights W1(rj) and W2(rj) of the rule node represent this rule. For example, the
fuzzy rule (IF x1 is Small and x2 is Small THEN y is Small) can be inserted into an
EFuNN structure by setting the connections of a new rule node to the fuzzy con-
dition nodes x1-Small and x2-Small and to the fuzzy output node y-Small to a value
of 1 each. The rest of the connections are set to a value of zero. Similarly, an exact
rule can be inserted into an EFuNN structure, e.g. IF x1 is 3.4 and x2 is 6.7 THEN y
is 9.5. Here the membership degrees to which the input values x1 = 3.4 and
x2 = 6.7, and the output value y = 9.5 belong to the corresponding fuzzy values are
calculated and attached to the corresponding connection weights.

Each rule node rj can be expressed as a fuzzy rule, for example:
Rule rj: IF x1 is Small 0.85 and x1 is Medium 0.15 and x2 is Small 0.7 and x2 is

Medium 0.3 (Radius of the receptive field Rj = 0.1, maxRadiusj = 0.75) THEN y is
Small 0.2 and y is Large 0.8 (20 out of 175 examples associated with this rule),
where the numbers attached to the fuzzy labels denote the degree to which the
centres of the input and the output hyper-spheres belong to the respective MF. The
degrees associated to the condition elements are the connection weights from the
matrix W1. Only values that are greater than a threshold T1 are left in the rules as
the most important ones. The degrees associated with the conclusion part are the
connection weights from W2 that are greater than a threshold of T2. An example of
rules extracted from a bench-mark dynamic time series data is given in Sect. 3.5.
The two thresholds T1 and T2 are used to disregard the connections from W1 and
W2 that represent small and insignificant membership degrees (e.g., less than 0.1).

Rule Node Aggregation in EFuNNs

Another knowledge-based technique applied to EFuNNs is rule node aggregation.
For example, for the aggregation of three rule nodes r1, r2, and r3 the following

two aggregation rules can be used to calculate the new aggregated rule node ragg
W1 connections (the same formulas are used to calculate the W2 connections):
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(a) as a geometrical centre of the three nodes:

W1 ragg
� � ¼ ðW1 r1ð ÞþW1 r2ð ÞþW1 r3ð ÞÞ= 3 ð2:28Þ

(b) as a weighted statistical centre:

W2 ragg
� � ¼ ðW2 r1ð Þ � Nex r1ð ÞþW2 r2ð ÞNex r2ð ÞþW2 r3ð Þ � Nex r3ð ÞÞ=Nsum

ð2:29Þ

where

Nex ragg
� � ¼ Nsum ¼ Nex r1ð ÞþNex r2ð ÞþNexðr3Þ;

rj is the rule node from the three nodes that ha a maximum distance from the
new node ragg and Rj is its radius of the receptive field.

The three rule nodes will aggregate only if the radius of the aggregated node
receptive field is less than a pre-defined maximum radius Rmax:

Rragg ¼ DðW1ðraggÞ;W1ðrjÞÞþRj�Rmax

In order for a given node rj to aggregate with other nodes, two subsets of nodes are
formed—the subset of nodes rk that if activated to a degree of 1 will produce an
output value y′(rk) that is different from y′(rj) in less than the error threshold E, and
the subset of nodes that cause output values different from y′(rk) in more than E.
The W2 connections define these subsets. Than all the rule nodes from the first
subset that are closer to rj in the input space than the closest to rj node from the
second subset in terms of W1 distance, get aggregated if the radius of the new node
ragg is less than the pre-defined limit Rmax for a receptive field

Instead of aggregating all rule nodes that are close to a rule node rj than the
closest node from the other class, it is possible to keep the closest to the other class
node from the aggregation pool out of the aggregation procedure—as a separate
node—a “guard”, thus preventing a possible miss-classification of new data on the
bordering area between the two classes.

Through node creation and their consecutive aggregation, an EFuNN system can
adjust over time to changes in the data stream and at the same time—preserve its
generalisation capabilities.

Through analysis of the weights W3 of an evolved EFuNN, temporal correlation
between time consecutive exemplars can be expressed in terms of rules and con-
ditional probabilities, e.g.:

IF rðt�1Þ
1 THEN rðtÞ2 0:3ð Þ ð2:30Þ
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The meaning of the above rule is that some examples that belong to the rule
(prototype) r2 follow in time examples from the rule prototype r1 with a relative
conditional probability of 0.3.

2.5 Dynamic Evolving Neuro-fuzzy Inference Systems—
DENFIS

The dynamic evolving neuro-fuzzy system, DENFIS, in its two modifications—for
on-line—and for off-line learning, use Takagi-Sugeno type of fuzzy inference
method [16, 17]. The inference used in DENFIS is performed on m fuzzy rules as
described below:

if x1 is R11 and x2 is R12 and . . . and xq is R1q; then y is f1 x1; x2; . . .; xq
� �

if x1 is R21 and x2 is R22 and . . . and xq is R2q; then y is f2 x1; x2; . . .; xq
� �

if x1 is Rm1 and x2is Rm2 and . . .and xq is Rmq; then y is fm x1; x2; . . .; xq
� �

8>><
>>:

ð2:31Þ

where “xj is Rij”, i = 1, 2, … m; j = 1, 2, … q, are m � q fuzzy propositions that
form m antecedents for m fuzzy rules respectively; xj, j = 1, 2, …, q, are antecedent
variables defined over universes of discourse Xj, j = 1, 2, …, q, and Rij, i = 1, 2, …
m; j = 1, 2, …, q are fuzzy sets defined by their fuzzy membership functions µRij:
Xj ! [0, 1], i = 1, 2, … m; j = 1, 2, …, q. In the consequent parts of the fuzzy
rules, y is the consequent variable, and crisp functions fi, i = 1, 2, … m, are
employed.

In the DENFIS on-line model, the first-order Takagi-Sugeno type fuzzy rules are
employed and the linear functions in the consequence parts are created and updated
through learning from data by using the linear least-square estimator (LSE).

If the consequent functions are crisp constants, i.e. fi(x1, x2,…, xq) = Ci, i = 1, 2,
… m, we call such system a zero-order Takagi-Sugeno type fuzzy inference system.
The system is called a first-order Takagi-Sugeno type fuzzy inference system if
fi(x1, x2,…, xq), i = 1, 2,… m, are linear functions. If these functions are non-linear
functions, it is called high-order Takagi-Sugeno fuzzy inference system.

For an input vector x0 = [x1
0 x2

0 … xq
0], the result of inference, y0 (the output of

the system) is the weighted average of each rule’s output indicated as follows:

y0 ¼
P

i¼1;m xifi x01; x
0
2; . . .; x

0
q

� �
P

i¼1;m xi
ð2:32Þ

where: xi ¼
Yq
j¼1

lRij
x0j

� �
; i ¼ 1; 2; . . .;m; j ¼ 1; 2; . . .; q: ð2:33Þ
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In the DENFIS on-line model, the first-order Takagi-Sugeno type fuzzy rules are
employed and a linear functions in the consequences can be created and updated by
linear least-square estimator (LSE) on the learning data. Each of the linear functions
can be expressed as follows:

y ¼ b0 þ b1x1 þ b2x2 þ � � � þ bqxq: ð2:34Þ

For obtaining these functions a learning procedure is applied on a data set, which is
composed of p data pairs {([xi1, xi2, …, xiq], yi), i = 1, 2, …, p}. The least-square
estimator (LSE) of b = [b0 b1 b2 … bq]

T, are calculated as the coefficients b = [b0
b1 b2 … bq]

T, by applying the following formula:

b ¼ ATA
� ��1

ATy ð2:35Þ

where

A ¼

1 x11 x22 . . . x1q
1 x21 x22 . . . x2q
: : : : :
: : : : :
: : : : :
1 xp1 xp2 . . . xpq

0
BBBBBB@

1
CCCCCCA

and y = [y1 y2 …, yp]
T.

A weighted least-square estimation method is used here as follows:

bw ¼ ATWA
� ��1

ATWy; ð2:36Þ

where

W ¼
w1 0 . . . 0
0 w2 . . . 0
..
. ..

. ..
. ..

.

0 . . . . . . wp

0
BBB@

1
CCCA

and wj is the distance between j-th example and the corresponding cluster centre,
j = 1, 2, … p.

We can rewrite the Eqs. (2.35) and (2.36) as follows:

P ¼ ATA
� ��1

;

b ¼ PATy:

(
ð2:37Þ
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Pw ¼ ATWA
� ��1

;

bw ¼ PwATWy;

(
ð2:38Þ

Let the kth row vector of matrix A defined in Eq. (2.35) be ak
T = [1 xk1 xk2 … xkq]

and the kth element of y be yk, then b can be calculated iteratively as follows:

bkþ 1 ¼ bk þPkþ 1akþ 1 ykþ 1 � aTkþ 1bk
� �

;

Pkþ 1 ¼ Pk � Pkakþ 1aTkþ 1Pk

1 þ aTkþ 1Pkakþ 1

(
ð2:39Þ

for k = n, n + 1, … p − 1.
Here, the initial values of Pn and bn can be calculated directly from Eq. (2.39)

with the use of the first n data pairs from the learning data set.
Equation (2.39) is the formula of recursive LSE. In the DENFIS on-line model,

we use a weighted recursive LSE with forgetting factor defined as the following
equations:

bkþ 1 ¼ bk þwkþ 1Pkþ 1akþ 1 ykþ 1 � aTkþ 1bk
� �

;

Pkþ 1 ¼ 1
k

Pk � wkþ 1Pkakþ 1aTkþ 1Pk

kþ aTkþ 1Pkakþ 1

	 

k ¼ n; nþ 1; . . . p� 1: ð2:40Þ

where w is the weight defined in Eq. (2.36) and k is a forgetting factor with a
typical value between 0.8 and 1.

In an on-line DENFIS model, the rules are created and updated at the same time
with the input space partitioning using on-line evolving clustering method
(ECM) and Eqs. (2.34) and (2.40). If no rule insertion is applied, the following
steps are used for the creation of the first m fuzzy rules and for the calculation of the
initial values P and b of the functions:

(1) Take the first n0 learning data pairs from the learning data set.
(2) Implement clustering using ECM with these n0 data to obtaining m cluster

centres.
(3) For every cluster centre Ci, find pi data points whose positions in the input

space are closest to the centre, i = 1, 2, …, m.
(4) For obtaining a fuzzy rule corresponding to a cluster centre, create the ante-

cedents of the fuzzy rule using the position of the cluster centre and Eq. (2.34).
Using Eq. (2.38) on pi data pairs calculate the values of P and b of the con-
sequent function. The distances between pi data points and the cluster centre are
taken as the weights in Eq. (2.38).

In the above steps, m, n0 and p are the parameters of the DENFIS on-line
learning model, and the value of pi should be greater than the number of input
elements, q.
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As new data pairs are presented to the system, new fuzzy rules may be created
and some existing rules are updated. A new fuzzy rule is created if a new cluster
centre is found by the ECM. The antecedent of the new fuzzy rule is formed by
using Eq. (2.36) with the position of the cluster centre as a rule node. An existing
fuzzy rule is found based on the rule node that is the closest to the new rule node;
the consequence function of this rule is taken as the consequence function for the
new fuzzy rule. For every data pair, several existing fuzzy rules are updated by
using Eq. (2.40) if their rule nodes have distances to the data point in the input
space that are not greater than 2 � Dthr (the threshold value, a clustering param-
eter). The distances between these rule nodes and the data point in the input space
are taken as the weights in Eq. (2.40). In addition to this, one of these rules may
also be updated through changing its antecedent so that, if its rule node position is
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Fig. 2.17 Example of a
fuzzy inference in DENFIS
(after [15–17])
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changed by the Evolving Clustering Method—ECM, the fuzzy rule will have a new
antecedent calculated through Eq. (2.34).

Takagi-Sugeno fuzzy inference in DENFIS

The Takagi-Sugeno fuzzy inference system utilised in DENFIS is a dynamic
inference. In addition to dynamically creating and updating fuzzy rules the DENFIS
on-line model has some other major differences from the other inference systems.

First, for each input vector, the DENFIS model chooses m fuzzy rules from the
whole fuzzy rule set for forming a current inference system. This operation depends
on the position of the current input vector in the input space. In case of two input
vectors that are very close to each other, especially in the DENFIS off-line model,
the inference system may have the same fuzzy rule inference group. In the DENFIS
on-line model, however, even if two input vectors are exactly the same, their
corresponding inference systems may be different. It is due to the reason that these
two input vectors are presented to the system at different time moments and the
fuzzy rules used for the first input vector might have been updated before the
second input vector has arrived.

Second, depending on the position of the current input vector in the input space,
the antecedents of the fuzzy rules chosen to form an inference system for this input

Fig. 2.18 Example of a DENFIS application system using six input variables to train a DENFIS
system for a medical decision support on a renal function GFR, where the evolved hidden nodes
represent clusters of input data and the data in each of these clusters is approximated by a
regression function [17]. Local fuzzy rule 12 is extracted that represents/approximates the data in
cluster 12 using the shown membership functions
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vector may vary. An example is illustrated in Fig. 2.17 where two different groups
of fuzzy inference rules are formed depending on two input vectors x1 and x2
respectively in a 2D input space. We can see from this example that, for instance,
the region C has a linguistic meaning ‘large’, in the X1 direction for Fig. 2.17a
group, but for the group of rules from Fig. 2.17b it denotes a linguistic meaning of
‘small’ in the same direction of X1. The region C is defined by different mem-
bership functions respectively in each of the two groups of rules.

Example of a DENFIS application system is given in Fig. 2.18. Six input
variables are used to train a DENFIS system for a medical decision support on a
renal function GFR, where the evolved hidden nodes represent clusters of input data
and the data in each of these clusters is approximated by a regression function.

2.6 Other ECOS Methods and Systems

A special development of ECOS is transductive reasoning and personalized
modelling. Instead of building a set of local models (i.e., prototypes) to cover the
whole problem space and then use these models to classify/predict any new input
vector, in transductive modelling for every new input vector a new model is created
based on selected nearest neighbor vectors from the available data. Such ECOS
models are the neuro-fuzzy inference system (NFI) and the transductive weighted
NFI (TWNFI) [63]. In TWNFI, for every new input vector the neighborhood of
closets data vectors is optimized using both the distance between the new vector
and the neighboring ones and the weighted importance of the input variables, so
that the error of the model is minimized in the neighborhood area [64].

In addition to the already presented methods of ECOS, following is a short summary
list of other methods, systems and applications that use some of the principles of ECOS
along with publications that reveal some more details of ECOS methods:

– Evolving Self-Organized Maps (ESOM) [65];
– Evolving Clustering Method (ECM) [66];
– Incremental feature learning in ECOS [67];
– On-line ECOS optimization [68];
– Assessment of EFuNN accuracy for pattern recognition using data with different

statistical distributions [69];
– Recursive clustering based on a Gustafson–Kessel algorithm [70];
– Using a map-based encoding to evolve plastic neural networks [71];
– Evolving Takagi–Sugeno fuzzy model based on switching to neighboring

models [72];
– A soft computing based approach for modeling of chaotic time series [73];
– Uninorm based evolving neural networks and approximation capabilities [74];
– Global, local and personalised modelling and profile discovery in

Bioinformatics: An integrated approach [75];
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– FLEXFIS: a robust incremental learning approach for evolving Takagi–Sugeno
fuzzy models [76];

– Evolving fuzzy classifiers using different model architectures [77];
– RSPOP: Rough Set–Based Pseudo Outer-Product Fuzzy Rule Identification

Algorithm [78];
– SOFMLS: online self-organizing fuzzy modified least-squares network [79];
– On-Line Sequential Extreme Learning Machine [80];
– Finding features for real-time premature ventricular contraction detection using

a fuzzy neural network system [81];
– Evolving fuzzy rule-based classifiers [82];
– A novel generic Hebbian ordering-based fuzzy rule base reduction approach to

Mamdani neuro-fuzzy system [83];
– Implementation of fuzzy cognitive maps based on fuzzy neural network and

application in prediction of time series [84];
– Backpropagation to train an evolving radial basis function neural network [85];
– Smooth transition autoregressive models and fuzzy rule-based systems:

Functional equivalence and consequences [86];
– Development of an adaptive neuro-fuzzy classifier using linguistic hedges [87];
– A meta-cognitive sequential learning algorithm for neuro-fuzzy inference sys-

tem [88];
– Meta-cognitive RBF network and its projection based learning algorithm for

classification problems [89];
– SaFIN: A self-adaptive fuzzy inference network [90];
– A sequential learning algorithm for meta-cognitive neuro-fuzzy inference sys-

tem for classification problems [91];
– Architecture for development of adaptive on-line prediction models [92];
– Clustering and co-evolution to construct neural network ensembles: An exper-

imental study [93];
– Algorithms for real-time clustering and generation of rules from data [94];
– SAKM: Self-adaptive kernel machine—A kernel-based algorithm for online

clustering [95];
– A BCM theory of meta-plasticity for online self-reorganizing fuzzy-associative

learning [96];
– Evolutionary strategies and genetic algorithms for dynamic parameter opti-

mization of evolving fuzzy neural networks [97];
– Incremental leaning and model selection for radial basis function network

through sleep learning [98];
– Interval-based evolving modeling [99];
– Evolving granular classification neural networks [100];
– Stability analysis for an online evolving neuro-fuzzy recurrent network [101];
– A TSK fuzzy inference algorithm for online identification [102];
– Design of experiments in neuro-fuzzy systems [103];
– EFuNNs ensembles construction using a clustering method and a

co-evolutionary genetic algorithm [104];
– eT2FIS: An evolving type-2 neural fuzzy inference system [105];
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– Designing radial basis function networks for classification using differential
evolution [106];

– A meta-cognitive neuro-fuzzy inference system (McFIS) for sequential classi-
fication problems [107];

– An evolving fuzzy neural network based on the mapping of similarities [108];
– Incremental learning by heterogeneous bagging ensemble [109];
– Fuzzy associative conjuncted maps network [110];
– EFuNN ensembles construction using CONE with multi-objective GA [111];
– Risk analysis and discovery of evolving economic clusters in Europe [112];
– Adaptive time series prediction for financial applications [113];
– Adaptive speech recognition [114];
– and others [17].

2.7 Chapter Summary and Further Readings for Deeper
Knowledge

The chapter presents foundations of artificial neural networks (ANN) and on one class
of them—evolving connectionist systems. ECOS can not only be trained on data
measuring evolving processes, but they can facilitate rule and knowledge extraction for
a better understanding of these processes. Twenty four Centuries after Aristoteles, now
the process of rule extraction and knowledge discovery from data can be automated.
And not only that. The rules can be further adapted by incrementally training ECOS to
accommodate new data and information about the problem in hand. These rules will no
more be considered fixed and true for ever, but evolving as well.

Additional material to some of the sections can be found as follows:

– Neuro-fuzzy systems [20];
– ECOS [17, 59, 115];
– Fuzzy systems [116];
– Neural networks [116];
– ECOS development system NeuCom (www.theneucom.com).

The ANN and ECOS methods and systems presented above use predominantly the
McCulloch and Pitts model of a neuron (Fig. 2.1). They have been efficiently used
for wide range of applications as some of them listed above. Many of the principles
of ANN and ECOS presented in this chapter have been further developed and used
for the creation of SNN and evolving spiking neural networks (eSNN) corre-
spondingly (Chaps. 4 and 5) and for brain-inspired SNN (Chap. 6). Overview of
the development of ECOS, including eSNN, can be found in [115].

While the hybrid ANN and ECOS ‘opened the black box” and provided means
for rule and knowledge representation, these rules are “flat” rules, extracted from
vector-based data. The ECOS methods were further developed into evolving SNN
(eSNN) in Chap. 5. Instead of scalars as it is in ECOS, eSNN use information
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representation as spikes, the learning is based on times of spikes and fuzzy rules can
be extracted.

Chapter 3 discusses how the brain learns from data as deep learning and how
deep knowledge is represented. This is taken as inspiration for deep learning and
deep knowledge representation in brain-inspired SNN, where deep spatio-temporal
rules can be extracted. They are presented in Chap. 6 and used in other chapters.
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Part II
The Human Brain



Chapter 3
Deep Learning and Deep Knowledge
Representation in the Human Brain

Spiking neural networks (SNN) and the deep learning algorithms for them have
been inspired by the structure, the organisation and the many aspects of deep
learning and deep knowledge representation in the human brain. This chapter
presents basic information about brain structures and functions and reveals some inner
processes of deep learning and deep knowledge representation as inspiration for
brain-inspired SNN (BI-SNN) and brain-inspired AI (BI-AI) presented in the next
chapters. The presented here information is not intended for modeling the brain in its
precise structural and functional complexity, but rather for: (1) Borrowing
spatio-temporal information processing principles from the brain for the creation of
brain-inspired SNN and brain-inspired AI as general spatio-temporal data machines for
deep learning and deep knowledge representation in time-space; (2) Understanding brain
data, when modeled with SNN, for a more accurate analysis and for a better under-
standing of the brain processes that generated the data.

The chapter has the following sections:

3:1. Time-space in the brain.
3:2. Learning and memory.
3:3. Neural representation of information.
3:4. Perception in the brain is always spatio/specro temporal.
3:5. Deep learning and deep knowledge representation in the brain.
3:6. Neurons and information transmission between neurons through synapses.
3:7. Measuring brain activities as spatio-temporal brain data (STBD).
3:8. Chapter summary and discussions.

3.1 Time-Space in the Brain

To use a metaphor, we can say here: Time is in our brain and the brain exists in Time.
The brain (more than 80 bln neurons, 100 trillions of connections) has a com-

plex spatial structure which has evolved over 200 mln or so years of evolution. It is
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the ultimate information processing machine. Three, mutually interacting, memory
types learned in the brain are:

– short term memory (neuronal membrane potential);
– long term memory (synaptic weights);
– genetic memory (genes in the nuclei of the neurons).

Spatio/spectro temporal evolving processes in the brain are manifested at dif-
ferent time scales, e.g.:

– Nanoseconds—quantum processes;
– Milliseconds—spiking activity of neurons;
– Minutes—gene expressions;
– Hours—learning in synapses;
– Many years—evolution of genes.

More importantly, the brain learns as a deep learning mechanism, creating long
neural network connections from external spatio-temporal data and from internal
activities. These connections represent deep knowledge.

It is estimated that there are about 1011 to 1012 of neurons in the human brain [1].
Three quarters of neurons form a thick cerebral cortex that constitutes a heavily
folded brain surface. Cerebral cortex is thought to be a seat of cognitive functions,
like perception, imagery, memory, learning, thinking, etc. The cortex cooperates
with evolutionary older subcortical nuclei that are located in the middle of the brain,
in and around the so-called brain stem (Fig. 3.1).

Subcortical structures and nuclei are comprised for instance of basal ganglia,
thalamus, hypothalamus, limbic system and dozens of other groups of neurons with
more or less specific functions in operations of the whole brain. For example, the
input from all sensory organs comes to the cortex pre-processed in thalamus.

Fig. 3.1 Functional cortical areas of the brain (after [7])
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Emotions and memory functions depend upon an intact limbic system. When one of
its crucial parts, hippocampus, is lesioned, humans (and animals) loose their ability
to store new events and form new memories. When a particular cortical area has
been damaged, a particular cognitive deficit follows. However, all the brain parts,
either cortical or subcortical, are directly or indirectly heavily interconnected, thus
forming a huge recurrent neural network (in the terminology of artificial neural
networks). Thus, we cannot speak of totally isolated neuroanatomic modules.

Figure 3.1, shows a schematic functional division of the human cerebral cortex and
Fig. 3.2 shows both the cortical areas and the inner areas of the human brain. One third
of the cortex is devoted to processing of visual information in the primary visual cortex
and higher-order visual areas in the parietal cortex and in the infratemporal cortex.
Association cortices take about one half of the whole cortical surface. In the
parietal-temporal-occipital association cortex, sensory and language information are
being associated. Memory and emotional information are associated in the limbic
association cortex (internal and bottom portion of hemispheres). The prefrontal associ-
ation cortex takes care of all associations, evaluation, planning ahead and attention.
Language processing takes place within the temporal cortex, parietal-temporal-occipital
association cortex, and frontal cortex.

At the border between the frontal and parietal lobes, there is a somatic sensory
cortex, which processes touch and other somatosensory signals (temperature, pain,
etc.) from the body surface and interior. In the front of it, there is a primary motor
cortex, which issues signals for voluntary muscle movements including speech.
These signals are preceded by the preparation and anticipation of movements that
takes place in the premotor cortex. The plan of actions and their consequences,
inclusion and exclusion of motor actions into and from the overall goal of an
organism, are performed within the prefrontal association cortex. Subcortical basal

Fig. 3.2 A view of the brain as both cortical and inner areas (after [71])
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ganglia participate in preparation and tuning of motor outputs, in the sense of
initiation and the extent of movements. Cerebellum executes routine automatized
movements like walking, biking, driving, etc. We want to point out that there are far
more anatomical and functional subdivisions within each of the mentioned areas.

Functions, or better, dominances of the right and left hemispheres in different
cognitive functions are different [1] (Fig. 3.3). The dominant hemisphere (usually
the left one) is specialized for language, logical reasoning, awareness of cognitive
processes and awareness of the results of cognitive processes. Although the
non-dominant hemisphere (usually the right one) is able to carry out cognitive
tasks, it is not aware of them nor their results. It is specialized for emotional and
holistic processing, intra- and extrapersonal representation of space. Its intactness is
crucial for the awareness of the body integrity [2]. Lesion of the parietal cortex
including the somatosensory cortex leads to the so-called anosognosia. The limbs
and the body are intact but the cortical and mental representations become missing.
Patients who have undergone a stroke to the right parietal lobe, neglect the left half
of their body, in spite they can see it. It is not a consequence of the left hemi-
paralysis. Mirror damage to the left parietal lobe does not lead to anosognosia. It
seems that the right hemisphere is dominant in mental representations of intra- and
extrapersonal space. In other words, subjective experience of the body self depends
upon specific brain mechanisms, namely an integrity of primary and higher-order
somatosensory cortical areas in the right hemisphere [2].

Fig. 3.3 Different part of the brain are allocated to perform different functions (after [71])
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Several structural brain atlases have been created to support the study of the
brain and to better structure brain data. Probably the first attempt was made by
Korbinian Brodmann, who created a cytoarchitectonic map of the human brain,
published in 1909. The map presents 47 distinctive areas of the cerebral cortex.
Each Brodmann area (BA) is characterized by a distinct type of cells, but it also
represents distinct structural area, distinct functional area (e.g. BA17 is the visual
cortex), distinct molecular area (e.g. number of neurotransmitter channels) (see
Fig. 3.4).

For many years, the standard 1998 Talairach Atlas of the human brain [3, 4] has
served as the standard for reporting brain activation locations in the functional and
structural brain mapping studies. They have created a co-planar 3D stereotaxic atlas
of the human brain that can be used to study it from different subjects and collected
using different methods. A software called Talairach Daemon (Fig. 3.5) is publicly
available for download and can be used to calculate x; y; zð Þ Talairach coordinates
of any given point on the brain image together with its corresponding Brodmann
area. By using this software, brain areas can be labelled accordingly in different
visualization colours as depicted in Fig. 3.6.

While Talairach template is derived from the analysis of a single brain, another
template which is referred to as Montreal Neurological Institute (MNI) coordinates
is derived from the average of MRI data across individuals, for instance MNI152
and MNI1305 [5]. Another well-known brain template is proposed by the
International Consortium for Brain Mapping (ICBM) and its few releases include
ICBM452, ICBMChinese56, ICBM AD for Alzheimer Disease and ICBM MS for
Multiple Sclerosis [6].

Fig. 3.4 Brodmann areas (after [71])
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Fig. 3.5 The Talairach Daemon Software for brain areas visualization (http://www.talairach.org/
applet/)

Fig. 3.6 The Talairach atlas with lobe labels (illustrated with patterned colour fills), gyral
structures (illustrated with bold colour outlines), and several Brodmann areas (illustrated with solid
colour fills) [4]
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3.2 Learning and Memory

Capability of learning and memory formation is one of the most important cognitive
functions. Our identity largely depends upon what we have learned and what we
can remember. We can divide the study of learning and memory into two levels:

1. The system level (where and when in term of space-time), which attempts to
answer the question what brain parts and pathways the memory trace is stored
in—the top-down approach, which will be the topic of this section, and

2. Molecular level (how?), which is devoted to investigation of the ways of coding
and storage of information at the cellular and molecular level—the bottom-up
approach, which will be introduced in Chaps. 15 and 16 and also in a later
section in this chapter.

It has been long recognized that there is a short-term memory and a long-term
memory. Short-term memory lasts for a few minutes and is also called the working
memory. It occurs in the prefrontal cortex, although other parts of the cortex
relevant to the memory content are activated too [8]. The learning process and the
process of long-term memory formation can be divided into four stages: (Fig. 3.7).

1. Encoding. Attention focus and learning/entering of new information into the
working memory. Finding associations with already stored memories.

2. Consolidation. The process of stabilization of new information, transformation
into a long-term memory by means of learning/rehearsal.

Skills

Explicit 
(declarative)

Two categories of long-term memory

Facts Events

Implicit 
(nondeclarative)

PrimingConditioning Habituation and 
sensitisation

hippocampus
and neocortex

Neocortex

Cerebellum

Reflex 
pathways

ClassicalEmotional
Basal 

ganglia

Amygdala

Fig. 3.7 Different kinds of long-term memory fall under two general categories: explicit and
implicit (from [7])
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3. Storage. Long-term learning/storing of information in memory.
4. Recall. Retrieval of information from the working memory.

Based on clinical, imaging and animal studies we can divide long-term memory
into two main categories that have different subtypes with different mechanisms and
different localizations in the brain (Fig. 3.2). Explicit (declarative) memory is a
memory of facts (semantic memory) and a memory of events (episodic memory).
Recall from explicit memory requires conscious effort and stored items can be
expressed in language. Hippocampus is a crucial but only a transitory stage in the
explicit memory. How is the explicit memory formed? Information comes to brain
through the sensory organs (visual, auditory, olfactory, tactile), and proceeds
through subcortical sensory nuclei and sensory cortical areas into multimodal
association areas, like for instance the parieto-temporo-occipital association cortex,
limbic association cortex and the prefrontal association cortex. From there the
information is relayed through parahippocampal cortex, perirhinal cortex and
entorhinal cortex into the hippocampus. From hippocampus the information is
relayed to subiculum from where it returns back to entorhinal cortex and all the way
back to association cortical areas. Thus the brain circuit for the long-term explicit
memory storage forms a re-entrant closed loop. According to experimental data, the
“synaptic re-entry reinforcement” or SRR hypothesis and the corresponding com-
putational model have been formulated and simulated [9, 10]. According to this
hypothesis, after initial learning, reactivation of hippocampal memory traces
repeatedly drives cortical learning. Thus, a memory trace (engram) is stored after
many repetitions. Repeated reinforcement of synapses during the reactivation of
memory traces could lead to a situation in which memory traces compete, such that
the strengthening of one memory is always at the expense of others, which are
either weakened or lost entirely. In other words, a single memory stored in a neural
network is either lost (owing to synaptic decay) or strengthened and maintained by
repeated rounds of synaptic potentiation each time the memory is reactivated. Once
cortical connections are fully consolidated and stabilized, the hippocampus itself
becomes dispensable. Differences in the frequency with which memory traces are
either consciously or subconsciously recalled could be another factor affecting the
selection of which memories are consolidated. An increasing amount of evidence
suggests a role of sleep in memory consolidation by means of learning-induced
correlations in the spontaneous activity of neurons and replaying the patterns of
wake neural activities during sleep [11, 12]. Although others point out that people
lacking REM sleep do not show memory deficits and that a major role of sleep in
memory consolidation is unproven [13]. An interesting question is how the
degradation of out-dated hippocampal memory traces occurs after memory con-
solidation is finished. The most recent hypothesis is that memory clearance may
actually involve new-born neurons. Neurogenesis in the dentate gyrus of the hip-
pocampus persists throughout life in many vertebrates, including humans. The
progenitors of these new neurons reside in the subgranular layer of the dentate
gyrus [14, 15].
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The implicit or non-declarative memory serves to store the perceptual and motor
skills and conditioned reactions. Recall of stored implicit information occurs
without a conscious effort, automatically and the information is not expressed
verbally. Basal ganglia and cerebellum are important for acquisition of motor habits
and skills that are characterized by precise patterns of movements and fast auto-
matic reactions. Cerebellum is the key structure for conditioning. Conditioned
emotional reactions require amygdala in the limbic system. Nonassociative learning
like habituation and sensitisation occur in primary sensory and reflex pathways.
Priming is an increase in the speed or accuracy of a decision that occurs as a
consequence of a prior exposure to some of the information in the decision context,
without any intention or task related motivation, and occurs in neocortex.

Although implicit and explicit learning concern different memory contents, they
share cellular and molecular mechanisms [7, 16]. These mechanisms will be one of
the topics of the next chapter. Later we also introduce the genetics of learning and
memory used also as inspiration for neurogenetic computational models as pre-
sented in Chap. 16.

3.3 Neural Representation of Information

The first principle of representation of information in the brain is redundancy.
Redundancy means that every information (meant in any sense) is stored, trans-
mitted and processed by a redundant number of neurons and synapses so that it
does not become lost when neural networks undergo damage, for instance due to
aging. When neural networks get damaged, their performance does not drop down
to zero abruptly, like in a computer, but instead it degrades gracefully. Computer
models of neural networks also confirm the idea that a degradation of performance
with the loss of neurons and synapses is not linear but instead neural networks can
withstand quite substantial damage, and still perform well. Next, the contemporary
view on the nature of neural representation is such that information (in the sense of
content or meaning) is represented by place in the cortex (or in general in the brain).
However, this placing is a result of anatomical framework and shaping by input, i.e.
by experience-dependent plasticity. For instance [7], a sound pattern for the word
“apple” is represented in the auditory areas of the temporal cortex. It is represented
as a spatial pattern of active versus inactive neurons. This neural representation is
associated (connected) through synaptic weights with the neural representation of a
visual image of apple in the parietal cortex, with the neural representation of an
apple odor in the olfactory cortex, with memories on the grandma garden and facts
about apples, being represented in some other areas of the cortex, etc. Neural
representations (that is distributions or patterns of active neurons) within particular
areas and their associations between areas appear as a result of learning (i.e.
synaptic plasticity). Different objects are represented by means of different patterns
or distributions of active neurons within cortical areas. Therefore we speak about
the so-called distributed representations.
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Current hypothesis states that recall from memory is an active process. Instead of
passive processing of all electrical signals that arrive from hierarchically lower
processing levels, cortical neural networks should be able to use fragments of
activity patterns to fill in the gaps, and thus quickly re-create the whole neural
representation. The filling-in process can be modelled by means of artificial neural
networks, such as the Hopfield ANN (see [7]) (Fig. 3.8). Neural representations
(patterns of activities) are stored in the matrix of synaptic weights through which
neurons in the network are interconnected. The weight distribution storing a par-
ticular object representation is created due to an experience-dependent synaptic
plasticity (learning). When a sufficiently large portion of this neural representation
is activated from outside the network, few electric signals along all the synapses in
the network quickly switch on the correct remaining neurons in the representation.

Neural representations in the sense of patterns of activity have a holistic char-
acter. Patterns of activity are being recalled (restored) as a whole. Thus, we can see
a relation between the character of neural representations and gestalts. Gestalt
psychology was developed at the beginning of the 20th century by Max
Wertheimer, Kurt Koffka and Wolfgang Köhle in Germany. Gestalt psychology
considers holistic mental gestalts (shapes, forms) to be the basic mental elements.
For the gestalt to be stored and recalled, certain rules must be fulfilled, like the rules
of proximity, good continuation, symmetry, etc. These rules have been experi-
mentally verified.

To conclude, neural representations of objects are stored in the matrix of
synaptic weights as a whole. We are not able to trace down a sequence of steps
leading to the holistic percept. Synaptic weights implicitly bind together parts of the
pattern.

Fig. 3.8 Illustration of spontaneous re-creation of neural representation after few input impulses
(figure in the uppermost left corner). Black pixel represents a firing neuron while blank pixel
represents a silent neuron. Between each pattern of activity from left to right (1 ms time frame),
neurons in the network exchange only one impulse. Thus, basically after exchanging only
two-three spikes, the memory pattern is re-created. Network can reverberate the restored memory
pattern until a different external input arrives (from [7])
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3.4 Perception in the Brain Is Always Spatio/
Spectro-temporal

Perception in the brain provides information for learning and development. The five
senses of perception (visual auditory, tactile, gustatory and olfactory) send infor-
mation to the brain as always spatio/spectro-temporal. Even a static picture is
perceived in the retina as activity of cells that are activated differently in time and
space for different colors and intensity of the pixels of the picture, the brighter
pixels causing the first spikes to be sent to the visual cortex from the retina. This is
also demonstrated in Chap. 9 when a SNN system is trained on fMRI data of a
person seeing a picture.

Perception is accompanied by sensory awareness, and therefore we will describe
the underlying neural processes. We will concentrate on visual perception and
visual awareness since similar principles apply to all sensations. Neurons in dif-
ferent areas of the visual cortex respond to various elementary features, like ori-
ented edges of light intensity (bars), binocular disparity, movement, color, etc. [1,
7]. Visual areas in the occipital, parietal and inferior temporal cortex, though
reciprocally connected, are hierarchically organized. Results of processing at lower
hierarchical levels are relayed to higher-order areas. Neurons in higher-order areas
respond to various combinations of elementary features from lower-order areas. In
primates, based on matching psychophysical and physiological data, three main
visual systems, relatively independent but mutually heavily interconnected, have
been identified: the “magno”, “parvo” and the color system [7, 17]. The “magno”
system is responsible for perception of movement, depth and space, and separation
of objects. Several cues leading to the depth perception have been identified:
stereopsy, depth from perspective, depth from mutual movement and occlusion, etc.
The “parvo” system is responsible for shape recognition. For separation and
recognition of objects, we use separation based on movement, separation from
background, filling in borders, shape from shading, etc. The color system is
responsible for color perception. With respect to cortical neurons belonging to these
three systems, they possess different combinations and ranges of these four phys-
iological properties: sensitivity to color (small/large), sensitivity to the light contrast
(small/large), temporal resolution (small/large), spatial resolution (small/large).
These are the so-called elementary features of visual objects. Elementary features
belonging to one visual object activate different and spatially separated groups of
neurons within the cerebral cortex.

Binding of spatially separated neurons coding for features belonging to one
visual object could be performed by transient synchronization of firing of these
neurons in time [18–20]. Similar synchronous oscillations of neurons were detected
also in auditory, somatosensory, parietal, motor, and prefrontal cortices in the case
of auditory, tactile and other perceptions, respectively [21]. Oscillations of neurons
with frequencies around and above 40 Hz (known as gamma oscillations) have
been detected in the cerebral cortex of humans, primates and other investigated
mammals, in particular as a result of sensory stimulation. This synchronization
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occurs over relatively long distances (mm–cm), between different cortical areas,
between cortex and thalamus, between the two hemispheres.

Synchronization means that neurons discharge (spike) with the same frequency
and the same phase. This results in a distributed pattern of simultaneously firing
neurons in space and time. Neural correlates of different objects can differ in:
(a) which neurons are members of the pattern, (b) which is the particular frequency of
their synchronization, and (c) which is the phase of their synchronization. Thus,
transient synchronous gamma oscillations have been suggested as a possible candi-
date for the mechanism of binding many elementary features belonging to one object
to one transient whole corresponding to a percept. Establishment of transient syn-
chrony is based upon the underlying synaptic connectivity as a result of learning.

An experimental phenomenon strongly suggesting a one-to-one correspondence
between transient synchronizations and perception is binocular rivalry. During
binocular rivalry, each eye is constantly stimulated with a different pattern. Visual
percept is neither an average of these two patterns nor their sum. Instead, a random
alternation between the two percepts occurs as if they were competing with each
other, hence the term binocular rivalry [22], discovered that neurons which respond
to one or the other pattern are synchronized only during the corresponding percept.
Thus, although the pattern is constantly stimulating an eye, cortical neurons get
synchronized only when the pattern is perceived.

An important study of Rodriguez et al. in [23] has demonstrated that perception
of faces in humans is accompanied by a transient (*180 ms) synchronization of
gamma activity in hierarchically highest visual areas in the parietal cortex and
premotor areas in the frontal cortex (Fig. 3.9). Thus, transient synchronizations may
accompany also other cognitive processes not only perception. Miltner et al. [24]
indeed detected synchronization of gamma oscillations during an associative
learning. Humans were supposed to learn to associate a visual stimulus with the
tactile stimulus. A selective synchronization occurred between the visual cortex and
that part of somatosensory cortex which represented the stimulated hand, during
and after the learning. When people forgot the learned association, synchronization
between these two stimuli, or rather between neural responses to these two stimuli,
disappeared.

Currently, transient (100–200 ms) synchronous gamma oscillations are being
studied as a promising candidate for the mechanism of binding many elementary
features belonging to one object to one transient whole corresponding to a percept
of that object [25, 26]. Such synchronized activity summates more effectively than
nonsynchronized activity in the target cells at subsequent processing stages, and the
activity can spread to a longer distances. If so, synchronization could increase the
effect that a selected population of neurons has on other populations with great
temporal specificity (in the range of milliseconds). There is also evidence that
synchrony is important for inducing changes in synaptic efficacies and hence
facilitate transfer of information into memory. Different objects in one scene may be
associated with different phase-locked synchronous oscillations within the gamma
frequency band. Thus, increased coherence between brain areas confined to a
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narrow band around 40 Hz may denote a holistic perception of a complex stimulus.
Based on experimental findings, crucial neural conditions for a conscious percept to
be experienced are identified [19, 23, 27–29].

Generating sensory awareness involves the process of attention. Several areas in
the prefrontal cortex are crucially involved in attention, namely areas 8Av (major
connections with the visual system), 8Ad (major connections with the auditory
system) and 8B (major connections with the limbic system) [8]. Attentional
selection may depend on appropriate binding (coherence) of neuronal discharges in
sensory areas in two simultaneously active directions: an attentional mechanism in
prefrontal cortex could induce synchronous oscillations in selected neuronal pop-
ulations (top-down interaction), and strongly synchronized cell assemblies could
engage attentional areas into coherence (bottom-up interaction) [19]. Chapter 8
presents a SNN model to model attentional bias, which is manifested as brain
activities when a person is reacting to non-targeted stimuli.

Fig. 3.9 Corticocortical connections between the posterior parietal cortex and the main
subdivisions of the frontal cortex. Illustrated areas showed increased coherence within the
40 Hz band in the Rodriguez et al.’s experiment on recognition of faces. When a human face was
recognized, transient coherence occurred in the time window of 180 � 360 ms after the beginning
of the picture presentation (from [7, 23])
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Another prefrontal areas activated during sensory perception include Brodmann
areas 9, 10, 45, 46, 47 (see Fig. 3.10). These prefrontal areas are known to be
involved in an extended action planning. In addition, these prefrontal areas plus the
posterior parietal cortex are known to be involved in the working memory.
Posterior parietal cortex is also known to be involved in mental imagery. For
planning of actions it is necessary to keep track of at least one sequence of partial
actions, hence the overlap between planning and memory mechanisms. It might be
that sensory contents reach awareness only if they are bound to prefrontal areas via
the posterior parietal cortex and thus have a possibility to become part of the
working memory and action planning [25]. In turn, action planning may influence
organization of attentional mechanisms and thus what is being perceived. Action
planning can occur at a subconscious level [30, 31].

Coherences in the involved areas are generated internally within the cortex and
although they are phase-locked, they are not stimulus locked. They are superim-
posed upon global thalamocortical gamma oscillations which are generated and
maintained during cognitive tasks [32]. Thalamocortical oscillations may provide
the basic oscillatory modulation of cortical oscillations. Other cortical mechanisms
are then responsible for a precise phase-locking of internal cortical synchronous
oscillations. In particular, these are lateral inhibitory and excitatory interactions,
regularly bursting layer V pyramidal cells, and spike-timing dependent rapid
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Fig. 3.10 Human prefrontal cortex (after [7]). Lateral view (from outside), medial view (from
inside) and the orbito-frontal view (from below) at the left hemispehere. The same divisions hold
also for the right hemisphere. Numbers denote the corresponding Brodmann’s areas. CC means
Corpus Callosum
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synaptic plasticity. In the latest, synapses and thus the inputs which do not drive the
postsynaptic cell in synchrony are temporary weakened [33].

In [33], this is called ever changing semiglobal coherent activity, the dynamic
core. The dynamic core corresponds to a large (semiglobal) continuous cluster of
neuronal groups that are coherently active on a time scale of hundreds of mil-
liseconds. Its participating neuronal groups are much more strongly interactive
among themselves than with the rest of the brain. The dynamic core must also have
an extremely high complexity as opposed to for instance convulsions. Each roughly
150 ms, a pattern of semiglobal activity must be selected within less than a second
out of a very large, almost infinite, repertoire of options. Thus, the dynamic core
changes in composition over time. As suggested by neuro-imaging, exact compo-
sition of the core varies significantly not only over time within one individual, but
also vary significantly across individuals (Fig. 3.11).

According to [33], the dynamic core consists of a large number of distributed
groups of neurons which enter the core temporarily based on their mutual coher-
ence. Connecting groups of neurons into temporarily synchronized whole requires
dense recurrent connections between brain areas, along which a reiterated re-entry
of signals occurs. Neural reference space for any conscious state may be viewed as
an abstract N-dimensional space, where each axis (dimension) stands for some
participating group of neurons that code for (represent) a given aspect of the
conscious experience. There can be hundreds of thousands of dimensions. The
distance from the beginning of the axis represents the salience of that aspect. It may,
for instance, correspond to the number of firing neurons within a given group. We

(a) (b)

Fig. 3.11 a Illustration of the dynamic core, a changing coherent semiglobal spatio-temporal
activity of the brain, which is supposed to be a neural correlate of consciousness. One
configuration of the core lasts for about 150 ms. b Interpretation of the dynamic core as an N-
dimensional neuronal reference space, where each axis (dimension) denotes some group of
neurons which encodes (represents) a given aspect of the conscious experience. Each axis can be
broken down into more elementary axes. There can be hundreds of thousands of spatio-temporal
dimensions (from [7])
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would like to point out the interesting similarity between this abstract N-dimen-
sional neural space and the conceptual spaces introduced by [34].

What would be, in this theory, a neural basis for subconsciousness? The same
group of neurons may at times be part of the dynamic core and underlie conscious
experience, while at other times it may not be part of it and thus be involved in
subconscious processing. In [27], have proposed that those active neurons which
are not at the moment taking part in the semiglobal activity keep processing their
inputs, and results of this processing may still affect behaviour.

We would like to mention also the explanation of neural correlate of qualia or
the hard problem of consciousness, according to [33]. Qualia are specific qualities
of subjective experiences, like redness, blueness, warmth, pain, and so on.
According to the dynamic core hypothesis, pure redness would be represented by
one particular state of the dynamic core that is by one and only one point in the N-
dimensional neural space. This core state would certainly include large participation
of neurons that code for the red colour and a small participation of neurons that
code for other colours and for anything else. Coordinates of a point in the N-
dimensional reference neural space are determined by activities of all neuronal
groups that are at the moment part of the core. And these activities vary in
time-space and across individuals. Thus, the subjective experience of redness will
be different in different people and can be different for the same individual for
instance in the morning and in the evening.

Sleep research has revealed that during sleep, humans normally go through
two-three cycles of two sleep phases. One of these two phases is the so called REM
sleep, according to the accompanying Rapid Eye Movements. EEG activity of the
brain during the REM phase is very similar to the EEG activity of the awake brain
during cognitive activity. Hence the term paradoxical sleep for the REM sleep
phase, as it was not sleep at all. We dream mostly during REM sleep phases. When
awakened during the REM phase, we can recall the content of a dream. We
experience self-awareness when we dream but not when we are in the deep sleep
[35]. Thus “I” is preserved during dreaming as well as the awake-like EEG activity
of the brain. When awakened around at the end of the REM phase, we can
remember that we dreamt, not knowing about what. When awakened during the
non-REM sleep phase, we mostly deny any experience of dreaming. The non-REM
sleep phase is also called the deep sleep, and the brain activity occurs in typical
slow large regular waves. Recently, experiment with the spread of activity within
neocortex during sleep have revealed that different cortical areas stop communi-
cating over distance with each other during the non-REM sleep—a stage of sleep
for which people mostly report no or very little conscious experience on waking
[36]. Thus, it seems that the coherent semiglobal activity is disrupted during the
non-REM sleep, and so is the conscious awareness [7]. Information consolidation in
the brain during sleep was used as inspiration for the development of “sleep
learning” algorithms for ECOS (Chap. 2). It can inspire the development of new
algorithms for SNN as well.

102 3 Deep Learning and Deep Knowledge Representation …



3.5 Deep Learning and Deep Knowledge Representation
in Time-Space in the Brain

As discussed above, the brain is a complex integrated spatio-temporal information
processing machine. An animal or a human brain has a range of structural and func-
tional areas that are spatially distributed in a constrained 3D space. When the brain
processes information, either triggered by external stimuli, or by inner processes, such
as visual-, auditory-, somatosensory-, olfactory-, control-, emotional-, environmental-,
social, or all of these stimuli together, complex spatio—temporal pathways are acti-
vated and patterns are formed across the whole brain. For example, ‘…the language
task involves transfer of stimulus information from the inner ear through the auditory
nucleus in the thalamus to the primary auditory cortex (Brodmann’s area 41), then to
the higher-order auditory cortex (area 42), before it is relayed to the angular gyrus (area
39)…’ [7, 37]. Many other studies of spatio-temporal pathways in the brain have been
conducted, e.g. birdsong learning [38].

In principle, different ‘levels’ of spatio-temporal information processing can be
observed in the brain, [37], all ‘levels’ acting in a concert. Spatio-temporal brain
data (STBD) related to each of these ‘levels’ can be collected, but how do we
integrate this information in a machine learning model?

Let us trace the visual brain processing in this experiment [7] (see Fig. 3.12).
Projected image stimulates retina for 20 ms. In about 80 ms, neurons in the tha-
lamic LGN (lateral geniculate nucleus) respond. Thalamic neurons activate neurons
in the primary visual cortex (V1). Then, activation proceeds to and through
higher-order visual areas, V2, V4 and IT. We speak about the so-called “WHAT”
visual system, which is assumed to be responsible mainly for classification and
recognition of objects. In the highest-order area of this system, i.e. the infratemporal
(IT) cortex, activity appears after 150 ms since the picture onset (on average). It is
thought that here, in the IT area, the classification process is completed [43]. If we
divide 150 ms since the picture onset by the number of processing areas (i.e. retina,
thalamus, V1, V2, V4), on average each of them has only 30 ms for processing of
signals. The frontal areas, PFC, PMC and MC, are responsible for preparation and
execution of motor response, for what they need only 100 ms. Divided by three,
again we get about 30 ms for each area. Since each of the mentioned areas has
further subtle subdivisions, each sub area can have only 10 ms to process signals
and send them higher in the hierarchy of processing. At the same time, neurons in
each area send signals up and down in the stream of hierarchical processing.
Whether 10 or 30 ms, it is an extremely short time for processing in one single area.
Cortical neurons, when naturally stimulated fire with frequencies of the order of 10–
100 Hz. A neuron firing with an average frequency of 10 Hz (i.e., 10 impulses in
1000 ms), may fire the first spike in 100 ms from the beginning of stimulation.
Thus, during the first 10–30 ms there will be no spikes from this neuron. Another
neuron firing with the frequency of 100 Hz fires 1 � 3 spikes during the first
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10 � 30 ms. In each of the above-mentioned areas, there are millions perhaps
billions of neurons, then these neurons exchange only 1–3 spikes, and the result of
this processing is sent higher to higher-order areas, and lower to the lower-order
areas. Each neuron receives signals from say 10,000 other neurons and sends off
signals to the next 10,000 neurons. Synaptic transmission delay in one synapse is
about 1 ms. A neuron cannot wait 10,000 ms to receive signals from all its
presynaptic neurons. Thus, the signals ought to come almost simultaneously, and
not one after another.

Another complication in the neuronal processing of inputs is the fact that firing is
a stochastic process. A good model for it is a Poisson stochastic process where the
value of dispersion is equal to the value of the mean, thus the dispersion is large.
Speaking about firing frequencies of 10 or 100 Hz, we mean average frequencies
over relatively long time periods, let us say 500 ms (half of a second). Thus, a
neuron firing with the average frequency of 100 Hz does not have to fire a single
spike during the first 10–30 ms from the beginning of stimulation, and a neuron
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Fig. 3.12 Deep spatio-temporal processing of visual stimuli in humans for image classification.
Location of cortical areas: V1 = primary visual cortex, V2 = secondary visual cortex,
V4 = quartiary visual cortex, IT = inferotemporal cortex, PFC = prefrontal cortex,
PMC = premotor cortex, MC = motor cortex. The brain has learned through deep learning how
to process visual stimuli, forming a deep knowledge, represented as connections between different
spatially located parts of the brain, activated at different times (from [7]). We can represent the
deep knowledge of classifying an image stimulus as a sequence of events (Ei), each of them
consisting of a function Fi, that is activated as a location Si at a time Ti, and all of them connected
as a piece of deep knowledge
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firing with the average frequency of 10 Hz may fire four spikes. Thus, to sum-
marize, it is really a problem how neurons code information. So far, this problem
has not been solved. In the following section we will introduce several current
hypotheses.

Despite the very complex information processing in the brain, we can represent
at abstract level the deep knowledge of classifying an image stimulus as a sequence
of events (Ei), each of them consisting of a function Fi, that is activated as a
location Si at a time Ti, and all of them connected as a piece of deep knowledge (as
per the definitions of deep knowledge in Chap. 1).

Language processing during a simple task of repeating the word that has been
heard is the Wernicke-Geschwind model [41] that is a deep spatio-temporal acti-
vation of brain areas as a result of deep learning beforehand. A language task
involves many steps of processing as shown in Box 3.1 and Fig. 3.13, learned as
deep learning and representing deep knowledge. The task involves different pro-
cedures (named as events Ei in Chap. 1), each event Ei consisting of a function Fi,
spatial location Si and time of execution Ti, and all connected in a deep knowledge.

Fig. 3.13 Deep spatio-temporal processing in the brain when dealing with words and language
(from [7])
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___________________________________________________________________________ 

___________________________________________________________________________ 

1. Event E1: Transfer of information from the inner ear through the auditory nucleus in 

thalamus to the primary auditory cortex (Brodmann’s area 41) (location S1) at time T1.  

2. Event E2: Then to the higher-order auditory cortex (area 42) (location S2) at time T2; 

3. Event 3: Then it is relayed to the angular gyrus (area 39) (location S3) at time T3. Angular 

gyrus is a specific region of the parietal-temporal-occipital association cortex, which is 

thought to be concerned with the association of incoming auditory, visual and tactile 

information.  

4. Event 4: From here, the information is projected to Wernicke’s area (area 22) (location S4) 

at time T4.  

5. Event 5: Then, by means of the arcuate fasciculus, to Broca’s area (44, 45), where the 

perception of language is translated into the grammatical structure of a phrase and where 

the memory for word articulation is stored (location S5) at time T5.  

6. Event 6: This information about the sound pattern of the phrase is then relayed to the 

facial area of the motor cortex that controls articulation, so that the word can be spoken 

(location S6) at time T6.  

___________________________________________________________________________ 

     Note: Times Ti and locations Si of events Ei can take either exact values or fuzzy values 

(e.g. around).          

Box 3.1. Deep knowledge learned and represented in time-space for a language task
(see Fig. 3.13).  

Similar pathway is involved in naming an object that has been visually recog-
nized. This time, the input proceeds form retina and LGN (lateral geniculate
nucleus) to the primary visual cortex, then to area 18, before it arrives to the angular
gyrus, from where it is relayed by a particular component of arcuate fasciculus
directly to Broca’s area, bypassing Wernicke’s area

The brain has learned through deep learning how to process visual stimuli,
forming a deep knowledge, represented as connections between different spatially
located parts of the brain, activated at different times.

The deep learning in the brain is achieved through creating connections between
neurons in space and time. The patterns that are formed by these connection rep-
resent deep knowledge and enable people to perform different tasks. Similar to the
discussed deep learning and deep knowledge representation in this section, in
Chap. 8 we present methods for deep learning and deep knowledge representation
from EEG data and in Chap. 10—from fMRI data.
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3.6 Information and Signal Processing in Neurons
and in the Brain

3.6.1 Information Coding

The brain consists of bullions of neurons and trillions of connections, and each
neuron is a complex information processing machine, receiving thousands of sig-
nals from dendrites that receive signals from other neurons through synaptic con-
nections. The neuron has just one output that emits spikes at certain times when the
membrane of this neurons reaches a threshold (Fig. 3.14).

Information in the brain is represented and transferred as electrical potentials
(spikes) under different encoding mechanisms as discussed below. Here we discuss
some methods of coding information as spikes in the brain that have inspired
methods for data coding in artificial SNN discussed in Chap. 4.

Coding on Information Based on Spike Timing

1. Reverse correlation. The first option is that the information about the salience of
the object feature is encoded in the exact temporal structure of the output spike train.
Let us say that two neurons fire three spikes within 30 ms. The first neuron fires a
spike train with this temporal structure | || and the second neuron with this temporal
structure | | |. By means of the techniques of reverse correlation, it is possible to
calculate which stimulus exclusively causes which temporal pattern of which

Fig. 3.14 A single neuron is a complex information processing machine (after [71])
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neuron. The main proponents of this theory are Bialek and his co-workers who have
made its successful verification in the fly visual system [42].

2. Time to the first spike. Let at time instant t0 a stimulus arrives to the neural
network. Neurons that fire the first (let us say in a window of 10 ms) carry the
most important information about the stimulus features. The rest of neurons and
the rest of impulses are ignored. This theory is favored by Thorpe [40, 43].

3. Phase coding. Information about the presence of a feature is encoded in the
phase of neuron’s impulses with respect to the reference background oscillation.
Either they are in a phase lead or in a phase lag. The information can also
depend on the magnitude of this phase lead (lag). This coding is preferred by
people investigating hippocampus [44].

4. Synchronization. Populations of neurons that represent features belonging to one
object can be bound together by synchronous firing in time. Such synchro-
nization was discovered in the laboratory of W. Singer in the cat visual cortex to
accompany percepts [22]. It was also detected in the human cortex during
perception of meaningful stimuli (faces) [23].

Rate Coding

1. Temporal average rate. In this respect, works of an English physiologist Adrian
from the 30-ties of the 20th century are being cited. Adrian found out that the
average frequency of a neuron in the somatosensory cortex is directly proportional
to the pressure applied to its touch receptor. Similar dependencies have been
discovered in the auditory and visual cortices. That is, in the auditory cortex, the
heard frequency is encoded by the average firing frequency of auditory neurons,
and in the visual cortex, the average frequency of neurons encodes for the salience
of its visual elementary feature. This coding is still being considered for stationary
stimuli that last up to around 500 ms or longer, so that neurons have enough time
to count (integrate) impulses over long time. Neurons that have the highest fre-
quency signalize the presence of the relevant feature.

2. Rate as a population average. An average frequency is not calculated as a
temporal average but rather as a population (spatio-temporal) average. One feature is
represented by a population of many (10,000) neurons, for instance in one cortical
column. Upon presence of a feature, most of them are activated. When we calculate
the number of spikes in a 10 ms window of all these neurons and divide this number
by the number of neurons, we will get approximately the same average frequency as
when calculating a temporal average rate of any of these neurons (provided they all
fire with the same average rate). This idea has been thoroughly investigated by
Shadlen and Newsome [45]. They showed on concrete examples, that by means of
population averaging we can get a reliable calculation of neuron’s average rates even
in the case when they have a Poisson-like distribution of output spikes. Populations
that relay the highest number of spikes signalize the presence of the relevant feature.

Information coding in the brain affects learning. At present, it is widely accepted
that learning is accompanied by changes of synaptic weights in cortical neural
networks [1]. Changes of synaptic weights are also called synaptic plasticity. In
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1949, the Canadian psychologist Donald Hebb formulated a universal rule for these
changes: “When an axon of cell A excites cell B and repeatedly or persistently takes
part in firing it, some growth process or metabolic change takes place in one or both
cells so that A′ s efficiency as one of the cells firing B is increased”, which has been
verified in many experiments and its mechanisms elucidated [46]. This learning
principle is also known as “neurons that fire together, wire together”. This principle
is extended with the introduction of the time of spiking, leading to spike-time
dependent learning rules used in the SNN models (see Chaps. 4, 5 and 6).

3.6.2 Molecular Basis of Information Processing

In cerebral cortex and in hippocampus of humans and animals, learning takes place
in excitatory synapses formed upon dendritic spines that use glutamate as their
neurotransmitter. In the regime of learning, glutamate acts on specific postsynaptic
receptors, the so-called NMDA receptors (N-methyl-D-aspartate). NMDA receptors
are associated with ion channels for sodium and calcium (see Fig. 3.15). The influx
of these ions into spines is proportional to the frequency of incoming presynaptic
spikes. Calcium acts as a second messenger thus triggering a cascade of bio-
chemical reactions which lead either to the long-term potentiation of synaptic
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Fig. 3.15 Scheme of synaptic transmission. a A synapse is ready to transmit a signal.
b Transmission of electric signal (a spike) in a chemical synapse upon arrival of action potential
into the terminal. NT = neurotransmitter, R = AMPA-receptor-gated ion channel for sodium,
N = NMDA-receptor-gated ion channel for sodium and calcium (from [7])
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weights (LTP) or to the long-term depression (weakening) of synaptic weights (LTD).
In experimental animals, it has been recorded that these changes in synaptic weights
can last for hours, days, even weeks and months, up to a year. Induction of such
long-term synaptic changes involves transient changes in gene expression [47, 48].

A subcellular switch between LTD and LTP is the concentration of calcium within
spines [49]. We speak about an LTD/LTP threshold. In turn, the intra-spine calcium
concentration depends upon the intensity of synaptic stimulation that is upon the fre-
quency of presynaptic spikes. That is, more presynaptic spikes means more glutamate
within synaptic cleft. Release of glutamate must coincide with a sufficient depolarization
of the postsynaptic membrane to remove the magnesium block of the NMDA receptor.
The greater the depolarization, the more ions of calcium enter the spine. Postsynaptic
depolarization is primarily achieved via AMPA (amino-methylisoxasole-propionic acid)
receptors, however, recently a significant role of backpropagating postsynaptic spikes
has been pointed out [50]. Calcium concentrations below or above the LTD/LTP
threshold, switch on different enzymatic pathways that lead either to LTD or LTP,
respectively. However, the current value of the LTD/LTP threshold (i.e. the properties of
these two enzymatic pathways) can be influenced by levels of other neurotransmitters,
an average previous activity of a neuron, and possibly other biochemical factors as well.
This phenomenon is called metaplasticity, a plasticity of synaptic plasticity [51].
Dependence of the LTD/LTP threshold upon different postsynaptic factors is the subject
of the Bienenstock, Cooper and Munro (BCM) theory of synaptic plasticity [52] (for a
nice overview see for instance [53]). The BCM theory of synaptic plasticity has been
successfully applied in computer simulations to explain experience-dependent changes
in the normal and ultrastructrally altered brain cortex of experimental animals [54, 55].

Dendrites of cortical excitatory pyramidal neurons are abundant in tiny mem-
brane extensions called spines. They are named so because they resemble in shape
the spines on the rose stem. About 80% of all synaptic connections in the cerebral
cortex are excitatory and vast majority of them is formed on the heads of synaptic
spines. For many years the role of spines was a mystery. Nowadays it is accepted
that they play several important roles in synaptic plasticity and learning.

First, it was discovered that spines change their size, shapes and numbers during
the induction and maintenance of LTP [56, 57]. There are growth changes on
spines, like spine head swelling, spine neck thickening, and increase in appearance
of spines with mushroom-shaped heads. Morphological properties of spines and
changes in their shape were first supposed to play a role in affecting the efficacy of
synaptic transmission by means of changes in the input resistance [58]. Long, thin
spines create a big input electrical resistance, while short, stubby spines create a
smaller input resistance. Later, a role in sequestering and amplifying the calcium
concentrations was suggested to be the main role of spines [59]. Through this role a
mechanisms for saturation and stopping the infinite growth of synaptic weights was
proposed, as well as the role in the LTP/LTD threshold [60]. While all these effects
can take place, another important role for spines was suggested in the transport of
new receptors into the spine head [61]. This model is based on our older hypothesis
that the changes in efficacy of excitatory dendritic spine synapses can result from the
fusion of transport vesicles carrying new membrane material with the postsynaptic
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membrane of spines [62]. Spacek and Harris indeed found structural evidence for
exocytotic activity within spines in hippocampal CA1 pyramidal neurons [63].
Smooth vesicles of the diameter around 50 nm occurred in the cytoplasm of spine
heads, adjacent to the spine plasma membrane, and fusing with the plasma mem-
brane. In addition, Lledo et al. showed that inhibitors of membrane fusion blocked or
strongly reduced LTP when introduced into CA1 pyramidal cells [64]. On the other
hand, an increase in synaptic strength was elicited when membrane fusion was
facilitated. In the CA1 region, LTP requires the activation of the NMDA glutamate
receptors and a subsequent rise in postsynaptic calcium concentration. Besides other
roles, Ca2+ plays a crucial role in the final stage of vesicle fusion with the membrane,
and the number of fused vesicles is proportional to [Ca2+] [65]. Since LTP in CA1
neurons is accompanied by appearance of AMPA subclass of glutamate receptors
[66], it is reasonable to assume that vesicles can be a mean of their insertion. Indeed,
Kharazia et al. [67] observed GluR1 (a subunit of AMPA receptors) containing
vesicles associated with the cytoplasmic side of some GluR1-containing cortical
synapses. Moreover, tetanic stimulation induces a rapid delivery of GluR1 into spines
and this delivery requires activation of NMDA receptors [68].

Another effect of the vesicle fusion with the spine membrane would be the shaping
and growth of the spine, which were observed during the induction and maintenance of
LTP. However, prior to fusion the vesicles must get very close to the plasma membrane.
The main mechanism for displacement of vesicles within axons and dendrites is the fast
active transport with the speeds of 0.001–0.004 m/ms [69]. Fast transport depends on
the direct interaction of transported vesicles with microtubules via the translocator
kinesin-like molecules [69]. However, microtubules do not enter spines [63]. Thus,
while the fast transport can bring vesicles close to the walls of dendritic shafts, another
mechanism must come into play within spines themselves. The first natural candidate for
this mechanism can be the diffusion of vesicles. However, we have shown that an
electrophoretically driven, directed motion of negatively charged vesicles towards the
spine head, evoked by the synapse stimulation itself can be ten times faster [61].

At a molecular level, different genes, that affect the activity of neuro-receptors
and neuro-trasmitters, such as GABA, AMPA, NMDA are expressed differently in
different parts of the brain that defines the functioning of these parts. An example is
shown in Fig. 3.16. Information, related to the expression of genes in the brain can
be used for neurogenetic modelling as discussed in Chap. 16.

3.7 Measuring Brain Activities as Spatio/
Spectro-temporal Data

3.7.1 General Notions

At present, a number of techniques is available to investigate where in the brain
particular cognitive and other kinds of functions are based. In general, these
methods are divided as being invasive or noninvasive. In medicine the term
invasive relates to a technique in which the body is entered by puncture, incision or
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other intrusion. Noninvasive means the opposite that is the technique that does not
intrude into the body.

An invasive method of the brain study is the direct stimulation. Researchers
perform electrical, magnetic or chemical stimulation of some neural circuit or part
of it, and observe the consequences. Electrical stimulation is delivered through
microelectrodes inserted into the brain. This type of research is done routinely on
animals. It can be done on human subjects during the brain surgery when the skull
has to be opened anyway and surgeons have to map the functions of the operated
area and its surrounded parts. Electrical stimulation of the brain (ESB) can be also
used to treat chronic tremors associated with Parkinson disease, chronic pain of
patients suffering from back problems and other chronic injuries and illnesses. ESB
is administered by passing an electrical current through a microelectrode implanted
in the brain. With chemical stimulation, a particular chemical compound is
administered into a chosen part of the brain that is supposed either to stimulate or
inhibit neurons within it. The least invasive methods of the stimulation methods is
magnetic stimulation, called the Transcranial Magnetic Stimulation (TMS). TMS
and rTMS (repetitive TMS) are simply the applications of the principle of elec-
tromagnetic induction to get electric currents across the insulating tissues of the
scalp and skull without the tissue damage. The electric current induced in the
surface structure of the brain, the cortex, activates nerve cells in much the same way
as if the currents were applied directly to the cortical surface. However, the path of
this current is complex to model because the brain is a non-uniform conductor with
an irregular shape. With stereotactic, MRI-based control (see below), the precision
of targeting TMS can be as good as a few millimetres.

However, besides the invasiveness there are other problems with the methods of
direct stimulation. Intensity of an artificial stimulation can be stronger or weaker

Fig. 3.16 The expression of the GABRA2 gene causes the production of the GABA receptor in
the synapses of neurons, and it is differently expressed in different spatially located parts of the
brain (from Gene Expression Atlas, http://expression.gnf.org/cgi-bin/index.cgi) (see also [7])
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than the level of spontaneous activity in the target circuit. Therefore artificial
stimulation can engage more or respectively less of brain circuitry than is normally
involved in the studied function. Thus, there are difficulties in determining which
brain circuitries have been actually affected by the stimulation and thus which brain
structures actually mediate the studied function. Further in this book we will
consider only non-invasive measures of brain activity that are modelled with the use
of SNN, even though these models can be also for modelling invasive brain data.

3.7.2 Electroencephalogram (EEG) Data

The oldest non-invasive method to measure electrical activity of the brain is the
electroencephalography (EEG). An EEG is a recording of electrical signals from
the brain made by attaching the surface electrodes to the subject’s scalp (Fig. 3.17).
These electrodes are located at exact locations of the scalp and measure corre-
sponding activities as illustrated in Table 3.1. EEGs allow researchers to follow
electrical potentials across the surface of the brain and observe changes over split

Fig. 3.17 EEG signals taken from EEG electrodes spatially distributed on the scalp are spatio/
spectro temporal data
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seconds of time. An EEG can show what state a person is in (e.g., asleep, awake,
epileptic seizure, etc.) because the characteristic patterns of brainwaves differ for
each of these states (Fig. 3.18a, b, Box 3.2). One important use of EEGs has been to
show how long it takes the brain to process various stimuli. A major drawback of
EEGs, however, is that they cannot show us the structures and anatomy of the brain
and tell us which specific regions of the brain do what. In recent years, EEG has

Table 3.1 Anatomical locations of international 10–10 cortical projections

Labels Talairach coordinates Gyri BA

x avg (mm) y avg (mm) z avg (mm)

FPI −21.2 ± 4.7 66.9 ± 3.8 12.1 ± 6.6 L FL Superior frontal G 10

FPz 1.4 ± 2.9 65.1 ± 5.6 11.3 ± 6.8 M FL Bilat. medial 10

FP2 24.3 ± 3.2 66.3 ± 3.5 12.5 ± 6.1 R FL Superior frontal G 10

AF7 −41.7 ± 4.5 52.8 ± 5.4 11.3 ± 6.8 L FL Middle frontal G 10

AF3 −32.7 ± 4.9 48.4 ± 6.7 32.8 ± 6.4 L FL Superior frontal G 9

AFz 1.8 ± 3.8 54.8 ± 7.3 37.9 ± 8.6 M FL Bilat. medial 9

AF4 35.1 ± 3.9 50.1 ± 5.3 31.1 ± 7.5 L FL Superior frontal G 9

AF8 43.9 ± 3.3 52.7 ± 5.0 9.3 ± 6.5 R FL Middle frontal G 10

0.1-3.5 (delta)                 Sleep or rest 
3.5-7.5 (theta)                 Learning, memory, sensory motor processing 

7.5-12.5 (alpha)               Meditation, usually observed in the occipital lobe
12.5-30 (beta) Active state, busy, or anxious thinking, concentration
30-100, (gamma)      Not known; consciousness usually 40

(a)

(b)

Fig. 3.18 a Different brain waves, characterised as different signal frequencies, could have
different intensity at different times and different spatial locations in the brain. b Different brain
waves are associated with different brain states
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undergone technological advances that have increased its ability to read brain activity
from the entire head from more than 512 sites simultaneously. The greatest advantage of
EEG is that it can record changes in the brain activity almost instantaneously. On the
other hand, the spatial resolution is poor, and thus should be combined with CT or MRI
(see below). SNN methods for modeling and understanding EEG data, along with
several applications, are presented in Chaps. 8, 9 and 14.

Box 3.2. EEG channels, corresponding Brodmann areas (BA) and functional/cognitive 

activity.    

EEG label Main 

BA

Function

AF3, 

AF4

9 The frontal lobe contains most of the dopamine-sensitive neurons in the cerebral 

cortex. The dopamine system is associated with reward, attention, short-term 

memory tasks, planning, and motivation 

F7, 

F8

45  Together with BA 44, it comprises Broca's area, a region that is active in semantic 

tasks, such as semantic decision tasks (determining whether a word represents an 

abstract or a concrete entity) and generation tasks (generating a verb associated with 

a noun) 

F3,

F4

8 Frontal cortex. The area is involved in the management of uncertainty. With 

increasing uncertainty there is increasing activation 

An alternative interpretation is that this activation in frontal cortex encodes hope, a 

higher-order expectation positively correlated with uncertainty 

FC5, 

FC6

6 Premotor cortex and Supplementary Motor Cortex (Secondary Motor Cortex)—

planning of complex, coordinated movements 

T7 21 Part of the temporal cortex .The region encompasses most of the lateral temporal 

cortex, a region believed to play a part in auditory processing and language. 

Language function is left lateralized in most individuals 

T8 4 Primary motor cortex of the human brain. It is located in the posterior portion of the 

frontal lobe 

P7 37 Part of the temporal lobe. The temporal lobe is involved in the retention of visual 

memories, processing sensory input, comprehending language, storing new 

memories, emotion, and deriving meaning 

P8 19 Parietal cortex; Visual areas designated as V3, V4, V5 (also known as the middle 

temporal area, or MT) and V6 (also known as dorsomedial area). BA 19 is the 

differentiation point of the two visual streams, of the 'what' and 'where' visual 

pathways. The dorsal region may contain motion-sensitive neurons, and ventral 

areas may be specialised for object recognition 

O1, 

O2

18 Occipital cortex—Primary visual cortex V1: Vision 
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3.7.3 MEG

Related method to EEG, called magnetoencephalography (MEG) measures
millisecond-long changes in magnetic fields created by the brain’s electrical cur-
rents. MEG is a rare, complex and expensive neuroimaging technique. MEG
machine uses a non-invasive, whole-head, e.g. 248-channel, super-conducting-
quantum-interference-device (SQUID) to measure small magnetic signals reflecting
changes in the electrical signals in the human brain. The incorporation of liquid
helium creates the incredibly-cold conditions (4.2° of Kelvin) necessary for the
MEG’s SQUIDS to be able to measure these brain magnetic fields that are billions
of times weaker than the earth’s magnetic force. Investigators use MEG to measure
magnetic changes in the active, functioning brain in the speed of milliseconds.
Besides its precision another advantage of MEG is that the biosignals it measures
are not distorted by the body as in EEG. Used in conjunction with MRI or fMRI
(see below), to relate the MEG sources to brain anatomical structures, researchers
can localize brain activity and measure it in the same temporal dimension as the
functioning brain itself. This allows investigators to measure, in real-time, the
integration and activity of neuronal populations while either working on a task, or at
rest. The brains of healthy subjects and those suffering from dysfunction or disease
are imaged and analyzed.

3.7.4 CT and PET

The oldest among the noninvasive methods to study brain anatomy is Computer
Tomography (CT). It is based on the classical X-ray principle. X-rays reflect the
relative density of the tissue through which they pass. If a narrow X-ray beam is
passed through the same point at many different angles, it is possible to construct a
cross-sectional visual image of the brain. A 3D X-ray technique is called the CAT
(Computerized Axial Tomography). CT is noninvasive and shows only the
anatomical structure of the brain, not its function.

Positron Emission Tomography (PET) is used for studying the living brain
activity. This noninvasive method involves an on-site use of a machine called
cyclotron to label specific drugs or analogues of natural body compounds (such as
glucose or oxygen) with small amounts of radioactivity. The labeled compound (a
radiotracer) is then injected into the bloodstream which carries it into the brain.
Radiotracers break down, giving off sub-atomic particles (positrons). By sur-
rounding the subject’s head with a detector array, it is possible to build up images of
the brain showing different levels of radioactivity, and therefore, cortical activity.
Thus, depending on whether we used glucose (oxygen) or some drug, PET can
provide images of ongoing cortical or biochemical activity, respectively. Among
the problems with this method are expense including the on-site cyclotrone and also
technical parameters like the lack of temporal (40 s) and spatial (4 mm–1 cm)
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resolution. Usually the PET scan is combined either with CT or MRI to correlate
the activity with brain anatomy.

Single-Photon Emission Computed Tomography (SPECT) uses gamma
radioactive rays. Similar to PET, this noninvasive procedure also uses radiotracers
and a scanner to record different levels of radioactivity over the brain. SPECT
imaging is performed by using a gamma camera to acquire multiple images (also
called projections) from multiple angles. A computer can then be used to apply a
tomographic reconstruction algorithm to the multiple projections, yielding a 3D
dataset (like in CT). Special SPECT tracers have long decay time, thus no on-site
cyclotron is needed, which makes this method much less expensive than PET.
However, the temporal and spatial resolution of brain activity is even smaller than
in PET.

3.7.5 fMRI

Magnetic Resonance Imaging (MRI) uses the properties of magnetism instead of
injecting the radioactive tracers into the bloodstream to reveal the anatomical
structure of the brain. A large (and loud) cylindrical magnet creates a magnetic field
around the subject’s head. Detectors measure local magnetic fields caused by
alignment of atoms in the brain with the externally applied magnetic field. The
degree of alignment depends upon the structural properties of the scanned tissue.
MRI provides a precise anatomical image of both surface and deep brain structures,
and thus can be combined with PET. MRI images provide greater detail than CT
images.

Functional MRI (fMRI) combines visualisation of brain anatomy with the
dynamic image of brain activity into one comprehensive scan. This non-invasive
technique measures the ratio of oxygenated to deoxygenate haemoglobin which
have different magnetic properties. Active brain areas have higher levels of oxy-
genated haemoglobin than less active areas. An fMRI can produce images of brain
activity as fast as every 100–500 ms with very precise spatial resolution of about
1 � 2 mm. Thus, fMRI provides both an anatomical and functional view of the
brain and is very precise. FMRI is a technique for determining which parts of the
brain are activated at what time by different types of brain activity, such as sight,
speech, imagery, memory processes, etc. This brain mapping is achieved by setting
up an advanced MRI scanner in a special way so that the increased blood flow to
the activated areas of the brain shows up on fMRI scans.

fMRI imaging technique is non-invasive and radiation-free thus providing a safe
environment to the subjects involved. The images are recorded in sequence either
vertically or horizontally (Fig. 3.19), and over time, in a matrix of intensity values.
They are captured in slices through the organs, generally in 8 or 16-bit (Fig. 3.18
right).
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Fig. 3.19 Brain images in vertical and horizontal slice: in sagittal, coronal and axial views (left).
Slices of brain taken over time i.e. 32 images for a volume of brain (images are viewed using
FSLView (FSLView, 2012) software (right) (after [75])

The images are constructed from two components—spatial/spectral (or spatio)
and temporal. The first component is identified as the volume of a brain that can be
further sub-divided into smaller 3D cuboids, known as voxels (volume element). In
a typical fMRI study, a series of brain volumes are collected in quick succession
and the value of BOLD response at all points in a 3D grid are recorded. A general
3D brain image typically contains 10,000 to 50,000 voxels, and each voxel consists
of on the order of hundreds of thousands of neurons. Spatial image resolutions
can be set either to have low or high resolution. Typical spatial resolution is
3 mm � 3 mm � 5 mm, corresponding to image dimensions in the order of
64 � 64 � 30 [70] and this resolution is relatively high compared to other imaging
techniques.

The temporal component is acquired while scanning the whole volume of a
brain that will take a few seconds to complete. In a single run of an experiment, 100
or more brain volumes are usually scanned and recorded for a single subject doing a
particular sensorimotor or cognitive task. Temporal component depends on the time
between acquisitions of each individual image, or the time of repetition (TR). In a
typical experiment, TR ranges from 0.5 to 4.0 s and TR values in the range of 2 s
are generally considered adequate [70].

The combination of this spatial and temporal information of the brain images
will be the main concern investigated in this study. Chap. 10 presents SNN
methods for modeling fMRI data with applications in cognitive studies, while
Chap. 11 presents a method for the integration of fMRI and DTI (orientation) data.

Although a lot is known about the brain, issues about its functioning, repre-
sentation and processing of information are still subjects of an intense research. The
nature of brain dynamics is still unknown. Some researchers find evidence of chaos,
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whereas some are doubtful [72]. Main proponents of a chaotic dynamics, Freeman
[73] and Tsuda [74], argue in favour of chaotic itinerancy based on EEG and other
neurophysiological data. According to the picture of chaotic itinerancy, a complex
system such as the (human) brain evolves by steps along a trajectory in the state
space. Each step corresponds to a shift from one basin of attraction to another.
Attractors represent classes for abstraction and generalization. Thus, the brain states
evolve periodically through sequences of attractors. In a closed system the next
attractor would be chosen solely by internal dynamics. In an open system, such as
the brain, external inputs interfere with internal dynamics. Moreover, due to the
changes induced by learning, trajectories continually change.

The self-organized criticality state can form the basis of the brain capacity to
rapidly adjust to new external and internal stimuli. State changes resembling phase
transitions occur continually everywhere in cortex at scales ranging from mil-
limetres to *0.1 m. Local neural activity can trigger a massive state change.
However, several issues of caution should be pointed out. In spite the compelling
evidence for self-organized criticality in the brain, the nature of the critical state is
still unknown in neurobiological interpretation. It is high dimensional, noisy,
non-Gaussian, and nonstationary [73]. Tremendous physical complexity of the
brain arises also from the fact that it is not a homogenous tissue. Each part of the
brain is morphologically different and has its own genetic profile as can be seen by
analysis of large-scale human and mouse transcriptomes. Therefore the conditions
for assessment of the type of dynamics are difficult to be met. Moreover brains are
open systems driven by stochastic input. Thus it seems that the brain activity hardly
can conform to the mathematical definitions of chaos. Whether the term chaotic
itinerancy (or any other term from the chaotic vocabulary) is appropriate to describe
state transitions in brain and cortex in particular remains open to challenge.

The complex spatio-temporal activity data from the brain still awaits explanation
and proper modelling and this is what other chapters of the book present.

3.8 Chapter Summary and Further Readings for Deeper
Knowledge

The presented in the chapter information is not intended for modeling the brain in
its precise structural and functional complexity, but rather for: (1) Borrowing
spatio-temporal information processing principles from the brain for the creation of
brain-inspired SNN and brain-inspired AI as general spatio-temporal data machines
for deep learning and deep knowledge representation in time-space; (2)
Understanding brain data, when modeled with SNN, for a more accurate analysis
and for a better understanding of the brain processes that generated the data. The
chapter presents fundamentals of spatio-temporal information processing in the
human brain and how that can be measured as data. Some of these principles are
used in the rest of the book for the development of brain-inspired spiking neural
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networks (BI-SNN) as the main approach here to building brain-inspired artificial
intelligence (BI-AI).

The aspects of deep learning and deep knowledge representation in the brain are
especially important as these principles are used as inspiration for the BI-SNN and
BI-AI systems (Chap. 6) also used in other chapters of the book.

Brain data such as EEG and fMRI have been modelled using evolving SNN
(eSNN) and BI-SNN in Chaps. 8–11, 14 of the book.

More on the topic can be found in [7, 37]. Extended presentations on specific
topics can be found in:

– Information processing in synapses (Chap. 36 in [75]);
– Understanding the brain via fMRI classification (Chap. 40 in [75]);
– Modelling vision with the neocognitron (Chap. 44 in [75]);
– Neurocomputational models of natural language (Chap. 48 in [75]);
– Integration of large-scale neuroinformatics (Chap. 50 in [75]).
– The brain and connectivity (Chap. 61 in [75]).
– The Allen brain atlas (Chap. 62 in [75]).

Acknowledgements Some of the text in this chapter is adopted from [7] and some figures are
adopted from [7, 70]. I am highly indebted to Lubica Benuskova as my co-author of the Springer
book [7], who contributed a great deal to the book and indirectly—to this chapter.

References

1. E.R. Kandel, J.H. Schwartz, T.M. Jessell, Principles of Neural Science, 4th edn.
(McGraw-Hill, New York, 2000), p. 2000

2. A.R. Damasio, Descartes’ Error (Putnam’s Sons, New York, 1994), p. 1994
3. J. Talairach, P. Tournoux, Co-planar Stereotaxic Atlas of the Human Brain (Thieme Medical

Publishers, New York, 1988), p. 1988
4. J.L. Lancaster et al., Automated Talairach Atlas Labels for Functional Brain Mapping. Human

Brain Mapp. 10, 120–131 (2000)
5. G.A. Evans, H.L. Cromroy, R. Ochoa, The Tenuipalpidae of Honduras. Florida Entomologist

76(1), 126–155 (1993)
6. A.W. Toga, P.M. Thompson, E.R. Sowell, Mapping brain maturation. Trends Neurosci. 2006

(29), 148–159 (2006)
7. L. Benuskova, N. Kasabov, Computational Neurogenetic Modeling (Springer, New York,

2007), p. 2007
8. A.C. Roberts, T.W. Robbins, L. Weikrantz, The Prefrontal Cortex (Oxford University Press,

Oxford, 1998)
9. G.M. Wittenberg, M.R. Sullivan, J.Z. Tsien, Synaptic reentry reinforcement based network

model for long-term memory consolidation. Hippocampus 12, 637–647 (2002)
10. G.M. Wittenberg, J.Z. Tsien, An emerging molecular and cellular framework for memory

processing by the hippocampus. Trends Neurosci. 25(10), 501–505 (2002)
11. P. Maquet, The role of sleep in learning and memory. Science 2001(294), 1048–1052 (2001)
12. R. Stickgold, J.A. Hobson, R. Fosse, M. Fosse, Sleep, learning, and dreams: off-line memory

reprocessing. Science 2001(294), 1052–1057 (2001)

120 3 Deep Learning and Deep Knowledge Representation …



13. D.J. Siegel, Memory: An overview with emphasis on the developmental, interpersonal, and
neurobiological aspects. J. Am. Acad. Child Adolesc. Psychiatry 40(9), 997–1011 (2001)

14. B. Seri, J.M. Garcia-Verdugo, B.S. McEwen, A. Alvarez-Buylla, Astrocytes give rise to new
neurons in the adult mammalian hippocampus. J. Neurosci. 21(18), 7153–7160 (2001)

15. R. Feng, C. Rampon, Y.-P. Tang, D. Shrom, J. Jin, M. Kyin, B. Sopher, G.M. Martin, S.-H.
Kim, R.B. Langdon, S.S. Sisodia, J.Z. Tsien, Deficient neurogenesis in forebrain-specific
Presenilin-1 knockout mice is associated with reduced clearance of hippocampal memory
traces. Neuron 32, 911–926 (2001)

16. C.H. Bailey, E.R. Kandel, K. Si, The persistence of long-term memory: a molecular approach
to self-sustaining changes in learning-induced synaptic growth. Neuron 44, 49–57 (2004)

17. M. Livingstone, D. Hubel, Segregation of form, color, movement, and depth: anatomy,
physiology, and perception. Science 240, 740–749 (1988)

18. C.M. Gray, P. Konig, A.K. Engel, W. Singer, Oscillatory responses in cat visual cortex
exhibit inter-columnar synchronization which reflects global stimulus properties. Nature 338,
334–337 (1989)

19. W. Singer, Putative function of temporal correlations in neocortical processing, in
Large-Scale Neuronal Theories of the Brain, ed. by K. Koch, J.L. Davis (The MIT Press,
Cambridge, MA, 1994), pp. 201–239

20. P.R. Roelfsema, A.K. Engel, P. Konig, W. Singer, Visuomotor integration is associated with
zero time-lag synchronization among cortical areas. Nature 385, 157–161 (1997)

21. R.D. Traub, M.A. Whittington, I.M. Stanford, J.G.R. Jefferys, A mechanism for generation of
long-range synchronous fast oscillations in the cortex. Nature 383, 621–624 (1996)

22. P. Fries, P.R. Roelfsema, A.K. Engel, P. Konig, W. Singer, Synchronization of oscillatory
responses in visual cortex correlates with perception in interocular rivalry. Proc. Natl. Acad.
Sci. USA 94, 12699–12704 (1997)

23. E. Rodriguez, N. George, J.-P. Lachaux, J. Martinerie, B. Renault, F.J. Varela, Perception´s
shadow: long-range synchronization of human brain activity. Nature 397, 434–436 (1999)

24. W.H.R. Miltner, C. Braun, M. Arnold, H. Witte, E. Taub, Coherence of gamma-band EEG
activity as a basis for associative learning. Nature 397, 434–436 (1999)

25. A.K. Engel, P. Fries, P. Konig, M. Brecht, W. Singer, Temporal binding, binocular rivarly,
and consciousness. Conscious. Cogn. 8, 128–151 (1999)

26. W. Singer, Neuronal synchrony: a versatile code for the definition of relations? Neuron 24,
49–65 (1999)

27. C. Koch, F. Crick, Some further ideas regarding the neuronal basis of awareness, in
Large-Scale Neuronal Theories of the Brain, ed. by C. Koch, J.L. Davis (MIT Press,
Cambridge, MA, 1994), pp. 93–111

28. F. Crick, C. Koch, Are we aware of neural activity in primary visual cortex? Nature 375, 121–
123 (1995)

29. C. Koch, Towards the neuronal substrate of visual consciousness, in Towards a Science of
Consciousness: The First Tucson Discussions and Debates, ed. by S.R. Hameroff, A.W.
Kaszniak, A.C., Scott (The MIT Press, Cambridge, MA, 1996), pp. 247–258

30. B. Libet, Unconscious cerebral initiative and the role of conscious will in voluntary action.
Behav. Brain Sci. 8(8), 529–566 (1985)

31. B. Libet, Do we have free will? J. Conscious. Stud. 6(8–9), 47–57 (1999)
32. U. Ribary, K. Ionnides, K.D. Singh, R. Hasson, J.P.R. Bolton, F. Lado, A. Mogilner, R.

Llinas, Magnetic field tomography of coherent thalamocortical 40-Hz oscillations in humans.
Proc. Natl. Acad. Sci. USA 88, 11037–11401 (1991)

33. G.M. Edelman, G. Tononi, Consciousness. How Matter Becomes Imagination (Penguin
Books, London, 2000), p. 2000

34. P. Gärdenfors, Conceptual Spaces: The Geometry of Thought (MIT Press, Cambridge, 2000)
35. R.R. Llinas, U. Ribary, Perception as an oneiric-like state modulated by senses, in

Large-Scale Neuronal Theories of the Brain, ed. by C. Koch, J.L. Davis (The MIT Press,
Cambridge, MA, 1994), pp. 111–125

References 121



36. M. Massimini, F. Ferrarelli, R. Huber, S.K. Esser, H. Singh, G. Tononi, Breakdown of
cortical effective connectivity during sleep. Science 309, 2228–2232 (2005)

37. N. Kasabov, Evolving Connectionist Systems: The Knowledge Engineering Approach, 2nd
edn. (Springer, Berlin, 2007)

38. R.H. Hahnloser, C.Z. Wang, A. Nager, K. Naie, Spikes and bursts in two types of thalamic
projection neurons differentially shape sleep patterns and auditory responses in a songbird.
J. Neurosci. 28, 5040–5052 (2008). [PubMed]

39. NeuCube. http://www.kedri.aut.ac.nz/neucube/
40. S. Thorpe, D. Fize, C. Marlot, Speed of processing in the human visual system. Nature 381,

520–522 (1996)
41. R. Mayeux, E.R. Kandel, in Disorders of language: the aphasias, in Principles of Neural

Science, vol. 1, 3rd edn., ed. by E.R. Kandel, J.H. Schwartz, T.M. Jessell (Appleton & Lange,
Norwalk, 1991), pp. 839–851

42. F. Rieke, D. Warland, R. de Ruyter van Steveninck, W. Bialek, Spikes—Exploring the Neural
Code (The MIT Press, Cambridge, MA, 1996)

43. S.J. Thorpe, M. Fabre-Thorpe, Seeking categories in the brain. Science 2001(291), 260–262
(2001)

44. O. Jensen, Information transfer between rhytmically coupled networks: reading the
hippocampal phase code. Neural Comput. 13, 2743–2761 (2001)

45. M.N. Shadlen, W.T. Newsome, The variable discharge of cortical neurons: implications for
connectivity, computation, and information coding. J. Neurosci. 18, 3870–3896 (1998)

46. D. Hebb, The Organization of Behavior (Wiley, New York, 1949), p. 1949
47. M. Mayford, E.R. Kandel, Genetic approaches to memory storage. Trends Genet. 15(11),

463–470 (1999)
48. W.C. Abraham, B. Logan, J.M. Greenwood, M. Dragunow, Induction and

experience-dependent consolidation of stable long-term potentiation lasting months in the
hippocampus. J. Neurosci. 22(21), 9626–9634 (2002)

49. H.Z. Shouval, M.F. Bear, L.N. Cooper, A unified model of NMDA receptor-dependent
bidirectional synaptic plasticity. Proc. Natl. Acad. Sci. USA 99(16), 10831–10836 (2002)

50. H. Markram, J. Lübke, M. Frotscher, B. Sakmann, Regulation of synaptic efficacy by
coincidence of postsynaptic APs and EPSPs. Science 275(5297), 213–215 (1997)

51. W.C. Abraham, M.F. Bear, Metaplasticity: the plasticity of synaptic plasticity. Trends
Neurosci. 19(4), 126–130 (1996)

52. E. Bienenstock, L.N. Cooper, P. Munro, On the development of neuron selectivity:
orientation specificity and binocular interaction in visual cortex. J. Neurosci. 1982(2), 32–48
(1982)

53. P. Jedlicka, Synaptic plasticity, metaplasticity and the BCM theory. Bratislava Med. Lett. 103
(4–5), 137–144 (2002)

54. L. Benuskova, M.E. Diamond, F.F. Ebner, Dynamic synaptic modification threshold:
computational model of experience-dependent plasticity in adult rat barrel cortex. Proc. Natl.
Acad. Sci. USA 91, 4791–4795 (1994)

55. L. Benuskova, M. Kanich, A. Krakovska, Piriform cortex model of EEG has random
underlying dynamics, ed. by F. Rattay. Proceedings of World Congress on Neuroinformatics,
vol. ARGESIM/ASIM-Verlag, Vienna, 2001

56. K.S. Lee, F. Schottler, M. Oliver, G. Lynch, Brief bursts of high-frequency stimulation
produce two types of structural change in rat hippocampus. J. Neurophysiol. 44(2), 247–258
(1980)

57. Y. Geinisman, L. deToledo-Morrell, F. Morrell, Induction of long-term potentiation is
associated with an increase in the number of axospinous synapses with segmented
postsynaptic densities. Brain Res. 566, 77–88 (1991)

58. C. Koch, T. Poggio, A theoretical analysis of electrical properties of spines. Proc. Roy. Soc.
Lond. B 218, 455–477 (1983)

59. A. Zador, C. Koch, T. Brown, Biophysical model of a Hebbian synapse. Proc. Natl. Acad.
Sci. USA 87, 6718–6722 (1990)

122 3 Deep Learning and Deep Knowledge Representation …

http://www.kedri.aut.ac.nz/neucube/


60. J.I. Gold, M.F. Bear, A model of dendritic spine Ca2+ concentration exploring possible bases
for a sliding synaptic modification threshold. Proc. Natl. Acad. Sci. USA 91, 3941–3945
(1994)

61. L. Benuskova, The intra-spine electric force can drive vesicles for fusion: a theoretical model
for long-term potentiation. Neurosci. Lett. 280(1), 17–20 (2000)

62. P. Fedor, L. Benuskova, H. Jakes, V. Majernik, An electrophoretic coupling mechanism
between efficiency modification of spine synapses and their stimulation. Stud. Biophys. 92,
141–146 (1982)

63. J. Spacek, K.M. Harris, Three-dimensional organization of smooth endoplasmatic reticulum
in hippocampal CA1 dendrites and dendritic spines of the immature and mature rat.
J. Neurosci. 17, 190–204 (1997)

64. P.-M. Lledo, X. Zhang, T.C. Sudhof, R.C. Malenka, R.A. Nicoll, Postsynaptic membrane
fusion and long-term potentiation. Science 1998(279), 399–404 (1998)

65. T.C. Sudhof, The synaptic vesicle cycle: a cascade of protein-protein interactions. Nature 375,
645–654 (1995)

66. D. Liao, N.A. Hessler, R. Malinow, Activation of postsynaptically silent synapses during
pairing-induced LTP in CA1 region of hippocampal slice. Nature 375, 400–404 (1995)

67. V.N. Kharazia, R.J. Wenthold, R.J. Weinberg, GluR1-immunopositive interneurons in rat
neocortex. J. Comp. Neurol. 1996(368), 399–412 (1996)

68. S.H. Shi, Y. Hayashi, R.S. Petralia, S.H. Zaman, R.J. Wenthold, K. Svoboda, R. Malinow,
Rapid spine delivery and redistribution of AMPA receptors after synaptic NMDA receptor
activation. Science 1999(284), 1811–1816 (1999)

69. B.J. Schnapp, T.S. Reese, New developments in understanding rapid axonal transport. Trends
Neurosci. 1986(9), 155–162 (1986)

70. M.A. Lindquist, The statistical analysis of fMRI Data. Project Euclid 23(4), 439–464 (2008)
71. Wikipedia. http://www.wikipedia.org
72. J. Theiler, On the evidence for low-dimensional chaos in an epileptic electroencephalogram.

Phys. Lett. A 1995(196), 335–341 (1995)
73. W.J. Freeman, Evidence from human scalp EEG of global chaotic itinerancy. Chaos 13(3), 1–

11 (2003)
74. I. Tsuda, Toward an interpretation of dynamic neural activity in terms of chaotic dynamicical

systems. Behav. Brain Sci. 2001(24), 793–847 (2001)
75. N. Kasabov (ed.), Springer Handbook of Bio-/Neuroinformatics (Springer, Berlin, 2014)

References 123

http://www.wikipedia.org


Part III
Spiking Neural Networks



Chapter 4
Methods of Spiking Neural Networks

Spiking neural networks (SNN) are biologically inspired ANN where information is
represented as binary events (spikes), similar to the event potentials in the brain,
and learning is also inspired by principles in the brain. SNN are also universal
computational mechanisms [1]. These and many other reasons that are discussed in
this chapter make SNN a preferred computational paradigm for modelling temporal
and spatio-temporal data and for building brain-inspired AI. This chapter gives the
background information for SNN that is further used in the rest of the book.

The chapter is organised in following sections:

4:1. Information representation as spikes. Spike encoding algorithms.
4:2. Spiking neuron models.
4:3. Methods for learning in SNN.
4:4. Spike pattern association neurons.
4:5. Why use SNN?
4:6. Chapter summary and further readings for deeper knowledge.

4.1 Information Representation as Spikes. Spike Encoding
Algorithms

4.1.1 Rate Versus Spike Time Information Representation

The brain encodes external information into electrical pulses—spikes. The principle
is that changes in the data in space and time are represented as binary events
(spikes). This leads to several advantages in information processing:

• Compact information representation.
• Asynchronous data processing (not frame based or vector based).
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• Fast detection of changes in the environment—efficient for predictive modelling
in a real time.

• Simple and fast processing (bits at times).
• Massively parallel, i.e. millions of neurons can exchange spike sequences in

parallel.
• Energy efficient.

Already some devices convert real input data into spike sequences, such as
Dynamic Vision Sensor (DVS) (https://inilabs.com; [2, 3]); Artificial cochlea (AER
EAR) (https://inilabs.com).

Since data in SNN are communicated in terms of spikes and spike sequences, the
methods used to encode real data into spikes are of a substantial step in creating
spiking neural network systems.

The two main categories of neuronal information encoding schemes are rate
code and pulse code that result in different spike characteristics. Their biological
counterparts were discussed in Chap. 3.

Rate Code

Rate encoding or also known as firing rate is to encode a sequence of spikes based
on the average number of spikes (or spikes count) over time i.e. how many spikes
are emitted within a time encoding window. There are three different views of rate
code, referring to different averaging methods: an average over time (single neuron,
single run); or an average over several experiment repetitions (single neuron,
repeated runs); or average over a populations of neuron (several neurons, single
run) [4]. The measured spikes are those emitted within a specified time window that
starts at stimulus onset and ends at stimulus termination.

The rate is calculated by dividing the number of spikes ðnspÞ emitted in the
duration (T) with T , as presented in Eq. 4.1. However this encoding scheme was
only suitable for stimulus which requires slow reaction of the organisms. This slow
reaction was usually found in lab experiments, but not in many real biological brain
functions. Real biological brain functions usually happen in much faster duration.
In addition, any regularities found, may be considered as noise.

v ¼ nsp
T

ð4:1Þ

The second view of rate code involves averaging the spikes over several
experiment runs which are best suited for stationary and time-dependent stimulus.
The same stimulus is repeated and the neurons’ activity is recorded as spike density
of Peri-Stimulus-Time Histogram (PSTH) [4]. As shown in Eq. 4.2, it is defined as
nK t; tþDtð Þ to be the total number of spikes in all runs; starting from stimulus
sequence time, t; and Dt is in the range of 1 or few milliseconds; divided with the
number of repetitions K which is then further divided with length of interval Dt. In
a situation where a population of independent neurons receives the same stimulus,
the mean firing rate is easier to record from a single neuron and average over N
repeated runs.
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p tð Þ ¼ 1
Dt

nK t; tþDtð Þ
K

ð4:2Þ

The third view rooted from the notion of neurons population explained earlier
which define rate code as the average of spikes over several neurons, i.e. neurons
with the same characteristics and which respond to the same stimulus. As explained
in [4] the rate A tð Þ with units s�1 is computed as in Eq. 4.3 where N is the
population size of neurons, nact t; tþDtð Þ is total number of spikes emitted between
t and tþDt in the neuron population and Dt is a small time interval.

A tð Þ ¼ 1
Dt

nact t; tþDtð Þ
N

¼ 1
Dt

R tþDt
t

P
j

P
f dðt � t fð Þ

j Þdt
N

ð4:3Þ

This approach solves the issue raised in the first approach, i.e. calculating the
average in a single-neuron level; however it is questionable when it will be needed to
calculate the average of spikes from a population of neurons with the same properties
and connections. Nevertheless, the rate code is still practical in modelling spike
activities in many brain areas and has been used in many successful experiments.

Pulse Code (Time-based representation)

Another encoding approach is based on the exact timing of spikes or better known
as pulse or spike code. The idea of spike time in describing input stimulus has been
the interest of many researchers such as in [5–9]. While rate-based representation
defines spiking characteristics within a time interval, e.g. frequency, in time-based
(temporal) representation information is encoded in the time of spikes. Every spike
matters and its time—too! The two approaches are illustrated in Figs. 4.1 and 4.2.

4.1.2 Spike Encoding Algorithms

SNN use spike encoded information. This sub-section introduces some popular methods
for encoding real value data (such as sound, speech, pixel image, video, temperature,
seismic wave etc.) into spike sequences before they are processed (learned) in a SNN.

Threshold-based encoding (or Temporal Contrast)

A spike is generated only if a change in the input data occurs beyond a threshold—
Fig. 4.3.

These algorithms belong to the class of temporal contrast encoding and decoding
algorithms, examples are given in Box 4.1.
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Fig. 4.1 Rate base versus time based representation of information as spikes
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______________________________________________________________________________ 
Box 4.1. Examples of temporal contrast encoding and decoding algorithms

Temporal contrast encoding algorithm

1: input: S, factor 2: output:B, thresholdTC
3: L ← length(S) 
4: for t = 1 : L − 1 do
5: diff ← |S(t + 1) − S(t)|
6: end for
7: thresholdTC ← mean(diff) + factor · std(diff) 
8: diff [0,diff] 
9: for t = 1 : L do
10: if diff(t) > thresholdTC then
11: B(t) ← 1
12: else if diff(t) < −thresholdTC then
13: B(t) ← −1
14: else
20: B(t) ← 0
16: end if
17: end for

Temporal contrast decoding algorithm

1: input: B, thresholdTC
2: output: Sˆ

3: Sˆ ← 0
4: L ← length(B) 
5: for t = 2 : L do
6: if Sˆ(t) > 0 then
7: Sˆ(t) ← Sˆ(t − 1) + thresholdTC 
8: else if Sˆ(t) < 0 then
9: Sˆ(t) ← Sˆ(t − 1) − thresholdTC
10: else
11: Sˆ(t) ← Sˆ(t − 1)
12: end if
13: end for

Rank Order Coding (ROC)

It is assume here that the first generated spike carries the most significant infor-
mation and carries the most weight compared to the later spikes in the sequence [7,
8]. Based on this theory, there are two versions of encoding techniques:

– Rank Order Coding (ROC) [9];
– Population Rank Order Coding (POC) [10].

Fig. 4.2 Representing the value of information (denoted as fn rate value) in a rate based versus
time based representation as a hypothetical example
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In ROC, spikes are ordered according to their arrival, in which the first spike which
arrives will be the first in the population, followed by the second spike and so on.
To demonstrate this coding scheme, for neurons A, B, C, D and E in Fig. 4.4, the
spikes are ranked as C > E > D > A > B.

Population Rang Coding (POC)

In contrast to ROC, POC is generated based on the firing time identified and
calculated using intersection of sensitivity profiles such as Gaussian function [10].
In this scheme, a single input value i is distributed into multiple input neurons each
having overlapping receptive fields, represented as a continuous function, e.g. Gaussian
(Fig. 4.5). Equation 4.4 is the Gaussian function used to calculate the firing time for the
input neuron, where its centre li and its width r are calculated in Eqs. 4.5 and 4.6
respectively. Imin; Imax½ � is the maximum and minimum range of input variable and b
(values between 1.0 and 2.0) controls the width of each Gaussian receptive field.

A

B

C

D

E

Rank

1

2

3

4

5

NeuronFig. 4.4 Ranking of spikes
in a ROC encoding method

Fig. 4.3 A graphical representation of threshold-based encoding method for a continuous signal
into a spike sequence—a both positive and negative spikes represent changes of the intensity of
the signal over time; b reconstructing the signal from the spike representation through a decoding
procedure
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g xð Þ ¼ 1

r
ffiffiffiffiffiffi
2p

p e�
1
2

x�l
rð Þ2 ð4:4Þ

li ¼ Imin þ 2i� 3
2

:
Imax � Imin
M � 2

ð4:5Þ

r ¼ 1
b
:
Imax � Imin
M � 2

ð4:6Þ

The method is illustrate in Figs. 4.5 and 4.6 [11, 12]. In Fig. 4.5 a value of a
single variable causes a sequence of spikes to be emitted by a population of 5
neurons, the first spike being generated by the neuron to which receptive field the
input value belongs to the highest membership degree and so on. In Fig. 4.6, six
input neurons generate spikes based on the value of the input variables, the first
spike (at time 0) being generated by neuron 3 which receives the highest input
value.

Both ROC and POC have been successfully implemented in many experiments,
for instance stroke classification and prediction [13], visual pattern recognition [14–
16], feature and parameter optimization [12], string pattern recognition [17], audio

Fig. 4.6 Six input neurons generate a sequence of spikes based on the membership value of 6
input variables to the receptive fields of the neurons, the higher the value, the earlier the spike is
generated by the corresponding neuron

Fig. 4.5 POC: The value of a
single input variable is
encoded into sequence of
spikes by a population of 5
spiking neurons defined by
their overlapping in the
neighbourhood Gaussian
receptive fields
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recognition [18], text-independent speaker authentication [19]. Implementation
based on Gaussian receptive fields was introduced in [20, 21].

Ben’s Spike Encoding Algorithm (BSA) [22]

The key benefit of using BSA is that the frequency and amplitude features are
smoother in comparison to another popular encoding algorithm—the HSA (Hough
Spiker Algorithm), which is not discussed here. Moreover, due to the smoother
threshold optimization curve, it is also less susceptible to changes in the filter and
the threshold [21, 22]. Studies have shown that this method offers an improvement
of 10–15 dB over the HSA spike encoding scheme. According to [22], a stimulus is
estimated from a spike train by

Sest ¼ ðh� xÞðtÞ ¼
Zþ1

�1
xðt � sÞhðsÞds ¼

XN
k¼1

hðt � tkÞ ð4:7Þ

Fig. 4.7 The top figure shows one channel of EEG signal for the duration of 20 ms. The middle
figure is the spike representation of the above figure obtained using BSA. The bottom figure shows
the actual channel EEG signal that has been superimposed with another signal (dashed lines)
which represents the reconstructing BSA encoded spikes
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where, tk represents the neurons firing time, h(t) denotes the linear filters impulse
response and x(t) is the spike of the neuron that can be calculated as

xðtÞ ¼
XN
k¼1

dðt � tkÞ ð4:8Þ

For the example in Fig. 4.7, which is EEG data of one channel, the Finite Impulse
Response (FIR) filter size is 20, and the BSA threshold is 0.955.

However, when the spike train x(t) is applied with a discrete FIR filter, the
Eq. (4.8) can be represented as

oðtÞ ¼ ðh� xÞðtÞ ¼
XM
k¼0

xðt � kÞhðhÞ ð4:9Þ

where,M refers to the number offilter taps. A more detailed explanation is given in [22].
The Ben’s spike encoding and decoding algorithms are given in Box 4.2.

Box 4.2. BSA encoding and decoding algorithms

BSA encoding algorithm

1: input: S,filter,thresholdBSA
2: output: B
3: B  0 
4: L = length(S) 
5: F = length(filter) 
6: for t = 1 : (L − F + 1) do
7: e1 ← 0
8: e2 ← 0
9: for k = 1 : F do
10: e1 += |S(t + k) − filter(k)|
11: e2 += |S(t + k − 1)|
12: end for
13: if e1 ≤ (e2 − thresholdBSA) then
14: B(t) ← 1
20: for k = 1 : F do
16: S(i + j − 1) −= filter(k) 
17: end for
18: end if
19: end for

BSA decoding algorithm

1: input: B,filter
2: output: Sˆ

3: L = length(B) 
4: F = length(filter) 
5: for t=1:L-F+1 do
6: if B(t) == 1 then 7: for k = 1 : F do
8: Sˆ(t + k − 1) += filter(k) 
9: end for
10: end if
11: end for
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Different spike encoding algorithms have distinct characteristics when repre-
senting input data. BSA is suitable for high frequency signals and because it is
based on the Finite Impulse Response technique, the original signal can be
recovered easily from the encoded spike train. Only positive (excitatory) spikes are
generated by BSA, whereas all other techniques mentioned here can also generate
negative (inhibitory) spikes. Temporal Contrast was originally implemented in
hardware (Delbruck and Lichtsteiner 2007) [2, 3] in the artificial silicon retina. It
represents significant changes in signal intensity over a given threshold, where the
ON and OFF events are dependent on the sign of the changes. However if the
changes of the signal intensity vary dramatically, it may not be possible to recover
the original signal using the encoded spike train.

Step Forward (SF) Encoding algorithm

In [23] we proposed an improved spike encoding algorithm, SF (Step Forward
encoding), to better represent the signal intensity. For a given signal S(t) where (t =
1, 2, …, n), we define a baseline B(t) variation during time t with B(1) = S(1). If the
incoming signal intensity S(t1) exceeds the baseline B(t1 − 1) plus a threshold
defined as Th, then a positive spike is encoded at time t1, and B(t1) is updated as B
(t1) = B(t1 − 1) + Th; and if S(t1) <= B(t1 − 1) − Th, a negative spike is gener-
ated and B(t1) is assigned as B(t1) = B(t1 − 1) − Th. In other situations, no spike
is generated and B(t1) = B(t1 − 1).

Moving-Window (MW) Spike Encoding Algorithm,

In another spike encoding algorithm also introduced in [23], called Moving-Window
Spike Encoding Algorithm, the baseline B(t) is defined as the mean of previous signal
intensities within a time window T, thus this encoding algorithm can be robust to
certain kinds of noise. Both SF and MW encoding algorithms result in a better
recovery of the original encoded signals after decoding [24].

Before choosing a proper spike encoding algorithm, we need to figure out what
information the spike trains shall carry for the original signals. After that, the
underlying spike patterns in the spike trains will be better understood. Figure 4.8
shows spike trains generated by four different spike encoding algorithms with
corresponding recovery signals. The blue (red) lines in (b), (c), (d), (e) are positive
(negative) spikes, and the blue lines in (f), (g), (h), (i) are the original signals while
the red dash lines are the signals reconstructed by corresponding spike trains. The
threshold based (a temporal contrast) encoding is denoted as AER. The
step-forward function (SF) and the MV (moving window) encoding algorithms are
explained in details in [23]. A decision which encoding algorithm to chose for
particular data and SNN models depends on the criterion for this. It can be that we
want to have a more accurately recovered signals if and when decoded, or—a better
classification results at the output of a SNN system as it is the case in the new
method introduced in Chap. 21. In [24] a methodology for the selection and
parameter optimisation of encoding algorithm is proposed.
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4.2 Spiking Neuron Models

Several models of spiking neurons have been developed, some of them more
biologically plausible and others—more computationally driven. This section pre-
sents them briefly.

4.2.1 Hodgkin-Huxley Model (HHM)

This model was introduced by Hodgkin and Huxley [25] who conducted the
experiment on the giant axon of a squid. From the experiment, they have concluded
that there are three ion channels in the neuron, which are Sodium (Na), Potassium
(K) and leakage ðLÞ channel with resistance. To calculate the total of ionic current
Iion, which is the sum of all participating channels; the formula in Eqs. 4.10 and
4.11 are used. In Eq. 4.10, Gk represents all channels involved, Ek represents the
equilibrium potential and Vm is the membrane potential. In addition, as elaborated
by [4, 26] three gates of type “m” and one gate of type “h” are used to control the
Sodium channel; and four gates of type “n” to control the Potassium channel. These
gating variables are calculated using Eqs. 4.12, 4.13 and 4.14 where the transition
rate for each gate from non-permissive to permissive states are represented by
am Vð Þ, ah Vð Þ and an Vð Þ and transition rate for each gate from permissive to
non-permissive states are represented by bm Vð Þ, bh Vð Þ and bn Vð Þ.

Fig. 4.8 Spike trains generated by four different spike encoding algorithms with corresponding
recovery signals after decoding. The blue (red) lines in (b–e) are positive(negative) spikes, and the
blue lines in (f–i) are the original signals while the red dash lines are the signals reconstructed
through decoding from corresponding spike trains. The threshold based encoding is denoted as
AER (from [23])
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Iion ¼
X
k

Ik ¼
X
k

GkðVm � EkÞ ð4:10Þ

Iion ¼ GNam
3h Vm � ENað ÞþGKn

4 Vm � EKð ÞþGL Vm � ELð Þ ð4:11Þ
m
dt

¼ am Vð Þ 1� mð Þ � bm Vð Þm ð4:12Þ

h
dt

¼ ah Vð Þ 1� hð Þ � bh Vð Þh ð4:13Þ

n
dt

¼ an Vð Þ 1� nð Þ � bn Vð Þn ð4:14Þ

This neuron model only describes the channels and flow of ions in the neuron when
generating spikes, which is far from the complex biological neuron, thus bearing
several weaknesses as reviewed in [27] that include ignored events which may
affect neuron’s computation [28] and inaccurate prediction of the inactivation of the
Sodium channel [29]. An electrical circuit that represents a simplified implemen-
tation of the HHM is given in Fig. 4.9. Despite HHM’s limitation, it has become a
fundamental and starting point for the development of many other simplified neuron
models that will be discussed in the following sub sections.

4.2.2 Leaky Integrate-and-Fire Model (LIFM)

As compared from HHM that deals with ion channels and ion flows, LIFM view
neuron as a leaky integrator, which will output a spike if the input voltage reaches a
threshold and then reset to a resting state. Modelled by a differential equation,
integrate-and-fire neuron which can be traced back from [30] is represented by a
basic circuit that combine a capacitor Cð Þ and a resistor Rð Þ to produce current
ðIðtÞÞ. Equation 4.15 is the standard form of LIFM in which u tð Þ is the membrane
potential and sm ¼ RC is the neuron’s membrane time constant.

sm
du
dt

¼ �u tð ÞþRI tð Þ ð4:15Þ

Fig. 4.9 An electrical circuit
representing the
Hodgkin-Huxley spiking
neuron model [25]
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Spikes are described as events [4] indicated by a firing time t fð Þ defined by a
threshold value (Eq. 4.16) and the potential will be reset to a new value ur\#
(Eq. 4.17).

t fð Þ : u t fð Þ
� �

¼ # ð4:16Þ

lim
t!t fð Þ;t[ t fð Þ

u tð Þ ¼ ur ð4:17Þ

This model is viewed as the best-known instance of spiking neuron model because
of its simplicity and low computational cost (see Fig. 4.10a, b).

(a) Electrical circuit representing the LIF spiking neuron model 

(b) The membrane potential of a LIF neuron accumulates input spikes as stimuli. When the  

potential reaches a threshold, the neuron emits an output spike. 

Fig. 4.10 a Electrical circuit representing the LIF spiking neuron model. b The membrane
potential of a LIF neuron accumulates input spikes as stimuli. When the potential reaches a
threshold, the neuron emits an output spike
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4.2.3 Izhikevich Model (IM)

In IM [31], a simple spiking neuron is formulated by combining biologically
plausibility of HHM and computational efficiency in LIF neurons. The model is
defined as in Eq. 4.18 where v is the membrane voltage, u is a recovery variable
used to adjust v, I tð Þ is input currents, and a and b are adjustable parameters.

dv
dt

tð Þ ¼ 0:04v2 þ 5vþ 140� uþ I tð Þ ð4:18Þ

du
dt

tð Þ ¼ a bv� uð Þ ð4:19Þ

A threshold value is set to 30 mV and if the voltage v is bigger than this threshold, v
and u are reset (Eq. 4.20).

if v� 30mV; then
v ¼ c

u ¼ uþ d

�
ð4:20Þ

Based on parameter values of IM a neuron can manifest different spiking behaviour
(Fig. 4.11). In [31] a comparison of several spiking neuron models is visualised in
the dimensionality of biological plausibility and implementation cost (Fig. 4.12).

4.2.4 Spike Response Model (SRM)

In SRM, the neuron’s membrane potential is summarized in terms of response
kernel as described in Eq. 4.21 [32]. It is based on the integrated effects of the
incoming spike arriving on the neuron i with its neuron potential ui tð Þ, and the
emission of spike from the neuron if ui tð Þ reaches a threshold # [33]. The potential
ui tð Þ is the total of the influence of the spikes from pre-synaptic neurons and the
spike from its own.

ui tð Þ ¼
X

t fð Þ
i 2F i

gi t � t fð Þ
i

� �
þ
X
j2Ci

X
t fð Þ
j 2F j

wij 2ij t � t fð Þ
i

� �
ð4:21Þ

Although it uses the same concept as the LIFM, the threshold # in SRM is
adjustable, which is increased (or decreased) after each spike occurrence. In this

model, t fð Þ
i is the firing time of the last output spike, gi is a kernel function that

describes spike emissions after action potential exceeds the threshold # and its
after-potential spikes, 2ij is a kernel function that describes the response of the
post-synaptic neuron when receiving the spike from pre-synaptic neuron j 2 Ci and
wij is the response weight.
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Fig. 4.11 Based on parameter values of IM a neuron can manifest different spiking behaviour
(after [31])

Fig. 4.12 Comparison of spiking neuron models in the evaluation landscape of biological
plausibility and implementation cost (adapted from [31])
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4.2.5 Thorpe’s Model (TM)

Inspiring from the integrate and fire capabilities of a neuron, TM defines that the
first incoming spike carries the most information, because of the argument that the
brain only can process one spike from each neuron at one particular processing step
[7]. In this model the relation between stimulus saliency and spike relative timing
plays a major role i.e. the first spike in the population is the most important in
defining meaningful information. The membrane potential ui tð Þ is summarized as in
Eq. 4.23 which will be reset to 0 after each spike emission. In the equation,wij is the
weight of the pre-synaptic neuron, Mod is modulation factor within the interval
0; 1½ �, and order jð Þ is the spike rank of neuron j. The threshold # ¼ cumax where
0\c\1 and umax is maximum potential that a neuron can reach. Simulation
software of this model, SpikeNET [34], has successfully simulated and modelled
millions of LIF neurons.

ui tð Þ ¼ 0 if firedP
wjiModorder jð Þ

i else

�
ð4:22Þ

4.2.6 Probabilistic and Stochastic Spiking Neuron Models

The probabilistic spiking neuron model (pSNM), introduced by the author [35], is a
further extension of LIFM that includes three other probability parameters which
are:

– probability that a spike will arrive at post-synaptic neuron ni from pre-synaptic
neuron nj, (pcj;i tð Þ);

– probability that a synapse contributes to a spike potential after it receives spike
from neuron nj, (psj;i tð ÞÞ;

– probability that neuron ni generates an output spike if the total post-synaptic
potential (PSP) reaches the threshold (pi tð Þ).

A simplified representation of pSNM with one synaptic connection, together with
the probability parameters is shown in Fig. 4.13.

The state of post-synaptic neuron ni is described as the total of inputs received
from all m synapses i.e. the post-synaptic potential (PSPiðtÞ). The model is cal-
culated using Eq. 4.23, where ej ¼ 1 if spike is emitted from neuron nj and ej ¼ 0 if
otherwise; g pcj;i tð Þ

� � ¼ 1 with a probability pcj;i tð Þ, and 0 otherwise; f psj;i tð Þ
� � ¼ 1

if the synapse contributes to the potential with a probability psj;i tð Þ and 0 otherwise;
wj;i tð Þ is the connection weight; t0 is the time of the last spike emitted by neuron ni;
and g t � t0ð Þ is the decay.
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PSPiðtÞ ¼
Xt
p¼t0

Xm
j¼1

ejgðpcj;iðt � pÞÞf ðpsj;tðt � pÞÞwj;tðtÞþ gðt � t0Þ ð4:23Þ

If all probability parameters are equal to 1, the model is simplified to be similar to
some well-known spiking neuron models, such as LIFM [4].

Stochastic neuronal models have some of their parameters change stochastically.
The behaviour of such models is illustrated in Fig. 4.14 [35] on the cases of:

– Noisy Reset (NR);
– Step-wise Threshold (ST);
– Continuously changing Threshold (CT).

4.2.7 Probabilistic Neurogenetic Model of a Neuron

The activity of the spiking neuron models described so far has not been connected
to the expression of genes and proteins in the neuron as parameters. Genes and

nj ni

pj (t) pi (t)psj,i (t)pcj,i (t)
wj,i (t)

time t

Fig. 4.13 Simplified representation of pSNM with all 3 probabilistic parameters and one synaptic
connection

Fig. 4.14 Spiking activities of several types of stochastic spiking neuron models as introduced in
[35] when compared with the spiking behaviour of the deterministic LIF model: NR—noisy reset;
ST—step-wise spiking threshold; CT—continuously changing stochastic threshold. All neuronal
models receive the same spike sequence input stimulus (shown on the top of the figure) (after [35])
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proteins take a major role in the spiking activity of the neurons and this is
implemented in a neurogenetic model of a spiking neuron, introduced in [36, 37].
The dynamics in the increase and the decrease of the membrane potential of a
spiking neuron depend very much on the expression of genes and proteins such as
neuroreceptors (AMPAR, NMDAR, GABRA, GABARB) and ion channels (SCN,
KCN, CLC)—Table 4.1.

Using this information, the probabilistic model of a neuron pSNM from above
has been extended to probabilistic neurogenetic model of a spiking neuron (PNGM)
[36, 37]. As a partial case, when no probability parameters and no genetic
parameters are used, the model is reduced to the LIFM.

In the PNGM four types of synapses for fast excitation, fast inhibition, slow
excitation, and slow inhibition are used. The contribution of each one to the PSP of
a neuron is defined by the level of expression of different genes/proteins along with
the presented external stimuli. The model utilises known information about how
proteins and genes affect spiking activities of a neuron. This information is used to
calculate the contribution of each of the four different synapses j connected to a
neuron i to its post synaptic potential PSPi(t):

esynapseij ðsÞ ¼ Asynapse exp
s

ssynapsedecay

 !
� exp

s
ssynapserise

� 	 !
ð4:24Þ

where: ssynapsedecay=rise are time constants representing the rise and fall of an individual

synaptic PSP; A is the PSP’s amplitude; eij
synapse represents the type of activity of the

synapse between neuron j and neuron i that can be measured and modelled sepa-
rately for a fast excitation, fast inhibition, slow excitation, and slow inhibition (it is
affected by different genes/proteins). External inputs can also be added to model
background noise, background oscillations or environmental information. Genes
that relate to the parameters of the neurons are also related to the activity of other
genes, thus forming a GRN.

Table 4.1 The dynamics in the increase and the decrease of the membrane potential of a spiking
neuron depend very much on the expression of genes and proteins such as neuroreceptors
(AMPAR, NMDAR, GABRA, GABARB) and ion channels (SCN, KCN, CLC)

Neuronal parameters and related proteins

Neuronal parameter amplitude and time constants of Protein

Fast excitation PSP AMPAR

Slow excitation PSP NMDAR

Fast inhibition PSP GABRA

Slow inhibition PSP GABRB

Firing threshold SCN, KCN, CLC

Late excitatory PSP through GABRA PV
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The PNGM can be further extended with the inclusion of other genes and
proteins that regulate other functions of the neuronal cells and form gene regulatory
network model with the genes and proteins from Table 4.1.

An example of a gene regulatory network model that is part of the functioning of
a spiking neuron is shown in Fig. 4.15 [36, 37]. Such neurogenetic models can be
used to model brain data such as related to AD [36–38]. More about computational
neurogenetic modelling is presented in Chap. 16.

4.3 Methods for Learning in SNN

Learning in SNN relates to changes of the connection weights between two spiking
neurons (Fig. 4.16). Several methods have been proposed so far, some of them
presented in this section.

Fig. 4.15 An example of a gene regulatory network model that is part of the functioning of a
spiking neuron (from [36])

Fig. 4.16 Learning in SNN relates to changes of the connection weights between two spiking
neurons
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As it is in biological neural networks (see Chap. 3), spike precise timing is one of
the most important factors in SNN data coding and computation [1, 39] in order to
generate efficient processing of information in the system. As explained earlier,
information is represented and encoded into spikes which are very dependent on the
exact firing timing, thus learning in SNN is a very complex process. In general,
learning is defined as the process of parameter adaptation and learning rule is
defined as the procedure of adjusting the connection weights.

Learning in SNN can be classified in several categories:

– Unsupervised;
– Supervised;
– Semi-supervised;
– Reinforcement,

which is similar to the learning in traditional neural networks (Chap. 2). The next
sub-sections discuss the learning algorithms already designed for SNN, some of
them reviewed in [40].

4.3.1 SpikeProp

Similar to backpropagation algorithm [41] designed for traditional ANN, SpikeProp
[42] is designed to determine a set of desired firing times (tdj ) of all output neurons,
at the post-synaptic neurons for a given set of input pattern. This is achieved by
applying an error function E, in the particular least mean squares error to minimize
the error of squared difference between training output times tj and desired output
times tdj . Nevertheless, two assumptions are mentioned: each neuron can fire only
once in each processing step and the time course of the neuron’s membrane
potential after the firing is ignored. Weight wk

ij connecting pre-synaptic neuron and
post-synaptic neuron is determined to minimize the error (Eq. 4.25) in which g is
the learning rate.

E ¼ 1
2

X
j

tj � tdj
� �2

ð4:25Þ

Dwk
ij ¼ �g

@E
@wk

ij
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4.3.2 Spike-Time Dependent Plasticity (STDP)

Another well-known learning paradigm inspired by the Hebbian learning principle
is STDP [43–45] in which the synaptic weights are adjusted based on the temporal
order of the incoming spike (pre-synaptic) and the output spike (post-synaptic).
This synaptic weight adjustment determines synaptic potentiation known as long
term potential (LTP) if the synaptic weight is increasing (positive change) and
synaptic depression known as long-term depression (LTD) if the synaptic weight is
decreasing (negative change). A particular connection is said to potentiate if a
pre-synaptic spike arrives before a post-synaptic spike; and is said to depress if it
arrives after a post-synaptic spike [45].

STDP is expressed in terms of STDP learning window W tpre � tpost
� �

in which
the difference between arrival time of the pre-synaptic spike and the arrival time of
post-synaptic spike will determine the synaptic weight (Eq. 4.26) (Fig. 4.17). In the
equation, sþ and s� refer to the pre-synaptic and post-synaptic time interval; and
Aþ and A� refer to the maximum fraction of synaptic adjustment if tpre\tpost
approaches to zero.

W tpre � tpost
� � ¼ Aþ exp tpre�tpost

sþ

� �
if tpre\tpost;

A� exp � tpre�tpost
s�

� �
if tpre [ tpost;

8<
: ð4:26Þ

Authors in [46] showed that using unsupervised learning with the STDP learning
rule even a single spiking leaky integrate and fire neuron model (LIFM) can learn to
react quickly on the onset of a spatio-temporal spiking pattern on 2000 synapses
that the neuron has been presented with before, among them 1000 presenting noise.
And the more often the LIFM ‘sees’ this pattern, the earlier the neuron recognises
the onset of it (Fig. 4.18).

To summarise the principles of STDP:

• Hebbian form of plasticity in the form of long-term potentiation (LTP) and
depression (LTD);

• Effect of synapses are strengthened or weakened based on the timing of
pre-synaptic spikes and post-synaptic action potential.

• Pre-synaptic activity that precedes post-synaptic firing can induce LTP,
reversing this temporal order causes LTD

• Through STDP, connected neurons learn consecutive temporal associations
from data, forming chains of connections to represent patterns in the data.

• Several variations of the STDP exist.
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Fig. 4.17 STDP is expressed in terms of STDP learning window W tpre � tpost
� �

in which the
difference between arrival time of the pre-synaptic spike and the arrival time of post-synaptic spike
will determine the synaptic weight; Δt = tpre − tpost

Fig. 4.18 A single LIFM neuron can be trained with the STDP unsupervised learning rule to
discriminate a repeating pattern of synchronised spiking on multiple synapses from noise [46]
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4.3.3 Spike-Driven Synaptic Plasticity (SDSP)

SDSP, a variant of Spike Timing Dependent Plasticity (STDP), is a semi-supervised
learning rule [47] that directs the change of the synaptic plasticity Vw0 of a synapse
w0 depending on the spike’s time of the pre- and post-synaptic neurons. If a
pre-synaptic spike arrives at the synaptic terminal while the post-synaptic neuron’s
membrane potential is higher than a given threshold value (i.e. normally shortly
before a post-synaptic spike is emitted), the synaptic efficacy is increased (poten-
tiation). However, when a pre-synaptic spike arrives at the synaptic terminal while
the post-synaptic neuron’s membrane potential is low (i.e. normally shortly after a
spike is emitted), the synaptic efficacy is decreased (depression). Where Dtspk is the
pre- and post-synaptic spike time window, this synaptic change can be expressed
as:

DVw0 ¼
Ipot tpostð Þ

Cp
Dtspk; if tpre\tpost

Idep tpostð Þ
Cd

Dtspk if tpost\tpre

8<
: ð4:27Þ

SDSP introduces a dynamic ‘drift’ of the synaptic weights either to be ‘up’ or
‘down’, depending on the value of the weight itself [48]. If the weight is higher than
the threshold value, then the weight is slowly driven (by the learning algorithm) to a
fixed high value. On the contrary, the weight is slowly driven to a fixed low value if
the weight is lower than the threshold value. These two values represent the two
stable states and at the end of the learning process, the final weights can be encoded
with 1 single bit [49].

4.3.4 Rank Order (RO) Learning Rule

In RO learning rule earlier coming spikes are considered more important (carry
more information) and that is reflected in the learning rule, which increase the
connection weights based on the order of spikes coming from different synapses
(Eq. 4.28) (Fig. 4.19) [8]:

Dwji ¼ morderðjÞ ð4:28Þ

where: m is a parameter called modulation factor.
The membrane potential PSP of a neuron is calculated as (Fig. 4.19):

uiðtÞ ¼
0 if firedP

jjf ðjÞ\t
wjim

orderðjÞ
i else

(
ð4:29Þ
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PSP max Tð Þ ¼ SUM morderðjðtÞ
� �

wj;i tð Þ
h i

; for j ¼ 1; 2; . . .; k; t ¼ 1; 2; . . .;T;

ð4:30Þ

PSPTh ¼ C:PSPmax(T) ð4:31Þ

The above ability of spiking neurons to be trained to spike early is essential feature
of the brain. It has helped humans and animals to predict and to escape predators,
for humans to play sport, e.g. predicting the trajectory of a ball and catching it, and
for almost all other human activities. This feature is used in Chap. 18 for predicting
individual occurrence of stroke one day ahead and in Chap. 19 for predicting
probability of earthquakes few hours before the event.

4.3.5 Learning in Dynamic Synapses

A phenomenological model for modelling short-term dynamics of synapses has
been proposed more than a decade ago by [50]. The model which is based on
experimental data of biological synapses, suggests that the synaptic efficiency
(weight) is a dynamic parameter that changes with every pre-synaptic spike due to
two short-term synaptic plasticity processes: facilitation and depression. This
inherent synaptic dynamics empower neural networks with a remarkable capability
for carrying out computations on temporal patterns (i.e., time series) and
spatio-temporal patterns. Maass and Sontag [51], in their theoretical analysis con-
sidering analogue input showed that with just a single hidden layer such networks
can approximate a very rich class of non-linear filters. However there is a need for
similar study in the presence of many inputs that carry sequences of spikes in a
temporal relationship. It is suggested also that dynamic synapses work as memory
buffers [52] due to the fact that a current spike is influenced by previous spikes.

Fig. 4.19 In RO learning rule earlier coming spikes are considered more important (carry more
information) and that is reflected in the learning rule, which increase the connection weights based
on the order of spikes coming from different synapses: The firing threshold of the neuron can be set
to be a portion (e.g. C = 0.7) of the maximum PSP (Eq. 4.30) for a given input pattern, so that this
neuron will emit a spike earlier than the pattern it is trained to spike on when the whole pattern is
presented (Eq. 4.31)
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Furthermore a SNN with dynamic synapses is showed to be able to induce a Finite
State Machine mechanism [53]. A number of studies have utilized dynamic
synapses in practical applications. One of the first practical application of dynamic
synapses was speech recognition [54] and later-image filtering [55].

4.4 Spike Pattern Association Neurons and Neural
Networks

4.4.1 Principles of Spike Pattern Association Learning.
The SPAN Model

In this section, we present a supervised learning algorithm for SNN that enables a
single neuron to learn spike pattern associations of input-output spike sequences at
precise time of spikes. We refer to this learning neuron as SPAN for Spike Pattern
Association Neuron [56–59]. Using a SPAN neuron, one can build SNN to asso-
ciate input to output temporal patterns of desired spike sequences.

In the SPAN learning algorithm, the input, output and desired spike trains are
transformed into analogue signals by convolving the spikes with a kernel function.
This transformation will simplify the computation of the error signal and, hence,
allows the application of a gradient descent to optimize the synaptic weights.

In [58], the authors used such a signal transformation along with a Particle
Swarm Optimizer in order to optimize the parameters of dynamic synapses enabling
the network to learn a desired input/output mapping of spike trains. However, due
to scalability issues when training big networks, learning algorithms based on
evolutionary computation are less practical. Therefore, a gradient descent method
was suggested in [59]. Preliminary experiments were conducted demonstrating the
functioning of the algorithm. In this study, we present a comprehensive analysis of
the SPAN method along with a theoretical investigation highlighting the relation-
ship of SPAN to ReSuMe and Chronotron.

Similar to other supervised training algorithms, the synaptic weights of a neuron
are adjusted iteratively in order to impose a desired input/output spike sequence
mapping. We derive the proposed learning algorithm from the common
Widrow-Hoff rule, also known as the Delta rule. For a synapse i, it is defined as:

Dwi ¼ kxi yd � yað Þ ¼ kxidi ð4:32Þ

where k 2 R is a real-valued positive learning rate, xi is the input transferred
through synapse i, and yd and ya refer to the desired and the actual neural output,
respectively. Note that di = yd − ya is the difference or error between the desired and
the actual output of the neuron.

This rule was introduced for traditional neural networks with linear neurons. For
these models, the input and output corresponds to real-valued vectors. In SNN
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however, trains of spikes are passed between neurons rendering the Widrow-Hoff
rule not applicable to SNN. More specifically, if xi, yd and ya were considered as
spike trains s(t) in the form of

sðtÞ ¼
X
f

dðt � t f Þ ð4:33Þ

where tf is the firing time of a spike and d(�) is the Dirac delta function d(x) = 1 if x
= 0 and 0 otherwise, then the difference between two spike trains yd and ya does not
define a suitable error landscape which can be minimized by a gradient descent. In
this method, this issue is addressed by convolving each spike sequence with a
kernel function j(t). This is similar to the binless distance metric used to compare
spike trains [60]. A variety of kernel functions j(t) exist such as linear, (double)
exponential, alpha and Gaussian kernels. In this study, we use an a-kernel, a(t) =
es−1te−t/sH(t), however many other kernels appear suitable in this context. Using
this kernel function, we can now perform the transformation of the spike sequences
into analogue sequences (Fig. 4.20) and perform learning of the connection
weights:

DwiðtÞ ¼ k
e
2

� �2
½
X
g

X
f

H t �max t fi ; t
g
d

n o� �
t � tgd
� �

t � t fi
� �
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2t�t f

i
�tg

d
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�
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i
�tg
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s �

ð4:34Þ

Fig. 4.20 Illustration of the learning rule of SPAN (see text for detailed explanations of the
figure) (from [56])
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With a simple example, the behaviour of the presented learning rule can be
demonstrated. Let us consider the case where the input, desired and actual spike
trains have only a single spike at ti, td, ta, respectively and they satisfy ti� td� ta.
Equation 4.34 then simplifies to:

Dwi ¼ k
e
2

� �2
ðtd � ti þ sÞe�td�ti

s � ðta � ti þ sÞe�ta�ti
s

h i
ð4:35Þ

And we note that:

Dwi

[ 0 if td\ta
¼ 0 if td ¼ ta
\0 if td [ ta

8<
: ð4:36Þ

From Eq. 4.36 several observations can be made:

• if the actual spike occurs later than the desired spike (td < ta), then the synaptic
weight increases and so the output spike will be emitted earlier at a next input
presentation (epoch);

• conversely, if the actual spike occurs earlier than the desired firing time (ta < td),
then the synaptic weight decreases and so the output spike will be emitted later;

• if the actual spike occurs exactly at the desired time (ta = td), then the synaptic
weight does not change;

• and the larger the difference between ta and td is, the larger the size of synaptic
weight change becomes.

Furthermore, we can observe that

• when ta ! ∞, which means that no actual spike occurs, the synaptic weight
increases to promote the emission of an output spike since td < ta holds,

• when td ! ∞, which means no output spike is desired, the synaptic weight
decreases to promote a suppression of an output spike since ta < td holds.

These observations are intuitively valid and we can expect, by repeating these
processes, that the learning rule drives the post-synaptic neuron to emit a spike at
the desired time. Furthermore, we note that the smaller the value of td − ti or ta − ti
is, the larger the value of each term in the square brackets of Eq. 4.35 becomes.
That means that only if the input spike at ti is temporally close to the desired or
actual spike at td or ta, i.e. spike ti is the cause of spike td or spike ta, the corre-
sponding synaptic weight wi changes significantly.

Weights are updated in an iterative process. In each iteration (or epoch), all input
patterns are presented sequentially to the system. For each pattern the Δwi values
are computed and accumulated. After the presentation of all patterns, the weights
are updated to wi(e + 1) = wi(e) + Δwi, where e is the current epoch of the learning
process.

We note that the algorithm is capable of training the weights of a single neural
layer only. Related methods such as ReSuMe [61] and the Chronotron [62] exhibit
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similar restrictions. Therefore, a combination with the well-known Liquid State
Machine (LSM) approach [63] was suggested in these studies. By transforming the
input into a higher-dimensional space, the output of the LSM can potentially be
mapped to any desired spike train.

Figure 4.20 illustrates the functioning of the proposed SPAN learning method.
An output neuron is connected to three input neurons through three excitatory
synapses with randomly initialized weights. For the sake of simplicity, each input
sequence consists of a single spike only. However, the learning method can also
deal with more than one spike per input neuron. The inputs spike trains si are
visualized in Fig. 4.20a. In this example, we intend to train the output neuron to
emit two desired spikes at the pre-defined time td

0 and td
1.

Assume that, as shown in Fig. 4.20b, the presented stimulus causes the excita-
tion of the output neuron resulting in the generation of three output spikes at times
ta
0, ta

1 and ta
2, respectively. Spike ta

0 is temporally very close to the desired spike td
0;

spike ta
1 is undesired and should be suppressed by the learning method; and spike ta

2

occurs slightly too late (td
1 < ta

2). The evolution of the membrane potential u
(t) measured at the output neuron is shown in middle top diagram of the figure
above the actual and the desired spike trains, cf. Fig. 4.20b.

The lower part in the figure (Fig. 4.20c–e) depicts a graphical illustration of
Eq. 4.34. The input, actual and desired spikes trains are kernelized using the a-
kernel as defined in Eq. 4.35 (Fig. 4.20b, c). We define the area under the curve of
the absolute difference |yd(t) − ya(t)| as an error between actual and desired output.

Although this error is not used in the computation of the weight updates Δwi, this
metric is an informative measure of the achieved training status of the output
neuron.

Figure 4.20e shows the weight updates Δwi. We especially note the large
decrease of weight w0. The input spike train s0 of the first input neuron causes an
undesired spike at ta

1 and lowering the corresponding synaptic efficacy potentially
suppresses this behaviour. On the other hand, the synaptic weight w2 is increased
promoting the triggering of spike ta

2 at an earlier time. Finally, weight w1 remains
almost unchanged since ta

1 � td
1.

In an exemplified implementation, we employ the Leaky Integrate and-Fire
(LIF) neuron which is one of the most widely used spiking neural models [4]. It is
based on the idea of an electrical circuit containing a capacitor with capacitance
C and a resistor with resistance R, where both C and R are assumed to be constant.
The dynamics of a neuron i are then described by the following differential
equation:

sm ¼ dui
dt

¼ �uiðtÞþRIsyni ðtÞ ð4:37Þ

The constant sm = RC is called the membrane time constant of the neuron.
Whenever the membrane potential ui crosses a threshold # from below, the neuron
fires a spike and its potential is reset to a reset potential ur. Following [4], we define
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tðf Þi : uiðtðf ÞÞ ¼ t; f 2 0; . . .; n� 1f g ð4:38Þ

as the firing times of neuron i where n is the number of spikes emitted by neuron
i. It is noteworthy that the shape of the spike itself is not explicitly described in the
traditional LIF model. Only the firing times are considered to be relevant.

The synaptic current Ii
syn of neuron i is modeled using an a-kernel:

Isyni ðtÞ ¼
X
j

wij

X
f

aðt � tðf Þj Þ ð4:39Þ

where wij 2 R is the synaptic weight describing the strength of the connection
between neuron i and its pre-synaptic neuron j. The a-kernel itself is defined as

aðtÞ ¼ es�1
s te�t=ssHðtÞ ð4:40Þ

where H(t) refers to the Heaviside function and parameter ss is the synaptic time
constant.

4.4.2 Case Study Examples

The following case study examples are described in a reproducible way following
[64]. In all experiments, the network architecture consists of single neuron driven
by n synapses. The input spike patterns stimulating the neuron are generated ran-
domly. More specifically, each input spike train consists of a single spike generated
randomly in the time interval (0, 200 ms). The simulation is performed using the
NEST simulator [65]. We provide the setup details that are specific for a particular
experiment in the individual sections below.

The purpose of the first experiment is to demonstrate the concept of the proposed
learning method. The task is to learn a mapping from a random input spike pattern
to specific target output spike train. This target consists of five spikes occurring at
the times td

0 = 33, td
1 = 66, td

2 = 99, td
3 = 132 and td

4 = 165 ms. Initially, the synaptic
weights are randomly generated. Over 100 epochs, we allow the output neuron to
adjust its connection weights in order to produce the desired output spike train. The
experiment is repeated for 100 runs each of them initialized with different random
weights in order to guarantee statistical significance. In Fig. 4.21, the experimental
setup of a typical run is illustrated. The left side of the diagram shows the network
architecture as defined in the experimental setup above. The right side shows the
desired target spike train (top) along with the produced spike trains by the output
neuron over a number of learning epochs (bottom). We note that the after the
learning process. Output spike trains in early epochs are very different from the
desired target spike sequence. In later epochs the output spikes converge towards
the desired sequence. We note that the neuron is able to reproduce the desired spike
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output pattern very precisely in less than 20 learning epochs. Figure 4.21c shows
the evolution of the average error over the performed 100 runs. We note the
exponential decrease of the error. In 97% of all trials the target spike train could be
reproduced in less than 30 epochs and even for the remaining three percent, the
average temporal difference between learned and desired spike train was less than
0.2 ms.

The effect of the learning algorithm on the synaptic efficacy can be visualized by
comparing the synaptic weights before and after the application of the learning
process, cf. Fig. 4.21d. For the diagram, the neural inputs are chronologically sorted
according to their spike firing times. A bar in the figure reflects the synaptic strength
of a synapse that corresponds to a particular input.

In order to get an impression of the temporal causality of the weight changes, we
overlay the plot with the desired firing times of the neuron (red vertical lines at 33,
66, 99, 132 and 166 ms). The figure presents the weight changes averaged over all
100 runs.

Due to the experimental setup, we observe a uniform distribution of the weights
after the initialization of the algorithm. After the training over 100 epochs, the

Fig. 4.21 a Learning spike pattern association with 400 input synapses. The neuron learns to map
between spatiotemporal input pattern and output spike train; b the development of the output
toward the target pattern for one of the trials; c the evolution of the error and the standard
deviation; d the synaptic weights before and after training learn a desired input-output behaviour of
the SPAN
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synapses that transfer input spikes which are temporally close to the desired target
spikes are potentiated. On the other hand, synapses that transfer spike inputs at
undesired times are inhibited. The sine-shaped form of the chronologically sorted
synaptic efficacies is caused by the equidistant firing times of the spikes in the target
sequence.

From this simple experiment, we conclude that the proposed learning method
can be applied for a SPAN neuron to learn to associate a single multi-synaptic
spiking input pattern to a desired spiking output sequence.

The previous experiment involved the learning of a single pattern only. In this
experiment, we investigate the performance of SPAN when several input patterns
have to be learned. Furthermore, we are interested in the behaviour of the method
when the input stimuli are noisy which is important in the light of a real-world
application. In the next sections, we investigate some more challenging learning
scenarios for SPAN.

We construct an initial set of ten spike patterns each consisting of n = 500 input
neurons that are allowed to emit a single spike only. With every presentation of an
input pattern to the learning neuron, a noise is added to each spike in form of a jitter
drawn from a Gaussian distribution. The strength of the jitter is controlled by the
standard deviation of the Gaussian. In our experiments, we use different jitter
strengths in order to investigate the impact of different noise levels on the learning
performance of SPAN.

The neuron is trained for 400 epochs to emit a single spike at td = 99 ms in
response to the input patterns. We call the output of the neuron successful, if the
output sequence consists of a single spike only that occurs within the interval [td −
5 ms, td + 5 ms]. We define Ps as the probability of a successful output. It is the
ratio of the number of output spikes that match their desired spikes over all ten input
patterns. We consider jitter strengths of 0, 5, 10, 15 and 20 ms. For each of them, an
individual experiment is undertaken and repeated for 100 trials to guarantee sta-
tistical evidence.

Figure 4.22 presents the results of the experiment averaged over the 100 trials.
The top row of diagrams show the obtained results for the noise-free case, i.e. a
jitter strength of zero. On the left, the evolution of the error is presented. In the first
few iterations of training, the neuron spikes arbitrary and the output does not match
the desired target. We note that Ps (depicted in the right top diagram) is low in the
first few epochs of the training process. However, the output stabilizes quickly and
Ps increases rapidly indicating the neuron’s ability to converge its output to the
desired target spike.

In order to give an impression of the temporal difference between the obtained
output spike and the target spike, we have computed the absolute difference Δt = |td
− ta| for all successful output spikes. The evolution of Δt is overlaid in the right top
diagram. Clearly, the temporal difference is minimized quickly by SPAN’s learning
algorithm resulting in very precisely timed output spikes.

If noise is introduced to the presented input patterns, the difficulty of the learning
task increases significantly. The diagrams in the middle row of Fig. 4.22 present the
results for a jitter strength of 5 ms. As expected, the training error cannot become
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zero in this learning scenario. However, the evolution of the error indicates a certain
convergence of the algorithm. Despite the noise, the training is very often successful.
More than 90% of the output spikes fulfil the defined success criterion. The neuron is
able to learn to fire within an average time shift Δt = 2 ms irrespective of the noise.

The performance of SPAN as a function of the jitter strength is depicted in the
bottom plots of Fig. 4.22. For the diagrams we have used the neural outputs
obtained during the last training epoch. Clearly, the error is proportional to the jitter
strength. This relationship indicates a satisfying resistance of the SPAN rule to
input pattern noise.

Even for large jitter strengths, the method is able to map around three out of ten
pattern correctly, cf. right bottom diagram of the figure.

4.4.3 Memory Capacity of SPAN

An important issue related in the learning process is how much information the
neuron can learn and memorize. We use the measure proposed in [66] to evaluate
the memory capacity of SPAN. The memory capacity is described in term of the

0 5 10  15 20  0 5 10 15 20
Jitter (ms) Jitter (ms)

P
s 
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s 

Fig. 4.22 Learning multiple spike patterns using the SPAN learning rule. The top plots show the
results when the patterns are learned without any noise applied. The diagrams below show the
learning when jittered input patterns are used (jitter strength of 5 ms). A neuron is trained to fire a
single spike at 99 ms. The success probability Ps is computed in every epoch to indicate the
number of times the output spikes matches the desired spike. The bottom diagrams show the final
training error in dependence of the applied jitter strength
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load factor which is defined as the ratio of the number of input patterns p the neuron
can classify correctly over the number of synapses n, i.e. np.

The p input patterns are generated randomly, similar to the previous experi-
ments, where each pattern consists of n spike trains, each has a single spike at a
random time instant. Subsequently, the patterns are assigned randomly to c different
classes, which is set to 5 in this experiment.

The task of the experiment is to train the neuron to classify the all patterns
correctly in a maximum number of epochs of 500. The classification is performed
by training the neuron to fire a single spike at a specified time instant td

i when a
pattern that belongs to class i is presented at the input.

Thus, the class of the input pattern is identified by the time of the fired spike, td
i ,

which is set to 33, 66, 99, 132, or 165 ms to identify the five classes. The exper-
iment is repeated on three network architectures having 200, 400 and 600 synapses.
We report the success rate as a function of the number of the input patterns p. The
success rate is the percentage of trials having the all input patterns classified suc-
cessfully, also we report the average number of iterations required to achieve
successful classification.

A pattern is decided as correctly classified if the 90% fired spike in response to
that pattern is within 2 ms of the corresponding target spike. The learning rate is set
to k ¼ 5c

p and the synaptic weights are initialized randomly using maximum

synaptic weights of 5, 2.5 and 2 pA for the 200, 400 and 600 synapses respectively.
These values were set based on trial and error.

Figure 4.23, shows the results of the experiment for the three cases of the
synapses. From the figure, it is clear that increasing the number of synapses
increases the number of patterns that can be remembered and classified correctly.
However, more epochs and more computation time is required to adjust the
synaptic weights. It is noted that after a certain number of input patterns, it becomes
difficult for the neuron to recognize the patterns, hence, the success rate starts to
drop. We consider the points where the success rate is 90% and above, which are
indicated by the green diamond markers in Fig. 4.23. For these points, the value of
p is 15, 30, 35 with success rate of 96, 94, 90% respectively. Furthermore, the
average number of epochs to achieve successful training is below 100. The load
factor at these points is computed to be 0.075, 0.075 and 0.058 for the three cases of
200, 400 and 600 synapses respectively. To get a sense of these values, we have
conducted an experiment to measure the memory capacity of ReSuMe learning rule
at these points, i.e. with the same values of p and n. For this experiment, a batch
learning rule of ReSuMe was used (with a value of aR set to 0.025 and the learning
rate set to 10). The obtained success rates of ReSuMe to learn to recognize the input
patterns were 22, 10 and 52%. These values are lower than the success rates of
SPAN, hence, ReSuMe has less memory capacity than SPAN.
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4.4.4 SPAN for Classification Problems

In this experiment a spatio-temporal classification task is performed. The objective
is to learn to classify five classes of input spike patterns. The pattern for each class
is given as a random input spike pattern that was created in a similar fashion as for
the previous experiment. Fifteen copies for each of the five patterns are then
generated by perturbing each pattern using a Gaussian jitter with a standard devi-
ation of 3 ms resulting in a total of 15 � 5 = 75 samples in the training data set.
Additionally, we create 25 � 5 = 125 testing samples using the same procedure.
The output neuron is then trained to emit a single spike at a specific time for each
class. Only the training set is used during training, while the testing set is used to
determine the generalization ability of the trained neuron. The spike time of the
output neuron encodes the class label of the presented input pattern. The neuron is
trained to spike at the time instances 33, 66, 99, 132, and 165 ms respectively, each
spike time corresponding to one of the five class labels. We allow 200 epochs for
the learning method and we repeat the experiment in 30 independent runs. The
number of synapses in this experiment was set to 200. For each run we chose a
different set of random initial synaptic weights.

Figure 4.5a shows the evolution of the average error for each of the five classes.
In the first few epochs, the value of the error oscillates and then starts to stabilize
and decrease slowly. The learning error decreases for some classes faster than for
others, e.g. class 3. We also note that the class reporting the highest error is class 1.
This behaviour is expected and confirms a quite similar finding in [62]. In order to
classify samples of class 1 correctly, the output neuron has to emit a very early
spike at t � 33 ms. Consequently, the neuron needs to be stimulated by input spikes
occurring at times before t = 33 ms. However, due to the random generation of the
input data, only few input spikes occur before t = 33 ms. Most input spikes arrive
after that time at the output neuron and therefore do not contribute to the correct

5 10 15 20 25 30 35 40 45 50  55 60 

Fig. 4.23 The memory capacity of SPAN with different number of synapses. The green diamond
marker represents the maximum number of learned patterns for which the average number of
successful training is above 90%
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classification of class 1 samples. The relationship between the accuracy and the
output spike time was also noted in [62]. Future studies will further investigate this
interesting observation.

In order to report the classification accuracy of the trained neuron, we define a
simple error metric. We consider a pattern as correctly classified, if the neuron fires
a single spike within ½t fd � 3ms; t fd þ 3ms� of the desired spike time td

f . Any other
output is considered as incorrect. It is noteworthy to mention that using this defi-
nition, an untrained neuron is very likely to produce incorrect outputs resulting in
accuracies close to zero. Figure 4.24b shows the average classification error for
each class in the training and testing phase. As mentioned above, for testing, the
125 unseen patterns of the test set are used. The neuron is able to learn to classify
the 75 training patterns with an average accuracy of 94.8% across all classes. Once
more, we note the comparatively poor classification performance of samples
belonging to the first class. For the test patterns, the neuron is able to achieve
average accuracy of 79.6% across all classes.

The experimental analysis presented in the previous section has demonstrated
that, despite its algorithmic simplicity, the SPAN learning method can efficiently
impose a desired input/output behaviour to a SNN. In this section, we compare the
differences and the similarities between the proposed method and two related
algorithms, the Chronotron [62] and the ReSuMe learning rule [61, 67].

Similar to SPAN, also the ReSuMe learning algorithm is derived from the
Widrow-Hoff rule. ReSuMe interprets the Widrow-Hoff rule as a combination of an
STDP and an anti-STDP process. With the introduction of an explicit learning
window, the method emphasizes on the implementation of biologically plausible
learning processes. The SPAN rule, on the other hand, follows a different idea. The
sacrifice of biological realism allows the straightforward formulation of an efficient
synaptic weight modification rule. By converting spike trains into analogue signals,
the Widrow-Hoff rule can be directly applied to spiking neurons. Despite the fact

0 50 100 150 200 1 2 3   4 5
Epoch Class

(a) (b)

Fig. 4.24 a Evolution of the average errors obtained in 30 independent trails for each class of the
training samples; b the average accuracies obtained in the training and testing phase

4.4 Spike Pattern Association Neurons and Neural Networks 161



that the kernelization of spike trains was investigated in several studies before, we
are not aware of any study that applies spike convolution in an algorithm for the
learning of precisely timed spike train patterns. In [63, 67] kernel functions have
been used to define spike train metrics and in [68] kernelized spike trains were
studied in the context of classification problems using a nearest neighbour
approach.

Although the biological plausibility of the SPAN learning method is at least
questionable, a surprising observation can be made when the a-kernel is replaced by
an exponential one.

In concept, the SPAN rule is also similar to the Chronotron E-learning rule [62].
Also in Chronotron the synaptic weights are modified according to a gradient
descent in an error landscape. Its error function is based on the Victor & Purpura
(VP) distance [69]. By finding a way to deal with the discontinuities of the VP
metric, the Chronotron rule efficiently computes the error gradient and updates the
weights accordingly. SPAN’s error landscape, on the other hand, is based on a
metric similar to the van Rossum metric [60] but with a kernels. This metric does
not exhibit any discontinuities allowing the definition of a simple yet powerful
learning rule. The differences and similarities of Chronotron and SPAN are dis-
cussed in [56, 57].

4.5 Why Use SNN?

SNN have some characteristics that make them superior in few aspects when
compared with traditional machine learning techniques including the classical
neural networks from Chap. 2, namely:

– Efficient modelling of temporal-, spatio-temporal or spectro-temporal data
(Chaps. 8–22);

– Efficient modelling of processes that involve different time scales (see Chap. 19);
– Bridging higher level functions and “lower” level genetics (see Chap. 16);
– Integration of modalities, such as sound and vision in one system (see Chaps. 12

and 13);
– Predictive modelling and event prediction (see Chaps. 18 and 19);
– Fast and massively parallel information processing (see Chap. 20);
– Compact information processing (see Chap. 21 which is presenting a method for

data compression based on spike-time representation);
– Scalable structures (from tens to billions of spiking neurons) (Chaps. 6 and 20);
– Low energy consumption if implemented on neuromorphic platforms (Chap. 20);
– Deep learning and deep knowledge representation in brain inspired SNN

(Chap. 6);
– Enabling development of BI-AI when using brain inspired SNN (see Chap. 1

for the definition of BI-AI and their 20 features; and also Chaps. 6 and 22);
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Table 4.2 shows a brief comparative analysis between SNN and other statistical and
machine learning techniques across various capabilities.

SNN opened the field of brain-inspired (cognitive, neuromorphic) computing.
Dharmendra Modha, chief scientist of Brain-inspired Computing at IBM Research,
commented “The goal of brain-inspired computing is to deliver a scalable neural
network substrate while approaching fundamental limits of time, space, and
energy”.

4.6 Summary and Further Readings for Deeper
Knowledge

This chapter gives some basic knowledge about SNN that is used in next chapters,
where eSNN models are presented (Chap. 5) and brain-inspired SNN (Chap. 6).

More information on specific topics related to SNN can be found as follows:

– Selection and optimisation of spike encoding methods [24] and a software:
http://www.kedri.aut.ac.nz/neucube/. Spiking Neuron Models [4];

– Spike-based strategies for rapid processing [15];
– Computational modelling with SNN (Chap. 37 in [38]);
– Brain-like information processing for spatio-temporal pattern recognition

(Chap. 47 in [38]);
– Associative memory with SNN [32];
– SPAN [58, 59].

Table 4.2 A comparative analysis between SNN and other machine learning methods

Method/features Statistical methods (MLR, kNN,
SVM)

ANN (e.g. MLP,
CNN)

SNN

Information Scalars Scalars Spike sequences

Data
representation

Scalars, vectors Scalars, vectors Whole TSTD
patterns

Learning Statistical, limited Hebbian rule Spike-time
dependent

Dealing with
TSTD

Limited Moderate Excellent

Parallel
computation

Limited Moderate Massive

Hardware support Standard VLSI Neuromorphic VLSI

TSTD is abbreviation of temporal or spatio-temporal data
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Chapter 5
Evolving Spiking Neural Networks

Evolving SNN (eSNN) are a class of SNN and also a class of ECOS (Chap. 2)
where spiking neurons are created (evolved) and merged in an incremental way to
capture clusters and patterns from incoming data. This gives a new quality of the
SNN systems to become adaptive, fast trained and to capture meaningful patterns
from the data, turned into new knowledge, departing the “curse of the black box
neural networks’ and the “curse of catastrophic forgetting” as manifested by some
traditional ANN models (Chap. 2). The inspiration comes from the brain as the
brain always evolves its structure and functionality through continuous learning. It
is always evolving and forming new knowledge.

The chapter is organised in the following sections:

5:1. Principles and methods of eSNN.
5:2. Convolutional eSNN.
5:3. Dynamic eSNN (deSNN).
5:4. Fuzzy rule extraction from eSNN.
5:5. Evolving SNN for reservoir computing.
5:6. Chapter summary and further readings for deeper knowledge.

5.1 Principles and Methods of Evolving SNN (ESNN)

The eSNN paradigm applies the ECOS principles (Chap. 2) to process spike-time
information, namely:

(1) Fast learning from large amount of data, e.g. using mainly “one-pass” training,
starting with little prior knowledge;

(2) Adaptation in real-time and in an on-line mode where new data is accommo-
dated as it comes based on local learning;

(3) “Open”, evolving structure, where new input variables (relevant to the task), new
outputs (e.g. classes), new connections and neurons are added/evolved “on the fly”;
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(4) Both data learning and knowledge representation is facilitated in a compre-
hensive and flexible way, e.g., supervised learning, unsupervised learning,
evolving clustering, “sleep” learning, forgetting/pruning, fuzzy rule insertion
and extraction;

(5) Active interaction with other systems and with the environment in a
multi-modal fashion;

(6) Representing both space and time in their different scales, e.g., clusters of data,
short- and long-term memory, forgetting, etc.;

(7) System’s self-evaluation in terms of behavior, global error and success, and
related knowledge representation.

There are several models of eSNN models.
The simplest eSNN model uses (see Chap. 4) (but not restricted to these

limitations):

– Population spike coding algorithm (POC);
– Leaky integrate-and fire (LIF) model of a neuron;
– Rank-order (RO) learning rule.

This is schematically shown in Fig. 5.1a, b.
The RO learning motivation is based on the assumption that most important

information of an input pattern is contained in earlier arriving spikes [1]. It
establishes a priority of inputs based on the order of the spike arrival on the input
synapses for a particular pattern. This is a phenomenon observed in biological
systems as well as an important information processing concept for some
spatio-temporal problems, such as computer vision and control. RO learning makes
use of the information contained in the order of the input spikes (events). This
method has two main advantages when used in SNN: (1) fast learning (as the order
of the first incoming spikes is often sufficient information for recognising a pattern
and for a fast decision making and only one pass propagation of the input pattern
may be sufficient for the model to learn it); (2) asynchronous, data-driven pro-
cessing. As a consequence, RO learning is most appropriate for AER input data
streams as the address-events are conveyed into the SNN ‘one by one’, in the order
of their happening [2, 3]. The RO coding for the eSNN structure from Fig. 5.1 is
illustrated in Chap. 4.

An eSNN evolves its structure and functionality in an on-line manner, from
incoming information. For every new input data vector, a new output neuron is
dynamically allocated and connected to the input neurons (feature neurons). The
neuron’s connections are established using the RO rule for the output neuron to
recognise this vector (frame, static pattern) or a similar one as a positive example.
The weight vectors of the output neurons represent centres of clusters in the
problem space and can be represented as fuzzy rules [4].

In some implementations neurons with similar weight vectors are merged based
on Euclidean distance between them. That makes it possible to achieve a very fast
learning (only one pass may be sufficient), both in a supervised and in an unsu-
pervised mode [5]. When in an unsupervised mode, the evolved neurons represent a
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Fig. 5.1 a A principle diagram of the structure of an evolving SNN (eSNN) where the input
variables are encoded into spike sequences though population coding (POC) and the output
neuronal layer evolves with the presentation of every new data input vector, allowing also for
merging of output neurons. b Example of how a random continuous value is encoded into spike
trains using POC for a number of input neurons. The value of 0.7 activates 6 overlapping receptive
fields, which excite 6 corresponding input neurons at different firing times
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learned pattern (or a prototype of patterns). The neurons can be labelled and
grouped according to their belonging to the same class if the model performs a
classification task in a supervised mode of learning—an example is shown in
Fig. 5.2.

During a learning phase, for each M-dimensional training input pattern (sample,
example, vector) Pi a new output neuron i is created and its connection weights wj,i

(j = 1, 2, …, M) to the input (feature) neurons are calculated based on the order of
the incoming spikes on the corresponding synapses using the RO learning rule:

wj;i ¼ a :modorderðj;iÞ ð5:1Þ

where: a is a learning parameter (in a partial case it is equal to 1); mod is a
modulation factor, that defines how important the order of the first spike is; wj,i is
the synaptic weight between a pre-synaptic neuron j and the postsynaptic neuron i;
order(j,i) represents the order (the rank) of the first spike at synapse j,i ranked
among all spikes arriving from all synapses to the neuron i; order(j,i) has a value 0
for the first spike to neuron i and increases according to the input spike order at
other synapses.

While the input training pattern (example) is presented (all input spikes on
different synapses, encoding the input vector are presented within a time window of
T time units), the spiking threshold Thi of the neuron i is defined to make this
neuron spike when this or a similar pattern (example) is presented again in the recall
mode. The threshold is calculated as a fraction (C) of the total PSPi (denoted as
PSPimax) accumulated during the presentation of the input pattern:

PSPmax
i ¼

X
j

modorderðj;iÞ ð5:2Þ

H ¼ CPSPmax
i ð5:3Þ

If the weight vector of the evolved and trained new neuron is similar to the one of
an already trained neuron (in a supervised learning mode for classification this is a

RF

G1 (C1) Gk (Ck). . .

v1

. . .

. . .

L1 . . .

. . .

. . .

L2 

v2 vnFig. 5.2 An example of an
eSNN structure with n input
variables and k output classes
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neuron from the same class pool), i.e. their similarity is above a certain threshold
Sim, the new neuron will be merged with the most similar one, averaging the
connection weights and the threshold of the two neurons [5, 6]. Otherwise, the new
neuron will be added to the set of output neurons (or the corresponding class pool of
neurons when a supervised learning for classification is performed). The similarity
between the newly created neuron and a training neuron is computed as the inverse
of the Euclidean distance between weight matrices of the two neurons. The merged
neuron has weighted average weights and thresholds of the merging neurons.

While an individual output neuron represents a single input pattern, merged
neurons represent clusters of patterns or prototypes in a transformed spatial—RO
time-space. These clusters can be represented as fuzzy rules [4] that can be used to
discover new knowledge about the problem under consideration.

The eSNN learning is adaptive, incremental, theoretically—‘lifelong’, so that the
system can learn new patterns through creating new output neurons, connecting
them to the input neurons, and possibly merging the most similar ones, following
the ECOS principles from Chap. 2.

During the recall phase, when a new input vector is presented and encoded as
input spikes, the spiking pattern is submitted to all created neurons during the
learning phase. An output spike is generated by neuron i at a time l if the PSPiðlÞ
becomes higher than its threshold H. After the first neuron spikes, the PSP of all
neurons are set to initial value (e.g. 0) to prepare the system for the next pattern for
recall or learning.

The postsynaptic potential PSPiðlÞ of a neuron i at time l is calculated as:

PSPiðlÞ ¼
X

t¼0;1;2;...;l

X
j

ejðtÞ :modorderðj;iÞ ð5:4Þ

where: ej(t) = 1 if there is a first spike at time t on synapse j; order (j,i) is the rank
order of the first spike at synapse j among all spikes to neuron i for this recall
pattern.

The parameter C, used to calculate the threshold of a neuron i, makes it possible
for the neuron i to emit an early output spike before the presentation of the whole
learned pattern (lasting T time units) as the neuron was initially trained to respond.
As a partial case C = 1.

During training of an eSNN, for each input vector the following steps are
performed:

(a) Create (evolve) a new output spiking neuron and its connections;
(b) Propagate the input vector into the network calculating the PSP of the output

neurons:
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ui tð Þ ¼
0 if firedP
jjf jð Þ\t

wjim
order jð Þ
i else

(
ð5:5Þ

(c) Train the newly created neuron weights using RO learning based on the spike
time arrival.

(d) IF similarity between a new and old neurons is greater than a Threshold THEN
merge neurons, where N is the number of samples previously used to update the
respective neuron.

(e) Update the corresponding threshold 0 of the merged neuron.

The eSNN training algorithm is given in Box 5.1.

Box 5.1. The eSNN training algorithm

1:

2: Set eSNN parameters: mod = [0,1],C = [0,1], sim =[0,1]

3: 

4: Encode input pa ern into firing me of mul ple pre-synap c neurons j
5:    Create a new output neuron i for this class and calculate the connec on weights as wji = modorder(j)

6:   

7: 

8: 

9:      Update the weight vector and threshold of the most similar neuron in the same output class group

10:       

11:

13:     

14: Add the weight vector and threshold of the new neuron to the neuron repository R

15:     

16:  

17: Repeat above for all input pa erns of other output classes

_______________________________________________________________________________

Ini alize output neuron repository,R=

input pa ern i that belongs to the same class

Calculate PSPmax(i) = Sum jwji modorder(j)

The new neuron weight vector sim of t rained output neuron weight vector in R

w = wnew+w.N

= new+ N where N is the number of previous merges of the most similar neuron

PSP threshold value γi = PSPmax(i) CCalculate

N+1

N+1

The recall procedure can be performed using different recall algorithms implying
different methods of comparing input patterns for recall with already learned pat-
terns in the output neurons:

(a) The first one is described above. Spikes of the new input pattern are propagated
as they arrive to all trained output neurons and the first one that spikes (its PSP
is greater that its threshold) defines the output. The assumption is that the
neuron (or several neurons in a k-nearest neighbor fashion) that best matches
the input pattern will spike earlier based purely on the PSP (membrane
potential). This type of eSNN is denoted as eSNNm.
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(b) The second one implies a creation of a new output neuron for each recall pattern,
in the same way as the output neurons were created during the learning phase, and
then—comparing the connection weight vector of the new one to the already
existing neurons using Euclidean distance. The closest output neuron (or neurons
in the k-nearest neighbor fashion) in terms of synaptic connection weights is the
‘winner’. This method uses the principle of transductive reasoning and nearest
neighbour classification in the connection weight space. It compares spatially
distributed synaptic weight vectors of a new neuron that captures a new input
pattern and existing ones. We will denote this model as eSNNs.

The main advantage of the eSNN when compared with other supervised or
unsupervised SNN models are:

– It is computationally inexpensive;
– It boosts the importance of the order in which input spikes arrive, thus making

the eSNN suitable for a range of applications.
– It is one-pass, on-line learning method, where new data can be learned incre-

mentally in a “life-long:” learning method, involving the merging/aggregating
output neurons;

– It is knowledge-based, where the output neurons (after aggregation) represent
prototypes in the data or cluster centres [6, 7];

– Allow for fuzzy rule extract ion as presented in a later section.

For a comprehensive study of eSNN see [5] and for a comprehensive review—
[8].

The problem of the eSNN is that once a synaptic weight is calculated based on
the first spike using the RO rule, it is fixed and does not change to reflect on other
incoming spikes at the same synapse, i.e. there is no mechanism to deal with
multiple spikes arriving at different times on the same synapse. The synapses are
static. While the synapses capture some (long term) memory during the learning
phase, they have limited abilities (only through the PSP growth) to capture short
term memory during a whole spatio-temporal pattern presentation. Learning and
recall of complex spatio-temporal patterns in an on-line mode would need not only
fast initial set of connection weights, based on the first spikes, but also dynamic
changes of these synapses during the pattern presentation.

An example of an eSNN is shown in Fig. 5.2 [5, 6, 8].

5.2 Convolutional ESNN (CeSNN)

Here, eSNN are used to build convolutional eSNN (CeSNN) [6]. The principles of
convolutional NN was presented and illustrated in Chap. 2. Here CNN is created
using the eSNN model and illustrated on image recognition problem as shown in
Fig. 5.3.
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The neural network is composed of 3 layers of integrate-and-fire neurons. The
neurons have a latency of firing that depends upon the order of spikes received.
Each neuron acts as a coincidence detection unit, where the postsynaptic potential
for neuron Ni at a time t is calculated as:

PSPði; tÞ ¼
X

modorderðjÞwj;i ð5:6Þ

where mod 2 (0, 1) is the modulation factor, j is the index for the incoming
connection and wj,i is the corresponding synaptic weight.

Each layer is composed of neurons that are grouped in two-dimensional grids
forming neuronal maps. Connections between layers are purely feed-forward and
each neuron can spike at most once on a spike arrival in the input synapses. The
first layer cells represent the ON and OFF cells of retina, basically enhancing the
high contrast parts of a given image (high pass filter). The output values of the first
layer are encoded to pulses in the time domain. High output values of the first layer
are encoded as pulses with short time delays while long delays are given low output
values. This technique called Rank Order Coding, already presented in a previous
section and in Chap. 2 [9] here basically prioritizes the pixels with high contrast that
consequently are processed first and have a higher impact on neurons’ PSP.

Second layer is composed of eight orientation maps, each one selective to a
different direction (0°, 45°, 90°, 135°, 180°, 225°, 270°, and 315°). It is important to
notice that in the first two layers there is no learning, in such a way that the structure
can be considered simply passive filters and time domain encoders (layers 1 and 2).

Fig. 5.3 A convolutional eSNN for image pattern recognition [6]
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The theory of contrast cells and direction selective cells was first reported by Hubel
and Wiesel. In their experiments they were able to distinguish some types of cells
that have different neurobiological responses according to the pattern of light
stimulus.

The third layer is where the learning takes place and where the main contribution
of this work is presented. Maps in the third layer are to be trained to represent
classes of inputs. In [9] the learning is performed off-line using the rule:

Dwj;i ¼ modorderðajÞ

N
ð5:7Þ

where wj,i is the weight between neuron j of the 2nd layer and neuron i of the 3rd
layer, mod 2 (0,1) is the modulation factor, order(aj) is the order of arrival of spike
from neuron j to neuron i, and N is the number of samples used for training a given
class.

In this rule, there are two points to be highlighted: (a) the number of samples to
be trained needs to be known a priori; and (b) after training, a map of a class will be
selective to the average pattern.

In [6] a new approach is proposed for learning with structural adaptation, aiming
to give more flexibility to the system in a scenario where the number of classes and/
or class instances is not known at the time the training starts. Thus, the output
neuronal maps need to be created, updated or even deleted on-line, as the learning
occurs. To implement such a system the learning rule needs to be independent of
the total number of samples since the number of samples is not known when the
learning starts.

The entire training procedure for the CeSNN from Fig. 5.3 follows steps
described next and summarized in the flowchart of Fig. 5.4.

1. Propagate a sample k of class K for training into the layer 1 (retina) and layer 2
(direction selective cells—DSC);

2. Create a new mapMapC(k) in layer 3 for sample k and train the weights using the
equation:

Dwj;i ¼ modorderðajÞ ð5:8Þ

where wj,i is the weight between neuron j of the layer 2 and neuron i of the layer
3, mod 2 (0, 1) is the modulation factor, order(aj) is the order of arrival of spike
from neuron j to neuron i.
The postsynaptic threshold (PSPthreshold) of the neurons in the map is calculated
as a proportion c 2 [0,1] of the maximum postsynaptic potential (PSP) created
in a neuron of map MapC(k) with the propagation of the training sample into the
updated weights, such that:
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PSPthreshold ¼ cmaxðPSPÞ ð5:9Þ

The constant of proportionality c express how similar a pattern needs to be to
trigger an output spike. Thus, c is a parameter to be optimized in order to satisfy
the requirements in terms of false acceptance rate (FAR) and false rejection rate
(FRR).

3. Calculate the similarity between the newly created map MapC(k) and other maps
belonging to the same class MapC(K). The similarity is computed as the inverse
of the Euclidean distance between weight matrices.

4. If one of the existing maps for class K has similarity greater than a chosen
threshold ThsimC(K) > 0, merge the maps MapC(k) and MapC(Ksimilar) using
arithmetic average as expressed in equation

W ¼ WMapCðkÞ þNsamplesWMapCðKsimilarÞ

1þNsamples
ð5:10Þ

where matrix W represents the weights of the merged map and Nsamples denotes
the number of samples that have already being used to train the respective
map. In similar fashion the PSPthreshold is updated:

Propagation to retina and DSC 

New training sample 

Create a new map MapC(k) 

For MapC(k), train  the weights WC(k) and 
calculate PSPthreshold C(k)

Calculate similarity S between WC(k) and  
WC(K) (other maps i of the same class) 

If S(i) >Thsim

Merge map MapC(k) and MapC(i)

yes 

no

Fig. 5.4 The training
procedure for the CeSNN
from Fig. 5.3
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PSPthreshold ¼
PSPMapCðkÞ þNsamplesPSPMapCðKsimilarÞ

1þNsamples
ð5:11Þ

The convolutional eSNN first extract features from the input data through the
convolutional layers. When input vectors are presented one after another, spikes are
accumulated over time in themembrane potentials of the output neurons until an output
neuron spikes identifying the class output. Then the membrane potentials are set to
resting potential for the next input vectors to be received and classified. The convo-
lutional eSNN for person authentication based on both speech and face data presented
in Fig. 5.5 is described in details in Chap. 12 [6]. The CeSNN method presented here
supports the creation of SNN that process spatio-temporal data. Space is represented as
Maps and time is represented in the rate of the increase of the membrane potentials of
the neurons in the last layer, as short term memory, before the neurons spike.

5.3 Dynamic Evolving SNN (DeSNN)

This method is first presented in [10]. The main disadvantage of the RO learning in
eSNN is that the model adjusts the connection weight of each synapse once only
(based on the rank of the first spike on this synapse), which may be appropriate for
vector-based pattern recognition, but would not be efficient for complex TSTD
(temporal or spatio-temporal data) where samples are not vectors, but whole temporal
or spatio-temporal sequences/patterns of data. In the latter case the connectionweights
need to be further tuned based on the following spikes arriving on the same synapse
over time as part of the whole input pattern and that is where the spike-time learning
(e.g. STDP or SDSP) can be employed in order to implement dynamic synapses.

Fig. 5.5 CeSNN for person identification using both speech and face image input data [6]
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In the proposed deSNN both the RO and the SDSP learning rules are utilised.
While the RO learning will set the initial values of the connection weights w(0)
(utilising for example the existing event order information in the data sequence), the
SDSP rule will adjust these connection weights based on further incoming spikes
(events) as part of the same learned spatio-temporal pattern.

As in the eSNN, during a learning phase, for each training input pattern (sample,
example, vector) Pi a new output neuron i is created and its connection weights wj,i

to the input (feature) neurons are initially calculated as wj,i (0) based on the order of
the incoming spikes on the corresponding synapses using the RO learning rule.

Once a synaptic weight wj,i is initialised, based on the first spike at the synapse j,
the synapse becomes dynamic and adjusts its weight through the SDSP algorithm. It
increases its value with a small positive value (positive drift parameter) at any time
t a new spike arrives at this synapse and decreases its value (a negative drift
parameter) if there is no spike at this time.

Dwj;i tð Þ ¼ ej tð Þ :D ð5:12Þ

where: ej(t) = 1 if there is a consecutive spike at synapse j at time t during the
presentation of the learned pattern by the output neuron i and (−1) otherwise. In
general, the drift parameter D can be different for ‘up’ and ‘down’ drifts.

All dynamic synapses change their values in parallel for every time unit t during
a presentation of an input spatio-temporal pattern Pi learned by an output neuron i,
some of them going up and some—going down, so that all synapses (not a single
one) of the neuron could collectively capture some temporal relationship of spike
timing across the learned pattern.

While an input training pattern (example) is presented (all input spikes on dif-
ferent synapses, encoding the input vector are presented within a time window of T
time units), the spiking threshold Thi of the neuron i is defined to make this neuron
spike when this or a similar pattern (example) is presented in the recall mode. The
threshold is calculated as a fraction (C) of the total PSPi (denoted as PSPimax)
accumulated during the presentation of the whole input pattern:

PSPimax ¼
X

t¼1;2;...;T

X
j¼1;2;...;M

fjðtÞ :wj;iðtÞ ð5:13Þ

Thi ¼ C:PSPimax ð5:14Þ

where: T represents the time units in which the input pattern is presented; M is the
number of the input synapses to neuron i; fj (t) = 1 if there is spike at time t at
synapse j for this learned input pattern, otherwise it is 0; wj,i (t) is the efficacy of the
(dynamic) synapse between j and i neurons calculated at time t.

The resulted deSNN model after training will contain the following information:

– Number of input neurons M and output neurons N;
– Initial wi (0) and final wi(T) vectors of connection weights and spiking threshold

Thi for each of the output neurons i. The pairs [wi (0),wi (T)], i = 1,2,…,N would
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capture collectively dynamics of the learning process for each spatio-temporal
pattern and each output neuron (As a partial case only initial or final values of the
connection weights can be considered or a weighted sum of them).

– deSNN parameters.

The overall deSNN training algorithm is presented in Box 5.2.

Box 5.2. The deSNN Training Algorithm

1 Set deSNN parameters* (including: Mod, C, Sim, and the SDSP parameters)

2 For  every input spatio-temporal spiking pattern Pi Do

2a. Create a new output neuron i for this pattern and calculate the initial values of connection 

weights wi (0) using the RO learning formula (5.1). 

2b. Adjust the connection weights wi for consecutive spikes on the corresponding synapses 

using the SDSP learning rule (formula (5.8)).  

2c. Calculate PSPimax using formula (5.9).

2d. Calculate the spiking threshold of the ith neuron using formula (5.10). 

2e. (Optional) If the new neuron weight vector wi is similar in its initial wi(0) an final wi(T)

values after training to the weight vector of an already trained output neuron using Euclidean 

distance and a similarity threshold Sim, then merge the two neurons (as a partial case only 

initial or final values of the connection weights can be considered or a weighted sum of them)   

Else

Add the new neuron to the output neurons repository.

End If

End For (Repeat  for  all input spatio-temporal patterns for learning)

*: The performance of the deSNN depends on the optimal selection of its parameters as 

illustrated in the examples below. 

___________________________________________________________________     

Figure 5.6 illustrates the main idea of the deSNN learning algorithm. A single
spatio-temporal pattern of four input spike trains is learned into a single output
neuron. RO learning is applied to calculate the initial weights based on the order of
the first spike on each synapse (shown in red). Then STDP (in this case—SDSP)
rule is applied to dynamically tune these connection weights. The SDSP algorithm
increases the assigned connection weight of a synapse which is receiving a fol-
lowing spike and at the same time depresses the synaptic connections of synapses
that do not receive a spike at this time. Due to a bi-stability drift in the SDSP rule,
once a weight reaches the defined High value (resulting in LTP) or Low value
(resulting in LTD), this connection weight is fixed to this value for the rest of the
training phase. The rate at which a weight reaches LTD or LTP depends upon the
set parameter values.
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For example, if input spikes arrive at times (0, 1, 2) ms on the first synapse, and
are shifted by 1 ms for the other 3 synapses as shown in Fig. 5.6, the four initial
connection weights w1, w2, w3, w4 to the output neuron will be calculated as: 1, 0.8,
0.64, 0.512 correspondingly, when the parameter mod = 0.8. If the SDSP High
value is 0.6 and Low value is 0, the first three weights will be fixed to 0.6 and the
fourth one will drift up 2 times. If the drift parameter is set to 0.00025, the final
weight value of the fourth synapse will be 0.5125. After training both the initial and
the final weights can be memorised.

So far, we have presented the learning phase of a deSNN model. In terms of
recall, two types of deSNN are proposed that differ in the recall algorithms. They
mainly correspond to the two types of eSNN from Sect. 5.2—eSNNs and eSNNm:

(a) deSNNm: After learning, only the initially created connection weights (with the
use of the RO rule) are restored as long term memory in the synapses and the
model. During recall on a new spatio-temporal pattern the SDSP rule is applied
so that the initial synaptic weights are modified on a spike time basis according
to the new pattern using formula (50) as it is during the SDSP learning phase.
At every time moment t the PSP of all output neurons are calculated. The new
input pattern is associated with the neuron i if the PSPi(t) is above its threshold
Thi. The following formula is used:

PSPiðtÞ ¼
X

l¼1;2;...;t

X
j¼1;2;...;M

fjðlÞ:wj;iðlÞ ð5:15Þ

where: t represents the current time unit during the presentation of the input
pattern for recall; M is the number of the input synapses to neuron i; fj (l) = 1 if
there is spike at time l at synapse j for this input pattern, otherwise it is 0; wj,i

(l) is the efficacy of the dynamic synapse between j and i neurons at time l.
(b) deSNNs: This model corresponds to the eSNNs and is based on the comparison

between the synaptic weights of a newly created neuron to represent the new
spatio-temporal pattern for recall, and the connection weights of the created
during training neurons. The new input pattern is associated with the closest

Fig. 5.6 A simple example to illustrate the main principle of the deSNN learning algorithm [10]
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output neuron based on the minimum distance between the weight vectors. As
the synaptic weights are dynamic, the distance should be calculated in a dif-
ferent way than the distance measured in the eSNN possibly using both the
initial w(0) and the final w(T) connection weigh vectors learned during training
and recall. As a partial case, only the final weight vector w(T) can be used.

To summarise, deSNN combine:

• RO learning for weight initialisation based on the first spikes:
• Learning further input spikes at a synapse through a drift.

wj; i tð Þ ¼ ej tð Þ � Drift ð5:16Þ

• A new output neuron may be added to a respective output repository for every
new-input pattern.

• Two types of output neuron activation:

– deSNNm (spiking is based on the membrane potential)
– deSNNs (spiking is based on synaptic similarity between the newly created

output neuron and the existing ones)

• Neurons may merge.

5.4 Fuzzy Rule Extraction from ESNN

One of the challenge with SNN is the difficulty to make sense out of the learned
connections as they evolve from sequences of spikes. What do actually connections
represent? Do they represent any meaningful patterns that can be interpreted for a
better understanding of the data and the processes that generated it?

This section addresses this challenge by introducing a method for fuzzy rule
extraction from eSNN.

5.4.1 Fuzzy Rule Extraction from ESNN

The rationale behind the presented here method for fuzzy rule extraction from
eSNN is that input information is represented as spikes in time that account for the
intensity of the input variables through population spike coding algorithm POC.
The higher the membership degree of an input variable to a neuronal receptive filed
in layer L1 of neurons (see Fig. 5.2), the earlier a spike is generated. The con-
nection weights learned from these spikes in the L2 layer using ROC increase more
the earlier spikes are generated in layer L1. So, in a sense the connection weights
from layer L1 to L2 reflect on the values of the input variables and their
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membership degrees to the different receptive fields that can serve as fuzzy
membership functions (see Chap. 2). This approach is presented here and illustrated
on a simple example.

The eSNN structure used for the presentation of the method is shown in Fig. 5.7
illustrated only on one input variable. Each input variable vi is translated into trains
of spikes and distributed to L1 neurons through delayed synaptic connections. The
L2 neurons are created using an evolving learning algorithm and one-pass data
propagation.

In this network, the input values of each input variable vi are encoded using a
family of m equally spaced overlapping Gaussian receptive fields [11, 12] (RF) and
distributed to multiple L1 neurons through m delayed synaptic connections. There
is no delay at the centers of the Gaussian receptive fields and this delay increases
towards the receptive field edges. Figure 5.8 shows an example of population
encoding of two input variables vk and vl, where vk < vl. Each input variable is
encoded into a six-dimensional vector of spike times. The most stimulated L1
neuron fires first (tf = 0) and the least stimulated neuron fires last (tf = tmax). The
values are deliberately chosen so that they cause a maximum excitation of two
different L1 neurons, i.e. two earliest spikes appear at the L1k3 and L1l4 terminals at
the same time, and two very similar spike patterns occur out of sequence by one L1
neuron. There is a relationship between which L1 neuron spikes first in a set of L1
neurons and the value encoded into this set of L1 neurons; when smaller values are
encoded, the first neuron to spike tends towards the lower end of the observed set
(L1k1 and L1l1 in this example) and when higher values are encoded the first neuron
to spike tends towards the higher end of the observed set (L1k6 and L1l6 in this
example).

The spikes are propagated from the excitatory L1 neurons to the computationally
simple L2 integrate-and-fire neurons in a feed-forward manner. Each L2 neuron is a
coincidence detection unit allowed to emit only one spike.

Each incoming spike from an L1 neuron influences the behaviour of the L2
neurons, changing their inner state (post synaptic potential or PSP). PSP of an L2 at
time t depends on the firing order oj of all its pre-synaptic neurons L1j as follows:

PSPiðtÞ ¼
X
j

PSPji ¼
X
j

wji �modoj ð5:17Þ

v 

L2i L2j

Ci Cj

Fig. 5.7 A simple structure
of eSNN using only one input
variable for the illustration of
the method of fuzzy rule
extraction
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where PSPji is the post-synaptic potential of neuron i, mod 2 (0, 1) is the modu-
lation factor and wji is the efficacy (weight) of the synapse connecting the L2i and
an L1j neurons. The firing order oj depends on the timing of the spike emitted by
L1j relative to the spikes emitted by other L1 neurons. A firing order oj = 0 is
assigned if neuron L1j spikes first amongst all L1 neurons. The L1 neuron that
spikes second is assigned oj = 1, and so on. The L1 neuron that spikes last is given
oj = m − 1.

An L2 neuron fires a post-synaptic spike when its PSP reaches a certain
threshold value PSPh. This model does not include the refractory period, therefore,
immediately after firing the post-synaptic spike, the neuron’s PSP returns to 0.

The synapses between L1 and L2 neurons are dynamic; their values change over
the timescale of training. During training, connections conveying earlier spikes are
given a higher weight resulting in a greater strengthening of connections:

Dwji ¼ modoj ð5:18Þ

Hence, the synaptic connections conveying earlier spikes become more effective in
causing the L2 neuron to fire in the future.

Each L1 neuron has a single connection to its input and one weighted synaptic
connection to each of the L2 neurons denoted as a weight wji. The L2 layer is
initially empty and all L2 neurons are built over time from the input data vectors by
a fast evolving learning algorithm [5] that allows the learning of new input patterns
without forgetting the older knowledge.

During training, a new neuron, L2n, is created for a training pattern pi, trained
and its PSPhn is set to a proportion of its maximum post synaptic potential value
PSPnmax. Thus, L2 neurons have dynamic thresholds and their selectiveness can be
controlled by adjusting their PSPh.
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Fig. 5.8 An example of
population encoding of two
input variables vk and vl
(vk < vl) using six receptive
fields (m = 6)
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Let the current pattern pi belong to a class Cc. The Euclidean distances between
L2n to all pre-existing L2o2{L2|C = Cc} are calculated and used as a similarity
measure. If the similarity between L2n and L2o is below some threshold value Sh
(Sh > 0) then L2n is aggregated with L2o. During aggregation the weights and
threshold of L2n are averaged into the values of L2o, and L2n is discarded. Thus, the
network’s structure continuously evolves through the creation and merging of
neurons based on incoming data. As the L2 layer is being created clusters of L2
neurons are formed. The L2 neurons from a cluster Gp are trained on the charac-
teristics of only one class (positive examples). Hence, every L2 2 Gp(Cp) learns to
respond with earlier spikes when presented with input patterns from Cp.

Receptive fields not only increase the temporal distance between the input
patterns, which improves the selectivity of the eSNN with rank order population
coding, but it also opens the possibilities of using these networks for knowledge
discovery. The eSNN builds a knowledge base that can be extracted during and
after the learning process. These appear in the form of zero-order Takagi-Sugeno
fuzzy rules (see Chap. 2—knowledge based ANN):

IFðv1 is F1ÞAND . . . vn is Fnð ÞTHEN y isCkð Þ ð5:19Þ

where vi is an input variable, Fi is a linguistic value represented by its membership
function such as SMALL, MEDIUM, LARGE etc., and Ck represents a class label.
The antecedent part in the rules is a composition, using the AND operators, of fuzzy
conditions. The consequent part, the output, is a constant. The conditions, vi is Fi,
are found through an analysis of the connections wji between a pair of L1 and L2
neurons.

For example, the following two fuzzy rules can be extracted from a trained
eSNN as explained below:

Rule 0: IF (v1 is SMALL) AND (v2 is LARGE) AND (v3 is LARGE)
THEN Class 1 (e.g. water0)

Rule 1: IF (v1 is LARGE) AND (v2 is LARGE) AND (v3 is SMALL)

THENClass 2 e.g. water1ð Þ: ð5:20Þ

If for example, a sample of the used case study data of water gives the readings
small for sensor 1 and large for sensors 2 and 3, then this sample is water0 in
accordance with the rules stated above. For the sample to be water1, the readings
would be large for sensors 1 and 2 and small for sensor 3.

To better explain the idea, let us consider a simple network shown in Fig. 5.7
where two L2 neurons are created; a neuron L2i has been trained to recognize the
class Ci samples and a neuron L2j has been trained to recognize the class Cj

samples.
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Let two one-dimensional vectors vi and vj belong to classes Ci and Cj, respec-
tively. It is postulated that knowledge about the relationship between two inputs, vi
and vj (e.g. that vi < vj), is stored in the synaptic weights of the L2 neurons rep-
resenting a long-term memory. The change in synaptic weight between L1 and L2
neurons in the eSNN depends on the firing time of the L1, i.e. Δwji = f(tj

f). As stated
earlier, the synaptic weights associated with the connections which convey earlier
spikes increase more than those which convey later spikes. Hence, based on the
weight patterns it is possible to deduce the size of input values relative to other
input values (small, medium, large) and the contribution of this values to the
modeled output.

An example, where two L2 neurons have evolved is explained below. L2i has
been trained to recognize the class Ci samples and L2j has been trained to recognize
the class Cj samples. Assume that at time t, a spike arrives from L1n via two
synaptic terminals (wni, wnj). This spike excites the membrane potentials of both L2i
and L2j as follows:

DPSPi ¼ wni �modon ð5:21Þ

DPSPj ¼ wnj �modon ð5:22Þ

with the same convention as in (54) and where on is in the range [0, m − 1] and
m = 6.

The difference between these two excitations is:

dPSP ¼ PSPi � PSPj

���� ¼ modon � ðwni � wnjÞ
����

¼ f ðwni � wnjÞ ¼ f ðdwÞ:
ð5:23Þ

Hence the difference in the excitation of the two L2 neurons is a function of the
difference between their synaptic weights (dw). Thus, if two weights are identical,
dw = 0, both L2 neurons are equally excited by the incoming spike.

The dw values for the theoretical pattern of the wni and wnj weights in Fig. 5.9 is
shown in Fig. 5.10. It can be seen that the L2i neuron ‘favors’ lower input values,
i.e. a lower input value will cause a bigger ΔPSPi. Thus, lower values cause L2i to
spike before L2j. The L2j neuron does the opposite; it spikes before L2i upon
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values of one input variable
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presentation of higher input values. Hence, the lower values v will be classified as
Ci and the higher values as Cj as shown below and in Figs. 5.9 and 5.10.

Rule 0: IF m is SMALLð ÞTHENCi

Rule 1: IF m is LARGEð ÞTHENCj
ð5:24Þ

5.4.2 A Case Study of Fuzzy Rule Extraction from Water
Tastant Sensory Data

The data samples were generated by an array of non-selective taste sensors based on
conducting polymers that have been proven to be able to discriminate between basic
tastants [13]. A data set D1 is comprised of 40 measured patterns from four different
water types (two brands of mineral water, Milli-Q [14] water and distilled water),
while a data set D2 contains 300 measured patterns from two brands of wine
(Marcus James and Almadén Cabernet Sauvignon). Both sets are balanced, having
an equal number of patterns of each type. The datasets were randomly shuffled and
equally split into a training and testing set. To enable easier representation of the
extracted rules only one L2 neuron per class has been evolved.

In each experiment, the eSNN model parameters (mod, C, Thr), including the
number of receptive fields m, have been carefully chosen for accurate taste
recognition.

Firstly, the knowledge accumulated by an eSNN about the mineral waters (water0,
water1) is given. The average values of the mineral water patterns in the training set
are shown in Fig. 5.11. The samples have been obtained using seven taste sensors;
hence each pattern is a seven-dimensional vector. The average values of v6 in both
mineral waters are significantly smaller than averages of the other variables. The v6
values are smaller than in any of the other variables; this variable v6 is omitted for
classification. The average values of all of the other variables show a considerable
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difference between the two mineral water types. For example, v1 is much smaller in
water0 than in water1, while v2 is much smaller in water1 than in water0. This ‘prior
knowledge’ is useful when the quality of knowledge representation is subsequently
assessed.

Figure 5.12 shows the dw values of an eSNN trained using the water0 and water1
patterns. In this case eight receptive fields (m = 8) have been used to encode the
input patterns. As a result, each xi feature pattern comprises of eight bars. However,
if two weights are identical, dw = 0, the corresponding bar will be missing in the
feature pattern. This is observed in the pattern x4. Furthermore, the feature patterns
are influenced by Gaussian receptive fields. Gaussian receptive fields increase the
sparseness in the original data, i.e., there is a smaller number of input neurons
activated than without Gaussian receptive fields. As a result, only a subset of the
connections convey spikes, others have weights equal to zero and their bars are
missing from the pattern, as illustrated in x7. Also, some weight may be almost
identical, therefore the small dw will appear missing in the dw plots.

It is interesting to observe that in the sixth feature pattern, x6, all dw values are
zero because the weights are similar. As a result the contributions of the spikes
through these terminals to the post-synaptic potential of L2 neurons are very
similar. It can therefore be deduced that the values of the sixth input variable (with
the rather small average values compared to other inputs) do not contribute to the
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process of distinguishing between the mineral water samples. Also, the spikes
coming from the v1, v2 and v3 variables contribute more to the L2 neurons’ PSP,
than those coming from v4, v5 and v7, indicating that these features are more
important in the classification of the two mineral waters.

The following rules have been extracted for water1 and water2 samples:

Rule 0: IF (v1 is SMALL) AND (v2 is LARGE) AND (v3 is SMALL) AND (v4 is
LARGE) AND (v5 is SMALL) AND (v7 is SMALL) THEN water0

Rule 1: IF (v1 is LARGE) AND (v2 is SMALL) AND (v3 is LARGE) AND (v4 is
SMALL) AND (v5 is LARGE) AND (v7 is LARGE) THEN water1.

For example, the above rules state that v3 is SMALL in water0 (Rule 0) and
LARGE in water1 (Rule 1).

For the wine dataset D2 the following fuzzy rules have been extracted for the
two brands of wine (wine0, wine1):

Rule 0: IF (v1 is SMALL) AND (v2 is LARGE) AND (v3 is SMALL) AND (v4 is
SMALL) AND (v5 is LARGE) AND (v6 is LARGE) AND (v7 is SMALL)
THEN wine0

Rule 1: IF (v1 is LARGE) AND (v2 is SMALL) AND (v3 is SMALL) AND (v4 is
LARGE) AND (v5 is LARGE) AND (v6 is SMALL) AND (v7 is LARGE)
THEN wine1.

It is noteworthy that all input variables contribute to the classification of the
wines, including v6 which seems irrelevant in the classification of the water types.
We contribute this to the fact that the v6 averages for both wines are similar
(Fig. 5.13).

The two experiments described demonstrated knowledge discovery in a
two-class problem scenario using eSNN. The knowledge extraction capability of
the eSNN model on three-class and four-class problems has also been investigated.
Firstly, the Milli-Q samples have been included in the experiment (water2). The
water2 patterns have very small average values compared to the mineral water
patterns (Fig. 5.14).
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Six receptive fields have been used (m = 6) resulting in six bars within each
feature pattern. Again one L2 neuron per water type have been evolved. Their
distance weight dw values are shown in Fig. 5.15. It is interesting to see that while
the average values of the water2 samples are much smaller than the average values
of water0 and water1, the weights of the L2 neuron that has learnt to recognize these
samples are noticeably greater than the weights of the other neurons. This means
that values of the water2 patterns were encoded in such a way that they have been
repeatedly enhancing the same set of connections. This results in the considerable
observed strengthening of the connections.

Contrary to this, the mineral water samples have more evenly distributed their
influences among a larger number of synaptic connections. This is due to the fact
that the values in the water0 and water1 patterns are very similar and they compete
for the same set of connections. This is also reflected in the extracted rules (‘1’
indicates SMALL, ‘2’ indicates MEDIUM and ‘3’ indicates LARGE):

Rule 0: IF (v1 is 2) AND (v2 is 3) AND (v3 is 2) AND (v4 is 2) AND (v5 is 2) AND
(v6 is 3) AND (v7 is 3) THEN water0

Rule 1: IF (v1 is 3) AND (v2 is 2) AND (v3 is 3) AND (v4 is 3) AND (v5 is 3) AND
(v7 is 2) THEN water1

0

0.2

0.4

0.6

0.8

1

1 2 3 4 5 6 7
v a

vg
variable

water0 water1 water2Fig. 5.14 Average values,
vavg, of the two mineral waters
and Milli-Q patterns

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7

d w

L1

water0 water1 water2

x1      x2       x3       x4      x5      x6       x7

Fig. 5.15 The dw values of
an eSNN trained to
distinguish between three
waters (m = 6)

5.4 Fuzzy Rule Extraction from ESNN 191



Rule 2: IF (v1 is 1) AND (v2 is 1) AND (v3 is 1) AND (v4 is 1) AND (v5 is 1) AND
(v7 is 3) THEN water2.

The approach has also been tested using all four water types (i.e., two brands of
mineral water, Milli-Q [14, 15] water and distilled water (water3)) with following
characteristics:

• a similarity between the water0 and water1 averages and between the water2 and
water3 averages,

• a difference in magnitude between water2 and water3 averages and the water0
and water1 averages.

Again only one neuron per water type has been evolved and the fuzzy rules
using three membership functions have been extracted as follows:

Rule 0: IF (v1 is 2) AND (v2 is 3) AND (v3 is 2) AND (v4 is 2) AND (v5 is 2) AND
(v6 is 2) THEN water0

Rule 1: IF (v1 is 3) AND (v2 is 2) AND (v3 is 3) AND (v4 is 3) AND (v5 is 3) AND
(v6 is 2) AND (v7 is 2) THEN water1

Rule 2: IF (v1 is 1) AND (v2 is 1) AND (v3 is 1) AND (v4 is 2) AND (v5 is 2) AND
(v7 is 1) THEN water2

Rule 3: IF (v1 is 2) AND (v2 is 2) AND (v3 is 2) AND (v4 is 1) AND (v5 is 1) AND
(v6 is 1) AND (v7 is 2) THEN water3.

The degree of granularity of the fuzzification has been increased from three to
four where, for instance, ‘1’ indicates VERY SMALL, ‘2’ indicates SMALL, ‘3’
indicates MEDIUM and ‘4’ indicates LARGE:

Rule 0: IF (v1 is 3) AND (v2 is 4) AND (v3 is 3) AND (v4 is 3) AND (v5 is 3) AND
(v6 is 2) THEN water0

Rule 1: IF (v1 is 4) AND (v2 is 3) AND (v3 is 4) AND (v4 is 4) AND (v5 is 4) AND
(v6 is 3) AND (v7 is 3) THEN water1

Rule 2: IF (v1 is 1) AND (v2 is 1) AND (v3 is 1) AND (v4 is 2) AND (v5 is 2) AND
(v7 is 1) THEN water2

Rule 3: IF (v1 is 2) AND (v2 is 2) AND (v3 is 2) AND (v4 is 1) AND (v5 is 1) AND
(v6 is 1) AND (v7 is 2) THEN water3.

The resulting set of rules more accurately captures the data set characteristics.
The high variable values that characterize the water0 and water1 patterns and their
fine differences are described in Rule 0 and Rule 1, while the characteristics of the
water2 and water3 values are embedded in Rule 2 and Rule 3.

The task of determining the number of L2 neurons is an important step in tuning
the eSNN accuracy [15]. One L2 neuron per class might not be enough to achieve
the best accuracy. As the number of neurons and rules increases it may become
cumbersome to interpret these rules. This could become a problem if an eSNN is
allowed to evolve in an open problem space without applying aggregation operator.
The latter can be used to evolve prototype output neurons and to extract prototype
rules of higher granularity.
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5.5 Evolving SNN for Reservoir Computing

The eSNN principles presented and illustrated so far can be used to create evolving
output classification or regression modules of reservoir types of SNN computational
architectures which is the topic of this section.

5.5.1 Reservoir Architectures. Liquid State Machines (LSM)

Twomajor types of reservoir computing is liquid state machine (LSM) and echo state
network [16–25]. LSM consists of many randomly interconnected recurrent neurons
where each neuron receives input from other neurons in different times. This com-
putational model is inspired from the idea of water ripples (output), which are gen-
erated after certain objects (input) are dropped on the still water. In an ideal setting,
LSM that is constructed with a precise mathematical framework, promises universal
computational power, for real-time computing on analogue function in continuous
time. LSM is characterized as a model for adaptive computational system, which
provides a method for employing randomly connected circuits, a theoretical context
where various processors increase the computational power of a circuit and a method
for multiplexing different computations within the same circuit [18].

During LSM simulation, the synaptic weights, neurons connectivity and neurons
parameters are predefined and predetermined. Referring to Fig. 5.16, the continu-
ous stream of input (e.g. trains of spikes) u tð Þ is transmitted into liquid and will
cause the neurons to respond and generate the liquid activity. The state of the liquid
x tð Þ that can be recorded at different time points is simply the current output of
some operator or filter that maps input functions u tð Þ onto function x tð Þ. This state
is then passed to a readout function f that will transform into output v tð Þ. In contrast
to the classical LSM [18], where the Readout function is memory-less, here we
propose that a trainable SNN readout classifier can be used, such as eSNN or
deSNN.
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Fig. 5.16 The LSM architecture consists of three main layers: input neuron layer, liquid state
layer and readout function layer. eSNN and deSNN can be used as trainable classifiers or
regressors in the Readout module
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The connectivity in a LSM is usually pre-selected as a random connections or
fully connected neuronal structures. As a special case, a small world connectivity
(SWC) can be applied (Fig. 5.17), where neuron a is connected to other neuron
b with a probability pa,b that depends on the closeness of the two neurons. The
closer they are (the smaller the distance between them Da, b), the higher the
probability to connect them. This is a biologically plausible connectivity rule as the
brain is a small world connectivity system:

pa;b ¼ C � e�D2
a;b=k

2 ð5:25Þ

An important characteristic of LSM is the separability of patterns that are activated
in the LSM.

Separability basically determines how well the liquid separates different classes
of input into different reservoir states. According to [19], separability can be
measured by dividing a set of states, O(t), into N subsets, Om(t) for every class. Here
N denotes the total number of classes and t represents the current iteration of the
reservoir. The inter-class distance, Cd(t), and intra-class variance, Cv(t), Cd(t) can be
defined as:

CdðtÞ ¼
XN
m¼1

XN
n¼1

lðOmðtÞÞ � lðOnðtÞÞk k2
N2 ð5:26Þ

CvðtÞ ¼ 1
N

XN
m¼1

qðOmðtÞÞ ð5:27Þ

where, l Om tð Þð Þ is the center of mass for each class, q Om tð Þð Þ is average variance
from each state within class m and can be calculated by

Fig. 5.17 An example of a
spiking neuron connectivity
in a 3D reservoir of spiking
neurons using the small-world
connectivity rule
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lðOmðtÞÞ ¼
P

On2OmðtÞ On

OmðtÞj j ð5:28Þ

qðOmðtÞÞ ¼
P

On2OmðtÞ lðOmðtÞÞ � Onk k2
OmðtÞj j ð5:29Þ

Therefore, based on Eqs. 5.27 and 5.28, the separability of the liquid (Sep W) for a
set of states O(t) can be calculated as [19]:

SepwðOðtÞÞ ¼ CdðtÞ
CvðtÞþ 1

ð5:30Þ

Using different types of probabilistic neurons as discussed in Chap. 4, can result in
different separability of patterns in the reservoir activated by different stimuli as
shown in Fig. 5.18 and experimented in [20].

In regards to learning in the reservoir, there two types of reservoir architectures:

– SNN LSM, that involve no learning in the reservoir (the discussed so far above);
– SNN reservoir architectures that involve learning. Such architecture is NeuCbe

discussed in the next chapter.

5.5.2 ESNN/DeSNN as Classification/Regression Systems
for Reservoir Architectures

Some reservoir architectures involve learning in the output classification or
regression module (the read-out function as per Fig. 5.17. This module is in
principle capable of generating different responses from different dynamic reservoir
input patterns (separation property) that also depends on the complexity of the

Fig. 5.18 Experimental setup of the study of using different probabilistic models of spiking
neurons in a LSM in regards of separability of patterns activated by different spiking stimuli
sequences. In [20] a comparative analysis is performed between LSM when different types of
spiking neuron models are used, such as LIF; CT (continuously changing spiking threshold); ST
(step-wise threshold); SR (stochastic reset) (see Chap. 4)
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reservoir structure. In addition, it also has ‘approximation property’ that depends on
the adaptation ability of the readout function that can distinguish responses, their
generalization and relation with the given output [21]. Any statistical analysis or
classifier can be used to define the readout function. As the inputs can be in the
form of continuous stream of data, such SNN architectures can be used to solve
spatiotemporal problems such as in patterns recognition [22, 23], optimization [24]
and classification problems [25].

Here we discuss how eSNN and deSNN can be used efficiently as output
classification/regression modules for fast, evolving and meaningful supervised
learning and pattern recognition of the patterns that are activated in the reservoir
from input data.

The input-output mapping in the supervised learning can be imposed by means
of error E calculation, defined as

E ¼ 1
2

X
j

toutj � tdesj

� �
ð5:31Þ

where, E represents the difference between all network outputs toutj and desired

outputs tdesj . The weights wk
ij is adjusted accordingly, so as to minimize the error E

and can be expressed as

Dwk
ij ¼ �g

dE
dwk

ij

ð5:32Þ

where, g denotes the learning rate. However, in the process of implementing this
model, there are several research questions that arise and need to be addressed.
These research questions are mentioned in the following section.

Figure 5.19 shows a reservoir computational architecture where a deSNN model
is used as a classifier of the spatio-temporal patterns in the reservoir.

deSNN

SNN reservoir

Fig. 5.19 A reservoir computational architecture where a deSNN is used as a classifier of the
dynamic patterns in the reservoir that are activated by different stimuli. A feedback from the
deSNN output back to the reservoir can be established as well
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There are several advantages of using eSNN/deSNN as classifiers/regressors for
reservoir computing:

– one-line training on streaming data;
– adaptive training on new samples incrementally;
– allowing for new classes to be added incrementally;
– allowing for rules (fuzzy rules; prototype rules) to be extracted from the trained

classifiers/regressors;
– allowing for associations to be analysed between the extracted rules in the

output module and the patterns of activations in the reservoir.

The next chapter develops further the architecture from Fig. 5.19 and introduces
a brain-like learning reservoir architecture that has an output functions eSNN/
deSNN.

5.6 Chapter Summary and Further Readings for Deeper
Knowledge

This chapter presents the concept and some implementations of evolving SNN. The
methods of evolving SNN add new properties to the concept of SNN, namely:

– Fast data processing, possibly one iteration of data presentation only;
– Adaptive learning, that addresses the “curse of catastrophic forgetting”;
– Rule extraction, that addresses “the curse of NN black boxes”;
– Integration of different modalities of data, all represented as spike sequences.

eSNN extend the principles of ECOS from Chap. 2 using spike information
representation and spike-time learning. At the same time they keep all principles of
ECOS that are knowledge based ANN. The rules extracted from eSNN represent
‘flat’ knowledge, even thou they can capture some temporal characteristics from
data.

eSNN, including deSNN models are used as classifiers for brain-inspired SNN
presented in Chap. 6, where deep learning and deep knowledge representation are
facilitated.

Readings on specific topics of eSNN and deSNN can be found as follows:

– Rule extraction from eSNN [26];
– deSNN [10];
– Computational modelling with SNN (Chap. 37 in [27]);
– Brain-like information processing for spatio-temporal pattern recognition

(Chap. 47 in [27]);
– Probabilistic SNN for reservoir computing [20];
– On the role of time and space in neural computation [28];
– Liquid State Machines [18];
– Overview of evolving connectionist systems [29];
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– Basic information about SNN [30];
– Application of eSNN for Bioinformatics data (Chap. 15 in this book);
– Applications of eSNN for Biomedical data (Chap. 17 in this book);
– Applications of eSNN for financial data (Chap. 19 in this book);
– Applications of eSNN for environmental data (Chap. 19 in this book);
– Applications of deSNN for spatio-temporal data modelling and classification in

NeuCube (Chap. 6 and also: http://www.kedri.aut.ac.nz/neucube/).
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Chapter 6
Brain-Inspired SNN for Deep Learning
in Time-Space and Deep Knowledge
Representation. NeuCube

This chapter introduces brain-inspired evolving SNN (BI-SNN) in which both the SNN
architecture and learning are inspired by the structure, organisation and learning in the
human brain. BI-SNN manifest deep learning from data and deep knowledge repre-
sentation inspired by human brain as discussed in Chap. 3 of the book. In BI-SNN data
is represented as spikes, information is represented as spatio-temporal spike patterns and
deep knowledge is represented as patterns of connections that are subject to deep
learning and can be interpreted by humans. One BI-SNN architecture introduced in the
chapter is NeuCube. It is a open, evolving framework that is a set of algorithms allowing
for the creation of SNN systems and BI-AI systems and also allowing for new algo-
rithms to be developed in the future and explored as part of it.

The chapter is organised in the following sections:

6:1. Brain-Inspired SNN (BI-SNN). The NeuCube BI-SNN as a generic
spatio-temporal data machine.

6:2. Deep learning in time-space and deep knowledge representation in NeuCube.
6:3. Modelling Time in NeuCube: the past, the present, the future and back in time.
6:4. A design methodology for application oriented spatio-temporal data machines.
6:5. Case studies for the design of classification and prediction spatio-temporal

machines.
6:6. Chapter summary and further readings for deeper knowledge.

6.1 Brain Inspired SNN (BI-SNN). The BI-SNN NeuCube
as a Generic Spatio-temporal Data Machine

6.1.1 A General Architecture of a BI-SNN

A general architecture of a BI-SNN architecture is shown in Fig. 6.1, while Fig. 6.2
shows a brain template that has been used to design the structure of the SNN
reservoir, here named SNNcube.
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The main structural and functional principles of a BI-SNN are presented in
Box 6.1.

Box 6.1.  Main structural and functional characteristics of a BI-SNN 

_____________________________________________________________________________________ 

1. Temporal inputs (features) are converted/encoded into spike trains (see Chap. 4).    

2. Inputs are mapped spatially (brain-like) into a 3D SNNcube that consists of spiking neurons  

spatially organized in a topological 3D map. For modelling brain data the SNNcube is built 

with the use of a brain template (see Chap. 3) and for other types of data it is built to preserve 

the spatial information in the input data or to preserve the distance between data items.    

3. Output classifier/regressor SNN is connected to neurons from the SNNcube (see Chap. 5).    

4. SNNcube structure is organized as small world connectivity 3D structure of spiking neurons 

(see Chap. 5).  

5. Unsupervised learning is performed in the SNNcube using spike-time learning rules, e.g. STDP 

(see Chap. 4).   

6.  Supervised learning is performed in the output SNN module, e.g. eSNN, deSNN, SPAN for 

classification or regression (see Chaps. 4 and 5). 

7. Adaptive, deep learning of complex spatio-temporal patterns is performed in the SNNcube. 

8. The BI-SNN operates in a fast, incremental learning mode. 

9. The learned connectivity patterns in the SNNcube can be interpreted as deep knowledge

representing deep spatio-temporal patterns in the data.  

10. Learned connectivity patterns in the eSNN output module can be interpreted for rule extraction 

related to outputs (see Chap. 5).   

_____________________________________________________________________________ 

Fig. 6.1 A general architecture of BI-SNN, where the SNN cube is structured as shown in
Fig. 6.2
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6.1.2 The BI-SNN NeuCube as a Generic Spatio-temporal
Data Machine

The general principles of the NeuCube BI-SNN architecture were presented in [1]
and also in [2]. The NeuCube architecture is depicted in Fig. 6.3. It consists of the
following functional modules:

– Input data encoding module;
– 3D SNN reservoir module (SNNcube);

Fig. 6.3 The BI-SNN NeuCube—a general architecture (from [1])

Fig. 6.2 The SNNcube from Fig. 6.1 is organised as small world connectivity reservoir, which
structure maps/resembles a brain template
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– Output function (classification) module;
– Gene regulatory network (GRN) module (optional);
– Parameter optimisation module (optional).

The NeuCube procedural meta-algorithm is presented in Box 6.2.

Box 6.2. The NeuCube meta-procedural algorithm   

1. Encode input temporal or spatio-temporal data (TSTD) into spike sequences: continuous value 

input data is encoded into trains of spikes.  

2. Construct and train in an unsupervised mode a  recurrent 3D SNNcube, to learn the spike 

encoded sequences that represent input data.   

3. Construct and train in a supervised mode an evolving SNN classifier/regressor to learn to 

classify/predict different dynamic patterns of the SNNcube activities that represent different 

input patterns from SSTD that belong to different classes/output values;     

4. Optimise the model through several iterations of steps (1) to (3) above for different parameter 

values until maximum accuracy is achieved. . 

5. Recall and test the model on new data.  

The above procedures and their corresponding modules in the NeuCube archi-
tecture from Fig. 6.3 are described further in this section.

Input data encoding

Continuous value input data need to be transformed into a train of spikes. Methods
for spike-time encoding include [1, 3–6] (see Chap. 4)

– Threshold based encoding;
– Moving window encoding;
– Step-wise forward encoding;
– Ben Spike Algorithm (BSA) [6].

The transformed input data into spike series is entered (mapped) into spatially
located neurons from the SNNcube. The mapping will depend on the problem in
hand. If it is brain data, the mapping will utilise a brain template (Chap. 3).

SNNcube training

The SNNc is structured to spatially map data. A particular structure is small world
connectivity [7]. In the brain, neurons in a structural or functional areas are more
densely interconnected and the closer these areas are, the higher the connectivity
between them [8–10].
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The initial structure of the SNNcube is defined based on the available data and
problem, but this structure can be evolving through the creation of new neurons and
new connections based on the data using the ECOS principles [11] (Chap. 2). If
new data do not sufficiently activate existing neurons, new neurons are created and
allocated to match the data along with their new connections.

In one implementation, a SNNc can have a 3D structure connecting
leaky-integrate and fire model (LIFM) spiking neurons with recurrent connections
(for LIFM see Chap. 4). Input data is propagated through the SNNc and a method
of unsupervised learning is applied, such as STDP. The neuronal connections are
adapted through a spike-time learning, such as STDP (Chap. 4) and the SNNc
learns to generate specific trajectories of spiking activities when a particular input
pattern is entered. The SNNc accumulates temporal information of all input spike
trains and transforms it into dynamic states that can be classified over time. The
recurrent reservoir generates unique accumulated neuron spike time responses for
different classes of input spike trains.

As an illustration, Fig. 6.4a illustrates the polychronisation process of neuronal
activations during learning over time. Figure 6.4b shows the connectivity of a
SNNc that are result of the learning procedure on illustrative spatio/
spectro-temporal brain data, where the SNNc has 1471 neurons and the coordi-
nates of these neurons correspond directly to the Talairach template coordinates
with a resolution of 1 cm3. It can be seen that as a result of training new con-
nections have been created that represent spatio-temporal interaction between input
variables captured in the SNNc from the data. The connectivity can be dynamically
visualised for every new pattern submitted.

Figure 6.5 shows the activation level of the neurons in the SNNcube after
unsupervised learning. The brighter the colour of a neuron, the higher its activation
level is in terms of number of spikes emitted.

When spike sequence data is entered into the SNNcube and learning is applied,
the spiking neurons start to spike. Figure 6.6 shows positive and negative spike
emission histogram for all SNNcube 1471 neurons from Fig. 6.5.

Figure 6.7 shows a raster plot of the spikes entered into a SNNcube of 1471
neurons for one input spatio-temporal sample (pattern) of 14 inputs and 125 ms
time.

Based on the input stream of spike sequences, clusters are created/emerged/
evolved in the SNNcube during deep learning in the Cube. Two types of clusters
are created based on:

– Neuronal connectivity (Fig. 6.8)
– Spiking activity as spike exchange between clusters (Fig. 6.9). The spikes

emitted and transferred from a particular neuron (e.g. input neuron) to other
neurons can be studied (Fig. 6.10).
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Evolving supervised learning for output classification/regression

After a SNNc is trained on input data in an unsupervised mode, the same input data
can be propagated again through the SNNc, pattern by pattern (each input pattern is
spatio-temporal one over a time window), the state of the SNNc is measured for
each pattern and an output classifier is trained to recognise this state in a predefined
output class for this input pattern. For fast learning, we use evolving SNN classifiers
(eSNN or deSNN) (Chap. 5). All neurons from the SNNc are connected to each of

Fig. 6.4 a An illustration of a polychronous SNN within the NeuCube framework activated
during unsupervised learning (the figure was created by H. Bahrami). b A snapshot of the
connections in a SNNcube after unsupervised learning on brain data. The connections represent
spatio-temporal relationships between input data variables (EEG channels) over time and can be
used for deep knowledge representation
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the evolved LIFM neurons of the eSNN classifier, but other connectivities can be
established.

One of the originality of the NeuCube architecture is that it utilises the ability of the
eSNN to learn to recognise complex spatio-temporal patterns generated in the SNNc
before the whole input data pattern is entered. Different types of eSNN can be used as
presented in Chap. 5, e.g. eSNN [11]; Dynamic eSNN (deSNN) [12], and also
spike-pattern association SNN, e.g. SPAN [13] (Chap. 4).

Fig. 6.5 Activation level of
the neurons in the SNNcube
after unsupervised learning.
The brighter the colour of a
neuron, the higher its
activation level is in terms of
number of spikes emitted

Fig. 6.6 Positive and
negative spike emission
histogram for all SNNcube
neurons
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Fig. 6.7 Raster plot of sample spike output by SNNcube (1471 neurons; 14 inputs/features;
125 ms time)

Fig. 6.8 Clustering of the
spiking neurons in the
SNNcube by sowing
significant connections from
each of the input neurons/
features to the rest of the
neurons in the SNNcube
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The recall procedure, when new input data is presented for classification/
regression, can be performed using different recall algorithms applying different
methods:

(a) A spike sequence that represents the response of the trained SNNc to new input
data is propagated to all trained output neurons and the first one that spikes (its
PSP is greater that its threshold) defines the output. The assumption is that the
neuron that best matches the input pattern will spike earlier, based on the PSP
threshold (membrane potential). This method is called eSNNm (deSNNm).

(b) The second method implies a creation of a new output neuron in the eSNN for
each new input pattern from the SNNc, in the same way as the output neurons
were created during the learning phase in the eSNN, and then—comparing the
connection weight vector of the new one to the already existing neurons using
Euclidean distance. The closest output neuron in terms of synaptic connection
weights is the ‘winner’. This method uses the principle of transductive rea-
soning and nearest neighbour classification in the connection weight space. It
compares spatially distributed synaptic weight vectors of a new neuron that
captures a new input pattern and existing ones. This method is called eSNNs
(deSNNs) in Chap. 5.

The main advantage of using evolving SNN as classifiers/regressors, when
compared with other supervised classification SNN models, is that eSNN are
computationally inexpensive and boosts the importance of the order in which input
spikes arrive, thus making the eSNN suitable for on-line learning and early pre-
diction of temporal events.

Fig. 6.9 Clustering of the
spiking neurons in the
SNNcube by spike
communication (number of
spikes emitted by each of the
input neurons/features and
spread to other neurons in the
SNNcube)
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To summarise, the main characteristics of the NeuCube BI-SNN architecture are
shown in Box 6.3. NeuCube is an open, evolving framework that is a set of
algorithms allowing for the creation of SNN systems and BI-AI systems and also
allowing for new algorithms to be developed in the future and explored as part of it.

Box 6.3. The main characteristics of the NeuCube BI-SNN architecture 

1. Whole input spatio-temporal patterns are entered and learned, rather than vector by vector. 

2. Different temporal length of samples for training and recall is possible.  

3. Chain-fire is applied after deep learning in the SNNcube, so that if only part of new input 

information is entered, the learned pattern in the SNNcube can be triggered leading to early and 

accurate prediction of an output.   

4. Setting an early spike threshold in the classifier/regressor using the rank-order learning.  

5. The system is responsive to changes in the input data through spike encoding. 

6. Robust to noise through spike encoding.   

7. Adaptable on new data.  

8. Implementable on any software or hardware platforms. 

9. Easily implementable on neuromorphic, highly parallel hardware platforms.  

10. Fast, one pass learning of data. 

11. The learned connectivity structures are interpretable for new information and deep knowledge 

discovery.  

12. The activity of the SNN during training and recall can be used to extract spatio-temporal rules. 

13. Tracing back in time the activity of the SNNcube during training or recall. 

14. Incremental, “life-long” learning of streaming data. 

15. Virtual Reality visualisation of the learned patterns in the SNNcube.  

16.  Allowing for different types of spiking neuron models to be experimented for different 

applications.  

17. Allowing for different learning rules for spiking neurons to be experimented. 

18. Allowing for building systems of multiple-SNNcubes. 

19. Integrating multiple modality of data. 

20.  Data compression.   
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6.1.3 Mapping Input Temporal Variables into a 3D
SNNcube Based on Graph Matching Optimisation
Algorithm

This section introduces a method for mapping input temporal data into a NeuCube
SNNcube, without having spatial data associated with it. Details of the presented
here method can be found in [14].

Given a particular (spatio-) temporal data set, it is important to optimise the
mapping of the data into the 3D SNNcube for an optimal learning of spatio-temporal
patterns from this data and for an informative interpretation of the model that can lead
to a better understanding of the temporal patterns in the data. For some
spatio-temporal data, such as brain EEG, there is prior information about the location
of each channel (input feature) and this information can be readily utilized for
mapping the EEG temporal signal into the SNNcube [1, 15]. But for other common
applications such as climate temporal data, we do not have such spatial mapping into
the 3D SNNcube. And the way temporal data is mapped into the SNNcube would
significantly impact on the results. Here we introduce a new method to map temporal
input variables into the SNNcube for a better pattern recognition, a better and earlier
event prediction and a better visualisation of the model to explain the data.

Suppose there are s temporal samples in the data set, measured through v tem-
poral variables and the observed time length of each sample is t. We first choose
randomly v input neurons from the SNNcube. Then we map the variables into the
SNNcube following the following principle: input variables/features that, after the

Fig. 6.10 Tracing spiking
activity of a single spiking
neuron from the SNNcube
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input data transformation into spike trains, represent highly correlated spike trains
are mapped to nearby input neurons. Because high correlation indicates that the
variables are likely to be more time dependent with each other, and this relationship
should also be reflected in the connectivity of the 3D SNNcube. Spatially close
neurons in the SNNcube will capture in their connections more temporal interac-
tions between the input variables mapped into these neurons. The principle of
mapping similar input vectors into topologically close neurons is known from the
SOM [16], but in SOM these are static vectors and the similarity is measured by the
Euclidean distance. Now, we address the problem of mapping temporal sequences,
rather than static vectors, into a 3D SNN.

Specifically, we construct two weighted graphs: the input neuron distance graph
(NDG) and the time series/signal correlation graph (SCG). In the NDG, the input
neurons’ spatial 3D coordinates are denoted by VNDG ¼ ðxi; yi; ziÞji ¼ 1. . .vf g and
the graph edges are determined in the following way: each input neuron is con-
nected to its k nearest input neurons and the edges are weighted by the inverse of
the Euclidean distance between them.

In the SCG, we first use the Parzen window method to estimate the spike density
function corresponding to each variable and then the graph vertex set, denoted by
VSCG ¼ fiji ¼ 1. . .vf g, is the spike density function. The graph edges are con-
structed in this way: each spike density function is connected to its k highest
correlated neighbours and the edges are weighted by the statistical correlation
between the spike density functions of the input variables.

We adopt the graph matching technique, which is a powerful tool to solve
mapping problems and has been widely used in computer vision and pattern
recognition, to determine an optimal mapping between any two weighted graphs
under the mapping rule. In our case, the two graphs are NDG and SCG. For these
two graphs, we can compute their adjacency matrices, written as An and As. The
graph matching method is aimed to find out a permutation matrix P that minimizes
the following objective function:

min
P

jjAn � PAsP
T jj2F ð6:1Þ

where �k kF denotes the Frobenius matrix norm. Solving this problem exactly is
known to be an NP hard problem due to its combinatorial optimization property.
Many algorithms have been proposed to find an approximated solution.

Among these algorithms the Factor Graph Matching (FGM) algorithm [8] has
been demonstrated to produce state-of-art results. So here we utilize the FGM
algorithm to solve the SCG to NDG mapping problem with the following settings:
suppose in NDG the sum of graph edge weights of an vertex, say vertex
iNDG 2 VNDG, to all other vertices is dðiNDGÞ, and, similarly, in SCG the sum of
graph edge weights of vertex iSCG 2 VSCG to all other vertices is cðiSCGÞ, then the
difference between dðiNDGÞ and cðiSCGÞ reflects the similarity of the positions of
iNDG and iSCG in the corresponding graphs. So we define the vertex similarity as:
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exp � dðiNDGÞ � cðiSCGÞj j2=2r2n
� �

; iNDG; iSCG ¼ 1. . .v ð6:2Þ

and the edge similarity:

exp � aNDGij � aSCGkl

���
���
2
=2r2e

� �
; i; j; k; l ¼ 1. . .v ð6:3Þ

where: aNDGij ; aSCGkl are graph edge weights in NDG and SCG, respectively; rn and
re are two parameters to control the affinity between neurons and edges,
respectively.

Figures 6.11 and 6.12 show the input mapping result obtained by the proposed
method for 2 exemplar temporal data.

The optimal input variable mapping makes it possible for early and accurate
event prediction from temporal data. In many applications, such as pest population
outbreak prevention, natural disaster warning and financial crisis forecasting, it is
important to know the risk of event occurrence as early as possible in order to take
some actions to prevent it or make adjustment in time, rather than waiting for the
whole pattern of temporal data to be entered into the model. The main challenge in
the early event prediction task is that the time length of the recall samples for
prediction should be smaller than the time length of the training samples. This
principle is shown in Fig. 6.13.

Traditional data modelling methods, such as SVM, kNN, and MLP, are no
longer applicable for the early event prediction task, because they require the
feature length of a prediction sample to be same as that of the training samples.
Furthermore, it is also difficult for traditional methods to model both time and space
components of the data because of the close interaction and interrelationship
between the temporal variables in the (spatio-) temporal data.

In contrast, the proposed new mapping method would enable early event pre-
diction as the connectivity of a trained SNNcube would reflect on the temporal
relationship in the temporal data, so that if part of a new sample is presented this
would fire a chain of activities in the SNNcube based on the established connec-
tions. This phenomenon is similar to the phenomenon of associative memories in
Hopfield networks [17], but here we deal with temporal patterns rather than with
static input vectors. Here, this is realized with use of the properties of the Leaky
Integrate-and-Fire (LIF) neuronal model when the STDP learning rule is used [18].
An LIF neuron can learn unsupervisedly an arbitrary spatio-temporal pattern
embedded in complex background spike trains and when its preferred spike
sequence appears, the neuron can emit a spike very early at the start of the pattern.
The utilized in the SNNcube chain-fire phenomenon was observed in zebra finches
HVC area to control the precise temporal structure in birdsong [19], in which the
neural activity is propagated in chain network to form the basic clock of the song
rhythm. In the SNNcube we have also observed a similar chain-fire phenomenon
while spike trains are presented to the network. These features endow the SNNcube
with a powerful potential to encode complex spatio-temporal patterns contained in
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the input spike trains used for training and to respond early to the presence of a
specific spatio-temporal pattern in a recall/prediction mode. Furthermore, our
proposed mapping allows for uneven-length of samples to be mapped to
even-length firing states of the neurons in the SNNcube.

Fig. 6.11 Matching results for an exemplar temporal data represented by 14 features. The left
graph is the input NDG and the right graph is SCG. We can see that after matching, highly
correlated features are mapped to nearby input neurons [14]

Fig. 6.12 An input mapping result obtained by the proposed method for exemplar temporal data
[14]
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An optimal input variable mapping makes it possible for network structure
analysis and visualization and for a better data understanding. After it is trained, the
SNNcube has captured spatial and temporal relationships from the temporal data. It
is helpful to know how the neurons in the SNNcube are related to the input features
and what patterns have the SNNcube learned from the input signals. This infor-
mation is important in order to understand the relationship between the model and
the temporal data set. We propose the following algorithm to unveil temporal data
patterns through analysing neuronal clusters in the SNNcube.

The neurons in the cube are indexed from 1 to N according to the ascending
order of their x, y and z coordinates. We mark the input neurons as the information
source in the Cube and define a source matrix Fsrc 2 RN�v as follows: if neuron i is
the input neuron to map variable j, then the entry i; jð Þ of Fsrc is 1, otherwise is 0.
The affinity matrix A 2 RN�N of the Cube is defined in the following way: the entry
i; jð Þ of A is the total spike amount transmitted between neuron i and neuron j. Note
that more spike means stronger connections and more information shared between
the neurons. Then ratio of information for each neuron received from the input
information sources is computed as follows:

Step 1. Compute S ¼ D�1=2AD�1=2, where D is a diagonal matrix with
Dii ¼

PN
j¼1 Aij; i ¼ 1; 2; . . .;N

Step 2. Evaluate equation ~F ¼ IrateS~FþðI � IrateÞFsrc repeatedly until
convergence.

Step 3. Normalize F ¼ G�1~F, where G is a diagonal matrix with Gii ¼
PC

j¼1
~Fij.

where I is the identity matrix and Irate is a diagonal matrix defining the propagation
rates on different directions. In the first iteration ~F ¼ Fsrc. The main principle
behind the algorithm is that information (or activation) is propagated in the network
and the propagation process is dominated by the network structure [20, 21]. During
iterations, the information is propagated from the source neurons to other neurons in
the reservoir, with respect to the connection strength between neurons and the
propagation factor matrix defined by Irate.

The propagation factor matrix Irate controls the convergence of the propagation
algorithm and the amount of the information being propagated to other neurons in
the Cube. Here Irate is computed by ðIrateÞii ¼ exp ��d2i =2r

2
� �

, where �di is the mean

Fig. 6.13 A temporal data
model used for early event
prediction (the system is trained
on a whole input pattern, but
tested/recalled only on initial
part of a new pattern for early
event prediction)
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affinity value between a neuron and its 8 neighboring neurons, so that the infor-
mation propagation between strongly connected neurons is large while the infor-
mation propagated through weakly connected neurons is small.

Visualization of the neuron activities, the connection weight changes and the
structure of the SNNcube are important for understanding the patterns in the
temporal data and the processes that generated it. Since the SNNcube is a white box,
we can visualise at each moment the spiking state of the neurons and their con-
nection adjustments. Figure 6.14 shows a snapshot of a neuronal spiking state, the

Fig. 6.14 Snapshots from a dynamic visualisation of a 10 � 10 � 10 SNNcube: a a SNNcube
spiking state; b SNNcube connections with weights larger than 0.08; c Connection weight
changes. Left: the whole weight matrix; right: magnified illustration of the activity in local clusters
of neurons (red dots indicate decreasing and blue dots indicate increasing activities)
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connections between neurons and the weight adjustment during SNNcube training.
This is very different from traditional methods such SVM (Chap. 1) which have
been used for same tasks but without offering facilities to trace the learning pro-
cesses for the sake of data understanding.

6.2 Deep Learning in Time-Space and Deep Knowledge
Representation in NeuCube

Learning in a NeuCube model is a two-phase process as it was described in the
NeuCube framework above. The accuracy of a NeuCube model depends a great
deal on the deep learning applied and on the SNNc learning parameters and the
classifier/regressor parameters.

Spike trains are entered into the SNNcube and as result of the STDP or other
spike-time learning rules, deep trajectories of connections are formed that represent
different patterns of activity of the SNNcube. These patterns are then learned in a
supervised way and classified in an output classifier (e.g. deSNN) as illustrated in
Fig. 6.15.

This section presents different deep learning algorithms for NeuCube.

6.2.1 Deep Unsupervised Learning in Time-Space and Deep
Knowledge Representation from Temporal or Spatio/
Spectro Temporal Data (TSTD)

The following is a procedure for deep unsupervised learning in the SNNcube.

Fig. 6.15 Deep learning in time-space in NeuCube
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Box 6.4. A meta-algorithm for deep unsupervised learning and deep knowledge 

representation in NeuCube   

1. Initialisation of the SNN model:

A model is pre-structured to map structural and functional areas of the modelled process presented 

by the temporal or spatio-temporal data. The SNN structure consists of spatially allocated spiking 

neurons, where the location of the neurons maps a spatial template of the problem space (e.g. brain 

template; geographic locations, etc.) if such information exists.  

The input neurons are spatially allocated in this space to map the location of the input variables in 

the problem space. For temporal data for which spatial information of the input variables does not 

exist, the variables are mapped in the structure based on their temporal correlation—the more 

similar temporal variables are, the closer neurons they are mapped into [15]. The connections in 

the SNN are initialised using a small-world connectivity algorithm [1, 28, 35, 36].

2. Encoding of input data:

Input data is encoded into spike sequences reflecting on the temporal changes in the data using 

some of the encoding algorithms, e.g. [1, 28, 35, 36].

3. Unsupervised learning in the SNN model:

Unsupervised time-dependent learning is applied in the SNN model on the spike encoded input 

data. Different spike-time dependent learning rules can be used. The learning process changes 

connection weights between individual neurons based on the timing of their spiking activity. 

Through learning individual connections over time, whole areas (clusters) of spiking neurons, that 

correspond to input variables, connect between each other, forming deep patterns of connectivity 

of many consecutive clusters in a flexible way. The length of the temporal data and therefore —

patterns learned in the SNN model, are theoretically unlimited.   

4. Deep knowledge representation) in the SNN model:

A deep functional pattern is revealed as a sequence of spiking activity of clusters of neurons in the 

SNN model that represent active functional areas of the modelled process. Such patterns are 

defined by the learned structural patterns of connections. When same or similar input data is 

presented to a trained SNN model, the functional patterns are revealed as neuronal activity is 

propagated through the connectionist patterns. The depth of the obtained functional patterns is 

theoretically unlimited, depending on the resolution, e.g. from few to thousands and millions, if 

time is measured in milliseconds in the latter case.  

the
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The deep unsupervised learning in the SNNcube results in deep learned con-
nectivity that can be interpreted as deep knowledge in the form as introduced in
Chap. 1, linking events Ei and Ej. Events Ei and Ej for example are represented by
corresponding functions Fi, Fj spatial locations Si, Sj, times Ti, Tj probabilities of
the events to happen Pi, Pj and strength of the connection between the events Wi,j.
All parameters of an event can be represented as crisp or as fuzzy values, e.g.:

– Location is around Si;
– Time is about Ti;
– Probability is about Pi (see about fuzzy probabilities in [22]);
– Strength is around; or strength is High;

A hypothetical example of deep knowledge represented as a deep fuzzy rule is given
below:

IF (event E1: function F1, location around S1, time about T1, probability about P1)

AND (strength W1,2,)
(event E2: function F2, location around S2, time about T2, probability about P2)
AND (strength W2,3,)
(event E3: function F3, location around S3, time about T3, probability about P3)
AND …

………………..
(event En : function Fn, location around Sn, time about Tn, probability about Pn1)

THEN (Task event/task Q is executed)

The fuzzy rule above allows for the event/task Q to be recognised even if only
partial match of new data is entered and the rule applied. This is a brain-inspired
principle, when we end up with crisp movements as a result of the activation of
slightly different clusters of neurons at slightly different times in their sequence, as a
reaction to certain crisp of fuzzy stimuli.

As a partial case, no fuzzy terms will be used, but crisp ones, e.g. the following
deep crisp rule:

IF (event E1: function F1, location S1, time T1)

AND (strength W1,2,)
(event E2: function F2, location S2, time T2)
AND (strength W2,3,)
(event E3: function F3, location S3, time T3)
AND …

………………..
(event En : function Fn, location Sn, time Tn)

THEN (Task Q is executed)

Crisp rules would be a case when activities of single neurons are measured in the
brain at exact milliseconds time.
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In Fig. 6.16 a SNNcube learns EEG data from 14 EEG channels when a person
is moving a hand (Fig. 6.16a). The connections of the trained SNNcube
(Fig. 6.16b) can be interpreted as deep knowledge showing four aggregated events
E1,…, E4 that are executed at 4 different locations in a sequence of 4 time intervals.
This example is also given in Chap. 8 with more detailed explanation (see also
[23]).

6.2.2 Deep Supervised Learning in Time-Space

Supervised learning for classification of learned patterns in a SNN model:

When a SNN model is trained in an unsupervised mode on different temporal data,
representing different classes, the SNN model learns different structural and func-
tional patterns. When same data is propagated again through this SNN model, a
classifier can be trained using the known labels, to learn to classify new input data
that activate similar learned patters in the SNN model.

Semi-supervised learning:

The proposed approach allows for training a SNN on a large part of data (unla-
belled) and training a classifier on a smaller part of the data (labelled), both data sets
related to the same problem. This is how the brain learns too.

The dynamic spike patterns associated with each output class sample (prototype)
can be analysed and deep spatio-temporal rules can be extracted, such as shown in
Box 6.5 (Fig. 6.17).

Fig. 6.16 (a) Illustration of a SNNcube that learns EEG data from 14 EEG channels when a
person is moving a hand. (b) The connections of the trained SNNcube can be interpreted (see (c))
as deep knowledge showing four events E1,…, E4 that are executed at 4 large cortical locations in
a sequence of 4 aggregated time segments (the figure is produced by Z. Gholami and M. Gholami)
(from [23])
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Box 6.5. A hypothetical example of deep knowledge representation in a trained eSNN as a 

classifier for SNNcube  

IF (area (Xi,Yi,Zi) with a cluster radius Ri is activated at time about T1) AND 

     (area (Xj,Yj,Zj) with a cluster radius Rj is activated at time about T2) AND  

     (area (Xk,Yk,Zk) with a cluster radius Rk is activated at time about T3) AND  

      (no other areas of the SNNcube are activated) 

THEN  (The output class prototype is number 4 from class 1) (see Fig. 17).          

6.2.3 Deep Learning in Time-Space for Predictive
Modelling in NeuCube. The EPUSSS Algorithm

One of the biggest challenges scientists are facing is making sense of complex
dynamic patterns found in multimodal streaming data, ‘hidden deep in time’. If
such patterns can be interpreted then our ability to explain phenomena in nature,
understand the mechanisms of human cognition, and to predict future events will be
significantly improved. The current state-of-the-art of Artificial Intelligence (AI) is

Fig. 6.17 Colour representation of the time of activity of different clusters in the SNNcube that
trigger the classification of prototype 4 from class 1 (in red). The brighter the colour, the earlier
these neurons spike to activate a spike in the output neuron representing prototype 4 from class 1
(as a classification result). This can be interpreted as deep in time-space knowledge representation
(see Box 6.5)
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deep neural networks (DNN) (see Chap. 4). Despite their success in large-scale
pattern recognition, they have severe constraints when learning from continuous
streaming data. They have a fixed structure that cannot be changed over time; they
do not capture patterns from data that include both time and space; they are slow to
learn; and require processing of unnecessarily large amounts of data even though
they may not be relevant to the outcome, and they are mainly applied on static data
sets.

Inspired by the ability of the human brain to learn and predict long temporal
sequences (e.g. music, texts, navigation pathways, etc.) here a computational model
for deep-in-time machine learning and predictive modelling of streaming data is
introduced. Data continually streams into a brain-like model at every time point
(millisecond, day, etc.). As the patterns of causal relationships are learned, they are
retained and modified in the evolving structure of the model. As more temporal data
enters the model, the knowledge of the causal relationships becomes more deeply
embedded. Our conjecture is that the deeper in time we go during training, the
further we will be able to project into the future. If this is achieved, it will allow for
forecasting and understanding events, hidden in time and space that occur in
complex dynamical systems.

The model here is characterised by the following features:

(1) Patterns are learned from multimodal streaming data over time;
(2) Learning is fast, incremental, adaptive, and theoretically ‘life-long’;
(3) The model evolves its structure from data;
(4) Supervised and unsupervised modes of learning are applied;
(5) Learned patterns or rules can be extracted and interpreted at any stage during

the learning process;
(6) The model can be used for early and accurate future event prediction including

events that are hidden deep-in-time. Our intention is that the developed
framework will successfully manifest all five features.

The goal of the proposed work is to create an integrated computational model of
continuous deep learning of streaming data encoded as spike trains. As only a
partial case, the data can be of a fixed time window, but without any restrictions in
the length. A model will learn all data entered as a sequence of spike streams and
will evolve meaningful internal spatio-temporal patterns that can be stored from
time to time for a retrospective analysis. If an input pattern of specified length is
entered, with a known output, a specific pattern will be activated (as a deep tra-
jectory of spikes in the model) and this pattern can be learned in a supervised mode
in an output module for classification of regression.

In Box 6.6 the EPUSSS learning principles are outlined.
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Box 6.6. The EPUSSS learning principles for Evolving Predictive Unsupervised/Supervised 

Spike Sequences 

1. Input variables are mapped in a 3D (2D) eSNN structure according to their 3D (2D) spatial 

coordinates or the similarity between the input data streams. Initially, all input/output neurons 

are either fully connected or their mutual connections evolve from the spike sequences using a 

modified STDP learning rule. These connections are called meta synapses.  The rest of the 

connections are initialized using the small-world connectivity rule.     

2.

3. The learning model is evolving, creating neurons and connections incrementally. 

4. A model always learns from a time series data to predict the next values of the input variables, 

Learning from streaming data is as deep as necessary (life-long) as it is the learning in the
brain.   

7. Deep learned patterns of spiking activities can be extracted from a model at any time of its 

training and for any desirable time window. These deep patterns of activities can be interpreted 

for a better understanding of data.  

8. At any time of the model learning process, information ‘exchange’ between the input (output) 

variables can be extracted. This shows the one-to-one temporal association (temporal 

correlation) between changes in the variables that happen one after another. We call this 

temporal regulatory graph of the model variables.   

9. The temporal regulatory graph can be represented as a set of temporal rules, so that the 

connection weights (meta synapses) from the input neurons Ii (i = 1,2,…,n) to an output 

6. A modified spike-time unsupervised learning in the eSNN is applied for the model to learn 

temporal associations between all neurons in the model. The model is learning spatio-temporal 

associations between input (output) variables (in a partial case same neurons can be used to 

represent both input and output  temporal variables) and also across the whole model.  

5. Predictive modelling is achieved through a supervised learning in an eSNN structure using error 

of prediction and a rule that changes the connection weights of the output neurons using this 

error. The principle is: only output neurons which have spiking error of 1 ( e.g. spike but

should not spike) or —1 (do not spike, but should spike) will change their incoming 

connection weights at a needed depth of backpropagation.  A global error is calculated 

across all output neurons Err(t) that is used for a control of the learning rate (meta plasticity).      

now also used as output variables in the next time point. The hypothesis is that if a model can 

predict next time-point values of a time series, it has learned the data well. In this approach to 

learn time series, we have both the input data (temporal variable values at time t and the 

desired output data (the same variables at the time (t + k) (where by default k = 1, but could 

be any future time window).      
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neuron/variables Oj(t) (j = 1,…,m) can be used to extract temporal association rules representing 

how Oj(t) depends  the input variables Ii(t —1), e.g.: high, moderate, low, depending on the 

value of the corresponding connection weight.    

10. At any time of the model learning, important features can be extracted as the size of the cluster 

of connected neurons to each of the input variable.  

 If an outcome information (e.g. class labels for classification or output scalar values for 

regression) is available related to certain input patterns, a classifier or regressor can be trained 

in a supervised learning mode. For this purpose, a whole input pattern is presented to the 

SNNcube and an output neuron is evolved and connection weights calculated. After training, 

classification (regression) training/validation error is calculated. The error can be used for: 

 Modifying the connection weights of the classifier (regressor) to the SNNcube;  

(b) Further training of the SNNcube on these particular whole input patterns for which output 

error is detected. 

11. Once a model has learned to predict a spike sequence one step ahead (k = 1) with a satis-

-factory error, longer term predictions (e.g. several steps ahead) can be modelled when the predicted 

 output spikes at time (t + 1) are used as input spikes at (t + 1) to predict spikes at (t + 2) etc.    

12.

(a)

In Box 6.7 the above principles are implemented in an EPUSSS algorithm.
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Box 6.7. The EPUSSS meta-algorithm for deep Evolving, Predictive, Unsupervised and 

Supervised Spike Sequences learning   

1. Initialise a 3D SNN structure with sufficient number of neurons using a suitable initialisation 

of initial weights, e.g. small world connectivity within the structure (ordinary synapses), but fully 

connected input (output) neurons (meta synapses).    

2. Map the input variables into the 3D SNN according to their similarity and define the output 

variables among them that will be used for supervised learning. As a general rule, all input 

variables can be used as output variables.   

3. For i = 0 till end of the input spike stream DO:  

   3a. Enter a spike vector at a time t ;

   3b. Calculate the spiking activity of the whole SNN model for the next time (t + k); by default 

k = 1; 

  3c. When the spike vector for time (t + 1) is available, calculate the error Err = (Predicted-Actual) 

spikes for each of the outputs and the total error as well.   

 3d. Apply a Modified Perceptron learning rule to adjust the connection weights to each of the 

output neuron O using the error calculated for it as follows:  

– if neuron O was supposed to spike at (t + 1) and it did not, increase its incoming 

connection weights from the neurons connected to it that spiked at the time t and also of 

the incoming connection weights of the neurons connected to O that did not spike but have 

positive connection weights to the output neuron O; 

– if neuron O was not supposed to spike at (t + 1) and it did, decrease its incoming 

connection weights from the neurons connected to it that spiked at the time t and increase 

the incoming connection weights of the neurons connected to O that did not spike but have 

negative connection weights to the output neuron O; 

– if there is no error of the predicted spike of neuron O, do not apply learning.     

– The learning rate will depend on the global error (if the global error is large, then increase 

the learning rate; if no error, rate is 0). 

3e. The learning rule in 3d is applied several (e.g. 3–6) layers back which is a system parameter 

that can be optimized and depends on the inner relationship in the data.   

3f. (Optional) Apply a modified spike-time learning rule (e.g. modified STDP) to adjust all 

connection weights in the SNN model.     

3g. END 
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Figure 6.18 shows a graphical representation of the EPUSSS algorithm from
Box 6.7 (the figure was created by H. Bahrami).

6.3 Modelling Time in NeuCube: The Past, the Present,
the Future,… and Back to the Past

6.3.1 Event-Based Modelling. External Versus Internal
Time. Past-, Present- and Future Time

The evolving processes modelled through spike encoding can also be viewed as
event based processes. If an event happens (e.g. increase in the intensity of a pixel,
or an earthquake), which we will call external event, then there will be a spike
generated. A spike can be considered an internal event, representing changes in the
model.

The time of the events measured in the data we call here external time. It can
very from milliseconds (brain processes) to hundreds of light years (a light year is
used to denote the space that the light can travel within a year, having a constant
speed of 300,000 km/s).

The time of internal events (spikes) in a SNN model (called model internal time)
is usually denoted as millisecond, in analogy with the spike times in the brain, but

Fig. 6.18 A graphical representation of the EPUSSS algorithm from Box 6.7 for deep in
time-space learning (the figure was drawn by Helena Bahrami)
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in a computational model this time is considered as a “time unit” and its duration
depends on the implementation of the model.

In many cases, if a SNN model models EEG or EMG brain data measured in
milliseconds, the spiking activity in the SNN can also be achieved in milliseconds, if
a neuromorphic hardware or other super-computer platforms are used (see Chap. 20).

Past data, i.e. data measured in past time before training a model, is usually used
to train a model and to capture meaningful patterns explaining the processes.

Present data, for which an output value may not exist, is used to recall a SNN
model and to obtain a possible output. Once the real output for this data becomes
known, these data items become past data and can be used to update the SNN model.

Future data can be obtained through predictive modelling, where after input data
is entered, a chain of spikes is generated based on the learned connectivity from
past data, and an output is calculated for events in a future time. Examples are the
individual prediction of stroke (Chap. 18) and one hour ahead prediction of
earthquake (Chap. 19).

6.3.2 Tracing Events Back in Time

Once a SNN model is created, the connections of the model are directed
spatio-temporal associations between spiking activity of neurons that represent
changes in the input data. The history of spike and connectivity creation during
learning in a SNNcube can be traced back in time following the connectivity
backwards. The spiking activity of the model can also be recorded from time to
time, so it can be played back (Fig. 6.19).

6.4 A Design Methodology for Application Oriented
Spatio-temporal Data Machines

Here we will discuss how the BI-SNN can be used to implement application-oriented
spatio-temporal data machines for different tasks. These application systems will have
features of BI-AI systems as defined in Box 6.8 (also in Box 1.1 of Chap. 1). The
creation of BI-AI systems that manifest cognitive features are discussed in other
chapters of the book, especially in Chaps. 8–14 and 22.
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Box 6.8. Twenty structural, functional and cognitive features of BI-AI systems 

Structural Features :

1. The structure and organisation of a system follows the structure and organisation of the human 

brain through using a 3D brain template. 

2. Input data and information is encoded and processed in the system as spikes over time.  

3. A system is built of spiking neurons and connections, forming SNN.    

4. A system is scalable, from hundreds to billions of neurons and trillions of connections.    

5. Inputs are mapped spatially into the 3D system structure.    

6. Output information is also presented as spike sequences. 

Functional Features 

7. A system operates in a highly parallel mode, potentially all neurons operating in parallel.    

8. A system can be implemented on various computer platforms, but more efficiently on 

neuromorphic highly parallel platforms and on quantum computers (if available). 

9. Self-organised unsupervised, supervised and semi-supervised deep learning is performed using 

brain-inspired spike-time learning rules.    

10. The learned spatio-temporal patterns have a meaningful interpretation.   

11. A system operates in a fast, incremental and predictive learning mode. 

12. Different time scales of operation, e.g. nanoseconds, milliseconds, minutes, hours, days, 

millions of years (e.g. genetics), possibly in their integration.  

13. A system can process multimodal data from all levels per Fig. 6.1 (e.g. quantum; genetic; 

neuronal; ensembles of neurons; etc.), possibly in their integration.

Cognitive features 

14. A system can communicate with humans in a natural language. 

15. A system can make abstractions and discover new knowledge (e.g. rules) through self-

observing its structure and functions. 

16. A system can process all kinds of sensory information that is processed by the human brain, 

including:  visual-, auditory-, sensory-, olfactory-, gustatory, if necessary in their integration.  

17. A system can manifest both sub-conscious and conscious processing of stimuli. 

18. A system can recognise and express emotions and consciousness. 

19. Knowledge can be transferred between humans and machines using brain signals and other  

relevant information, e.g. visual, etc.   

20. BI-AI systems can form societies and communicate between each other and with humans 

achieving a constructive symbiosis between humans and machines.   

_____________________________________________________________________________ 
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6.4.1 Design Methodology for Implementing Application
Oriented Spatio-temporal Data Machines as BI-AI
Systems in NeuCube

The BI-SNN NeuCube can be used to create BI-AI systems. For the design of an
BI-AI system a number of research questions must be addressed. Here, we identify
some of them:

1. Which input transformation function to use to encode the data as trains of
spikes?

2. Which input variable mapping into the SNNc is used? Is there some a priori
information we can use to spatially locate the input variables in the SNNc?

3. Which learning method to use in the SNNc?
4. Which output function is appropriate? Is it classification or regression?
5. How to visualize the developed BI-AI system for an improved understanding?
6. Which parameter optimisation method to apply?

The procedures for the creation of spatio-temporal data machines as BI-AI systems
using a BI-SNN are listed in Box 6.9.

Fig. 6.19 Tracing processes
back in time. As the model
learns patterns of connections,
these connections can be
traced back and the time of
the modelled evolving process
can be reversed as a play back
to understand better the data
and the processes that
generated it
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Box 6.9. A design methodology for spatio-temporal data machines as BI-AI systems using a 

BI-SNN   

1. Input data transformation into spike sequences (see Chap. 4);  

2. Mapping input variables into spiking neurons  

3. Unsupervised learning spatio-temporal spike sequences in a scalable 3D SNN cube  

4. Supervised learning and classification/regression of data;  

5. Dynamic parameter optimisation  

6. Evaluating the predictive modelling capacity of the system    

7. Adaptation on new data, possibly in an on-line/real time mode  

8. Model visualisation and interpretation for a better understanding of the data and the processes 

that generated it.  

9. Implementation of a SNN model: von Neumann vs neuromorphic hardware versus quantum 

computing 

All these procedures are explained in detail and illustrated in the following
sub-sections.

6.4.2 Input Data Encoding

The input encoding module converts continuous data streams into discrete spike trains,
suitable to be processed in the SNNcube. While in [1, 24–26] threshold-based encoding
with fixed threshold was used, it is possible to apply a bi-directional thresholding of the
signal gradient with respect to time, d/dt. The threshold is self-adaptive and is determined
in the following way: for an input time series/signal f(t), we calculate the mean m and
standard deviation s of the gradient df/dt, then the threshold is set to mþ as, where a is a
parameter controlling the spiking rate after encoding. After this, we obtain a
‘positive’ spike train which encodes the segments in the time series with increasing
signal and a negative spike train, which encodes the segments of decreasing signal.

There are different coding schemes for SNN, primarily rate (information as mean
firing rates) or temporal (information as temporally significant) coding (see Chap. 4).
In NeuCube, we use temporal coding to represent information. So far four different
spike encoding algorithms have been integrated into the existing implementation of
the NeuCube, namely the Ben’s Spiker Algorithm (BSA), Temporal Contrast
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(Threshold-based), Step-Forward Spike Encoding Algorithm (SF) and
Moving-Window Spike Encoding Algorithm (MW) (see Chap. 4).

Different spike encoding algorithms have distinct characteristics when repre-
senting input data. BSA is suitable for high frequency signals and because it is
based on the Finite Impulse Response technique, the original signal can be
recovered easily from the encoded spike train.

Only positive (excitatory) spikes are generated by BSA, whereas all other
techniques mentioned here can also generate negative (inhibitory) spikes. Temporal
Contrast was originally implemented in hardware [27] in the artificial silicon retina.
It represents significant changes in signal intensity over a given threshold, where the
ON and OFF events are dependent on the sign of the changes. However if the
changes of the signal intensity vary dramatically, it may not be possible to recover
the original signal using the encoded spike train. In [24] we propose an improved
spike encoding algorithm, SF, to better represent the signal intensity.

For a given signal S(t) where (t = 1, 2,…, n), we define a baseline B(t) variation
during time t with B(1) = S(1). If the incoming signal intensity S(t1) exceeds the
baseline B(t1 − 1) plus a threshold defined as Th, then a positive spike is encoded
at time t1, and B(t1) is updated as B(t1) = B(t1 − 1) + Th; and if S(t1) <= B
(t1 − 1) − Th, a negative spike is generated and B(t1) is assigned as B(t1) = B
(t1 − 1) − Th. In other situations, no spike is generated and B(t1) = B(t1 − 1).

As to the Moving-Window Spike Encoding Algorithm, the baseline B(t) is
defined as the mean of previous signal intensities within a time window T, thus this
encoding algorithm can be robust to certain kinds of noise.

Before choosing a proper spike encoding algorithm, we need to figure out what
information the spike trains shall carry for the original signals. An example is given in
Fig. 6.20. In [28] a methodology to select spike encoding algorithm and to optimise its

Fig. 6.20 Illustration of the effect of using different methods for the encoding a continuous signal
as part of the input data encoding (see also Chap. 4)
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parameters is introduced and implemented as a software called Spiker (http://www.kedri.
aut.ac.nz/neucube/).

6.4.3 Spatial Mapping of Input Variables

Mapping input variables into spatially located spiking neurons in the SNNc is a new
approach towards modelling spatio-temporal introduced in [1] and is a unique
feature of the NeuCube architecture and all systems developed with its use. The
main principle is that if spatial information about the input variables is known it can
help in (a) building more accurate models of the data collected through these
variables and (b) a much better interpretation of the model and a better under-
standing of the data can be achieved. This is very important for data such as brain
data such as EEG (see [1, 29]) and for fMRI data [2], where patterns of interaction
of brain signals can be learned and discovered. In some implementations we have
used the Talairach brain template, mapped spatially into the SNNc. Another way of
mapping, when there is no spatial information available for the input variables, is to
measure the temporal similarity between the variables to map variables with similar
patters into closer neurons in the SNNc [14]. This is the vector quantisation prin-
ciple, where by ‘vector’ here we use time series, which do not necessarily have the
same length (Fig. 6.21).

Fig. 6.21 Spatial mapping of input variables can be done in two ways: mapping input variables
using their 3D spatial coordinates, as exemplified with EEG data; mapping temporal variables that
do not have spatial coordinates using a temporal similarity measure [14]
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6.4.4 Unsupervised Training of the SNNcube

The NeuCube is trained in a two-stage learning process. The first stage is unsu-
pervised learning that makes the SNNcube learn (spatio-) temporal relations from
the input data by adjusting the connection weights in SNNcube. The second stage is
supervised learning that aims at learning the class information associated with each
training (spatio-) temporal sample.

The unsupervised learning stage is intended to encode ‘hidden’ (spatio-) tem-
poral relationships from the input data into neuronal connection weights. According
to the Hebbian learning rule, if the interaction between two neurons is persistent,
then the connection between them will be strengthened. Specifically, we train the
SNNcube using spike-timing dependent synaptic plasticity (STDP) learning rule
[30]: if neuron j fires before neuron i, then the connection weight from neuron j to
neuron i will increase and, if the spikes are in a reverse order, the connection from
neuron i to neuron j will decrease. This ensures that the time difference in the input
spiking trains, which encode the temporal patterns in the original input signals, will
be captured by the neuron firing state and the unsymmetrical connection weights in
the reservoir.

The second training stage is to train an output classifier using class label
information associated with the training temporal samples. The dynamic evolving
Spike Neural Networks (deSNN) [31, 32] is used here as an output classifier,
because deSNN is computationally efficient and emphasizes the importance of both
first spikes arriving at the neuronal inputs (observed in biological systems [33]) and
the following spikes (which in some stream data are more informative).

Once a NeuCube model is trained, all connection weights in the SNNcube and in
the output classification layer are established. These connections and weights can
change based on further training (adaptation), due to the evolvable characteristic of
the architecture. For a given new temporal sample without any class label infor-
mation, the trained NeuCube model can be used to predict the class label or an
output value.

6.4.5 Supervised Training and Classification/Regression
of Dynamic Spiking Patterns of the SNNcube
in a SNN Classifier

Here we use an SNN for the output model of the type eSNN, deSNN (Chap. 5) or
SPAN (Chap. 4). An eSNN or deSNN evolves its structure and functionality in an
online manner, from incoming information. The training algorithms are given in
Chaps. 4 and 5.
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6.4.6 3D Visualisation of the SNNcube

The 3d connectivity structure of the SNNcube during training or recall can be
visualised using VR (Fig. 6.22a, b).

Fig. 6.22 a 3D Visualisation of the SNNcube connectivity and spiking activity during training or
recall (from [25]). b A VR visualisation of a NeuCube connectivity using the NeuVis system (the
figure is created by Stefan Marks) (https://kedri.aut.ac.nz/R-and-D-Systems/virtual-reality)
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6.4.7 Optimisation of NeuCube Structure and Parameters

For an optimal performance of a NeuCube model its numerous parameters need to
be optimised. Methods that can be used for the parameter optimisation include:

– Grid search (trying all combinations of the parameter values within a certain
range);

– Genetic Algorithm (see Chap. 7);
– Particle Swarm Optimisation (PSO) algorithms (see Chap. 7);
– Quantum inspired Evolutionary Computation (QiEC) (see Chap. 7);
– Quantum Inspire PSO (see Chap. 7).

Using a grid search algorithm is illustrated in Fig. 6.23 to optimise some of the
parameters of a NeuCube model. An optimum set of parameter values is found that
minimises the classification error as an objective function after 15 iterations. SNN
parameter optimisation is an open problem. Current research is directed towards
“learning to learn” approach, i.e. a system will not only learn from data but will
learn how to optimise its parameters as part of the learning process.

Fig. 6.23 Using grid search to optimise some of the parameters of a NeuCube SNN model. The
error produced by the model reduces by using just 15 generations of the GA optimisation of the
parameters selected for optimisation as ticked in the above table
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Fig. 6.24 Different techniques can be used as information and knowledge extraction from a
trained SNNcube: clustering according to connection weights; clustering according spiking
activity; graph representation of variable (feature) cluster interaction in terms of dynamic
information exchange. The latter can be used to extract deep knowledge representation linking the
activities of different spatially located clusters of neurons over time

6.4.8 Model Interpretation, Rule Extraction, Deep
in Time-Space Knowledge Representation

The NeuCube SNN model can be analysed for a better understanding the data and
the processes that generated it. Different techniques can be used for this purpose,
such as dynamic clustering (Fig. 6.24) [34]:

– Clustering according to connection weights;
– Clustering according to spiking activity;
– Graph representation of variable (feature) cluster interaction in terms of infor-

mation exchange. This information can be used to extract deep knowledge
representation linking the activities of different spatially located clusters of
neurons over time and the intensity of all these interactions.

6.5 Case Studies of the Design and Implementation
of Classification and Regression Spatio-temporal Data
Machines

Two demo data sets, used for the illustration of the material in this section are
available from: http://www.kedri.aut.ac.nz/neucube/. The development of the demo
systems here are explained in terms of using the NeuCube development software
from the same site.
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6.5.1 A Case Study on the Design of a Classification
Spatio-temporal Data Machine in NeuCube

The dataset used in this case study corresponds to a study participant moving their
wrist either up or down, or holding their hand straight. This task was performed on
a single subject and EEG data was sampled from 14 channels at a sampling rate of
128 Hz. 20 independent trials of 1 s duration were collected while the subject
performed each movement task. The data set consists of the following files:

• Input sample files: Each sample file (sam1.csv, sam2.csv, sam3.csv … sam60.
csv in the example) contains data of one sample. Each sample corresponds to a
data arranged in a matrix. The rows correspond to ordered time points, and the
columns represent the features (in this case, EEG channels).

• Input target file: The target file stores the class label of each sample in a column,
ordered in the same sequence as the numbers of the sample files.

• SNNcube coordinate file: This file describes the spatial coordinates of the
neurons in the SNNcube. Every row in the SNNcube coordinate file contains the
x, y, and z coordinates of a neuron. Talairach brain template is used, a template
that makes it possible to represent any person’s brain data in a standardised way.
In this case we use 1471 spiking neurons in the SNNcube representing 1 cm3

spatial resolution.
• Input coordinate file: This file describes the spatial location of the input neurons

(features). Just like the SNNcube coordinate file, every row in the input coor-
dinate file contains the x, y, and z coordinates of an input neuron.

• Feature name file: This file contains the names of the input features. In this
example, it would contain a list of EEG channel names.

Figure 6.25 shows a set of parameters for unsupervised training of the SNNcube
for the case study data and also the trained SNNcube connectivity. The SNNcube is
structured according to the Talairach brain template with 1471 spiking neurons,
each representing 1 cm3 of brain area.

Figure 6.26 shows some parameters and results of the supervised training and
classification of the case study data into 3 classes using deSNN classifier [12].

Analysis is performed to better understand the classification results (Fig. 6.27).

6.5.2 A Case Study on the Design a Regression/Prediction
Spatio-temporal Data Machine in NeuCube

A demo dataset for regression analysis consists of 50 samples (http://www.kedri.
aut.ac.nz/neucube/). Each sample consists of 100 timed sequences of daily closing
prices for six different shares (Apple Inc., Google, Intel Corp, Microsoft, Yahoo,
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and NASDAQ). The target values representing the closing price of NASDAQ at the
next day are arranged in a column in the target file. For dataset like this financial
dataset that does not have any natural spatial ordering, NeuCube automatically
assigns spatial location based on a graph matching algorithm presented in Sect. 6.2.

In this experiment deSNN is used not as a classifier but as a regressor. This is
achieved in the following way: each ouput neuron, corresponding to one input
spatio-temporal or temporal sample is assigned a scallar output value from the
targeted time series. The training algorithm is not changed. A k-nearest neighbour
technique is used to calculate the output variable. Figure 6.28, shows the regression
result produced by NeuCube on the demo regression dataset. The graph plots the
true and predicted value of the validation samples. It also provides the Mean
Squared Error (MSE) and Root Mean Squared Error (RMSE) as measures of per-
formance on the validation set.

6.6 Chapter Summary and Further Readings for Deeper
Knowledge

This chapter presents principles of brain-inspired SNN architectures exemplified by
one of its implementations—NeuCube. Deep learning algorithms for NeuCube and
a design methodology for using them to design of BI-AI systems are presented. The

Fig. 6.25 Parameters for unsupervised training of the SNNcube for the case study data and the
trained SNNcube connectivity. The SNNcube is structured according to the Talairach brain
template with 1471 spiking neurons, each representing 1 cm3 of brain area
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chapter discusses how deep knowledge representation can be extracted from a
trained SNNcube in an unsupervised mode and then—a trained classifier in a
supervised mode. Two case studies are included here to illustrate this methodology
and more are presented in the rest of the book. A limited version and an open source
version (from 2019) of a NeuCube SNN development system are available from:
http://www.kedri.acu.ac.nz/neucube/. NeuCube is an open, evolving framework
that is a set of algorithms allowing for the creation of SNN systems and BI-AI
systems and also allowing for new algorithms to be developed in the future and
explored as part of it. I would like to encourage students and researchers to develop

Fig. 6.26 Parameters and results of supervised training and classification of the case study data
into 3 classes using deSNN classifier [12]
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new algorithms for data encoding, learning, classification, visualisation and opti-
misation of SNN, thus developing further the concept of BI-SNN and BI-AI.

More information about specific topics can be found as follows:

– NeuCube [1];
– Versions of the NeuCube SNN development system, including open source

version (from 2019) are available from: http://www.kedri.acu.ac.nz/neucube/.
– eSNN [11];
– deSNN [12];
– design of BI-AI with BI-SNN [35];
– Computational modelling with SNN (Chap. 37 in [2]);
– Brain-like information processing for spatio-temporal pattern recognition

(Chap. 47 in [2]);
– Overview of evolving connectionist systems (Chap. 40 in [36]).
– NeuVis: A VR visualization of NeuCube: https://kedri.aut.ac.nz/R-and-D-

Systems/virtual-reality.
– A limited executable version and an open source version of the NeuCube

development environment are available from http://www.kedri.aut.ac.nz/
neucube/

– Applications of NeuCube for various types of problems and data modeling are
available from: http://www.kedri.aut.ac.nz/R-and-D/;

Fig. 6.27 a After supervised training of the eSNN classifier, the connections weights of the
connections from the SNNcube to prototype 4 are clustered according to their strength (the
brighter, the stronger); b the spiking neurons in the SNNcube are clustered according to their time
of spiking activity related to output prototype 2 from class 1 (the brighter the neuron, the earlier it
spikes for the activation of output prototype 2)
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– Applications of NeuCube for spatio-temporal data modelling presented in other
chapters of the book include: brain EEG (Chaps. 8, 9); brain fMRI (Chaps. 10, 11);
brain fMRI + DTI (Chap. 11); Audio-visual (Chaps. 12, 13); Brain-computer
interfaces (Chap. 14); Bioinformatics (Chap. 15); Neurogenetics (Chap. 16);
Personalised modelling (Chaps. 17, 18).

– Ecological-, transport-, financial- and seismic data modeling with NeuCube are
presented in Chap. 19.

– Implementing NeuCube on hardware platforms, including neuromorphic ones,
is presented in Chap. 20.
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Chapter 7
Evolutionary- and Quantum-Inspired
Computation. Applications for SNN
Optimisation

The chapter introduces the main principles and several algorithms of both evolu-
tionary computation (EC) and its further development as quantum inspired evolu-
tionary computation (QiEC). Evolution in nature is the slowest evolving process in
time (takes thousands to millions of years for species to evolve through genetic
reproduction), while quantum processes are the fastest (take about nano-seconds
and pico-seconds in time).

The EC methods presented here include genetic algorithms and particle swarm
optimization, while the QiEC methods include a versatile QiEC method and a
quantum inspired particle swarm optimization method. The algorithms presented
are for general use. They are also applied in the chapter for the optimization of
evolving SNN structures and parameters. The results demonstrate that the QiEC
methods lead to a faster and more accurate optimization. QiEC methods can be
applied for the optimization of features and parameters of any other SNN and ANN
models.

The chapter has the following sections:

7:1. Principles of Evolution in Nature and Methods of Evolutionary Computation.
7:2. Quantum Inspired Evolutionary Computation: Methods and Algorithms.
7:3. Quantum Inspired Evolutionary Computation for the Optimisation of SNN.
7:4. Quantum Inspired Particle Swarm Optimisation Algorithms.
7:5. Quantum Inspired Particle Swarm Algorithms for the Optimisation of SNN.
7:6. Chapter Summary and Further Readings for Deeper Knowledge.
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7.1 Principles of Evolution and Methods of Evolutionary
Computation

7.1.1 The Origin and the Evolution of Life

Evolution of species started after the origin of Life. The most obvious example of
an evolutionary process is the evolution of Life. Life is defined in the Concise
Oxford English Dictionary as “A state of functional activity and continual change
peculiar to organized matter, and especially to the portion of it constituting an
animal or plant before death; animate existence; being alive”.

It is generally agreed that all Life today evolved by common descent from a
single primitive lifeform. We do not know how this early form came about, but
scientists suggest that it was a natural process which took place perhaps 3900
million years ago.

Charles Darwin suggested in 1871 that the original spark of life may have begun
in a “…warm little pond, with all sorts of ammonia and phosphoric salts, lights,
heat, electricity, etc. A protein compound was then chemically formed ready to
undergo still more complex changes”….

On the Origin of Species, published on 24 November 1859, is a work of
scientific literature by Charles Darwin which is considered to be the foundation of
evolutionary biology. Darwin’s book introduced the scientific theory that popula-
tions evolve over the course of generations through a process of natural selection. It
presented a body of evidence that the diversity of life arose by common descent
through a branching pattern of evolution. Darwin included evidence that he had
gathered on the Beagle expedition in the 1830s and his subsequent findings from
research, correspondence, and experimentation.

Nature’s diversity of species is tremendous. How does mankind evolve in the
enormous variety of variants—in other words, how does nature solve the optimi-
sation problem of perfecting mankind? An answer to this question may be found in
Charles Darwin’s theory of evolution (1858).

Charles Darwin (1809–1892) developed a theory according to which evolution
is concerned with the development of generations of populations of individuals
governed by fitness criteria [1]. But this process is much more complex, as indi-
viduals, in addition to what nature has defined for them, develop in their own way
—they learn and evolve during their lifetime.

Charles Darwin favoured the “Mendelian heredity” explanation that states that
features are passed from generation to generation. In the early 1800’s Jean-Baptiste
Lamarck had expanded the view that changes in individuals over the course of their
life were passed on to their progeny. This perspective was adopted by Herbert
Spencer and became an established view along with the Darwin’s theory of
evolution.

Evolution is a process whereby populations are altered over time and may split
into separate branches, hybridize together, or terminate by extinction. The evolu-
tionary branching process may be depicted as a phylogenetic tree, and the place of
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each of the various organisms on the tree is based on a hypothesis about the
sequence in which evolutionary branching events occurred.

In biology, phylogenetics is the study of evolutionary relationships among
groups of organisms (e.g. species, populations), which are discovered through
molecular sequencing data and morphological data matrices. Phylogenetic analyses
have become essential to research on the evolutionary tree of life.

Natural evolution inspired the development of the theory of Evolutionary
computation (EC). It is based on learning through evolution. It uses principles of the
evolution theory, such as:

• Species adapt through genetic evolution (e.g. crossover and mutation of genes)
in populations over generations.

• Genes are carrier of information: stability versus plasticity.
• A set of chromosomes define an individual.
• Survival of the fittest individuals within a population.

7.1.2 Methods of Evolutionary Computation (EC)

EC are stochastic search methods that mimic the behaviour of natural biological
evolution. They differ from traditional optimization techniques in that they involve
a search from a population of solutions, not from a single point, and carry this
search over generations. So, EC methods are concerned with population-based
search and optimisation of individual systems through generations of populations
[2–5].

Several different types of evolutionary computation methods have been devel-
oped independently. These include:

– Genetic Programming (GP) which evolve programs [3];
– Evolutionary Programming (EP), which focuses on optimizing continuous

functions without recombination [3];
– Evolutionary Strategies (ES), which focuses on optimizing continuous functions

with recombination;
– Genetic Algorithms (GAs), which focuses on optimizing general combinatorial

problems, the latter being the most popular technique [2, 4];
– Particle Swarm Intelligence [6];
– Firework EC algorithms [7].

EC has been applied so far to the optimisation of different structures and pro-
cesses, one of them being the connectionist structures and connectionist learning
processes [8, 9].
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Methods of EC include in principle two stages:

1. A stage of creating new population of individuals.
2. A stage of development of the individual systems, so that a system develops and

evolves through interaction with the environment, which is also based on the
genetic material embodied in the system.

These stages are illustrated in Box 7.1.

_______________________________________________________________________________ 

 Box 7.1. A typical EC meta- algorithm  

_______________________________________________________________________________ 

The process of individual (internal) development has been ignored or neglected
in many EC methods as insignificant from the point of view of the long process of
generating hundreds of generations, each of them containing hundreds and thou-
sands of individuals.

But my personal concern as an individual—and also as the author of the book—
is that it matters to me not only how much I have contributed to the improvement of
the genetic code of the population that is going to live, possibly, 2,000,000 years
after me, but also how I can improve myself during my life time, and how I evolve
as an individual in a particular environment, making the best out of my genetic
material.

ECOS (including evolving SNNs and brain-inspired evolving SNNs) deal with
the process of interactive off-line or on-line adaptive learning of a single system that
evolves from incoming data. The system can either have its parameters (genes)
predefined, or it can be self-optimised during the learning process starting from
some initial values. But ECOS can also improve their performance and adapt better
to a changing environment through evolution, i.e. through population-based
improvement over generations of many ECOS models.

There are several ways in which EC and ECOS can be interlinked. For example,
it is possible to use EC to optimise the parameters of an ECOS at a certain time of
their operation, or to use the methods of ECOS for the development of the indi-
vidual systems (individuals) as part of the global EC process.
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Before we discuss methods for using EC for the optimisation of connectionist
systems and evolving SNN and brain-inspired SNN in particular, I will present a
short introduction to some of the most popular EC techniques—genetic algorithms
(GA), evolutionary strategies (ES) and particle swarm optimisation.

7.1.3 Genetic Algorithms

Genetic algorithms (GA) were introduced for the first time in the work of John
Holland in 1975. They were further developed by him and other researchers ([2–5]).

The most important terms used in GA are analogous to the terms used to explain
the evolution processes. They are:

• gene—a basic unit that defines a certain characteristic (property) of an
individual;

• chromosome—a string of genes; used to represent an individual or a possible
solution to a problem in the solution space population—a collection of
individuals;

• crossover (mating) operation—substrings of different individuals are taken and
new strings (offspring) are produced mutation—random change of a gene in a
chromosome;

• fitness (goodness) function—a criterion which evaluates how good each indi-
vidual is;

• selection—a procedure of choosing a part of the population which will continue
the process of searching for the best solution, while the other individuals “die”.

Fig. 7.1 A schematic diagram of GA evolutionary process, starting with an initial population of
solutions (represented as chromosomes) and ending with a good solution according to a set fitness
function (optimisation criterion)
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A simple genetic algorithm consists of steps shown in Fig. 7.1. The process over
time has been “stretched” in space.

When using the GA method for a complex multi-option optimisation problem,
there is no need for in-depth problem knowledge, nor is there a need for many data
examples stored beforehand. What is needed here is merely a “fitness” or “good-
ness” criterion for the selection of the most promising individuals (they may be
partial solutions to the problem). This criterion may require a mutation as well,
which is a heuristic approach of “trial and error” type. This implies keeping
(recording) the best solutions at each stages.

Many complex optimisation problems find their way to a solution through
genetic algorithms. Such problems are, for example, the Travelling Salesman
Problem (TSP)—finding the cheapest way to visit n towns without visiting a town
twice; the Min Cut problem—cutting a graph with minimum links between the cut
parts; adaptive control; applied physics problems; optimisation of the parameters of
complex computational models; optimisation of neural network architectures [8]
and finding fuzzy rules and membership functions [10].

The main issues in using genetic algorithms relate to the choice of genetic
operations (crossover, selection, mutation). In case of the Travelling Salesman
problem the crossover operation can be merging different parts of two possible
roads (“mother” and “father” roads) until new usable roads are obtained. The
criterion for the choice of the most prospective ones is minimum length (or cost).

A GA offers a great deal of parallelism as each branch of the search tree for a
best individual can be utilised in parallel with the others. That allows for an easy
realisation on parallel architectures. GAs are search heuristics for the “best”
instance in the space of all possible instances. A GA model requires the specifi-
cation of the following features:

• Encoding scheme, i.e. how to encode the problem in terms of the GA notation—
what variables to choose as genes, how to construct the chromosomes, etc.

• Population size: how many possible solutions should be kept in a population for
their performance to be further evaluated.

• Crossover operations—how to combine old individuals and produce new, more
prospective ones.

• Mutation heuristic—when and how to apply mutation.

In short, the major characteristics of a GA are the following. They are heuristic
methods for search and optimisation. In contrast to the exhaustive search algo-
rithms, GA do not evaluate all variants in order to select the best one. Therefore
they may not lead to the perfect solution, but to one which is closest to it taking into
account the time limits. But nature itself is imperfect too (partly due to the fact that
the criteria for perfection keep changing), and what seems to be close to perfection
according to one “goodness” criterion may be far from it according to another.
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Selection, crossover and mutation operators

The theory of GA and the other EC techniques includes different methods for
selection of individuals from a population, different crossover techniques and dif-
ferent mutation techniques.

Selection is based on fitness that can employ several strategies. One of them is
proportional fitness, i.e. “if A is twice as fit as B, A has twice the probability of
being selected”. This is implemented as roulette wheel selection and gives chances
to individuals according to their fitness evaluation.

Other selection techniques include tournament selection (e.g. at every time of
selection the roulette wheel is turned twice, and the individual with the highest
fitness is selected), rank ordering, and so on [8]. Important feature of the selection
procedure is that fitter individuals are more likely to be selected.

The selection procedure may also involve keeping the best individuals from
previous generations (if this principle was used by Nature, Leonardo Da Vinci
would still be alive, as he was one of the greatest artists ever, presumably having the
best artistic genest). This operation is called elitism.

After the best individuals are selected from a population, a crossover operation is
applied between these individuals. The crossover operator defines how individuals
(e.g. “mother” and “father”) exchange genes when creating the off-spring. Different
crossover operations can be used, such as one-point crossover, two-points cross
over, etc.

Mutation can be performed in several ways, e.g.:

• For a binary chromosome, just randomly “flip” a bit (a gene allele).
• For a more complex chromosome structure, randomly select a site, delete the

structure associated with this site, and randomly create a new sub-structure.

Some EC methods just use mutation and no crossover (“asexual reproduction”).
Normally, however, mutation is used to search in a “local search space”, by
allowing small changes in the genotype (and therefore hopefully in the phenotype)
as it is in the evolutionary strategies (ES).

7.1.4 Evolutionary Strategies (ES)

Another EC technique is called Evolutionary Strategies (ES). These techniques use
only one chromosome and a mutation operation, along with a fitness criterion, to
navigate in the solution (chromosomal) space.

In the reproduction phase, the current population called the parent population is
processed by a set of evolutionary operators to create a new population called the
offspring population. The evolutionary operators include two main operators:
mutation and recombination, both imitate the functions of their biological coun-
terparts. Mutation causes independent perturbation to a parent to form an offspring
and is used for diversifying the search. It is an asexual operator because it involves
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only one parent. In GA, mutation flips each binary bit of a parent string at a small,
independent probability pm (which is typically in the range [0.001, 0.01]) to create
an offspring. In ES, mutation is the addition of a zero-mean Gaussian random
number to a parent individual to create the offspring. Let sPA and sOF denote the
parent and offspring vector, they are related through the Gaussian mutation

sOF ¼ sPA þ z z�N 0; sð Þ ð7:1Þ

where N(a, s) represents a normal (Gaussian) distribution with a mean a and a
covariance s and “*” denotes sampling from the corresponding distribution. ES
uses the mutation as the main search operator.

The selection operator is probabilistic in GA and deterministic in ES. Many
heuristic designs, like the Rank-based selection that assigns to the individuals a
survival probability proportional (or exponentially proportional) to their ranking,
have also been studied. The selected individuals then become the new generation of
parents for reproduction. The entire evolutionary process iterates until some stop-
ping criteria is met. The process is essentially a Markov Chain, i.e. the outcome of
one generation depends only on the last. It has been shown that under certain design
criteria of the evolutionary operators and selection operator, the average fitness of
the population increases and the probability of discovering the global optimum
tends towards unity. The search could however, be lengthy.

7.1.5 Particle Swarm Optimisation

In a GA optimisation procedure, a solution is found based on the best individual
represented as a chromosome, where there is no communication between the
individuals.

Particle Swarm Optimization (PSO), introduced by Kennedy and Eberhard
(1995) [6] is motivated by social behaviour of organisms such as bird flocking, fish
schooling, and swarm theory. In a PSO system, each particle is a candidate solution
to the problem at hand. The particles in a swarm fly in multi-dimensional search
space, to find an optimal or sub-optimal solution by competition as well as by
cooperation among them. The system initially starts with a population of random
solutions. Each potential solution, called a particle, is given a random position and
velocity.

The particles have memory and each particle keeps track of its previous best
position and the corresponding fitness. The previous best position is called the
pbest. Thus, pbest is related only to a particular particle. The best value of all
particles’ pbest in the swarm is called the gbest. The basic concept of PSO lies in
accelerating each particle towards its pbest and the gbest locations at each time
step. This is illustrated in Fig. 7.2 for a two-dimensional space.
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PSO have been developed for continuous, discrete and binary problems. The
representation of the individuals varies for the different problems. Binary Particle
Swarm Optimization (BPSO) uses a vector of binary digits representation for the
positions of the particles. The particle’s velocity and position updates in BPSO are
performed by the following equations:

vnew ¼ w � vold þ c1 � randðÞ � ðpbest � poldÞþ c2 � randðÞ � ðgbest � poldÞ ð7:2Þ

pnew ¼ 0 if r� sðvnewÞ
1 if r\sðvnewÞ

�
ð7:3Þ

where:

sðvnewÞ ¼ 1
1þ expð�vnewÞ and r�U 0; 1ð Þ ð7:4Þ

The velocities are still in the continuous space. In BPSO, the velocities are not
considered as velocities in the standard PSO but are used to define probabilities that
a bit flip will occur. The inertia parameter, w, is used to control the influence of the
previous velocity on the new velocity. The term with c1 corresponds to the cog-
nitive acceleration component and helps in accelerating the particle towards the
pbest position. The term with c2 corresponds to the social acceleration component
which helps in accelerating the particle towards the gbest position.

c2*rand*(gbest - pold)

pold w*vold

c1*rand*(pbest - pold)

pnew

x

y

Fig. 7.2 A graphical representation of the main idea of PSO using both local and global best
solutions at the moment
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A simple version of a PSO procedure is given in Box 7.2.

Box 7.2.  A pseudo code of a PSO algorithm 

________________________________________________________________________________ 

begin 

t ← 0 (time variable) 

1)  Initialize a population with random positions and velocities 

2)  Evaluate the fitness 

3)  Select the  pbest and gbest

     while (termination condition is not met) do 

     begin 

     t ← t+1 

4)  Compute velocity and position updates 

5)  Determine the new fitness 

6)  Update the pbest and gbest if required 

     end 

end 

7.1.6 Estimation of Distribution Algorithms (EDA)

In recent years another derivate of EC was proposed that uses a probabilistic model
to guide its search. Let us consider a single gene in a chromosome. Such a gene can
take different values according to a predefined alphabet. By associating a proba-
bility to each character of the alphabet a probability distribution for a gene can be
defined. This distribution is usually unknown but can be estimated and iteratively
learned by an algorithm. These algorithms represent a new class of EA and are
called Estimation of Distribution Algorithms (EDA). An excellent survey about
previous work in this field can be found in [11]. To generate new solutions in an
EDA a sample from each distribution of each gene is drawn and formed to a
complete chromosome.

By sampling a number of chromosomes a population of individuals is obtained
which can be evaluated using a fitness criterion. A subset of appropriate individuals
is selected and used to update the estimate of the current probability distribution.
This process is iteratively repeated until a termination condition is met or all dis-
tributions have converged to some specific state.
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A generic description of an EDA is illustrated in the Algorithm in Box 7.3.

_______________________________________________________________________________ 

Box 7.3. Estimation of Distribution Algorithm (EDA) 

________________________________________________________________________________ 

As stated in [12] one can divide EDA into three different classes based on the
level of interactions between the variables (genes) that their models can represent.
Here we are mainly interested in the first family of EDA that assumes independent
variables and for which the probabilistic model is a simple vector of probabilities,
such as population-based incremental learning (PBIL) [13], compact GA
(cGA) [14] and univariate marginal distribution algorithm (UMDA) [11]. This
family of EDA has been very useful to apply to complex optimisation problems, but
some aspects of how they operate are still unclear [15]. A further development of
EDA are the quantum-inspired algorithms as discussed further in this chapter.

7.1.7 Artificial Life Systems

The main characteristics of life are also main characteristics of a modelling para-
digm called Artificial Live (ALife), namely:

(1) Self-organisation and adaptation
(2) Reproducibility
(3) Population/generation based.

A popular example of an ALife system is the so called Conways’ Game of Life
[16]: Each cell in a 2D grid can be in one of the two states either “on” (alive) or
“off” (dead, unborn). Each cell has eight neighbours, adjacent across the sides and
corners of the square.
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Whether cells stay alive, die, or generate new cells depends upon how many of
their eight possible neighbours are alive and is based on the following transition
rule:

Rule S23/B3: A live cell with two live neighbours, or any cell with three
neigbhours, is alive at the next time step.

Example 1: If a cell is off and has 3 living neighbours (out of 8), it will become
alive in the next generation.

Example 2: If a cell is on and has 2 or 3 living neighbours, it survives;
otherwise, it dies in the next generation.

Example 3: A cell with less than 2 neighbours will die of loneless and a cell
with more then 3 neighbours will die of overcrowding.

In this interpretation, the cells (the individuals) never change the above rules and
behave in this manner forever (until there is no individual left in the space). A more
intelligent behaviour would be if the individuals change their rules of behaviour
based on additional information they are able to collect. For example, if the whole
population is likely to become extinct, than the individuals would create more
offspring, and if the space became too crowded, the individual cells would not
reproduce every time they are “forced” to reproduce by the current rule. In this case
we are talking about emerging intelligence of the artificial life ensemble of indi-
viduals. Each individual in the Game of Life can be implemented as an ECOS that
has connections with its neighbours and has three initial exact (or fuzzy) rules
implemented, but at a later stage new rules can be learned.

7.2 Quantum Inspired Evolutionary Computation:
Methods and Algorithms

7.2.1 Principles of Quantum Information Processing

Early 20th century experiments on particle and radiation physics showed that the
subatomic size objects sometimes seemed to possess corpuscular and sometimes
undulatory nature. Hence it was obligatory to rebuild the whole picture of micro-
world by developing a new kind of physics which would describe, explain, and
predict the behaviour of object of very small size. The new physics launched in the
first decades of 20th century was called quantum physics, and a more than a century
after the beginning, its development work is still going on.

A most interesting feature of quantum physics is the principle of superposition.
The machinery of classical physics allows constructions of new mixed states (which
correspond to a probability distributions of pure states), and so does also quantum
physics. Quantum physics allows also the construction of new pure states as
superpositions of existing ones (for exact definitions of the terminology used here,
we refer to [17–20]).
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All information in the physical world is anyway represented by some physical
system, and therefore also the nature of the information is affected by the nature of
the physical world. It turns out that the information represented by quantum
physical systems, quantum information differs from its classical counterpart in
many notable parts, for example, it turns out that quantum information cannot be
cloned arbitrarily [17]. As classical computing can be described as manipulating
classical information, quantum computing is, in the same spirit, manipulation of
quantum information. It is possible that the properties of quantum information help
in resolving some computational tasks essentially more efficiently than classical
information allows. In fact this was suggested already in [18], but a most interesting
example was given in a very remarkable discovery where Shor [19] demonstrated
that quantum computers would allow efficient integer factorization, a task assumed
impossible for classical information processing. For a presentation of notable
quantum algorithms, we refer to [20]. It is worth emphasizing here that the effi-
ciency of quantum computing comes from ingenious use of superposition principle,
not from the high “clock frequency” of quantum computers.

The mathematical machinery behind quantum physics is sometimes regarded as
very involved, but its core is very straightforward. For the purposes of discrete
information processing it is sufficient to consider only finite-level quantum systems
with fixed set of physical observables, which will lead essentially to the following
mathematical representation: A quantum system with n perfectly distinguishable
states is represented by using an n-dimensional vector space Hn over complex
numbers (Hilbert space). Any state of the system is an n� n complex matrix q
which is positive semidefinite, self-adjoint (meaning that q ¼ q�, where q� is the
transpose of the complex conjugate of q, and has unit trace (tr qð Þ ¼ 1, where tr qð Þ
stands for the sum of diagonal elements of q). Such a matrix is called a density
matrix.

By fixed set of observables we mean that that we fix an orthonormal basis of Hn

to be the preferred basis, call the basis elements 0j i; 1j i; . . .; n� 1j if g, and say that
the system represents one of the values 0, 1, … n� 1. For any basis element ij i we
define a projection matrix Pi, which is a diagonal matrix with 1 as the ith and 0 as
the other diagonal elements. So-called minimal interpretation of quantum physics
then tells that tr Piqð Þ is the probability of seeing the quantum system in state q to
present value i. The minimal interpretation is hence an axiom relating the mathe-
matical objects of quantum physics to statistical data obtained by observing
quantum systems.

Quantum states q evidently form a convex set, meaning that whenever q1 and q2
are density matrices, so is pq1 þ 1� pð Þq2 for any p 2 0; 1½ �. The extremals of the
convex state set are called pure states, and it turns out that the pure states are
characterized by the property q2 ¼ q. Pure states are hence projections onto
one-dimensional subspaces and can therefore be presented by vectors instead of
matrices. In so-called vector state formalism a pure state q is hence replaced with a
unit length-vector w ¼ a0 0j i þ a1 1j i þ � � � þ an�1 n� 1j i, and the minimal
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interpretation turns into the following form: quantum system in pure state w is seen
to present value i with probability aij j2 (mathematical details can be found in [13]).

The most well-known example of a quantum system is given when n ¼ 2 and
state is pure: The state of the system can then be written as w ¼ a0 0j i þ a1 1j i,
where a0j j2 þ a1j j2¼ 1. Such a system is called a quantum bit or qubit in a pure
state.

The way to represent joint quantum systems is via tensor product construction: If
q1 and q2 are states of quantum systems 1 and 2, respectively, then q1 	 q2 is a
state of the compound system. Especially, in the pure state formalism, this means
that the basis vectors to represent multiple quantum bits (n) can be chosen as tensor
products 0j i 	 0j i 	 � � � 	 0j i, etc., for which shorthand notations
0j 0. . .00i; 00. . .01j i; 00. . .10j i; 00. . .11j ;i. . .; 11. . .11j i are commonly used. Hence
a general pure state of n quantum bits can be written as

a0 0j 0. . .00iþ a1 00. . .01j i þ a2 00. . .10j i þ a3 00. . .11j i þ a2n�1 11. . .11j i ð7:5Þ

where a0j j2 þ a1j j2 þ a2j j2 þ � � � þ a2n�1j j2¼ 1, and aij j2 stands for the probability
that when observing state (line01), the bit string b1b2. . .bn representing number i is
seen. Generally, a pure state in Hn 	 Hm is said to be decomposable, if it can be
written as xj i 	 yj i, where xj i 2 Hn and yj i 2 Hm. State which is not decompos-
able, is entangled. Especially, a fully decomposable state (Eq. 7.1) can be written as

a1 0j i þ b1 1j ið Þ 	 a2 0j i þ b2 1j ið Þ 	 a3 0j i þ b3 1j ið Þ 	 � � � 	 an 0j i þ bn 1j ið Þ ð7:6Þ

where aij j2 þ bij j2¼ 1 and aij j2 ( bij j2) is the probability of seeing 0 (1) when
observing the ith quantum bit. Now comparison of Eqs. 7.5 and 7.6 shows that the
former requires 2n complex numbers, but the latter, fully decomposable state only
2n complex numbers. It follows that the decomposable state (Eq. 7.6) can be
simulated by using classical computers in real time, meaning that the simulation
time grows linearly with the number of qubits. The disadvantage of concentrating
only on states of form (Eq. 7.6) is that those states do not fully exploit the features
of quantum physics, but we may rather speak about quantum-inspired systems
which make use of states of form (Eq. 7.6).

A (discrete) time evolution of a quantum system is depicted via completely
positive mappings: A state q1 transforms into q2 ¼ V q1ð Þ, where V : LðHnÞ !
LðHnÞ is a completely positive mapping (see [21] for exact definitions). We say that
the quantum system is closed, if its time evolution can be written as V qð Þ ¼ UqU�,
where U is a unitary mapping. It follows that for pure states, the time evolution can
be written as xj i ! U xj i, where U is unitary.

Quantum information principles, such as superposition, entanglement, interfer-
ence, parallelism and other have been studied by a famous scientists, including Max
Planck, Albert Einstein, Niels Bohr, W.Heisenberg. Ernest Rutherford (1871–
1937) discovered that the atom is almost empty space, except a small space in it,
where the total mass and energy of the atom is concentrated.
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7.2.2 Principles of Quantum Inspired Evolutionary
Algorithms (QEA)

A particular class of Quantum Evolutionary Algorithm (QEA) inspired by the con-
cept of quantum principle was proposed by Han and Kim [20]. Since then, a lot of
attention are drawn from researchers around the world on this technique with many
advantages when compared to the classical EA. Inheriting from the basic EA concept,
QEA is a population-based search method which simulates a biological evolution
process and mechanism, such as selection, recombination, mutation and reproduction.
Each individual in a population plays a role as a candidate solution and is evaluated
by a fitness function to solve a given task. However, instead of using scalar values,
information in QEA is represented in qubits so that, the value of a single qubit could
be 0, 1, or a superposition of both. This probability presentation has a better char-
acteristic of diversity than classical approaches. A single qubit which is the smallest

information unit can be defined as
a
b

� �
which satisfies the probability fundamentals

stating that aj j2 þ bj j2¼ 1. A QEA individual is represented as a qubit vector
a1
b1

j a2
b2

j . . .
. . .

j am
bm

� �
, where a and b are complex numbers defining probabilities at

which the corresponding state are likely to appear when a qubit collapses, for
instance, when reading or measuring its value. QEA have been reported to suc-
cessfully solve complex benchmark problems such as numerical [22], multiobjec-
tive optimisation [23] and several real world problems such as in [21, 24].

Many applications have been developed so far using the principles of QiEC,
such as:

– Specific algorithms with polynomial time complexity for NP-complete problems
(e.g. factorising large numbers, [19]; cryptography)

– Search algorithms [25], (having O(N1/2) versus O(N) complexity)
– Quantum associative memories [26]
– Quantum inspired evolutionary algorithms and neural networks [25, 27–30]
– Algorithms for quantum computers even though such computers are still not

available.

7.2.3 Quantum Inspired Evolutionary Algorithm (QiEA)

Defoin-Platel et al. [28] and Schliebs et al. [29] proposed an extended version of
QEA. In [28] authors proposed a revisited description of QEA which I am going to
summarize here. QiEA is a population-based search method. Its behaviour can be
decomposed in three different and interacting levels see Fig. 7.3 and the explana-
tion below.
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Fig. 7.3 The QiEA block diagram (from [28])
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Quantum individuals

The lowest level corresponds to quantum individuals.
A Qindividual i at generation t contains a Qbit string QiðtÞ and two binary strings

CiðtÞ and AiðtÞ. More precisely Qi corresponds to a string of N concatenated Qbits:

Qi ¼ Q1
i Q

2
i . . .Q

N
i ¼ a1i a2i . . . aNi

b1i b2i . . . bNi

� �
ð7:7Þ

For the purpose of fitness evaluation each Qi is first sampled (or collapsed) to
form a binary individual Ci.

Each Qbit in Qi is sampled according to a probability defined by b j
i

�� ��2. Thus Ci

represents a configuration in the search space which quality can be classically
determined using a fitness function f. In the sense of EA, Qi is the genotype while
Ci is the phenotype of a given individual. In the sense of EDA, Qi defines a
probabilistic model

Pi ¼ b1i
�� ��2. . . bNi�� ��2h i

ð7:8Þ

while Ci is a realization of this model.
To each individual i a solution Ai is attached acting as an attractor for Qi. Every

generation Ci and Ai are compared in terms of both fitness and bit values. If Ai is
better than Ci (f ðAiÞ[ f ðCiÞ assuming a maximization problem) and if their bit
values differ, a quantum gate operator is applied on the corresponding Qbits of Qi.
Thus the probabilistic model Pi defined by Qi is slightly moved toward the attractor
Ai.

The update policy of an attractor Ai can follow two distinctive strategies. In the
original QEA [20] an elitist update strategy was used, in which the attractor Ai is
replaced by Ci only if Ci is better than Ai. In a non-elitist update strategy (firstly
introduced in [28]) Ci replaces Ai at every generation. The choice of the update
policy has great consequences for the algorithm and changes its behaviour com-
pletely. To emphasize the importance of the update rule the non-elitist version of
QEA has been proposed as Versatile QEA (vQEA) [28] as the attractors are able to
change every generation and therefore demonstrate a very high volatility. In the
next section we give a more detailed explanation of the role of elitism.

In classical EA variation operators like crossover or mutation operations are used
to explore the search space. The quantum analogue for these operators is called a
quantum gate. In this study, the rotation gate is used to modify the Qbits. The jth
Qbit at time t of Qi is updated as follows:
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a j
i ðtþ 1Þ

b j
i ðtþ 1Þ

� �
¼ cosðDhÞ � sinðDhÞ

sinðDhÞ cosðDhÞ
� �

a j
i ðtÞ

b j
i ðtÞ

� �
ð7:9Þ

where the constant Dh is a rotation angle designed in compliance with the appli-
cation problem [30]. I note that the sign of Dh determines the direction of rotation
(clockwise for negative values). In this study the application of the rotation gate
operator is limited in order to keep h in the range ½0; p=2�.
Quantum Groups

The second level corresponds to quantum groups. The population is divided into
g Qgroups each containing k Qindividuals having the ability of synchronizing their
attractors. For that purpose, the best attractor (in terms of fitness) of a group, noted
Bgroup, is stored at every generation and is periodically distributed to the group
attractors. This phase of local synchronization is controlled by the parameter Slocal.

Quantum Population

The set of all p ¼ g� k Qindividuals forms the quantum population and defines
the topmost level of QEA. As for Qgroups, the individuals of a Qpopulation can
synchronize their attractors. For that purpose, the best attractor (in terms of fitness)
among all Qgroups, noted Bglobal, is stored every generation and is periodically
distributed to the group attractors. This phase of global synchronization is con-
trolled by the parameter Sglobal.

We can note that in the initial population all the Qbits are fixed with aj j2¼
bj j2¼ 1=2 so that the two states “0” and “1” are equiprobable in collapsed
individuals.

The QiEA is much faster to arrive at a global optimum than the exhaustive (grid)
search and the GA methods as shown in Fig. 7.4, as it requires several magnitudes
less number of iterations (evaluations).

7.2.4 Versatile QiEA (VQiEA)

In this section we present an improved version of QEA, called the Versatile
Quantum-inspired Evolutionary Algorithm

(vQEA) avoiding the weaknesses reported above [28].

Description of vQEA

In order to prevent both the case of irreversible choice and the hitchhiking
phenomenon, the strategy for updating attractors is modified. We introduce a new
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parameter controlling this strategy based on elitism. In the classical QEA, the
update procedure (called attractor update in Fig. 7.12) applies elitism such that an
attractor Ai is replaced by Ci only if Ci is better. With vQEA this parameter is
simply switched off. Therefore the attractors are replaced at every generation
without considering their fitness and so they demonstrate a very high volatility.
Moreover to ensure the convergence of vQEA, the global synchronization is also
performed every generation in such way that all the attractors are identical and at
generation t + 1 corresponds to the best solution found at generation t.

We note that with such a setting, the group size n and local synchronization
parameters Slocal do not affect the algorithm anymore. With vQEA the information
about the search space collected during evolution is not kept at the individual level
but continuously renewed and shared among the whole population2. Nevertheless
we think that the concept of group, which is similar to demes in classical EA, is
interesting and we do not intend to remove it definitely. In this study, we avoid the
tuning of n and Slocal and concentrate on the effects of removing elitism from
QEA. Thus the simplified sequential procedure of vQEA is detailed in the
Algorithm in Box 7.4. The sets of all the quantum individuals, collapsed individ-
uals and attractors at generation t are noted Q(t), C(t) and A(t) respectively.

Fig. 7.4 QiEA converge to an optimal solution in less number of generations (interactions,
evaluations) and are applicable to a largere dimensionality space of variables for optimisation
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________________________________________________________________________________ 

Box 7.4. The versatile quantum-inspired EA (vQEA)

_______________________________________________________________________________ 

Algorithm.  The Versatile Quantum-inspired EA (vQEA) 

1: t  0 

2: initialize Q(t) 

3: while not termination condition do 

4: make C(t) by observing the states of Q(t) 

5: evaluate C(t) 

6: store the best C(t) into Bglobal(t) 

7: do global synchronization of A(t) 

8: update Q(t) to Q(t + 1) using QGate 

9: t  t + 1 

10: end while 

__________________________________________________________________ 

Figure 7.5 shows a hypothetical example of state convergence to local minima
for a system described by a qbit register (chromosome) over 5 applications of a
rotation quantum gate operator. The darker points represent system states described
by the qubit vector that have a higher probability of occurrence.

Fig. 7.5 A hypothetical example, where the vQEA arrives at the optimal solution for a bench
mark high dimensional problem in 5 iterations (generations), when compared to thousands
iterations needed by traditional EC methods
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7.2.5 Extension of the VQiEA to Deal with Continuous
Value Variables

Since we want to consider also continuous search spaces now, we have to replace
the Bernoulli distribution by a continuous one, such that it becomes possible to
sample real values instead of discrete ones [29]. A number of approaches how to
employ such distributions and how to model them have been studied in literature.
Generally they are based on Gaussian distributions [31–35], histograms [31], or
interval representations [36]. We consider a continuous EDA based on Gaussian
distributions here.

For each dimension j of the continuous search space and for each probabilistic
model i, a random variable following a Gaussian distribution is evolved. Therefore
the distribution is fully described by two parameters: The mean and the standard
deviation ri. In each generation samples are drawn forming real-valued vectors,
whose quality can be evaluated by the fitness measure. An update rule is then
applied to update µ(j) and r(j) to move the search towards promising areas in the
search space, making higher quality solutions more likely to be sampled in the next
generation. We will first describe the basic structure of algorithm in detail, followed
by the presentation of the chosen update rule.

The overall structure of the proposed extension is almost identical to vQEA.
Like vQEA also the continuous version is a population-based search method [29].
Its behavior can be decomposed in three different interacting levels: Individual,
group and population level.

Individuals. The lowest level corresponds to individuals. An individual i at
generation t contains a probabilistic model Pi(t) and two real-valued strings
Ci(t) and Ai(t). More precisely Pi corresponds to a string of N pairs of values.

The pair (µ(j), r(j)) corresponds to the parameters of the distribution of the jth
variable of the ith probabilistic model. Each variable in Pi is sampled according to
µ(j) and r(j), so that Ci represents a configuration in the search space whose quality
can be determined using a fitness function f . In most continuous optimization
problems, the variables have a specific domain of definition. Without loss of
generality we assume each c jð Þ 2 Ci to be defined into the interval [−1, 1]. As a
consequence, each c jð Þ 2 Ci follows a truncated normal distribution in the range
[−1, 1]. Truncated normals can be sampled using a simple numerical procedure and
the technique is widely adopted in pseudo-random number generation, see e.g. [37]
for an efficient implementation.

To each individual i a solution Ai is attached acting as an attractor for Pi. Every
generation Ci and Ai are compared in terms of their fitness. If Ai is better than Ci (i.e.
f (Ai) > f (Ci) assuming a maximization problem), an update operation is applied on
the corresponding model Pi. The update will move the mean values of the proba-
bilistic model Pi slightly towards the attractor Ai. The choice of a suitable model
update operation is critical for the working of the algorithm. We will elaborate the
details of the model update in a later section.
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The update policy of an attractor Ai can follow two distinctive strategies. In the
original QEA [20], an elitist update strategy was used, in which the attractor Ai is
replaced by Ci only if Ci is better than Ai in terms of fitness. In a non-elitist update
strategy (firstly introduced in [28]) Ci replaces Ai at every generation. The choice of
the update policy has great consequences for the algorithm and changes its behavior
completely. To emphasize the importance of the update rule the non-elitist version
of QEA has been proposed as Versatile QEA (vQEA) as the attractors are able to
change every generation and therefore demonstrate a very high volatility. Since no
experimental condition could be identified that favored the elitist attractor update
policy, we will concentrate on the non-elitist version during the course of this paper.

Groups. The second level corresponds to groups. The population is divided into
g groups each containing k individuals having the ability of synchronizing their
attractors. For that purpose, the best attractor (in terms of fitness) of a group, noted
Bgroup, is stored at every generation and is periodically distributed to the group
attractors. This phase of local synchronization is controlled by the parameter Slocal.

Population. The set of all p = g � k individuals forms the population and
defines the topmost level of the multi-model approach. As for the groups, the
individuals of the population can synchronize their attractors, too. For that purpose,
the best attractor (in terms of fitness) among all groups, noted Bglobal, is stored
every generation and is periodically distributed to the group.

Figure 7.6 shows the update operation for a single Gaussian random variable.
For each update the distance d = a(t) − µ(t) between the attractor a(t) and the mean
µ(t) of the Gaussian is computed at generation t. (a) If d � r(t) the attractor is
considered distant. We interpret that situation by assuming that µ(t) does not rep-
resent a promising area in the search space. In this case the mean µ(t) is strongly
shifted towards the attractor, while at the same time the standard deviation r(t) is
increased to allow a wider search in the fitness landscape. (b) On the other hand, if
the attractor is inside the boundaries defined by r(t), i.e. d < r(t), we assumed that
µ(t) is already in a promising area of the search space. The algorithm starts to
localize the search by shifting µ(t) only slightly towards the direction of the

(t) (t +1) a (t)

Fig. 7.6 Quanutm encoding of continuos value variables using Gaussion functions
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attractor, while decreasing r(t) at the same time. This phase of global synchro-
nization is controlled by the parameter Sglobal.

(a) Update operation for distant attractors
(b) Update operation for close attractors.

Model Update

The update of the probabilistic model is in particular interesting, since it governs
how the search space is explored by the algorithm. Several continuous EDA have
been proposed in literature ([31, 34, 35, 38, 39]), along with a number of different
update rules, e.g. ([31, 32]). The common principle of all these continuous EDA is
based on the sampling of a population. In vQEA (and thus also its extension) the
situation is very different, since only a single solution (for each probabilistic model)
is sampled in every iteration. Hence the model update can not rely on the density of
a population, but has to use a single attractor instead to perform the desired update.

We formulate here an appropriate update rule for the probabilistic models.
Updating the mean µ(j) in the Gaussian variable j appears to be straight forward. We
adopt a mean shift towards the value of the current attractor a(j) at location j, which
is quite similar to the mean update used in methods mentioned above. Depending
on the distance d = a(j) − µ(j) a shift Δµ(j) is computed at generation t which is then
used to perform the update:

lðjÞðtþ 1Þ ¼ lðjÞðtÞþ hlDl
ðjÞðtÞ ð7:10Þ

In Eq. (7.10) a parameter hµ is introduced, which we will refer to as the learning
rate of the mean. We note that hµ corresponds to the maximum mean shift in a
single generation.

For the update of the standard deviation r(j) we will exploit the idea that r(j)

should decrease whenever µ(j) represents a “promising” area in the fitness land-
scape. We assume µ(j) to be “fit” when |d| < r(j). Thus, if the attractor a(j) is close to
µ(j) (within the boundaries defined by r(j)), the standard deviation r(j) is decreased.
It is noteworthy that solutions fulfilling this condition are more likely to be sam-
pled, than other solutions, which means that on average r(j) will decrease.
Attractors that are more distant to µ(j) and thus |d| � r(j), will cause an increase of
r(j), since it can be assumed that µ(j) does not represent a promising area in the
landscape. We define the standard deviation shift Δr(j) at generation t as:

Dr jð Þ tð Þ ¼ 1
1þ e�10ðr jð Þ tð Þ � 0:5Þ ð7:11Þ

and then use it to perform the update restrict the domain of r(j) by defining upper
and lower bounds, such that
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rmin 
 rðjÞ 
 rmax ð7:12Þ

It is important to note, that the probabilistic update operator described above, is
similar to the rotation gate used in QEA. As shown in [40] the size of an update step
using the rotation gate depends on the convergence of the probabilistic model. This
phenomenon was described as a form of deceleration of the algorithm before
convergence. The sigmoid shape of the standard deviation update adopts a similar
strategy, since also here the size of the shift Δr(j) decreases with increasing con-
vergence of the algorithm.

Combined Search Spaces
Many real-world problems require the exploration of combined search spaces: a

binary and a continuous space. An example is the parallel evolution of the topology and
the weight matrix of a neural network. Here the topology is encoded as a bit string,
where “1” represents a present connection between two neurons and “0” encodes its
absence. Another example is the wrapper based feature selection, where the presence/
absence of a feature requires a binary search space, while appropriate configurations for
the classification method may correspond to a continuous landscape.

It is now possible to employ vQEA on combined search spaces with two types of
representation. Each representation uses its corresponding update operator to drive
the probabilistic model towards promising areas in the search space. In every
generation the models are sampled and then evaluated by a single fitness measure.
The fitness evaluation uses the sampled binary and continuous solution part to
determine the quality of the combined solution. According to the fitness of the
obtained solution the models are updated. This extended vQEA allows us to
enhance the original QiSNN.

We emphasize that the extended vQEA [29] is similar to a collaborative coevo-
lutionary algorithm [41]. The evolution of the two representations proceeds more or
less independently from each other. Both use their own solution representations and
update operators and may explore their search space with different learning rates.
Despite their independent evolution both representations share a single fitness
function. The binary and continuous sub-solutions are the components of a combined
solution, and both parts need to collaborate in order to maximize their fitness.

7.3 Quantum Inspired Evolutionary Computation
for the Optimisation of SNN

7.3.1 A Quantum-Inspired Representation of a SNN

The approach to use QiEA for the optimization of SNN is based on the following
principles [42–44]:

(a) A quantum probabilistic representation of a spike: A spike, at any time t, is
both present (1) and not present (0), which is represented as a qbit defined by a
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probability density amplitude. When the spike is evaluated, it is either present
or not present. To modify the probability amplitudes, a quantum gate operator
is used, for example the rotation gate:

a j
i ðtþ 1Þ

b j
i ðtþ 1Þ

� �
¼ cosðDhÞ � sinðDhÞ

sinðDhÞ cosðDhÞ
� �

a j
i ðtÞ

b j
i ðtÞ

� �
ð7:13Þ

More precisely, a spike arriving at a moment t at each synapse Sij connecting a
neuron Ni to a pre-synaptic neuron Nj, is represented as a qbit Qij(t) with a
probability to be in state “1” bij(t) (probability for state “0” is aij(t)). From the
SNN architecture perspective this is equivalent to the existence (non-existence)
of a connection Cij between neurons Nj and Ni.

(b) A quantum probabilistic model of a spiking neuron: A neuron Ni is represented
as a qbit vector, representing all m synaptic connections to this neuron:

a 1
b 1

a 2
b 2

���� � � �
� � �
���� a m

b m

����
� �

ð7:14Þ

At time t each synapic qbit represents the probability for a spike to arrive at the
neuron. The neuron are collapsed into spikes (or no spikes) and the cumulative
input ui(t) to the neuron Ni is calculated.

All input features (x1, x2,…,xn), the eSNN parameters (q1,q2,…,qs), the con-
nections between the inputs and the neurons, including recurrent connections (C1,
C1,…, Ck) and the probability of the neurons to spike (p1,p2,…,pm) at time (t) are
represented in an integrated qbit register that is operated upon as a whole [42, 43].

This framework goes beyond the traditional “wrapper” mode for feature selec-
tion and modelling [45]. It was demonstrated that the vQEA is efficient for inte-
grated feature and SNN parameter optimisation in a large dimensional space and
also useful for extracting unique information from the modelled data [29]. All
probability amplitudes together define a probability density w of the state of a
probabiltiy spiking neuron model (PSNM) (see Chap. 4) in a Hilbert space. This
density will change if a quantum gate operator is applied according to an objective
criterion (fitness function). This representation can be used for both tracing the
learning process in an PSNM system or the reaction of the system to an input
vector.

(c) PSNN learning rules: As the PSNM is an eSNN, in addition to the eSNN
learning rules (Chap. 5) there are rules to change the probability density
amplitudes of spiking activity of a neuron. The probability bij(t) of a spike to
arrive from neuron Nj to neuron Ni (the connection between the two be present)
will change according to STDP rule, which is implemented using the quantum
rotation gate. In a more detailed model, bij(t) will depend on the strength and
the frequency of the spikes, on the distance Dij between neurons Nj and Ni, and
on many other physical and chemical parameters that are ignored in this model
but can be added if necessary.
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(d) The principle of feature superposition representation [43, 44]: A vector of n
qbits represents the probability of using each input variable x1, x2,…,xn in the
model at a time t. When the model computes, all features are “collapsed”,
where “0” represents that a variable is not used, and “1”—the variable is used.

• The principle of feature superposition [44]:
At any time moment (t) a feature related to a given task is in a superposition of
both present and not present states for a computational model, defined by the
probability density amplitude. Before the model computes, a feature’s state is
collapsed into present or not present.

• Useful to capture patterns of interaction between features for a problem
• Integrates the environment with the model for a combined optimisation
• Useful to represent “floating features”
• The VQiEA performs much faster and more accurately than classical algorithms

when evaluating combinations of interacting features, for a classification task.

Here the vQEA is applied for Evolving Spiking Neural Network (eSNN) opti-
misation (see Fig. 7.7). The result produces a faster convergence to the optimal
solution with better accuracy when compared to traditional neural networks such as
multilayer perceptrons and Naïve Bayesian Classifier (NBC).

SNN parameters optimised together with the features are: synaptic learning
modulation factor; PSP threshold parameter; max # of output neurons per class [46].

Fig. 7.7 Integrated feature and eSNN parameter optimisation using quantum inspired evolution-
ary computation
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7.3.2 Application of QiEA for the Optimisation of ESNN
Classifier on Ecological Data

In [46] the original QiSNN framework was applied on an ecological modeling
problem. Because of the promising results obtained from the benchmark studies
before, we wanted to revisit the ecological data using the enhanced QiSNN for
feature selection. For many invertebrate species little is known about their response
to environmental variables over large spatial scales. That knowledge is important in
order to predict the establishment of a species, that has the potential to cause great
environmental harm. The usual approach to determine the importance of a range of
environmental variables, that explain the global distribution of a species, is to train
or fit a model to its known distribution using environmental parameters measured in
areas where the species is present and where it is absent. In this study, meteoro-
logical data that comprised 68 monthly and seasonal temperature, rainfall and soil
moisture variables for 206 global geographic sites were compiled from published
records [47]. These variables were correlated to global locations where the
Mediterranean fruit-fly (Ceratitis capitata), a serious invasive species and fruit pest,
were recorded at the time of the study, as either present or absent. The dataset is
balanced having equal number of samples for each of the two classes. Previous use
of MLP on the data results in a classification accuracy of approximately 71% [48].

The experimental setup defined in [46] was kept mostly unchanged here to allow
some comparison to previous results: Ten individuals are allowed to evolve in 4000
generations, statistical relevance is guaranteed by performing 30 independent runs
and averaging the results. The additional parameters for the mean and standard
deviation shift were set to hµ = 0.1 and hr = 0.01 respectively, the learning rate of
the binary model was h = p/100. Figure 7.14 presents the results of the revisited
experiment. Similar to the figures before the evolution of the average best feature
subset is shown, where the color reflects how often a specific feature was selected at
a certain generation. The comparison between NBC and the original QiSNN was
discussed in great detail in [46], thus we will concentrate on the discussion of the
performance of the two QiSNN only. Nevertheless the enhanced version reports
greater consistency in the feature rejection. Also the enhanced QiSNN selected
significantly less features than the original QiSNN. On average 14 features were
selected using QiSNN, 9 in case of the enhanced QiSNN and 18 using NBC.
Compared to the original QiSNN the enhanced version additionally rejected the
following features: temp1, temp3, TAut2, TSpr1, Tannual, rain10, RSumR2,
PEAnnual. The overall classification accuracy was similar between all tested
algorithms.

From an ecological point of view the evolved feature subsets are coherent with
the current knowledge in this area. Winter temperatures, autumn rainfall and the
degree-days (DD5 and DD15) were particularly strong features.
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Degree-days are the accumulated number of degrees of temperature above a
threshold temperature (5° and 15° in this case) over time (in this dataset over the
whole year). It would be expected that the latter two variables would be closely
correlated. These results correspond to other analysis where more conventional
statistical and machine learning methods were used to identify the contribution of
environmental variables to C. capitata presence or absence [49]. While there is no
indication from this analysis whether the features have a negative or positive effect
on the distribution of the species, it is known that C. capitata is limited by the
severity of temperatures in the winter and extremes of wet or dry conditions in the
summer and autumn [50].

Figures 7.8, 7.9 and 7.10 show some experimental results on this case study,
demonstrating integrated feature selection and model creation over 3000 genera-
tions of a QiEA, with a significant improvement of the accuracy of the eSNN
model.

7.3.3 Integrative Computational Neuro Genetic Model
(CNGM) Utilising Quantum-Inspired Representation

A schematic diagram of a CNGM is given in Fig. 7.11. The framework combines
ESNN and a gene regulatory network (GRN) [51]. The qbit vector for optimization
through the QEA is given in Fig. 7.12. In addition to the SNN parameters the
CNGM has gene expression parameters g1,g2,…gl, each of them also represented

Fig. 7.8 Evolution of the features on the climate data set using QiEA. The best accuracy model of
eSNN is obtained for 15 features
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Fig. 7.9 Evolution of classification accuracy of an eSNN classifier optimised with the use of
QiEA on the climate data set after 3000 generations

Fig. 7.10 Evolution of features over 3000 generations for the case study problem using QiEA and
an eSNN as a classifier
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as a qbit with two states (state “1”—gene is expressed; state “0”—gene is not
expressed” 0). Each link Li (i = 1,2,…,r) between two genes in the GRN is rep-
resented as a quantum bit with 3 states (“1” positive connection; “0”—no con-
nection; “−1”—negative connection).

7.4 Quantum Inspired Particle Swarm Optimisation

7.4.1 Quantum Inspired Particle Swarm Optimisation
Algorithms

Particle Swarm Optimisation (PSO) is a population based optimisation technique,
developed by Eberhart and Kennedy in 1995 [6] as already presented in a previous
section of this chapter. Individuals in PSO work together to solve a given problem,
by responding to their own performance and the performance of the other particles
in the swarm. Each particle has their own fitness value calculated during the
optimisation process and the best fitness value achieved so far is stored and nor-
mally referred to as personal best or individual best (pbest). The overall best fitness
value obtained by any particle in the population so far is called global best (gbest)

Fig. 7.11 A schematic diagram of a neurogenetic SNN model. Each spiking neuron includes a
gene regulatory network (GRN) model as parameters (after [51])

x1 x2 … xn q1 q2 .. qs C11 C12 .. Cmm P1 … pm
g1 .. gk L11 .. Lkk

(b) Input features    / NN p parameters / NN connections/ Probability of  neurons spiking/Genes on/off  and their 

connections

Fig. 7.12 In addition to SNN parameters, a quantum chromosome of CNGM represents in a qbit
register gene expression levels (g1,g2,…,gl) and the connections between the genes (L1,…,Lr) in
the GRN
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which stores the best solution. Particle accelerates towards a new position by cal-
culating the position velocity where the value of pbest and gbest would influence
the direction of the particle in the next iteration. Equation 7.15 illustrates the
velocity update and Eq. 7.16 is the calculation of the new particle position.

vn ¼ w � vnt�1 þ c1 � randðÞ � ðgbestn � xnÞþ c2 � randðÞ � ðpbestn � xnÞ ð7:15Þ

xn ¼ xnt�1 þ vn ð7:16Þ

where value of the random number is between 0 and 1. c1 and c2 control the particle
acceleration towards personal best or global best.

However, standard PSO is inadequate for a problem requiring a probability
computation. Therefore, quantum principles have been embedded in PSO as a
mechanism for the probability calculation and normally referred as Quantum
inspired Particle Swarm Optimisation (QiPSO). QiPSO was first discussed in [30]
and the main idea of QiPSO is to use the standard PSO function to update the
particle position represented as a quantum angle (h). Quantum angle h can be

represented as
cosðhÞ
sinðhÞ

� �
, and it is equivalent to

a
b

� �
which satisfies the probability

fundamental of sinðhÞj j2 þ cosðhÞj j2¼ 1. The velocity update formula in standard
PSO is modified to get a new quantum angle which is translated to the new
probability of the qubit by using Eq. 7.17.

Dhn ¼ w � Dhnt�1 þ c1 � randðÞ � ðhgbestn � hnÞþ c2 � randðÞ � ðhpbestn � hnÞ
ð7:17Þ

Then, based on the new h velocity, the new probability of a and b is calculated
using a rotation gate as follows:

a
b

� �
¼ cosðDhÞ � sinðDhÞ

sinðDhÞ cosðDhÞ
� �

at�1

bt�1

� �
ð7:18Þ

or by replacing the rotation gate with ht ¼ ht�1 þDh where h is the new quantum
angle of the quantum particle position.

7.4.2 Quantum Inspired Particle Swarm Optimisation
Algorithm (QiPSO) for the Optimisation of ESNN

The algorithm for the method is presented in Box 7.5 [30].
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1:  for all particle do

2:      for all ESNN parameters do

3:           for all qubit do

4:               initialise θ

5:               get a collapsed state 

6:           end for

7:          convert binary string to real value using Gray code 

8:      end for

9:      for all feature qubits do

10:          initialise θ

11:           get a collapsed state  
12:      end for

13:      initialise fitness 

14:  end for

15:  while not reaching maximum iteration do
16:      for all particle do

17:          get fitness from ESNN (accuracy of classification) 

18:          if current fitness better than pbest fitness then

19:               assign current particle as pbest

20:              if current pbest fitness better than gbest fitness then

21:                   assign pbest as gbest

22:               end if
23:           end if

24:           for all ESNN parameters do

25:               for all qubits do

26:                   calculate velocity  

27:                   apply rotation gate 

28:                   get a collapsed state 

29:               end for
30:               convert binary string to real value using Gray code 
31:           end for

32:           for all feature qubits do

33:               calculate velocity 

34:               apply rotation gate 

35:               get a collapsed state 

36:           end for
37:      end for

38:  end while

____________________________________________________________________________________________ 
Box 7.5. Integrated ESNN-QiPSO algorithm 

Algorithm  Integrated ESNN-QiPSO 
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7.4.3 Dynamic QiPSO

Here a method called Dynamic QiPSO (DQiPSO) is presented [52–54]. We apply
this method as a model optimizer. This method further develops our previous QiPSO
method [30], which may ‘miss’ to find optimal model parameter values when only
using binary QiPSO. As the information is represented in the binary structure, the
conversion from binary to real value may lead to inaccuracy especially if the number
of the qubits selected to represent a parameter value is not sufficient. To overcome
this problem, a combination of QiPSO and standard PSO is proposed where the
QiPSO performs the probability calculation for feature selection task while standard
PSO optimizes the parameters. This method not only effectively solves this problem
but also eliminates one parameter which is the number of qubits to represent
parameter values. The DQiPSO particle structure is depicted in Fig. 7.13.

Another element of enhancement from the previous method is the improvement
in feature selection strategy. Standard PSO searching strategy is based on the
random selection at the beginning of the process and each particle will update itself
based on the best solution found subsequently. A major problem in this technique is
having the chance of the relevant features not being selected at the beginning and
affecting other particles in the entire process. This is due to each particle updating
itself according to the particle without the relevant features. This problem does not
only happen to the high dimensional problem, but also to the small dimensional
problem. Therefore, a new strategy is proposed. Apart from the normal particle
which updates itself based on the pbest and gbest information, where we referred as
Update Particles, a new type of particles are added to the swarm, namely Random
Particles and Filter Particles. Random particle randomly generates a new set of
features and parameters in every iteration and increases the robustness of the search.
While for the Filter Particles, it selects one feature at a time and feeds it to the
networks and calculates the fitness value. This process is repeated to all features.
After all features have been evaluated, the feature with fitness above threshold value
will be considered as relevant. The threshold value is the average fitness value or

Fig. 7.13 a The proposed hybrid particle structure in DQIPSO [53, 54] and b DQIPSO feature
selection strategy
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can be manually adjusted. For the following iteration, features which are considered
relevant will be randomly selected in order to find the best combination of relevant
features. This strategy helps to solve unevaluated relevant features problem,
reducing the search space and facilitating the optimizer in finding relevant features
faster. Like other particles, if the Random Particles and Filter Particles are found to
be the best solution, it will be stored as a gbest and Update Particles will update
their position based on this new information. Some improvement in the update
strategy is also proposed where gbest particle will only be replaced by new particles
if the fitness is higher or has the same fitness value but with lower number of
selected features. Due to the robust search space by DQiPSO, fewer particles are
needed to perform the optimisation tasks which translates to faster processing time.
The structure of this strategy is illustrated in Fig. 7.13.

7.4.4 Application of DQiPSO for Feature Selection
and Model Optimisation

Using the well-known wrapper approach as described in [55–57], we introduce here
a method for eSNN optimisation utilizing the DQiPSO method from above, first
published in [52–54]. The QiPSO part of the DQiPSO method is used to optimise
the features of the model while the PSO part of the DQiPSO method is used in a
co-evolutionary mode to optimised the parameters of the eSNN. These parameters
are: Modulation Factor (Mod); Proportion Factor (C) and Similarity (Sim) as
described later and also in [44, 58]. All particles are initialized with random values
and subsequently interacted with each other based on objective function—classi-
fication test accuracy. Since there are two components to be optimized, each particle
is divided into two parts. The first part of each hybrid particle holds the feature
mask where information is stored in a string of qubit which value 1 represents the
feature selected, and value 0, otherwise. Another part holds parameters of eSNN.
The proposed integrated framework is shown in Fig. 7.14.

The architecture of eSNN in this paper is based on the model from [44, 59]. This
model consists of the encoding method of real value data to spike time, network
model and learning method. Implementation for the information encoding methods
is based on Population Encoding as proposed in [60] where a single input value is
encoded to multiple input neurons (see also Chap. 4). The firing time of an input
neuron i is calculated using the intersection of Gaussian function. The centre is
calculated using Eq. 7.19, and the width is computed using Eq. 7.20 with the
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variable interval of Imin; Imax½ �. The parameter b controls the width of each Gaussian
receptive field.

l ¼ Imin þð2 � i� 3Þ=2 � ðImax � IminÞ=ðM � 2Þ ð7:19Þ

r ¼ 1=bðImax � IminÞ=ðM � 2Þwhere 1
 b
 2 ð7:20Þ

Thorpe’s model [60] has been selected for the eSNN model because of its
effectiveness and simplicity. The fundamental aspect of this model is that earlier
spikes received by a neuron, have a stronger weight compared to later spikes. Once
the neuron reaches a certain amount of spikes and the Post-Synaptic Potential
(PSP) exceeds the threshold value, the neuron fires. Afterwards it becomes disabled.
The neuron in this model can only fire once for a given stimulus. The computation
of PSP of neuron i is presented in Eq. 7.21,

Ni ¼ 0 if firedP
wji �ModorderðjÞi else

�
ð7:21Þ

where wji is the weight of pre-synaptic neuron j; Modi is a parameter called
modulation factor with interval of [0, 1] and orderðjÞ represents the rank of a spike
emitted by the pre-synaptic neuron. The orderðjÞ starts with 0 if it spikes first among
all pre-synaptic neuron and increases according to the firing time. For the eSNN’s
One-pass learning algorithm, each training sample creates a new output neuron.
Trained threshold value and the weight pattern for the particular sample are stored

Fig. 7.14 An integrated DQiPSO-eSNN framework for feature selection and model optimisation
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in the neuron repository. However, if the weight pattern of the trained neuron is con-
sidered too similar with the neuron in the repository, the neuron will merge into the most
similar one. The merging process involves modifying the weight pattern and the
threshold to the average value. Otherwise, it will be added as a newly trained neuron to
the repository. The major advantage of eSNN is the ability of the trained network to learn
new samples incrementally, without the need for the SNN to be retrained on both old and
new data. More details on eSNN can be found in Chap. 4 and also in [44] and [59].

The algorithm of an integrated ESNN and DQiPSO is given in Box 7.6.

Box 7.6. Integrated ESNN-DQiPSO 

Algorithm  Integrated ESNN-DQiPSO 

1:  for all particles do

2:      initialise all ESNN parameters 

3:      for all feature qubit do

4:          initialise θ

5:          get a collapsed state  

6:      end for

7:      initialise fitness 

8:  end for

9:  while not reaching maximum iteration do

10:      for all particle do

11:          get fitness from ESNN (accuracy of the model) 

12:          if (current fitness is better than pbest fitness) or ((current fitness == pbest

                                 fitness) and (feature selected is   less than feature selected by pbest)) 

then

13:               assign current particle as pbest

14:     if (current pbest fitness is better than gbest fitness) or ((current pbest fitness == gbest fitness) and (feature 

selected by pbest is less than feature selected by gbest)) then

15:                   assign pbest as gbest

16:               end if

17:           end if

18:           for all ESNN parameters do

19:               calculate velocity  

20:               update parameters  

21:           end for

22:           for all feature qubits do

23:               calculate velocity 

24:               apply rotation gate 

25:               get a collapsed state  

26:           end for

27:      end for

28:  end while
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The DQiPSO method is applied here for the optimisation of eSNN trained on the
two spirals benchmark classification problem. The problem is well known as a
difficult non-linear separation problem introduced in [61]. In order to evaluate the
performance in feature selection task, the two relevant data was copied with some
noise added to the original data. These redundant dimensions are generated by
adding a Gaussian noise using standard deviation of r ¼ pj j � s with pj j being the
absolute value of vector p while s is a parameter controlling the noise strength to the
original spiral points p ¼ ðx; yÞT . The noise increases linearly according to the
distant from the spiral origin ð0; 0ÞT . Then the noise value is calculated as the pi
centered Gaussian distributed random variable Nðpi;r2Þ. The information available
in a feature decreases when stronger noise is applied Fig. 7.15. In addition to this,
several irrelevant features with the random dimension value between [0,1] were
also added into the dataset. The dataset in this experiment consisted of 20 features
with 2 relevant features, 14 redundant features with the noise level s from 0.2 to 0.8
and four random features. Detailed explanation of the data generation can be found
in [29]. Then the features were arranged in a random order to simulate a real world
problem scenario where relevant features are scattered in the dataset. 400 samples in
two classes and equally distributed between classes was generated.

Based on our preliminary experiment, 20 eSNN receptive fields were chosen
with the center is uniformly distributed between the maximum and minimum value
of the data with the controlling parameter b is 1.0. For the DQiPSO, 12 particles
consisting of six Update Particles, four Filter Particles and two Random Particles
were used. For the standard QiPSO, 20 particles were used. c1 and c2 were set to
0.05 which meant a balanced exploration between gbest and pbest. The inertia
weight was set to w = 2.0. The dataset was applied to the proposed method and
compared with our previous method [30] and eSNN using all features where all
algorithms with parameter optimisation. 10 fold cross validation were used and the
average result was computed in 300 iterations.

Fig. 7.15 The two spirals benchmark data—the original data set and data sets with added various
levels of noise using added redundant and randomly generated features to the original 2 ones
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Figures 7.15 and 7.16 illustrate the selected features during the optimization
process over 300 iterations, when the results from the use of the QiPSO method and the
DQiPSO method are compared. Each model (particle) is trained and tested on the two
spirals data using the 10 fold cross validation method to estimate the classification
accuracy thus the fitness of the model. The lighter colour means more frequent cor-
responding features are selected and contradictory to the darker colour. The algorithm
keeps eliminating irrelevant features in order to identify the most relevant features.

Figure 7.16 shows the results of the eSNN parameter optimisation. All eSNN
parameters evolve steadily towards a certain optimal value, where the correct com-
bination together with the selected relevant features lead to better classification
accuracy. In terms of classification result, the average accuracy for DQiPSO is 93.4%
with the highest single run accuracy found in this experiment is 97.2%. The result
also shows that the average accuracy for DQiPSO at the beginning to the learning
process is acceptably high, around 80%. This is due to the proposed DQiPSO particle
structure that was able to select relevant features with nearly optimal parameter
combination in the early stage of learning. For the QiPSO algorithm, the average
accuracy is only 88.6%. While the QiPSO algorithm optimizes the eSNN parameters
using all features, it delivers the worst result in this experiment 78.1% accuracy. In
this case the algorithm entirely depends on the parameter optimisation which was
inadequate to produce a satisfactory result. Overall, the proposed method demon-
strates a satisfactory result in this experiment. For DQiPSO, the figure clearly shows
the two relevant features which contained the most information, are constantly being
selected in all runs. In contrast, the random value features are rejected during the
learning process together with most of the redundant features. However, some
redundant features with a noise level of 0.2, 0.3 and 0.4, are still occasionally
selected. The reason is simply because these features contained some information that
could be used to distinguish between classes, as we can see from Fig. 7.17. On the
other hand, the QiPSO is generally able to select the relevant features in average of 7
times out of 10 runs. However, the ability to reject the irrelevant features was
unsatisfactory. Most of the redundant features were still selected which contributed to
the low classification accuracy and also more computing times required since more
features have been selected. Since the QiPSO has no mechanism to stimulate the
particle if there is no better solution found, therefore the algorithm may converge
prematurely without the optimal results obtained.

7.5 Chapter Summary and Further Readings for Deeper
Knowledge

The chapter presents methods of evolutionary computation (EC) and quantum
inspired evolutionary computation (QiEC) including QiEA and QiPSO. These
methods are generic methods, applicable to a wide range of problems and processes
that can be optimised. In this chapter we show examples of their applications for the
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Fig. 7.16 Evolution of feature selection is faster and more accurate when using DQiPSO versus
using QiPSO algorithms for the two spiral problem with 18 additional noisy features added
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optimization of features and parameters of SNN, and more specifically eSNN
(Chap. 5). The QiEC methods result in a more efficient classification model design
with optimal features (variables) selected and model parameters optimized rather
than using standard EC techniques or without any optimisation of features and
model parameters.

Applying the existing QiEC methods and developing new methods for the
optimization of brain-like SNN, such as NeuCube is still a challenge for a future
development. Chapter 22 discusses a potential future research direction where these
methods are further integrated with molecular and brain inspired methods.

Further recommended readings include:

– Genetic Algorithm in Search, Optimization and Machine learning [2, 4, 5];
– Genetic Programming [3];
– Learning in ANN with EC [9];
– Learning in fuzzy systems through GA [10];
– Particle Swarm Optimization [6];
– Firework algorithms [7];
– Overview of evolving connectionist systems and their optimization ([62] and

Chap. 40 in [63]).

Fig. 7.17 a Classification accuracy and b parameter optimisation result for the two spiral problem and
with the added 18 noisy redundant features using eSNN classifier with 3 optimised parameters. The
comparison shows a better accuracy when using DQiPSO versus QiPSO versus no features selected
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Chapter 8
Deep Learning and Deep Knowledge
Representation of EEG Data

This chapter presents general methods for deep learning and deep knowledge
representation of EEG data in brain-inspired SNN (BI-SNN). These methods are
applied to develop specific methods for EEG data analysis and for modelling brain
cognitive functions, such as: performing cognitive tasks; emotion recognition from
face expression; sub-conscious processing of stimuli; modelling attentional bias.

SNN are used here not to model the brain, but to model brain data. The chapter
demonstrates that the BI-SNN can not only learn and classify brain EEG data much
more accurately than traditional machine learning methods, but due to their
organisation being a map of a brain template, they can represent deep knowledge
from the EEG data in cortical brain areas. If trained on EEG data/knowledge when
humans are performing cognitive functions, a BI-SNN can learn this knowledge
and can possibly manifest it autonomously under certain conditions.

The chapter is organised in the following sections:

8:1. Time-space brain data. EEG data.
8:2. Deep learning and deep knowledge representation of EEG data in BI-SNN.
8:3. Deep learning, recognition and modelling of cognitive tasks.
8:4. Deep learning, recognition and expression of emotions in a BI-SNN.
8:5. Deep learning and modelling peri-perceptual processes.
8:6. Modelling attentional bias.
8:7. Chapter summary and further readings for deeper knowledge.

8.1 Time-Space Brain Data. EEG Data

8.1.1 Spatio-temporal Brain Data

Different types of spatio-temporal brain data (STBD) have been collected for many
years at different ‘levels’ of information processing in the brain as discussed in
Chap. 3. At the highest, cognitive level, the most common types are EEG, MEG,
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fMRI, DTI, NIRS, single unit electrode data and others [1]. Electroencephalography
(EEG) is the recording of electrical signals from the brain by attaching surface
electrodes to the subject’s scalp [2–4]. Magnetoencephalography (MEG) measures
millisecond-long changes in magnetic fields created by the brain’s electrical cur-
rents. MEG machines use a non-invasive, whole-head, e.g. 248-channel,
super-conducting-quantum-interference-device (SQUID) to measure small mag-
netic signals reflecting changes in the electrical signals in the human brain. New
methods for brain data collection are being developed and this area of research is
likely to be further developed in the future.

Functional MRI (fMRI) combines visualisation of the brain anatomy with the
dynamic image of brain activity into one comprehensive scan (e.g. [5–8]). This
non-invasive technique measures the ratio of oxygenated to deoxygenate hae-
moglobin which have different magnetic properties. Active brain areas have higher
levels of oxygenated haemoglobin than less active areas. An fMRI scan can pro-
duce images of brain activity at the time scale of seconds with precise spatial
resolution of about 1–2 mm. Thus, fMRI provides both a 3D anatomical and
functional view of the brain in the lower frequency spectrum. fMRI data modelling
is discussed in Chaps. 10 and 11.

8.1.2 Brain Atlases

Over the last 30 years, neuroimaging techniques evolved a lot and have allowed
neuroscientists to revisit the issue of mapping the human brain, such that a modern
brain atlas is now expressed as a digital database that can capture the
spatio-temporal distribution of a multitude of physiological and anatomical metrics.

Several structural brain atlases have been created to support the study of the
brain and to better structure brain data. Korbinian Brodmann (1868–1918) was a
German neurologist who segmented the cerebral cortex into 52 distinct regions
from their cytoarchitectonic (histological) characteristics, known as Brodmann
areas, published in 1909. The map presents 52 distinctive areas of the cerebral
cortex. Each Brodmann area (BA) is characterized by a distinct type of cells, but it
also represents distinct structural area, distinct functional area (e.g. BA17 is the
visual cortex), distinct molecular area (e.g. number of neurotransmitter channels)
[9]. EEG and fMRI data are often mapped into BA for a better interpretation of
results [10].

An important contribution to the overall brain study and particularly to brain
data analysis is the creation of a common coordinate system that can be used for a
standardized study of brain data from different subjects and collected by different
methods. Talairach and Tournoux (1988) [11] created a co-planar 3D stereotaxic
atlas of the human brain. The Talairach coordinate space has its origin defined at the
anterior commissure (AC), with x and y axes on a horizontal plan and z axis on a
vertical plane; in particular, the y axis is defined by the line connecting the most
superior of AC and the most inferior of the posterior commissure (PC); the x axis is
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defined by the line that passes through the AC point and orthogonal to the AC-PC
line; whereas the z axis is the line that passes through the interhemispheric fissure
and the AC point (Fig. 8.1.).

A software was also made available, called Talairach Daemon (www.talairach.
org) to calculate the Talairach coordinates (x, y, z) of any given point in a brain
image along with the corresponding BAs (Figs. 8.2,8.3) [12].

The Talairach atlas was generated from two series of sections from a single
60-year old female brain in 1967: one half was sectioned in the sagittal plane and
the other in the coronal plane. The transverse images in the atlas were manually
approximated from the information obtained in the sagittal and coronal planes. In
their work, Talairach and Tournou [11] identified the anatomical features from the
atlas and created a coordinate system related to anatomical landmarks.

The Talairach Atlas has been digitized and manually traced into a volume-
occupant hierarchy of anatomical regions. Hemispheres, lobes, lobules, gyri and
nuclei have been outlined and labelled. Grey matter, white matter and CSF regions
will also be defined. For cerebral cortex, all Brodmann areas have been traced and
expanded into 3-D volumes.

Using brain templates to map brain data into a BI-SNN

While the Talairach Atlas was derived from the analysis of a single brain, much
further development in stereotaxic mapping was achieved with the introduction of
the Montreal Neurological Institute (MNI) coordinates, based on averaged MRI
data across individuals, e.g. MNI152, MNI305 [13]. Mapping of standard brain
stereotaxic coordinates was further developed by the International Consortium for
Brain Mapping (ICBM) with the release of several brain map templates, such as:
ICBM452; ICBM Chinese56; ICBM AD (Alzheimer Disease); MS (multiple
sclerosis) and others [1]. Brain activity measurements, such as EEG and fMRI of
any subject can be represented in standard MNI coordinates. MNI coordinates can
be translated into Talairach coordinates and Brodmann Areas, and vice versa. The

Fig. 8.1 A view of brain
sections in terms of AC and
PC views
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brain gene atlas, discussed further below, contains gene expression data collected
from brain areas with identified MNI coordinates. MNI is a common standard now
supported by many software systems, e.g. SPM [14].

Fig. 8.2 Structural and functional areas of the brain are annotated in a brain atlas. BA denotes a
Brodmann area

Fig. 8.3 A snap shot of the Talairach software demon (http://www.talairach.org/daemon.html)
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At the lowest ‘level’ of information processing in the brain is the molecular
information processing. Spatio-temporal activity in the brain depends on the
internal brain structure, on the external stimuli and also very much on the dynamics
at gene-protein level. This complex interaction is addressed through computational
neurogenetic modelling [15]. The first issue is how to obtain gene data related to
brain structures and functions. The Brain Atlas (www.brain-map.org) of the Allen
Institute for Brain Science (www.alleninstitute.org) has shown that at least 82% of
the human genes are expressed in the brain. For almost 1000 anatomical brain areas
of two healthy subjects, 100 mln data points were collected that indicate gene
expressions of several thousand genes and underlie the biochemistry of the sites
[16]. This is in addition to the previously developed Mouse Brain Atlas.

The enormousness of brain data available and the complexity of the research
questions that need answering through integrated models for brain data analysis are
grand challenges for the areas of machine learning and information science in
general as already pointed in some recent publications [17–20].

Accurate models of the brain have been developed (e.g. [1, 21, 22]). However,
they cannot be used for machine learning and pattern recognition of spatio-temporal
brain data (STBD) as their goal is to model the brain structurally and functionally
and not learn and mine brain data. The human brain has evolved throughout more
than 5mln years of human evolution with the more recent 10,000 years of human
civilization. The accurate brain modelling may require modelling the principles of
evolution in nature rather than just the brain as its product. Modelling the brain is a
challenging task for many years to come (e.g. the EU Human Brain Project), but
modelling and understanding brain data, that is available now, is a task that the
neural network community needs to address now. And this is the goal perceived in
this chapter and in the book as a whole.

8.1.3 EEG Data

Electroencephalography (EEG) is the recording of electrical signals from the brain
by attaching surface electrodes to the subject’s scalp [2–4]. These electrodes record
brain waves which are electrical signals naturally produced by the brain. EEGs
allow researchers to track electrical potentials across the surface of the brain and
observe changes taking place over a few milliseconds. EEG data is spatio/spectro-
temporal in the high frequency spectrum.

Electroencephalography (EEG) is the recording of electrical activity along the
scalp. EEG measures voltage fluctuations resulting from ionic current flows within
the neurons of the brain. This electrical signal can be measured by EEG data
collected from the human scalp (Fig. 8.4).
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Properties of EEG signals

• EEG provides high temporal resolution (sampling rates between 250 and
2000 Hz);

• Unable to provide a precise localisation of the neuron activation;
• electrodes record sums of activity from cortical sources (unclear spatial

resolution).

Electroencephalography is the most known and old direct technique, indeed human
EEG recordings started in 1920 with the German physiologist and psychiatrist Hans
Berger.

The highest influence to EEG comes from electric activity of cerebral cortex due
to its surface position.

Brain patterns form wave shapes that are commonly sinusoidal; they are usually
measured from peak to peak and a normal range is between 0.5 and 100 µV in
amplitude. The brain state of every single individual may make certain frequencies
more dominant, however brain waves can be categorized (see Fig. 2.5) into five
basic groups: beta (>13 Hz), alpha (8–13 Hz), theta (4–8 Hz), delta (0.5–4 Hz),
gamma (>40 Hz), which characterize different brain states (Fig. 8.5).

In particular most of the signal comes from the neurons placed in the outermost
layer of the cerebrum, the grey matter; they are the nearest to the EEG electrodes
since the layer below them is made of white matter which creates a thickness that
separates the other neurons more in the centre of the brain, from the head surface.
This is important since the electric field decreases as a function of distance from the
source and of the conductivity of the material that it goes through.

Fig. 8.4 EEG signals measure cortical spatio-temporal activity of a human brain along the scalp

296 8 Deep Learning and Deep Knowledge Representation …



EEG, as MEG, can be used for many neurophysiological studies, one of the
examples is tests on language functions, e.g. [15]: in a normal subject, during
picture naming, visual and conceptual processes take place within the first 175 ms
after stimulus presentation, followed by lexical retrieval (until 250 ms) and
phonological encoding of the word form (250–450 ms); whereas, after neurological
damage, different aspects of word-retrieval can be impaired (e.g., post-stroke
anomia). Thus effects of damages and injuries can be outlined.

Other research and clinical applications of the EEG in humans and animals can
be:

• locate areas of damage following head injury, stroke, tumour;
• monitor cognitive engagement;
• investigate epilepsy and locate seizure origin;
• test epilepsy drug effects;
• investigate sleep disorder and physiology.

The electroencephalogram (EEG) is defined as electrical activity of an alternating
type recorded from the scalp surface after being picked up by metal electrodes and
conductive media. In this work we will refer only to EEG measured from the head
surface so without using depth probes; for this, the same procedure can be applied
repeatedly to patients, normal adults, and children with virtually no risk or
limitation.

EEG recording system consists of:

• electrodes with conductive media: they read the signal from the head surface
• amplifiers with filters: they bring the microvolt signals into the range where they

can be digitalized accurately
• A/D converter: it changes signals from analogue to digital form
• recording device as personal computer (or other relevant device) which stores

and displays obtained data.

We have said already that the EEG signals are scalp recordings of neuronal activity
in the brain, in particular, they measure potential changes over time in basic electric

Fig. 8.5 Different types of brain waves that can be detected from EEG signals
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circuit conducting between signal (active) electrode and reference electrode.
Moreover, an extra third electrode, called ground electrode, is needed for getting
differential voltage by subtracting the same voltages showing at active and reference
points. So the minimal configuration for monochannel EEG measurement consists of
at least three electrodes: one active electrode, one (or two specially linked together)
reference and one ground electrode. Nowadays there are also multi-channel config-
urations which can comprise 32, 64, 128 up to 256 active electrodes.

In 1958, International Federation in Electroencephalography and Clinical
Neurophysiology adopted standardization for electrode placement called 10–20
electrode placement system which standardized physical placement and

Fig. 8.6 Labels for some EEG channels and their locations according to 10–20 electrode
placement system

Fig. 8.7 Overall location of the EEG channels according to the 10–20 system
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designations of electrodes on the scalp (Figs. 8.6, 8.7 and 8.8). The head is divided
into proportional distances from prominent skull landmarks (nasion, preauricular
points, inion) to provide adequate coverage of all regions of the brain, so label 10–
20 designates proportional distance in percents between ears and nose where points
for electrodes are chosen. Following the same idea of proportions the 10–10 system
has been developed too.

Electrode placements are labelled according adjacent brain areas: F (frontal), C
(central), T (temporal), P (posterior), and O (occipital). The letters are accompanied
by odd numbers at the left side of the head and with even numbers on the right side.
Left and right side is considered by convention from point of view of a subject.

As it is known from tomography, different brain areas may be related to different
functions of the brain, so each scalp electrode is located near certain brain centres,

Fig. 8.8 a Precise location of the EEG electrodes according to the 10–20 system (after [70, 71]),
b extended EEG electrode position nomenclature by American Electroencephalographic Society
[70, 71]
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e.g. F7 is located near centres for rational activities, Fz near intentional and
motivational centres, F8 close to sources of emotional impulses. Moreover, cortex
electrodes around C3, C4, and Cz locations deal with sensory and motor functions;
locations near P3, P4, and Pz contribute to activity of perception and differentiation;
near T3 and T4 emotional processors are located, while near T5, T6 there are
certain memory functions; primary visual areas can be found below points O1 and
O2.

Between electrode and neuronal layers current penetrates through skin, skull and
several other layers, so that a weak electrical signals is detected by the scalp
electrodes; even if it is then massively amplified it is still characterized by some
problems and limitations caused by the non-homogeneous properties of the skull,
different orientation of the cortex sources, coherences between the sources. For this
reason, the recording of scalp electrodes may not exactly reflect the activity of the
particular area of cortex which it is associated to: the exact location of the active
sources is still an open problem due to those limitations.

8.2 Deep Learning and Deep Knowledge Representation
of EEG Data in BI-SNN

A methodology for deep learning, modelling and deep knowledge representation of
STBD, including EEG data, in a BI-SNN is schematically presented in Figs. 8.9
and 8.10 and in Box 8.1 and explained in the text. This methodology follows
precisely the methodology for the design of SNN systems using NeuCube as
presented in Chap. 6. Here NeuCube is also used as an exemplar BI-SNN.

Fig. 8.9 A general scheme for using the NeuCube BI-SNN for EEG STBD modelling
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1. EEG input data transformation/encoding into spike sequences;  

2. Spatial mapping of input EEG channels as variables into spiking neurons using a brain 

template, such as the Talairach template; 

3. Unsupervised deep learning of the spatio-temporal spike sequences that encode the EEG 

signals in a scalable 3D SNN cube; 

4. Supervised learning and classification/regression of data;  

5. Dynamic parameter optimisation; 

6. Evaluating the predictive modelling capacity of the system; 

7. Adaptation on new data, possibly in an on-line/real time mode; 

8. Model visualisation and connectivity and spiking activity pattern interpretation for a better 

understanding of the data and the brain processes that generated it; 

9. Defining the deep knowledge represented in a trained SNNcube and output classifier as 

connectionist patterns; 

10. Implementation of a SNN model in a hardware/software platform, e.g. von Neumann 

versus neuromorphic hardware versus quantum computing. 

It is important to highlight that the NeuCube model is a stochastic model (i.e.
initial connection between the neurons of the reservoir are randomly generated) and
therefore extremely sensitive to parameters’ settings. Some of the major parameters
that highly influence the model are:

– The spike encoding threshold of the encoding spike trains; a bi-directional
threshold, which is applied to the signal’s gradient according to the time. When
a new data set is loaded, depending on the spike rate obtained, the threshold is
determined by the model and by the used method for encoding (see Chap. 4).

– The connection distance between neurons of the network. According to the
small world (SWO) connectivity principle, each neuron of a SNN reservoir is
connected to its neighbouring neurons by a fixed distance multiplied by this
parameter, the resulting value will be the one that establishes which neurons will
be connected and which will not. By default this parameter is set to 0.15, which
is a generic low value (see Chap. 6).
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– The threshold of firing, the refractory time and the potential leak rate of the LIF
neurons (see Chap. 4). When a LIF neuron of the reservoir spikes its PSP
increases gradually with every input spike according to the time, until it reaches
an established threshold of firing. Then, an output spike is emitted and the
membrane potential is reset to an initial state (refractory time). Between spikes,
the membrane potential leaks, simulating biological membrane behaviour after
which some equilibrium is not achieved after the diffusion of an ion.

– The STDP rate. According to the STDP learning rule (see [23] for more details),
the firing activity of a particular neuron also cause its neighbour neurons to emit
a spike. The membrane potential of this one will be increased with respect to its
connection weight with the firing neuron. The membrane potential of each
neuron has a small constant rate of leakage, which by default set as 0.01,
identified as an appropriate value in most of the cases.

– The number of times that the NeuCube is trained.
– The variables mod and drift of the deSNN classifier. According to [24], every

training sample is associated to an output neuron, which is connected to each
and every other neuron of the reservoir. The initial connection weights of these
output neurons are all set to zero. New connection weights are formed according
to the rank-order (RO) learning rule. This are calculated depending of a

Fig. 8.10 A block diagram of the NeuCube modules for STBD encoding, mapping, visualisation,
learning and classification. The mapping module illustrates the allocation of EEG channels as input
neurons and fMRI voxels in another SNNcube (the figure was created by M. Gholami)
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modulation factor (the variable mod) of the order of the incoming spikes. The
new connection weights will then increase or decrease according to the number
of spikes that follow the first one (the drift value). By default, these parameter
values are 0.4 for the mod and 0.25 for the drift, also empirically defined.

A crucial step for the NeuCube is the optimization of these variables, which needs
to be pursued in order to obtain desirable classification accuracy. Variables tuning
can be achieved via grid search method, genetic algorithm or quantum-inspired
evolutionary algorithm [25] (see also Chap. 7).

Three types of deep learning of EEG data is performed in NeuCube (also dis-
cussed in Chap. 6):

– Unsupervised learning in the SNNcube (Box 8.2);
– Supervised learning in the SNNcube and the output classifier (Box 8.3);
– Semi-supervised learning, combining the unsupervised and supervised learning

(Box 8.3).

Figure 8.11 illustrates the evolution of neuronal connectivity and spiking
activity in a SNNc of 1471 spiking neurons with Talairach- based coordinates [26]
(a-b) the step-wise neuronal connectivity and the spiking patterns of the SNNc at
two steps during a SNNc unsupervised learning (initial and final). The blue lines are
positive (excitatory) connections, while the red lines are negative (inhibitory)
connections. The brighter the colour of a neuron, the stronger its activity. Thickness
of the lines identifies neuronal enhanced connectivity.

Fig. 8.11 Dynamic visualisation of the evolution of neuronal connectivity and spiking activity in
a SNNc of 1471 spiking neurons with Talairach- based coordinates [26] (a, b) the step-wise
neuronal connectivity and the spiking patterns of the SNNc at two steps during a SNNc
unsupervised learning (initial and final). The blue lines are positive (excitatory) connections, while
the red lines are negative (inhibitory) connections. The brighter the colour of a neuron, the stronger
its activity. Thickness of the lines identifies neuronal enhanced connectivity

8.2 Deep Learning and Deep Knowledge Representation of EEG Data in BI-SNN 303



Box 8.2 Unsupervised Deep Learning in the NeuCube on STBD and Knowledge 
Representation
       Initialisation of the SNN model:  
A model is pre-structured to map structural and functional areas of the modelled process 
presented by the temporal or spatio-temporal brain data. The SNN structure consists of spatially 
allocated spiking neurons, where the location of the neurons maps a spatial template of the 
problem space (e.g. brain template; if such information exists.  

The input neurons are spatially allocated in this space to map the location of the input 
variables in the problem space. For temporal brain data for which spatial information of the input 
variables does not exist, the variables are mapped in the structure based on their temporal 
correlation—the more similar temporal variables are, the closer neurons they are mapped into. 

The connections in the SNN are initialised using a small—world connectivity algorithm.
Encoding of input data:   

Input data is encoded into spike sequences reflecting on the temporal changes in the brain data 
using some of the encoding algorithms (see Chap. 4) 

Unsupervised learning in the SNN model:  
Unsupervised time-dependent learning is applied in the SNN model on the spike encoded 
input data. Different spike-time dependent learning rules can be used. The learning process 
changes connection weights between individual neurons based on the timing of their spiking 
activity. Through learning individual connections over time, whole areas (clusters) of spiking 
neurons, that correspond to input variables, connect between each other, forming deep 
patterns of connectivity of many consecutive clusters in a flexible way. The length of the 
temporal data and therefore—the patterns learned in the SNN model, are theoretically 
unlimited.   
      Obtaining deep knowledge representation as functional patterns in the SNN model:  
A deep functional pattern is revealed as a sequence of spiking activity of clusters of neurons 
in the SNN model that represent active functional brain  areas of the modelled process. Such 
patterns are defined by the learned structural patterns of connections. When same or similar 
input data is presented to a trained SNN model, the functional patterns are revealed as 
neuronal activity is propagated through the connectionist patterns. The length of the obtained 
functional patterns is theoretically unlimited. 

The learned connections can be observed, visualised and analysed for a deep
knowledge representation and a better understanding of the data and the brain
processes. The transparent structure of the SNNc and its spatial organisation that
maps spatially the brain data allows tracing of the changes in the connections in a
step-wise manner in response to the EEG spike input sequences. The evolution of
SNNc connectivity throughout the learning process is illustrated in Fig. 8.11. What
Fig. 8.11 shows is that starting with small random connections (initialised SNNc),
the SNNc created new connections over time, reflecting the spatio-temporal rela-
tionships in the EEG data.
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Box 8.3 Deep Supervised and Semi-supervised Learning in NeuCube 
(b) Supervised learning for classification of learned patterns in a SNN model: 
When a SNN model is trained in an unsupervised mode on different temporal data, 
representing different classes, the SNN model learns different structural and functional 
patterns. When same data is propagated again through this SNN model, a classifier can be 
trained using the known labels, to learn to classify new input data that activate similar learned 
patters in the SNN model.  
(c) Semi-supervised learning:   
The proposed approach allows for training a SNN on a large part of data (unlabelled) and 
training a classifier on a smaller part of the data (labelled), both data sets related to the same 
problem. This is how the brain learns too.  

A BI-SNN can not only learn and classify brain EEG data, but due to their
organisation being a map of a brain template, they can learn from the EEG data how
humans perform motor-control or cognitive functions and then they can be used to
represent these deep knowledge.

Figure 8.12 shows: (a) Three snapshots of spiking activity in a SNN model
during training on one-second EEG data of wrist movement (time is in milliseconds);
(b) The evolved connectivity in the SNN model after training (blue lines represent
positive connection weights and red lines—negative connection weights); (c) A
dynamic functional pattern is learned in the space of cortical brain functionality,
representing deep procedural knowledge about how a human moves a hand.

The pattern activated in the trained SNNcube, shown in Fig. 8.12c, can be
interpreted as deep knowledge (according to the definition in Chap. 1) represented
as a sequence of events Ei, each defined by a function Fi, location of activity Si and
time of activity Ti:

Fig. 8.12 a Three snapshots of spiking activity in a SNN model during training on one-second
EEG data of wrist movement (time is in milliseconds); b the evolved connectivity in the SNN
model after training (blue lines represent positive connection weights and red lines—negative
connection weights); c a dynamic functional pattern is learned in the space of brain functionality
that can be represented as deep knowledge as explained in the text
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IF (a person is moving a hand)
THEN (the following brain events are activated in space and time in a sequence):

E1: Motor planning, in the Motor Planning functional brain area, time
about 200 ms,

AND
E2: Sensorimotor integration, in the Sensorimotor integration brain area,

time about 600 ms
AND

E3: Perception, in the Perception Cognitive brain area, time about 600 ms
AND

E4: Attention, in the Logical Attention brain area, time about 1 s.

The resolution of the represented knowledge in time and space in Fig. 8.12 is
hundreds of milliseconds and large brain areas. Knowledge at different time-space
resolutions can be extracted from the SNN model, e.g. a single millisecond and
small clusters of neurons (see for example [27], further presented in this chapter).

One can hypothesise that once a BI-SNN has learned some cognitive functions
using the same structural and functional template as the human brain, this can be
used as a “brain” of a machine that could manifest these functions on its own. This
still needs an experimental proof.

8.3 Deep Learning, Recognition and Modelling
of Cognitive Tasks

Details of the method presented here can be found in [28].

8.3.1 System Design

The scheme of the modelling is given in Fig. 8.13.
A NeuCube-based model is built that had a reservoir of 1471 spiking neurons.

One of the great advantages of the NeuCube framework is that in many cases there
is no need of pre-processing (such as normalization of the data, scaling, smoothing,
etc.). The raw data is fed into the model as ordered vectors. These vectors are
transformed into spike trains using spike encoding threshold for Address Even
Representation (AER) [29] before mapped into the SNNc for training. AER is
convenient when using continuous input data, such as EEG STBD, as this algorithm
identifies just differences in consecutive values.

The input spike sequences are presented to the reservoir SNNc, which was
implemented using leaky integrate and fire (LIF) neurons (see Chap. 4) [30–32].
The SNNc was trained using the spike timing dependant plasticity (STDP, [23])
learning rule. The STDP learning rule allows the spiking neurons of the SNNc to
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learn consecutive temporal associations from data and therefore forming new
connections in the architecture (i.e. the connection weights are changed during
learning). This makes the NeuCube architecture useful for learning consecutive

Fig. 8.13 A graphical representation of the different steps from the proposed methodology
applied for recognition and modelling of cognitive tasks using EEG data and NeuCube
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spatio-temporal patterns and therefore representing a more biologically plausible
associative type of memory [33] as discussed in Chap. 6.

Although the SNNc can be evolving in size, for this research we explore the
classification ability of the NeuCube architecture made up of 1471 spiking neurons,
each representing the centre coordinates of a one cubic centimetre area from the 3D
Talairach Atlas [11, 12, 34].

The 3D architecture of the SNNc is based on a “small-world organization”
(SWO), which is fundamental for the initialization, for the learning processes of this
model and for the process of capturing relevant patterns from the data. The
encoding into spike sequences data from the six EEG recording device channels
(C3, C4, P3, P4, O3 and O4) is entered to spatially allocated neurons following the
Talairach coordinates as suggested in [34] (Fig. 8.14). Figure 8.14 also shows
different areas of the SNNc that spatially represent regions of the brain according to
the Talairach’s template: frontal lobe, temporal lobe, parietal lobe, occipital lobe,
posterior lobe, sub-lobar region, limbic lobe, anterior lobe, coloured in different
colours.

We used the dynamic evolving SNN (deSNN [24]) algorithm to classify the
EEG TSBD into the 5 brain states (classes). This classification method combines
the rank-order learning rule [35] and the STDP [23] temporal learning for each
output neuron to learn a whole spatio-temporal pattern using only one pass of data
propagation. The classification results were evaluated using both repeated random
sub-sampling validation (RRSSV) and leave-one-out cross-validation (LOOCV).

The last picture of the diagram in Fig. 8.13 represents another key advantage
that NeuCube offers: the possibility of knowledge extraction. The state of the SNNc
after training can be analysed. It can be observed that new connections are formed
between the neurons that can be further interpreted in the context of different
cognitive tasks.

Fig. 8.14 Different views of the SNNcube of 1471 neurons and the 6 input neurons for the case
study EEG data and problem. Seven particular areas from the SNNcube that correspond spatially
to brain regions according to the Talairach Atlas are also shown: in green—the frontal lobe; in
magenta—the temporal lobe; in cyan—the parietal lobe; in yellow—the occipital lobe; in red—the
posterior lobe; in orange—the sub-lobar region; in black—the limbic lobe; in light blue—the
anterior lobe
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8.3.2 Case Study Cognitive EEG Data

The data used for this study was recorded in an earlier experiment [36–38] and
further studied in [39–41]. This data was collected from the cortex of seven healthy
subjects (between 20 and 48 years old, six men and one woman, all right handed
except for one subject) following five different scenarios, one resting task and four
cognitive tests. A brain computer interface device was used to collect the infor-
mation. The designed mental task scenarios consisted of: a “resting” task—a subject
is relaxing, avoiding thoughts as much as possible (class 1); a “letter composition”
task (class 2)—a subject is tasked with imagining writing a letter to someone
without verbally expressing it; a “multiplication” task (class 3)—a subject is per-
forming a non-simple two digit mental multiplication; a “counting” task (class 4)—
a subject is visualising a blackboard on top of which numbers were sequentially
being written; a “rotation” task (class 5)—a subject is mentally rotating on an axis a
3D geometric figure. Each recording session was carried out using six electrodes:
C3, C4, P3, P4, O1, O2. Data was recorded for 10 s at 250 Hz, resulting in 2500
data points collected per session. Every task was repeated five times during a daily
session. Some of the subject data was recorded on a one-day session, while other
subjects repeated the five trial tasks for a second or third day session. The data of
subject 4 was excluded from the experiment, as according to a previous study [41],
the signal was repeatedly saturated or invalidated in several trials.

For our study, we resized each session dataset into two samples of 5 s each,
1250 data points per channel on every sample. Thus, for each of the 5 classes we
had 10 samples of 1250 data points � 6 EEG channels, in total, we obtained 50
samples per subject and per session.

8.3.3 Experimental Results

In this study, we measured the classification accuracy of the NeuCube based model.
Table 8.1 summarizes these results per subject and per session. Results are
expressed as a percentage of accurately classified samples per class type and over
all classes. Results obtained using RRSSV (50/50% train/test) are reported here.

As the data set was of a small size, it is not appropriate to draw any scientific
conclusions about the mental tasks performance by different subjects, and that was
not the goal of this study. We rather can conclude that it is feasible to consider the
NeuCube-based method for further analysis and further experimental data mod-
elling to become a widely used method for EEG data analysis related to mental
tasks across applications. The results from this experiment still confirmed some
expected phenomena:
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– Subjects perform differently for different complex mental tasks (classes);
– Data for class 1 (relax) was the best classified across all subjects;
– The accuracy of classification increased with some manual parameter tuning

showing that this is not the full potential of the NeuCube-based model and it still
needs to be further optimised;

– Even dealing with very complex mental tasks, the classification accuracy was
comparatively good (when compared to previously used classification models).

The above was confirmed as the results from the NeuCube based method were
compared with the results obtained in previous experiments carried out the same
data set [40, 41]. We obtained higher classification accuracy on the data per session,
per subject and overall (see Table 8.2) when compared with other methods such as
support vector machines (SVM) and extreme learning machines (ELM). When the
SVM and the ELM methods were applied, the EEG data was first pre-processed
(smoothed) and then—‘compressed’ into smaller number of input vectors, rather
than treated as spatio-temporal stream data as it is in the NeuCube-model case.

In addition to the above, the NeuCube-based model has several other important
advantages:

– It requires only one iteration data propagation for learning, while the classical
methods of SVM and ELM require hundreds of iterations;

– The NeuCube-based model is adaptable to new data and new classes, while the
other models are fixed and difficult to adapt on new data;

– The NeuCube-based model allows for a good interpretation of the data.

8.3.4 Model Interpretation

NeuCube constitutes a biologically inspired three-dimensional environment of SNN
for on-line learning and recognition of spatio-temporal data. It takes into account
data features, offering a better understanding of the information and the phenomena
of study. This is illustrated in Fig. 8.15 which was obtained after the SNNc was
trained with one of the data sets. From Fig. 8.15 we can notice that new connec-
tions are formed around the input neurons of the SNNc which were allocated to

Table 8.2 NeuCube best results versus Nan-Ying Liang et al. [41] results

Subjects Session NeuCube Nan-Ying Liang et al. [41]

1 Session 2 100% RRSSV 86.70% ELM with smoothing

2 Session 1 84% RRSSV 78.76% SVM with smoothing

3 Session 2 80% RRSSV 64.60% SVM with smoothing

5 Session 1 84% RRSSV 63.43% SVM with smoothing

6 Session 2 84% RRSSV 69.47% ELM with smoothing

7 Session 1 88% RRSSV 79.77% SVM with smoothing
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spatially map the EEG electrodes. Studying the picture, we could also deduce some
implicit information, e.g. subjects where using actively their visual cortex (occipital
lobes). Effectively, the subjects were performing each scenario with open eyes.
Additionally, we can observe from the picture a high activity on the parietal lobe
(integration of visual and other information).

The NeuCube model can be further trained incrementally on new data, including
new classes, due to the capacity of the SNNcube to accommodate data in one pass
learning and to the evolvability of the output classifier. The latter will generate a
new output neuron for every new input pattern learned and will train it in one pass
learning mode [24, 33, 42]. This ability of the NeuCube models will allow to trace
the development of cognitive processes over time and to extract new information
and knowledge about them.

8.4 Deep Learning, Recognition and Expression
of Emotions in a BI-SNN

Human emotions are complex states of feelings that result in physical and psy-
chological changes, which can be reflected by facial expressions, gestures, into-
nation in speech etc. Emotion models are necessary in the study of human
emotions. A detailed description of the method and the experimental results pre-
sented in this section can be found in [43].

8.4.1 General Notions

Facial expression is a fundamental tool in human communication. Understanding
the facial expression effects on a third person is of a crucial importance to develop a

Fig. 8.15 The SNNcube connectivity after training can be analysed and interpreted for a better
understanding of the cognitive EEG data to identify differences between brain states representing
different mental tasks and different subjects. The figure shows different views of the trained
SNNcube for a better understanding of the learned connectivity
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comprehensible communication. Neuropsychological studies reported that com-
munications through facial expressions are highly related to the Mirror Neuron
System (MNS). MNS principle has been introduced in 1990s by Rizzolatti when he
discovered similar areas of the brain became activated when a monkey performed
an action and when a monkey observed the same action performed by another [44].
The MNS in human was also confirmed by an experiment using functional mag-
netic resonance imaging (fMRI) data [45]. Different facial expressions of emotion
have different effects on the human brain activity. The brain processes of perceiving
an emotional facial expression and mimicking expression of the same emotion are
spatio-temporal brain processes. The analysis of collected Spatio-Temporal Brain
Data (STBD) related to these processes could reveal personal characteristics or
abnormalities that would lead to a better understanding of the brain processes
related to the MNS. This can be achieved only if the models created from the data
can capture both spatio and temporal components from this data. Despite of the rich
literature on the problem, such models still do not exist.

Here we study MNS phenomena using NeuCube due to the features of the
NeuCube BI-SNN that have been demonstrated for mapping, learning, classifica-
tion and visualization of STBD [26, 33, 46–49].

In this section, the NeuCube was used to model EEG data recorded during a
facial expression task (both perceiving and mimicking) to investigate the cortical
brain activity patterns elicited from 7 kinds of emotional faces (anger, contempt,
disgust, fear, happiness, sadness, and surprise) in terms of similarity and differ-
ences. The models are analysed for a detail understanding on the problem.

8.4.2 Using a NeuCube Model for Emotion Recognition

The NeuCube architecture [33] was presented in Chap. 6 and it consists of: an input
encoding module; a 3D recurrent SNN reservoir/cube (SNNc); an evolving SNN
classifier. The encoding module converts continuous data streams into discrete
spike trains. As one implementation, a Threshold Based Representation
(TBR) algorithm is used for encoding. The NeuCube is trained in two learning
stages. The first stage is unsupervised learning based on spike-timing-dependent
synaptic plasticity (STDP) learning [23] in the SNNc. The STDP learning is applied
to adjust the connection weights in the SNNc according to the spatiotemporal
relations between input data variables. The second stage is a supervised learning
that aims at learning the class information associated with each training sample. The
dynamic evolving SNNs (deSNNs) [24] is employed as an output classifier.

In this study, the NeuCube is used for modelling, learning, and visualization of
the case study EEG data corresponding to different facial expressions.
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8.4.3 A Case Study of EEG Data for Emotion Recognition
from Facial Expression

Eleven male Japanese participants, including 9 right-handed and 2 left-handed,
aged between 22 and 25 years old (M = 23.2, SD = 1.2), participated in the case
study of the facial expression task. As facial stimuli, JACFEE collection [50] was
used, consisting of 56 colour photographs of 56 different individuals. Each indi-
vidual illustrates one of the seven different emotions, i.e. anger, contempt, disgust,
fear, happiness, sadness, surprise. The collection is equally divided into male and
female populations (28 males, 28 female).

During the experiments, subjects were wearing EEG headset (Emotive EPOC+)
which consists of 14 electrodes with the sampling rate of 128 Hz and the bandwidth
is between 0.2 and 45 Hz.

The EEG data was recorded while the subjects were performing two different
facial expression tasks. During the first presentation, subjects were instructed to
perceive different facial expression images shown on a screen, and in the second
presentation they were asked to mimic the facial expression images.

Each facial expression image was exposed for 5 s followed by randomly 5 to
10 s inter stimulus interval (ISI) as shown in Fig. 8.16.

8.4.4 Analysis of the Connectivity in a Trained SNNcube
When a Person Is Perceiving Emotional Face
and When a Person Is Expressing Such Emotions

A 3D brain-like SNNc is created to map the Talairach brain template of 1471
spiking neurons [11, 34]. The spatiotemporal data of EEG channels were encoded
into spike trains and entered to the SNNc via 14 input neurons which spatial
locations in the SNNc correspond to the 10–20 system location of the same
channels on the sculp. The SNNc is initialized with the use of the “small world”
connectivity [33].

Fig. 8.16 The facial expression-related task: the order of emotion expressions is: anger, contempt,
disgust, fear, happiness, sad, and surprise. Each subject watched 56 images during an experiment
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During the unsupervised STDP learning, the SNNc connectivity evolves with
respect to the spike transmission between neurons. Stronger neuronal connection
between two neurons means stronger information (spikes) exchanged between
them. Figure 8.17 illustrates the trained SNNc with EEG data of perceiving and
mimicking the 7 different facial expressions. It also shows the differences between
the SNNc connectivity of perceiving versus mimicking, which was obtained after
the two corresponding models were subtracted.

Figure 8.17 illustrates the experiment in this section as follows: (a) Exposing
emotional facial expressions on a screen; (b) Connectivity of a SNNc trained on
EEG data related to perceiving the facial expression images by a group of subjects;
(c) Connectivity of a SNNc trained on EEG data related to mimicking the facial
expressions; (d) Subtraction of the SNNc models from (a) and (b) to visualize, study
and understand differences between perceiving and mimicking emotions.

It can be seen from Fig. 8.17 that when a SNNc was trained on the EEG data
related to facial expressions of both perceiving and mimicking conditions, similar
neuronal connections were evoked in the SNNc reflecting similar cortical activities.

Fig. 8.17 a Exposing emotional facial expressions on a screen; b Connectivity of a SNNc trained
on EEG data related to perceiving the facial expression images by a group of subjects;
c Connectivity of a SNNc trained on EEG data related to mimicking the facial expressions;
d Subtraction of the SNNc models from (b) and (c) to visualize, study and understand differences
between perceiving and mimicking emotions
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Particularly, greater similarity can be observed in the right hemisphere of the SNNc
for anger, contempt, sadness, surprise. This finding proves a neurological fact that
this emotional information is usually processed across specific domains of the right
hemisphere of the brain [51]. It also reflects the MNS principle in facial expression
of emotion. Among the all presented emotional faces, some of them can be con-
sidered as dominant emotions if the brain activity patterns of perceiving and
mimicking that emotions have a high level of similarity. This similarity is mostly
observed for sadness.

Some differences between perceiving and mimicking emotions are also
observed. It is seen from Fig. 8.18d that those neurons located around the T7 EEG
channel represent the most differences between perceiving and mimicking facial
expressions in anger, contempt, and less in sadness and surprise. We can also
observe differences in the T6 area for fear, disgust and happy emotions.

Fig. 8.17 (continued)
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Making use of the NeuCube SNN architecture allowed for the first time to
discover the level of variation in the brain activity patterns against different facial
expressions. We identified that role of mirror neurons can be dominant in sadness
emotion when compared with the other emotions and that the biggest differences
were recorded for fear and happiness in the T6 EEG channel area of the right
hemisphere. This is only the first study in this respect. Further studies will require
more subject data to be collected for a more models developed before the proposed
method is used for cognitive studies and medical practice.

8.4.5 Can We Teach a Machine to Express Emotions?

During the training of a SNNcube on brain signals that record human expression of
different emotions the SNNcube forms distinctive connectivity and spiking activity
patterns. Activation of such patterns through external stimuli or internal programme
can trigger different emotional expression in an android (Fig. 8.18).

8.5 Deep Learning and Modelling of Peri-perceptual
Processes in BI-SNN

A full description of the method and experiments presented in this section can be
found in [52].

Fig. 8.18 During the training of a SNNcube on brain signals that record human expression of
different emotions the SNNcube forms distinctive connectivity and spiking activity patterns.
Activation of such patterns through external stimuli or internal programme can trigger different
emotional expression in an android (the figure on left is after [69])

8.4 Deep Learning, Recognition and Expression of Emotions in a BI-SNN 317



8.5.1 The Psychology of Sub-conscious Brain Processes

Due to the vital role of emotional and unconscious processes in consumers’ deci-
sion making, understanding the human brain activity and neural performance scope
is of crucial importance to predict the human decisions, such as in the field of
Neuromarketing for example. According to the studies that have been performed in
neuromarketing field, most of the researches had widely considered the anterior
area activities as the most important brain responses toward the marketing stimuli.
In this study, we intended to make a different effort and check whether the
pre-perceptual processes, such as Occipital and Parietal Lobes are also related to the
preference and decision making against marketing stimuli (commercial brand
logos). For this purpose, we used the NeuCube Spiking Neural Network
(SNN) architecture for EEG-ERP data modelling, learning, classification, and
visualization to reveal significant information about the consumers’ brain processes.
We analysed the EEG data recorded from 26 participants when they performed a
cognitive task of familiar versus unfamiliar brand’s logos. Tracing the NeuCube
SNN-based model connectivity, enables us to find that the consumers’ decision
making is happening even before the consciousness. More importantly, it provides
a better understanding of the EEG data source localization. In addition, the EEG
data classification (familiar logo class vs. unfamiliar logo class) is done using the
dynamic evolving SNN classifier of the NeuCube and the obtained accuracy is
compared with traditional machine learning and analysis methods.

In the human behaviour study, subjects are not always honest. They may tell
people what they think they want to hear, rather than what they really believe. In the
context of market, neuromarketing is a new field that is developed through the
collaboration of neuroscientific approaches and human behaviours to analyse
subjects’ reactions against certain stimuli to reveal the consumer preferences. The
results of these trials can potentially predict differences in consumers’ thought
processes that might not necessarily be observable in their behaviour [53].

When human brain deals with market environments, external stimuli effects lead
the brain functions to make the subject to choose the products. “Branding” plays a
key role in the mechanism of preference. This directly influences the buying
behaviour [54]. One of the methods which is typically employed as a mean of
evaluating an individual’s preference amongst products is brand familiarity. In the
neuromarketing studies, brand familiarity and product preference has been corre-
lated with neural activities [55–57]. Evidence has been found linking the medial
prefrontal cortex with both brand familiarity and product preference [58].

Although post-perceptual involvement of brain regions has been excessively
researched, influential features which appear before conscious and perception to the
brands are not sufficiently presented. Also, in recent researches on neuromarketing
field, although P300 component of ERPs has been excessively inquired, early
components which happen before perceptual process have not assessed sufficiently.
In this regards, we intended to discover whether the pre-perceptual areas of the
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brain, such as Occipital and Parietal Lobes are also related to the preference and
decision making to marketing stimuli (commercial brand logos).

Recently, researchers in the field of marketing and advertising have sought the
aid of neuroscience as a way to understand the foundations of the market behaviour,
as the motivational aspects and decision making [59–62].On the same way, great
attention has been given to methods of psychophysical and psychological scaling as
a tool for quantitative study the consumers’ behaviours related to choice and
decision making [63, 64].

Since neuromarketing relies on the fact that above 70% of customers decisions
are made at unconscious and sub-conscious level. Therefore, many people cannot
logically explain what was the reason of their decision making.

Now a big challenge for neuroscientists, psychologists and economists is to find
accurate brain data analysis models to study the STBD patterns and to precisely
predict the consumers’ decision making. In this study, we use the BI-SNN
NeuCube [33] for EEG data modelling, learning, classification, and visualization.
Through the interpretation of the model spiking activities and connectivity evoked
by different mental tasks, the TSBD patterns will be more assessable. This inves-
tigation will demonstrate the differences of the marketing logo effects on the
consumers’ brain processes observed in the EEG data. By peering directly into
brain data models, we can have a better interpretation of the brain processes that
generated the data.

8.5.2 Experimental Setting and EEG Data Collection

Twenty-six right-handed volunteers were included in this study. There were 13
males with mean age of 24.40 and 13 females with mean age of 22.60. All had
normal or corrected-to-normal vision, with no neurological abnormalities. All
testing procedures were performed in “Hamrah clinic” of Tabriz [http://
hamrahclinic.com/].

To address the studied issues, a cognitive task was designed. Before starting the
experiment, in order to equalise the subjects’ context and to increase their attention,
a short story about choosing a drink brand was presented. The task was displayed
and simultaneously the Event-Related Potentials (ERPs) was recorded.

Scalp potentials were recorded from 24 electrodes mounted in a custom elastic
cap in configuration with the standard “10–20” location system. EEG data was
recorded using an amplifier (Mitsar Instruments, Model 24 channels, EEG-202)
with a band pass of 0.1–30 Hz, and digitized on-line at a sampling rate of 256 per
second. All electrode impedances were kept below 5 kΩ. Off-line ICA computer-
ized artefact correction was used to eliminate trials during which detectable eye
movements (>18), blinks or muscle potentials occurred. The resulting single-subject
ERPs were then used to derive the group averaged waveforms for display and
analyses.
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This task is divided into three blocks. Each trial block began with the presentation
of the target logo for 200 ms. As an initial instruction, participants are required to
observe the logos on the screen and make a manual response to the target logo
(water). Since the subjects asked to concentrate on the target logo, they are
unconscious to the other logos (familiar and unfamiliar logos). Therefore, regardless
of how the subjects like or dislike the logos, we can observe their preference to the
familiar and unfamiliar logos while the subjects are conscious to the target. In this
task, a total number of 8 logos of brands were used as the stimulus set. Although the
logos contained verbal/lexical information, we did not consider this information and
just concluded according to familiar and unfamiliar categories of the logos.

The presented images were a widely known or familiar brand (e.g., such as the
coca cola) and unknown or unfamiliar brand (e.g., such as the Ayda cola) in two
different categories: Four beverage brands and four beer brands.

The task was designed according to the oddball paradigm and it was divided
into three blocks. Each trial block began with the presentation of the target logo
(neutral stimulus) which remained on screen for 200 ms to remind that a manual
response is required. The duration of each stimulus presentation was 200 ms, and
the interval between the stimuli was randomly varied between 1300 and 1500 ms.
the target logo was appeared 28 times in each block and each of the 8 none-target
logos were presented 14 times, with the random order of presentation between the
three blocks. A total number of 140 stimuli was presented (Fig. 8.19).

Fig. 8.19 Design of the experiment: the presented logos, duration of stimuli, and time intervals
(from [52])
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As an initial instruction, participants had been asked to observe the logos on the
screen and make a manual response to the target (water) as soon as they observe it.

8.5.3 The Design of a NeuCube Model

Making use of the proposed model, we aimed to investigate the patterns of electrical
activity of neurons elicited during a cognitive task related to the drink brands. In
contrast to the statistical analysis methods used so far, we present the potential of
using SNN for analysing the complex dynamic brain activity during a mental task.
In order to analyse the EEG data via NeuCube, the input EEG patterns were
encoded into the spike trains using a Threshold-Based Technique and then entered
into the spatially mapped spiking neural network cube (SNNc) via allocated input
neurons.

In order to train the SNNc, Spike-Timing Dependent Plasticity (STDP) learning
rule is used in unsupervised learning phase [23]. After the unsupervised learning
process is finished, during the supervised learning phase, the input data is propa-
gated again through the trained SNNc. Output neurons are evolved and trained
using the same data that was used during the unsupervised learning. The classifi-
cation results can be evaluated using random sub-sampling cross validation or leave
one out cross validation. The NeuCube-based methodology proposed here for
learning, classification and comparative analysis of EEG data is shown graphically
in Fig. 8.20 where the resulted SNNcubes after training on familiar and
non-familiar objects are presented for a comparative analysis.

We also conducted experiments when EEG data was divided into three classes
(familiar, unfamiliar, and targeted stimuli) to train a SNNc. The trained SNNc is
used to visualise different model connectivity generated during the mental activities.
The SNNc connections reflect the brain processes corresponding to the subjects’
preference (before making a decision) in unconscious level.

Figure 8.21a illustrates where 19 EEG channels are allocated in a 3D SNNc
(where the spatial location of the input neurons are as same as their (x, y, z)
coordinates in Talairach brain template). The initial connections between the neu-
rons are created using small world connectivity rule [33]. After unsupervised
training the SNNc with EEG patterns of Fam, Unfam, and target logos, new neural
connections are created and evolved between the neurons.

Figure 8.21 illustrates that the neural connections are generated differently while
the subjects are dealing with different mental activities. Asking subjects to observe
the target stimulus (water) in the task, make them conscious to the target stimulus
and unconscious to the non-target logos stimuli. Consequently, we can analyse the
unconscious behaviour of the consumers impressed by the marketing stimuli
(commercial logos).

By comparative analysis of the neural connections created for Fam versus unfam
logos, we found that Fam logos generated more neural connections in left hemi-
sphere and less connections in right hemisphere in compare with UnFam logos.
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The result of Neucube confirm the statistical analysis however Neucube enable
us to have precise visualization in terms of predicting consumer preferences

The spike train of every EEG channel is entered as input data into a particular
neuron of the SNNc, so that the (x, y, z) 3D location of this neuron maps the exact
location of the EEG channel according to the Talairach template [11]. Each input
neuron representing an EEG channel, which is a source of information that sends
spikes to those neurons that are connected to it. After the unsupervised learning, the
model information routes are captured between every input neuron i and those
neurons that received the spikes from i. The more the spikes transmitted between
i and the connected neurons, the thicker the connections captured between them.

Figure 8.22 illustrates the model information routes generated from 6 EEG
channels, namely F7and F8, O1 and O2, and P3, P4 while the subjects were dealing
with familiar versus unfamiliar logos.

As it is clear from Fig. 8.22, more and greater activities are around the input
neurons located in Occipital and parietal lobes when the subjects are seeing the
familiar logos. These connections were created during 200 ms after stimulus pre-
sentation. It shows pre perceptual processes towards the marketing stimuli.

Fig. 8.20 Top: NeuCube architecture with its main modules for EEG data mapping, learning, and
classification; a spiking activity over 200 ms of a trained NeuCube model when a familiar object is
presented and the trajectory of these activities as a deep knowledge representation; b spiking
activity over 200 ms of a trained NeuCube model when a non-familiar object is presented and the
trajectory of these activities as a deep knowledge representation (the figures are prepared by Z.
Doborjeh and M. Doborjeh) (from [52])
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Recently, Event-related potential (ERP) studies have attempted to discover the
processes that underlie conscious visual perception by contrasting ERPs produced
by stimuli that are consciously perceived with those that are not. Figure 8.23
illustrates that different input neurons in a SNNcube that correspond to different
EEG channels manifest different spiking activity that results in a different con-
nectivity created.

Researchers suggests that the early parts of conscious processing can proceed
independently of top-down attention, although top-down attention may modulate
visual processing even before consciousness. Numerous studies used a variety of

Fig. 8.21 Comparative visualization of the SNNcubes trained by EEG data against familiar,
unfamiliar, and target brand logos. a The SNNcube mapped the Talairach brain template and the
input EEG channels are allocated in their (x, y, z) coordinates. Initial connections between the input
neurons are created based on the small world connectivity rule; b–d the neuron connections are
created after the NeuCube unsupervised learning. The blue lines are positive (excitatory) connections,
while the red lines are negative (inhibitory) connections. The brighter the colour of a neuron, the
stronger its activity. Thickness of the lines identifies neuronal enhanced connectivity [52]
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methods for manipulating visual awareness, to find out pre perceptual process area
in order to assess the consumers decision making. In this regards, we visualized the
brain activity patterns generated by Familiar-related-stimuli versus unfamiliar-
related stimuli with respect to the spatio-temporal relationships between the con-
tinuous EEG data streams, by using a BI-SNN Neucube.

Fig. 8.22 The model information activity clusters captured after the NeuCube learning with EEG
data for 6 active EEG channels (F7, F8, O1, O2 and P3, P4) in familiar logos—(a) and unfamiliar
logos—(b) [52]

Fig. 8.23 Different input neurons in a SNNcube that correspond to different EEG channels
manifest different spiking activity that results in a different connectivity created: a for familiar
stimuli; b for unfamiliar stimuli
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Figure 8.24 shows a trained SNNcube with familiar versus non-familiar logos,
where the spiking neurons are labelled by the Talairach brain areas to represent the
interaction between different parts of the brain while the brain is dealing with
marketing logos.

Through the comparative analysis of the brain information routes generated by
familiar vs. unfamiliar logos, we can conclude that the brain functional pathways
created in the left hemispheres are longer and more in familiar logos in comparison
with the unfamiliar logos.

In order to learn and classify the EEG signal patterns recorded from subject
while they were looking at Fam versus Unfam logos, the EEG data were entered

Fig. 8.24 The SNNc is labelled by Talairach brain regions. The regions are captured in clusters of
neurons by different colours. a–b 3D and 2D visualisation of the model information pathways
created after the NeuCube unsupervised leaning by EEG data related to the familiar logos with the
corresponding brain regions associated with these functional pathways. c–d 3D and 2D
visualisation of the brain information rotes created a after the NeuCube unsupervised leaning by
EEG data related to the unfamiliar logos with the corresponding brain regions associated with
these functional pathways
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into a SNNc for unsupervised learning. Then output classifier neurons were trained
to classify the activity patterns of the SNNc that were activated by the corre-
sponding EEG patterns into the pre-defined 2 classes of Fam and Unfam. The
classification accuracy results were evaluated using repeated random rub-sampling
cross validation (RRSV). In this experiment, the RRSV method has been applied
with 50% of the data for training and 50% for testing. In order to optimise the
classification accuracy, the values of the NeuCube parameters were altered through
iterative applications of the three procedures: encoding the TSBD into spike
sequences; SNNc unsupervised learning; supervised learning of the classifier.

In this study, we also used traditional machine learning techniques to classify the
EEG data into two classes (subjects are looking at familiar brand logos, subjects are
looking at unfamiliar brand logos). Multiple Linear Regression (MLR), Multi-Layer
Perceptron (MLP), Support Vector Machine (SVM), Evolving Classification
Function (ECF), and Evolving Clustering Method for Classification (ECMC) are
used (http://www.theneucom.com). The classification accuracy results are reported
in Table 8.3. The results show that the NeuCube was able to classify the brain
activity patterns of Fam vs. Unfam logos more accurately than the other methods.

According to previous studies on neuromarketing field, most of the researches
had widely considered the P300 component of ERP. Hence, we intended to make a
different effort and check if the pre-perceptual components such as P200 in parietal
lobe and N100 in occipital lobe be relative to preference towards marketing stimuli.
In our experiment by using the traditional methods we found significant effects of
pre-perceptual components in preference against brands.

By demonstrating the role of N100 and P200 component in Occipital and
parietal lobe in this research as a component which occur before comprehension in
the brain, we acknowledged that the brain is able to process decisions much faster
than what expected. Being meaningful, the changes on N100 and P200 amplitude
of occipital and parietal lobes respectively can affect anterior areas widely. As a
result, the amplitude of P300 and other late components in central and frontal lobes
would definitely be affected by early components and it proves the significant role
of pre-comprehensive attended regions in prediction of preference.

Our findings prove the BI-SNN, and more specifically—NeuCube potential to
deal with both spatio and temporal content of the data without losing meaningful
information. Since, statistical machine learning techniques are not able to deal with
temporal data, we had to take the average over the temporal content of the EEG
data. Therefore the classification accuracy results are less than the results obtained
via NeuCube. We have found an increased amplitude in Occipital and Parietal area
by traditional methods, however Neucube may tell what neurons have made con-
tribution to this increase and more importantly can be used to obtain new findings
that could not be obtained with the use of traditional statistical methods. This is also
observed in other applications of NeuCube for STBD [64–66].
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8.6 Modelling Attentional Bias in BI-SNN

A full description of the method and experimental results in this section can be
found in [67].

8.6.1 Attentional Bias

Attentional bias is a brain state when the brain gets activated when perceiving
non-targeted object. This could be result of previous experience, preferences, and
other causes. Attentionla bias can influence the decision making process in humans.

In this section the same data as in Sect. 8.5 is used, but in this case the EEG data
will measure attention with a given targeted object as a stimulus.

8.6.2 Experimental Settings

Inspired by importance of the attentional bias principle in human choice behavior,
we formed a NeuCube based SNN model for efficient recognition of attentional bias
as influential factor in a consumer’s preferences. The model was tested on a case
study of EEG data collected from a group of moderate drinkers when they were
presented by different drink product features.

Figure 8.25 illustrates the trained SNNcube models on the EEG data of several
subjects when perceiving the target stimuli along with other stimuli, i.e. presenta-
tion of a target drink—water, and in between—different other drinks and brands.

8.6.3 Results

Our case study findings suggest that a product brand name may not significantly
impress consumers by itself. However, when the name of a brand comes along with
a context, such as design, color, alcoholic or non-alcoholic features, etc. it may
direct the consumers attention to certain features and lead the consumers to choose
a product. In this particular case study, we found that attentional bias towards
alcoholic-related stimuli had stronger effects on the brain activity of the moderate
drinkers as shown in the SNN connectivity in Fig. 8.26.
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Fig. 8.25 This illustrates the trained SNNcube models on the EEG data of several subjects when
perceiving the target stimuli along with other stimuli, i.e. presentation of a target drink—water, and
in between—different other drinks and brands, such as alcoholic drinks
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8.7 Chapter Summary and Further Readings for Deeper
Knowledge

The chapter presents a methodology for deep learning, modelling and deep
knowledge representation of EEG data and applies this methodology for the design
of SNN for: learning cognitive tasks; emotion recognition; peri-perceptual infor-
mation processing; attentional bias. These are only few illustrations for the appli-
cability of the presented methodology and many other applications and studies can
be developed using this approach.

We recommend the following further readings on specific topics:

– Multimodal atlases of the human brain [1];
– Talairach atlas [11, 12];
– Brain imaging methods [19];
– EEG mapping [34];
– The Blue Brain project [21];
– Demo on modelling EEG data in NeuCube: https://kedri.aut.ac.nz/R-and-D-

Systems/neucube/eeg;
– Demo on EEG data modelling with NeuCube: https://kedri.aut.ac.nz/R-and-D-

Systems/eeg-data-modelling;
– Neuromarketing demo using EEG and NeuCube: https://kedri.aut.ac.nz/R-and-

D-Systems/neuromarketing.

Acknowledgements Some of the material in this chapter has been first published in journal and
conference publications as referenced and cited in corresponding sections of the chapter and also in
Springer book volumes [15, 68]. I acknowledge the contribution of my co-authors of these pub-
lications Lubica Benuskova, Maryam Doborjeh, Elisa Capecci, Zohreh Doborjeh, Nathan Scott,
Alex Sumich. Most of the experiments in Sects. 8.4, 8.5 and 8.6 were conducted by Z. Doborjeh
and M. Dorojeh, while experiments in Sect. 8.3 were conducted by E. Capecci.

Fig. 8.26 a A NeuCube based SNN model trained on EEG data of alcoholic-related stimuli; b
non-alcoholic-related stimuli; c the difference between the two models in terms of connectivity
(from [67]). Both features are non-targeted showing attentional bias
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Appendix

(from [34]). Anatomical locations of international 10–10 EEG cortical projections
into Talairach coordinates. Same coordinates are used in a SNNc of a NeuCube
model.

EEG
chan.

Talairach coordinates Gyri Brodmann
areax av (mm) y av (mm) z av (mm)

FP1 −21.2 ± 4.7 66.9 ± 3.8 12.1 ± 6.6 L FL Superior
frontal G

10

FPz 1.4 ± 2.9 65.1 ± 5.6 11.3 ± 6.8 M FL Bilat. medial 10

FP2 24.3 ± 3.2 66.3 ± 3.5 12.5 ± 6.1 R FL Superior
frontal G

10

AF7 −41.7 ± 4.5 52.8 ± 5.4 11.3 ± 6.8 L FL Middle frontal
G

10

AF3 −32.7 ± 4.9 48.4 ± 6.7 32.8 ± 6.4 L FL Superior
frontal G

9

AFz 1.8 ± 3.8 54.8 ± 7.3 37.9 ± 8.6 M FL Bilat. medial 9

AF4 35.1 ± 3.9 50.1 ± 5.3 31.1 ± 7.5 L FL Superior
frontal G

9

AF8 43.9 ± 3.3 52.7 ± 5.0 9.3 ± 6.5 R FL Middle frontal
G

10

F7 −52.1 ± 3.0 28.6 ± 6.4 3.8 ± 5.6 L FL Inferior frontal
G

45

F5 −51.4 ± 3.8 26.7 ± 7.2 24.7 ± 9.4 L FL Middle frontal
G

46

F3 −39.7 ± 5.0 25.3 ± 7.5 44.7 ± 7.9 L FL Middle frontal
G

8

F1 −22.1 ± 6.1 26.8 ± 7.2 54.9 ± 6.7 L FL Superior
frontal G

6

Fz 0.0 ± 6.4 26.8 ± 7.9 60.6 ± 6.5 M FL Bilat. medial 6

F2 23.6 ± 5.0 28.2 ± 7.4 55.6 ± 6.2 R FL Superior
frontal G

6

F4 41.9 ± 4.8 27.5 ± 7.3 43.9 ± 7.6 R FL Middle frontal
G

8

F6 52.9 ± 3.6 28.7 ± 7.2 25.2 ± 7.4 R FL Middle frontal
G

46

F8 53.2 ± 2.8 28.4 ± 6.3 3.1 ± 6.9 R FL Inferior frontal
G

45

FT9 −53.8 ± 3.3 −2.1 ± 6.0 −29.1 ± 6.3 L TL Inferior
temporal G

20

FT7 −59.2 ± 3.1 3.4 ± 5.6 −2.1 ± 7.5 L TL Superior
temporal G

22

FC5 −59.1 ± 3.7 3.0 ± 6.1 26.1 ± 5.8 L FL Precentral G 6
(continued)
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(continued)

EEG
chan.

Talairach coordinates Gyri Brodmann
areax av (mm) y av (mm) z av (mm)

FC3 −45.5 ± 5.5 2.4 ± 8.3 51.3 ± 6.2 L FL Middle frontal
G

6

FC1 −24.7 ± 5.7 0.3 ± 8.5 66.4 ± 4.6 L FL Superior
frontal G

6

FCz 1.0 ± 5.1 1.0 ± 8.4 72.8 ± 6.6 M FL Superior
frontal G

6

FC2 26.1 ± 4.9 3.2 ± 9.0 66.0 ± 5.6 R FL Superior
frontal G

6

FC4 47.5 ± 4.4 4.6 ± 7.6 49.7 ± 6.7 R FL Middle frontal
G

6

FC6 60.5 ± 2.8 4.9 ± 7.3 25.5 ± 7.8 R FL Precentral G 6

FT8 60.2 ± 2.5 4.7 ± 5.1 −2.8 ± 6.3 L TL Superior
temporal G

22

FT10 55.0 ± 3.2 −3.6 ± 5.6 −31.0 ± 7.9 R TL Inferior
temporal G

20

T7 −65.8 ± 3.3 −17.8 ± 6.8 −2.9 ± 6.1 L TL Middle
temporal G

21

C5 −63.6 ± 3.3 −18.9 ± 7.8 25.8 ± 5.8 L PL Postcentral G 123

C3 −49.1 ± 5.5 −20.7 ± 9.1 53.2 ± 6.1 L PL Postcentral G 123

C1 −25.1 ± 5.6 −22.5 ± 9.2 70.1 ± 5.3 L FL Precentral G 4

Cz 0.8 ± 4.9 −21.9 ± 9.4 77.4 ± 6.7 M FL Precentral G 4

C2 26.7 ± 5.3 −20.9 ± 9.1 69.5 ± 5.2 R FL Precentral G 4

C4 50.3 ± 4.6 −18.8 ± 8.3 53.0 ± 6.4 R PL Postcentral G 123

C6 65.2 ± 2.6 −18.0 ± 7.1 26.4 ± 6.4 R PL Postcentral G 123

T8 67.4 ± 2.3 −18.5 ± 6.9 −3.4 ± 7.0 R TL Middle
temporal G

21

TP7 −63.6 ± 4.5 −44.7 ± 7.2 −4.0 ± 6.6 L TL Middle
temporal G

21

CP5 −61.8 ± 4.7 −46.2 ± 8.0 22.5 ± 7.6 L PL Supramarginal
G

40

CP3 −46.9 ± 5.8 −47.7 ± 9.3 49.7 ± 7.7 L PL Inferior
parietal G

40

CP1 −24.0 ± 6.4 −49.1 ± 9.9 66.1 ± 8.0 L PL Postcentral G 7

CPz 0.7 ± 4.9 −47.9 ± 9.3 72.6 ± 7.7 M PL Postcentral G 7

CP2 25.8 ± 6.2 −47.1 ± 9.2 66.0 ± 7.5 R PL Postcentral G 7

CP4 49.5 ± 5.9 −45.5 ± 7.9 50.7 ± 7.1 R PL Inferior
parietal G

40

CP6 62.9 ± 3.7 −44.6 ± 6.8 24.4 ± 8.4 R PL Supramarginal
G

40

TP8 64.6 ± 3.3 −45.4 ± 6.6 −3.7 ± 7.3 R TL Middle
temporal G

21

P9 −50.8 ± 4.7 −51.3 ± 8.6 −37.7 ± 8.3 L TL Tonsile NP
(continued)

332 8 Deep Learning and Deep Knowledge Representation …



(continued)

EEG
chan.

Talairach coordinates Gyri Brodmann
areax av (mm) y av (mm) z av (mm)

P7 −55.9 ± 4.5 −64.8 ± 5.3 0.0 ± 9.3 L TL Inferior
temporal G

37

P5 −52.7 ± 5.0 −67.1 ± 6.8 19.9 ± 10.4 L TL Middle
temporal G

39

P3 −41.4 ± 5.7 −67.8 ± 8.4 42.4 ± 9.5 L PL Precuneus 19

P1 −21.6 ± 5.8 −71.3 ± 9.3 52.6 ± 10.1 L PL Precuneus 7

Pz 0.7 ± 6.3 −69.3 ± 8.4 56.9 ± 9.9 M PL Superior
parietal L

7

P2 24.4 ± 6.3 −69.9 ± 8.5 53.5 ± 9.4 R PL Precuneus 7

P4 44.2 ± 6.5 −65.8 ± 8.1 42.7 ± 8.5 R PL Inferior
parietal L

7

P6 54.4 ± 4.3 −65.3 ± 6.0 20.2 ± 9.4 R TL Middle
temporal G

39

P8 56.4 ± 3.7 −64.4 ± 5.6 0.1 ± 8.5 R TL Inferior
temporal G

19

P10 51.0 ± 3.5 −53.9 ± 8.7 −36.5 ± 10.0 L OL Tonsile NP

PO7 −44.0 ± 4.7 −81.7 ± 4.9 1.6 ± 10.6 R OL Middle
occipital G

18

PO3 −33.3 ± 6.3 −84.3 ± 5.7 26.5 ± 11.4 R OL Superior
occipital G

19

POz 0.0 ± 6.5 −87.9 ± 6.9 33.5 ± 11.9 M OL Cuneus 19

PO4 35.2 ± 6.5 −82.6 ± 6.4 26.1 ± 9.7 R OL Superior
occipital G

19

PO8 43.3 ± 4.0 −82.0 ± 5.5 0.7 ± 10.7 R OL Middle
occipital G

18

O1 −25.8 ± 6.3 −93.3 ± 4.6 7.7 ± 12.3 L OL Middle
occipital G

18

Oz 0.3 ± 5.9 −97.1 ± 5.2 8.7 ± 11.6 M OL Cuneus 18

O2 25.0 ± 5.7 −95.2 ± 5.8 6.2 ± 11.4 R OL Middle
occipital G

18
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Chapter 9
Brain Disease Diagnosis and Prognosis
Based on EEG Data

This chapter applies the methodology for learning and pattern recognition with
BI-SNN, introduced in Chap. 8 on EEG data measuring changes in brain states due
to a brain disease or treatment. While this approach can be widely used, data related
to two well-spread brain abnormalities are used here: possible progression to
Alzheimer’s disease; response to treatment of drug addicts.

The chapter is organised in the following sections:

9:1. SNN for modelling EEG data to assess a potential progression from MCI to
AD.

9:2. SNN for predictive modelling of response to treatment using EEG data.
9:3. Chapter summary and further readings for deeper knowledge.

9.1 SNN for Modelling EEG Data to Assess a Potential
Progression from MCI to AD

This section presents a method and experimental results of using the BI-SNN
NeuCube to learn brain EEG data from patients of mild cognitive impairment
(MCI) and the brain signals of same patients, some of them developed AD.
A comparative analysis shows a clear indication in brain activities that can be used
to predict a possibility for a new patient with MCI if they can develop AD in the
future. The material was first published in [1].
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9.1.1 Design of the Study and Data Collection

(1) EEG Data Description

The EEG data was collected by the selected patients for the analysis. They
underwent cognitive and clinical assessments, including mini-mental state exami-
nation (MMSE). Diagnosis of AD was made according to the criteria of the National
Institute of Ageing-Alzheimer’s Association. After diagnostic confirmation, patients
were discriminated by gender, age, education, dementia onset, marital status and
MMSE scores. All patients were under the influence of drug treatments such as
cholinesterase inhibitors (ChEis), Memantine, anti-depressants, anti-psychotics and
anti-epileptic drugs. The dosage of each drug administrated for the three-month
period prior to the experiment was carefully monitored.

A total of seven patients were selected for the EEG data collection: three affected
by AD and four diagnosed as suffering from MCI. They were all followed longi-
tudinally for three months. During this period of time, the EEG data was recorded
twice, at the beginning of the study and at the end of it, denoted as t0 and t1.

Before data collection, all patients and their caregivers went through a
semi-structured interview, which included questions regarding the quality and
duration of their sleep the night before the experiment along with the food con-
sumed and the time it was consumed. Recordings are carried out using 19 EEG
channel locations: Fpl, Fp2, 7, F3, Fz, F4, F8, TI, C3, Cz, C4, T4, TS, P3, Pz, P4,
T6, 01, 02 and the A2 electrode was used as reference. These were placed according
to the sites defined by the standard 0–20 international system. Data was recorded at
a sampling ate of 1024 Hz for 5 min and a 50 Hz notch filter was applied during
collection. Data was collected in the morning and under resting conditions, with
subjects awake with their eyes closed and always under vigilant control. Data was
collected in the region of Reggio di Callabria in the group of Prof. Morabito [1].

(2) Data pre-processing: The EEG data was down-sampled o 256 Hz and pro-
cessed using a 5 s sliding temporal window (i.e. one window includes 1280
EEG samples). The EEG signal was divided into rhythms of type d, h, a and b
by using a set of four band-pass filters implemented with the use of inverse Fast
Fourier Transform (FFIʹ). The four EEG sub-bands were partitioned into
m non-overlapping windows, here m depends of the length of the recording,
which was minutes on average.

9.1.2 Design of a NeuCube Model

The same design procedure as introduced in Chap. 8 is used here. Only specific
design issues are discussed for this task. The functional block diagram of the
NeuCube BI-SNN is shown in Fig. 9.1, also presented in Chap. 6. The architecture
consists of the following modules:
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(1) Input Module and EEG Data Encoding: The EEG data was first ordered as a
sequence of real-value data. Every data sequence was transformed into a spike
train using the threshold base representation TBRthr algorithm (Chap. 4) [2]. This
threshold was used to generate two types of spike sequences: a positive spike
train corresponding to the signal increment, which is mapped to a specific input
neuron in the SNNc; and a negative spike train, corresponding to the signal
decline, which is mapped into another input neuron of the SNNc that is placed in
the same position as the positive one. Algorithms that apply bi-directional
threshold to transform vectors of consecutive values into trains of spikes, well
suit EEG data as they identify only significant differences in the signal gradient
(as demonstrated in Fig. 9.2). In the example shown in Fig. 9.2, 115 spikes were
generated after applying the TBRthr algorithm to the first 500 EEG data points

Fig. 9.1 The NeuCube general functional architecture (from [6], also in Chap. 6)

Fig. 9.2 Example of encoding spatio-temporal EEG data into trains of spikes using the TBRthr

algorithm. The image shows the first 500 data points only of one EEG channel (the central Cz
channel). The EEG signal (0–64 Hz) recorded from a patient affected by AD
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recorded at the central Cz channel of a patient affected by AD. As we can see
from the figure, out of the total amount of spikes generated, 58 were positive
spikes (identified as +1) and 57 were negative spikes (identified as −1).

(2) The SNNcube Module and Unsupervised Learning: The spike sequences were
presented to the SNNc, which was implemented using leaky integrate-and-fire
(LIP) neurons [3].

The number of neurons in the cube was set as 1471 neurons; each neuron rep-
resents 1 cm3 of population of the human neural cells of the Talairach brain atlas [4].
The neurons were mapped in the cube following the standard mapping suggested in
[5]. Thus, the spike sequences that represent the data from EEG channels are pre-
sented to the SNNc that reflects the number of input variables (e.g. the 19 EEG
channels) and the functional brain areas associated with them. The SNNc was ini-
tialised according to the small-world (SW) connectivity [6, 7] instance, which is
based on the biological process that makes neighbouring neural cells to be highly and
strongly interconnected. Neurons’ initial connection weights were calculated as the
product of a random number [−0.1, +0.1] and the multiplicative inverse of the
Euclidean distance d(i, j) between pre-synaptic i and a post-synaptic neuron j (cal-
culated according to their (x, y, z) coordinates). 20% of these weights are selected to
be negative (inhibitory connection weights), as in the mammalian brain the number
of GABAergic neurons found to be about 20–30% [8], while 80% were positive
excitatory connection weights. The SNNc was trained in an unsupervised mode using
the spike time dependent plasticity STOP) [9] learning rule, as it allows spiking
neurons to learn consecutive temporal associations from the EEG data within and
across EEG channels. By using this unsupervised learning rule, a connection between
two neurons become stronger as their temporal order of activation persists and
repeats with the time. After learning, the final connectivity and spiking activity
generated in the network was analysed and interpreted for a better understanding of
the data and the brain processes that generate it (as demonstrated in a later section).
This makes the NeuCube useful for learning spatio-temporal patterns from the TBD.

(3) Output Module far Supervised Learning: The output classifier was trained via
supervised learning method, using the dynamic evolving spiking neural net-
work (deSNN) algorithm [10]. This algorithm combines the rank-order
(RO) learning rule [11] with the STDP [9] temporal learning. In one pass
data propagation, the same data used for the unsupervised raining was propa-
gated through the SNNc again to train the output classifier. Every training
sample that represents a labelled EEG sequence of a patient was associated to
an output neuron that is connected to every neuron in the SNNc. Initial con-
nection weights between input and output neurons were all set to zero.
Connection weights were initialised according to the RO rule and modified
according to the spike driven synaptic plasticity (SDSP) learning rule [12].
Every generated output neuron was trained to recognize and classify
spatio-temporal spiking patterns of the SNNc triggered by a corresponding
labelled input data sample (as demonstrated in a later section).
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9.1.3 Classification Results

To investigate whether data collected during the two different sessions (t0 and t1)
discriminates different stages of neural degeneration (from early MCI to advanced
AD), we classified the data samples by using the entire EEG signal from 0–64 Hz.
Data was divided into four classes: data collected at t0 from subjects diagnosed as
having MCI was labelled as class 1 (MCI t0), while the data collected at t1 from the
same subjects was labelled as class 2 (MCI t1); and data collected at t0 from AD
patients was labelled as class 3 (AD t0), while the data collected as t1 from the same
patients was labelled as class 4 (AD t1). In total we obtained 14 samples, two for
each of the seven subjects, one at t0 and one at t1.

Even though, every subject underwent several minutes of data recording, we
resized each samples to 42,240 data points for 19 EEG channels, as this was the size
of the smallest sample available. A crucial step in obtaining desirable results from
the NeuCube model is the optimisation of its numerous parameters. This can be
achieved via grid search method, genetic algorithm, or quantum-inspired evolu-
tionary algorithm [13, 14]. Therefore, unsupervised and supervised training, and
validation are repeated changing the values of the parameters until the desired
classification output is achieved. In this study, this was obtained via grid search
method that evaluated the best combination of parameters that resulted in the
highest classification accuracy. The optimised parameter values are:

• The TBRThr for encoding algorithm was set at 0.5;
• The SW connectivity radius was set at 2.5;
• The threshold of firing e, the refractory time r and the potential leak rate l of the

LIF neuron model were set at 0.5, 6 and 0.002 respectively;
• The STDP rate parameter a of the unsupervised learning algorithm was set at

0.01; rate was set at 0.001;
• The variables mod and drift of the deSNN classifier were set at 0.8 and 0.005

respectively [10].

In Table 9.1, we report the classification accuracy obtained using the above
parameter values. The results, obtained after testing, are presented in the confusion
table as the number of correctly classified samples versus the number of misclas-
sified samples.

Table 9.1 The NeuCube confusion table obtained by classifying EEG test data (50%) from 7
patients as a test subset into the four classes: MCIt0, MCIt1, AD t0 and ADt1. The correctly
predicted classes are located in the diagonal of the table

Confusion Table

MCI t0 MCI t1 AD t0 AD t1
MCI t0 2 1 0 0

MCI t0 0 1 0 0

AD t0 0 0 1 0

AD t1 0 0 0 1
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As a result of training a NeuCube model to classify data from the four classes:
MCIt0, MCIt1, ADt0 and AD t1, the testing results showed a perfect classification of
three classes, but notMCI t1. These results demonstrated the potential of the NeuCube
to achieve high classification accuracy for the classesMCI t0,AD t0 andAD t1, but also
to indicate if some of the patients data from the MCI t1 class is closer to the data from
theMCI t0 class or to theAD t0 class, pointing to a possible development of the disease
in the future. As reported in Table 9.1, one of the two subjects from the MCI t1 class
showed similar EEG patterns at t1 as in t0, indicating that his subject is not likely to
develop AD in the near future. The four classes were in effect identifying different
stages of neural degeneration (from early MCI to advanced AD). This is a good
indication that a NeuCube model can be used in the future for predicting if MCI
patients will develop AD. As the experiment was done on a small data set it is not
possible to make any conclusions that would be clinically applicable at this stage.

9.1.4 Analysis of Functional Changes in Brain Activity
from MCI to AD

Figure 9.3, shows the SNNc connectivity generated after unsupervised learning of
the EEG signal (0–64 Hz) at t0 and t1 of a MCI subject who developed AD at time t1.

The figures show significant decrease in neural activity from t0 to t1. The observed
reduction in the model neural connectivity is compatible with neuronal changes
associated with the advance of the disease. AD is a degenerative brain disorder that
eventually destroys brain cells causing decline in cognitive activity and memory loss
[15]. Using the NeuCube SNN-based visualization, we can obtain a better under-
standing and interpretation of the physiological brain ageing of AD patients.

More information can be extracted from the data by identifying relevant EEG
sub-bands for AD to study the patient neural activity (Fig. 9.4).

9.2 SNN for Predictive Modelling of Response
to Treatment Using EEG Data

This section presents a method for predicting response to treatment using deep
learning of EEG data in a SNN model. EEG data measuring brain activities before
treatment and after treatment are used to evaluate the response. A case study on
drug addicts responding to methadone (MMT) is presented. Brain EEG data of
three groups of subjects are recorded and analysed using a NeuCube model:

– Control (normal) subjects;
– Drug addicts subjects without treatment;
– Drug addicts who take treatment.

Some more details of the method along with experimental results can be found in
[16].
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9.2.1 Conceptual Design

The experimental design for this case study is shown in Fig. 9.5 and explained
further in this section.

9.2.2 The Case Study Problem Specification and Data
Collection

EEG Data Acquisition
The EEG data was recorded via 26 cephalic sites: Fp1, Fp2, Fz, F3, F4, F7, F8,

Cz, C3, C4, FC3, FCz, FC4, T3, T4, T5, T6, Pz, P3, P4, O1, O2, and Oz electrode
sites (10–20 International System).

The GO/NOGO Task

(a) EEG signal collected at t0•

(b) EEG signal collected at t1.

Fig. 9.3 Connectivity generated after unsupervised learning of the SNNc was performed on the
encoded EEG signal (0–64 Hz) of a MCI subject at time t0 who developed AD at time t1. The
figure shows a xy-plane projection and the 3D SNNc
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GO/NOGO task is a psychological test to measure a participant’s capacity for
response control and sustained attention. During the task, the participants were
repeatedly presented with the word ‘PRESS’ (for 500 ms). The color of the word
‘PRESS’ was presented randomly in either red or green. Participants were
instructed to respond by pressing a button with the index finger of both hands in
response to the word that appeared in green (GO) and not respond to the word that
appeared in red (NOGO).

Fig. 9.4 Connectivity generated in the SNNc after unsupervised learning of the EEG data of a
MCI subject at time y0 who developed AD at time t1 in a, b, d and h sub-bands at t0 and t1. The
figure shows the 2D (xy) plane and the 3D (x,y,z) SNNc. Significant reduction of connectivity is
observed in the created NeuCube models from time t0 to t1 in the b sub-band and less in the a and
h sub-bands, across the cortical areas
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Participants were asked to complete the practice trial prior to the real test to
ensure that they understood the task. At this stage, the word ‘PRESS’ was presented
in the same color 6 times in a row. There were 28 sequences, 21 of which were
presented in green and 7 in red, presented in a pseudo-random order, with an
inter-stimulus interval of 1 s. The task duration was approximately 5 min. Speed
and accuracy of response were stressed equally in the task instructions.

Input EEG Data Preparation for the SNN NeuCube Modelling
In this study, the EEG signal data of the MMT, OP, and control subjects were

used as the input to the SNNc to demonstrate the differentiation between their brain
activity patterns against the GO/NOGO task. For this purpose, we extracted several
EEG sample files from the recorded EEG data and analyzed them separately using
the NeuCube model during 3 experimental sessions.

The details of the data are presented in Table 9.2.

Fig. 9.5 A conceptual diagram of using NeuCube BI-SNN for the analysis of EEG data in this
case study
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9.2.3 Modelling the EEG Data in a NeuCube Model

The parameter values of the NeuCube models are presented in Table 9.3. During
the learning process in SNNc, when a neuron ni fires at time t, neurons that are
connected to ni will receive a spike from it and their potentials increase by synaptic
weight of the entered spikes. However, the potentials of those neurons that do not
receive the spike will leak. Hence, greater transmitted spikes between two neurons
lead to stronger connectivity appears.

According to Fig. 9.6, control subjects exhibited a less excitation in NOGO trials
when the response must be withheld in comparison with GO trials when the
response is required. In contrast, excitations induced during the NOGO trials and
were much greater than those induced during the GO trials in either MMT or OP
subjects. These findings reflect the group differences on brain activity induced by
the two competing response tendencies (GO versus NOGO), implicating deficits in

Table 9.2 EEG data sets for the three experimental sessions to compare the brain activity patterns
of the control (CO), MMT, and opiate (OP) subjects in a GO/NOGO task

Session I: EEG data sample files for GO versus NOGO classification

Classifications Samples per class EEG sample file size

GO trials class 21 control subjects
18 OP subjects
29 MMT subjects

75 EEG time points * 26
channels * 21 samples
75 EEG time points * 26
channels * 18 samples
75 EEG time points * 26
channels * 29 samples

NOGO trials class 21 control subjects
18 OP subjects
31 MMT subjects

75 EEG time points * 26
channels * 21 samples
75 EEG time points * 26
channels * 18 samples
75 EEG time points * 26
channels * 31 samples

Session II: EEG data sample files captured during GO trials

MMT class versus
CO class

29 MMT samples (class 1)
21 control samples (class 2)

75 EEG time points * 26
channels * 50 samples

OP class versus CO
class

18 Opiate samples (class 1)
21 control samples (class 2)

75 EEG time points * 26
channels * 39 samples

MMT class versus
OP class

29 MMT samples (class 1)
18 Opiate samples (class 2)

75 EEG time points * 26
channels * 47 samples

Session III: EEG data sample files captured during NOGO trials

MMT class versus
CO class

31 MMT samples (class 1)
21 control samples (class 2)

75 EEG time points * 26
channels * 52 samples

OP class versus CO
class

18 OP samples (class 1)
21 control samples (class 2)

75 EEG time points * 26
channels * 39 samples

MMT class versus
OP class

31 MMT samples (class 1)
18 OP samples (class 2)

75 EEG time points * 26
channels * 49 samples
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inhibition to prevent the execution of the GO response in the subjects with history
of opiate dependence no matter what their current treatment status. After the SNNc
unsupervised training, neuronal connections with stronger weights reflect more
spike transmissions between neurons’ synapses. Therefore, the induced brain
functional pathways that reveal the connection strength in SNNc, can be visualised.
Here we generated and illustrated the pathways initiated from 5 EEG channels,
namely C3, Fz, Cz, C4, and P4. These channels were chosen because of their strong
involvement in the human response inhibition.

Figure 9.6 represents this information for the control, MMT, and OP subjects
while they were responding to GO trials versus NOGO trials. The functional
pathways of the control subjects (Fig. 9.7a-1) show that the spatio-temporal rela-
tionship was extensively observed in the neurons connected to the allocated input
neuron for the Cz channel. By tracing the neuron connections that contain the most
number of transmitted spikes, several functional pathways were traced for the Cz
channel as a spike sender neuron. Figure 9.7b-1 illustrates the brain information
pathways captured from the MMT subjects during the GO trials. The spike tran-
sition from the Cz was decreased in the MMT subjects in comparison with the
Control subjects. On the other hand, the functional pathways generated by Fz
channel were increased. Although the brain activity patterns of the Cz and Fz
channels appeared differently in MMT and Control subjects, their brain functional
pathways were comparable. In contrast, the brain functional pathways of the Opiate
subjects were significantly different from either the Control or the MMT subjects
indicated by the absence of functional pathways initiated from the Cz channel

Table 9.3 The optimal NeuCube parameters that resulted from a grid search to optimise the
classification accuracy as an objective function

Session EEG sample files used in NeuCube classification TBRthr Dthr STDP
rate

I Control subjects in GO versus control subjects in
NOGO

0.551 0.150 0.010

MMT subject in GO versus MMT subject in
NOGO

0.949 0.150 0.010

OP subjects in GO versus OP subjects in NOGO 0.777 0.150 0.010

II MMT subject versus control subjects (GO task) 0.463 0.225 0.014

Opiate subjects versus control subjects (GO task) 0.450 0.075 0.013

MMT subject versus opiate subjects (GO task) 0.669 0.208 0.008

III MMT subjects versus control subjects (NOGO
task)

0.532 0.225 0.006

Opiate subjects versus control subjects (NOGO
task)

0.468 0.175 0.005

MMT subjects versus OP subjects (NOGO task) 0.886 0.225 0.014
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(Fig. 9.7c-1). Consistent with previous studies [17–19], these findings indicate the
possible abnormality of brain function associated with long term exposure to opioid
type drugs. However, patients undertaking MMT for opiate addiction appeared less
impaired than those current opiate users.

Fig. 9.6 Illustration of the SNNc connectivity after the NeuCube learning with EEG data of 26
features (channels) for the experimental GO/NOGO task. The learnt connectivity of the SNNc is
different for the control (healthy), MMT, and OP subjects related to the GO/NOGO task. The blue
lines are positive (excitatory) connections, while the red lines are negative (inhibitory)
connections. The brighter the colour of a neuron, the stronger its activity with neighbouring
neurons. Thickness of the lines also identifies the neuron’s enhanced connectivity. The 1471
neurons of the brain-like SNNc are spatially mapped according to the Talairach brain atlas [4]
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Fig. 9.7 Functional pathways for Control, MMT, and OP subjects generated between 5 EEG
channels (sender spike neurons) and the rest of the neurons inside the brain-like SNNc (receiver
spike neurons) while doing GO trials versus NOGO trials. The big solid dots represent the input
neurons and other neurons that are labelled with * sign are receiver spike neurons. The lines
represent the connectivity between neurons. The unconnected dot means no spike arrived at that
neuron. a.1 the brain functional pathways of the control subjects in GO trials; a.2 the brain
functional pathways of the control subjects in NOGO trials; b.1 the brain functional pathways of
the MMT subjects in GO trials; b.2 the brain functional pathways of the MMT subjects in NOGO
trials; c.1 the brain functional pathways of the OP subjects in GO trials; c.2 the brain functional
pathways of the OP subjects in NOGO trials; d.1 the brain functional pathways of MMT group that
received less than 60 mg methadone dose per day; d.2 the brain functional pathways of MMT
group that received more than 60 mg methadone dose per day
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9.2.4 Comparative Analysis of Brain Activities of MMT
Subjects Under Different Drug Doses Versus CO
and OP Subjects. Modelling and Understanding
the Information Exchange Between Brain Areas
Measured Through EEG Channels

Members of the MMT group were receiving different doses of methadone. To
examine the dose-related effects, the EEG patterns of the MMT subjects were cat-
egorized into two groups based on their current methadone dose: High dose
(>60 mg/day) and low dose (� 60 mg/day). The EEG patterns of these two groups
were learned in a SNNc and their functional pathways were visualized. Figure 9.7-d
captures the differences between functional pathways generated by 5 EEG channels
in MMT subjects on low and high methadone dose. The captured functional path-
ways of those MMT subjects that used a high dose were more similar to the OP
group. On the other hand, the MMT subjects with less amount of methadone dose
performed similar functional pathways to the control group. The NeuCube model
allows also to perform modelling and understanding the information exchange
between brain areas measured through EEG channels. This is illustrated in Fig. 9.8
and explained below. Figure 9.8 captures the spike communication between 26 EEG
electrodes after NeuCube unsupervised learning. Each vertex represents a neuronal
cluster corresponding to an EEG channel and the arcs represent relative spike
amounts transmitted between different neuronal clusters. The wider the line between
input neurons, the more spikes were transmitted between the corresponding clusters.

In Fig. 9.8a, by comparing two graphs obtained from control subjects in GO versus
NOGO trials, it is clear that the spike communicationwas especially enhanced between
neuronal clusters while the subjects were performing GO trials. Consequently, we can
conclude that less spike interactions were manifested while subjects increased inhi-
bition of responses during NOGO trials in comparison with GO trials. Perhaps, the
green appurtenance of the word ‘PRESS’ helps to strength the visibility to healthy
subjects and induces an enhanced activation in the central parietal and occipital areas,
which probably encompasses the primary and secondary visual areas.

However, this trend is absent in either the MMT or opiate subjects. Furthermore,
both the MMT and opiate subjects demonstrated increased spike communication in a
wide range of areas, in particular, in the frontal, central, and temporal areas during the
NOGO trials, implicating increased stimulation induced byNOGO stimuli in the areas
related to attention, visual memory, and execution of voluntary movements. Our
findings suggest anatomically and functionally different inhibition processes between
people with history of opiate use and healthy control subjects. It is also noted that
alternation of inhibition process are greater in the opiate users compared to the MMT
subjects. For opiate subjects in NOGO trials, the majority of the wide lines were
created between channel F4 and channels T6, P4, PZ, P3, T5, CP4, T4, C4, and CZ.
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Fig. 9.8 a The total interaction between 26 neuronal clusters representing 26 EEG channels in
terms of spike communication as a measure of information exchange between cortical brain areas.
The thicker the line that connects two neurons that represent the corresponding electrodes, the
more spikes are transmitted between corresponding clusters; b The number of spikes emitted by
each neuron of the SNNc after SNNc unsupervised training with an exemplar EEG data recorded
from Control, MMT, and Opiate subjects in GO versus NOGO trials. The blue lines are the
positive spikes (excitatory) emitted by all neurons in the SNNc, while the red lines are negative
spikes (inhibitory) emitted only by the input neurons representing the EEG channels. EEG GO/
NOGO Pattern Classification Using the NeuCube Model
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These connections represented more spikes transmitted between neuronal clusters
corresponding to the channel F4 and the other neuronal clusters while the subjects
were undertaking NOGO trials. Consequently, the ability of the opiate subjects to
inhibit their voluntary responses may be impaired during NOGO trials.

On the other hand, the interactions between these channels are not observed in
the control subjects during NOGO trials. It means that there were not many spikes
transmitted between the neuron clusters related to channel FZ and the other EEG
channels. In the graph obtained from MMT subjects in NOGO trials, there were
strong spike communications between FZ, CP4, and T4 clusters, although these
connections were less in comparison with opiate subjects. The observed differences
in spike communication implicate that the control and Opiate subjects performed
differently while they were doing cognitive GO/NOGO tasks.

To achieve a better understanding of the spike occurrence and propagation inside
the SNNc, the number of the spikes emitted by each neuron during the unsuper-
vised training is illustrated in Fig. 9.8b. While the SNNc was training with EEG
data, the post synaptic potential of each neuron ni at time t, PSPi(t) [20] increased
by the sum of the input spikes received from all pre-synaptic neurons. Once the
PSPi (t) reaches the firing threshold, neuron ni emits a spike. After the SNNc
unsupervised learning, temporal activities of the spiking neurons can be interpreted
in terms of brain activities measured by the corresponding EEG channels.

An example of the number of spikes emitted by every neuron of the SNNc
related to the EEG data is given in Fig. 9.8-b. By comparing the results obtained
from GO versus NOGO trials, we can conclude that the average number of emitted
spikes in control subjects were greater when they were doing GO trials in com-
parison with NOGO trials. In contrast for OP subjects, the emitted spikes were
greater during the NOGO trials. The plots indicate that the number of emitted spikes
of each neuron was less than 100 in control subjects and greater than 100 in OP
subjects during the NOGO trials. These findings support our argument that OP
subjects may experience difficulty in inhibiting their inappropriate automated
responses when they were expected to not press the button in NOGO trials.

In order to learn and classify the EEG signal patterns, the EEG data was entered
into a 3D SNNc for unsupervised learning. Then output classifier neurons were
trained using supervised learning to classify the activity patterns of the SNNc into
the pre-defined classes. The classification accuracy results were evaluated using
repeated random rub-sampling cross validation (RRSV). In this experiment, the
RRSV method was applied with 50% of the data for training and 50% for testing. In
order to optimize classification accuracy, the values of the NeuCube parameters
were altered through iterative applications of the NeuCube modules (1)–(3) as
discussed in Sect. III.B.

In this experiment, the TBR threshold, Connection distance (Dthr), and STDP
rate parameters were changed during 1000 optimization iterations and then the best
accuracy was recorded. The parameters that generated the best classification
accuracy are reported in Table 9.3. The firing threshold, the mod, and drift
parameters were set to 0.05, 0.4, and 0.250 respectively.
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9.2.5 Analysis of Classification Results

Classification accuracy results were compared with results obtained using tradi-
tional machine learning methods, as these methods are still being actively used in
the literature for the purpose of classification of EEG data.

The methods we used for comparison are: Support Vector Machine (SVM);
Multiple Linear Regression (MLR); Multi-Layer Perceptron (MLP); and Evolving
Clustering Method (see www.theneucom.com). The classification accuracy results
of the three experimental sessions for the three output classes of subjects are
summarized in Table 9.4.

The classification accuracy results obtained in session I show that the control
subjects took actions differently in GO trials versus NOGO trials. Therefore, their
EEG spike trains were classified with a higher accuracy of 90.91% in comparison
with MMT and opiate subjects. In session II, the classification accuracy of 85% in
OP versus CO is higher than the accuracy of 77% in MMT versus CO, which means
that the similarity between the EEG data of the MMT and control subjects was
greater than the similarity between EEG data of the opiate and control subjects.

Table 9.4 The EEG data classification accuracy results from three experimental sessions via
RRSV method of the NeuCube. 50% of the data was used for training and 50% used for testing.
The results of the traditional methods were obtained via leave one out cross validation (LOOCV)

Control subjects (CO), Opiate subjects (OP), Accuracy is reported in %

Session Classification NewCube SVM MLP MLR ECMC

Session I:
GO versus NO
classification

Control subjects in
GO versus NOGO

90.91 50.55 48.50 50.38 29.71

MMT subjects in
GO versus NOGO

83.87 50.39 49.72 50.17 42.65

Opiate subjects in
GO versus NOGO

83.33 50.40 47.81 50.00 45.43

Session II:
OP, MMT, CO
classification in GO

MMT subject versus
control subjects
(GO)

77.00 47.12 45.36 49.86 50.47

Opiate subjects
versus control
subjects (GO)

85.00 50.50 50.64 48.60 48.60

MMT subject versus
opiate subjects

79.00 47.90 45.22 50.53 49.98

Session III: OP, MMT,
CO classification in
NOGO

MMT subjects
versus control
subjects

85.00 49.13 48.62 50.49 50.15

Opiate subjects
versus control
subjects

90.00 50.24 49.83 50.24 49.83

MMT subjects
versus OP subjects

88.00 46.57 50.51 50.00 48.71
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Consequently, we can conclude that some of the MMT subjects respond to the
methadone treatment and their brain activity patterns may be improved and become
comparable to the CO subjects. Also, the classification accuracy of 100% in MMT
versus OP demonstrates that all MMT subjects were classified correctly into the
MMT class. In fact, this result indicates that the EEG data patterns of the MMT
subjects are greatly different from opiate subjects.

The classification accuracy of 90% in OP versus CO is higher than the classifi-
cation accuracy of 85% in MMT versus CO. These results show that the differences
between the brain activity patterns of MMT and control groups can be minimum in
contrast to OP group, andMMT group. It may represent that the MMT has a potential
positive effect on brain function and contribute to functional recovery.

The experimental results demonstrated that:

(1) In all experiments, the NeuCube-based models obtained superior classification
accuracy when compared with traditional machine learning methods.

(2) The brain activity patterns of healthy volunteers were significantly different
from people with history of opiate dependence. The differences appeared less
pronounced in people undertaking MMT compared to those current opiate
users.

(3) The brain functional pathways of the healthy volunteers were greater and
broader than either people undertaking MMT or those opiate users.

(4) The STBD patterns of people on low dose of methadone appeared more
comparable to healthy volunteers compared to those on high dose of
methadone.

9.3 Chapter Summary and Further Readings for Deeper
Knowledge

The chapter presents some applications of the methodology for deep learning and
modelling of EEG data and for the design of BI-AI systems from Chaps. 6 and 8,
here for modelling EEG data related to brain diseases, on the case of AD and drug
addiction. These are only two illustrations for the applicability of the introduced
SNN methodology. Further applications and studies can be developed using this
approach.

The following readings on specific and related topics can be recommended:

– Multimodal atlases of the human brain [21];
– Electroencephalography [22];
– Brain imaging [15];
– Alzheimer’s Disease (Chaps. 51, 52 in [23] and also [24]);
– SNN for modelling EEG data of drug addicts under treatment [16–19];
– Demo on modelling EEG AD data in NeuCube: https://kedri.aut.ac.nz/R-and-D-

Systems/neucube/eeg;
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– NeuCube software development system (http://www.kedri.aut.ac.nz/neucube/);
– Methods and systems for measuring and modelling brain structures and func-

tions, with applications [25–42].
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Chapter 10
Deep Learning and Deep Knowledge
Representation of fMRI Data

The chapter presents first background information about functional
magnetic-resonance imaging (fMRI) and then introduces methods for deep learning
and deep knowledge representation from fMRI data using brain-inspired SNN.
These methods are applied to develop specific methods for fMRI data analysis
related to cognitive processes.

The chapter is organised in the following sections:

10:1. Brain fMRI data and their analysis.
10:2. Deep learning and deep knowledge representation of fMRI data in BI-SNN.
10:3. Mapping, learning and classification of fMRI data in NeuCube on the case

study of STAR/PLUS data.
10:4. Algorithms for modelling fMRI data that measure cognitive processes.
10:5. Chapter summary and further readings for deeper knowledge.

10.1 Brain fMRI Data and Their Analysis

10.1.1 What Are fMRI Data?

Functional MRI (fMRI) combines visualisation of the brain anatomy with the
dynamic image of brain activity into one comprehensive scan [1–3]. This nonin-
vasive technique measures the ratio of oxygenated to deoxygenated hemoglobin
which have different magnetic properties. Active brain areas have higher levels of
oxygenated hemoglobin than less active areas. An fMRI scan can produce images
of brain activity at the time scale of seconds with precise spatial resolution of about
1–2 mm. Thus, fMRI provides both a 3D anatomical and functional view of the
brain in the lower frequency spectrum.

fMRI can be used to visualize hemodynamic response in relation to neurons’
activities in certain part of the brain [4]. This hemodynamic response is indicated by
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the increasing amount of blood flow to that particular activated neurons area. The
components of hemodynamic response include the changes in the oxyhemoglobin
and deoxyhemoglobin concentration, in the cerebral blood volume (CBV) per unit
of brain tissue and in the cerebral blood flow rate. There are different fMRI tech-
niques that can capture the functional signals generated from the different com-
ponents of hemodynamic response. One of the most common techniques is based
on the concentration of oxyhemoglobin-deoxyhemoglobin component and it is
known as blood-oxygen-level-dependent (BOLD) technique [5].

While MRI provides structural mapping of a brain, fMRI imaging technique
combined with blood-oxygen-level-dependent (BOLD) technique [5], produced a
better set of brain images, i.e. with excellent temporal as well as spatial information.
In addition to structural mapping, fMRI generates functional mapping of the brain
that actually takes advantage of iron in the blood-carrying-oxygen and
blood-vessels-dilation physiological principle that occurs in activated regions. It is
used to measure neural activity changes in the brain resulting from stimuli triggered
externally or internally [6]. More precisely, fMRI measures the ratio of oxygenated
haemoglobin to deoxygenated haemoglobin in the blood with respect to a control
baseline, at many individual locations within the brain. It is widely believed that
blood oxygen level is influenced by local neural activity, and hence this blood
BOLD response is generally taken as an indicator of neural activity [2].

fMRI imaging technique is non-invasive and radiation-free thus providing a safe
environment to the subjects involved. The images are recorded in sequence either
vertically or horizontally (Fig. 10.1), and over time, in a matrix of intensity values.
They are captured in slices of image data through the organs, generally in 8 or 16-bit
(Fig. 10.1 right). There are a number of common formats in which the images are
saved such as in DICOM, ANALYZE, NIFTI format or in raw voxel intensity values.

Fig. 10.1 Brain images in vertical and horizontal slice: in sagittal, coronal and axial views (left).
Slices of brain image data taken over time i.e. 32 images for a volume of brain (images are viewed
using FSLView (FSLView, 2012) software (right)
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The images are constructed from two components—spatial/spectral (or spatio)
and temporal. The first component is identified as the volume of a brain that can be
further sub-divided into smaller 3D cuboids, known as voxels (volume element). In
a typical fMRI study, a series of brain volumes are collected in quick succession
and the value of BOLD response at all points in a 3D grid are recorded. A general
3D brain image typically contains 10,000–15,000 voxels, and each voxel consists
of on the order of hundreds of thousands of neurons. Spatial image resolutions can
be set either to have low or high resolution. As in Fig. 10.2 while high-resolution
image provides more accurate information (e.g. voxels with dimensions of
1 mm � 1 mm � 1 mm) more CPU processing power is required and is not fea-
sible at the moment. Typical spatial resolution is 3 mm � 3 mm � 5 mm, corre-
sponding to image dimensions in the order of 64 � 64 � 30 [7] and still this
resolution is relatively high compared to other imaging techniques.

The temporal component is acquired while scanning the whole volume of a brain
that will take a few seconds to complete. In a single run of an experiment, 100 or
more brain volumes are usually scanned and recorded for a single subject doing a
particular sensorimotor or cognitive task. Temporal component depends on the time
between acquisitions of each individual image, or the time of repetition (TR). In a
typical experiment, TR ranges from 0.5 to 4.0 s and TR values in the range of 2 s
are generally considered adequate [7].

The combination of this spatial and temporal information of the brain images
will be the main concern investigated in this study.

10.1.2 Traditional Methods for fMRI Data Analysis

Choosing the best technique for fMRI data analysis is still a question that needs to
be answered properly. There are many variables that have to be considered, for

Fig. 10.2 Surface renderings of 3D brain images. Small voxels (left, with 1 mm � 1 mm � 1.5 mm)
versus large voxels (right, with 7 mm � 7 mm � 10 mm) (Smith 2004)
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instance the weak signal of voxel of interest, the voxels being distributed among
various spatial locations of the brain, different brain mapping of different brain sizes
and spatially distributed noise. A popular analysis approach is pattern classification,
where the brain patterns are observed to forecast the task being performed by the
subject.

Naturally, brain activities are captured as fMRI data in a spatio-temporal format.
In conducting the analysis, researchers often treat fMRI data classification either in
univariate or multivariate; linear or non-linear; or as static or spatio-temporal
approach.

In early years, the standard fMRI data analysis approach examines each brain
voxel area in isolation (univariate) as static data as suggested in Statistical
Parametric Mapping (SPM) [7, 8], which completely disregard the inherent
spatio-temporal characteristics of fMRI data. Univariate approach processes fMRI
voxels as independent individuals, thus no interaction and no relationship are
measured among the voxels. This approach has been experimented with Gaussian
Naïve Bayes method [2, 9]. However this approach neglects the collective infor-
mation encoded by voxels patterns [10].

Multivariate analysis on the other hand, evaluates the correlation of brain pat-
terns across the brain regions rather than examining them on a voxel-by-voxel
basis. In [6] illustrated how multi-voxel patterns of activity can be used to distin-
guish between cognitive states when subjects were shown faces, houses and a
variety of object categories. As different brain locations are triggered with the same
(or different) stimulus, experiments should consider all relevant voxels instead of
just considering a single particular voxel. This multi-voxel pattern analysis has been
adapted by many researchers with various classifiers using either linear or
non-linear classifiers: SVM [11–14], Gaussian Naïve Bayes (GNB) [15–17], neural
networks without a hidden layer [18], non-linear SVM [13, 19] and neural networks
with hidden layers [20]. All these studies only consider data at a single time or time
interval.

Another fMRI classifier approach is whether they are linear or non-linear. While
linear classifier divides the classes with a linear plane, non-linear classifier separates
the classes using a more complex function [21]. Works related to fMRI on linear
classifier includes [2, 12, 13, 22, 23]. Although this approach is more biased and
less flexible than the non-linear classifier, several studies suggest that they could
still generate accurate results [13, 23]. Non-linear classifier on the other hand has
also produced good analysis [19, 24] although some other studies suggest that it
produces the worst result [13, 25]. However, for robust classification, non-linear
classifier requires larger training set [26].

In recent years, researchers are moving towards brain analysis that embed both
spatial and temporal behaviour such as spatial-temporal SVM [27], Bayesian for-
mulation [28] and Generalized Sparse Classifier (GSC) [29]. A research conducted
by [30] selects a set of relevant voxels using General Linear Model (GLM) and then
incorporates liquid state machine and Multi-Layer Perceptron (MLP). These
researches focus on spatio-temporal classification, where multiple brain volumes
within a trial are treated as a sample.
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In conclusion, the study of fMRI characteristics and its relation with the beha-
viour of a classifier is still not well comprehended. Typically, fMRI datasets are
ill-posed datasets that require massive computational power to process their voxels.
In addition to this, the interaction of the classifier properties with BOLD signal
properties of fMRI is still not well treated [30, 31].

10.1.3 Selecting Features from FMRI Data

In a typical fMRI experiment, a sequence of images related to the subject’s brain
activity every half seconds will be produced. The experiment usually consists of a
set of trials and each trial produces many brain volumes over time. Each brain
volume is comprised of voxels in the order of thousands and these voxels’ inten-
sities are the features to be classified. Learning this brain data poses many chal-
lenges especially in terms of the data being extremely sparse noisy data and high
dimensional. This would cause over-fitting problem for the classifier. Hence it is
necessary to apply feature selection methods to make learning tractable and to
prevent over-fitting.

In selecting relevant features (voxels, or areas of voxels) that respond to a stimulus,
it can either be done in a univariate or multivariate manner. Apart from the standard
univariate approach multivariate pattern analysis approaches towards detection of
ROI from fMRI data have been gaining a lot of attention recently. The advantage of
multivariate method stem from the fact that even voxels with weak individual
response may carry important cognitive information when analysed together.

Evolutionary feature selection is an algorithm that is based on evolutionary
techniques (Chap. 7). This approach was proven effective in feature subset selection
that detects which number and combination of individual voxels that carry infor-
mation relevant to a stimulus [32]. These voxels are used as features in multiple linear
regression (MLR) classifier and they proved that even the simple classification
scheme can detect and distinguish relevant cortical information in noisy fMRI data.
Although it considers voxels in multivariate way (analyse voxels collectively),
voxels are only on a single volume and not tested on multiple volumes over time.

Another approach uses particle swarm optimization (PSO) based fMRI brain
state classification algorithm, specifically designed to efficiently extract a subset of
voxels optimal for classification task [33]. PSO is a stochastic optimization method
[34] loosely based on the behaviour of swarming animals such as fish and birds (see
Chap. 7). A number of particles, representing potential solution to the problem, are
released in the search space of potential solutions. Each particle has a position and a
velocity and is free to fly around the search space. And in the case of feature
selection, this standard PSO is modified as proposed by [35] and not only achieves
high performance scores but also identifies functionally relevant ROI [33].

In addition, methods that simultaneously select relevant voxels have been pro-
posed which extend traditional classifiers by incorporating sparse regularization,
which controls over fitting by encouraging zero weights to be assigned to irrelevant
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voxels [9, 36, 37]. And these works have been improved in the recently proposed
Generalized Sparse Classifiers (GSC) [38] that permits more general penalties, such
as spatial smoothness in addition to it being sparse and to be seamlessly integrated.
Another improvement was Generalized Group Sparse Classifiers (GGSC) [39] that
permits associations between features within predefined groups to be modelled.

10.2 Deep Learning and Deep Knowledge Representation
of fMRI Data in NeuCube

This section presents generic methods for mapping, learning, modelling and
understanding of fMRI data in a brain-inspired SNN architecture and illustrates the
methods on modelling fMRI from cognitive tasks in the NeuCube SNN architecture
from Chap. 6. Full description of the methods can be found in [40].

10.2.1 Why Use SNN for Modelling of fMRI
Spatio-temporal Brain Data?

The brain processes input information in the form of spatio-temporal binary events
called spikes [41–43]. SNN methods have been already developed and implemented
as neuromorphic engineering systems, e.g.: neuromorphic hardware [44–46]; SNN
for image and speech processing as trains of spikes [47–49]; unsupervised [50] and
supervised learning and classification systems [51–53] etc.

Comparing to traditional neuronal networks, SNNs can integrate both spatio and
temporal components of data which is important in modeling fMRI data. SNNs are
considered the third generation of neural networks [54] and some of their
remarkable features are: compact representation of space and time; fast data
learning; time-based and frequency-based information representation; minimalistic
information presentation; low energy consumption. Due to these reasons, SNN can
be considered as suitable models for fMRI data. These features of the SNN are
utilised in [55] for the creation of BI-SNN—NeuCube (see Chap. 6).

NeuCube is a BI-SNN model for learning, classification/regression, visualisation
and interpretation of spatio-temporal data, initially proposed for brain data [55].
NeuCube consists of five main modules: data encoding and mapping; unsupervised
learning in a SNNc; supervised learning and classification in eSNN; parameter
optimisation; model visualisation and interpretation (see also Chap. 6). The size of
the SNNc is scalable and controlled by three parameters: nx; ny; nz representing the
neuron numbers along x, y and z directions. This cube can be used to map (x, y, z)
coordinates of input variables, so that spatial information in the data is preserved.
The SNNc is trained in an unsupervised mode on the spike sequences that represent
the input spatio-temporal data. After this first phase of training, an eSNN output
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classifier is trained to learn the SNNc spatio-temporal activities that represent data
patterns and their pre-defined classes. A dynamic evolving SNN (deSNN) can be
used as an output classifier [51], but other classifiers can also be employed [52–54].

10.2.2 A Methodology for Deep Learning and Deep
Knowledge Representation of fMRI Data in BI-SNN

This methodology includes several procedures as described below and schemati-
cally presented in Fig. 10.3.

The input data features (e.g., fMRI voxels) are spatially mapped into spatially
allocated spiking neurons in a 3D SNNc according to the spatial location of these
features as brain coordinates. A SNNc is created as a 3D SNN structure of a suitable
size that maps spatially a brain template (such as Talairach [56], MNI [57]) or voxel
coordinates of individual brain data. Then continuous value time series of voxel
data that measure activity at a certain brain location is encoded into a spike train
using Threshold-Based Representation method (TBR) or other methods (Chap. 4)
[58]. The timing of the spikes corresponds to the time of the changes in the data.
A spike time sequence, obtained after the encoding process, represents a new input
information to the SNNc where the time unit maybe different from the real time of
the data acquisition (machine computation time versus data acquisition time). The
SNNc can be implemented using the popular leaky-integrate and fire neuronal
model (LIFM or other SNN models [59]).

The neuronal post-synaptic potential (PSP), also called membrane potential u(t),
increases with every input spike at a time t, multiplied by the synaptic efficacy
(strength), until it reaches a threshold h. After that, an output spike is emitted and
the membrane potential is reset to an initial state. The membrane potential can have
certain leakage between spikes, which is defined by a temporal parameter s.

Fig. 10.3 A schematic representation of the NeuCube-based methodology for fMRI data
mapping, learning, visualisation, and classification (after [40])
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The connectivity of the SNNc is initialized using the “small-world” connectivity
rule (see also [55, 60, 61]). The small world connectivity rule is phenomenon
observed in biological systems [62, 63]. Unsupervised learning is performed using
Spike-Timing-Dependent Plasticity (STDP) learning rule [50] as one implementa-
tion. In this study, the unsupervised learning allows for the SNNc to evolve its
connections so that they capture spatio-temporal associations between voxels rep-
resenting consecutive spatio-temporal brain activities. For every input
spatio-temporal fMRI sample, a trajectory of connections are formed in the SNNc.
The length (the depth) of these trajectories depends on the spiking sequence rep-
resenting the sample and the time of presentation.

Example is given below where the details of the case study data are presented in
the following subsection.

Figure 10.4a presents three snapshots of deep learning of eight-second fMRI
data in a NeuCube model when a subject is reading a negative sentence (time in
seconds). Figure 10.4b captures the internal structural pattern, represented as
spatio-temporal connectivity in the SNN model trained with eight-second fMRI
data streams. The corresponding functional pattern is illustrated in Fig. 10.4c as a
sequence of spiking activity of clusters of neurons in a trained NeuCube model
representing deep knowledge. The internal functional dimensionally of the SNN
model shows that while the subject was reading a negative sentence, the activated
cognitive functions were initiated from the Spatial Visual Processing function. Then
it was followed by the Executive functions, including decision making and working
memory. From there, the Logical and Emotional Attention functions were involved.
Finally, the Emotional Memory formation and Perception functions were evoked.

The trajectory of activities of spatially located brain areas over series of time
intervals visualised in Fig. 10.4c can be represented as deep knowledge as a sequence
of events Ei, each of them defined by a function Fi, location Si and time of execution
Ti according to the definition of deep knowledge in Chap. 1 (see Box 10.1).

Fig. 10.4 a Three snapshots of deep learning of 8 sec of fMRI data in a NeuCube model when a
subject is reading a negative sentence (time in seconds); b Internal structural pattern represented as
spatio-temporal connectivity in the SNN model trained with 8 sec fMRI data stream; c A
functional deep knowledge pattern represented as a sequence of spiking activity of clusters of
spiking neurons in a trained model
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______________________________________________________________________________________ 

Box 10.1  Deep knowledge representation extracted from a trained NueCube model on fMRI STBD 

from a  person reading a negative sentence 

______________________________________________________________________________________ 

IF (a person is reading a negative sentence) 

THEN (the following events are triggered in space and time in a trained SNN model) 

              E1: Vision, in the Spatial Visual Processing area, at time T1, 

   AND   E2: Decision making function, in the Decision making and working memory, at time T1, 

   AND   E3: Logical and Emotional Attention function, in the Attentional brain area, at time T3 

   AND   E4: Emotional functions, in the Emotional brain area, at time T4 

   AND   E5: Emotional memory formation function, in the Memory brain area, at time T5   

   AND   E6: Perception function, Perception brain area, at time T6.   

Note: The times Ti and locations Si of the vents Ei can take either exact or fuzzy values (e.g. around, more 

or less, etc.) 

______________________________________________________________________________________  

An output classification module for supervised learning of spatio-temporal spike
sequences, activated in the SNNc by the input data, is implemented using the
deSNN classification algorithm [51]. During the supervised learning, output neu-
rons are evolved and trained to recognize whole patterns of activities of the SNNc.
A whole pattern of SNNc activity is defined as the spatio-temporal spiking activity
of the SNNc during the time of the presentation of a whole input data sample
labelled by a class label. The duration of the fMRI samples used can vary in time
and number of voxels used. The use of eSNN allows for a further adaptation of the
NeuCube model on new data in an incremental way without re-training the model
on old data. The model can be further evolved, with new samples used for training
and new classes introduced in an incremental way.

The output classification accuracy depends on the combination of NeuCube
model parameter values. This combination can be optimized using different algo-
rithms, such as: grid search (exhaustive search), genetic algorithm, and quantum
inspired evolutionary algorithm [64] (Chap. 7). A number of default parameters are
listed in Sect. 10.3.

The trained NeuCube model of fMRI data can be dynamically visualized in a 3D
virtual reality space for the analysis of brain activities and for the discovery of new
spatio-temporal causal relationships from the data [58].

The proposed here NeuCube-based methodology for mapping, learning, classi-
fication and knowledge representation of fMRI data is illustrated in the next sec-
tions on benchmark fMRI data sets.
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10.3 Mapping, Learning and Classification of fMRI Data
in NeuCube on the Case Study of STAR/PLUS Data

10.3.1 The STAR/PLUS Benchmark fMRI Data

The STAR/PLUS fMRI data set, originally collected by Marcel Just and his col-
leagues at Carnegie Mellon University’s Center for Cognitive Brain Imaging
(CCBI) [65, 66], was selected for the illustration of the proposed methodology.
STAR/PLUS fMRI data sets consists of sequences of images from the whole brain
volume captured every 500 ms during a cognitive task. For each subject conducting
a picture versus sentence task, data from 40 trials has been collected, each trial
starting by presenting a stimulus (picture or sentence) that remains on the screen for
4 s (8 brain images recorded). Then, a blank screen appears for another 4 s. After
that, the next stimulus is presented for the next 4 s, etc. The fMRI data is spatially
partitioned into 27 distinct regions of interest (ROIs), each corresponding to dif-
ferent number of voxels. From the STAR/PLUS fMRI data, two different subsets
were extracted and used for two case studies illustrating our methodology. The first
data set relates to modelling fMRI STBD when subjects are reading affirmative
versus negative sentences. The second dataset relates to modelling fMRI STBD
when a subject is seeing a picture versus reading a sentence. In order to analyze and
classify voxel activity patterns generated by different stimuli type (picture/
sentence), the fMRI data is divided into two classes (1: a subject is seeing a picture;
2: a subject is reading a sentence). We will demonstrate in the next sections that
using the proposed methodology we can not only classify these activities, but obtain
a better understanding of their spatio-temporal manifestation in the brain.

To analyze the voxel activity patterns of the activated ROIs, either all voxels can
be used and mapped in a SNNc model or a suitable subset of voxels can be selected.
Different methods for feature selection can be used for the purpose. In our exper-
iments we have used a standard statistical measure known as Signal-to-Noise Ratio
(SNR) [52] via available online NeuCom platform [67].

For a two-class problem, a SNR index for a variable x is calculated as an
absolute value of the difference between the mean value M1x of the variable for
class 1 and the mean M2x of the variable for class 2, divided to the sum of the
respective standard deviations. Figure 10.5 illustrates a set of selected voxels from
the fMRI data for each of the two case studies, while Table 10.1 shows how many
of these voxels belong to which ROI. We conclude from Table 10.1 (left column)
that when a subject is making a decision about sentence polarity, more activated
voxels are located on the Left Dorsolateral Prefrontal Cortex (LDLPFC), Left
Temporal (LT), LOPER, and the Inferior Parietal Lobule (LIPL). Table 10.1 (right
column) contains the selected voxels while the subject deals with picture/sentence
stimuli. Calcarine (CALC) is more activated than the other parts of the brain.
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10.3.2 fMRI Data Encoding, Mapping and Learning
in a NeuCube SNN Model

Model parameter setting

Threshold-Based Representation (TBR) method was applied on each voxel time
series data to transfer the data into a sequence of spikes (see Chap. 4). If a voxel
BOLD intensity value exceeds the TBR threshold, a spike occurs [58]. Figure 10.6
shows an example of 5 voxel time series.

Fig. 10.5 The SNR index (on the y-axis) of top voxels (on the x-axis) extracted from: a the
affirmative versus negative sentence fMRI data set; b the picture vs sentence fMRI data set

Table 10.1 Subset of voxels are selected via SNR (Signal-to-noise ratio) feature selection method
from two fMRI data sets

Activated brain regions in the affirmative
versus Negative sentence task and the number
of voxels selected in Fig. 10.5a that belong to
each of these regions

Activated brain regions in the picture versus
Sentence task and the number of voxels
selected in Fig. 10.5b that belong to each of
these regions

‘LT’ (3), ‘LOPER’ (3), ‘LIPL’ (1),
‘LDLPFC’ (6), ‘RT’ (2), ‘CALC’ (1),
‘LSGA’ (1), ‘RDLPFC’ (1), ‘RSGA’ (1),
‘RIT’ (1)

‘CALC’ (5), ‘ROPER’ (3), ‘LT’ (4),
‘LOPER’ (3), ‘LSPL’ (1), ‘RIPS’ (3),
‘LPPREC’ (1), ‘RT’ (4), ‘LFEF’ (1),
‘LDLPFC’ (3), ‘RDLPFC’ (1) ‘LIPS’ (2),
‘RPPREC’ (1), ‘LIT’ (1)
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Here we have illustrated two types of voxel coordinate mappings in a 3D SNNc
structure: (1) Direct mapping of individual fMRI voxel coordinates (Fig. 10.7.);
(2) Mapping fMRI voxel coordinates first into a standard brain template, such as
Talairach [56], and then mapping the Talairach coordinates into a 3D SNNc. This
method is illustrated in Figs. 10.8 and 10.9 and explained below.

We have used the fMRI data of subject “05680” from the STAR/PLUS fMRI
data. The fMRI data dimensions are defined by the maximum value of x, y, and z
voxel coordinates, which equal in our case study data to 51 � 56 � 8 as can be
seen in Fig. 10.7. Using these dimensions, 5062 voxel coordinates are recorded
from the entire brain volume. We mapped all voxel coordinates into a SNNc so that
the spiking neurons have the same 3D coordinates as the corresponding voxels.

Fig. 10.6 An example of encoding 5 voxel time series captured during 8 s (16 brain images) into
trains of spikes

Fig. 10.7 Direct mapping of fMRI voxels into a SNNc. The dimensions of the SNNc are defined
by the maximum values of x, y, and z voxel coordinates, which in this case study equal to
51 � 56 � 8. In this dimensional space, 5062 voxels are mapped from the STAR/PLUS
geometric voxel coordinates of a single person. The selected voxels in Fig. 10.5 for each case
study problem are shown as input variables as circles, along with the ROI (as text in boxes) for:
a affirmative versus negative sentence fMRI data; b picture versus sentence fMRI data
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Figure 10.7a illustrates the spatial mapping of all fMRI voxels into a SNNc. 20 of
these neurons are allocated and labelled to represent input features as per the
selection in Fig. 10.5a. Figure 10.7b represents the same brain structure with dif-
ferent pre-selected voxels for the picture vs sentence data set for the same subject.

When we create a model of fMRI data collected from many subjects, we need to
use a unifying structural brain template, such as the Talairach atlas [56], the MNI

Fig. 10.8 Mapping fMRI voxels into SNNc using the Talairach brain template. The 5062 voxel
data of one subject were first mapped into 1471 Talairach template coordinates according to [55,
56, 69]. Then each template coordinate is mapped into a corresponding neuron from a SNNc. The
selected top informative voxels in Fig. 10.5 for each case study problem are used as input variables
and shown as circles along with the ROI (as text in boxes) for: a affirmative versus negative
sentence fMRI data; b picture versus sentence fMRI data

Fig. 10.9 Voxels are mapped into SNNc using Talairach template: a Initial connections in a
SNNc; b learned connections after STDP unsupervised learning using both affirmative and
negative sentence fMRI samples when 20 input voxels selected as in Fig. 10.5. The dense areas of
connectivity evolved in the SNNc can be analysed to understand the most active functional areas in
the brain during these two tasks and how they interact dynamically
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atlas [57] or other [68]. In this study, we transformed the coordinates of the
pre-selected voxels and mapped them into a NeuCube of 1471 spiking neurons
according the Talairach brain template. Each of these neurons represents the center
coordinate of one cubic centimeter area from the 3D Talairach atlas [69].

In this experiment for every voxel from an fMRI data set, we calculate the
nearest Talairach-based coordinate in the relevant Brodmann area. After mapping
the coordinates of the preselected voxels to the Talairach-based coordinates, every
voxel is mapped into a spiking neuron in the SNNc according to its new, Talairach
transformed coordinates.

A NeuCube model performance is highly sensitive to parameter setting. Some of
the most important parameters are:

TBRthr: A self-adaptive bi-directional threshold for STBD encoding to spike trains.
Dthr: Distance threshold for the initialization of the neuronal connectivity in the
used here small world connectivity rule.
STDP learning rate (a): A parameter used to modify the neuronal connections in a
SNNc with respect to repetitively arrived spikes to the synapses. If a neuron i fires
before a neuron j then its connection weight increases, otherwise it decreases with
respect to the STDP learning rate (a).
ðThoÞ : Threshold of firing for the neurons in the SNNcube.

deSNN classifier parameters: These parameters are: mod and drift. As explained
in Chap. 5 and [51] and [55], an output neuron is evolved for every training sample
and connected to all neurons of the SNNc. The weight initialization of every new
connection is based on the RO learning rule [70]. The weight is calculated as a
modulation factor (the variable mod) to the power of the order of the incoming
spikes. The initial connection weights are further modified to reflect the following
spikes, using a drift parameter [51]. Once the structure of the NeuCube-model is
defined, along with the method for data encoding and the method for voxel spatial
mapping into a 3D SNNc, the model is trained and analyzed. These steps are
illustrated in the following two sections.

Learning and visualization of spatio-temporal connections in the SNNc with the use
of the Talairach template mapping.
The case study of affirmative versus negative sentence

Figure 10.9a shows the initial connections in the SNNc and the modified ones
after the deep, unsupervised learning process using both affirmative and negative
sentence fMRI samples. Our findings confirm studies that suggest that language
comprehension, including a reading task, is processed in particular brain areas, such
as Left Dorsolateral Prefrontal Cortex, Broca, and Wernicke [71]. Figure 10.9b
shows more and stronger neuronal connections generated in the left hemisphere.
These connections were established as a result of more spikes transferred between
the neurons located in these areas, reflecting on the changes in the corresponding
voxels in the fMRI data. Figure 10.10 shows connectivity after the SNNc was
trained with only the affirmative or the negative sentence data, separately. The
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observed connectivity from Fig. 10.10 confirms that the subject performs differ-
ently when reading an affirmative versus negative sentence and also suggests what
the difference is in terms of brain spatio-temporal activity. In addition, we can
observe that more and stronger connections are formed between neurons located in
the left hemisphere (LDLPFC and LT) than in the right hemisphere (RDLPFC and
RT) while the subject was reading a negative sentence. The connectivity is espe-
cially enhanced between the input neurons (i.e. the selected voxels) located in the
LDLPFC and LOPER regions. Our interpretation of Fig. 10.10 is in line with the
neuroscience literature, which reported that comprehension of negative sentences is
cognitively different from affirmative sentences, involving different parts of the
brain. Containing negative words, such as “not,” in the middle of a sentence can
make it more difficult to comprehend, due to their more complex syntactic and
semantic structures. Therefore, this type of sentence engages more regions of the
brain [72]. More detailed analysis on the connectivity related to the task can be
performed by neuroscientists to answer different research questions. Another form
of analysis of a trained SNNc is clustering of the neurons, that can performed with
the use of the input variables (corresponding neurons) used as cluster centers. Each
neuron in a trained SNNc belongs to the cluster from which center it has received
most spikes as shown in Fig. 10.11. A spreading algorithm [73] was used to define
these clusters. If there are more transmitted spikes between two neurons, there will
be a stronger information route between them. Figure 10.11 shows the SNNc
clusters after unsupervised training of a SNNc with the two fMRI time series
separately. Figure 10.11a illustrates that there are not many functional pathways
between LT region and the other parts of the brain while the subject is reading an

Fig. 10.10 Voxels are mapped into SNNc using Talairach template: a Learned connections in a
SNNc when only fMRI samples of affirmative sentences were used; b Learned connections in a
SNNc when only fMRI samples of negative sentences were used. The initialisation is the same as
in Fig. 10.9. The dense areas of connectivity evolved in the SNNc can be analysed to understand
the difference between functional areas in the brain during each of the two tasks as dynamic
interaction
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affirmative sentence. However, Fig. 10.11b shows that when a subject is reading a
negative sentence, there is more interaction between neurons located in the left
hemisphere. Therefore, more brain functional paths start from the input voxels
located in the LT region (spike sender neuron) and continue up to the neurons
located in the middle of the brain (spike receiver neurons).

Learning and visualization of spatio-temporal connections in a trained SNNc using
direct voxel mapping

In order to visualise the neural connectivity and spiking activity inside a SNNc
with 5062 spiking neurons for example (equal to the number of voxels in the
STAR/PLUS fMRI data of an individual), we have loaded the whole fMRI voxel
coordinates into the SNNc. Figure 10.12 shows the neuronal connections after
unsupervised training of a SNNc with the use of two different data sets, related
correspondingly to: affirmative sentence; negative sentence.

It is seen from this visualisation, that the exact locations of the fMRI voxels are
mapped in the same 3D location of spatial located neurons. These neurons develop

Fig. 10.11 Voxels are mapped into SNNc using Talairach template: Clustering of neurons in a
SNNc after unsupervised training for: a affirmative sentence data; b negative sentence data. The
size of a cluster indicates the importance of the input feature/voxel at the centre of the cluster. This
can be used for feature/voxel selection and marker identification for further studies

Fig. 10.12 Voxels are directly mapped into a SNNc model: Clustering of the neurons in a trained
SNNc with: a affirmative sentence data; b negative sentence data, along with their corresponding
2D projections shown in (c) and (d) correspondingly. The size of clusters indicates the importance
of the feature voxel for the task and can be used for feature/voxel selection for further studies
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their connections based on the temporal information in the fMRI data during the
STDP learning. As seen, the neuronal connections in the SNNc here evolved dif-
ferently during the unsupervised training of the SNNc with different fMRI data
reflecting the different evoked cognitive functions in the brain.

10.3.3 Classification of the fMRI Data in a NeuCube-Based
Model

While the SNNc learns fMRI data and creates spatiotemporal patterns of connec-
tivity and spiking activity among spiking neurons as visualised in Fig. 10.13, the
output classifier is to classify these patterns into pre-defined class labels [51, 55].
After completion of the unsupervised learning in the SNNc, input data is propa-
gated again through the now trained SNNc in order to activate the learned patterns
in the SNNc, so that a classifier can be trained to classify them. For every training
sample, a new output neuron is evolved and connected to all neurons in the SNNc.
Here we have used the deSNN classifier [51] (see Chap. 5). It is constructed and
trained to learn and classify different trajectories of the SNNc spiking activities that
represent different input patterns from the fMRI data that belong to different classes.
As a result of the supervised learning in the classifier, once a new fMRI data sample
of unknown class is entered, the classifier will classify this data into a known class,
or will create a new class.

The deSNN classifier belongs to the class of evolving systems [52], so that it can
incrementally add new samples and new classes with no need to retrain it with the
old data and without manifesting the catastrophic forgetting phenomenon. The
deSNN utilises a combination of rank-order learning [70] for the establishment of

Fig. 10.13 Visualization of fMRI data model and connectivity between neurons of eSNN: a no
spiking activity yet, inactive neurons are in blue, fMRI data neurons are in yellow; b spiking
activity: active neurons are represented in red, inactive neurons are represented in blue, positive
input neurons are represented in magenta, negative input neurons are represented in cyan and zero
input are represented in yellow; c neurons connectivity before training (SWC), positive
connections are in blue and negative connections in red; d neurons connectivity after training
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the initial weights of the synapses based on the order of the first arriving spike, and
STDP-type learning for the tuning of these weights based on the following spikes
arriving at the synapse.

A NeuCube model parameter optimization and classification results for the
benchmark data sets

In a NeuCube fMRI model, the output classification accuracy depends on the
parameter setting. In the experiments here, a grid search method was used, where
for different combinations of parameter values (in our experiment 10,000), a model
is created and its classification accuracy evaluated. Optimal parameter values of a
model that are resulting in best classification accuracy are reported in Table 10.2.

Table 10.3 summarizes the fMRI data classification accuracy of the affirmative
sentence class versus negative sentence class obtained using the NeuCube-based
classification model. The results are compared with results obtained using tradi-
tional machine learning methods, as these methods are still being actively used in
the literature for the purpose of classification of STBD. The methods used for
comparison are: Support Vector Machine (SVM); Multiple Linear Regression
(MLR); Multi-Layer Perceptron (MLP); Evolving Classification Function (ECF);
Evolving Clustering Method (see www.theneucom.com). The already published
classification result of the affirmative versus negative sentence fMRI data [74] is
also reported. The NeuCube-based models achieved significantly better classifica-
tion accuracy Table 10.3. In addition to a better classification results, visualization
of the trained SNNc reveals new information about functional brain pathways.

In both experiments, the fMRI data was learned in the NeuCube models as
whole spatio-temporal patterns. In contrast, the same fMRI data was learned in the
other methods a vector-based, where vectors were formed through concatenating of
temporal frames. No dynamic spatio-temporal fMRI patterns can be revealed while
using these methods.

Table 10.2 Optimal parameter settings of NeuCube-based models for different experiments
(sessions) with the benchmark fMRI data

Optimised
parameters
for the
classification
task

Experiment
(Session)

TBR
threshold
for the
encoding
procedure

Connection
distance
(small-world
radius)

STDP
learning
rate

SNN
firing
threshold
in the
SNNc

deSNN
parameter
—mod

Affirmative
versus
negative
sentence data
set

Session I 3.327 0.128 0.010 0.5 0.4

Session II 2.852 0.125 0.013 0.5 0.4

Session III 2.0929 0.108 0.014 0.5 0.4
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10.4 Algorithms for Modelling fMRI Data that Measure
Cognitive Processes

This section presents a new method and algorithms for modelling cognitive tasks by
deep learning of fMRI spatio-temporal brain data (STBD) in a SNN architecture.
The method uses the same SNN NeuCube architecture as in Sects. 10.2 and 10.3
but different algorithms are introduced here for encoding the data, for learning and
visualization of the models. Full description of the method can be found in [75].

Table 10.3 Classification accuracy of the affirmative sentence (class C1) versus negative
sentence (class C2) data via a NeuCube model (50% of the data used for training and 50% used for
testing as cross validation) and also traditional machine learning methods (obtained via NeuCom,
www.theneucom.com), along with already published results [74]. The best classification accuracy
among the tested methods is indicated in bold

Method Sessions and selected voxels for classification C1
(affirm)
(%)

C2
(negat)
(%)

Total

NeuCube Session I: 20 voxels selected from Table 10.1
(left column)

80 100 90

Session II: 20 pre-selected voxels from
RDLPFC region

90 80 85

Session III: 20 pre-selected voxels from
LDLPFC region

90 80 85

SVM results
obtained in [9,
14]

Session I: classification based on the LDLPFC’s
voxels

64 68 66

Session II: classification based on the
RDLPFC’s voxels

65 69 67

SVM Parameter setting for traditional machine
learning methods

70 75 73

SVM Kernal: Polynomial, degree, gamma, N/
A: 1

MLP Number of hidden units = 180, Number of
training cycles = 600, Output activation
function—linear

75 65 70

ECF Maximum field radius = 1, Minimum field
radius = 0.01; M of N = 3; Number of
membership functions = 2; Number of
epochs = 4

55 70 63

ECMC Maximum field radius = 2; Minimum field
radius = 0.01, M of N = 3

65 70 70

MLR Class performance variance = 0.26 65 60 63

The fMRI data sample file contains 40 samples (20 samples per class)
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10.4.1 Algorithm for Encoding Dynamic STBD into Spike
Sequences

A continuous input brain data signal is encoded into a spike sequence so that the
dynamics of the data is preserved. For a givenSTBD sequenceSðtÞ t 2 t0; t1; . . .; tLf gð Þ,
we first define the time tm when the signal reaches its minimum value:

tm ¼ argmin
t

SðtÞ; t 2 t0; t1; . . .; tLf g: ð10:1Þ

The time period from tm to tL (the end time of the signal) is considered further
and no spikes will be generated before time tm. Based on the initial decrease in the
signal, tm is set as the starting time point to capture the changes in the signal during
a cognitive task. Let BðtÞ denote the baseline for SðtÞ at time t t 2 tm; tL½ �ð Þ and
BðtmÞ ¼ SðtmÞ. If at a time moment tiþ 1ðm� i\LÞ, the signal value S tiþ 1ð Þ is
above the previous baseline B tið Þ, we encode a spike at time tiþ 1 and the baseline is
updated as:

B tiþ 1ð Þ ¼ aS tiþ 1ð Þþ ð1� aÞB tið Þ; ð10:2Þ

where a a 2 0; 1½ �ð Þ is a parameter to control the signal’s contribution to the increase
of the baseline. Otherwise, if S tiþ 1ð Þ is below B tið Þ, then no spike is encoded at this
time and the baseline is reset as B tiþ 1ð Þ ¼ S tiþ 1ð Þ. Successive spikes in the
resulting spike sequence reflect the increase of the signal, whilst the absence of a
spike means a decrease of the signal (Fig. 10.14a).

The proposed method accurately encodes the activation information of contin-
uous temporal data into spike trains. This is important for the following interpre-
tation of the trained SNNcube model, because it enables researchers to better
understand brain processes that generate the data. This encoding is also robust to
noise. Due to a minimum value threshold which is applied to changes in the signal
value, small noise perturbations of the signal are not transformed into spikes. This
transformation also accounts for the frequency of changes in the raw signal.

The timing of spikes corresponds with the time of change in the input data. The
spike sequence is obtained after the encoding process which represents new input
information to the SNN model, where the time unit maybe different from the real
time of the data acquisition (machine computation time versus data acquisition
time).

10.4.2 Connectivity Initialization and Deep Learning
in a SNN Cube

After the STBD is encoded into spike trains, the next step is to train a SNNcube,
where the spike sequences represent the input data. Input variables are mapped to
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corresponding spiking neurons in the 3D SNNcube with the same (x, y, z) coor-
dinates. The spike trains are then entered into the SNNcube as whole
spatio-temporal patterns (samples) of many time units. A sample representing a
labelled sequence of cognitive activity over a certain time period.

Before a learning rule is applied, the connections between spiking neurons in the
SNNcube are initialized as follows:

Let Ni denote the neighborhood of neuron i, defined as:

Ni ¼ j : Dij � T; i 6¼ j
� �

; ð10:3Þ

where Dij denotes the distance between neuron i and neuron j, and T represents the
maximum distance allowed for connections between two neurons (T is a parameter
that is subject to optimization along with other model’s parameters). For two
neighboring neurons i and j, bidirectional connections are created and connection
weights are initialized to zero.

After initializing the connections, the input spike sequences are propagated
through the SNNcube and the following learning rule is applied as introduced here:
If neuron i and j are connected, and one spike from i precedes that from j within a
certain time period, wij will be increased and wji left unchanged:

Fig. 10.14 a Spike sequence encoding for one signal. An example of one signal continuous
values at 16 time points along with the encoded sequence of spikes (below); The successive spikes
from time 4–9 represent the increase in the signal, while the absence of spikes from time 10–12
means a decrease in the signal; b connections established between two connected neurons after
unsupervised learning in a SNNcube. Two examples of connection weights established through the
proposed method for unsupervised learning between two connected neurons depending on the time
of the pre- and post-synaptic spikes of the two neurons. The solid line is the final connection (a
thicker line means a larger weight), while the dotted line is removed after learning because of its
weaker connection weight. For example, spikes in neuron Nc mostly precede those in neuron Nd ,
so the learned connection weight wNdNc is smaller, which will be removed after the unsupervised
learning
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Dwij ¼ Aþ exp Dt
sþ

� �
if Dt� 0;

0 if Dt[ 0;

(
ð10:4Þ

where Dwij is the synaptic modification (increment of weight); Similar to the STDP
parameters as describe in [76], Dt is the time difference between spike times of
pre-synaptic neuron i and post-synaptic neuron j. A+ is the maximum quantities of
synaptic modification; and sþ represents the time window within which the weight
modification is allowed.

After this learning rule is applied to the input data, both bidirectional connection
weights are learned, but only the connection with the larger weight of the two
bidirectional connections is retained as a final connection between the two neigh-
boring neurons (Fig. 10.14b). This learning rule is spike time dependent, but dif-
ferent from the STDP rule [50, 76, 77] used in the NeuCube models developed so
far for fMRI data [40, 55, 78, 79].

The weaker connection, of the two neuronal connections between neurons i and
j, is removed and the remaining connection represents a stronger, possible temporal
relationship between the two neurons. The removed connection weights are all reset
to zero to maintain symmetry of the equation and enable further adaptive training
from new data. The trained SNNcube forms a deep architecture as whole spiking
input sequences which are learned as chains of connections and spiking activities,
regardless of the number of data points measured for every input variable. Unlike
hand-crafted layers used in second-generation neural network models [80–84], or
randomly connected neurons in the computing reservoir of a liquid state machines
[42], the chains of directional connections established in the SNNcube represent
long spatio-temporal relationships between the sources of the spike sequences (the
input variables). Due to the scalable size of a SNNcube, the chains of connected
neurons are not restricted in length during learning, which can be considered as
unrestricted deep learning, in contrast to existing deep learning methods that use
fixed number of layers. As we can see in the following sections, this learning also
results in automatic feature extraction, i.e. the automatic selection of a smaller
subset of marker input variables.

To analyze the spiking activity of a neuron i in the SNNcube, we define an
indicator called activation degree Di:

Di ¼
P

j wij þwji
� �

number of neurons in Ni
j 2 Ni: ð10:5Þ

The parameter Di represents the averaged activation degree of neuron i after a
summation of all its inward and outward connection weights. A higher degree of
activation of a spiking neuron, represents a greater likelihood that the corresponding
loci in the brain are activation foci.

After training the SNNcube, neurons sharing similar spike patterns will have
larger weighted connections. This allows us to analyze and understand for example
a single subject’s response to different stimuli and to compare the responses of
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different subjects to the same stimulus. A set of spiking neurons with the highest
degree of activation representing a given class of stimuli or a cognitive state, will
represent a feature set of markers for this class; thus the automatic selection of
features as part of the internal deep learning process.

In the following section we illustrate the above model on two case study fMRI
data related to cognitive tasks. The SNNcube’s parameters used for the two case
study experiments are set as: a ¼ 0:5; Aþ ¼ 0:1; sþ ¼ 1.

10.4.3 Deep Knowledge Representation in a Trained SNN
Model

Once the SNNcube is trained with spike sequences of encoded STBD, we can
interpret both the connectivity and spiking activity of the model, aiming at new
knowledge representation about brain functional connectivity and cognitive
processes.

A deep chain of connections is learned for each input pattern (sample) in the
SNNcube. When entering new input data, the fired chain of neurons and connec-
tions will indicate as to which of the previous learned patterns the new one belongs
to. This can be used to classify STBD (as shown in the experimental results later in
the paper) and for a better understanding of the spatio-temporal brain dynamics.

10.4.4 A Case Study Implementation on the STAR/PLUS
Data

We randomly selected two subjects’ data from the StarPlus fMRI data related to two
cognitive tasks [85]. Our experiments were performed on two subject’s data
(ID = 05680 and ID = 04820). FMRI data comprised 25 brain regions of interest
(ROIs) represented by 5062 and 5015 voxels respectively. For convenience, we will
use the terms ID = 05 and ID = 04 to refer to the above subjects’ fMRI data
respectively.

The fMRI data was captured every 0.5 s (two fMRI volume snapshots per
second) while the subjects performed reading a sentence or watching a picture
perception tasks during 40 trials. We consider here the first 8-s of recorded data for
each trial, during which a 4-s stimulus (picture or sentence) was presented, followed
by a 4-s rest. The first 16 volumes of the fMRI data extracted from each trial fell
into two classes: watching a picture (Class Pic) or watching a sentence (Class Sen).

As the brain volume has a one-to-one mapping with the SNNcube model, the
value of a brain voxel in a brain activation map is defined as the corresponding
neuron’s activation degree in the SNNcube.
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The results from applying the proposed method on fMRI data of subject ID 05
are illustrated in Fig. 10.15.

Brain activation maps for Class Pic and Class Sen were obtained after learning
had taken place in the SNNcube (Fig. 10.15Aa). The neuron’s activation degree of
the SNNcube was averaged over 20 trials for each class. The voxels in red suggest
they were more likely to be activation foci in a certain cognitive state, whilst the
blue voxels were less likely to be active. The activation maps were normalized
respectively within each class. These maps can be further interpreted, for example,
it can be seen that when the subject was watching a sentence, the BOLD response in
the Calcarine (CALC) region was much stronger than in other regions.

Neurological studies [71, 72], suggest that reading a sentence is more difficult to
comprehend than seeing a picture. Therefore, it strongly engages specific regions of
the brain along with the visual cortex. The CALC sulcus begins near the occipital
lobe, where the primary visual cortex (V1) is concentrated, and passes through the
splenium of the corpus callosum, where it is joined at the parieto-occipital sulcus.
Our findings confirm that language comprehension, including a reading task,
requires more concentration which involves more regions of the brain to act and
consequently increases the amount of oxygenated blood required by neurons.

To detect voxel activation, a threshold TD for the neuron’s degree of activation
and a threshold Tw for the neighboring neurons’ connection weights were defined.
The detection procedure is based on the following steps:

Step 1. Find the activation foci in the SNNcube where activation degrees are
above TD.

Step 2. Set the activation foci as an initial centers of the activation regions R.
Step 3. Expand the activation regions R in the SNNcube, i.e. add a neuron outside

R if it satisfies the condition that its connection weight with a certain
neuron in R is higher than Tw.

Step 4. Repeat Step 3 until no neurons outside R can be included in R. The
neurons in R imply that corresponding voxels in the brain volume are the
detected activation voxels.

Figure 10.15 shows that there are more activated neurons in the CALC region
during Class Sen than Class Pic. When the subject was watching a picture, the right
hemisphere was slightly more active than the left, but when the subject was reading
a sentence, more ROIs in the left hemisphere were involved, including the Left
Inferior Parietal lobe (LIPL), Left Superior Parietal Lobe (LSPL), and Left
Temporal lobe (LT). Increased activation of the left cerebral hemisphere is proving
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Fig. 10.15 Brain activation detection and brain regions mapping in the SNNcube for subject ID
05. Aa 2D SNNcube activation maps for each class: watching a picture (Class Pic) or reading a
sentence (Class Sen); Ab Probability map estimated by t-test for Class Pic (left) and Class Sen
(right); Ba Locations of activation neurons in the averaged SNNcube; Bb Histogram of activated
neurons with respect to different regions of interest (ROIs) for each class; C 25 ROIs were mapped
into the SNNcube; D Averaged activation of the neurons in the SNNcube for individual trials for
Class Pic and Class Sen. Abbreviations: CALC—calcarine; DLPFC—left dorsolateral prefrontal
cortex; FEF—frontal eye fields; IFG—inferior frontal gyrus; IPL—left inferior parietal lobe; IPS
—intraparietal sulcus; IT—inferior temporal gyrus; OPER—pars opercularis; PPREC—posterior
precentral gyrus; SGA—supramarginal gyrus; SPL—superior parietal lobe; T—temporal lobe;
TRIA—pars triangularis; SMA—supplementary motor area
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Fig. 10.15 (continued)
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to be a more important role for these areas during reading a sentence than during
visual object processing. These activations evolved by transferring more spikes
between the neurons located in these areas of the SNNcube, reflect more changes in
the corresponding voxels’ BOLD in the fMRI data.

Since we map voxels to spiking neurons, we can investigate how many activated
voxels were involved in multiple brain activities. The percentage P of overlapped
activation voxels is defined as follows:

P ¼ RPic \RSen

RPic [RSen
: ð10:6Þ

where Rc denotes the activation voxels in Class c ðc 2 Pic; Senf gÞ. We obtained
P ¼ 29:0% for watching a picture and reading a sentence, indicating that a com-
mon part of the brain was engaged in both cognitive states.

Analysis of the spiking activity in the SNNcube confirms that BOLD responses
differ across trials even of the same class, but the averaged BOLD response for each
class corresponds to the hemodynamic response function (Fig. 10.15D). In this
figure, the response of the activated voxels (shown in the histogram of activated
neurons in Fig. 10.15B) is averaged over 16 fMRI time points and presented for 3
trails per class. We also presented the averaged response of all the trials per class.

To validate the extracted activated voxels, we conduct the t-tests of difference in
mean responses of the activated voxels between the rest state and each class. The p-
value for class Pic is 3.5622e−7, and 5.3622e−22 for class Sen. Thus, at signifi-
cance level 99.5% the responses of such extracted activated voxels are significantly
different from the rest state. We also compare the mean responses between class Pic
and class Sen averaged over the extracted voxels, and it shows that the mean of the
BOLD responses in class Sen is significantly larger than that in class Pic
(p = 8.0237e−8 using t-test).

During the SNNcube’s learning process, the evolution of the neurons’ activation
degrees was also captured. The set of neurons with higher activation for one
stimulus than another represents a set of features for this stimulus. To demonstrate
this concept, we selected two sets of 500 neurons.

Figure 10.16 shows the evolution of neurons’ activation degrees and the deep
learning architecture formed in the SNNcube. (A) Neurons’ activation degrees at
three snapshots when the subject is watching a picture (one trial of Class Pic) or
reading a sentence (one trial of Class Sen); The neurons’ degrees are normalized at
each snapshot for visualization purpose; (B) Locations of neurons with the top 500
activation degrees for Class Pic (upper row) and Class Sen (lower row). These
neurons are used as spatio-temporal features for the classification of the two dif-
ferent brain activities; (C) Visualization of typical chains of connections for each
class.

Figure 10.17 shows brain activation detection visualized in the SNNcube when
trained on ID 04 fMRI data. (A) 2D SNNcube activation maps for class Pic and
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class Sen; (B) Histogram of activated neurons with respect to different regions of
interest (ROIs) for each class; (C) Locations of activation neurons in the averaged
SNNcube; (D) Averaged activation of the neurons in the SNNcube for individual
trials of Class Pic and Class Sen.

10.5 Chapter Summary and Further Readings for Deeper
Knowledge

The chapter introduces methods for deep learning and classification of fMRI
spatio-temporal brain data (STBD) and for modelling cognitive functions, such as:

– reading a sentence versus seeing a picture;
– reading a negative sentence versus reading a positive sentence.

Fig. 10.16 Evolution of neurons’ activation degrees and the deep learning architecture formed in
the SNNcube. a Neurons’ activation degrees at three snapshots when the subject is watching a
picture (one trial of Class Pic) or reading a sentence (one trial of Class Sen); The neurons’ degrees
are normalized at each snapshot for visualization purpose; b Locations of neurons with the top 500
activation degrees for Class Pic (upper row) and Class Sen (lower row). These neurons are used as
spatio-temporal features for the classification of the two different brain activities; c Visualization of
typical chains of connections for each class
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The methods presented here are further developed in Chap. 11, where the STDP
unsupervised learning in the SNNcube now includes direction (orientation) data
along with time-space data, illustrated there on fMRI + DTI data [86]. The new
learning method is called orientation influenced STDP (oiSTDP).

Further readings will reveal more detailed information about specific topics, such
as:

– fMRI data [1];
– Star/Plus data [65];
– NeuCube [55] and Chap. 6;
– Mapping and deep learning of fMRI data in NeuCube [40];

Fig. 10.17 Brain activation detection is visualized in the SNNcube when trained on ID 04 fMRI
data. a 2D SNNcube activation maps for class Pic and class Sen; b Histogram of activated neurons
with respect to different regions of interest (ROIs) for each class; c Locations of activation neurons
in the averaged SNNcube; d Averaged activation of the neurons in the SNNcube for individual
trials of Class Pic and Class Sen
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– Algorithms for cognitive fMRI data in NeuCube [75];
– Understanding the brain via fMRI classification (Chap. 40 in [79]);
– Statistical methods for fMRI study (Chap. 38 in [79]).
– Demo on modelling fMRI data in NeuCube: https://kedri.aut.ac.nz/R-and-D-

Systems/neucube/fmri
– Demo on fMRI data modelling with NeuCube: https://kedri.aut.ac.nz/R-and-D-

Systems/fmri-data-modelling
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Chapter 11
Integrating Time-Space
and Orientation. A Case Study
on fMRI + DTI Brain Data

This chapter introduces a new method for the integration of time-space data with
additional and sometimes, a priory existing information, about the orientation (di-
rection) of the spread of the temporal information. Examples of such data are many.
A typical example is moving objects in the time-space, where measured direction
can also be added for a better prediction of the movement of an object in
time-space. Another example is integrating time-space brain data, such as fMRI
with the orientation map of individual brain signals measured as DTI. The latter is
developed in this chapter.

The chapter is organised in the following sections:

11:1. Introduction and Background Work.
11:2. A Personalised Modelling Architecture for fMRI and DTI Data Integration

Based on the NeuCube BI-SNN.
11:3. Orientation-Influence Driven STDP (oiSTDP) Learning in SNN for the

Integration of Time-Space and Direction, Illustrated on fMRI and DTI Data.
11:4. Experimental Results on Synthetic Data.
11:5. Using oiSTDP Learning for the Classification of Responding and

Non-responding Schizophrenic Patients to Clozapine Monotherapy.
11:6. Summary and Further Readings for Deeper Knowledge.

11.1 Introduction and Background Work

In the recent past, non-invasive brain data collection techniques such as functional
magnetic resonance imaging (fMRI), electroencephalography (EEG), diffusion
tensor imaging (DTI) and others have made significant contributions to under-
standing various structural and functional properties of the human brain. Chapter 10
presented an introductory material and an extended bibliography about fMRI data
(see also [1–30]).
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There has been consistent development in data sampling technology over the
past few years which has enabled simultaneous sampling of multiple modalities of
brain data while a subject performs or does not perform a task. This provided an
opportunity to perform pattern recognition using large quantities of such data. It is
evident that each data modality provides a unique but limited perspective of the
brain. For instance, fMRI measures neural activity indirectly by measuring changes
in cerebral blood flow (the haemodynamic response) over time. Energy con-
sumption increases in areas of the brain that are more active, leading to increases in
blood flow to replace lost oxygen and glucose. This is a slow response, measured
6–10 s after the initial event of neuronal excitation. Though it provides poor
temporal resolution, fMRI provides excellent spatial resolution, making it a useful
tool for brain research. EEG, provides an outstanding temporal resolution (mil-
lisecond accuracy) at the expense of spatial resolution. EEG measures cortical
electrical activity at the scalp surface and though the scalp does not impede elec-
trical signals temporally, it causes spreading of the signal from its origin to a wider
area, making source localisation much more complex. In the past, these data
modalities were used independently for pattern recognition and overlooked the joint
information present in the data [31]. Algorithms with the ability to extract and
integrate relevant information from various data sources into a single model are
crucial not only for the purpose of predictive modelling but also in terms of
understanding the spatio-temporal relationships within the data.

In a clinical sense, pattern recognition algorithms can provide a novel and
practical means to understand the differences between patients and healthy controls
and predict individual patients’ responses to treatment. Within psychiatric research,
in particular, machine learning has gained considerable momentum as a useful tool
for developing predictive models of treatment response. Incorporation of multiple
imaging modalities into these algorithms could provide increased reliability,
especially in disorders where clinical diagnosis does not necessarily guide treat-
ment. In [32] recently applied machine learning algorithms to predict treatment
response in late-life depression using a combination of clinical and imaging data.
Comparing a number of algorithms, they determined that alternating decision trees
could most accurately predict treatment outcome in this cohort using a combination
of structural and functional connectivity data [32]. In [33] have used EEG data to
predict response to selective serotonin reuptake inhibitors (SSRIs) in major
depressive disorder and to clozapine in people with treatment-resistant
schizophrenia [34]. In [35] also employed machine learning algorithms to predict
response to clozapine, instead using a combination of clinical and pharmacogenetic
data as input. Providing even more support for this approach, [36] employed
machine learning techniques to predict treatment outcome in social anxiety disor-
der. Using task-based fMRI, they accounted for 40% of the variance in treatment
response [36]. The challenge now is to create an algorithm that can incorporate
brain data from different modalities.

One modality with potential for inclusion in such a model is DTI. DTI measures
the net movement of water within a voxel. Water trapped within axons or dendrites
is restricted to movement along the direction of those axons or dendrites,
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respectively; this can be measured using DTI, providing a map of neuronal tracts
(white matter) within the brain. Decreased anisotropy within a voxel is often
interpreted as a reduction in white matter integrity, implying that white matter has
been damaged or is diminished in some way. However, a reduction in anisotropy
may also be attributed to an increase in the number of crossing fibres, or in fact a
reduction in the uniformity of fibre orientations. In terms of incorporation into a
multimodal prediction model, DTI information might be utilised for its orientational
implications rather than any interpretation regarding white matter integrity
(Fig. 11.1).

Structural connectivity, as measured by DTI, has been demonstrated in several
psychiatric disorders and has been shown to reflect functional dysconnectivity in
some cases [37, 38]. In accordance with these theories, it would be appealing to
incorporate dysconnectivity information into any algorithm that is designed to
classify or predict outcomes in people with psychiatric disorders. This paper dis-
cusses the steps that we are undertaking to develop an algorithm that can incor-
porate orientational information from DTI along with the EEG/fMRI activity data.

A comprehensive review of the research in the direction of multi-modal brain data
analysis (MBDA) is summarised in [31]. Some of the prominent work in MBDA
includes integration of fMRI/EEG [39], fMRI/MEG [40] and fMRI/Gene expression
[41]. In [31] has further classified MBDA into hypothesis-driven and data-driven
approaches and argued the possibility of missing important connectivity links in the
hypothesis-driven approach. The data-driven methods span across the domain of the
combined blind source separation techniques such as Independent Component
Analysis [42, 43] and its variants, multi-modal Cross-Correlation Analysis [44–46],
Partial Least Squares [47], and others. A spiking neural network architecture

Fig. 11.1 Orientational information from DTI image. Left image shows an axial slice of a single
subject’s DTI data, registered to structural and MNI standard space. The Right image shows a
close-up of the right posterior corpus callosum. Directions corresponding to each colour are as
follows: Red—left to right/right to left, green—anterior to posterior/posterior to anterior and blue
—superior to inferior/inferior to superior [114]
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NeuCube for incorporating spatio-temporal information was proposed in [48] and
described in Chaps. 6 and 10 in this book. Within its vast range of applicability, this
architecture has also been used in fMRI and brain data related studies [49]. We have
used the NeuCube paradigm as the basis for the proposed pattern recognition
architecture capable of integrating multidimensional information from multi-source
data. Methods of SNN and some applications of NeuCube for fMRI and other
time-space data along with their introductory information can be found in [48–82].

11.2 A Personalised Modelling Architecture for fMRI
and DTI Data Integration Based on the NeuCube
BI-SNN

As described in Chap. 6 NeuCube architecture [48] is a spiking neural network
based pattern recognition system which is designed to represent and learn
spatio-temporal associations in the data. The NeuCube system is designed as an
extension of the liquid state machines (LSM) [83, 84] based reservoir computing
paradigm. Figure 11.2 depicts the multi-stage pattern recognition process in
NeuCube for spatio- and spectro-temporal data. The temporal information from a
data source is passed through the encoding module to transform the real, contin-
uous, and dynamic information into spike trains. In the unsupervised learning stage,
the spike train is converted into a high dimensional space using a 3D cube of
spiking neurons. In the final stage, a supervised linear discriminator uses the
high-dimensional spike train to discriminate between patterns.

Some of the considerable departures of NeuCube from LSM as discussed in [48]
are (1) Inclusion of spatial mapping in the reservoir neurons using natural dummy

Fig. 11.2 This figure depicts the multi-stage pattern recognition process in NeuCube for spatio-
and spectro-temporal data. The temporal information from a data source is passed through the
encoding module to transform the real, continuous, and dynamic information into spike trains. In
the unsupervised learning stage, the spike train is converted into a high dimensional space using a
3D cube of spiking neurons. In the final stage, a supervised linear discriminator uses the
high-dimensional spike train to discriminate between patterns
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spatial 3D spatial coordinates. The spatial mapping of neurons takes its inspiration
from Kohonen’s self-organising maps (2) NeuCube learned reservoir has certain
degree of visual interpretability due to the mapping and spatiotemporal learning in
the reservoir.

The NeuCube architecture for personalised modelling on integrated data intro-
duced here consists of three main modules:

(1) Temporal compression or encoding module (Chaps. 4 and 6): The data
encoding layer transforms real continuous data Rn�t (n is the number of features
and t represents time duration.) into spike trains {0,1}n�t. Numerous temporal
encoding algorithms like BSA [84], temporal contrast, GAGamma [85] are
proposed and used in an application specific manner. The data encoding
module in NeuCube is a data compression system which has the unique
property of compressing data in temporal dimension by representing useful
events by spike-timings. In the temporal encoding scheme, the timings of the
spike is considered to be useful rather than the quantity of the spike. This is
much different from the traditional data compression algorithms like
auto-encoder and PCA as the compression in the data is performed taking
temporal dependencies in account. [86] describes the temporal encoding by
spike-time representation in the light of data compression and information
theory and compares the capabilities of different temporal encoding algorithms.

(2) Personalised SNNc learning module: The SNNc learning module refers to an
unsupervised learning module in a three dimensional spatial grid of spiking and
non-spiking neurons forming the liquid state. Each neuron inside the grid has a
particular spatial location and resides within a neighbourhood of other neurons.
This grid is known as the spiking neural network cube (SNNc) in the NeuCube
architecture. The purpose of this layer is to transform the compressed spike
representation of input data into a higher-dimensional space through unsuper-
vised learning (g: {0,1}n�t! {0,1}m�t|m � n) inside an SNNc, using a form
of modified Hebbian based STDP learning [69]. It is imperative that the
NeuCube SNNc is a spatially organised directed graph which is inspired from
Kohonen’s self-organising map [87] and the LSM [83]. However, the infor-
mation that is represented in the SNNc map is distinctly different from the
Kohonen’s map. Contrary to the static information representation in the con-
nection weights of the SOM, the SNNc presented in this article can capture the
multidimensional information from static and dynamic data. Our SNNc
approach differs from the other SNNc approaches in one other respect. All of
the NeuCube system developed and used till now uses a single SNNc which is
responsible for transforming the incoming data from a lower to higher
dimensional space. As opposed to this, in the proposed architecture, we have
used multiple SNNc’s where each SNNc is responsible for transforming part of
the incoming data. The outputs of the multiple SNNc are later merged in the
supervised learning layer. The personalised SNNc based approach is unique
and a departure from the ‘one SNNc for all sample’ approach of used in
NeuCube systems earlier. The personalised SNNc architecture assumes the
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existence of temporal relationships within a sample and not between samples,
i.e. each sample maps its spatiotemporal relationship on its unique personal
SNNc, which is used further for discrimination purpose. We will discuss the
SNNc in detail in the later sections.

(3) Supervised learning module: This module uses the SNNc generated output
spike sequences and/or the connection weights to learn a simple classifier or
regressor [70]. K-NN based models [70] are the choice of supervised learning
in almost all of the work done until now.

Figure 11.3 depicts the personalised modelling scheme using both fMRI and
DTI data.

11.3 Orientation-Influence Driven STDP (oiSTDP)
Learning in SNN for the Integration of Time-Space
and Direction, Illustrated on fMRI and DTI Data

This section is dedicated for describing the learning algorithm for multidimensional
information integration.

Fig. 11.3 A Personalized modelling scheme using both fMRI and DTI data
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11.3.1 Architecture, Mapping and Initialization Scheme

The SNNc architecture consists of a spatially arranged (in three dimensions) set of
neurons (computational units), partially connected together by synapses forming a
directed acyclic incomplete graph. The network consists of two types of neuron.
The neurons and synapses forms the vertices and the edges of the graph.

• Input neurons: The input neurons feed the input spike data to the SNNc. These
neurons do not have any activations and do not perform any computations but
rather act as an abstraction for pushing the data into the system. It is apparent
that the input neurons does not have pre-synaptic connections i.e. to say an edge
can only originate from such a neuron.

• Spiking neurons: The spiking neurons are leaky integrate and fire in nature and
performs computations on input data (spikes). The details of the neuron model is
described later. These neurons can act both as post and presynaptic (connection)
neuron i.e. if we consider a pair of neuron connected by a directed edge (sy-
napse), an edge can both originate and end at a spiking neuron.

The neurons in the SNNc are arranged spatially based on background knowledge
about the problem or through different automated mapping algorithms [79] that
transform some predefined similarity in the data to spatial Euclidean distance. The
synaptic connectivity of the SNNc graph is created using the small world con-
nectivity (SWC) algorithm [88, 89]. The SWC algorithm connects a neuron to its
spatial neighbourhood (controlled by the hyperparameter radial distance rswc) of
neurons. However, as opposed to the random initialisation of the synaptic weights,
we have initialised the synapses with a small constant weight of 0.05. We have not
considered random initialisation as the unsupervised learning in the SNNc do not
converge over time, rather the weight updates over time reflects levels of syn-
chronicity in the input data.

11.3.2 Neuron Model

The activation of the spiking neurons present in the SNNc is modelled by the spike
response model (SRM) which is a simplified realisation of the leaky integrate and
fire (LIF) model. The SRM model generalises the differential equation based
dynamics of the LIF model by replacing them with arbitrary kernels. Apart from
being a powerful computational framework, SRM model captures the essential
effects during spiking and has the advantages of an elegant mathematical
formulation.

Figure 11.4 shows a typical connectivity configuration of a spiking neuron i.
Neuron i typically has multi-input, multi-output configuration. The neuron pairs are
connected by synapses represented by the synaptic strengths wi. Neuron i receives
spikes from the pre-synaptic neurons and emits spikes when sufficiently stimulated.
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A spiking neuron receives (Fig. 11.4) spikes at different time instances from the
pre-synaptic neurons and emit spikes when sufficiently stimulated. The activation
state of a spiking neuron i is described by the membrane potential vi. In a
non-stimulated state the membrane potential is said to be in the resting state
vrest = 0. The SRM model in our setup consists of multiple components and are
described below:

(1) Post-synaptic potential (PSP) kernel: Firing of presynaptic neuron j at time tj
f,

evokes a PSP in neuron i and is modelled by the kernel response function 0

under the SRM paradigm.

�0 ¼ exp � t � t fj
sm

 !
H t � t fj
� �

ð11:1Þ

where

H t � t fj
� �

¼ 1; if t � t fj � 0
0; Otherwise

�

The PSP kernel is a function of t � t fj , representing the PSP trace over time gen-

erated by fining of neuron j at time t fj . Figure 11.5 plots the PSP kernel as the
function of t − tf. The decay of the PSP kernel is given by the membrane time
constant sm (Eq. 11.1). The choice of sm controls the velocity with which the
impact of a pre synaptic spike decays. In our experiments, we have used a constant
sm = 0.5. This means the influence of a pre-synaptic spike diminishes from 1 to 0
within 5 discrete time intervals.

Fig. 11.4 A typical
connectivity configuration of
a spiking neuron i. Neuron i
typically has multi-input,
multi-output configuration.
The neuron pairs are
connected by synapses
represented by the synaptic
strengths wi. Neuron i
receives spikes from the
pre-synaptic neurons and
emits spikes when sufficiently
stimulated (after [113])
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(2) Temporal integration of PSP kernels and condition for spike emission: It is
imperative that the post synaptic potentials evoked by the pre-synaptic neurons
needs some form of temporal integration to formalise the activation vi. The
overall contribution of the pre-synaptic spikes elicited by the presynaptic
neurons j at any time t is given as part of Eq. 11.2 describing the SRM model:

ti tð Þ ¼ trest þ
X
j2Ti

wji

X
t fj 2Fj

�0 t � t fj
� �

ð11:2Þ

The inner sum adds up the PSP contributions due to the firings t fj 2 Fj of one
pre-synaptic neuron. The outer sum adds up the PSP contributions of all the
pre-synaptic neurons j 2 Ti connected to neuron i.

Equation 11.2 describes the membrane potential (activation state) vi of a spiking
neuron i can be calculated by adding the resting potential term and the temporal
PSP sum. Each incoming spike perturbs the value of vi and if, after the summation
of the inputs, the membrane potential reaches the threshold vthr then an output spike
is generated. The firing time is given by the condition vi(ti

f) > = vthr. After a neuron
fires the neurons membrane potential is reset to vrest.

Fig. 11.5 Post synaptic potential function 20 t � t f
� �

. The curve decay with time is plotted for
different values of the decay rate, given by the membrane time constant sm (after [113])
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(3) Refractory period: After emitting the spike a node enters a refractory period,
when the membrane potential is unaffected by any incoming spike. In the SRM
model the neuron behaviour in the refractory period depends only on the last
firing moment leading to a short term memory like behaviour. In literature, the
refractory period is modelled by absolute and relative refractory period. During
the absolute refractory period, the neurons do not accumulate membrane
potential and hence can’t fire. During the relative refractory period it is rela-
tively difficult but not impossible to fire. In our implementation we have used
an absolute refractory period and not the relative refractory period for sim-
plicity. The absolute refractory period of a neuron can be specified by the
hyperparameter ηthr.

Figure 11.6 shows a plot of three simulations of a spiking neuron for 200
discrete time with random spike inputs. Each simulation uses a preset vthr. At the
beginning of the simulation the neuron is in a resting state vt=0 = vrest. With arrival
of spikes the membrane potential increases in a linear fashion and when sufficiently
stimulated (sufficiency is determined by vthr), the neuron spikes and goes back to
the resting state. At this point the neuron is said to be in a refractory state. The
neuron stays in this state for a predeterminer period ηthr and then goes back to
non-refractory state.

11.3.3 Unsupervised Weight Adaptation of Synapses

The unsupervised learning scheme is the most important aspect of our proposed
architecture for integrating multidimensional information. In a neural network
paradigm, learning is achieved through the synaptic strength updates of the network
over time. Similar to our single neuron model approach, we believe, the learning
behaviour of the SNNc can be explained using the learning model of a single
spiking neuron. Considering the single neuron architecture, the unsupervised
learning problem the problem of updating the wji’s by Δwji(t) at any time t. In our
recurrent neural network architecture in SNNc, our aim is to learn both dynamic
influences from dynamic data (fMRI or DTI) and static orientational influence from
static data (DTI).

(1) Dynamic influence (u) from fMRI or EEG and spiketime dependent plasticity:
In majority of the machine learning applications, models are trained on static
data, where a sample is represented by a vector of numbers x = {x1,x2,…,xn},
where each number represents the value of a feature. But in our case with fMRI
or EEG data a sample is represented by the form of a matrix Xseq = {x1,x2,…,
xn}, where xi = {xi(1),xi(2),…xi(t)}. This form of sample representation is
unique not only in its two dimensional data representation but also in the
ordering of the data in one of its dimensions. Learning from these type of data
sequences in the machine learning domain is known as sequence learning and
techniques like hidden Markov model and flavours of recurrent neural network
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have shown promise in learning from such sequences. Here we describe an
unsupervised sequence learning framework in NeuCube SNNc that uses data
sequences as part of its learning. We call this the dynamic influence. The
NeuCube SNNc being a recurrent spiking neural network architecture takes the
data sequence in the form of spikes, i.e. X = {0,1}n�t. The transformation of
real continuous data to spike data is done by the encoding module as described
earlier.

We model the dynamic influence of the spike-time data by the spike-time
dependent plasticity learning rule. Spike time dependent plasticity (STDP) is a
temporally asynchronous form of Hebbian learning (“neurons wire together, if they
fire together”) [90] induced by the temporal correlation of the spikes. This bio-
logical process in the brain adjusts the synaptic strength based on the relative timing
of a neuron’s input and the output spikes. With STDP, repeated pre-synaptic spike
arrival just before post-synaptic spike leads to longterm potentiation (LTP) of the
synapses establishing causal relationship, whereas repeated spike arrival after
post-synaptic spikes leads to long-term depression (LTD) of the same synapse.

In [69, 91] the mathematical model of STDP learning is formalised as per
Eq. 11.3 and Fig. 11.7. Symbols j and i are used to indicate pre and post synaptic
neurons. In STDP learning, The dynamic influence uji is estimated using a learning
window function W(�). The learning window takes the set of presynaptic firing
times {tj

1 …tj
f} and post-synaptic firing times {ti

1 …ti
g} as input and calculates the

LTP and LTD traces. Exponential decay functions are a popular choice for the
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Fig. 11.6 Plot of the membrane potentials (vi) of a neuron i simulated over T = 200 time points
using the SRM model. For the simulation, we connected 3 predecessor neurons to the neuron i.
The spike data from the predecessor neurons are sampled randomly from uniform random
distribution. The ηthr for the neuron i was set to 10. Each of the three vi traces corresponds to a
preset vthr mentioned in the label (after [113])
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learning window function and we use this learning window function for all our
simulations. The j+ and j− parameters control the maximum LTP and LTD update
respectively and we have chosen j− = j+ = 1 to keep the bounds of dynamic
influence between [−1,1]. From Eq. 11.3, it can be observed that the polarity of
(ti
g− tj

f
) defines the polarity of uji. This is a causal Hebbian relationship model where

synapses are rewarded positively (strengthened) for causal firing (i fires later than
j i.e. firing of i is caused by firing of j) and penalised (weakened) for non causal
firing. However, Eqs. 11.3 describes a batch update scheme and requires modifi-
cation for on-line learning in the SNNc. [92] proposed a modified online STDP
update rule. In the on-line setup, u is calculated every time neuron i fires a spike or
receives a spike from neuron j. Equation 11.4 formalises the dynamic influence
update for on-line mode. The first term in the right hand side of Eq. 11.4 corre-
sponds to the LTP update and is calculated when neuron i fires a spike at time t. The
second term is the LTD update and is calculated when neuron i receives a spike
from neuron j at time t. Both the batch and on-line formalisations of STDP learning
are extended from [92] which discusses the properties of the STDP learning model
extensively.

Figure 11.7 shows the plot of the STDP learning function where the dynamic
influence in quadrant I and III corresponds to LTP and LTD respectively.

Fig. 11.7 The STDP weight update as a function of the relative timing of the pre and post
synaptic spikes (after [113])
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g

W tgi � t fj
� �

W sð Þ :¼ kþ exp �sð Þ; if s[ 0

�k� exp �sð Þ if s\0

�

/ij tð Þ :¼
X
f

kþ exp � t � t fj
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�
X
g

k� exp � t � tgið Þð Þ

ð11:3Þ

It is evident from the discussion above that the STDP learning rule enhances or
depletes the synaptic strength of the connections, based on the relative coincidence
of the spikes. This behaviour mimics the ability of the biological neurons to encode
information by detecting the occurrence of temporally close but spatially distributed
input signals and thus incorporating spatio-temporal information in the model.

DTI fibre tractography data and orientation influence: Diffusion tensor weighed
images are represented as a three dimensional image made of a set of spatially
arranged glyphs. Each glyph/voxel (colour and orientation) in the image is char-
acterised by a rotation invariant ellipsoid representing the properties of the
molecular diffusion of water in that region. Due to the tensorial nature of the
ellipsoid, the raw DTI voxel information is stored as a second order positive definite
tensor:

D :¼
Dxx Dxy Dxz

Dxy Dyy Dyz

Dxz Dyz Dzz

0
@

1
A ð11:4Þ

The six unique elements of the tensor are the coefficients of the ellipsoid equation
given by Dxxx

2 + Dyyy
2 + Dzzz

2 + Dyxyx + Dzxzx + Dxyxy = 1. The diffusion
properties of the ellipsoid are characterised by the Eigen vectors and Eigen values
of the tensor which correspond to the magnitudes and directions of the anisotropy.
For example in the areas with isotropic diffusion, the shape of the ellipsoid will be
nearly spherical with small anisotropy measure [93]. Fibre tractography is a very
elegant method for delineating individual fibre tracts from diffusion images. In our
work, we have used the DTI data in the form of orientation vectors representing
mean orientation of the fibre tract at different voxel locations. The orientation vector
of a sample DTI image is represented by a matrix Xor 2 Rn�3, where each feature is
represented by a 3D vector describing the orientation of the fibre in the Cartesian
coordinate system.

Here, we are establishing a learning rule that can accommodate both dynamic
data influence, but also static orientation influence from the DTI data. The intuition
behind the orientation influence can be explained again by a small SNNc archi-
tecture consisting of three neurons as shown in Fig. 11.8. The figure shows a single
pre-synaptic neuron j connected to two post synaptic neurons i1 and i2.

The important thing to note here is that the neurons in this diagram has spatial
allocations. The location of the neurons are defined by the radial and the angular
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coordinate in the polar coordinate system. Now, we are interested in calculating the
orientation influence of neuron j on neurons {i1,i2}. We call neuron j as the pivot
neuron. Let the orientation vector of the pivot neuron (from DTI data) be repre-
sented by (rj,aj). The orientational influence of the pivot neuron on neurons {i1,i2}
are defined by their angular proximity pivot neuron’s orientation vector. In that
way, as per our hypothesis, the pivot neuron wields a stronger angular influence on
the neurons as they lie closer angular proximity to the orientation vector of the pivot
neuron. Hence, the influence of neuron j can be arranged as i1 > i2 due to the
angular proximity of i1 and j being greater than i2 and j.

Even though we have used 2D vector space for explaining the intuition of
angular influence, our neurons in the SNNc reside in a 3D space. The intuition is
ofcourse extendible to a 3D vector space by adding another dimension in the
coordinate representation. In three dimensions the spherical coordinates of a point is
given by (r,a,b), where r is the scalar distance of the point from the centre, a and b
are the elevation and azimuth angle from the centre. Gaussian radial basis function
(GRBF) is used to realise the elevation and azimuth orientational influences given
the elevation and azimuth data of the neurons. The elevation and azimuth orien-
tational influences between pivot pre synaptic neuron j and post-synaptic neuron
i are:

wa
ji ¼ e

aji � adtij

��� ���2
2r2

ð11:5Þ

wb
ji ¼ e

bji � bdtij

��� ���2
2r2

ð11:6Þ

wji ¼
wa
ji � wb

ji

2
ð11:7Þ

Fig. 11.8 Example of a
pre-synaptic neuron j
connected to two post
synaptic neurons i1 and i2.
Each neurons spatial location
is defined by the polar
coordinates (r,a) (after [113])
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GRBF exponentially decays the orientational influence as the Euclidean norm
||aji− aj|| and ||bji− bj|| increases. The variance hyperparameter r2 controls the speed
with which the orientational influence decays with increasing radial distance (see
Fig. 11.9). The overall orientational influence is calculated as the mean of the
elevation and azimuth influence as shown in Eqs. (11.5–11.7).

Figure 11.10 shows the relationship of oiSTDP weight update Δw with post and
pre synaptic firing time difference ti − tj and orientation distance rji. As the temporal
difference between neuronal spikes decreases, the effect on weight updating
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Fig. 11.9 Plot of the elevation influence wa as a function of the radial distance aji − adtij and
r = 8 (after [113])

Fig. 11.10 Graph showing the relationship of oiSTDP weight update Δw with post and pre
synaptic firing time difference ti − tj and orientation distance rji. As the temporal difference
between neuronal spikes decreases, the effect on weight updating increases, so that spikes timed
closely together lead to greater increases in weight updating than spikes timed further apart. The
order of spikes also affects weight updating. If neuron j fires before neuron i consistently, then the
synaptic weight between them continues to increase; however, if the order switches, the weight is
reduced (after [113])
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increases, so that spikes timed closely together lead to greater increases in weight
updating than spikes timed further apart. The order of spikes also affects weight
updating. If neuron j fires before neuron i consistently, then the synaptic weight
between them continues to increase; however, if the order switches, the weight is
reduced.

11.4 Experimental Results on Synthetic Data

In this section we have analysed the behaviour and the effect of oiSTDP algorithm
on synthetically generated datasets.

11.4.1 Data Description

In order to describe and evaluate the oiSTDP learning algorithm, we have used
synthetically generated activity and orientation information. The input spike train
Dseq is of size 128 � 14, mimics a random sample of one second generated by a 14
channel EEG device with a sampling frequency of 128 Hz. All the experiments
described here use an SNNc of 1485 neurons with sparse recurrent connections.
The neurons in the SNNc reservoir are spatially distributed to mimic the shape of
the brain [48]. The location of the input spike train in the reservoir is resolved as per
the natural spatial ordering of EEG channels-AF3, F7, F3, FC5, T7, P7, O1, O2, P8,
T8, FC6, F4 and F8. The SWC algorithm is used to initialise the SNNc network.
We have used rswc= 0.02 (Meaning connect neurons within 2% of the maximum
distance) for connection generation and a small value of 0.05 for Winit. The default
hyperparameter values of (ηthr = 4,vthr = 0.1,j− = j+ = 0.01) are used in the
experiments, unless otherwise stated.

11.4.2 Experimental Results

(1) Effect of the orientation information on SNNc: The oiSTDP learning rule rep-
resents angular information in conjunction with the spatiotemporal information
in the connection strengths. To show the effect of the orientation information,
we have sampled the spike train Sin from Poissons’ distribution to keep the
effect of spike synchronicity minimal in the SNNc map. Figure 11.11 shows
qualitatively, the effect of the different orientation information on the final 3D
SNNc map created by the oiSTDP learning algorithm. In first of the three
experiments, all the SNNc neurons were directed in the (a = 0°, b = 0°)
direction, i.e. parallel to the X axis and perpendicular to the Z axis. It is clearly
visible from Figs. 11.11a–c that the strongest connections in the SNNc are
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representative of the orientation information provided. The second and the third
experiment uses (a = 45°, b = 45°) and no orientation information respec-
tively. It is evident from Fig. 11.11 that in absence of the temporal information
(synchronicity), the angular information is described in the SNNc and as such,
in simple cases, they are visually discriminatory. Since each of these learned
SNNc is represented by a directed graph of weighed connections, connectomics
analysis [94] can further be performed on the learned SNNc to extract new and
useful knowledge in the spatiotemporal domain.

(2) Effect of the spike synchronicity on SNNc: The aim of this experiment is to
show the effect of spike synchronicity, i.e. the effect of STDP learning on the
SNNc map for different spatiotemporal patterns. According to the STDP
learning rule, greater synchronicity leads to stronger connections through long
term potentiation (LTP). To demonstrate the effect of the spatiotemporal syn-
chronicity, we have created two samples of the input spike train. In the first
sample, the spike sequences corresponding to the channels in the frontal lobe of
the brain is kept the same (mimicking 100% synchronicity) and in the second
sample, 100% spike synchronicity is kept at the occipital and parietal lobe.
Figure 11.12 shows the comparison between the two SNNc maps created by
the oiSTDP learning algorithm. The ‘strongest connection’ density is clearly
more prominent in the frontal lobe in Fig. 11.12a due to the greater input spike
synchronicity in that region. Similar clusters Fig. (11.12b) at the parietal and
occipital lobe can be seen with when the second sample is used. Through these
analysis we have demonstrated how different temporal patterns and the spatial
arrangement of such patters affect the visual map of SNNc through the oiSTDP
learning.

Fig. 11.11 (a) Synchronous input spike train at locations AF3, F7, F3, FC5, FC6, F4, F8
(b) Synchronous input spike train at locations P7, O1, O2 and P8 and AF4. Comparison the effect
of synchronous input spikes on the SNNc map generated by the orientation influence-driven STDP
(oiSTDP) learning algorithm. Both figures are the top views (X Y plane) of the brain and the blue
dots shows the synchronous input channels (after [113])
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11.5 Using oiSTDP Learning for the Classification
of Responding and Non-responding Schizophrenic
Patients to Clozapine Monotherapy

11.5.1 Problem Specification and Data Preparation

This study was conducted as part of a large cross-sectional study investigating
clozapine (CLZ) response in people with treatment-resistant schizophrenia
(TRS) using EEG, MRI and genetic information (TRS study). The study was
approved by the Health and Disability Ethics Committee and received locality
approval from Auckland and Counties Manukau District Health Boards of New
Zealand. CLZ is uniquely effective for treatment-resistant schizophrenia. However,
many people still suffer from residual symptoms or do not respond at all
(ultra-treatment resistant schizophrenia; UTRS) to CLZ.

In this study our aim was to build a model for discriminating CLZ monotherapy
respondent and non-respondent individuals from multimodal fMRI and DTI brain
data. It must be noted that the data used to build this model has been collected post
CLZ treatment. For the purpose of our investigation, we used a subset of data
collected from the TRS study with the intention of classifying subjects into groups
with either TRS or UTRS using resting state fMRI and DTI data. A total of 25
subjects with no recorded head injury and aged from 18 to 45 years were chosen for
the study. Fourteen subjects belonged to the TRS group and eleven from the UTRS
group. Resting-state fMRI data was collected using a 3 T Siemens Skyra
Magentom Scanner with TR = 3000 ms and TE = 30 ms for a duration of 8 min.

In the first stage, the fMRI and DTI data were preprocessed using standard
preprocessing methods to control for head movement, registration and normalisa-
tion using FSL software [95]. Both fMRI and DTI data for each subject were
registered to a subject specific structural image and normalised to the MNI-152
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Fig. 11.12 Voxel selection using absolute mean standard deviation: a A plot of voxel id vs. the
absolute standard deviation (across time) of the b 3D MNI location of the selected voxels used for
multimodal brain data voxel averaged over the subject modelling. The voxels are coloured by the
anatomically defined regions in the MNI atlas
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2 mm atlas [96, 97]. ICA-based Automatic Removal Of Motion Artifacts
(ICA-AROMA) was used to remove motion artefacts from the fMRI data utilising
FSLs FEAT output as input [98, 99]. The DTI data for each subject was further
processed using the BEDPOSTX toolbox in FSL to generate the mean distribution
of fibre orientation in vector form.

The second stage of data processing focused on selecting a set of voxels from the
fMRI and DTI to be used to build the multimodal NeuCube model. As discussed
before, since a major component of our model captures temporal variations in data
and the noise reduction capabilities of SNN architectures through encoding [100],
we hypothesise that the discriminatory information is hidden in the voxels with
significant variation in the activity over time. Figure 11.13a shows the distribution
of absolute mean standard deviation of all the voxels across time and subject. We
selected a set of voxels with an absolute mean standard deviation of greater than
105 for our experiments. Figure 11.13b shows the 3D atlas locations of the selected
voxels in the MNI coordinate system. The selected voxels are predominantly
(>67%) located in the cerebellum of the brain. The second and third column of the
ROI frequency table (see Table 11.1) also corresponds to the number and the
percentage of voxels belonging to the different ROIs.

The final preprocessed dataset consists of dynamic fMRI trials fMRIseq 2
R30�238�80 and static DTI orientation vector data DTIstat 2 R30�318�3 of 30 subjects
and 2318 voxels. Each fMRI voxel is sampled over 80 time points within a trial.
The voxels of the DTI orientation data are represented by three dimensional vector
signifying the primary orientation of the fibre tract at the voxel location.

Due to the multi-modular and rather flexible nature of the NeuCube eSTDM
architecture, selecting baselines for comparison is a challenging task. In this work,
we have used the NeuCube architecture as a combination of temporal feature
compressor, spatial expander and classifier. The compressor and the SNNc module
together is used for feature extraction in spatiotemporal domain. The classifier is
then learned on the transformed feature representation of the data. Hence apart from
proposing a spike-time based data representation our contribution lies in the feature
extraction domain. Hence it is appropriate to compare our BSA + oiSTDP feature
extraction method against other feature extraction methods in continuous data
domain. We have compared the following feature extraction algorithms:

(1) Sparse autoencoder [101]: Autoencoders are shallow single hidden layered
neural networks that can perform identity mapping of the input. The hidden
layer of the autoencoder in that way learns non linear reduced dimensionality
data representations. The sparse autoencoders impose sparsity regularisation
constraint on the loss function to be optimised. In our experiments, we have
used the fMRI data to learn a sparse autoencoder (with 1000 relu units hidden
layer, L1 regularisation constraint of 10−5) that encodes the data into 1000
dimensional feature space using the python keras [102] API.
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(2) Principle component analysis (PCA): PCA is a standard orthogonal linear
feature transformation technique that transforms features into principle com-
ponents. We have used scikit-learn API [103] to fit and transform the fMRI data
to 1000 principle components.

(3) Independent component analysis (ICA): ICA is another statistical feature
transformation technique, used to decompose feature space to statistically
independent component space by maximising statistical independence of the
estimated components. We have used scikit-learn [104] API’s FastICA algo-
rithm to fit and transform the fMRI data to 1000 independent components.

Fig. 11.13 Visual comparison of the strongest connections (mean weight across subjects within a
group) formed in the SNN model of the TRS (the top) and the UTRS group (bottom row). The
yellow coloured cluster represents the input neurons and the green neurons are the computational
spiking neurons

Table 11.1 Frequency table
of ROI’s of the selected
voxels

ROI # voxel %

Frontal lobe 177 7.64

Insula 16 0.69

Temporal lobe 138 5.95

Cerebellum 1557 67.17

Occipital lobe 25 1.08

Parietal lobe 134 5.78

Thalamus 187 8.07

Caudate 84 3.62
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(4) Bernoulli restricted Boltzman’s machine (RBM) [105]: Restricted Boltzmann
machines (RBM) are unsupervised nonlinear feature learners based on a
probabilistic model that has gained much popularity in the deep neural network
domain. We have used the scikit-learn API to learn a Bernoulli RBM network
with 1000 components using stochastic Maximum likelihood [104] learning.

11.5.2 Modelling and Experimental Results

Table 11.2 presents experimental result as comparisons. The rows of the table
compares the methods for the classification task. (C) and (E) in the method names
correspond to the custom and Euclidean distance function used as part of KNN
respectively. The framework column specifies the role of each component in the
method names. For example the proposed BSA + oiSTDP + KNN is a combina-
tion of Temporal feature compressor (TFC), Spatial expander (SE) and Classifier
(C). The Performance of the binary classification task is measured by overall
accuracy and Cohen’s j statistic. The first 3 rows of the table compare the different
NeuCube architectures. The BSA + oiSTDP + KNN (C) is the proposed archi-
tecture for fMRI and DTI integrated learning. The next two methods systematically
removes (1) orientational influence from SNNc learning (STDP) and (2) the SNNc
module to show the effect of inclusion of these artefacts on the performance. The
best performance across the different methods is achieved by the proposed
BSA + oiSTDP + KNN (C) architecture with overall accuracy of 72.4 ± 12.3%
and Cohen’s kappa of 0.44 ± 0.25. The classification accuracy increases by �8%
and doubles the mean Cohen’s j statistic when oiSTDP based SNNc learning is
performed in the middle using fMRI and DTI data.

Table 11.2 Comparative analysis of classification accuracy between the proposed method
oiSTDP for integrated learning of fMRI and DTI data used in personalised SNN classifiers with
other machine learning methods on the same fMRI classification data

Method Data Temporal Multi-dimensional Accuracy
(%)

Cohen’s j

BSA + oiSTDP + KNN fMRI + DTI Yes Yes 72.3 ± 12.3 0.44 ± 0.25

BSA + STDP + KNN fMRI Yes No 69.4 ± 13.9 0.38 ± 0.28

BSA + KNN fMRI No No 64.2 ± 12.4 0.22 ± 0.26

Sparse autoencoder +
KNN(E)

fMRI No No 56.1 ± 7.2 0.01 ± 0.11

PCA + KNN(E) fMRI No No 56.1 ± 11.3 0.13 ± 0.18

ICA + KNN(E) fMRI No No 62.8 ± 12.3 0.26 ± 0.23

RBM + KNN(E) fMRI No No 36.2 ± 4.9 −0.23 ± 0.11

LSTM fMRI Yes No 45.7 ± 9.6 −0.15 ± 0.14

GRU fMRI Yes No 45.2 ± 7.5 −0.018 ± 0.13
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Due to the non-temporal nature of the baseline feature compressors, the fMRI
data for each subject is input to these feature extractors as a single vector(created by
concatenating the temporal dimension) leading to a massive feature vector space.
We have used KNN (K = 1) as classifier in the classification module to keep the
comparisons as fair as possible. The disadvantage of the large feature space is quite
imperative as it leads to potential over fitting of the data. We have avoided adding
the DTI data to the already large feature space to avoid further over fitting. As the
SNNc of NeuCube is a spiking recurrent neural network framework with temporal
or sequential learning capabilities, we have also learned the binary classification
task with other single hiddden layer recurrent neural network framework such as
long short term memory (LSTM) [106] and gated recurrent units (GRU) [107].
Both LSTM and GRU networks were designed as shallow single hidden layered
neural networks having 50 LSTM and GRU units. The networks were implemented
in keras [102] API and learned by optimising binary crossentropy loss function
using adaptive momentum optimiser. The results are shown in Table 11.2.

This study was conducted as part of a large cross-sectional study investigating
clozapine (CLZ) response in people with treatment-resistant schizophrenia
(TRS) using EEG, MRI and genetic information. CLZ is uniquely effective for
treatment-resistant schizophrenia. However, many people still suffer from residual
symptoms or do not respond at all (ultra-treatment resistant schizophrenia; UTRS)
to CLZ. In this study, our aim was to build a predictive model for discriminating
CLZ monotherapy respondent and non-respondent individuals using multimodal
brain data.

For the purpose of our investigation, we used a subset of data (resting state fMRI
and DTI data) collected from the TRS study with the intention of classifying
subjects into groups with either TRS or UTRS. Both fMRI and DTI data for each
subject were registered to a subject specific structural image and normalized to the
MNI-152 2 mm atlas [96, 97].

As the fMRI data was collected during resting-state, the mean activity and
deviation of activity from the voxels over time is negligible compared to
task-driven fMRI data. Since a major component of our model is time dependent,
we hypothesize that the discriminatory information is hidden in the voxels with
significant variation in the activity over time. We selected a set of voxels with an
absolute mean standard deviation of greater than 105. The final preprocessed
dataset consists of one fMRI trial and one DTI trial of 2318 voxels per subject.

To create a personalized SNN model of the NeuCube, we used aiSTDP learning
algorithm to train a set of 1000 computational spiking neurons, randomly scattered
around the input neurons. The experimental results are reported after a grid based
hyper-parameter search using the leave one out validation protocol. The best model
achieved an overall cross validated accuracy of 72%. The area under the ROC curve
for this model was 0.72. Evaluation of the confusion matrix showed equally dis-
tributed true positive/negative (UTRS: 73%, TRS: 71%) and false positive/negative
(UTRS: 27%, TRS: 29%) rates.
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We have further compared the classification performance of the model built on
fMRI and DTI with models built using only fMRI through a number of pattern
recognition algorithms (see Table 11.2). For modelling fMRI data, we have used
three different algorithms. The personalized SNN + STDP method uses the
canonical STDP to update the weights of the SNNc in the NeuCube architecture.
The other two algorithms used are the standard machine learning (ML) algorithms
like SVM and MLP. The proposed personalized SNN + aiSTDP outperformed the
other algorithms, not only in the overall accuracy of the model but in the true
positive and true negative metrics, which allows the model to be the most robust of
all. Furthermore, we have individually scrutinized the connection weights for TRS
and the UTRS groups, generated by the aiSTDP learning algorithm shows a
comparison of the strongest mean connection weights of the TRS and the UTRS
groups.

Figure 11.13 shows a visual comparison of the strongest connections (mean
weight across subjects within a group) formed in the SNN model of the TRS (the
top) and the UTRS group (bottom row). The yellow colored cluster represents the
input neurons and the green neurons are the computational spiking neurons.

The majority of the strong connections are created in the lower cerebellum and
thalamus. It has been shown that by connections via the thalamus, the cerebellum
innervates with motor cortical, prefrontal and parietal lobes [108]. Following
cerebellar damage, neurocognitive symptoms and a cognitive affective syndrome
including blunted affect and inappropriate behaviour have been shown [109]. Our
findings confirm the recent fMRI and PET studies that have demonstrated the
involvement of cerebellum and thalamus in sensory discrimination [110], attention
[111], and complex problem solving. All these functional modules are impaired in
people with schizophrenia. Also a large density of strong connections is observed in
the cerebellum region in the UTRS group compared to the TRS group. Similarly,
larger number of strong connections are present in the thalamus region of the TRS
as opposed to UTRS.

Table 11.3 shows a comparison of classification performance by different pattern
recognition methods on the binary classification task described above.

Table 11.3 Comparison of classification performance by different pattern recognition methods on
the binary classification task

Method Data Accuracy (%) TP rate (%) TN rate (%)

Personalized SNN + aiSTDP fMRI + DTI 72 73 71

Personalized SNN + STDP fMRI 56 55 57

SVM [23] fMRI 64 64 71

autoMLP [24] fMRI 60 60 64.2
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11.6 Chapter Summary and Further Readings
for Deeper Knowledge

The method presents the first attempt to integrate multiple modalities of information
in a spiking neural network architecture. The novelty of this approach lies in the
proposed personalised SNNc based architecture of NeuCube, and most importantly
the proposed oiSTDP learning algorithm, which can integrate multiple dimensions
of information including time, space, distance and orientation from data possessing
heterogeneous spatial and temporal characteristics. The personalised modelling
approach using multiple SNNc, on the other hand, negates any sequential bias of
the samples on the generated model. Despite the assumptions on multimodal brain
data, the proposed algorithm is not restricted to brain data and further possess the
ability to handle any form of data that has some form of spatial, temporal and
orientation information. Examples of such data include weather (change in tem-
perature, wind movement, cloud movement etc.) and traffic data.

The experiments shown here were conducted to demonstrate the ability of the
algorithm to capture discriminative joint information present in the data and rep-
resent this information within its connection strengths. The advantage of our for-
mulation lies in its flexibility to include several dimensions of static and dynamic
information. Successful integration of these data types in the present study provides
a foundation on which more complex algorithms may be built. We have used the
current design to incorporate DTI and fMRI from individuals initiating antipsy-
chotic therapy to create a personalised classifier of treatment response in people
with schizophrenia. Interrogation of the classification algorithm revealed increased
network connectivity in the cerebellar region of the model, potentially implicating
activity in this area of the brain as a biomarker of treatment response in
schizophrenia. Inclusion of more participants and studies using specific task-based
designs may expose other markers not currently identified in the literature and
provide novel hypotheses regarding why some individuals respond to clozapine
monotherapy while others do not.

Additional applications of the algorithm may include other disorders where
treatment or clinical outcome is poorly understood. Application of a technique such
as the one discussed in the current paper could increase our understanding of the
mechanisms behind these outcomes, given that the proposed architecture of
NeuCube provides a white box view of its classification decisions in an individual
level.

The ability to incorporate data from multiple imaging modalities simultaneously
could increase reliability of the model to predict treatment outcomes in future
individuals. To date, studies have achieved high rates of accuracy in patient samples
combining single imaging techniques alongside clinical and pharmacogenetic data
[32, 33], though none have led to changes in clinical practice.
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The presented in this chapter method for the integration of time-space and
direction data is a generic method, applicable to various types of data across a large
scale of tasks.

Further recommended readings include:

– fMRI [1];
– Modelling fMRI data in NeuCube [49, 112];
– A complete presentation of the proposed here method for fMRI + DTI mod-

elling [113];
– Demo on modelling fMRI data in NeuCube: https://kedri.aut.ac.nz/R-and-D-

Systems/neucube/fmri.
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Part V
SNN for Audio-Visual Data and

Brain-Computer Interfaces



Chapter 12
Audio- and Visual Information
Processing in the Brain and Its
Modelling with Evolving SNN

This chapter presents first some background knowledge on how the human brain
processes audio- and visual information. Then methods are presented for audio-,
visual- and for the integrated audio and visual information processing using
evolving spiking neural networks that include convolutional evolving spiking
neural networks (CeSNN). Case studies are presented for person identification.

The chapter is organized in the following sections:

12:1. Audio and visual information processing in the human brain.
12:2. Modelling audio-, visual and audio-visual information processing with

convolutional evolving spiking neural networks (CeSNN).
12:3. Case studies, experiments and results.
12:4. Summary and further readings for deeper knowledge.

12.1 Audio and Visual Information Processing
in the Human Brain

In this section some basic facts about how the human brain processes audio and
visual information are presented. Some more information can be found in [1, 2].

The human brain deals mainly with 5 sensory modalities: vision, hearing, touch,
taste and smell. Each modality has different sensory receptors. After the receptors
perform the stimulus transduction, the information is encoded through the excita-
tion of neural action potentials. The information is encoded using average of pulses
or time interval between pulses. This process seems to follow a common pattern for
all sensory modalities, however there are still many unanswered questions
regarding the way the information is encoded in the brain.
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12.1.1 Audio Information Processing

The hearing apparatus of an individual transforms sounds and speech signals into
brain signals. These brain signals travel further to other parts of the brain that model
the (meaningful) acoustic space (the space of phones), the space of words, and the
space of languages (see Fig. 12.1). The auditory system is adaptive, so new features
can be included at a later stage and existing ones can be further tuned.

Precise modelling of hearing functions and the cochlea is an extremely difficult
task, but not impossible to achieve [2]. A model of cochlea would be useful for both
helping people with disabilities, and for the creation of speech recognition systems.
Such systems would be able to learn and adapt as they work.

The ear is the front-end auditory apparatus in mammalians. The task of this
hearing apparatus is to transform the environmental sounds into specific features
and transmit them to the brain for further processing. The ear consists of three
divisions: the outer ear, the middle ear and the inner ear—Fig. 12.2.

Figure 12.3 shows the human basilar membrane and the approximate position of
the maximal displacement to tones of different frequencies. This corresponds to a
filter bank of several channels, each tuned to a certain band of frequencies.

There are several models that have been developed to model auditory functions
[2–9]. Very common are the Mel filter banks and the Mel scale cepstra coefficients
[1]. For example, the centres of the first 26 Mel filter banks are the following
frequencies [in hertz]: 86, 173, 256, 430, 516, 603, 689, 775, 947, 1033, 1130,
1392, 1550, 1723, 1981, 2325, 2670, 3015, 3445, 3962, 4565, 5254, 6029, 6997,
8010, 9216, 11,025. The first 20 Mel filter functions are shown in Fig. 12.4.

Other representations use a Gammatone function [10]. It is always challenging to
improve the acoustic modelling functions and make them closer to the functioning
of the biological organs, which is expected to lead to improved speech recognition
systems.

The auditory system is particularly interesting because it allows not only to
recognize sound but also to perform sound source location efficiently. Human ears
are able to detect frequencies in the approximate range of 20–20,000 Hz. Each ear
processes the incoming signals independently, which are later integrated consid-
ering signal’s timing, amplitudes and frequencies—Fig. 12.5.

The narrow difference of time between incoming signals from the left and right
ear results in a cue to location of signal origin.

Language
Model

Model of 
the cochlea

Acoustic 
Model Word

Model

Signal

Fig. 12.1 A typical model of spoken language processing
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Fig. 12.2 The human ear (from [34])

Fig. 12.3 The human basilar
membrane and the
approximate position of the
maximal displacement to
tones of different frequencies.
This corresponds to a filter
bank of several channels, each
tuned to a certain band of
frequencies
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12.1.2 Visual Information Processing

The visual system is composed of eyes, optic nerves, many specialised areas of the
cortex (the ape for example has more than 30).

The image on the retina is transmitted via the optic nerves to the first visual
cortex (V1), which is situated in the posterior lobe of the brain. There the infor-
mation is divided into two main streams, the “what” tract and the “where” tract.

The ventrical tract (“what”) separates targets (objects and things) in the field of
vision and identifies them. The tract traverses from the occipital lobe to the tem-
poral lobe (behind the ears).

MEL Filters

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

1 9 17 25 33 41 49 57 65 73 81 89 97 105 113 121 129 137 145 153
Harmonics

A
m

pl
itu

de

Fig. 12.4 The first 20 Mel filter functions

Fig. 12.5 A schematic
diagram of integrated left- and
right auditory information
processing
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The dorsal tract (“where”) is specialised in following the location and position of
the objects in the surrounding space. The dorsal tract traverses from the back of the
head to the top of the head.

The brain creates deep structures of neural networks when learns or perceives
visual information—as shown in Fig. 12.6.

How and where is the information from the two tracts united to form one
complete perception, is not completely known. On the subject of biological
approaches for processing incoming information, Hubel and Wiesel received many
awards for their description of the human visual system. Through
neuro-physiological experiments, they were able to distinguish some types of cells
that have different neurobiological responses according to the pattern of light
stimulus. They identified the role that the retina has as a contrast filter as well as the
existence of orientation selective cells in the primary visual cortex—Fig. 12.7.
Their results have been widely implemented in biologically realistic image acqui-
sition approaches.

The idea of contrast filters and orientation selective cells can be considered a
feature selection method that finds a close correspondence with traditional ways of
image processing, such as Gaussian and Gabor filters.

A Gaussian filter can be used for modelling ON/OFF states of receptive cells:

Gðx; yÞ ¼ eð
x2 þ y2

2r2
Þ ð12:1Þ

A Gabor filter can be used to model the states of orientation cells:
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Fig. 12.6 Deep serial processing of visual stimuli in humans for image classification. Location of
cortical areas: V1 = primary visual cortex, V2 = secondary visual cortex, V4 = quartiary visual
cortex, IT = inferotemporal cortex, PFC = prefrontal cortex, PMC = premotor cortex,
MC = motor cortex [2, 35]
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Gðx; yÞ ¼ eð
x02 þ c2y02

2r2
Þ cosð2p x

0

k
þ/Þ

x0 ¼ x cosðhÞþ y sinðhÞ
y0 ¼ �x sinðhÞþ y cosðhÞ

ð12:2Þ

where:

u = phase offset
h = orientation (0, 360)
k = wavelength
r = standard deviation of the Gaussian factor of the Gabor function
c = aspect ratio (specifies the ellipticity of the support of the Gabor function)

A computational model of the visual subsystem would consist of the following
levels:

(a) A visual pre-processing module that mimics the functioning of the retina, the
retinal network and the Lateral Geniculate Nucleus (LGN).

(b) An elementary feature recognition module, responsible for the recognition of
features such as the curves of lips or the local colour. The peripheral visual
areas of the human brain perform a similar task.

ON OFF

Contrast Cells

0° 45° 90° 135°

180° 225° 270° 315°

Direction Selective Cells

Fig. 12.7 Contrast cells and
direction selective cells
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(c) A dynamic feature recognition module that detects dynamical changes of fea-
tures in the visual input stream. In the human brain, the processing of visual
motion is performed in the V5/MT area of the brain.

(d) An object recognition module that recognises elementary shapes and their parts.
This task is performed by the infero-temporal (IT) area of the human brain.

(e) An object/configuration recognition module that recognises objects such as
faces. This task is performed by the IT and parietal areas of the human brain.

12.1.3 Integrated Audio and Visual Information
Processing

This subsection presents a method first published in [31].
How auditory and visual perception relate to each other in the brain is a fun-

damental question. A general diagram to represent these processes is shown in
Fig. 12.8.
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Fig. 12.8 A schematic diagram of integrated audio-visual information processing in the brain
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In the next section, the issue of integrating auditory and visual information in
one information processing model is discussed. Such models may lead to better
information processing and adaptation in the future intelligent systems.

In [31], a computational model called AVIS was proposed that models both the
auditory and visual pathways in the brain but also accounts for the interaction
between the different parts as shown in Fig. 12.8.

Below we describe the connectionist framework AVIS, which combines the
principles from two preceding unimodal models. One model originates from mul-
tilingual adaptive speech processing [10] and the other from image processing using
dynamic features [11, 12]. The global architecture of AVIS is illustrated in
Fig. 12.9, and consists of three subsystems:

– an auditory subsystem;
– a visual subsystem;
– a higher-level conceptual subsystem.

Each of them is specified below, followed by a description of the modes of
operation.

Fig. 12.9 A block diagram of the framework for auditory visual information processing systems
(AVIS) [31]
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The auditory subsystem

The auditory subsystem consists of five modules. Below we give the main
characterisations.

(a) The auditory pre-processing module transforms the auditory signal into fre-
quency features, such as mel-scale coefficients. It accounts for time at a low
level of synchronisation (i.e., milliseconds). Frequency, time and intensity
features are spatially (tonotopically) represented as a sequence of vectors (i.e., a
matrix). The functioning of the pre-processing module may be compared to the
functioning of the cochlea.

(b) The elementary-sound recognition module is a basic building block of the
subsystem. It is extendable so that new classes of sounds can be added during
operation. A phoneme is adequately represented by a population activity pat-
tern, i.e., an activity pattern distributed over a cluster of neurons. The position
of the cluster centre can change through learning.

(c) The dynamic-sound recognition module accounts for the dynamical changes in
the auditory information. The auditory cortex of the human brain functions
analogously.

(d) The word-detection module attempts to identify the words. It uses a dictionary
of pre-stored words. In the human brain the auditory detection of words is part
of the cortical language areas [13].

(e) The language-structure detection module accounts for the order in which words
are recognised. It uses linguistic knowledge, language knowledge, and domain
knowledge as well as feedback from the higher-level conceptual sub-system.

The visual subsystem

The visual subsystem also consists of five modules. A characterisation follows
below:

(a) The visual pre-processing module mimics the functioning of the retina, the
retinal network, and the lateral geniculate nucleus (LGN).

(b) The elementary-feature recognition module is responsible for the recognition of
features such as the curves of lips or the local colour. The peripheral visual
areas of the human brain perform a similar task.

(c) The dynamic-feature recognition module detects dynamical changes of features
in the visual input stream. In the human brain, the processing of visual motion
is performed in area V5/MT.

(d) The object-recognition module recognises elementary shapes and their parts.
This task is performed by the infero-temporal (IT) areas of the human brain.

(e) The object-configuration recognition module recognises configurations of
objects such as faces. This task is performed by the IT and parietal areas of the
human brain.
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The higher-level conceptual subsystem

The higher-level conceptual subsystem takes its inputs from all modules of the
lower-level subsystems and activates the clusters of neurons representing concepts
(e.g., familiar persons) or meanings. The clusters of neurons are connected to the
action part of the system (corresponding to the motor areas of the brain). In a
person-identification task, the conceptual subsystem takes information from all the
modules in the auditory and visual subsystems and makes a decision on the identity
of the person observed.

12.2 Modelling Audio-, Visual and Audio-Visual
Information Processing with Convolutional Evolving
Spiking Neural Networks (CeSNN)

This section presents methods for audio-, for visual-, and for integrated audio-visual
information processing using evolving SNN, and more specifically—convolutional
eSNN. The methods were first proposed and published in [14, 15].

12.2.1 Issues with Modelling Audio-Visual Information
with SNN

The integration of modalities for the purpose of pattern recognition often target
tasks that cannot be solved by a single system or can be facilitated by using more
than one source (generally where there is unimodal ambiguity, unimodal lack of
data and/or correlation among modes). Many studies report considerable perfor-
mance improvement [11, 16–18] as well as state that the use of modularity results in
systems that are easy to understand and modify. In addition, modular approaches
are well known for preventing modular damage, facilitating training and the
inclusion of prior knowledge [16].

There are two classic issues when dealing with multimodal systems: how to
perform the decomposition and recombination of modes:

• Decomposition: Decomposition can occur with modules and sub-modules, e.g.
a visual can be decomposed into colour and shapes, which can be further
decomposed into edges and borders, and so on. For the decomposition, the
problems are not always well known and explicit as is the case with the visual
and auditory modalities. In some cases, the decomposition can be done by
automatically breaking down the problem based on intrinsic properties of the
information provided [18].

• Recombination: The recombination of the modules can be cooperative (all
modules contribute to the result), competitive (only the most reliable module is
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responsible for the decision), sequential (the computation of one module
depends on the output of the other), and supervised (one module is used to
supervise the performance of others) [16, 17].

Sometimes in order to avoid the recombination process, systems perform the
combination of information from different modalities before the recognition process
is undertaken. One unique module is then used for recognition. While this approach
is easier to design, often the unique module encounters difficulties during the
learning process. Also in this configuration, the designer cannot include or extract
explicitly any knowledge related to individual modalities during the recognition
process.

The biologically inspired integration of modalities for pattern recognition uses
the theory of spiking neural networks, where the individual modes and the inte-
gration procedure are implemented with spiking neurons. Each individual modality
has its own network of spiking neurons. In general, the output layer of each
modality is composed of neurons that authenticate/not authenticate a class they
represent when output spikes are released.

The approach for integrating modalities consists of attaching a new layer onto
the output of the individual modes. This layer (supramodal layer) represents the
supramodal region and contains neurons that are sensitive to more than one
modality [19]. In the implementation proposed here, the supramodal layer contains
two spiking neurons for each class label. Each neuron representing a given class C
in the supramodal layer has incoming excitatory connections from the output of
class C neurons of each individual modality. The two neurons have the same
dynamics, yet different thresholds for spike generation (PSPTh). For one neuron, the
PSPTh is set in such a way that an output spike is generated after receiving incoming
spikes from any single modality (effectively it is a spike-based implementation of
an OR gate). The other neuron has PSPTh set so that incoming spikes from all
individual modalities are necessary to trigger an output spike (AND gate). AND
neuron maximizes the accuracy and OR neuron maximizes the recall (see
Fig. 12.10).

In addition to the supramodal layer, a simple way to perform crossmodal cou-
pling of modalities is designed. The crossmodal coupling is set as follows: when
output neurons of an individual modality emit spikes, the spikes not only excite the
neurons in the supramodal layer, but also excite/inhibit other modalities that still
have ongoing processes. Effectively the excitation/inhibition influences the decision
on other modalities, biasing (making it easier/more difficult) the other modality to
authenticate/not authenticate a pattern.

For the cross-modal coupling, different from the supra-modal layer connections
that are only excitatory, both excitatory and inhibitory connections are imple-
mented. With this configuration, the output of a given class C in one modality
excites the class C neuronal maps in other modalities. In contrast, the output class Ĉ
(not class C) in one modality has an inhibitory effect on class C neuronal maps in
other modalities.
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In the following section, the supra/cross modal concepts are applied to the case
of audiovisual integration in a person authentication problem based on face and
speech information. The implementation of the visual model follows the description
given in Sect. 3.5 and the auditory model uses the architecture described in
Sect. 4.3.3. A more detailed explanation of the implementation is also given.

12.2.2 Convolutional eSNN (CeSNN) for Modelling Visual
Information

The visual system is modelled with a four-layer feed-forward network of spiking
neurons, with the same configuration as described in Chap. 5 and in [15].
Figure 12.11 shows the network architecture, which combines opinions of being/
not being a desired face over several frames (multi-view face recognition).
Basically, the network receives in its input several frames that are processed in a
frame-by-frame manner. Neurons in the first layer (L1) represent the On and Off
cells of the retina, enhancing the high contrast parts of a given image (high-pass
filter). The second layer (L2) is composed of orientation maps for each frequency
scale, each one being selective to different directions. They are implemented using
Gabor filters in eight directions (0°, 45°, 90°, 135°, 180°, 225°, 270°, and 315°) and
two frequency scales. Maps in the third layer are trained to be sensitive to complex
visual patterns (faces in the case study evaluated here). In L3, neuronal maps are
created or merged during learning in an adaptive online way.

L3 neurons receive crossmodal influences from other modalities. In other words,
instead of L3 being composed of exclusively unimodal neurons sensitive to visual
excitation, L3 has multisensory capabilities. L3 neurons are still mainly visual, but
are also sensitive to stimuli from other modalities.

crossmodal
connections

AND

OR

individual modes 
layers

supramodal
layer

Fig. 12.10 Integration of
individual layers with a
supra-modal layer and
cross-modal connections. The
individual and supra-modal
layers are implemented using
spiking neurons
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Neurons in layer 4 (L4) accumulate opinions about being a certain class over
several frames. If the opinions are able to trigger an L4 neuron to spike, the
authentication is completed.

12.2.3 Convolutional eSNN (CeSNN) for Modelling
Audio Information

The auditory system is modelled with a two-layer feed-forward network of spiking
neurons [20]. Each speaker is represented by a set of prototype vectors that compute
normalized similarity scores of MFCC (Mel Frequency Cepstrum Coefficients)
considering speaker and background models. Prototypes of a given class are

Fig. 12.11 Evolving spiking neural network (eSNN) architecture for visual pattern recognition.
Neurons in L1 and L2 are sensitive to image contrast and orientations, respectively. L3 has the
complex cells, trained to respond to specific patterns. It is in L3 that crossmodal coupling occurs.
L4 accumulate opinions from different input excitations over time [15]
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memorized in the connection weights of L1 neurons. For the integrative approach
described here, L1 neurons are also the recipients of crossmodal influences, in the
form of excitation or inhibition. Thus, L1 neurons, besides being primarily
responsible for processing auditory information, can be affected by other modalities
(therefore multisensory units) to a lower degree. The network architecture is
illustrated in Fig. 12.12.

There are two neurons in L2 for each speaker accumulating opinions over
several frames of speech signals. One neuron is triggered if the speaker is
authenticated and the other if the input excitation is more likely to be the back-
ground model.

12.2.4 Convolutional eSNN (CeSNN) for Integrated
Audio-Visual Information Processing

The detailed audiovisual crossmodal integration architecture is shown in Fig. 12.13.
The bottom part of Fig. 12.13 shows two neurons (OR and AND) representing the
supramodal layer. Each spiking neuron in the supramodal layer operates in the same
way as the neurons that compose the SNNs of individual modalities (fast
integrate-and-fire neurons with modulation factor described in Chap. 5).

Even this simple configuration of the supramodal layer can have quite a complex
behaviour that cannot be easily described in an analytical way. However, to
facilitate the illustration of the integrative system, a particular case is described. The
supramodal neurons are set with a modulation factor of mod = 1, and all the

Fig. 12.12 Speaker authentication with spiking neural networks. L1 neurons, with their respective
connection weights, implement the prototypes of a given class. L1 neurons also are receivers of
crossmodal excitation/inhibition. L2 neurons accumulate binary opinions about being a claimant
over several frames of speech signals
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incoming excitatory connection weights (W) are set to 1. Thus, the PSPTh that
implements the OR integration for two modalities is equal to 1. The neuron
implementing the AND integration receives PSPTh = 2. Notice that it is only
possible to set these parameters deterministically because the neurons can spike
only once during the entire simulation period (Fig. 12.13).

Once again, to facilitate the analysis, crossmodal influences between modalities
are effectively modelled through the modification in the PSPTh of the crossmodal
neurons, namely L3 neurons in the visual system and L1 neurons in the auditory
system. Thus, instead of simulating crossmodal influences with spikes that will
consequently excite/inhibit a neuron (increase/decrease neuron’s PSP), which
corresponds to the biological method, the crossmodal influence is implemented by
increasing/decreasing the PSP threshold of the neurons. The effect in terms of
network behaviour is the same, however it is found to be easier to parameterize the
amount of crossmodal influence through the variation on the PSP thresholds. Thus,
the strength of the crossmodal influences can be denoted with the following
crossmodal parameters: CMAVexc (audio to video excitation), CMAVinh (audio to
video inhibition), CMVAexc (video to audio excitation), CMVAinh (video to audio
inhibition), which are implemented as a proportional change in the usual PSPTh

values as:

PSPThNew ¼ PSPThOldð1þCMexc=inhÞ ð12:3Þ

where CMexc/inh is negative for crossmodal excitatory influence and positive for
inhibitory influence.

Fig. 12.13 Integration of modalities using evolving SNNs. The supramodal layer integrates
incoming sensory information from individual modalities and crossmodal connections enabling the
influence of one modality upon the other
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In the simplest case, setting crossmodal coupling parameters to zero effectively
means that each modality is processed separately, with a simple OR/AND fusion of
opinions. Increasing the absolute value of crossmodal coupling parameters effec-
tively increases the crossmodal influences.

Note that the definition of supramodal layer here is related only to the layer that
effectively combines sensory information to make the final decision. It does not
include all the areas where multisensory neurons are located. L3 neurons of the
visual system and L1 neurons of the auditory system, despite being multisensory
neurons, are considered a part of the individual pathways outside the supramodal
layer. Thus, individual pathways could be more appropriately named as “mainly”
visual and “mainly” auditory pathways.

Figure 12.14 illustrates the behaviour of the network over time. The dynamic
behaviour of the integrated network is described as follows: each frame of the
visual and auditory excitation (frames f1, f2,…, fN) are propagated through their
corresponding individual architectures until the supramodal layer. Spikes of a given
visual frame are propagated to L2 and L3 until a neuron belonging to a L3 map
emits the first output spike, which is propagated to L4. L4 neurons accumulate
opinions over several frames, whereas L1, L2 and L3 neurons are reset to their
resting potential on a frame basis. The same occurs with auditory frames. Spikes are
propagated to L1 neurons until a L1 neuron emits the first output spike, which is

Fig. 12.14 Typical behaviour of the integrated SNN architecture over time. The visual and
auditory excitation (frames f1, f2,…, fN) are propagated through their corresponding individual
architectures until the supramodal layer. Neurons of individual modalities are reset to their resting
potential, namely L1, L2 and L3 neurons of the visual and L1 neurons of the auditory architecture.
Crossmodal influences are propagated and a new frame is processed. The simulation is terminated
when the supramodal layer spikes, both individual modes have released their opinions or there are
no more frames to be processed
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propagated to L2. L2 neurons accumulate opinions over several frames whereas
auditory L1 neurons are reset to their resting potential before each frame is
processed.

When auditory L2 neurons and/or visual L4 neurons release an output spike, the
spikes are propagated to the supramodal layer. If there is no output spike in any
visual L4 neuron and a visual L3 neuron has emitted a spike or there are no more
spikes to be processed, the next visual frame can be propagated. In a similar
fashion, if there is no output spike in any auditory L2 neuron and an auditory L1
neuron has emitted a spike or there are no more spikes to be processed, the next
auditory frame can be propagated.

Visual L4 neurons and auditory L2 neurons retain their PSP levels that are
accumulated over consecutive frames, until a class is recognized with an L4 neuron
output spike or until there are no more frames to be processed. Crossmodal influ-
ences, if existent, are propagated synchronously before a new frame is processed.
The crossmodal influence starts when one individual modality produces a result
(output spike in a auditory L2 neuron or in a visual L4 neuron) and lasts until the
processing is completed in all modalities.

In this model, the processing time for auditory and visual frames are considered
the same, i.e., the supramodal layer receives synchronous information in a frame
basis, although it is well known that auditory stimuli are processed faster than visual
[19].

Note that when resetting the PSP in the visual L2 and L3 neurons and auditory
L1 neurons in each frame, information about dynamic changes of the patterns are
lost, i.e., the model does not keep track of the variations of a visual pattern nor how
the pattern changes over time. Each visual frame is considered independently and
the last layer of each individual modality effectively accumulates opinions about
whether it is a trained pattern.

With respect to the processing speed, in principle, the crossmodal connections
decrease the time required to authenticate true claimants and increase the time
needed to reject false claims when compared with a purely AND integration. In
other words, it speeds up the processing of correlated information from different
modes because once an individual modality finishes its analysis and labels a pattern,
it exerts excitatory influence on the neurons of other modalities with the same label.
The bias effect towards the second modality facilitates its decision in case true
information about the claimant is also provided, which causes a resultant decision to
be achieved quickly. On the other hand, the time needed to reject false claimants
increases. Should the first modality results in a negative opinion about the claimant,
the crossmodal connections send inhibitory signals to the claimant’s neurons on
other modalities, making its authentication harder. If the claimant provides true
information on the second modality, due to the negative opinion given by the first
modality, the second modality will be more rigorous on the authentication process,
which consequently affects the time required to release the overall result.
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12.3 Case Studies, Experiments and Results

12.3.1 Data Sets

The integration of audiovisual modalities with a network of spiking neurons is
evaluated with the VidTimit dataset [21], which contains video and audio record-
ings of 43 individuals. The test setup deals specifically with the audiovisual person
authentication problem. A person is authenticated based on spoken phrases and the
corresponding facial information as the utterances are recorded (faces are captured
in frontal view).

The following items present the configuration details of each individual system
as well as the parameters used on the integration mechanism:

• Visual: Face detection is accomplished with the Viola and Jones algorithm [22]
implemented in the OpenCV library (Intel OpenCV, 2007). Faces are converted
into greyscale, normalized in size (height = 60 � width = 40), convolved with
an elliptical mask, and encoded into spikes using rank order coding [23, 24].
SNN does not require illumination normalization [24]. There are two scales of
On/Off cells (4 L1 neuronal maps). In scale 1, the retina filters are implemented
using a 3 � 3 Gaussian grid with r = 0.9 and scale 2 uses a 5 � 5 grid with
r = 1.5. In L2, there are eight different directions in each frequency scale with a
total of 16 neuronal maps. The directionally selective filters are implemented
using Gabor functions with aspect ratio c = 0.5 and phase offset u = p/2. In
scale 1 a 5 � 5 grid with a wavelength of k = 5 and r = 2.5 is used and in scale
2 a 7 � 7 grid with k and r set to 7 and 3.5, respectively. The modulation factor
for the visual neurons was set to 0.995.

• Auditory: Speech signals are sampled at 16 kHz, and features extracted using
standard MFCC with 19 MEL filter sub-bands ranging from 200 Hz to 7 kHz.
Each MFCC is then encoded into spikes using rank order coding [23]. One
receptive field neuron is used to represent each MFCC (19 input receptive
fields). A specific background model is trained for each speaker model. For the
sake of simplicity, the following procedure is applied: the background model of
a speaker i is trained using the same amount of utterances used to train the
speaker model. The utterances are randomly chosen from the remaining training
speakers. For the experiments, the number of neurons in the auditory L1 neu-
ronal maps for the speaker and background model are defined a priori (50
neurons each). The modulation factor for auditory neurons is set to 0.9.

• Integration: The crossmodal parameters according to Eq. 12.3 are set as:
CMAVexc = CMVAexc = 0.1 and CMAVinh = CMVAinh = 0. Results that do not take
into account the crossmodal coupling are also presented, i.e.,
CMAVexc = CMVAexc = CMAVinh = CMVAinh = 0, which effectively correspond to
AND or OR integration.
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12.3.2 Experimental Results

The system is trained to authenticate 35 persons using six utterances from each
individual. To train the visual part, only two frames from each individual are used,
collected when uttering two distinct phrases from the same recording session were
uttered.

The test uses two phrases (each phrase corresponding to one sample) recorded in
two different sessions, therefore 35 users � 2 samples = 70 positive claims. Acting
as impostors, the eight remaining users attempt to deceive each of the 35 users’
models with two utterances, which give a total of 560 false claims.

The test is carried out frame-by-frame keeping the time correspondence between
speech and visual frames. However, to speed up the computational simulations, the
visual frames are downsampled. Five visual frames per second are used whereas the
speech samples have a rate of 50 frames per second (Fig. 12.15). The downsam-
pling of the visual frames does not affect the performance, as for a period lower than
200 ms no substantial differences between one facial posture and another can be
noticed in the VidTimit dataset.

Figure 12.15 shows typical input streams to the SNN-based audiovisual person
authentication system, where frames of detected faces are sampled at 200 ms (5
frames/s) and 19 MFCC extracted from the detected speech parts are processed
every 20 ms (50 frames/s).

The supramodal layer and the crossmodal coupling are updated when an indi-
vidual modality outputs a spike, which may occur once in every frame. Here, it is
assumed that the processing time for one frame is the same, regardless of the
modality, although it is well known that auditory stimuli are processed faster than
visual (difference of approximately 40–60 ms [19].

For the speech mode, the number of opinions to validate a person is set pro-
portionally to the size of a given utterance (20% of the total number of frames in an
utterance is used). For the visual mode, the number of opinions to authenticate a
person is set to two (two frames). Figure 12.16 shows the best performance
obtained on each individual modality. While the best total error (TE) for the face

Fig. 12.15 Frame-based integration of modalities (after [14])
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authentication is 21%, the auditory authentication is TE � 38% (varying values of
L1 PSPTh in the auditory system and L3 PSPTh in the visual system).

Figure 12.16 shows performance of individual modalities for different values of
auditory (L1 PSPTh) and visual parameters (L3 PSPTh). Top: auditory system.
Bottom: visual system. FAR is the false acceptance rate, FRR is the false rejection
rate and TE is the total error (FAR + FRR).

Figure 12.17 shows the best performance of the system considering the type of
integration held in the supramodal layer. First, the crossmodal coupling parameters
are set to zero, simulating only the OR and AND integration of individual
modalities done by the supramodal layer. Then, the crossmodal coupling is made
active (“Crossmodal AND”), setting CMAVexc = CMVAexc = 0.1 and
CMAVinh = CMVAinh = 0. The same parameters are used for individual modalities in
this experiment, i.e., auditory parameters (L1 PSPTh) and visual parameters (L3
PSPTh) ranging from [0.5, 0.9] to [0.1, 0.5], respectively. The x-axis represents
different combinations of L1 and L3 PSPTh ordered according to the performance.

Figure 12.18 shows the potential advantages of the integration module. When
the system needs to operate with low FAR levels (below 10%), AND and
“Crossmodal AND” provide lower FRR than any singular modality. When the
system is required to operate with low FRR (below 10%), OR integration can be
used instead, providing lower FAR for the same FRR levels.

In another scenario, the influence of crossmodal connections on the integrated
system is evaluated. A subset of the VidTimit dataset is used for this purpose. The

Fig. 12.16 Performance of
individual modalities for
different values of auditory
(L1 PSPTh) and visual
parameters (L3 PSPTh). Top:
auditory system. Bottom:
visual system. FAR is the
false acceptance rate, FRR is
the false rejection rate and TE
is the total error
(FAR + FRR) (after [14])
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setup for training is composed of six utterances from 10 individuals, whereas 13
individuals (10 that participated in the training stage and two completely unknown
individuals) are used for testing. Each of the 10 individuals has 4 attempts at the test
in a total of 40 positive claims. Acting as impostors, two individuals attempt to
authenticate each of the 10 trained models four times, with a total of 2 � 4 � 10 = 80
impostor attempts (false claims). Similar to the previous experiments, the authentication

Fig. 12.17 Performance of the OR and AND integration of modalities with a supramodal layer of
spiking neurons (upper and middle graphs, respectively). The bottom graph, when excitatory
crossmodal influences are activated “Crossmodal AND” (for auditory L1 PSPTh and L3 PSPTh

ranging from [0.5, 0.9] to [0.1, 0.5], respectively)
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threshold is set proportionally to the size of an utterance (20% of the total number of
frames needs to provide positive opinions) and only two visual frames are necessary to
authenticate a person based on the face. Figure 12.19, shows the performance of the
integrated network for different values of crossmodal excitation. From the graph it is
not possible to detect the best crossmodal parameter values, which means that a range
of parameter values can be used with the same result. However, once again is clear that
OR integration works better for high FAR than any single modality, and AND inte-
gration works better for low FRR than any single modality.

Fig. 12.18 Comparison
between individual modes
(auditory and visual) and the
corresponding integration.
Overall, the integration
presents better performance
than individual modes. OR,
AND, “Crossmodal AND”
alternate in the best position
for different points of
operation. EER is the equal
error rate (where
FAR = FRR)

Fig. 12.19 Performance of
the network for different
values of crossmodal
excitation. There is a range of
values of crossmodal
influence for which the model
gives similar performance,
however, for all values, the
integration presents better
performance than individual
modes and ANDs and OR
configuration alternate as the
best choices for different
points of operation

452 12 Audio- and Visual Information Processing in the Brain and …



12.4 Chapter Summary and Further Readings for Deeper
Knowledge

This chapter presents some initial information about audio-, visual and integrated
information processing in the human brain as inspiration for the presented SNN
methods in this and in the next chapters. It also covers the integration of modalities
for the purpose of audio-visual pattern recognition. Of particular interest was the
compilation of biological findings that inspire the proposal of models to explain the
way brains effectively process and integrate different sensory information. Through
an evaluation of several models and theories describing brain activity, the focus is
given to the understanding of two properties that can be useful in enhancing arti-
ficial pattern recognition tasks, in particular:

• the supramodal area, and;
• crossmodal connections between modalities.

The second part of the chapter describes a new simple way to integrate modalities
using fast spiking neurons (See also [20]). In the new system, each individual
modality utilizes specialized adaptive SNNs. The integration is done in a supra-
modal layer composed of multisensory neurons. In addition, one modality can
influence another using a crossmodal mechanism.

The model also enables to set the strength of crossmodal connections individ-
ually for each pair of single modes. In biology, audiovisual crossmodal learning has
been experimentally observed in [25]. In their experiments, after a training session
with visual and auditory stimuli, when auditory stimuli alone were presented, areas
of the visual cortex were also activated. In [26] the areas of neuronal changes
(time-dependent plasticity) that may be related to the crossmodal operations are
further investigated. However, there was no attempt to quantify or to define the
rules for neuronal changes. In this respect, new neuronal models for exploring the
mechanisms that govern such activities can underpin new discoveries. In the model
proposed in this chapter, a proper training procedure for crossmodal connections
can be explored and evaluated.

The proposed in this chapter model has several aspects that require further
development, namely:

(a) the model cannot take into account some biological behaviours detected by
psychological experiments, e.g., cannot cover familiarity decisions, semantic
information, identity priming, and within and cross domain semantic priming
[27–29].

(b) with respect to the implementation, the use of frames and the respective
frame-by-frame synchronization seems to be very artificial, truncating the
natural flow of information. In addition, at this stage, the difference in pro-
cessing time in each modality [19] is ignored.
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(c) the model can not emulate the mechanism that facilitates unimodal recognition
when the training is done with more than one modality, behaviour which has
been described in [30].

Under the pattern recognition perspective, the network was tested on the person
authentication problem. Experiments clearly showed that the integration of modes
enhances the performance in several points of operation of the system when the
learning is done with the same training examples. For a comparative analysis, in
[21], the integration of modalities is explored with the VidTimit dataset using a
combination of mathematical and statistical methods. The auditory system alone,
using MFCC features and GMM in a noise-free setup, reached TE (total
error) = FAR (false acceptance rate) + FRR (false rejection rate) � 22%. The
visual system is reported to have TE � 8% with features extracted using PCA
(principal component analysis) and SVM (support vector machine) for classifica-
tion. After testing several adaptive and non adaptive systems to perform integration,
the best performance is obtained with a new approach that builds the decision
boundaries for integration with consideration of how the distribution of opinions are
likely to change under noisy conditions. The accuracy with the integration reached
TE � 6% involving 35 users for training and 8 users acting as impostors. To extract
the best performance from the system and evaluate the crossmodal influence
specifically on the pattern discrimination ability, an optimization mechanism needs
to be incorporated. Similarly important is to explore different information coding
schemes.

As pointed out in [15, 31] and in Chaps. 4–6, one of the promising properties of
the computation with spiking neurons is that it enables the multi-criteria opti-
mization of parameters according to accuracy, speed and energy efficiency. Since
the integration is also based on spiking neurons, the optimization can be extended to
cover the parameters used on integration as well (supramodal layer and crossmodal
connection parameters).

Table 12.1 lists main features of the presented here convolutional eSNN for
integrative audio-visual information processing.

The supramodal layer, as a first step, is implemented in this work with only two
neurons. Two neurons were demonstrated to be sufficient to integrate incoming

Table 12.1 Main features of the CeSNN for integrative audio-visual information processing

Processing
units

Spiking neurons are used as processing units in the individual and integrative
information processing areas

Structure The information of individual sensory modalities propagates with
feed-forward connections into multiple layers composed of spiking neurons,
representing the behaviour of various auditory and visual areas. Crossmodal
connections and a supramodal layer integrate the systems (see Fig. 12.13)

Learning Online evolving procedures enable the learning of external stimuli through
synaptic plasticity and structural adaptation separately for each modality.
Algorithms to train the strength of crossmodal connections and weights of the
supramodal layer still need to be designed
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information from different modalities and to provide the system with complex
dynamics that are difficult to evaluate analytically. In the simplest scenario, OR and
AND integration has been simulated. Although a single neuronal unit can be
interpreted as representing an entire ensemble of neurons, a more realistic imple-
mentation could be considered.

The underlying mechanisms that rule crossmodal activities remain the subject of
further inquiry. The optimization of such connections and/or how to perform
crossmodal learning is still an open field (a good introduction can be found in [25,
26]. The experiments presented in this chapter illustrate as a proof-of-concept how
the crossmodal connections can be set up in a network of spiking neurons. Further
evaluation, such as sensitivity analysis with respect to different performance cri-
teria, and exploration of the best values of crossmodal influence (excitatory and
inhibitory) still deserve special attention.

Further recommended readings include:

– AVIS [31];
– Human speech [6];
– Modelling vision with the neocognitron (Chap. 44 in [32]);
– Face recognition [27];
– NeuCube [33].
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Chapter 13
Deep Learning and Modelling of Audio-,
Visual-, and Multimodal Audio-Visual
Data in Brain-Inspired SNN

This chapter presents methods for audio-, visual- and for the integrated audio and
visual information processing using brain-inspired SNN architectures such as
NeuCube. Case studies are presented for short musical pieces recognition, fast
moving object recognition, age-invariant face identification, moving digits recog-
nition and other.

The chapter is organized in the following sections:

13:1. Deep learning of sound in brain-inspired SNN.
13:2. Deep learning of visual data in brain-inspired SNN architectures for fast

moving object recognition and for gender recognition.
13:3 Retinotopic mapping and learning of dynamic visual information in a

brain-like SNN architecture on the case of moving object recognition.
13:4. Chapter summary and further readings for deeper knowledge.

13.1 Deep Learning of Sound in Brain-Inspired SNN

13.1.1 Deep Learning of Audio Data in the Brain

The brain forms deep neuronal structures when perceives audio information as
illustrated in Fig. 13.1. It is shown in Fig. 13.1 that hearing a word and repeating it
requires a deep learning in the brain and recall of these pathways [1, 2]:
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– Transfer of information from the inner ear through the auditory nucleus in
thalamus to the primary auditory cortex (Brodmann’s area 41);

– Then to the higher-order auditory cortex (area 42);
– Then it is relayed to the angular gyrus (area 39). Angular gyrus is a specific

region of the parietal-temporal-occipital association cortex, which is thought to
be concerned with the association of incoming auditory, visual and tactile
information;

– From here, the information is projected to Wernicke’s area (area 22);
– Then, by means of the arcuate fasciculus, to Broca’s area (44, 45), where the

perception of language is translated into the grammatical structure of a phrase
and where the memory for word articulation is stored;

– This information about the sound pattern of the phrase is then relayed to the
facial area of the motor cortex that controls articulation, so that the word can be
spoken.

Fig. 13.1 Hearing a word and repeating it requires a deep learning in the brain and recall of these
pathways: Transfer of information from the inner ear through the auditory nucleus in thalamus to
the primary auditory cortex (Brodmann’s area 41); Then to the higher-order auditory cortex (area
42); Then it is relayed to the angular gyrus (area 39). Angular gyrus is a specific region of the
parietal-temporal-occipital association cortex, which is thought to be concerned with the
association of incoming auditory, visual and tactile information; From here, the information is
projected to Wernicke’s area (area 22); Then, by means of the arcuate fasciculus, to Broca’s area
(44, 45), where the perception of language is translated into the grammatical structure of a phrase
and where the memory for word articulation is stored; This information about the sound pattern of
the phrase is then relayed to the facial area of the motor cortex that controls articulation, so that the
word can be spoken (from [2])
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13.1.2 A BI-SNN Using Tonotopic and Stereo Mapping
and Learning of Sound

In the computational model developed and experimented here a tonotopic mapping
of audio data using a computational model of the cochlea is used when audio data is
mapped into a SNN architecture as shown in Fig. 13.2. The NeuCube architecture
and STDP learning in its SNNcube was explained in Chap. 6 and also shown in
Fig. 13.3. Here this architecture uses different variable mapping and learning
algorithm than the exemplified ones in Chap. 6 and other chapters of the book.

The NeuCube architecture from Fig. 13.3 and the tonotopic, stereo mapping of
sound from Fig. 13.2 are used in the next section to develop a NeuCube-based
model for musical pieces recognition.

13.1.3 Deep Learning and Recognition of Music

The human brain can learn and recall musical pieces by deep learning of dynamic,
characteristic patterns of soundwaves through its auditory pathway and related brain
areas.

How musical patterns evolve in the human brain? Music causes the emergence
of patterns of activities in the human brain. This process is continuous, evolving,

Fig. 13.2 A brain-inspired tonotopic, stereo mapping of audio signals into a 3D SNN architecture
(from [3])
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though in different pathways depending on the individual. Each musical piece is
characterised by specific main frequencies (formants) and rules to change them over
time. There is a large range of frequencies in Mozart’s music, the greatest energy
being in the spectrum of the brain activity (see Chap. 1)—Fig. 13.4. One can
speculate that this fact may explain why the music of Mozart stimulates human
creativity. But it is not the “static” picture of the frequencies that makes Mozart’s
music fascinating, it is the dynamics of the changes of the patterns of these fre-
quencies over time.

Many studies of sound and music have been published where different tech-
niques have been used [2, 4–24]. Figure 13.5 shows a flowchart diagram of our
method. Here we use one implementation of the NeuCube architecture [25] (also
Chap. 6). The advantage of using the Talairach brain template as the shape of our
network is that we are able to enter the transformed signals into their corresponding
brain regions; in this case the sound waves are mapped tonotopically into their
respective locations in the auditory cortex.

13.1.4 Experimental Results

Figure 13.6 shows the three NeuCube models trained separately on musical pieces
by Mozart, Bach and Vivaldi, along with the amplitude and the spiking activity of
the neurons within the first 1 second of the musical piece [3]. Interestingly, we

Fig. 13.3 The NeuCube brain-inspired SNN architecture (see Chap. 6)
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could already observe notable differences in the spike trains created by the Cochlea
module.

The differences in spiking activity were captured by the model and learned as
connection weights by the network. Thus, our SNN model learns complex patters of
frequency ranges of the different pieces of classical music and preserves the
characteristics of the input signals. Table 13.1 shows classification results of the
three types of music when a single NeuCube model was trained along with a
classifier (deSNN [29]).

The experimental results confirm that using a BI-SNN with stereo and tonotopic
mapping of sound is a promising approach that still needs to be explored further for

Fig. 13.4 The wave form and the spectrum of a short segment of Mozart’s music al piece “Eine
kleine Nacht Musik” (see also Chap. 1)

Fig. 13.5 Method flowchart (the figure was created by Anne Wendt, [26])
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wider applications including speech, music and multi-modal audio-visual data
[2, 13–24].

13.2 Deep Learning and Recognition of Visual Data
in a Brain-Inspired SNN for Fast Moving Object
Recognition and for Gender Recognition

13.2.1 Two Approaches to Visual Information Processing

Visual information processing is a significant part of the current development in
artificial intelligence [28, 30–37]. Two approaches to visual information processing
are illustrated in Fig. 13.7. The first one is using a camera and processing the data
frame by frame and it is called frame-based.

The second one is imitating the retina that encodes any changes in pixels into
spikes and the rest of the pixels are not processed as not containing important for a
task information, and it is called spike-based.

While both approaches have been widely used, we will use here the second
approach – the spike-based one. Applications of this approach scan across:

• Surveillance systems;
• Cybersecurity;

Fig. 13.6 Tonotopic and stereo mapping of pieces of music by Mozart, Bach and Vivaldi as
spectro-temporal data into a NeuCube model (adapted from [3, 26])

Table 13.1 Confusion table
of the classification of musical
pieces by a NeuCube trained
model (from [3])

Mozart Bach Vivaldi

Predicted 1 171 3 1

Predicted 2 9 176 1

Predicted 3 0 1 178
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• Military applications;
• Autonomous vehicles.

13.2.2 Applications for Fast Moving Object Recognition

The method presented here is first published in [38], where more details can be
found.

Moving object recognition is a challenging problem in computational intelli-
gence. Fast moving object is considered as the one which could not easily be
captured by conventional cameras in real time. The typical examples encompass
fast moving cars, flying rockets, bouncing ping-pong balls, tennis balls, balancing
pencils etc. It is impossible to recognize such moving objects without using a
suitable algorithm and effective software system which are capable to learn and
recognize patterns from complex Spatio- and Spectro-Temporal Data (SSTD).

Figure 13.8 shows a schematic diagram of a NeuCube-based system for fast
moving object recognition along with the recognition accuracy when applied on
experimental data.

The experimental datasets consist of four videos per group shown as Fig. 13.9
with the duration of 10 s, each video having four resolutions, namely, 1480 � 720,
640 � 360, 320 � 180 and 160 � 90 that makes four categories used for recog-
nition. The video frame rate is 30 fps; therefore, we have 4800 samples in total for
deep learning, each sample was encoded as an 10 � 10 array of events (spikes/no
spikes) and transferred to the SNNcube for unsupervised learning, each frame
generates 100 spikes. The data are propagated for deep learning in the SNN cube
and the deSNN classifier. The accuracy of pattern classification by using the input

Fig. 13.7 Two approaches to visual information processing. The first one is using a camera and
processing the data pixel by pixel. The second one is using an artificial retina that encodes any
changes in pixels into spikes and the rest of the pixels are not processed as not containing
important for a task information
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videos with its multiple resolutions is used to evaluate the performance of the
proposed method.

We initialize NeuCube by using 1000 neurons to map 100 (10 � 10) pixel
addresses generated by our spike encoding simulator, every 100 pixels represent
one video frame. The overall accuracy of classification is 97.92% (Fig. 13.10). For
every input shown in Fig. 13.9, a new neuron is dynamically allocated in the
deSNN and connected to the neurons in the SNNcube. In the NeuCube SNNcube,
the more spikes are transmitted, the more connections are created.

13.2.3 Applications for Gender and Age Group
Classification Based on Face Recognition

A full publication of the method presented here can be found in: [39]. We inves-
tigate age classification and gender recognition. The well-known FG-NET and
MORPH Album 2 image gallery were used and antropometric features were
extracted from landmark points on the face [38–41].

Aging is a slow process and its effects are visible only after a few years. But in
spite of being slow, it remains a spatio-temporal phenomenon. The facial features of
a person can be considered as a subspace and the aging over the years of this
subspace is in turn a temporal process. It would be very useful to incorporate the
temporal as well as spatial patterns in aging data as important components in
classification. The raw data which has been used in this study is from (FG-NET)
and MORPH image galleries. Age group classification and gender recognition have
important applications for business managers and law enforcement agencies. In
Human Computer Interaction (HCI) gender recognition can be used to make it more
amenable to both genders. For example, it enables a computer to address a user by
their correct title, Mr. or Mrs., as the case may be. Automatic gender recognition
facilitates better interaction with humans as well as saves keystrokes in filling up
forms.

Fig. 13.8 A schematic diagram of a NeuCube-based system for fast moving object recognition
along with the recognition accuracy when applied on experimental data (from [38])
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Experiments were performed on the publicly available FG-NET (FG-NET 2002)
and MORPH Album 2 (the largest publicly available face aging dataset) [40], both
of which are used for bench- marking new methods. The lack of a large face aging
database until recently limited research on age group classification. There are two
desired attributes of a face aging database: (i) large number of subjects, and
(ii) large number of face images per subject captured at many different ages. In
addition, it is desired that these images should not have large variations in pose,
expression, and illumination. The MORPH dataset has a large number of subjects
while FGNET database has a large number of images. The MORPH dataset con-
tains about 55,000 face images from 14,000 different people [40].

Two experiments are performed using the above data sets. Figure 13.11 shows:
Top: A NeuCube model for facial mapping and recognition using NeuCube;
Bottom: Application of the model for age-invariant person verification [42].

Fig. 13.9 Video samples with cars moving fast to four directions, a moving up, b moving down,
c moving left, d moving right (from [38])
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Table 13.2 shows the results of age group classification using a Neu-Cube SNN
model in comparison to traditional classifiers: SVM, MLP, NB.

The NeuCube SNN model results in better age classification results. More
information can be obtained from [39] and also from: https://kedri.aut.ac.nz/R-and-
D-Systems/age-invariant-face-recognition.

Fig. 13.10 A classification accuracy of using the model from Fig. 13.8 for the classification of
object movements in four classes (see the text above) (from [38])

Fig. 13.11 Top: A NeuCube model for facial mapping and recognition using NeuCube; Bottom:
Application of the model for age-invariant person verification [39]
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13.3 Retinotopic Mapping and Learning of Dynamic
Visual Information in a Brain-Like SNN
Architecture on the Case Study of Moving Object
Recognition

13.3.1 General Principles

The method presented here is published in full details in [43]. This sub-section
introduces a new system for dynamic visual recognition that combines bio-inspired
principles with a brain-like spiking neural network. The system takes data from a
dynamic vision sensor (DVS) that simulates the functioning of the human retina by
producing an address event output (spike trains) based on the movement of objects.
The system then convolutes the spike trains and feeds them into a brain-like spiking
neural network, called NeuCube, using the proposed here retinotopic mapping.
Both the convolution algorithm and the mapping into the network mimic the
structure and organization of retinal ganglion cells and the visual cortex. The
method was tested on the benchmark MNIST dynamic vision sensor dataset and
achieved an accuracy of 92.90%. Due to its bio-inspired and brain-like structure,
analysing the connectivity of the spiking neural network also allows for a better
understanding of the neural processes inside the visual cortex that underlie humans’
ability to perform fast, accurate and energy efficient vision. The paper discusses
advantages and limitations of the new method and concludes that it is worth
exploring further on different datasets aiming for advances in dynamic computer
vision with potential uses in self-driving cars, security systems, and robotics in
general.

13.3.2 The Brain-Inspired SNN and the Proposed
Retinotopic Mapping

The proposed here NeuCube-based SNN architecture incorporates several different
principles of SNN and combines them into a single model for mapping, learning,
and understanding of spatio-temporal data [25]. Signals are processed along suc-
cessive stages as shown in Fig. 13.12.

Before going into detail about the learning algorithms used, we want to focus on
the three-dimensional structure of NeuCube-based models and the bio-inspired way

Table 13.2 The Results of Age Group Classification using a Neu-Cube SNN model in
comparison to traditional classifiers: SVM, MLP, NB

Measure NeuCube MLP Knn NaiveBayes

Accuracy (%) 95.00 82.30 89.03 67.60
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we mapped the 148 input neurons into this structure. Our system uses a NeuCube
initialized with 732 neurons, using the MNI coordinates of neurons from the pri-
mary visual cortex (V1, Brodman area 17), taken from the Atlas of the Human
Brain (downloaded together with the xjView toolbox: http://www.alivelearn.net/
xjview). The number of neurons is only bounded by computational limitations; it is
possible to add further neurons from the secondary or third visual cortex or to
represent the whole brain. Initial connections between the neurons are based on the
“small-world” paradigm, where random connections within a pre-defined maximum
distance of each neuron are formed. The mapping of the 148 input neurons into the
732 neurons of NeuCube mimics two important characteristics of the human visual
cortex: cortical magnification and retinotopic mapping (Fig. 13.12).

Cortical magnification describes the overrepresentation of foveal signals inside
the primary visual cortex. Although the fovea has a diameter of only 1.2 mm [44]
and covers a very small fraction of the retina, its signals are processed by almost
50% of all neurons in V1. Therefore, we chose exactly 64 of our 148 input neurons
to correspond to the central 64 DVS [45] pixels with a one-to-one relationship. This
way, 50% of input neurons automatically correspond to the central pixels of the
DVS, just like 50% of the primary visual cortex correspond to the central pho-
toreceptors on the retina.

The second characteristic of the primary visual cortex that we adapted in our
mapping is the preservation of spatial relationships between photoreceptors on the
retina and their neural representation in the primary visual cortex, the so-called
retinotopy. Signals from the top left of our visual field get mapped to the bottom
right of V1 and vice versa. What humans see gets flipped upside down and mir-
rored, but things that appear next to each other in the visual field will still be
represented next to each other in V1. Both the foveal as well as the peripheral

Fig. 13.12 Brain-like dynamic vision data modelling and pattern recognition using
NeuCube-based BI-SNN and retinotopic mapping of vision data (from [43])
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ganglion cells follow this principle, although foveal signals get mapped into the
posterior part and peripheral signals into the anterior part of V1 [44].

Figure 13.12 shows how the principle of retinotopy is applied to the mapping of
the 148 input neurons to the 732 neurons of NeuCube.

13.3.3 Unsupervised and Supervised Learning
of Dynamic Visual Patterns

Learning in the NeuCube-based model is performed in two stages: In the first step,
unsupervised learning, for example using spike timing dependent plasticity (STDP,
[46]), is performed to modify the initial connection weights. The SNN will learn to
activate the same groups of spiking neurons when similar input stimuli are pre-
sented, and to change existing connections or create new ones that represent
spatio-temporal patterns of the input data [25, 47]. NeuCube allows for a visual-
ization of the learning process, and we discuss how the visualization can be used for
a better understanding of the data and the neural processes.

In the second step, supervised learning is applied to the spiking neurons in the
output classification module, where the same spike trains used for the unsupervised
training are now propagated again through the trained SNN and output neurons are
generated and trained to classify the spatio-temporal spiking pattern of the SNN
into pre-defined classes [29, 47]. This kind of evolving classifier is computationally
inexpensive and puts emphasis on the order in which input spikes arrive, making it
suitable for on-line learning and early prediction of temporal events [25]. For a
more detailed description of the NeuCube architecture see [25] and Chap. 6.

The methodology we propose for dynamic visual recognition consists of the
following steps:

(1) Event-based video recording with DVS [45].
(2) Pooling and encoding of DVS output into spike trains for the input neurons of

the SNN.
(3) Training NeuCube-based model on the spike data using unsupervised learning,

e.g., STDP.
(4) Training of an output classifier in a supervised mode [29].
(5) Validating the classification results.
(6) Repeating steps (2)–(5) for different parameter values in order to optimize the

classification performance. Record the model with the best performance.
(7) Visualizing the trained SNN and analyzing its connectivity and spiking activity

for a better understanding of the data and the involved brain processes.

We present the application of this method on a benchmarking experiment with the
MNIST-DVS dataset for spike-based dynamic visual recognition and go into fur-
ther detail about the tuning of parameters and analysis of the SNN.
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13.3.4 Design of an Experiment for the MNIST-DVS
Benchmark Dataset

Based on the MNIST dataset of handwritten digits [42], which has been one of the
most popular benchmarking datasets for image recognition for over 20 years, the
MNIST-DVS dataset is part of the NE15-MNIST database (Neuromorphic
Engineering 2015 on MNIST) [48–50]. NE15-MNIST consists of four subsets that
all aim to provide a benchmark for spike-based visual recognition. While the
Poissonian and the FoCal subset are generated from static MNIST images, the
other two subsets are based on DVS recordings of the MNIST images. The
MNIST-FLASH-DVS subset contains DVS recordings of MNIST digits that are
flashed on a screen. Because we were interested in dynamic visual recognition of
moving objects, we decided to work on the MNIST-DVS subset that consists of
DVS recordings of MNIST digits that wiggle across a screen and thereby produce
temporal contrast and DVS events on the digits’ edges.

The MNIST-DVS dataset is available online [50]. It consists of 30,000
recordings of 10,000 original MNIST digits recorded at three different scales each
(scale-4, scale-8, and scale-16). Each recording has a time length of about 2.5 s.
The files are provided in the jAER format [45].

The only preprocessing we applied to the data was the removal of the 75 Hz
timestamp harmonic. Stabilizing the video data would have been contrary to our
intention to develop a system for dynamic visual recognition, and in fact prelimi-
nary experiments suggested that the system would perform better on the original
unstabilized videos.

The pooling of the DVS spikes into 148 input spike trains (ganglion cells) for the
SNN, remained the same throughout all experiments. Inside the spike encoding
algorithm only those four thresholds were changed that determine how many pixels
within the receptive field of a ganglion cell must fire within one time step to make
the ganglion cell itself emit a spike. As a first step, we wanted to find out how the
system would perform differently when these thresholds, and, thus, the average
spike rate of the input data for the SNN, were changed. The ganglion cells’
receptive fields decrease from the periphery towards the center. Starting from the
periphery, ganglion cells in layer 1 integrate the signal of 32 � 32 = 1.024 DVS
pixels, cells in layer 2 from 16 � 16 = 256 pixels, cells in layer 3 from 8 � 8 = 64
pixels, and cells in layer 4 from 4 � 4 = 16 pixels. Assigning the same percentage
threshold to all four layers would result in very low or no activity in the peripheral
ganglion cells, e.g., with a threshold of 10% it would take only two DVS events
within the receptive field of a ganglion cell in layer 4 to trigger a spike, but 101
DVS events within the receptive field of a ganglion cell in layer 1. Especially with
the MNIST-DVS dataset, where DVS events only occur at the edges of the moving
digits and not in big blobs, this would make the peripheral ganglion cells redundant.
On the other hand, increasing the thresholds too much from layer to layer towards
the center would put more emphasis on the peripheral parts of the video than
intended.

470 13 Deep Learning and Modelling of Audio-, Visual-, and …



The mapping of the input spikes into the SNN NeuCube remained the same
throughout all experiments. In all experiments NeuCube was initialized with 732
leaky integrate and fire neurons (LIF), representing the primary visual cortex. For
future experiments with higher video resolutions and more input neurons, NeuCube
can easily be extended to include neurons that represent the secondary and the third
visual cortex. Initial connections are formed following “small-world” connectivity
with random connections within a predefined maximum distance from each neuron.
This maximum distance was set to 2.5 in all experiments.

Unsupervised learning using spike timing dependent plasticity (STDP, [46]) is
performed first to learn spatio-temporal patterns by forming new connections
between neurons. The output classifier we used is called the dynamic evolving SNN
algorithm [29], and it combines rank-order learning [51] and STDP learning. The
NeuCube architecture is a stochastic model and, therefore, sensitive to parameter
settings. To find the best values for the major parameters that influence the system’s
performance, we applied a grid search method that tests the system on different
combinations of parameters within a predefined range and used those parameter
values that resulted in the best classification accuracy. For the firing threshold, the
refractory time and the potential leak rate of the LIF neurons we used values of 0.5,
6, and 0.002, respectively. The STDP learning parameter was set to 0.01. The
variables Mod and Drift of the deSNN classifier were set to 0.8 and 0.005. See
Chap. 6 and [25] for a more detailed explanation of these parameters.

13.3.5 Experimental Results

To compare the system’s performance, we performed 10-fold cross validation on
1000 videos (first 100 of each digit) for different video scales and average spike
rates. Table 4 summarizes the results. As a general trend, with few exceptions, the
classification accuracy increased together with the average spike rate of the input
neurons. For all video scales, the classification accuracy also increased when the
system was run on all 10,000 videos of a scale. The best classification results were
achieved with all 10,000 videos of one scale, encoded with the highest possible
spike rate (0% as spike encoding threshold for all four layers). Classification
accuracies were 90.56, 92.03, and 86.09% for scale-4, scale-8, and scale-16,
respectively. The best accuracy in a single run with 90% of randomly selected data
samples for training and the remaining 10% for testing was 92.90% for 10,000
scale-8 videos with the highest possible spike rate. This result is comparable to
previous results on the MNIST-DVS dataset, presented in Fig. 13.12.

The lower accuracies on the scale-4 and the scale-16 samples reflect the fact that
in these videos, the MNIST digits fill out either the whole screen (scale-16) or only
a very little region in the center (scale-4). For the scale-4 digits, the signals
transmitted by ganglion cells from layers 1, 2, and 3 are mostly noise, and do not
contain much information about the digits. In the scale-16 videos, there is almost no
activity in the central region of the screen, and, thus, no information is transmitted
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by the 64 foveal ganglion cells. Since our method puts big emphasis on the center
of the video (50% of the input neurons represent data from only the central 64
pixels), performance on the scale-16 videos is lower.

13.3.6 Model Interpretation for a Better Understanding
of the Processes Inside the Visual Cortex

The main purpose of the above experiments, carried out on the MNIST-DVS
dataset, is to confirm the system’s classification performance on a benchmark
dataset, and the wiggling digits do not represent a real-life scene. However, we want
to show how the SNN after being trained can be analyzed, to see how its con-
nectivity changes as a response to the data. A comparison with the connectivity
after training the SNN on 1000 scale-16 videos shows that slightly less connections
are formed between neurons processing foveal information, since the scale-16
videos contain less DVS events in the foveal region.

The proposed system achieves the highest classification performance on the
benchmark MNIST-DVS dataset for spike-based dynamic visual recognition. Every
part of the system, the DVS sensor, the algorithm for encoding the DVS output into
spike trains, and the SNN NeuCube adapt features from the human visual system.
This allows for future experiments where the same stimuli are presented to humans
and the system, and brain processes visualized by neuroimaging methods can be
compared to the network processes of the SNN. The parameters involved in the
spike encoding algorithm can easily be tuned to mimic the original behavior of
retinal ganglion cells in such an experiment. Furthermore, analyzing the learning
processes inside the SNN can help to gain a better understanding of either the data
or the neural processes inside the visual cortex.

Since so much is known about the human visual system, and we aimed to
develop a biologically plausible, yet computationally feasible implementation, there
are many details not included in our model. There already exist very advanced
mathematical models for the function of retinal ganglion cells [52], and our spike
encoding algorithm has by far not touched every detail of them. The receptive field
of each ganglion cell, for example, is split into a center region and a surrounding
region with opposite behavior towards light [53]. In so-called on-center cells the
center region is stimulated, whereas the surrounding region is inhibited when
exposed to light. So-called off-center cells exhibit converse behavior. Including the
function of on- and off-center ganglion cells inside the spike encoding algorithm
would highly increase the model’s biological plausibility, but also increase its
computational complexity.

The proposed system puts big emphasis on the central part of the videos in both
the encoding of DVS events to spike trains and the representation inside the SNN.
This is justified by analogous features of the fovea centralis in the center of the
human retina, responsible for focused vision. However, an important characteristic
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of human vision is the very fast and simultaneous movement of both eyes, called
saccades. Saccades help to scan a broader part of the visual field with the fovea and
integrate this information into a detailed map [44]. Human eye movement is also
controlled by the visual grasp reflex that directs the eyes towards salient events in
the periphery of the visual field [54]. These mechanisms for eye movement could be
implemented in the spike encoding algorithm by changing the coordinates for the
pooling of DVS pixels for each time step, and thereby virtually moving the center
of the visual field. However, this would require additional features to save the
movement and integrate it into the SNN (see [55–58]).

13.3.7 Summary of the Proposed BI-SNN Retinotopic
Mapping Method

Results on the MNIST-DVS dataset have shown that the system can exceed the
classification performance of other methods for dynamic visual recognition.
Furthermore, it is possible to dynamically visualize and analyze the activity inside
the SNN.

Due to the promising benchmark results and the benefit of the visualization tools
for in-depth understanding of the data and the network processes, we envisage
further research using this approach. In particular, we suggest the exploration of
new learning methods inside NeuCube and of different algorithms for the encoding
of DVS data into spike trains. We also encourage the development of further
benchmark datasets for spike-based visual recognition, e.g., spiking versions of the
KTH and the Weizmann datasets of human actions [59, 60]. Since the NeuCube
architecture is not bound to only consist of neurons representing the visual cortex,
future directions can include the integration of our system for visual recognition
inside a broader methodology for the processing of audio-visual data.

13.4 Chapter Summary and Further Readings for Deeper
Knowledge

This chapter presents methods, systems and applications of BI-SNN for audio-,
visual an integrated audio-visual information processing. There are several
advantages of using BI-SNN for these tasks:

– Accounting of time and time changes in the data;
– Fast information processing in terms of spikes;
– Highly parallel information processing;
– Allowing for brain-like principles to be applied;
– Better accuracy of recognition of video data capturing moving objects.

Further recommended readings include:
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– Demo on face age recognition with NeuCube: https://kedri.aut.ac.nz/R-and-
D-Systems/neucube/face-age-recognition.

– Age-invariant face recognition: https://kedri.aut.ac.nz/R-and-D-Systems/age-
invariant-face-recognition

– Demo on fast moving object recognition using NeuCube: https://kedri.aut.ac.
nz/R-and-D-Systems/fast-moving-object-recognition

– Audio-visual information processing in BI-SNN: https://kedri.aut.ac.nz/R-
and-D-Systems/audio-visual-data-processing-and-concept-
formation#auditory

– Digital vision: http://www.wisdom.weizmann.ac.il/*vision/SpaceTimeActions.
html.

– Recognition of human actions: http://www.nada.kth.se/cvap/actions/.
– Actions as Space-Time Shapes:

http://www.wisdom.weizmann.ac.il/*vision/SpaceTimeActions.html.
– MNIST-DVS and FLASH-MNIST-DVS Databases: http://www2.imse-cnm.

csic.es/caviar/MNISTDVS.html.
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Chapter 14
Brain-Computer Interfaces Using
Brain-Inspired SNN

This chapter presents methods of BI-SNN for brain-computer interfaces (BCI). It
introduces a new types of BCI, called brain-inspired BCI (BI-BCI). The BI-BCI can
not only classify brain signals in a ‘black-box’ as the traditional BCI do, but they
can create a model of the brain signals when a person is performing a task providing
a neurofeedback, enabling a better understanding of the brain activities. This is also
a step towards knowledge transfer from humans to machines. Applications for
neuro-control, neurorehabilitation, cognitive games and others are discussed.

The chapter is organised in the following sections:

14:1. Brain computer interfaces (BCI).
14:2. A Framework for Brain-Inspired BCI (BI-BCI).
14:3. BI-BCI for motor execution and motor intention from EEG signals.
14:4. BI-BCI for neurorehabilitation with a neurofeedback and for neuro-

prosthetics.
14:5. From BI-BCI to knowledge transfer between humans and machines.
14:6. Chapter summary and further readings for deeper knowledge.

14.1 Brain-Computer Interfaces

14.1.1 General Notions

The main idea behind BCIs is to record the brain’s activity patterns (BAPs) when
performing specific tasks that are associated with particular computer commands
and then employ some powerful machine learning schemes to classify these pat-
terns. When the user performs one of the tasks in real time, the classifier attempts to
detect the associated command, which is then sent to the interface for execution, as
indicated by [1]. Example is the P300 BCI, a communication tool used for spelling
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purposes. This interface is controlled by the signals that are generated in the human
brain as a result of visual stimulation.

The fundamentals of BCIs need to be clearly understood in order to achieve the
study objectives. The general framework of a BCI is presented in Fig. 14.1.
According to [2, 3], it comprises data acquisition, pre-processing, classification and
biofeedback. These four steps are described in detail in the next section.

Figure 14.2 shows is a schematic representation of measuring brain signals when
a person is performing a task.

Fig. 14.1 A general framework of a BCI system

Fig. 14.2 A schematic representation of measuring brain signals when a person is performing a
task (from [52])
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14.1.2 BCI Based on EEG

Electroencephalogram (EEG) data measure brain electrical potentials when a person
is performing a task as discussed in Chaps. 3 and 8. Different frequency charac-
teristics of EEG indicate different brain functions, at different time and space in the
brain (see Table 14.1).

Figure 14.3, shows the electrodes’ spatial positions and the channels’ names in
the 10–20 placement system.

14.1.3 Types and Applications of BCI

Mainly, there are two types of BCIs as reported in [4, 5] synchronous and asyn-
chronous. A synchronous BCI is based on system initiation. Interaction is only

Table 14.1 EEG bands and their properties [43]

(see
Chaps. 3
and 8)
Signal

Frequency
(Hz)

Shape Properties

Delta 1–3 This wave has high amplitude but
low frequency. It is seen in young
children normally, and also in
adults when they are sleeping

Theta 4–7 This signal is normally seen in
young children, it could be as
well generated in older children
and adults in arousal or
drowsiness. It is also associated
with meditation, relaxation and
creative status

Alpha 8–13 This is the first type of wave
discovered in the human brain. It
has high amplitude. It emerges
with eyes closing and relaxation,
and attenuates with opening the
eyes and mental exertion

Beta 14–30 Beta wave can be also called
sensorimotor rhythm, as it
accrues when arms or hands idle.
It could be associated with drugs
and anxious thinking. It is
generated from the frontal lobe,
and is widely used for motor BCI
applications. In the case of
cortical damage this wave could
be absent

Gamma >30 This pattern is associated with
alertness, working and motor
movements
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allowed in a fixed time window. Most synchronous interfaces count on
event-related potentials that are generated by a stimulus, e.g., visual or auditory
stimulus, produced in a known time frame. A good example is the P300 Speller.
This system depends on the synchronisation between visual evocation and the brain
activity patterns. This type is easier to design. Additionally, the classification is less
affected by artifacts as a result of the windowing techniques.

In contrast, asynchronous interfaces depend on user initiation. They do not
impose specific time frames for interaction and offer a more natural way for
communication. However, designing and evaluating asynchronous systems is more
complicated. To prevent accidental detection, the mental task must be unique.
Appropriate control signals could be the sensor-motor rhythms as explained in [5].

BCI applications can be also divided into exogenous and endogenous interfaces
[5]. Exogenous interfaces depend on external cues. Users training is not required
since the control signal can be easily and quickly set up. Reasonable response can
be achieved after a sufficient training, and good results can be achieved using a
minimum number of channels, down to one. Nevertheless, this type may cause
tiredness for some users while focusing their attention on the stimuli for long
periods leading to significant decrease of the user performance. Contrary,
endogenous interfaces are independent of any stimulation, thus, they are useful for
users who are suffering from sensory organs damage. Despite that, user training is
required and it is time consuming. Several months could be spent to reach a good
performance, and still the speed is very low with an ITR of 3–35 bits/min. The
study by [6] presents a good example of an endogenous interface.

When a targeted visual stimulus is presented to a subject, the visual cortex of the
subjects is activated after 300 ms (considered to be the conscious perception of a

Fig. 14.3 The electrodes’ positions and the channels’ names in the 10–20 international EEG
replacement system [5] (Chaps. 3 and 8)
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stimulus, in contrast to the peri-perceptual reaction as discussed in Chap. 8 [9]).
Figure 14.4 shows scalp topographies recorded 300 ms after a target visual stim-
ulation (top row) compared to the ones recorded 300 ms after a non-target stimulus
[7].

The measured EEG signals are amplified before used for a BCI [8]—Fig. 14.5.
A typical use of a BCI is to control a device, such as a robot, or a symbol on a

computer screen, using brain signals (Fig. 14.6).
Various brain control signals can be used for different applications (Table 14.2).
The next sections describes how BI-SNN, such as NeuCube, can be used to

develop BCI, now called BI-BCI.

Fig. 14.4 Scalp topographies recorded 300 ms after a target visual stimulation (top row)
compared to the ones recorded 300 ms after a non-target stimulus [7]

Fig. 14.5 The measured EEG signals are amplified before they are used for BCI (from [8])
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Fig. 14.6 A typical use of a BCI is to control a device, such as a robot, or a symbol on a computer
screen, using brain signals

Table 14.2 Control signals used in BCI applications, and their main characteristics

Signal Phenomena Number
of
choices

User
training

ITR
(bits/
min)

Example

Sensor-motor
rhythms

Modulations in
sensorimotor rhythms
synchronized to motor
activities

2–5 Extensive
training is
required

3–35 BCI wheelchair

Visual evoked
potentials
(VEPs) [10]

Modulations in the visual
cortex rhythms
synchronized to a visual
stimulus

High No 60–
100

VEP BCI to
control a hand
orthotic for
paralyzed
people [11]

P300 [12, 13] Positive peaks in the
brain waves due to
infrequent visual,
auditory or
somatosensory stimuli.
These peaks elicited
about 300 ms after
attending to an oddball
stimulus among several
frequent stimuli

High No 20–
25

P300 Speller
[13]

Slow cortical
potentials
(SCPs) [14]
(Hinterberger
et al. 2004)

Slow voltage shifts in the
brain waves correlated
with increased/decreased
neuronal activity

2–4 Extensive
training is
required

5–12 On-screen
cursor control
[14]
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14.2 A Framework for Brain-Inspired BCI (BI-BCI)

14.2.1 The NeuCube BI-SNN Architecture

Some general principles of the BI-SNN NeuCube architecture were presented in
Chap. 6 and also in [15]. The NeuCube architecture is depicted in Fig. 14.7. It
consists of the following functional modules:

– Input data encoding module;
– 3D SNN reservoir module (SNNc);
– Output function (classification) module;
– Gene regulatory network (GRN) module (Optional).

The process of creating a NeuCube model for a given task takes the following
steps:

a. Encode input data into spike sequences: continuous value input information is
encoded into trains of spikes;

b. Construct and train in an unsupervised mode a recurrent 3D SNN reservoir,
SNNc, to learn the spike sequences that represent individual input patterns;

c. Construct and train in a supervised mode an evolving SNN classifier to learn to
classify different dynamic patterns of the SNNc activities that represent different
input patterns from SSTD that belong to different classes;

Fig. 14.7 The NeuCube BI-SNN general architecture (Chap. 6 and also [15])
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d. Optimise the model through several iterations of steps (a)–(c) above for different
parameter values until maximum accuracy is achieved.

e. Recall the model on new data.

The above modules from (a) to (e) are described further in this section.

Input data encoding module

Continuous value input data can be transformed into spikes so that the current value
of each input variable (e.g., pixel, EEG channel, fMRI voxel) is entered into a
population of neurons that emit spikes based on how much the input value belongs
to their receptive fields. This method is called population rank coding [16]—the
higher the membership degree, the earlier a spike is generated.

Another method is the Threshold Based Encoding (TBE) method as demonstrated
in the Silicon Retina [17, 18]. This is based on thresholding the difference between
two consecutive values of the same input variable over time. This is suitable when the
input data is a stream and only the changes in consecutive values can be processed.

In some specific applications, a method called Ben’s Spike Algorithm (BSA) has
been used for EEG data transformation into spike trains [19]. Methods for encoding
input data into spike sequences are presented in Chap. 4. In [20] a method for selection
and optimisation of the encoding algorithm is presented and implemented as software.

The transformed input data into spike series is entered (mapped) into spatially
located neurons from the SNNc. The mapping will depend on the problem in hand.
Here we enter brain data sequences to spatially located neurons in the SNNc that
represent spatially brain areas where data is collected. Spike trains are continuously
fed into the SNNc in their temporal order.

The SNNcube module (SNNc)

The SNNc is structured to spatially map brain areas for which time-space brain data
(TSBD) or/and gene data is available. A neuronal SNNc structure can include
known structural or functional connections between different areas of the brain
represented in the data. Setting up a proper initial structural connectivity in a model,
is important in order to learn properly spatio-temporal data, to capture functional
connectivity and to interpret the model [21]. More specific structural connectivity
data can be obtained using for example Diffusion Tensor Imaging (DTI) method.

Functional connectivity of the brain manifests the small-world organization
across different time scales (e.g., seconds, milliseconds) [22]. Neurons in a struc-
tural or functional area of the brain are more densely interconnected and the closer
these areas are, the higher the connectivity between them [23, 24]. Both structural
connectivity, measured through MRI [25] and functional connectivity, measured
through EEG and MEG [26] of the brain show small-world organization. This is the
main reason for suggesting a type of small-world connectivity for a NeuCube initial
structure, where clusters of neurons correspond to structural and functional areas
related to the data [22]. If DTI data is available (see Chap. 11), this data can be used
to preset some connections of the SNNc before the model is trained.

The initial structure of the SNNc is defined based on the available brain data and
the problem, but this structure can be evolving through the creation of new neurons
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and new connections based on the using the ECOS principles [27]. If new data do
not sufficiently activate existing neurons, new neurons are created and allocated to
match the data along with their new connections.

In a current implementation, the SNNc has a 3D structure connecting
leaky-integrate and fire model (LIFM) spiking neurons with recurrent connections.
The input data is propagated through the SNNc and a method of unsupervised
learning is applied, such as STDP. The neuronal connections are adapted and the
SNNc learns to generate specific trajectories of spiking activities when a particular
input pattern is entered. On Fig. 14.7 a special class of LIFM is shown—the
probabilistic neuronal model that has probability parameters attached to the con-
nections, the synapses and the output of the spiking neuron. The SNNc accumulates
temporal information of all input spike trains and transforms it into dynamic states
that can be classified over time. The recurrent reservoir generates unique accu-
mulated neuron spike time responses for different classes of input spike trains.

Figure 14.8 shows a snapshot of the connections in the SNNcube after unsu-
pervised learning. The connections represent spatio-temporal relationships between
input data variables that encode brain areas of the source data over time. The SNNc
has 1471 neurons and the coordinates of these neurons correspond directly to the
Tailarach template coordinates with a resolution of 1 cm3. It can be seen that as a
result of training new connections have been created that represent spatio-temporal
interaction between input variables captured in the SNNc from the data. The
connectivity can be dynamically visualised for every new pattern submitted. For
example, the connectivity of the right part of the SNNc in Fig. 14.8 is larger as the
SNNc has learned movement of the left hand of a subject, controlled by the right
hemisphere of the brain.

Fig. 14.8 A snapshot of the connnections in the SNNcube after unsupervised learning. The
connections represent spatio-temporal relationships between input data variables that encode brain
areas of the source data over time. The connectivity of the right part of the SNNc is larger as the
SNNc has learned movement of the left hand of a subject, controlled by the right hemisphere of the
brain
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14.2.2 A Brain-Inspired Framework for BCI (BI-BCI)
with Neurofeedback

Using the ability of the NeuCube BI-SNN to learn as discussed in Chap. 6 and in
other chapters of the book, here we demonstrate that NeuCube can be used to build
a BI-BCI that also provides a neurofeedback showing which parts of the brain are
active in time-space (Fig. 14.8).

Figure 14.9 shows a schematic diagram of using NeuCube for BI-BCI with
neuro-feedback showing which parts of the brain are active in time-space.

The activity of a trained SNNc on EEG brain data related to certain tasks, can be
classified in output classification module of the NeuCube BI-SNN architecture
providing the control signal to an activator device to perform the task—Fig. 14.10
(see also Fig. 14.9).

Fig. 14.9 A schematic diagram of using NeuCube for BI-BCI with neuro-feedback showing
which parts of the brain are active in time-space

Fig. 14.10 The activity of a trained SNNc on EEG brain data related to certain tasks, can be
classified in output classification module of the NeuCube BI-SNN architecture providing the
control signal to an activator device to perform the task—(see also Fig. 14.9)
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Several BCI application systems, built with the use of the above methodology,
are presented in the next sections.

14.3 BI-BCI for Detecting Motor Execution and Motor
Intention from EEG Signals

The method an experimental results presented in this section are first published
in [28].

14.3.1 Introduction

A focal neurological insult that causes changes to cerebral blood flow, such as in a
stroke, can result in mild to severe motor dysfunctions on the contralateral side of
the body. Although some spontaneous recovery usually occurs in the first 6 months
after stroke only about 14% of people with stroke recover normal use of the upper
limb [29]. The driver of functional recovery after stroke is neural plasticity, the
propensity of synapses and neuronal circuits to change in response to experience
and demand [30–34]. Whilst it is known that frequency and intensity of intervention
following stroke is important high intensity rehabilitation is resource-limited. In
order to deliver interventions at a high enough intensity and frequency for neural
plasticity we need to develop devices that can assist with rehabilitation without the
concentrated input of rehabilitation professionals.

Motor imagery (MI), or the mental rehearsal of a movement, is an approach used
by rehabilitation professionals to encourage motor practice in the absence of suf-
ficient muscle activity [33–35]. MI is thought to activate similar cortical networks
as activated in a real movement, including activation of the primary motor cortex,
premotor cortex, supplementary motor area and parietal cortices [36, 37]. Recent
evidence suggests that although there are common cortical networks in real and
imagined movement (frontal and parietal sensorimotor cortices) there are also
important differences, with ventral areas being activated in imagined movement, but
not in real movement. These specific additional activations in the extreme/external
capsule may represent an additional cognitive demand of imagery based tasks.

Recovery of movement control is greater after motor execution training than
after MI training alone. Interestingly the combination of MI training with even
passive movement generates greater recovery than MI alone [38]. Combining motor
imagery with functional electrical muscle stimulation, via Brain Computer Interface
(BCI) devices, may result in greater neural plasticity and recovery than motor
imagery alone, or motor imagery combined with passive movement. The additional
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feedback to the brain provided by executing a movement may enhance plasticity
and reduce the cognitive demand of motor imagery. Many people following stroke
or other neurological disorder have some residual muscle activity but fail to recruit
enough motor units at an appropriate speed and pattern, to generate sufficient force
to complete the desired movement [39, 40]. A BCI device in which motor imagery
triggers an appropriate signal to a functional electrical stimulation system would
facilitate the practice of real movements and potentially result in greater neural
plasticity and functional recovery.

EEG records brain signals through electrodes on the scalp and is the most widely
used method for recording brain data used in BCI devices. EEG is non-invasive and
has good temporal and spatial resolution. However, EEG systems have been crit-
icized because of the time consuming and complex training period for the potential
user [41]. One advantage of the NeuCube framework is that intensive training of the
user is not required as NeuCube classifies naturally elicited cortical activity, rather
than a specific component of the EEG signal, such as the P300 wave, the production
of which has to be learned by the user. In addition, the NeuCube is capable of
learning in an on-line fashion, training as it is used.

As an example here we are investigating the feasibility of using NeuCube with EEG
data to develop a functional electrical stimulation BCI system that is able to assist in the
rehabilitation of complex upper limb movements. Two methods of use are under
consideration, firstly for people who have no voluntary activity in a limb who would
drive the device using MI, and secondly for people who have some residual activity in
their muscles that, in addition to using MI, may augment the device with their own
muscle activity. To do this it is important to establish a high degree of accuracy of
classification of movement intention and movement execution to ensure that the
appropriate electrical stimulation output is then provided. One of the challenges to any
BCI system is the extent to which it accurately classifies the input signal.

In [41] real movement, consisting of a pinch grip to a specified force level,
compared to a resting state, was used. Data were collected using functional Near
Infrared Spectrometry (fNIRS) combined with other physiological data, such as
blood pressure and respiratory information. Using hidden Markov Model’s
(HMM’s) as the classifier framework accuracies ranging between 79.6 and 98.8%
over 2 classes were achieved. Using fNIRS in a trial of MI [42] investigated the
classification accuracy of a simple imagined tap of the thumb on a keyboard versus
a complex multi-digit tapping sequence. Linear discriminant analysis (LDA) was
used in combination with careful selection of the best performing data channel (out
of 3 possible channels) and best 4 features for each participant. The study in [42]
reported classification accuracies in a 2-class model (simple imagined movement or
complex imagined movement) of between 70.8 and 91.7%. A Sparse Common
Spatial Pattern (SCSP) optimization technique that reduced EEG channels by dis-
regarding noisy channels and channels thought to be irrelevant was reported in [44],
however this approach results in a loss of data that could be informative.

We were interested in determining if it was feasible to use the NeuCube
framework as a driver of BCI devices. As a first step we wanted to determine if the
NeuCube was at least equivalent in classifying movement tasks as other commonly
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used methods. As proof-of concept we designed a study that required NeuCube to
classify imagined and real movements in two different directions and at rest (wrist
flexion, extension or rest). The general hypothesis is that NeuCube using EEG data
can correctly identify brain patterns corresponding to specific movements. Previous
work from our lab in association with research collaborators has indicated the
potential of NeuCube to identify different EEG patterns relating to different
imagined movements from a commercially available 14 channel EEG headset. In
this trial imagined wrist extension, rest and wrist flexion achieved accuracy in 1
individual of 88, 83 and 71% respectively [45].

The specific hypothesis for this study was that the NeuCube would accurately
classify both single joint real and imagined movements of the hand into one of three
classes, flexion, extension or rest. This paradigm built on the earlier work in [45] by
increasing the complexity of the task by requiring the NeuCube to distinguish three
conditions, two different muscle contraction patterns (flexion or extensor muscle
activity) or rest [45]. A secondary hypothesis was that the NeuCube would perform
better than other classification methods, including Multiple Linear Regression
(MLR), Support Vector Machine (SVM), Multilayer Perceptron (MLP) and
Evolving Clustering Method (ECM) [46], along with offering other advantages
such as adaptability to new data on-line and interpretability of results.

14.3.2 Design of an Experimental BI-BCI System

Three healthy volunteers from our laboratory group participated in the study. None
had any history of neurological disorders and all were right handed.

All measures were taken in a quiet room with participants seated in a dining
chair. The task consisted of either performing the specified movements or imag-
ining the movements, or remaining at rest. All tasks were completed with eyes
closed to reduce visual and blink related artifacts. The movement execution task
involved the participant resting, flexing the wrist or extending the wrist. The
starting position was from mid-pronation with the forearm resting on the person’s
lap. The movement intention task involved the participant imagining or performing
the movements as described above. Participants were required to imagine or per-
form each movement in 2 s and to repeat that 10 times.

A low-cost commercially available wireless Emotiv Epoc EEG Neuroheadset
was used to record EEG data. The Epoc records from 14 channels based on
International 10–20 locations (AF3, F7, F3, FC5, T7, P7, O1, O2, P8, T8, FC6, F4,
F8, AF4). Two additional electrodes (P3, P4) were used as reference. Data were
digitized at 128 Hz sampling rate and sent to the computer via Bluetooth. An
important factor was that no filtering was applied to the data, either online or offline.

The data was separated into classes denoting each task. Each set of ten samples
was then evenly divided into a training (seen) and a testing (unseen) set. The data
was then converted into trains of spikes (one train per channel, 14 in total) with the
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TBE algorithm, utilizing a spiking threshold of 6. No other data processing was
applied.

14.3.3 Classification Results

Each training sample was presented to the NeuCube once, entered as 14 input streams
of EEG continuous data collected at the msec time unit [47]. The spiking activity of
every neuron was recorded over the time of the sample, and these presented to the
deSNNs classifier. The deSNNs was initialized with a Mod of 0.9 and drift factor of
0.25 (empirically established values for this dataset) (see Chap. 5 for details of the
deSNN). The synaptic weights for both the NeuCube and the deSNNs were then
fixed at their final (learned) values for the validation phase. The unseen data samples
were presented in the same way, and the predicted classes recorded. The predicted
classes were then compared to the actual classes of those samples.

The NeuCube-based model described above was compared to some popular
machine learning methods: MLR, SVM, MLP and ECM. The SVM method uses a
Polynomial kernel with a rank 1; the MLP uses 30 hidden nodes with 1000 iter-
ations for training. The ECM [48] uses m = 3; Rmax = 1; Rmin = 0.1. Data for
these methods is averaged at 8 ms intervals and a single input vector is formed for
each session, as is general practice.

Figure 14.11 shows the connectome of the trained NeuCube. Blue lines show
strong excitatory connections between two neurons, and red strong inhibitory.
Table 14.3 shows results of the comparative study—classification accuracy is
expressed as percentage for real and imagined movements.

The classification accuracy of the NeuCube was on average 76%, with indi-
vidual accuracies ranging from 70 to 85%. There was a consistent rate of recog-
nition between the real and the imagined movement. In terms of the comparison
with other classification approaches, it is clear from the results shown in Table 14.3
that the NeuCube performed significantly better than the other machine learning
techniques with the highest average accuracy over all subjects and samples, whilst
the closest competitor was SVM with the second highest average accuracy of 62%.
MLR was the poorest performing, with an average accuracy of 50.5%, or just over
the chance threshold.

14.3.4 Analysis of the Results

This was a feasibility study to investigate the potential of using NeuCube in BCI
based rehabilitation devices. In considering the classification accuracies, which
ranged from 70 to 85%, it is important to consider three factors. Firstly, the data
were collected in an unshielded room using a commercially available gaming EEG
headset, resulting in an EEG signal with relatively high signal to noise ratio.
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Secondly, there was no processing or feature extraction performed on the data prior
to classification, the raw, noisy, EEG data was used as the input. Thirdly, all
comparative methods in this study, excepting NeuCube, were validated using
Leave-One-Out (all but one sample used for training), while the NeuCube was
validated with a more disadvantageous 50/50 (half used for training, half for testing)
split. The accuracy of the NeuCube was still significantly higher than the other
techniques and would likely rise when trained with leave-one-out paradigms.

Bearing these three factors in mind the classification accuracies obtained using
NeuCube are in a similar range to those reported in other research and demonstrates
that NeuCube is capable of accurately classifying noisy and relatively low-quality
data. In addition, unlike many other approaches NeuCube does not require a
lengthy feature extraction process, instead using all the raw data for classification,
thus utilizing a rich data set that does not lose any potentially useful data.

Fig. 14.11 Connectome of the trained NeuCube. Blue lines show strong excitatory connections
between two neurons, and red strong inhibitory [28]

Table 14.3 Results of the
comparative study; accuracy
expressed as percentage for
real and imagined movements
[28]

Subject/session MLR SVM MLP ECM NeuCube

1/Real 55 69 62 76 80

1/Imagined 63 68 58 58 80

2/Real 55 55 45 52 67

2/Imagined 42 63 63 79 85

3/Real 41 65 41 45 73

3/Imagined 53 53 63 53 70

Average (appr.) 52 62 55 61 76
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We chose to use a relatively cheap and accessible EEG headset because two
major factors that prevent the adoption of high technology interventions into
rehabilitation practice are cost and complexity. EEG systems commonly used in
research and clinical situations are expensive and unlikely to be widely available to
rehabilitation specialists.

An advantage of the NeuCube is that it provides feedback and allows for
interpretation of results and understanding of the data and the brain processes that
generated it. This is illustrated in Fig. 14.11 where the connectivity of a trained
SNNc is shown for further analysis. The SNNc and the deSNN classifier have
evolvable structures, i.e., a NeuCube model can be trained further on more data and
recalled on new data not necessarily of the same size and feature dimensionality.
This allows in theory for a NeuCube to be partially trained on highly accurate data
captured in a controlled manner with medical devices, and then further trained and
adapted to the particular subject with a cheaper, less accurate device such as the
Emotiv. This will increase potential uses in clinical and rehabilitation applications.

The large number of parameters that need to be optimized for every experiment
to achieve the best results limits the current NeuCube. The results presented in this
study are obtained through manual parameter optimization. To mitigate this,
adaptive and evolutionary techniques (including the GRN discussed prior and
quantum-inspired optimization) are being developed for this system, so that
parameter selection is automated in a desirable way.

The results of this study support the premise that NeuCube is feasible to use in
BCI based rehabilitation devices. Additionally, the ability of the NeuCube to both
spatially and temporally represent brain data and provide visualization of the data
could be useful in future applications. Observing changes in neural representation
and spike timing throughout rehabilitation interventions could provide valuable
information on human learning and adaptation to advance rehabilitation
interventions.

14.4 BI-BCI for Neurorehabilitation
with a Neurofeedback and for Neuro-prosthetics

14.4.1 General Notions

In every six seconds, someone in the world becomes physically disabled due to a
stroke. To improve the quality of life of these stroke survivors, Neurorehabilitation
aims at rebuilding the affected motor functions through regular exercises. This
intends to strengthen the remaining neural connections by utilizing the brain’s
ability to build new neural pathways.
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Figure 14.12 presents a diagram of the functional blocks in a
neuro-rehabilitation device based on a trained NeuCube SNN on brain data that
provides neurofeedback.

Figure 14.13 depicts a basic overview of this approach which facilitates a brain
state-based classification of EEG signals using SNN. The module encloses a Finite
State Machine which acts as a finite memory to the model and a biologically
plausible NeuCube SNN architecture to decode state transitions over the time. The
module follows the cue based (synchronous) BCI paradigm. While the subject is
performing the task, EEG signals are recorded and classified. This classification

Fig. 14.12 A diagram of the
functional blocks in a
neuro-rehabilitation device
based on a trained
NeuCube SNN on brain data
that provides neurofeedback

Fig. 14.13 Basic functional flow of BCI based neurorehabilitation through NeuCube SNN
architecture (the figure is drawn by K. Kumarasinghe)
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output is used to control the rehabilitation robot arm. This approach enables the user
to control the rehabilitation robots through their own thoughts and intentions and
provides neurofeedback to help user to improve their brain functions [49].

14.4.2 Applications

In [49] the NeuCube BCI architecture was extended with the use finite automata, to
control a robotic hand. The general functional diagram from Fig. 14.12 now is
implemented for a control of a robotic hand (Figs. 14.14 and 14.15). The system
demonstrated a higher accuracy of detecting human intention when compared to
traditional machine learning methods.

In line with development of the NeuCube-based Neurorehabilitation, two cogni-
tive games (called Grasp and NeuroRehab [50]) and one portable BCI have been
developed as discussed below. The concept of Cognitive game does not only give a
“fun” factor to the patient, but also trains them with the functionality of the product.
These applications were developed for patients who have no voluntary muscular
movements. The patients are trained with an imaginary task, which involves them to
imagine moving a part of their body or imagining a series of relatively complex
muscle movements. The patient is equipped with EEG cap on the scalp followed by
the instruction on what to imagine, so that the instructor can record the neural activity
of the brain. Based on the recorded data, a NeuCube model is trained, which can be
used to control the objects. Once the training process is completed, the instructor
performs an online classification with a new EEG data. The classified output is
converted into a control signal, which intern controls the movements in the game.

For example, Fig. 14.16a is the Grasp game virtual environment, where a user is
trained on how to hold a glass through EEG data using the NeuCube.

Figure 14.16b shows the NeuroRehab game virtual environment [50] as a two
class problem, the aim of which is to move the ball either left or right depending on

Fig. 14.14 The general functional diagram from Fig. 14.12 now is implemented for a control of a
robotic hand (from [49])
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the thought patterns of the patient. The subject can get the overview of how the
NeuCube-based SNN connections are being formed while he/she is trying to move
an object. Our preliminary studies [29] showed that when compared to standard
machine learning algorithms, this approach allows to obtain higher pattern recog-
nition accuracy, a better adaptability to new incoming data and a better interpre-
tation of the models.

Fig. 14.15 a A brain-like motor controlling framework for prosthetic control using automata
theory, cognitive computing & NeuCube evolving spiking neural network architecture (from [49]).
b The BCI can use EEG signals to control fingers of a prosthetic hand (from [49])
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14.5 From BI-BCI to Knowledge Transfer Between
Humans and Machines

The BI-BCI presented in this chapter are based on a trained NeuCube model on
brain signals when humans are performing tasks. This can be further explored for
knowledge transfer from humans to machines as graphically presented in
Fig. 14.17. The motivations for this are the following:

– BI-BCI has the same brain template as the human brain, thus allowing for the
development of new methods for an exchange of information and knowledge
between humans and machines;

– A NeuCube BI-SNN, as well as the human brain, can integrate multimodal data,
including EEG (Chap. 8), fMRI (Chap. 9), audio-visual (Chap. 13), tactile, etc.

Fig. 14.16 a Grasp game virtual environment, where a user is trained on how to hold a glass
using NeuCube with EEG data. b NeuroRehab game virtual environment, where a subject is
trained to move the ball left or right. If a wrong direction is chosen, a negative mark is given.
These exercises are used to help the patients to improve their cognitive abilities

Fig. 14.17 From BI-BCI to knowledge transfer between humans and machines (the figure was
drawn by Maryam Gholami)
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That makes it possible to use all or most of the modalities for learning and only
some of them for recall (e.g. visual information only);

– The brain signals used to train the system are representing procedural knowl-
edge of how the human is performing a task;

– The learned connectivity in the system represents deep knowledge that mimics
the human knowledge both in space and in time (see Chap. 6).

This topic is further discussed in Chap. 22. We have to note that while a human
can control a machine with their brain signals, the other way is not possible, or is it?

14.6 Chapter Summary and Further Readings for Deeper
Knowledge

The chapter presents methods and systems for using SNN for BCI with the emphasis
on the development of brain-inspired BCI (BI-BCI) based on brain-inspired SNN.
The BI-BCI not only classify brain signals into one of the commands passed for
execution to an actuator device, but they provide a neurofeedback in terms of
visualisation of brain activities in time-space, that reflect in the connectivity of the
model. This is contrast with the traditional BCI models that comprise a black box.

Further readings on topics related to BCI can be found in several chapters in
[51], such as:

– EEG signal processing for BCI (Chap. 46 in [51]);
– sEMG analysis for recognition and rehabilitation actions (Chap. 56 in [51]);
– Brain-like robotics (Chap. 57 in [51]);
– Development learning for user activities (Chap. 58 in [51]);
– NeuCube BCI demo: https://kedri.aut.ac.nz/R-and-D-Systems/brain-computer-

interfaces-bci.
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Part VI
SNN in Bio- and Neuroinformatics



Chapter 15
Computational Modelling and Pattern
Recognition in Bioinformatics

This chapter explores the ability of SNN to capture changes in Bioinformatics data
for predicting events or classifying biological states from DNA, gene and protein
data. It starts with a bioinformatics primer.

The chapter is organised in the following sections:

15:1. Bioinformatics primer.
15:2. Biological databases. Modelling bioinformatics data.
15:3. Gene and protein interaction networks and the system biology approach.
15:4 Brain-inspired SNN architectures for deep learning of gene expression time

series data and for the extraction of Gene Interaction Networks (GIN).
15:5. Chapter summary and further readings for deeper knowledge.

15.1 Bioinformatics Primer

This section is an introduction to both biology and computational modelling of
biological data. Part of the material is published in [1, 2].

15.1.1 General Notions

Bioinformatics brings together several disciplines—molecular biology, genetics,
microbiology, mathematics, chemistry and bio-chemistry, physics, and of course—
informatics. Many processes in biology, as it was discussed in Chap. 1, are
dynamically evolving and their modelling requires evolving methods and systems.
In Bioinformatics new data is being made available with a tremendous speed that
would require the models to be continuously adaptive. Knowledge-based mod-
elling, that includes rule and knowledge discovery, is a crucial requirement. All
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these issues make the evolving connectionist methods and systems needed for
problem solving across areas of bioinformatics, from DNA sequence analysis,
through gene expression data analysis, through protein analysis, and finally to
modelling genetic networks and entire cells as a system biology approach. That will
help to discover genetic profiles and to understand better diseases that do not have a
cure so far, to better understand what the human body is made of and how it works
in its complexity at its different levels of organisation.

15.1.2 DNA, RNA and Proteins. The Central Dogma
of Molecular Biology and the Evolution of Life.

Nature evolves in time. The most obvious example of an evolving process is life.
Life is defined in the Concise Oxford English Dictionary as follows: A state of
functional activity and continual change peculiar to organized matter, and espe-
cially to the portion of it constituting an animal or plant before death; animate
existence; being alive. The carrier of life over generations is the DNA.

The DNA (Dioxyribonucleic Acid) is a chemical chain, present in the nucleus of
each cell of an organism, and it consists of ordered in a double helix pairs of small
chemical molecules (bases, nucleotides) which are: Adenine (A), Cytosine (C),
Guanidine (G), and Thymidine (T), linked together by dioxyribose sugar phosphate
nucleic acid backbone.

A DNA molecule is organised as a double-helix structure, where A is connected
to T molecules and C to G. Many disease are due to small changes in the DNA
code, called Single Nucleotide Polymorphism (SNPs) as illustrated in Fig. 15.1,
where instead of C-G link, there is a A-T link.

Fig. 15.1 A single
nucleotide polymorphism
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The DNA contains millions of nucleotide base pairs, but only 5% or so is used
for the production of proteins, and these are the segments from the DNA that
contain genes. Each gene is a sequence of base pairs that is used in the cell to
produce proteins. Genes have length of hundreds to thousands of bases.

In simple organisms, bacteria (prokaryotic organisms) DNA is transcribed di-
rectly into mRNA that consists of genes that contain only codons (no intron seg-
mens)—Fig. 15.2a. The translation of the genes into proteins is initiated by proteins
called ribosomes that bind to the beginning of the gene (ribosome binding site) and
translate the sequence until reaching the termination area of the gene. Finding
ribosome binding sites in bacteria would reveal how the bacteria would act and
what proteins will be produced.

In higher organisms (that contain a nucleous in the cell) the DNA is first tran-
scribed into a pre-mRNA that contains all the regions from the DNA that contain
genes. The pre-RNA is then transcribed into many sequences of functional mRNAs
through a splicing process, so that the intron segments are deleted from the genes
and only the exon segments that account for proteins are extracted. The functional
mRNA is now ready to be translated into proteins (Fig. 15.2b).

The central dogma of the molecular biology (see Fig. 15.3) states that the DNA
is transcribed into RNA, which is translated into proteins, which process is con-
tinuous in time until the organism is alive [2].

(a) (b)

Fig. 15.2 a Bacteria (prokaryotic cell) b typical eukaryotic cell

Fig. 15.3 The central dogma
of the molecular biology
states that the DNA is
transcribed into RNA, which
is translated into proteins,
which process is continuous
in time until the organism is
alive
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The RNA (ribonucleic acid) has a similar structure as the DNA, but here
Thymidine (T) is substituted by Uridine (U) (Fig. 15.4). In the pre-RNA only
segments that contain genes are extracted from the DNA. Each gene consists of two
types of segments—exons, that are segments translated into proteins, and introns—
segments that do not take part in the protein production. Removing the introns and
ordering only the exon parts of the genes in a sequence is called splicing and this
process results in the production of a messenger RNA (or mRNA) sequences.

mRNAs are directly translated into proteins. Each protein consists of a sequence
of amino-acids, each of them defined as a base triplet, called a codon. From one
DNA sequence there are many copies of mRNA produced, the presence of certain
gene in all of them defines the level of the gene expression in the cell and can

Fig. 15.4 The RNA (ribonucleic acid) has a similar structure as the DNA, but here Thymidine
(T) is substituted by Uridine (Uracil) (U)
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indicate what and how much of the corresponding protein will be produced in the
cell.

The above description of the central dogma of the molecular biology is very
much a simplified one, but that would help to understand the rationale behind using
connectionist and other information models in bioinformatics [2].

Genes are complex chemical structures and they cause dynamic transformation
of one substance into another during the whole life of an individual, as well as the
life of the human population over many generations [3–6]. When genes are “in
action”, the dynamics of the processes in which a single gene is involved are very
complex, as this gene interacts with many other genes, proteins, and is influenced
by many environmental and developmental factors.

The whole process of DNA transcription, gene translation, and protein pro-
duction is continuous and it evolves over time. Proteins have 3D structures that
unfold over time governed by physical and chemical laws. Proteins make some
genes to express and may suppress the expression of other genes. The genes in an
individual may mutate, change slightly their code, and may therefore express dif-
ferently at a next time. So, genes may change, mutate, evolve in a life time of a
living organism.

Only 2–5% of the human genome (the DNA) contains useful information what
concerns the production of proteins. The number of genes contained in the human
genome is about 40,000. Only the gene segments are transcribed into RNA
sequences and then translated into proteins. The transcription is achieved through
special proteins, enzymes called RNA polymerase, that bind to certain parts of the
DNA (promoter regions) and start ‘reading’ and storing in a mRNA sequence each
gene code. Analysis of a DNA sequence and identifying promoter regions is a
difficult task. If it is achieved, it may make possible to predict, from a DNA
information, how this organism will develop, or alternatively—what an organism
looked like in retrospect. The promoter recognition process is part of a complex
process of gene regulatory network activity, where genes interact between each
other over time, defining the destiny of the whole cell.

RNA molecules are emerging as central “players” controlling not only the
production of proteins from messenger RNAs, but also regulating many essential
gene expression and signalling pathways. Mouse cDNA sequencing project
FANTOM in Japan showed that non-coding RNAs constitute at least a third of the
total number of transcribed mammalian genes [7]. In fact, about 98% of RNA
produced in the eukaryotic cell is non-coding [8], produced from introns of
protein-coding genes, non-protein-coding genes and even from intergenic regions,
and it is now estimated that half of the transcripts in human cells are non-coding and
functional.

These non-coding transcripts are thus not junk, but could have many crucial
roles in the Central Dogma of Molecular Biology. The most recently discovered,
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rapidly expanding group of non-coding RNAs is microRNAs, which are known to
have exploded in number during the emergence of vertebrates in evolution (see [9],
also containing a good review on non-coding RNAs and their evolution). They are
already known to function in lower eukaryotes in regulation of cell and tissue
development, cell growth and apoptosis and many metabolic pathways, with similar
likely roles in vertebrates [8].

MicroRNAs are encoded by long precursor RNAs, commonly several hundred
basepairs long, which typically form fold-back structures resembling a straight
hairpin with occasional bubbles and short branches. The length and the conserva-
tion of these long transcribed RNAs makes it possible to discover and classify by
sequence similarity search method to discover and classify many phylogenetically
related microRNAs in the Arabidopsis genome [10]. Such analysis has established
that most plant microRNA genes have evolved by inverted duplication of target
gene sequences. The mechanism of their evolution in mammals is less clear.

Lack of conserved microRNA sequences or microRNA targets between animals
and plants suggests that plant microRNAs evolved after the split of the plant lineage
from mammalian precursor organisms. This means that the information about plant
microRNAs does not help to identify or classify most mammalian microRNAs.
Also, in mammalian genomes the foldback structures are much shorter, down to
only about 80 basepairs, making sequence similarity search a less effective method
for finding and clustering remotely related microRNA precursors.

Evolutionary processes imply the development of generations of populations of
individuals where crossover, mutation, selection of individuals, based on fitness
(survival) criteria are applied in addition to the developmental (learning) processes
of each individual (see Chap. 7).

A biological system evolves its structure and functionality through both,
life-long learning of an individual, and evolution of populations of many such
individuals, i.e. an individual is part of a population and is a result of evolution of
many generations of populations, as well as a result of its own developmental, of its
life-long learning process.

Same genes in the genotype of millions of individuals may be expressed dif-
ferently in different individuals, and within an individual—in different cells of their
body. The expression of these genes is a dynamic process depending not only on
the types of the genes, but on the interaction between the genes, and the interaction
of the individual with the environment (the Nurture versus Nature issue).

Several principles are useful to take into account from evolutionary biology:

– Evolution preserves or purges genes.
– Evolution is a non-random accumulation of random changes.
– New genes cause the creation of new proteins.
– Genes are passed on through evolution: generations of populations and selection

processes (e.g. natural selection).

There are different ways of interpreting the DNA information, some of them sci-
entific, some of them—artistic (see [3]):
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– DNA as a source of information and cells as information processing machines
[4];

– DNA and the cells as stochastic systems (processes are non-linear and dynamic,
chaotic in a mathematical sense);

– DNA as a source of energy;
– DNA as a language;
– DNA as music;
– DNA as a definition of Life [1, 2].

Proteins provide the majority of the structural and functional components of a cell.
The area of molecular biology that deals with all aspects of proteins is called
proteomics. So far about 30,000 proteins have been identified and labelled, but this
is considered to be a small part of the total set of proteins that keep our cells alive.

The mRNA is translated by ribosomes into proteins. A protein is a sequence of
amino-acids, each of them defined by a group of 3 nucleotides (codons). There are
20 amino acids all together, denoted by letters (A, C-H, I, K-N, P-T, V, W, Y). The
codons of each of the amino acids are given in Table 15.1, so that the column
represents the first base in the triplet, the row—the second base, and the last column
—the last base.

The length of a protein in number of amino-acids, is from tens to several
thousands.

Each protein is characterized by some characteristics, for example [4, 11]:

– Structure;
– Function;
– Charge;
– Acidity;

Table 15.1 The codons of
each of the 20 aminoacids.
The column represents the
first base in the triplet, the row
—the second base, and the
last column—the last base

U C A G

U Phe
Phe
Leu
Leu

Ser
Ser
Ser
Ser

Tyr
Tyr
–

–

Cys
Cys
–

Trp

U
C
A
G

C Leu
Leu
Leu
Leu

Pro
Pro
Pro
Pro

His
His
Gln
Gln

Arg
Arg
Arg
Arg

U
C
A
G

A Ile
Ile
Ile
Met

Thr
Thr
Thr
Thr

Asn
Asn
Lys
Lys

Ser
Ser
Arg
Arg

U
C
A
G

G Val
Val
Val
Val

Ala
Ala
Ala
Ala

Asp
Asp
Glu
Glu

Gly
Gly
Gly
Gly

U
C
A
G
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– Hydrophilicity;
– Molecular weight.

An initiation codon defines the start position of a gene in a mRNA where the
translation of the mRNA into protein begins. A stop codon defines the end position.

Proteins with a high similarity are called homologous. Homologous that have
identical functions are called orthologues. Similar proteins that have different
functions are called paralogues.

Proteins have complex structures that include:

– Primary structure (a linear sequence of the amino-acids)—see for example
Fig. 15.5.

– Secondary structure (3D, defining functionality). An example of a 3D repre-
sentation of a protein is given in Fig. 15.6.

– Tertiary structure (high level folding and energy minimisation packing of the
protein).

– Quaternary structure (interaction between two or more protein molecules).

More information about molecular biology can be found in [2].

15.1.3 Phylogenetics

Evolution is a process whereby populations are altered over time and may split into
separate branches, hybridize together, or terminate by extinction. The evolutionary
branching process may be depicted as a phylogenetic tree, and the place of each of
the various organisms on the tree is based on a hypothesis about the sequence in
which evolutionary branching events occurred.

In biology, phylogenetic is the study of evolutionary relationships among
groups of organisms (e.g. species, populations), which are discovered through
molecular sequencing data and morphological data matrices. Phylogenetic analyses
have become essential to research on the evolutionary tree of life.

Fig. 15.5 A primary
structure of a protein—a
linear sequence of the
amino-acids
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15.1.4 The Challenges of Molecular Data Analysis

As it was mentioned previously, only 2–5% of the human genome (the DNA)
contains information what concerns the production of proteins [2]. The number of
genes contained in the human genome is about 40,000 [5]. Only the gene segments
are transcribed into RNA sequences. The transcription is achieved through special

Fig. 15.6 An example of a secondary structure (3D, defining functionality) of a protein obtained
with the use of the PDB data set, maintained by the National Centre for Biological Information
(NCBI) of the National Institute for Health (NIH) of the USA
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proteins, enzymes called RNA polymerase, that bind to certain parts of the DNA
(promoter regions) and start ‘reading’ and storing in an mRNA sequence each gene
code.

Analysis of a DNA sequence and identifying promoter regions is a difficult task. If
it is achieved, it may make possible to predict, from a DNA information, how this
organism will develop, or alternatively—what an organism looked like in retrospect.

Analysis of gene expression data from microarrays is discussed in the next
section. Here, some typical tasks of DNA and RNA sequence pattern analysis are
presented, namely ribosome binding site identification, and splice junction
recognition.

Recognizing patterns from DNA, or from mRNA sequences is a way of rec-
ognizing genes in these sequences and of predicting proteins in silico (in a com-
puter). For this purpose, usually a “window” is moved along the sequence and data
from this window is submitted to a neural network classifier (identifier) which
identifies if one of the known patterns is contained in this window.

Only the gene segments are transcribed into RNA sequences and then translated
into proteins as pointed out before. The transcription is achieved through special
proteins, enzymes called RNA polymerase, that bind to certain parts of the DNA
(promoter regions) and start ‘reading’ and storing in a mRNA sequence each gene
code. Analysis of a DNA sequence and identifying promoter regions is a difficult
task. If it is achieved, it may make possible to predict, from a DNA information,
how this organism will develop, or alternatively—what an organism looked like in
retrospect. The promoter recognition process is part of a complex process of gene
regulatory network activity, where genes interact between each other over time,
defining the destiny of the whole cell.

Finding the splice junctions that separate the introns from the exons in a
pre-mRNA structure, is a difficult task for computer modelling and pattern recog-
nition, that once solved would help understand what proteins would be produced
from a certain mRNA sequences. This task is called splice junction recognition.
Figure 15.7 shows the process of splicing primary RNA into mRNA.

Fig. 15.7 The process of splicing primary RNA into mRNA
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But even having recognized the splice junctions in a pre-mRNA, it is extremely
difficult to predict which genes will really become active, i.e. will be translated into
proteins, and how much active they will be—how much protein will be produced.
That is why gene expression technologies (e.g. microarrays) have been introduced,
to measure the expression of the genes in mRNAs. The level of a gene expression
would suggest how much protein of this type will be produced in the cell, but again
this will only be an approximation.

RNA molecules are emerging as central “players” controlling not only the
production of proteins from messenger RNAs, but also regulating many essential
gene expression and signalling pathways. In fact, about 98% of RNA produced in
the eukaryotic cell is non-coding [8], produced from introns of protein-coding
genes, non-protein-coding genes and even from intergenic regions, and it is now
estimated that half of the transcripts in human cells are non-coding and functional.

These non-coding transcripts are thus not junk, but could have many crucial
roles in the Central Dogma of Molecular Biology. The most recently discovered,
rapidly expanding group of non-coding RNAs is microRNAs, which are known to
have exploded in number during the emergence of vertebrates in evolution (see [9],
also containing a good review on non-coding RNAs and their evolution). They are
already known to function in lower eukaryotes in regulation of cell and tissue
development, cell growth and apoptosis and many metabolic pathways, with similar
likely roles in vertebrates [8].

MicroRNAs are encoded by long precursor RNAs, commonly several hundred
basepairs long, which typically form fold-back structures resembling a straight
hairpin with occasional bubbles and short branches. The length and the conserva-
tion of these long transcribed RNAs makes it possible to discover and classify by
sequence similarity search method to discover and classify many phylogenetically
related microRNAs in the Arabidopsis genome [10]. Such analysis has established
that most plant microRNA genes have evolved by inverted duplication of target
gene sequences. The mechanism of their evolution in mammals is less clear.

There are many aspects of molecular biology that make their analysis and
modelling difficult, such as:

• Abundance of genome data, RNA data, protein data and metabolic pathway data
is now available (see http://www.ncbi.nlm.nih.gov) and this is just the beginning
of computational modeling in Bioinformatics.

• Complex interactions:

– between proteins, genes, DNA code
– between the genome and the environment
– much yet to to be discovered

• Stability and repetitiveness: Genes are relatively stable carriers of information.
• Many sources of uncertainty:
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– Alternative splicing
– Mutation in genes caused by: ionising radiation (e.g. X-rays); chemical

contamination, replication errors, viruses that insert genes into host cells,
aging processes, etc.

– Mutated genes express differently and cause the production of different
proteins.

• It is extremely difficult to model dynamic, evolving biological processes.

At the same time, researchers are always finding ways to address the above diffi-
culties, addressing important problems, both small and large scale, such as:

• Discovering patterns (features) from DNA and RNA sequences (e.g. genes,
promoters, RBS binding sites, splice junctions)

• Analysis of gene expression data and predicting protein abundance
• Discovering of gene networks—genes that are co-regulated over time
• Protein discovery and protein function analysis
• Predicting the development of an organism from its DNA code
• Reconstructing life from DNA
• Modeling the full development (metabolic processes) of a cell
• Genetic modification
• Medical decision support systems
• Precision medicine (personalised modelling)
• Disease diagnostic systems
• Treatment outcome prediction
• Artificial Life
• Synthetic food
• Protecting and preserving Life on the planet Earth
• Life beyond the planet Earth
• Life and Death.

Next sections offer more information about how bioinformatics data can be mod-
elled and useful patterns and new knowledge discovered.

15.2 Biological Databases. Computational Modelling
of Bioinformatics Data

15.2.1 Biological Databases

Databases are essential for bioinformatics research and applications. Many data-
bases exist, covering various information types, for example:

– Gene Banks;
– DNA and protein sequences;
– molecular structures;
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– phenotypes and biodiversity.

Databases may contain:

– empirical data (obtained directly from experiments);
– predicted data (obtained from analysis);
– both.

They may be specific to a particular organism, pathway or molecule of interest.
Alternatively, they can incorporate data compiled from multiple other databases.

The biological databases vary in their format, access mechanism, and whether
they are public or not.

Some of commonly used databases are listed below [2]:

• Biological sequence analysis: Genbank, UniProt.
• Protein Families and Motif Finding: InterPro, Pfam.
• Next Generation Sequencing: Sequence Read Archive.
• GRN Analysis: Metabolic Pathway Databases (KEGG, BioCyc), Interaction

Analysis Databases, Functional Networks.
• Design of synthetic genetic circuits: GenoCAD.

A comprehensive description of biological databases can be found in [2].

15.2.2 General Information About Bioinformatics Data
Modelling

Many statistical and machine learning methods have been used to analyse molecular
data (see [2] and also Chap. 2). Artificial neural networks (ANN) and evolving
connectionist systems (ECOS), described in Chaps. 2 and 4, have been widely used
for pattern recognition from DNA and RNA data. General schemes of using ANN
and eSNN for pattern identification from bioinformatics data are given in Figs. 15.8
and 15.9 respectively.

Many connectionist models have been developed for identifying patterns in a
sequence of RNA or DNA [4, 6]. Most of them deal with a static data set and use
multiplayer perceptrons MLP, or self-organising maps SOMs (Chap. 2).

In many cases, however, there is a continuous flow of data that is being made
available for a particular pattern recognition task. New labelled data need to be
added to existing classifier systems for a better classification performance on future
unlabelled data. This can be done with the use of the evolving models and systems.

Several case studies are used here to illustrate the application of evolving sys-
tems for sequence DNA and RNA data analysis. Figure 15.9 illustrates the use of
eSNN, where output nodes evolve to capture prototypes of input data. More about
eSNN can be found in Chap. 4.

Several sequence similarity and RNA folding based methods have been devel-
oped to find novel microRNAs. Simple BLAST similarity search identified e.g.
orthologues of let-7 microRNA in several species [11]. Another approach has been
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screening by RNA fold prediction algorithms (best known are Mfold and RNAfold)
to look for stem-loop structure candidates having a characteristically low deltaG
value indicating strong hybridization of the folded molecule, followed by further
screening by sequence conservation between genomes of related species. Software
systems called MIRseeker [12] and MIRscan [13] have been used in this fashion for
fruitfly (Drosophila) and human microRNA discovery, respectively. Most recently,
about a thousand candidate conserved human microRNAs have been found by
phylogenetic conservation based search strategy [14]. This method is based on
careful multiple alignment of many different sequences from closely related primate
species to find accurate conservation at single nucleotide resolution.

Fig. 15.8 A general scheme of using MLP neural networks for sequence pattern identification
from DNA data (Chap. 2)

Fig. 15.9 The structure of eSNN evolves output nodes to capture prototypes of input data in an
incremental way (Chap. 5)
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The problem with all these approaches is that they require extensive sequence
data and laborious sequence comparisons between many genomes as one key fil-
tering step. Also, finding species-specific, recently evolved microRNAs by these
methods is difficult, as well as evaluating the phylogenetic distance of remotely
related genes which have diverged too much in sequence.

One tenet of microRNA is that the two-dimensional (2D) structure of many
microRNAs (and non-coding RNAs in general) can give additional information
which is useful for their discovery and classification, even with data from within
only one species. This is analogous to protein three-dimensional (3D) structure
analysis showing often functional and/or evolutionary similarities between proteins
that cannot easily be seen by sequence similarity methods alone.

Protein 3D structural comparisons are based on accurate protein crystallization
data on atomic coordinates of amino acids in the polypeptide macromolecule chain.
Unfortunately, such molecular structure data is scanty for RNAs in general, and for
microRNA precursors in particular. Also, RNA folding simulation in 3D is still a
difficult computational problem, just as the traditional grand challenge of deducing
protein folding ab initio from the amino acid sequence alone. Prediction of RNA
folding in 2D is more advanced, and reasonably accurate algorithms are available,
which can simulate the putative most likely and thermodynamically most stable
structures of self-hybridizing RNA molecules. Many of such structures have been
also verified by various experimental methods in the laboratory, corroborating the
general accuracy of these folding algorithms.

15.2.3 Gene Expression Data Modelling and Profiling

One of the contemporary directions while searching for efficient drugs for many
illnesses, such as cancer or HIV, is the creation of gene profiles of these diseases
and subsequently finding targets for treatment through gene expression regulation.
A gene profile is a pattern of expression of a number of genes that is typical for all,
or for some of the known samples of a particular disease.

A disease profile would look like:
IF (gene g1 is highly expressed) AND (gene g37 is low expressed) AND (gene

134 is very highly expressed) THEN most probably this is cancer type C (123 out
of available 130 samples have this profile).

Having such profiles for a particular disease makes it possible to set early
diagnostic test, so a sample can be taken from a patient, the data related to the
sample is processed, and a profile is obtained. This profile can be matched against
existing gene profiles and based on similarity, it can be predicted with certain
probability if the patient is in an early phase of a disease or he/she is at risk of
developing the disease in the future with certain probability.
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Microarray equipment is used widely at present to evaluate the level of gene
expression in a tissue, or in a living cell [15]. Each point (pixel, cell) in a microarray
represents the level of expression of a single gene. Five principal steps in the
microarray technology are: tissue collection; RNA extraction; microarray gene
expression calculation; scanning and image processing; data analysis—Fig. 15.10.

Techniques for analysis of DNA and RNA and disease profiling using evolving
connectionist systems are published in [1, 2]—see Fig. 15.11.

The recent advent of cDNA microarray and gene chip technologies means that it
is now possible to simultaneously interrogate thousands of genes in tumours.
The potential applications of this technology are numerous and include identifying
markers for classification, diagnosis, disease outcome prediction, therapeutic
responsiveness, and target identification. Microarray analysis might not identify
unique markers (e.g. a single gene) of clinical utility for a disease because of the
heterogeneity of the disease, but a prediction of the biological state of disease is likely
to be more sensitive by identifying clusters of gene expression (profiles) [16, 17].

Fig. 15.10 Five principal steps in the microarray technology are: tissue collection; RNA
extraction; microarray gene expression calculation; scanning and image processing; data analysis
(from [1])

inputs output

rule
nodes

Fig. 15.11 From DNA and RNA to disease profiling using evolving connectionist systems (from [1])
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15.2.4 Clustering of Time Series Gene Expression Data

Each gene in a cell may express differently over time. And this makes the gene
expression analysis based on static data (“one shot”) not a very reliable mechanism.
Measuring the expression rate of each gene over time gives the gene a temporal
profile of its expression level. Genes can be grouped together according to their
similarity of temporal expression profiles.

One of the main purposes for cluster analysis of time-course gene expression
data is to infer the function of novel genes by grouping them with genes of
well-known functionality. This is based on the observation that genes which show
similar activity patterns over time (co-expressed genes) are often functionally
related and are controlled by the same mechanisms of regulation (co-regulated
genes). The gene clusters generated by cluster analysis often relate to certain
functions, e.g. DNA replication, or protein synthesis. If a novel gene of unknown
function falls into such a cluster, it is likely that this gene serves the same function
as the other members of this cluster. This ‘guilt-by-association’ method makes it
possible to assign functions to a large number of novel genes by finding groups of
co-expressed genes across a microarray experiment [18].

Different clustering algorithms have been applied to the analysis of time-course
gene expression data: k-means, SOM and hierarchical clustering, to name just a few
[18]. They all assign genes to clusters based on the similarity of their activity
patterns. Genes with similar activity patterns should be grouped together, while
genes with different activation patterns should be placed in distinct clusters. The
cluster methods used so far have been restricted to a one-to-one mapping: one gene
belongs to exactly one cluster. While this principle seems reasonable in many fields
of cluster analysis, it might be too limited for the study of microarray time-course
gene expression data. Genes can participate in different genetic networks and are
frequently coordinated by a variety of regulatory mechanisms. For the analysis of
microarray data, we may therefore expect that single genes can belong to several
clusters.

Several researchers have noted that genes were frequently highly correlated with
multiple classes and that the definition of clear boarders between gene expression
clusters seemed often arbitrary [19]. This is a strong motivation to use fuzzy clus-
tering in order to assign single objects to several clusters. In fuzzy clustering each
sample from a population can belong to several clusters to a membership degree, all
membership degrees for this sample adding up to 1 [17–21] (Chaps. 1 and 2).

Another reason for applying fuzzy clustering is the large noise component in
microarray data due to biological and experimental factors. The activity of genes
can show large variations under minor changes of the experimental conditions.
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Numerous steps in the experimental procedure contribute to additional noise and
bias. A usual procedure to reduce the noise in microarray data is setting a threshold
for a minimum variance of the abundance of a gene. Genes below this threshold are
excluded from further analysis. However, the exact value of the threshold remains
arbitrary due to the lack of an established error model and the use of filtering as
pre-processing.

Since we usually have little information about the data structure in advance, a
crucial step in the cluster analysis is selection of the number of clusters. Finding the
‘correct’ number of clusters addresses the issue of cluster validity. This has turned
out to be a rather difficult problem, as it depends on the definition of a cluster.
Without prior information, a common method is the comparison of partitions
resulting from different numbers of clusters. For assessing the validity of the par-
titions, several cluster validity functionals have been introduced [20]. These func-
tionals should reach an optimum if the correct number of clusters is chosen. When
using evolving clustering techniques the number of the clusters does not need to be
defined a priori.

Two fuzzy clustering techniques are the batch mode fuzzy C-means clustering
(FCM) and an evolving clustering through evolving self-organised maps (ESOM)
(see Chap. 2).

In the FCM clustering experiment the (for more details see [21]) the fuzzification
parameter m [20] is an important parameter for the cluster analysis. For the ran-
domised data set, FCM clustering formed clusters only if m was chosen smaller
than 1.15. Higher values of m led to uniform membership values in the partition
matrix. This can be regarded as an advantage of FCM over hard clustering, which
always forms clusters independently of the existence of any structure in the data. An
appropriate choice for a lower threshold for m can therefore be set, if no cluster
artefacts are formed in randomised data. An upper threshold for m is reached if
FCM does not indicate any cluster in the original data. This threshold depends
mainly on the compactness of the clusters. The cluster analysis with FCM showed
that hyper-spherical distribution are more stable for increasing m than
hyper-ellipsoid distributions. This maybe expected since FCM clustering with
Euclidean norm favours spherical clusters.

The functional F that evaluates the “goodness” of the clustering [20] reached its
maximum for 4 clusters for values of m < 1.35, while for larger m, F showed a
monotonic decrease in number of clusters.

In another experiment, an evolving self-organising map ESOM (see Chap. 2) is
evolved from the yeast gene temporal profiles used as input vectors. The number of
clusters did not need to be specified in advance—Fig. 15.12 (from [1]).

It can be seen from Fig. 15.12, that clusters 72 and 70 are represented on the
ESOM as neighbouring nodes. The ESOM on the figure is plotted as a 2D PCA
projection. Cluster 72 has 43 members (genes that have similar temporal profiles),
cluster 70–61 members, and cluster 5—only 3 genes as cluster members.
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New clusters are created in an on-line mode if the distance between existing
clusters and the new data vectors representing also time series with a fixed length
are above a chosen threshold.

15.2.5 Protein Data Modelling and Structure Prediction

One task that has been explored in the literature, is predicting the secondary
structure from the primary one. Segments of a protein can have different shapes in
their secondary structure, which is defined by many factors, one of them being the
amino-acid sequence itself. The main types of shape are:

– Helix
– Sheet
– Coil (loop).

Qian and Sejnowski [23] investigated the use of MLP for the task of predicting the
secondary structure based on available labelled data, also used in the following
experiment.

Fig. 15.12 Using evolving self-organising maps (ESOM) (Chap. 2) for clustering gene expres-
sion time series data (from [1])
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15.3 Gene and Protein Interaction Networks
and the System Biology Approach

15.3.1 General Notions

The aim of computational system biology is to understand complex biological
objects in their entirety, i.e. at a system level. It involves the integration of different
approaches and tools: computer modeling, large-scale data analysis, and biological
experimentation. One of the major challenges of the systems biology is the iden-
tification of the logic and dynamics of gene-regulatory and biochemical networks.
The most feasible application of systems biology is to create a detailed model of a
cell regulation to provide system-level insights into mechanism-based drug
discovery.

System–level understanding is a recurrent theme in biology and has a long
history. The term “system-level understanding” is a shift of focus in understanding a
system’s structure and dynamics in a whole, rather than the particular objects and
their interactions. System-level understanding of a biological system can be derived
from insight into four key properties [24, 25]:

1. System structures. These include the gene regulatory network (GRN) and bio-
chemical pathways. They can also include the mechanisms of modulation the
physical properties of intracellular and multi cellular structures by interactions.

2. System dynamics. System behavior over time under various conditions can be
understood by identifying essential mechanisms underlying specific behaviors
and through various approaches depending on the systems nature: metabolic
analysis (finding a basis of elementary flux modes that describe the dominant
reaction pathways within the network), sensitivity analysis (the study of how the
variation in the output of a model can be apportioned, qualitatively or quanti-
tatively, to different sources of variation), dynamic analysis methods such as
phase portrait (geometry of the trajectories of the system in state space) and
bifurcation analysis (bifurcation analysis traces time-varying change(s) in the
state of the system in a multidimensional space where each dimension represents
a particular system parameter (concentration of the biochemical factor involved,
rate of reactions/interactions, etc.). As parameters varied, changes may occur in
the qualitative structure of the solutions for certain parameter values. These
changes are called bifurcations and the parameter values are called bifurcation
values).

3. The control method. Mechanisms that systematically control the state of the cell
can be modulated to change system behavior and optimize potential therapeutic
effect targets of the treatment.

4. The design method. Strategies to modify and construct biological systems
having desired properties can be devised based on definite design principles and
simulations, instead of blind trial-and-error.
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As it was mentioned above, in reality analysis of system dynamics and under-
standing the system structure are overlapping processes. In some cases analysis of
the system dynamics can give useful predictions in system structure (new inter-
actions, additional member of system). Different methods can be used to study the
dynamical properties of the system:

• Analysis of steady-states allows finding the systems states when there are no
dynamical changes in system components.

• Stability and sensitivity analyses provide insights into how systems behavior
changes when stimuli and rate constants are modified to reflect dynamic
behavior.

• Bifurcation analysis, in which a dynamic simulator is coupled with analysis
tools, can provide a detailed illustration of dynamic behavior.

The choice of the analytical methods depends on availability of the data that can be
incorporated in into the model and the nature of the model. It is important to know
the main properties of the complex system under investigation, such as robustness.

Robustness is a central issue in all complex systems and it is very essential for
understanding of the biological object functioning at the system level. Robust
systems exhibit the following phenomenological properties:

• Adaptation, which denotes the ability to cope with environmental changes.
• Parameter insensitivity, which indicates a system’s relative insensitivity (to a

certain extent) to specific kinetic parameters.
• Graceful degradation, which reflects the characteristic slow degradation of a

system’s functions after damage, rather than catastrophic failure.

All the above features are present in some AI methods and techniques and make
them very suitable to modelling complex biological systems [2]. Revealing all these
characteristics of a complex living system helps choosing an appropriate method for
their modelling, and also constitutes an inspiration for the development of new AI
methods that possess these features.

Modelling living cells in silico (in a computer) has many implications; one of
them is testing new drugs through simulation rather than on patients. According to
recent statistics, human trials fail for 70–75% of the drugs that enter them.

Modelling living cells in silico (in a computer) has many implications, one of
them is testing new drugs through simulation rather than on patients. According to
[26] human trials fail for 70–75% of the drugs that enter them.

Computer modelling of processes in living cells is an extremely difficult task.
There are several reasons for that, among them are:

– The processes in a cell are dynamic and depend on many variables some of them
related to a changing environment.

– The processes of DNA transcription, and protein translation are not fully
understood.
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Several cell models have been created and experimented, among them:

– The Virtual Cell model [27];
– The e-cell model and the self-survival model [28];
– A mathematical model of a cell cycle [29].

A starting point to dynamic modelling of a cell would be dynamic modelling of a
single gene regulation process. In [30] the following methods for single gene
regulation modelling are discussed, that take into account different aspects of the
processes (chemical reactions, physical chemistry, kinetic changes of states,
thermodynamics):

– Boolean models, based on Boolean logic (true/false logic);
– Differential equation models;
– Stochastic models;
– Hybrid Boolean/differential equation models;
– Hybrid differential equations/stochastic models;
– Neural network models;
– Hybrid connectionist-statistical models.

The next step in dynamic cell modelling would be to try and model the regulation of
more genes, hopefully a large set of genes (see [31]). Patterns of collective regu-
lation of genes are observed in the above reference, such as chaotic attractors.
Mutual information/entropy of clusters of genes can be evaluated.

A general, hypothetical evolving model of a cell is outlined below. It encom-
passes the system biology approach. It is based on the following principles:

1. The model incorporates all the initial information such as analytical formulas,
databases, rules of behaviour.

2. In a dynamic way, the model adjusts, adapts over time during its operation.
3. The model makes use of all current information and knowledge at different

stages of its operation (e.g., transcription, translation).
4. The model takes as inputs data from a living cell and models its development

over time. New data from the living cell is supplied if such is available over
time.

5. The model runs until it is stopped, or the cell has died.

15.3.2 Gene Regulatory Network Modelling

Modelling processes in a cell includes finding the genetic networks (the network of
interaction and connections between genes, each connection defining if a gene is
causing another one to become active, or to be suppresses). The reverse engineering
approach is used for this task [32]. It consists of the following: Gene expression
data is taken from a cell (or a cell line) at consecutive time moments. Based on
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these data a logical gene network is derived. For example, it is known that clus-
tering of genes with similar expression patterns will suggest that these genes are
involved in same regulatory processes.

Modelling gene regulatory networks (GRN) is the task of creating a dynamic
interaction network between genes that defines the next time expression of genes
based on their previous levels of expression.

Models of GRN, derived from gene expression RNA data, have been developed
with the use of different mathematical and computational methods, such as: sta-
tistical correlation techniques; evolutionary computation; ANN; differential equa-
tions, both ordinary and partial; Boolean models; kinetic models; State-based
models and others.

An example of GRN extraction from data is presented in [33] where the human
response to fibroblast serum data is used (Fig. 15.13) and a GRN is extracted from
it (Fig. 15.14).

15.3.3 Protein Interaction Networks

Proteins interact between each other in time-space, forming structures that define
important fucntions for an organism. Figure 15.15 shows an example of
network-based analysis using UniHI [2]. For proteins of interest such as p53,
interaction partners can be queried and visualized. The derived networks can be
subsequently filtered based on evidence (e.g., number of PubMed references
reporting the interaction) or based on gene expression data. All networks can be
readily inspected for enrichment in biological processes using an integrated tool.
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Fig. 15.13 The time course data of the expression of genes in the Human fibroblast response to
serum benchmark data [33]
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Fig. 15.15 Example of network-based analysis using UniHI. For proteins of interest such as p53,
interaction partners can be queried and visualized. The derived networks can be subsequently
filtered based on evidence (e.g., number of PubMed references reporting the interaction) or based
on gene expression data. All networks can be readily inspected for enrichment in biological
processes using an integrated tool [2]
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Fig. 15.14 A GRN obtained with the use of the method from [33] on the data from Fig. 15.13,
where 10 clusters of gene expression values over time are derived, each cluster represented as a
node in the GRN and their interaction in time—as weighted arcs
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15.4 Brain-Inspired SNN Architectures for Deep
Learning of Gene Expression Time Series Data
and for the Extraction of Gene Regulatory Networks

This chapter presents a novel method for modelling gene interaction networks using a
bran-inspired SNN exemplified by NeuCube (Chap. 6). The method is first published
in [34] and applied on cancer data in [35] and on Ebola vaccine data in [36].

15.4.1 General Notions

Genes are the blueprint for proteins synthesis, which altered behaviour have been
implicated in several pathologies, and that is why they have attracted researchers’
attention for several years [37–39]. By identifying which genes are turned on in a
particular cell, in which amount and when, can help us uncover the process behind
the cell life, processes and understanding of how diseases work [40]. In the era of
system biology, the most popular techniques used to quantify transcriptome data
are: DNA hybridization-based microarrays and next-generation sequencing
(RNA-Seq) technologies [41, 42]. Even though RNA-seq has emerged as the
method of choice for measuring transcriptome of organisms [43], DNA microarrays
are still widely used for targeting the identification of already known common allele
variants, and public databases make this data available to the entire community. The
transcriptome data provided can be considered representative of the entire com-
munity, as genome’s sequence similarity over individuals is really high (about
99.9%), with the same genes in the same location [44]. People are unique by
phenotype; however, every human being shares the same genetic blueprint [40].
While the measurement and analysis of steady-state microarray data are routine, the
analysis of time-series gene expression profiling are of growing interest, as they can
shed some light on the complex relation- ships between genes and how they work
together over time, to determine adaptive phenotype and transcription factors that
are associated with certain diseases. This type of data, time-series data, is difficult to
analyse and using traditional statistical and artificial intelligent techniques may
incur in a loss of information. Novel artificial intelligence techniques, such a
spiking neural networks (SNN) [45–48] have emerged as the method of choice, as
they have successfully demonstrated their ability to learn and extract meaningful
patterns from time-series data by using biologically inspired net of neurons [49, 50].
Neurons are computational units that process binary information as spikes that
encode significant changes “hidden” in the raw data, and learn how these changes
of temporal activity interacts with each other over time. By extracting meaningful
patterns from raw time-series data, we can understand mechanisms involved in the
regulatory expression of genes. In our study, we use time-series microarray data
available from the National Centre for Biotechnology Information (NCBI) database
to analyse the feasibility of an SNN system for gene expression data modelling,
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classification and interpretation. We want to understand the genetic information
available and analyse the interaction between genes over time to identify the clinical
implication behind this process. We achieve this by integrating SNN techniques in a
computational model able to derive the interaction between genes over time as a
gene interaction network (GIN). This is a novel approach that could lead to bio-
logically realistic models and to a better understanding of the phenomenon of study.

15.4.2 A SNN Based Methodology for Gene Expression
Time Series Data Modelling and Extracting GRN

This method was fully published in [34].
To model and analyse the dynamic behaviour of a complex biological process,

such as the interaction between thousands of genes over time, we have designed a
novel system based on the NeuCube SNN architecture (Chap. 6) [51–55].

Figures 15.16 and 15.17 show the idea of using the NeuCube SNN system for
time- series gene expression data analysis. This SNN system consists of the fol-
lowing modules:

• Input information encoding module, where the transcriptomics data is first
modelled and then encoded into trains of spikes, each spike representing a
change in the gene expression over time;

• 3D SNN cube (SNNc) module (the Cube), where the encoded time-series data is
entered and learned;

• Output module for data classification;
• GIN module for knowledge discovery.

Fig. 15.16 A graphical representation of the novel SNN system designed for time–series gene
expression data analysis (from [34]) (the figure was created by E. Capecci)
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In the following paragraphs, this procedure is explained in detail.

Input Module and Gene Expression Data Encoding

The gene expression data is first ordered as a sequence of real-value data vectors.
Every data vector is transformed into a spike train using a number of encoding
algorithms, such as the adaptive threshold-based (ATB) encoding algorithm
(Chap. 4) and time series mapping algorithm proposed in [56]. The encoding
method uses a self- adaptive bi-directional threshold to discretise the signal gra-
dient with respect to the time. The results are a positive spike train that encodes the
point in which the signal increase and a negative spike which encode the point in
which the signal de- crease. This was calculated for every vector of the time-series
data. As a result, each spike train carries the information about the temporal reg-
ulation of the expression of a certain gene over time that was in principle “hidden”
in the raw data.

The SNN Cube Module and Unsupervised Learning

The encoded spike trains are fed into a cube of, e.g. 10 � 10 � 10, leaky integrate
and-fire (LIF) neurons. Input features are mapped as proposed in [56] (computed
according to equation in Appendix B), as this method optimises the mapping of the
input variables using a graph matching algorithm. Optimising this process improved
the results greatly, as the mapping influenced the learning, and therefore the under-
standing of the time-series patterns created by the data. The spiking LIF neurons of
the Cube are connected using a small-world (SW) connectivity rule. These con-
nections have weight values assigned and calculated as per Chaps. 4 and 5. Excitatory
connection weights represent 80%, while inhibitory connection weights represent
20% of the total. Setting up a proper initial structural connectivity in a network of
artificial spiking neurons is important, as it allows the SNN model to properly learn
from the data and capture functional connectivity information from it. This pre-
serves the spatio-temporal relationships within the data, which is a significant source
of information generally overlooked by other techniques. Unsupervised learning of
the Cube is performed to modify the initially set connection weights. The SNNc

Fig. 15.17 Time series gene expression data are first clustered and then used to train a NeuCube
model
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learns to activate same groups of spiking neurons when similar input stimuli are
presented, also known as a polychronization effect [57]. Hebbian learning rules [58]
are applied at this stage, implementing spike-timing-dependent plasticity (STDP)-
like algorithms [59] (computed according to equations in Appendix D). The STDP
protocol describes the connection between two neurons as stronger as their activation
persists and repeats. The neurons become able to develop new connections in the
network that can then be analysed and interpreted. This makes the proposed SNN
system useful for learning spatio-temporal patterns from the data, forming an asso-
ciative type of memory that can be further explored. The final cube structure can be
visualised after unsupervised training for greater knowledge extraction that cannot be
achieved with purely statistical or mathematical techniques.

Output Module for Supervised Learning and Data Classification

During supervised learning, the same data used for the unsupervised training is
propagated again through the trained cube, and output neurons are generated and
trained to classify the data patterns into output spike sequences (the classes). To
learn and classify spiking patterns from the Cube, we use the dynamic evolving
spiking neural network (deSNN) classifier, which allows simple class-based dis-
crimination [60] (Chap. 5). The spiking activity generated during learning can be
visualised and used as a bio-feedback.

15.4.3 Extracting GRN from a Trained Model

The learned spiking activity and connectivity generated by the time-series gene
expression data can be analysed by means of a GRN (or also called in [34] gene
interaction network or GIN). Each one of the input gene features is used as a source
of information to define the centre of a cluster of neurons. Each unlabelled neuron is
assigned to a cluster with which it exchanges the highest number of spikes. This is
calculated, during the STDP learning process. The more spikes transmitted between
clusters, the greater is the spatio-temporal interaction between genes over time. The
obtained GIN represents a connectivity graph, where nodes represent gene vari-
ables, and the lines and their thickness define the amount of temporal information
exchanged between genes. In other words, the interaction between input variables is
captured in the GIN in terms of their changes in time. The information showed in
the GIN is used to analyse the complex temporal patterns “hidden” in data, which
can be used for the development of new methodologies of gene expression data
modelling and understanding.
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15.4.4 A Case Study Experimental Modelling of Gene
Expression Time Series Data

This study makes use of the information provided by transcriptome data to classify
and analyse the interaction of different genes over time as a GRN. For our
experimental case study, the raw gene expression data was first modelled and
encoded into trains of spikes. Then, patterns of temporal activity generated during
learning were classified, to establish the effectiveness of the SNN system designed
to separate different time-series gene expression data into different classes. Then,
the learned patterns of temporal activity generated in the Cube were analysed in
terms of spiking activity and connection weight changes and new information was
extracted as a GRN to study the interaction of genes expressed over time.

Figure 15.18 shows and example of encoding the case study data, the training
and the extraction of GRN for each of the two classes of data.

As a case study for our problem, gene expression data collected during elici-
tation of allergic contact dermatitis (ACD) over time has been used. Data was
obtained from the publicly available Gene Expression Omnibus (GEO) repository
of functional genomics data (NCBI GEO [61, 62] accession GSE6281 [63]). Data
was collected from a control group, and a group of people that had shown an
inflammatory response to a nickel patch test. Expression profiling was analysed by
hybridization of high density oligonucleotide arrays obtained after skin biopsies of
7 nickel-allergic female subjects, and 5 non-allergic female controls. Biopsies were
taken over four time periods: 0, 7, 48 and 96 h. The control group did not show
eczema at any time-point, while nickel allergic patients reacted with eczema at 48
and 96 h only. Samples were analysed using microarray technology that measured

Fig. 15.18 The process of encoding a case study data, the training and the extraction of GRN for
each of the two classes of data [34]
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transcript levels in biopsies. Each microarray contains thousands of data points, an
enormous quantity of data. Although, time-series microarray data are really short
and the number of gene expressed is huge compared with the short-time course data
available. To adequately describe the distribution of the data, we need to reduce the
number of features to approach the curse of dimensionality phenomenon, such as
the Hughes phenomenon [64–66]. Thus, extracting the relevant number of genes
that interact with each other over time is the first problem that we need to solve for
developing a computational model of GIN. We need to evaluate how relevant the
original variables or features of the model are, when using classification accuracy as
an objective function to the problem. To achieve this, we have used the popular
signal-to-noise ratio (SNR), as described in Chap. 1 and [67], to evaluate how
important a variable is to discriminate samples belonging to different classes. SNR
is a filtering method that selects and ranks features in advance, before the model is
created. For the experiments, data was ordered according to the time of collection.
We obtained a total of eight samples, four of each class (control patients or patients
affected by ACD). Missing data was handled using linear interpolation method [68].
Then, SNR method was applied.

Figure 15.19 gives the SNR ranking of the features. As a result, our sample data
consisted of a set of four time-series data per seven features selected out of the
original 54675 variables. These corresponded to genes CLDN6, H72868,
RALGAPA1, RAP1GAP, LEF1, ZMIZ1 and MAPRE3. In the encoding module,
the ordered vectors of real-valued data were then converted into trains of spikes
using the ATB encoding algorithm.

Fig. 15.19 The SNR ranking of the features for the case study data. As a result, our sample data
consisted of a set of four time-series data per seven features selected out of the original 54675
variables. These corresponded to genes CLDN6, H72868, RALGAPA1, RAP1GAP, LEF1,
ZMIZ1 and MAPRE3 [34]
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To investigate whether the system was able to correctly discriminate the two
different groups of people, we classified the data into two classes: class one—
control—and class two—patients that shown ACD. In total, we had 8 samples, four
for each class, four time steps of data collection (0, 7, 48 and 96 h), and 7 features/
genes extracted after SNR dimensionality reduction technique was applied.
Optimisation of the numerous parameters of the SNN system was performed via a
grid search method that evaluated ten combinations of parameters and selected the
one with the highest classification accuracy. This process was evaluated using the
Monte-Carlo cross validation method. More specifically, we randomly selected a
cube and used the leave-one-out cross validation (LOOCV) method to select the
training and testing set. This process was repeated for 30 times, generating each
time a random new cube for training and testing. LOOCV method has been chosen,
as it best assesses the variables importance over a random set of entities, it best
tackles the low-number-of-predictors versus high-number-of-dimensions problem,
and it is the best method to validate a model, when only a small data set is available.
The optimised parameter values obtained were (see Chap. 6):

• The ATB encoding algorithm was set at 0.01;
• The SW connectivity radius was set at 2.5;
• The parameters of the LIF neuron model were set at 0.5 (threshold of firing), 6

(the refractory time) and 0.002 (the potential leak rate);
• The STDP rate parameter of the unsupervised learning algorithm was set at

0.002;
• The variables mod and drift of the deSNN classifier were set at 0.8 and 0.005

respectively.

Table 15.2 reports the classification accuracy percentage obtained with this com-
bination of parameters. These results demonstrated the capability of the SNN
system to discriminate between the two classes, even when trained with such a
small data set. This is a good indication that the proposed SNN system can be used
for classifying time-series gene expression data.

15.4.5 Extracting GRN Form a Trained Model and Analysis
of the GRN for New Knowledge Discovery

After the optimisation procedure, we retained the best SNN model parameters, the
initial connectivity and temporal mapping of the input features. Network analysis

Table 15.2 Classification accuracy percentage obtained after training the SNN system with the
gene expression data available

Measure Overall accuracy %

Mean 73

Standard deviation 4.5
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was carried out by training the entire time series data available for each class
separately. This process was iterated 100 times per class, to allow the system to
learn from the short-time series data. First, the input features were clustered with
other neurons of the Cube according to their connection weight value (see Chap. 6).
Consequently, the neural activity generated per class revealed seven clusters of
genes (Fig. 15.20 left). The proportion of activity generated in the entire 3D cube is
illustrated in the pie chart (Fig. 15.20 right). As shown in Fig. 15.20, there are three
major clusters obtained for each class. The major component for the two classes is

Fig. 15.20 Left: the 3D SNN cube shows the clusters formed by CLDN6, H72868, RALGAPA1,
RAP1GAP, LEF1, ZMIZ1 and MAPRE3 with the other neurons of the cube according to their
connection weights value. Right: the pie chart illustrates the numerical proportion of the clustered
activity expressed as a percentage with respect to the entire cube: a class one—control; b class two
—patients that shown ACD. Every gene is shown in a different colour, as indicated in the bar at the
top of the figure [34]
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given by the cluster of gene MAPRE3 (43% for class one and 32% for class two);
followed by H72868 for class one (25%) and ZMIZ1 for class two (31%); and
ZMIZ1 for class one (17%), and H72868 for class two (22%). The total interaction
between the seven clusters was calculate per class and visualised in a GIN
(Fig. 15.21, left class one, right class two). Each cluster of genes is indicated by a
different colour. The stronger the interaction between clusters, the thicker is the line
that connects the genes. The two GINs obtained for each class show significance
differences between subjects that are sensitised to nickel versus control subjects.

Some of the main points that we can extrapolate from the GINs are:

• First of all, we can appreciate that there is no temporal interactions exchanged
between CLDN6 gene and other genes of the network for class one; while,
CLDN6 gene shows significant temporal association with the four other genes
of the network for class two.

• In comparison with GIN of class one, the GIN of class two shows stronger
connections between MAPRE3 (the major component for the two classes, in
term of neural activity exchanged as total connection weight) and ZMIZ1 (the
second major cluster of temporal activity exchanged for class two).

• The expression of ZMIZ1 gene has shown a stronger temporal correlation with
RALGAPA1 gene for class two compared with class one.

These observations appear to be consistent with the finding in the literature [69].
Claudin-6, is part of the claudin family, the most important component of tight
junction strands. These are barrier between the cells of an epithelium that controls
the paracellular flow of molecules in the intercellular space [70], thus is expression
cause up-regulation of epithelial cells in patients showing skin eczema. Also, it is
well known that nickel is a ubiquitous trace element and present also in most of the
dietary items. Thus, food is a major source of nickel exposure for the population
and can provoke not only dermatitis, but also gastrointestinal symptoms similar to

Fig. 15.21 GRNs of the seven input features (genes CLDN6, H72868, RALGAPA1, RAP1GAP,
LEF1, ZMIZ1 and MAPRE3) obtained per class. Left: class one—control. Right: class two—
patients that shown ACD. The seven genes are indicated in different colours corresponding to each
of the respective clusters. The stronger the interaction between genes, the thicker is the line that
connects the node [34]
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irritable bowel syndrome [71]. This will also explain the regulation of CLDN6, as
the detection of this gene is a marker for intestinal- and diffuse-type of gastric
adenocarcinomas [70]. MAPRE3 encodes for microtubule-associated protein RP/
EB Family Member 3, which is member of the RP/EB family. Thus, this gene is
involved in microtubule growth, regulation of dynamics, stabilisation and anchor-
ing at centrosomes. It may also play a role in cell migration. It is mostly expressed
in brain and muscle. On the other hand, ZMIZ1 encodes zinc finger MIZ-type
containing 1 protein, which regulates the activity of various transcription factors.
The encoded protein may also play a role in sumoylation (i.e. post-translational
modification activity) and regulation of transcription. This gene can be also found
expressed, in thymus, small intestine, colon and peripheral blood leukocytes [69].
RALGAPA1 encode for a major subunit required for the heterodimerization activity
of RALGTPase activating protein, the RalGTPase Activating Protein Catalytic
Alpha Subunit 1. This gene is overexpressed in liver and esophagus and its
expression is also revealed in nervous system, liver, skin and lymph node tissue
[69]. These findings show that as a consequence of the assimilation of nickel,
patients affected by ACD are to express genes that are revealed in skin, mussels and
in the human digestive system, and that this expression is related with cell prolif-
eration and immune response.

15.4.6 Discussions on the Method

The analysis of patterns generated by time-series gene expression data constitutes a
major goal for the area of bioinformatics and system biology. In this study, we have
modelled short-time transcriptome data and revealed meaningful patterns and new
knowledge from the genes expressed over time by means of novel SNN system that
creates a GIN model. For the case study data of allergy reaction against nickel, we
have found that CLDN6 was the feature that scored the highest SNR value and its
cluster revealed temporal association with other genes for class two only (positive
reaction). Still, we have found that the exchange of temporal activity has been
dominated by MAPRE3 and ZMIZ1 clusters. Also, H72868 cluster has shown
relevant temporal association and interaction with other genes. According to the
information available regarding the nature of these genes, it seems plausible that
patients affected by ACD express genes that are revealed in skin, mussels and in the
human digestive system, and that these genes are also related to cell proliferation
and immune response. All of this, appear to be the consequence of the assimilation
of nickel in the body and the increased of eczematous reactions over time. We can
conclude that, SNNs are the method of choice when dealing with big transcrip-
tomics data, as they extract only relevant patterns of temporal activity from the gene
expression data; moreover, the clinical focus of this study demonstrated the model
ability to constitute a valuable tool that can support experts in the area of bioin-
formatics and system biology in understanding and studying the interaction
between genes expressed over time. Future work includes:
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• Implementation of different feature selection methods for temporal gene
expression data, such as the one proposed in [72];

• Studying the possible implication of directionality between temporal interaction
of genes in the network;

• Comparative analysis of the results obtained with the proposed method with the
ones obtained by [63] on the same data set;

• Further study on the application of the method for cancer time series data
analysis [35];

• Further study on the application of the method for the analysis of gene
expression data measuring response to treatment, such as to Ebola vaccine [36].

15.5 Chapter Summary and Further Readings

This chapter first introduces the basic knowledge about molecular biology, before
presenting methods for modelling bioinformatics data such as gene expression
using evolving spiking neural networks and BI-SNN. The latter are applied for deep
learning and modelling of gene expression time series data, thus enabling the
discovery of gene interaction networks (GIN) to better understand the biological
processes. Analysis of genes related to brain functions is covered in Chap. 16 under
the title—Computational neurogenetic modelling.

More about biological background and computational modelling in bioinfor-
matics can be found in various chapters of [2], including:

– Understanding information processes in biological systems (Chaps. 2–7, in [2]);
– Molecular biology, genomics and proteomics (Chaps. 8–11 in [2]);
– Biological databases (Chap. 26 in [2]);
– Ontologies in bioinformatics (Chap. 27 in [2]);
– Path finding in biological networks (Chap. 19 in [2]);
– Inferring transcription networks from data (Chap. 20 in [2]);
– Inferring genetic networks with recurrent neural network model using differ-

ential evolution (Chap. 22 in [2]);
– Structural pattern discovery in protein-protein interaction networks (Chap. 23 in

[2]);
– Cancer stem cells (Chap. 28 in [2]);
– Epigenetics (Chap. 29 in [2]);
– Autoimmune diseases (Chap. 30 in [2]);
– Nutrigenomics (Chap. 31 in [2]);
– Nanomedicine (Chap. 32 in [2]);
– Personalised medicine (Chap. 33 in [2]);
– Health informatics (Chap. 34 in [2]);
– Ecological informatics (Chap. 35 in [2]);
– Modelling bioinformatics data with BI-SNN: https://kedri.aut.ac.nz/R-and-D-

Systems/bioinformatics-data-modelling-and-analysis.
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Chapter 16
Computational Neuro-genetic Modelling

While Chap. 15 gave the basics of molecular biology and some methods for
modelling bioinformatics data, computational neurogenetic modelling (CNGM)
takes inspiration from neuro-genetics and develops neural network models that
include gene information in their structure and functionality, similar to the bio-
logical neural networks, that have genes in the nucleus of each neuron, that not only
affect but also cause the spiking activity of the neurons. Here we will consider
genes as parameters that affect the functioning of the spiking neurons and the SNN
as a whole. CNGM is a new science direction with promising applications, some of
them discussed in the chapter.

The chapter is organised in the following sections:

16:1. Computational neurogenetics.
16:2. Probabilistic neurogenetic model of a spiking neuron.
16:3. CNGM architectures.
16:4. Applications of CNGM.
16:5. Life, death and CNGM.
16:5. Chapter Summary and further readings for deeper knowledge.

16.1 Computational Neurogenetics

16.1.1 General Notions

Integrative computational neurogenetic modelling (CNGM) is concerned with the
development of computational models that integrate brain structural and functional
information with brain-related genetic information. In this chapter we will discuss
brain-inspired CNGM based on spiking neural network computational models.
These models can be successfully applied for mapping, learning and understanding
of spatio-temporal and neurogenetic brain data related to the same problem of
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interest. Data, such as EEG, fMRI, MEG, gene/protein expression data, and other,
can be modelled in a CNGM in their integration and spatio-temporal interaction.

The brain is a complex spatio-temporal neurogenetic information processing
machine that processes information at different functional levels (Fig. 16.1).
Spatio-temporal activity in the brain depends on the internal brain structure, on the
external stimuli and also very much on the dynamics at gene-protein level. Methods
for measuring activity of the brain, such as EEG, fMRI, MEG, PET, DTI have been
widely used, some of them presented in this encyclopedic volume. CNGM go one
step further—integrating these data with relevant genetic data for a better under-
standing of the brain.

Genes are both the result of the evolution of species and the functioning of an
individual brain during a life time. Different genes express as different mRNA,
microRNA and proteins in different areas of the brain and are involved in all
information processes, from spiking activity, to perception, decision making and
emotions. Functional connectivity develops in parallel with structural connectivity
during brain maturation where a growth-elimination process (synapses are created
and eliminated) depends on gene expression and environment. For example,
postsynaptic AMPA-type glutamate receptors (AMPARs) mediate most fast exci-
tatory synaptic transmissions and are crucial for many aspects of brain functioning,
including learning, memory and cognition [1]. In [2] performed weighted gene
co-expression network analysis to define modules of co-expressed genes and
identified 29 such modules, associated with distinct spatio-temporal expression
patterns and biological processes in the brain. The genes in each module form a
gene regulatory network (GRN).

The spiking activity of a neuron may act as a feedback and affect the expression
of genes. As pointed out in [3] on a time scale of minutes and hours the function of
neurons may cause changes in the expression of hundreds of genes transcribed into
mRNAs and also in microRNAs. This links together the short-term, the long-term
and the genetic memories of the neurons representing the global memory of the
whole neuronal system.

6.  Evolu onary (popula on/genera on) processes 
__________________________________________________
5.   Brain cogni ve processes  
_________________________________________________

4.  System informa on processing (e.g. neural ensembles) 
___________  _____________________________________
3.   Informa on processing in a cell (neuron) 
_________________________________________________
2 Molecular informa on processing (genes, proteins)
_________________________________________________      
1.    Quantum informa on processing

Fig. 16.1 Different ‘levels’ of information processing in the brain [11]
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The anatomically comprehensive atlas of the adult human brain trascriptome
(www.brain-map.org) is a rich repository of bran-gene data that will definitely
trigger new directions for research and computational modelling of neurogenetic
data [4, 5, 12, 13]. Example of a gene expression brain map is given in Fig. 16.2.

Gene expression is clearly distinguished between structural and functional areas
of the brain. Specific genes define specific functions of different sections of the
brain. Specific genes relate to specific types of neurons and types of connections.
For example, the gene expression level of genes related to dopamine-signalling (e.g.
DRD5-DRD1, COMPT, MAOB, DDC, TH, etc.) is higher in areas of a normal
subject brain that consist of neurons with larger number of dopamine regulated ion
channels. These areas relate to dopamine–driven cognition, emotion and addiction.
Such areas are: hippocampus, striatum, hypothalamus, amygdala, and pons. If these
areas are activated normally it means that there is a sufficient dopamine signalling.
In a diseased brain a non-activated area may suggest lack of dopamine.

In [6], for example, demonstrated that changes in the neurotransmitter receptor
densities for important neurotransmitters coincide mostly with the Brodmann
cytoarchitectonic borders. These neurotransmitter receptors are: a1, noradrenergic
a1 receptor; a2A noradrenergic a2A receptor; AMPAR, a-amino-3-hydroxy-5-
methyl-4-isoxazole propionic acid receptor; GABAB, GABA (c-aminobutyric
acid)-ergic GABAB receptor; M2, cholinergic muscarinic M2 receptor; M3
cholinergic muscarinic M3 receptor; NMDAR, N-methyl-d-aspartate receptor.

Figure 16.3 shows that the expression of the GABRA2 receptor is different in
different parts of the brain.

Fig. 16.2 From the brain explorer: The expression level of several genes (on the vertical axis) in
different areas of the brain (horizontal axis): ABAT A_23_P152505, ABAT A_24_P330684,
ABAT CUST_52_PI416408490, ALDH5A1 A_24_P115007, ALDH5A1 A_24_P923353,
ALDH5A1 A_24_P3761, AR A_23_P113111, AR CUST_16755_PI416261804, AR
CUST_85_PI416408490, ARC A_23_P365738, ARC CUST_11672_PI416261804, ARC
CUST_86_PI416408490, ARHGEF10 A_23_P216282, ARHGEF10 A_24_P283535,
ARHGEF10 CUST_) (from www.brain-map.org) (http://www.alleninstitute.org)
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The enormousness of brain data available and the complexity of the research
questions that need answering through integrated models for brain data analysis are
grand challenges for the areas of machine learning and information science in
general [7–10]. And this is where CNGM can help.

CNGM, as defined and proposed in [11–13], is based on computational models
of spiking neurons, linked as spiking neural networks (SNN). A single spiking
neuron model can integrate gene and spiking information related to spiking activity
of the neuron, while a SNN can represent a pattern of brain activity. Something
more, a probabilistic neurogenetic spiking neuron model can incorporate quantum
information processing characteristics as discussed in the next section.

16.2 Probabilistic Neurogenetic Model (PNGM)
of a Spiking Neuron

16.2.1 The PNGM of a Spiking Neuron

Several spiking neuronal models have been proposed so far (e.g. [14–17]) as also
presented in Chap. 4. In this section the LIFM has been extended to probabilistic
neurogenetic model (PNGM) [4, 13, 18, 19]—Fig. 16.4. As a partial case, when no
probability parameters and no genetic parameters are used, the model is reduced to
the LIFM.

In the PNGM four types of synapses for fast excitation, fast inhibition, slow
excitation, and slow inhibition are used. The contribution of each one to the PSP of

Fig. 16.3 The expression of the GABRA2 receptor is differently expressed in different parts of
the brain (from [13])
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a neuron is defined by the level of expression of different genes/proteins along with
the presented external stimuli. The model utilises known information about how
proteins and genes affect spiking activities of a neuron. Table 16.1 shows what
proteins affect each of the four types of synapses. Neuronal action potential
parameters and related proteins and ion channels in the computational neuro-genetic
model of a spiking neuron: AMPAR—(amino-methylisoxazole-propionic acid)
AMPA receptor; NMDR—(N-methyl-D-aspartate acid) NMDA receptor;
GABAAR—(gamma-aminobutyric acid) GABAA receptor, GABABR—GABAB

receptor; SCN—sodium voltage-gated channel, KCN—kalium (potassium)
voltage-gated channel; CLC—chloride channel (from [13])

This information is used to calculate the contribution of each of the four different
synapses j connected to a neuron i to its post synaptic potential PSPi(t):

esynapseij ðsÞ ¼ Asynapse exp � s
ssynapsedelay

 !
� exp � s

ssynapserise

� � !
ð16:1Þ

where: ssynapsedecay=rise are time constants representing the rise and fall of an individual

synaptic PSP; A is the PSP’s amplitude; eij
synapse represents the type of activity of the

synapse between neuron j and neuron i that can be measured and modelled sepa-
rately for a fast excitation, fast inhibition, slow excitation, and slow inhibition (it is
affected by different genes/proteins). External inputs can also be added to model

Fig. 16.4 A diagram of the
probabilistic neurogenetic
model of a spiking neuron
[19]

Table 16.1 Different genes and proteins affect spiking activity (the PSP) of a neuron

Different types of action potential of a spiking
neuron

Related neurotransmitters and ion
channels

Fast excitation PSP AMPAR

Slow excitation PSP NMDAR

Fast inhibition PSP GABAAR

Slow inhibition PSP
Modulation of PSP

GABABR
mGluR

Firing threshold Ion channels SCN, KCN, CLC
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background noise, background oscillations or environmental information. Genes
that relate to the parameters of the neurons are also related to the activity of other
genes, thus forming a GRN.

The PNGM is a probabilistic model. In addition to the connection weights wj,i(t),
three probabilistic parameters are defined:

– A probability pcj,i(t) that a spike emitted by neuron nj will reach neuron ni at a
time moment t through the connection between nj and ni. If pcj,i(t) = 0,
no connection and no spike propagation exist between neurons nj and ni. If
pcj,i(t) = 1 the probability for propagation of spikes is 100%.

– A probability psj,i(t) for the synapse sj,i to contribute to the PSPi(t) after it has
received a spike from neuron nj.

– A probability pi(t) for the neuron ni to emit an output spike at time t once the
total PSPi (t) has reached a value above the PSP threshold (a noisy threshold).

The total PSPi(t) of the spiking neuron ni is now calculated using the following
formula:

PSPi tð Þ ¼
X X

ejf1 pcj;i t� pð Þ
� �

f2 psj;i t� pð Þ
� �

wj;i tð Þþg t� t0ð Þ
� �

p ¼ t0; :; t j ¼ 1; ::;m

ð16:2Þ

where: ej is 1, if a spike has been emitted from neuron nj, and 0 otherwise; f1(pcj,i(t))
is 1 with a probability pcji(t), and 0 otherwise; f2(psj,i(t)) is 1 with a probability
psj,i(t), and 0 otherwise; t0 is the time of the last spike emitted by ni; η(t−t0) is an
additional term representing decay in the PSPi. As a special case, when all or some
of the probability parameters are fixed to “1”, the above probabilistic model will be
simplified and will resemble the LIFM.

The probabilistic parameters of the PNGM of a neuron have also their biological
analogues and are controlled by specific genes [20]. For example, the probability of
a synapse to contribute to the post-synaptic potential after it has received a spike
from a pre-synaptic neuron may be affected by different proteins, e.g.: proteins that
affect the transmitter release mechanism from the pre-synaptic terminal such as the
SNARE proteins (Syntaxin, Synaptobrevin II, SNAP-25), SM proteins (Munc18–
1), the sensor Synaptotagmin, and Complexin, and also the proteins such as PSD-95
and Transmembrane AMPA receptor regulatory proteins (TARPs) in the postsy-
naptic site. The probability for a neuron to emit an output spike at the time when the
PSP has reached a value above the threshold may be affected by different proteins,
e.g.: density of the sodium channels in the membrane of the triggering zone. The
time decay parameter in a LIFM may be affected by different genes and proteins
depending on the type of the neuron. Such proteins are: transporters in the
pre-synaptic membrane, the glial cells and the enzymes, which uptake and break
down the neurotransmitters in the synaptic cleft (BAX, BAD, DP5); metabotropic
GABAB Receptors; KCNK family proteins that are responsible for the leak con-
ductance of the resting membrane potential.
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16.2.2 Using the PNGM of a Neuron to Build SNN

The PNGM of a neuron can be used to build SNN of different types: simple
one-layer feed-forward network; recurrent network; reservoir type network; 3D
cube that maps the structure of the brain in the NeuCube architecture [4].

Different learning rules for SNN can apply for learning in a SNN. The STDP
learning rule (Spike Timing Dependant Plasticity) [21] utilizes Hebbian plasticity
[22] in the form of long-term potentiation (LTP) and depression (LTD). Efficacy of
synapses is strengthened or weakened based on the timing of post-synaptic action
potential in relation to the pre-synaptic spike. If the difference in the spike time
between the pre-synaptic and post-synaptic neurons is negative (pre-synaptic
neuron spikes first) then the connection weight between the two neurons increases,
otherwise it decreases. Connected neurons, trained with STDP learning rule, learn
consecutive temporal associations from data. New connections can be generated
based on activity of consecutively spiking neurons. Pre-synaptic activity that pre-
cedes post-synaptic firing can induce long-term potentiation (LTP), reversing this
temporal order causes long-term depression (LTD).

The PNGM and the STDP learning methods can be used to develop new types of
eSNN models for spatio-temporal pattern recognition, extending SPAN [23, 24];
deSNN [25]; reservoir eSNN [26, 27]; ReSuMe [28]; Chronotron [29]; Tempotron
[30] (see Chaps. 4 and 5). The dynamic eSNN (deSNN) [25] combines rank-order
and temporal (e.g. STDP) learning rules as presented in Chap. 5. The initial values
of synaptic weights are set according to the rank-order learning assuming the first
incoming spikes are more important than the rest. The weights are further modified
to accommodate following spikes activated by the same stimulus, with the use of a
temporal learning rule–STDP.

When the PNGM of a neuron is used to build an eSNN or a deSNN, rank-order
learning rule [31] uses important information from the input spike trains, namely
the rank of the first incoming spikes on the neuronal synapses. It establishes a
priority of inputs (synapses) based on the order of the spike arrival on these
synapses for a particular pattern. This is a phenomenon observed in biological
systems. The rank-order learning has several advantages when used in SNN,
mainly: fast, one-pass learning (as it uses the extra information of the order of the
incoming spikes) and asynchronous data entry (synaptic inputs are accumulated
into the neuronal membrane potential in an asynchronous way). The postsynaptic
potential of a neuron i at a time t is calculated as:

PSP i; tð Þ ¼
X

modorder jð Þwj;i ð16:3Þ

where: mod is a modulation factor, that has a value between 0 and 1; j is the index
for the incoming spike at synapse j,i and wj,i is the corresponding synaptic weight;
order(j) represents the order (the rank) of the spike at the synapse j,i among all
spikes arriving from all m synapses to the neuron i. The order(j) has a value 0 for
the first spike and increases according to the input spike order. An output spike is
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generated by neuron i if the PSP (i,t) becomes higher than a threshold PSPTh(i).
During the training process, for each training input pattern there is a new output
neuron created and its connection weights are calculated based on the order of the
incoming spikes:

Dwj;iðtÞ ¼ modorderðj;iðtÞÞ ð16:4Þ

16.3 Computational Neurogenetic Modelling (CNGM)
Architectures

16.3.1 CNGM Architectures

Figure 16.5 shows a general diagram of a CNGM system that consists of several
modules hierarchically connected [20]:

– low molecular level modelling modules;

– GRN modules;
– SNN;
– high level of SNN activity analysis module.

More about this architecture can be found in [20].

M1 M2 Mp

Molec. Model

GRN model Other relevant 
gene/protein information

SNN model

Analysis of patterns of spiking 
activity and connectivity

Fig. 16.5 A general diagram of a CNGM. It consists of several modules hierarchically connected:
a low molecular level modelling modules; GRN modules; SNN; high level of SNN activity
analysis module [20]
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Another architecture of CNGM is shown in Fig. 16.6. It consists of a SNN,
where each spiking neuron is governed by a gene regulatory network (GRN) of
genes or proteins. More about this architecture can be found in [13]. It is used as an
optional implementation of the SNNcube in the NeuCube architecture (Chap. 6).

16.3.2 The NeuCube Architecture as a CNGM

A CNGM architecture, that was also presented in Chap. 6, is NeuCube (Fig. 16.7)
[4]. It consists of the following functional modules:

– Input data encoding module;
– 3D SNN reservoir module (SNNr) also denoted as SNNcube or SNNc;
– Output function (classification) module;
– Gene regulatory network (GRN) module;
– Optimisation module.

W = ?

GABRA GABRA

SCN AMPAR

KCN

CLC

NMDAR

PV

Fig. 16.6 A CNGM architecture from [13]. It consists of a SNN, where each spiking neuron is
governed by a gene regulatory network (GRN) of genes or proteins. More about this architecture
can be found in [13]

Fig. 16.7 NeuCube as a CNGM architecture that uses a PNGM of a neuron and GRN of genes
controlling the spiking activity of the SNNcube
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Below we describe the functioning of the NeuCube as a CNGM architecture,
which is complementary to the functional description of NeuCube presented in
Chap. 6.

Continuous value input data is transformed into spikes (e.g. pixel, EEG channel,
fMRI voxel) using population rank coding [32], Threshold Based Encoding
(TBE) [33] or other methods, e.g. Ben’s Spike Algorithm (BSA) [34].

The transformed input data is entered (mapped) into spatially located neurons
from the SNNr. Brain data sequences are mapped to spatially located neurons in the
SNNr that represent spatially brain areas where data is collected. Spike trains are
continuously fed into the SNNr in their temporal order. The SNNr is structured to
spatially map brain areas for which TSBD or/and gene data is available using some
of the brain templates, such as Talairach [35], MNI [36] or other. A neuronal SNNr
structure can include known structural or functional connections between different
areas of the brain represented in the data. Setting up a proper initial structural
connectivity in a model, is important in order to learn properly spatio-temporal data,
to capture functional connectivity and to interpret the model [37]. More specific
structural connectivity data can be obtained using for example Diffusion Tensor
Imaging (DTI) method (Chap. 11).

The input time-space data is propagated through the SNNr and a method of
unsupervised learning is applied, such as STDP [21]. The neuronal connections are
adapted and the SNNr learns to generate specific trajectories of spiking activities
when a particular input pattern is entered. The SNNr accumulates temporal infor-
mation of all input spike trains and transforms it into dynamic states that can be
classified over time. The recurrent reservoir generates unique neuronal spike time
responses for different classes of input spike trains which effect is called poly-
chronization [15].

After the SNNr is trained in an unsupervised model, the same input data is
propagated again through the SNNr and an output classifier is trained to recognize
the patterns of activity of the SNNr in a predefined output class for this input
pattern.

The expression of genes in the GRN in the NeuCube CNGM from Fig. 16.7
affect the spiking activity of the whole SNN as explained below and illustrated in
Fig. 16.8.

Since the NeuCube structure maps brain structural areas through standard
stereotaxic coordinates (e.g. MNI, Talairach, etc.) gene data can be added to the
NeuCube architecture if such data is available. Gene expression data can be mapped
to neurons and areas from a NeuCube as a fifth dimension, in addition to the 3
spatial and one temporal dimensions, so that a vector of gene expression can be
allocated for every neuronal group. Some of these genes would be directly involved
in the function of the PNGM of the neurons. Neurons can share same expression
vectors in a cluster. This is possible because spatial locations of neurons in the
SNNr correspond to stereotaxic coordinates of the brain [5]. Furthermore, there are
known chemical relationships between genes, or between groups of genes related to
same brain function, forming gene regulatory networks (GRN) [38]. Therefore, the
fifth dimension in a SNNr can be represented as a GRN.
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The relationship between genes and spiking neuronal activities can be explored
through varying gene expression levels and performing simulations, especially
when both gene and brain data are available for some special cognitive or abnormal
brain states. Some data related to expression of genes in different areas of the brain
under different conditions are available from the Brain Atlas of the Allen Brain
Institute.

This is illustrated with a simple example shown in Fig. 16.8. The response of the
1000 spiking neurons to changes of a neuronal parameter due to changes in the
expression of a single gene is shown as a raster plot of spike activity. A black point
in this diagram indicates a spike of a specific neuron at a specific time in the
simulation (the x axis). The bottom diagram presents the evolution of the membrane
potential of a single neuron from the network (green curve) along with its firing
continuous noisy threshold (red curve). Output spikes of the neuron are indicated as
black vertical lines in the same diagram (from [4]).

16.4 Applications of CNGM

16.4.1 Modelling Brain Diseases

Based on prior information and available data, different CNGM models can be
created for the study of various brain states, conditions and diseases ([13] Genes
and Diseases) such as: epilepsy; schizophrenia; mental retardation; brain aging;
Parkinson disease; clinical depression; stroke; AD [4, 20, 38, 39]. Once learned in a
CNGM model, the already known two-way links between spiking activity of the
brain and gene transcription and translation, can be potentially used to evaluate
gene mutations and the effects of drugs.

One of the most studied brain disease is Alzheimer’s Disease (AD). Gene
expression data at a molecular level from both healthy and AD patients have been

Fig. 16.8 A single gene expression level over time can affect the pattern of activity of a whole
SNNr of 1000 neurons. The gene controls the s parameter of all 1000 LIF neurons over a period of
five seconds and changes in this parameter affect the spiking activity of the neurons
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published in the Brain Atlas (www.brain-map.org). Interactions between genes in
AD subjects have been studied and published (e.g. [38]). An example of a GRN
related to AD is given in Fig. 16.9. Atlases of structural and functional pathways
data of both healthy and AD subjects have also been made available [40].

A possible scenario of studying AD through neurogenetic modelling in a
NeuCube model will involve the GRIN2B gene. It has been found that subjects
affected by AD have a deficit of NMDAR subunit, with GRIN2B level decreased in
the hippocampus. A GRN of NMDAR will be constructed as the synthesis of this
receptor is possible only due to the simultaneous expression of different genes,
which are responsible for the subunits that form the macromolecule. Such genes
are: GRIN1-1a, GRIN2A, GRIN2B, GRIN2D and GRIN3A. A GRN of AMPAR
genes can also be developed and the two GRNs connected in a NeuCube SNNcube.

A similar approach can be applied for modelling data for Parkinson’s disease,
multiple sclerosis, stroke and other brain diseases for which both molecular and
TSBD is available.

16.4.2 CNGM for Cognitive Robotics and Emotional
Computing

Building artificial cognitive systems (e.g. robots, AI agents) that are able to com-
municate with humans in a human-like way has been a goal for computer scientists
for decades now. Cognition is closely related with emotions. Basic emotions are
happiness, sadness, anger, fear, disgust, surprise, but other human emotions play
role in cognition as well (pride, shame, regret, etc.). Some primitive emotional
robots or simulation systems have already been developed (e.g. see [41]). The area
of affective computing, where some elements of emotions are modelled in a
computer system, is growing [42].

Fig. 16.9 Genes related to AD form a GRN that can be modelled as part of a CNGM [38]
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A CNGM would make it possible to model cognition-emotion brain states that
could further enable the creation of human-like cognitive systems. That would
require understanding relevant brain processes as different levels of information
processing. For example, it is known that human emotions depend on the expres-
sion and the dynamic interaction of neuromodulators (serotonin, dopamine, nora-
drenalin and acetylcholine) and some other relevant genes and proteins (e.g.,
5-HTTLRP, DRD4, DAT), that are functionally linked to the spiking activity of the
neurons in certain areas of the brain. They have wide ranging effects on brain
functions. For example, Noradrenaline is important to arousal and attention
mechanisms. Acetylcholine has a key role in encoding memory function. Dopamine
is related to aspects of learning and reward seeking behaviour and may signal
probable appetitive outcome, whereas serotonin may affect behaviour with probable
aversive outcome. Modifying gene and protein expression levels of genes used in a
particular CNGM would affect the learning and pattern recognition properties of
that model. For example, the modification could cause connections and functional
pathways to become stronger or weaker, which could be observed and further
interpreted in terms of cognitive and emotional states.

16.5 Life, Death and CNGM

Life and death are two states of an organism. Life expires when certain molecular
and brain functions stop. But when exactly they stop, would they be reversible in a
time window and can CNGM help discover the mystery of that? Some biological
facts about life and death are listed below.

– Apoptosis (from ancient Greek ἀpόpsxrir “falling off”) is a process of pro-
grammed cell death that occurs in multicellular organisms. Between 50 and 70
billion cells die each day due to apoptosis in the average human adult. In
contrast to necrosis, which is a form of traumatic cell death that results from
acute cellular injury, apoptosis is a highly regulated and controlled process that
confers advantages during an organism’s lifecycle. Because apoptosis cannot
stop once it has begun, it is a highly regulated process. Apoptosis can be
initiated through one of two pathways in the intrinsic pathway the cell kills itself
because it senses cell stress, while in the extrinsic pathway the cell kills itself
because of signals from other cells Excessive apoptosis causes atrophy, whereas
an insufficient amount results in uncontrolled cell proliferation, such as cancer.

– Telomerase–a life clock? Telomerase, also called terminal transferase is a
ribonucleoprotein that adds a species-dependent telomere repeat sequence to the
3ʹ end of telomeres. A telomere is a region of repetitive sequences at each end of
eukaryotic chromosomes in most eukaryotes and telomeres protect the end of
the chromosome from DNA damage or from fusion with neighbouring chro-
mosomes. The Fruit fly Drosophila Melanogaster lacks telomerase, but instead
uses Retrotransposons to maintain telomeres. The existence of a compensatory
mechanism for telomere shortening was first found by soviet biologist Alexey
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Olovnikov in 1973 who also suggested the telomere hypothesis of aging and the
telomere’s connections to cancer.

– The physical laws in nature after death and the law of conservation of mass or
principle of mass conservation implies that mass can neither be created nor
destroyed, although it may be rearranged in space, or the entities associated with
mass can be changed in forms discovered by the Russian scientist Michail
Lomonosov in 1756.

– Various types of spatio-temporal processes related to death can be distinguished
in biology, including:

– Degradation of DNA and RNA molecules and finding the temporal pattern
of degradation;

– Finding stable regions of DNA and RNA that do not degrade normally;
– Cells death as a temporal process and a process of interaction between cells

over time;
– Brain death, as a spatio-temporal process of cell deaths in the brain.

Some of the above processes have been modelled in one way or another as
computational models. For example:

– Degradation of RNA;
– Brain death processes have been measured as EEG data.

A challenge for the future is, based on all facts about life and death, to create a
CNGM that can be used to model the brain transition between life and death,
integrating the interaction of genes, proteins and neuronal activities as a whole to
better understand this complex transitional process, vital for every individual and
the humanity at large. The challenge is also if such models can be created to
indicate if and when life and death are reversible states of an organism and under
what conditions in time-space.

16.6 Chapter Summary and Further Readings for Deeper
Knowledge

This chapter extends the material presented in Chap. 15 and also in Chap. 6. This
chapter introduces a probabilistic neurogenetic model of a neuron (PNGM) and
several CNGM SNN architectures.

The NeuCube architecture from Chap. 6 is now presented as a CNGM, with
genes playing a vital role in the functioning of the system. Applications of CNGM
are discussed.

More information about CNGM can be found in [12], for example:

– Computational modelling with spiking neural networks (Chap. 37 in [12]);
– Brain-like information processing for spatio-temporal pattern recognition

(Chap. 47 in [12]);
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– Computational neuro-genetic modelling (Chap. 54 in [12] and also [13]).
– Brain, gene and quantum inspired computational intelligence (Chap. 60 in [12]);
– The brain and creativity (Chap. 61 in [12]);
– The Allen Brain Atlas (Chap. 62 in [12]);
– Alzheimer’s Disease (Chap. 51 in [12]);
– Integrating data for modelling biological complexity (Chap. 52 in [12]).
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Chapter 17
A Computational Framework
for Personalised Modelling. Applications
in Bioinformatics

The chapter presents a computational framework for building personalised models
(PM) for accurate prediction of an outcome for the individual. First, a general
scheme for building PM using integrated feature and model parameter optimisation
is presented. The framework is used to develop two specific methods using:
(a) traditional ANN techniques; (b) using evolving spiking neural networks
(eSNN). Both methods are illustrated on benchmark biomedical data.

The chapter is organised in the following sections:

17:1. A framework for PM and person profiling using integrated feature and model
parameter optimisation.

17:2. PM for gene expression data classification using traditional ANN.
17:3. PM for biomedical data using evolving SNN.
17:4. Chapter summary and further readings for deeper knowledge.

17.1 A Framework for PM and Person Profiling Based
on Integrated Feature and Model Parameter
Optimisation

17.1.1 Introduction: Global, Local and Personalise
Modelling

Typically, three principal approaches are considered for modelling data [1]:

– Global modelling makes use of data in the whole problem space to create a
model. This type of modelling might be useful to grasp general trends in the
data.

– Local modelling, on the other hand, creates a model for subsets or clusters of
data and is more customisable to new data.
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– Personalise modelling: Contrary to both global and local models where a
specific model is created to cover the whole problem space or subset of the
space, personalised modelling builds a model for each individual to provide a
personalised outcome for that individual. For a new data, an individual model is
created using already available information in the system of individuals with
known outcomes that have similar characteristics as the new individual.
Similarity can be computed using distance measures like Euclidean distance.

Most contemporary medical decision support systems use global models for the
prediction of a patient’s risk to develop a particular disease or their likely outcome
when suffering from the disease. There is a clear evidence that prediction and
treatment based on such global models are only effective for some of the patients
(about 70% at average) [2, 3] leaving the rest of patients with no effective treatment,
and in many cases facing worsening of their condition or even death.

The rationale behind the personalised modeling paradigm is that since each
person is different, the most effective treatment could be only achieved if it is based
on the analysis of data available for this particular patient. With the advancement of
science and technology, it is now possible to obtain and utilise a wide range of
personal data such as: DNA, RNA, gene and protein expression, clinical tests, age,
gender, BMI, inheritance, food and drug intake, disease, ethnicity, etc. [3–5].

The goal is to create an accurate personalised computational model using
information for an individual and the available information for other individuals
that is related to the same problem. Achieving a higher accuracy of prediction of a
personalised risk for a disease or the effect of treatment may mean saving thousands
of lives, significantly reducing the cost for treatment, and improving the quality of
life of thousands of patients.

The available methods for personalised modelling do not solve the task com-
pletely as they optimise only partially a model for an individual [6–9]. These
methods are usually derivatives of the K-nearest neighbour method (K-NN), where
for a pre-defined set of variables describing an individual with unknown outcome
and a population of individuals with known outcomes, the closest K samples to the
new one are selected from the population data forming a neighbourhood. The
outcome for the new sample is decided based on the majority outcomes in the
neighbourhood. Modifications of the K-NN method include WKNN [10],
WWKNN [1, 8, 9, 11, 12].

The above methods are suitable only for the problems defined by a small set of
variables. In reality, personalised data usually include thousands of gene, protein,
SNPs, clinical, demographic and other variables. However, using the complete set
of available variables would be detrimental to the modelling results as most of the
variables would be redundant. Pre-selecting a set of variables based on their sta-
tistical significance for the whole population space may not be appropriate either, as
variables’ importance varies depending on the particular sub-space of the problem
space [10]. An efficient diagnosis and treatment of a person would require the
creation of their personalised profile based on the important variables within the
person’s sub-space of neighbouring samples. The selection of the neighbourhood of
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closest samples depends on the selected variables. The overall efficiency of the
classification/prediction model would depend on globally optimised variables,
neighbourhood data and parameters of the model, in their concert.

Personalised modelling refers to developing a particular model for each indi-
vidual based on the location of this data sample in the whole problem space. This is
done using transductive reasoning, and surpasses the requirement of a global model.
Inductive reasoning approach creates a learning model from all the available data by
exploiting information in the whole problem space. On the contrary, in the trans-
ductive approach, the value of a function for a new input data is estimated by using
more information associated with this new data. Personalised modelling is espe-
cially useful in the medical domain, where prediction of a treatment outcome
requires individualised modelling rather than targeting a population. Moreover,
aggregating these individual models might yield a generalised model with high
accuracy. K-nearest neighbours is one of the popular methods used for personalised
modelling [13]. For every new incoming test data, a predefined number of k nearest
samples is extracted from the training dataset using an appropriate distance measure
like Euclidean distance. The class label of this new sample is then determined using
a voting scheme, where the class label suggested by the majority of extracted data
samples, will be assigned to the new data vector. A slightly different model
developed by [8] employed neuro-fuzzy inference instead of calculating distance
for predicting the label. Both methods were based on neighbouring samples and had
similar generalisation skills. Although they might perform well on benchmark
datasets, in real world data where the samples might be imbalanced or overlapped
with noisy data, these models could become unreliable. Taking these issues into
consideration, [14] proposed a transductive support vector machine tree that dis-
covers the discriminative evidence in the neighbourhood of a test instance.
A collection of inductive support vector machines were transductively combined for
individualised learning. In addition to solving the problem of overfitting of other
such classification trees using support vector machines, this method also exhibited
superior performance in dealing with imbalanced datasets. However, this method
was suitable only for binary classification problems.

17.1.2 A Framework for Personalised Modelling
(PM) Based on Integrated Feature and Model
Parameter Optimisation

We present here a framework for personalised modelling, its implementation and
some experimental results for three types of medical decision support problems. For
every new individual sample (new input vector) all aspects of their personalised
model (variables, neighbouring samples, type of model and model parameters), are
optimised together using the accuracy of the outcome achieved for the local
neighbourhood of the sample as optimisation criterion. Next, a personalised model

17.1 A Framework for PM and Person Profiling … 565



and personalised profile are derived that use the selected variables and the neigh-
bouring samples with known outcomes. The sample’s profile is compared with
average profiles of the other outcome classes in the neighbourhood (e.g. good
outcome, or bad outcome of disease or treatment). The difference between the
points to important variables that may need to be modified through treatment.
A functional block diagram of the proposed personalised modelling framework,
called integrated method for personalised modelling (IMPM) is illustrated in
Fig. 17.1.

The integrated optimisation of the features and the model parameters is achieved
through using a Genetic Algorithm (GA) (see Figs. 17.2, 17.3 and Chap. 7 of the
book).

The proposed method consists of the following procedures:

P1 Data collection, data filtering, storage and update.
P2 Compiling the input vector for a new patient x.
P3 Select a subset of relevant to the new sample x variables (features) Vx from a

global variable set V .
P4 Select a number Kx of samples from the global data set D and form a

neighbourhood Dx of similar samples to x using the variables from Vx;
P5 Ranking the Vx variables within the local neighbourhood Dx in order of

importance to the outcome, obtaining a weight vector Wx.
P6 Training and optimising a local prognostic model Mx, that has a set of model

parameters Px, a set of variables Vx and local training/testing data set Dx.
P7 Generating a functional profile Fx for the person x using the selected set Vx of

variables, along with the average profiles of the samples from Dx belonging to
different outcome classes, e.g. Fi and Fj. Perform a comparative analysis

Fig. 17.1 A functional block diagram of the integrated method for personalised modelling
(IMPM) [2, 7, 15]
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between Fx, Fi and Fj to define what variables from Vx are the most important
for the person x if a treatment is needed

Procedures P3–P6 are repeated a number of iterations or until a desired local
accuracy of the model for a local data set Dx is achieved. The optimisation of the
parameters of the personalised model Vx, Kx and Dx is global and is achieved
through multiple runs of a genetic algorithm (GA) that is a type of evolutionary
algorithm, [12, 16, 17]. The resulting competing personalised models for x form a
population of such models that are evaluated over iterations (generations) using a
fitness criterion—the best accuracy of outcome prognosis for the local neigh-
bourhood of x. Operators of crossover and mutation are applied in the search for the
best local model (refer to Fig. 17.4). When running the GA, all parameters of the
personalised model form a ‘chromosome’ (refer to Fig. 17.3) where variable values
are optimised together as a global optimisation.

Initially, it is assumed that all variables from a set V have equal absolute and
relative importance for a new sample x in relation to predicting its unknown output
y:

Fig. 17.2 A schematic diagram of a GA operation

Fig. 17.3 A chromosome for the GA global optimisation of the following parameters (‘genes’): a
number of selected variables Vx; their corresponding weights Wx; a number K of nearest
neighbours to x; a set of selected K samples s1 � sK forming a data subset Dx; a local prognostic
model Mx; a set of parameters Pm
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wv1 ¼ wv2 ¼; . . .;¼ wvq ¼ 1 ð17:1Þ

and

wv1;norm ¼ wv2;norm ¼; . . .;¼ wvq;norm ¼ 1=q ð17:2Þ

The numbers initially for Vx and Kx may be determined in a variety of different
ways without departing from the scope of the method. For example Vx and Kx may
be initially determined by an assessment of the global dataset in terms of size and/or
distribution of the data. Minimum and maximum values of these parameters may
also be established based on the available data and the problem analysis. For
example, Vx min ¼ 3 (minimum three variables used in a personalised model) and
Vx max\Kx (the maximum variables used in a personalised model is not larger than
the number of samples in the neighbourhood Dx of x), usually Vx max\20. The
initial set of variables may include expert knowledge, i.e. variables which are
referenced in the literature as highly correlated to the outcome of the problem
(disease) in a general sense (over the whole population). Such variables are the
BRCA genes, when the problem is predicting outcome of breast cancer [18]. For an
individual patient the BRCA genes may interact with some other genes, which
interaction will be specific for the person or a group of people and is likely to be
discovered through local or/and personalised modelling only [1].

A major advantage of the method, when compared with global or local mod-
elling, is that the modelling process can start with all relevant variables available for
a person, rather than with a fixed set of variables in a global model. Such a global

Fig. 17.4 The weighted importance of the selected features for sample 32 after one run of the
method over 600 generations of a GA used to optimise both features and model parameters
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model may well be statistically representative for a whole population, but not
necessarily representative for a single person in terms of optimal model and best
profiling and prognosis for this person.

Selecting the initial number for Kx and the minimum and the maximum numbers
Kx min and Kx max will also depend on the data available and on the problem in
hand. A general requirement is that Kx min [Vx, and, Kx max\cN, where c is a
ratio, for example 0.5, and N is the number of samples in the neighbourhood Dx of
x. Several formulas have been already suggested and experimented [10, 17] e.g.:

• Kx min equals the number of samples that belong to the class with a smaller
number of samples when the data is imbalanced (one class has many more
samples, e.g. 90%, than the another class) and the available data set D is of small
or medium size (e.g., hundreds to few thousands samples);

• Kx min ¼
ffiffiffiffi
N

p
, where N is the total number of samples in the data set D;

At subsequent iterations of the method the parameters Vx and Kx are optimised
via an optimisation procedure such as:

• Exhaustive search, where all or some possible values of all or some of the
parameters Vx, Wx, Kx, Mx and Px are used in their combination and the model
Mx with the best accuracy is selected;

• An evolutionary algorithm, such as GA [19], optimises all or some parameters
that form a ‘chromosome’.

The closest Kx neighbouring vectors to x from D are selected to form a new data
set Dx. A local weighted variable distance measure is used to weigh the importance
of each variable Vl ðl ¼ 1; 2; . . .; qÞ to the accuracy of the model outcome calcu-
lation for all data samples in the neighbourhood Dx. For example, the distance
between x and z from Dx is measured as a local weighted variable distance:

dx;z ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPq

l¼1 ð1� wl;normÞðxl � zlÞ2
q

q
ð17:3Þ

where: wl is the weight assigned to the variable Vl and its normalised value is
calculated as:

wl;norm ¼ wlPq
i¼1 wi

ð17:4Þ

Here the distance between a cluster centre (in our case it is the vector x) and
cluster members (data samples from Dx) is calculated not only based on the geo-
metrical distance, as it is in the traditional nearest neighbour methods, but on the
relative variable importance weight vector Wx for the output values of all samples in
the neighbourhood Dx. After a subset Dx of Vx variables and Kx data samples are
selected, the variables are ranked in a descending order of their importance for
prediction of the output y of the input vector x and a weighting vector Wx is
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obtained. Through an iterative optimisation procedure the number of the variables
Vx to be used for an optimised personalised model Mx will be reduced, selecting
only the most appropriate variables that will provide the best personalised predic-
tion accuracy of the model Mx. For the weighting Wx (i.e. ranking) of the Vx

variables, alternative methods can be used, such as t-test, Signal-to-Noise ratio
(SNR), etc.

In SNR methodWx are calculated as normalised coefficients and the variables are
sorted in descending order: V1;V2; . . .;Vv, where: w1 [ ¼ w2 [ ¼ � � � [ ¼ wv,
calculated as follows (see Chap. 1):

wl ¼
Mclass1

l �Mclass2
l

�� ��
stdclass1l þ stdclass2l

ð17:5Þ

where: Mclass s
l and stdclass s

l are respectively the mean value and the standard
deviation of variable xl for all vectors in Dx that belong to class s. This method is
very fast, but evaluates the importance of the variables in the neighbourhood Dx one
by one and does not take into account a possible interaction between the variables,
which might affect the model output.

A classification or prediction procedure is applied to the neighbourhood Dx of Kx

data samples to derive a personalised model Mx using the already defined variables
Vx, variable weights Wx and a model parameter set Px.

A number of different classification or prediction procedures can be used such
as: KNN; WKNN: WWKNN [1]; TWNFI [9] and others. In the weighted KNN
(WKNN) method, the outcome for the new sample is calculated based on the
weighted outcomes of the individuals in the neighbourhood according to their
distance to the new sample. In the WWKNN method [1] variables are ranked and
weighted according to their importance for separating the samples of different
classes in the neighbourhood area in addition to the weighting according to the
distance as in WKNN. In the TWNFI method—transductive, weighted neuro-fuzzy
inference system [9], the number of variables in all personalised models is fixed, but
the neighbouring samples used to train the personalised neuro-fuzzy classification
model are selected based on the variable weighted distance to the new sample as it
is in the WWKNN.

When using the WWKNN method [1] the output value y for the input vector x is
calculated using the formula:

y ¼
PK

j¼1 ajyjPK
j¼1 wj

ð17:6Þ

where: yj is the output value for the sample xj in the neighbourhood Dx of x and:

aj ¼ maxðdÞ � ½dj � minðdÞ� ð17:7Þ
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In Eq. 17.7, the vector distance d ¼ ½d1; d2; . . .; dK � is defined as the distances
between the new input vector x and the nearest samples ðxj; yjÞ for j ¼ 1 to Kx;
maxðdÞ and minðdÞ are the maximum and minimum values in d respectively.
Euclidean distance dj between vector x and a neighbouring one xj is calculated as:

dj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXV
l¼1

wlðxl � xjlÞ2
vuut ð17:8Þ

where: wl is the coefficient weighing variable xl in the neighbourhood Dx of x.
When using the TWNFI classification or prediction model [9], the output y for

the input vector x is calculated as follows:

y ¼
Pm

l¼1
nl
d2l

QP
j¼1 alj � exp � w2

j ðxij�mljÞ2
2r2lj

� �

Pm
l¼1

1
d2l

QP
j¼1 alj � exp � w2

j ðxij�mljÞ2
2r2lj

� � ð17:9Þ

where: m is the number of the closest clusters to the new input vector x; each cluster
l is defined as a Gaussian function Gl in a Vx dimensional space with a mean value
ml as a vector and a standard deviation dl as a vector too; x ¼ ðx1; x2; . . .; xvÞ; al
(also a vector across all variables V) is membership degree to which the input vector
x belongs to the cluster Gaussian function Gl; nl is a parameter of each cluster [9].

A local accuracy (local error Ex), that estimates the personalised accuracy of the
personalised prognosis (classification) for the data set Dx using model Mx is eval-
uated. This error is a local one, calculated in the neighbourhood Dx, rather than a
global accuracy, that is commonly calculated for the whole problem space D.
A variety of methods for calculating error can be employed such as:

• RMSE (root-mean square error);
• AUC (area under the receiving operating characteristic curve);
• AE (absolute error).

We propose here another formula for calculating local error that can be used for
model optimisation:

Ex ¼
PKx

j¼1 ð1� dxjÞ � Ej

Kx
ð17:10Þ

where: dxj is the weighted Euclidean distance between sample x and sample Sj from
Dx that takes into account the variable weights Wx; Ej is the error between what the
model Mx calculates for the sample Sj from Dx and what its real output value is.

In the above formula the closer a data sample Sj to x is, based on a weighted
distance measure, the higher its contribution to the error Ex will be. The calculated
personalised model Mx accuracy is:
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Ax ¼ 1� Ex ð17:11Þ

The best accuracy model obtained is stored for a future improvement and
optimisation purposes. The optimisation procedure iteratively returns to all previous
procedures to select another set of parameter values for the parameter vector (refer
to Fig. 17.4), according to one of the optimisation procedures listed above (ex-
haustive search, genetic algorithm, a combination between them—Chap. 7) until the
modelMx with the best accuracy is achieved. The method also optimises parameters
Px of the classification/prediction procedure. Once the best model Mx is derived, an
output value y for the new input vector x is calculated using this model. After the
output value y for the new input vector x is calculated a personalised profile Fx of
the person represented as input vector x is derived, assessed against possible desired
outcomes for the scenario, and possible ways to achieve an improved outcome will
be designed, which is also a major novelty of this method. A personal improvement
scenario, consisting of suggested changes in the values of the person’s features to
improve the outcome for x is designed. The x profile Fx is formed as a vector:

Fx ¼ fVx;Wx;Kx;Dx;Mx;Px; tg ð17:12Þ

where the variable t represents the time of the model Mx creation. At a future time
ðtþDtÞ the person’s input data will change to x� (due to changes in variables such
as age, weight, protein expression values, etc.), or the data samples in the data set D
may be updated and new data samples added. A new profile F�

x derived at time
ðtþDtÞ may be different from the current one Fx.

The average profile Fi for every class Ci in the data Dx is a vector containing the
average values of each variable of all samples in Dx from class Ci. The importance
of each variable (feature) is indicated by its weighting in the weight vector Wx. The
weighted distance from the person’s profile Fx to the average class profile Fi (for
each class i) is defined as:

DðFx;FiÞ ¼
Xv

l¼1

Vlx � Vlij j � wl ð17:13Þ

where wl is the weight of the variable Vl calculated for the data set Dx.
Assuming that Fd is the desired profile (e.g. normal outcome) the weighted

distance DðFx;FdÞ will be calculated as an aggregated indication of how much a
person’s profile should change to reach the average desired profile Fd :

DðFx;FdÞ ¼
Xv

l¼1

Vlx � Vldj j � wl ð17:14Þ

A scenario for a person’s improvement through changes made to variable fea-
tures towards the desired average profile Fd can be produced as a vector of required
variable changes, defined as:
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DFx;d ¼ DVlx;d

��l ¼ 1; . . .; v ð17:15Þ

DVlx;d ¼ DVlx;d ;with an importance of wl ð17:16Þ

In order to find a smaller number of variables, as global markers that can be
applied to the whole population X, procedures P2–P7 are repeated for every indi-
vidual x. All variables from the derived sets Vx are then ranked based on their
likelihood to be selected for all samples. The top m variables (most frequently used
for individual models) are selected as a set of global set of markers Vm. The
procedures P1–P7 will be applied again with the use of Vm as initial variable set
(instead of using the whole initial set V of variables). In this case personalised
models and profiles are obtained within a set of variable markers Vm that would
make treatment and drug design more universal across the whole population X.

17.2 PM for Gene Expression Data Classification Using
Traditional ANN

17.2.1 Problem and Data Specification, Feature Extraction

The method presented in Sect. 17.1 is illustrated here on personalised modelling
using gene expression data. A benchmark colon cancer gene expression dataset is
used [20]. It consists of 62 samples, 40 collected from colon cancer patients and 22
from control subjects. Each sample is represented by 2000 gene expression vari-
ables. The objective is to create a diagnostic (classification) system that not only
provides an accurate diagnosis, but also profiles the person to help define the best
treatment. An example of a personalised model of colon cancer diagnosis and
profiling of a randomly selected person is given in Fig. 17.5.

To find a small number of variables (potential markers) for the whole population
of colon cancer data, we have used the approach as follows: Based on the exper-
iment result for every sample, we selected 20 most frequently used genes as the
potential global markers. Table 17.1 lists these 20 global markers with their bio-
logical information. The number of 20 for selected global markers is based on the
suggestion in Alon’s work [20].

17.2.2 Classification Accuracy and Comparative Analysis

The next objective of our experiment is to investigate whether utilising these 20
potential marker genes can lead to improved colon cancer classification accuracy.
Four classification models are employed in this comparison experiment, including
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WKNN, MLR, SVM and TWNFI. All the classification results from four classifiers
are validated based on LOOCV across the whole dataset.

Table 17.2 summarises the classification results from four classification models
using 20 selected potential marker genes. WKNN and a localised SVM yielded
improved classification accuracy ð90:3%Þ and TWNFI obtained the best classifi-
cation performance ð91:9%Þ. Our results suggest that a small set of marker genes
selected by our IMPM method could lead to improved cancer classification
accuracy.

When compared to global or local modelling, the proposed personalised mod-
elling method has a major advantage. In our method, the modelling process starts
with all relevant variables available for a person, rather than with a fixed set of
variables required by a global model that may well be statistically representative for
a whole population, but not necessarily representative for a single person in terms of
best prognosis for this person. The proposed method results in a better prognostic
accuracy and a computed personalised profile. With global optimisation, a small set
of variables (potential markers) can be identified from the selected variable set

Fig. 17.5 Sample 32 (a blue dot) is plotted with its neighbouring samples (red triangles—cancer
samples and green triangles—control) in the 3D space of the top 3 gene variables from Fig. 17.4
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Table 17.1 The 20 most frequently selected genes (potential marker genes) across colon cancer
gene data (see Fig. 17.7)

Index of
gene

GenBank
accession number

Description of the gene (from GenBank)

G377 Z50753 H.sapiens mRNA for GCAP-II/uroguanylin precursor

G1058 M80815 H.sapiens a-L-fucosidase gene, exon 7 and 8, and complete
cds

G1423 J02854 Myosin regulatory light chain 2, smooth muscle ISOFORM
(HUMAN)

G66 T71025 Human (HUMAN)

G493 R87176 Myosin heavy chain, nonuscle (Gallus gallus)

G1042 R36977 P03001 Transcription factor IIIA

G1772 H08393 COLLAGEN ALPHA 2(XI) CHAIN (Homo sapiens)

G765 M76378 Human cysteine-rich protein (CRP) gene, exons 5 and 6

G399 U30825 Human splicing factor SRp30c mRNA, complete cds

G1325 T47377 S-100P PROTEIN (HUMAN)

G1870 H55916 PEPTIDYL-PROLYL CIS-TRANS ISOMERASE,
MITOCHONDRIAL PRECURSOR (HUMAN)

G245 M76378 Human cysteine-rich protein (CRP) gene, exons 5 and 6

G286 H64489 Leukocyte Antigen CD37 (Homo sapiens)

G419 R44418 Nuclear protein (Epstein-barr virus)

G1060 U09564 Human serine kinase mRNA, complete cds

G187 T51023 Heat shock protein HSP 90-BETA (HUMAN)

G1924 H64807 Placental folate transporter (Homo sapiens)

G391 D31885 Human mRNA (KIAA0069) for ORF (novel proetin),
partial cds

G1582 X63629 H.sapiens mRNA for p cadherin

G548 T40645 Human Wiskott-Aldrich syndrome (WAS) mRNA,
complete cds

Table 17.2 The best classification accuracy obtained by four algorithms on colon cancer data
with 20 potential maker genes

Classifier Overall
[%]

Class 1
[%]

Class 2
[%]

Neighbourhood
size

MLR (Personalised) 82.3 90.0 68.2 3

SVM (Personalised) 90.3 95.0 81.8 17

WKNN (personalised) 90.3 95.0 81.8 6

TWNFI (Personalised) 91.9 95.0 85.4 20

Original publication Alon 08/06/
1999

87.1 – – –

Overall—overall accuracy; Class 1—class 1 accuracy; Class 2—class 2 accuracy
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across the whole population by the proposed IMPM method. Such markers are
helpful for IMPM to produce improved prediction accuracy for cancer diagnosis.
A scenario for outcome improvement is also guaranteed. We hope that this paper
will motivate the biomedical applications of personalised modelling research.

17.2.3 Profiling of Individuals and Personalised
Knowledge Extraction

Figure 17.6 shows a profile of sample 32 (blue dots) versus the average local profile
of the control and cancer samples using the features from Fig. 17.5.

Figure 17.7 shows a ranking of the 20 most frequently selected genes across
colon cancer data, where x axis represents the index of genes in the data, y axis is
the selected frequency of a gene.

Figure 17.8 shows a comparison of classification results obtained by 4 algo-
rithms using 20 potential maker genes, where x axis represents the size of neigh-
bourhood and y axis is the classification accuracy.

17.3 PM on Biomedical Data Using Evolving SNN

17.3.1 Introduction

The purpose of this section is demonstrate how the general PM framework from 17.1
can be used with evolving spiking neural networks (eSNN) for personalised mod-
elling on biomedical data. Real-valued medical data are encoded into spike trains

Fig. 17.6 The profile of sample 32 (blue dots) versus the average local profile of the control
(green triangles) and cancer samples (red triangles) using the features from Fig. 17.5 [2, 7, 15]
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using Gaussian receptive fields for binary classification using eSNN. The values of
several parameters like threshold, modulation factor and similarity are experimented
with to optimise the learning model. The method was tested on both benchmark and
clinical datasets. The benchmark dataset chosen for this study is the Chronic Kidney
Disease dataset downloaded from the UCI machine learning repository. The results
produced by the eSNN model are compared with that of traditional algorithms like
multilayer perceptron and support vector machines. The outcome suggests that with

Fig. 17.7 Profling a peson’s data: the 20 most frequently selected genes across colon cancer data,
where x axis represents the index of genes in the data, y axis is the selected frequency of a gene

Fig. 17.8 Comparison of classification results obtained by 4 algorithms using 20 potential maker
genes, where x axis represents the size of neighbourhood and y axis is the classification accuracy [2]
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suitable optimisation techniques, eSNN can be used efficiently on medical data for
personalised modelling and can surpass traditional algorithms in performance.

Despite the of the recently developed methods for personalised modelling of
medical data [1–21] still new methods are being developed and explored.

17.3.2 Using SNN and ESNN for PM

Would SNN be suitable for PM and what is the benefit of using them for this purpose?
This sub-section discusses some PM systems developed with the use of SNN and
eSNN in particular, before a detailed case study is discussed in the following
sub-section. The methods of Spiking Neural Networks (SNN) were discussed in
Chap. 4. Depending on the abstraction level, spiking neural networks could be
broadly classified into conductance and threshold models [22]. The conductance
model, also called Hodgkin-Huxley model after its founders, is used to signify the
physical features of a cell membrane and defines the commencement and propagation
of a neuron’s action potential or spikes. Leaky integrate- and-fire and spike response
models are some examples of the threshold model. The outcomes of these models are
governed by a set of threshold value. Evolving spiking neural networks (eSNN) are
also founded on the threshold-based model (see Chaps. 4–6 of the book).

In [23] an eSNN model was developed for personalised modelling for the pre-
diction of stroke occurrence. An integrate-and-fire neuron model paired with rank
order learning was used for early stroke detection from the input pattern. Based on
the incoming information the architecture and functionality of the model was
evolved in real time. The system was able to achieve quick learning as the learning
occurs in a single iteration. The results produced by the eSNN model were
impressive compared to other traditional machine learning algorithms. Reinforcing
its position as one of the best algorithms that can model spatiotemporal data, a
dynamic evolving SNN was applied with good results on moving object recognition
and EEG recognition [24–26].

Applications of eSNN for PM have been developed for solving various problems
related to spatio/spectro-temporal pattern classification [9, 24, 26–28]. eSNN is
capable of handling complex temporal data like gene expression, EEG, fMRI,
financial data as well as audio and visual processing.

Wysoski et al. [29] used eSNN to model auditory and visual pathways in the
human brain for the purpose of person authentication (see also Chap. 13). Separate
eSNN based systems were used for facial and speech signal recognition. The visual
system was modelled using the integrate-and-fire neuron model in which the
excitation of a neuron was dependent on the order of the spikes. The model had four
integrate-and-fire neuron layers representing the different processing stages of the
human visual system with the first two layers acting as filters and time encoders.
Learning started in the third layer where the neuronal maps were trained to handle
complex input patterns. The fourth layer had one neuronal map corresponding to
each pattern class. The visual processing utilised a computationally inexpensive
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spiking neuron with a feed forward structure. In the auditory processing system,
spiking neurons were used for feature extraction and during decision-making.
Similar to the visual processing system, speech processing also utilised
feed-forward connections and four layers of spiking neuron maps to model the
auditory areas in the brain.

Another eSNN implementation of PM for visual information processing was
done by Ge et al. [30] for improving obstacle avoidance in prosthetic vision. It was
based on NeuCube [31] as a framework for video modelling in prosthetic vision.
The features extracted from the input data captured by the visual prosthesis were fed
to NeuCube for classification. The result would then lead to generation of an early
warning in the presence of an obstacle. It was shown that the functionality of visual
prosthesis could be significantly enhanced with already available hardware chips.

Battlori et al. [32] used a personalised brain simulator based on eSNN for
controlling robots. The robot was tasked with approaching a light source while
avoiding obstacles in its path. The robot’s behaviour was replicated using an
SNN-based controller and a set of rules were developed to enable the robot to
perform the assigned task. The SNN parameters like weights and delays of network
synapses were optimised using an evolutionary algorithm. All the other parameters
were defined manually. The algorithm was able to generalise well from a limited set
of training samples and also enabled parallel computation.

Soltic [33] proposed a method for extracting rules from eSNN that enables to
understand how the network arrived at a particular decision and create a profile of a
personal data (see also Chap. 5). These rules would help to comprehend the data
and the problem better. The input values were encoded into spikes using Gaussian
receptive fields. The spike trains were then fed to excitatory layer 1 neurons through
delayed synaptic connections. The layer 2 integrate-and-fire neurons were evolved
during training. The proposed system was tested on taste information to discover
how information was relayed from the taste receptors to the brain. Another sensory
system that is closely related to the sense of taste is smell. Odour recognition is still
a developing field of research. An important challenge in this area is how to encode
the odour information so that it can be fed into a classification model.

The personalised electronic nose proposed by [34] was based on an encoding
scheme using Gaussian receptive fields and a pattern classification technique using
spiking neural network. Two variations of SNN were used for learning, SpikeProp
which uses back-propagation, and dynamic evolving SNN. The proposed approach
was tested on black tea odour dataset collected specifically for this study. The
sniffing cycle consisted of three phases, essentially making the data temporal in
nature. The main purpose of the study was to identify how to better encode odour
information so as to improve performance of the learning model. The deSNN model
performed comparatively well on the classification task, but further experimentation
might be required to optimise the model parameters.
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eSNN based model was used in detecting personalised ageing of voice, which is
a natural process but one which greatly affects voice professionals [35]. The
attributes extracted from voice signals were used as input to the learning model. The
relevant attributes and SNN parameters were determined by a quantum-inspired
evolutionary algorithm. The encoding layer transformed input attributes into spikes
generated over time and fed them into the output layer neurons that were modelled
using spike response model functioning as radial basis function neurons. The results
of the study indicated that the proposed model was able to produce better accuracy
using fewer numbers of input attributes than other models like those based on
genetic algorithm.

An application of eSNN in cyber security was proposed in [36], specifically for
cyber fraud detection. Phishing websites are a real concern for all internet users.
This study demonstrated that evolving spiking neural network could detect phishing
websites better than other machine learning techniques. The network made use of
Gaussian receptive fields to encode the input data into spikes, and further along
added a fresh output neuron or updated current synaptic weights based on the input
information and already existing knowledge in the network. The research identified
parameter selection and tuning as the major challenges of implementing an eSNN
network.

17.3.3 An ESNN Method for PM on Biomedical Data

Here we illustrate how the PM framework from 17.1 can be used with eSNN
applied on a benchmark biomedical classification problem. The eSNN model used
for this study has a 3-layered structure—an input layer, an encoding layer and an
output evolving layer as shown in Fig. 17.9. The training and recall algorithms are
given in the Appendix to this chapter (see also Chap. 5).

The input layer is where the real-valued input data is fed to the network. As the
medical data is static in nature, the input has to be encoded into spikes before
feeding it to the evolving spiking neural network. The encoding mechanism used
here is the rank order population encoding [37] (Chap. 4) where the input is
transformed into trains of spikes by an array of encoding spiking neurons associated
with receptive fields. For each input attribute, the receptive fields employ a
Gaussian function to cover all the values for this attribute. The number of receptive
fields in the encoding layer is user-defined and can be optimised according to the
application for better performance. The output layer consists of spiking neurons that
evolve during the course of training to represent the input spike trains belonging to
the same class (class 1/class 2 in this case). The connection weights are adjusted
during the course of learning. The output and input layer neurons are completely
connected.
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When an input value is presented at the presynaptic neurons, the receptive field
to which this value relates to the highest generates the first spike. The eSNN
architecture is built on the basis of the Thorpes model [38] for its simplicity of
implementation. It uses the spiking time to determine the connection weights;
earlier spike translates to a stronger connection weight as opposed to a later spike.
A neuron spikes only once when its postsynaptic potential reaches a threshold
value. Once fired, the postsynaptic potential of the neuron is reset to 0.

Learning in the output neurons occur in a single pass, feed forward fashion. For
each input data, an output neuron is generated and its associated weight and
threshold value are stored in the neuron repository. This weight is compared to
other weights in the neuron repository for similarity. If the similarity is greater than
a predefined threshold, then this weight will be merged with the weight of the
neuron with the most similarity. Merging in this context refers to updating the
weights and threshold of the similar neuron. The newly created neuron is then
discarded. The updated weight of the merged neuron is calculated by taking the
average of the new weight and the merged neuron weight. Similarly, the updated
threshold is calculated by taking the average of the new threshold and the merged
neuron threshold. On the contrary, if the new output neuron is not similar to any of
the output neurons in the neuron repository, then this new neuron is added to the
repository. Once the learning phase is done and the model is completely evolved,
the model is tested by passing the test sample spikes to all the trained output

Fig. 17.9 An exemplar use of eSNN for classification of medical data
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neurons. The class label associated with the output neuron that fires first is defined
as the class label of the test sample.

Parameters of the eSNN model

As with any learning algorithm, the configuration of parameters has a profound
effect on the performance of the evolving spiking neural network [12]. Some of the
main parameters of the eSNN model are:

Receptive Fields—A major portion of data processing at the input layer is done
by the receptive field. The collection of neurons in an array of receptive field have
overlapping sensitivity profiles. In a population based encoding scheme, it is
responsible for encoding real-valued input data into spike trains that are then fed to
the network. Increasing the number of receptive fields enables to better distinguish
between data samples, but this leads to increased computation cost. On the other
hand, a lower number for this parameter would result in faster processing but at the
cost of reduced accuracy. It also decreases the width of the fields, making the
response more localised. This in turn might lead to the addition of more neurons to
the network.

Modulation factor—This parameter controls the initial weights which in turn
affects the contribution of each spike to the postsynaptic potential. The modulation
factor is given a value between 0 and 1. If the value is closer to 1, the contribution
of the spike to the postsynaptic potential would be a continuous exponential
function, whereas lesser values would lead to the contribution decaying exponen-
tially. Consequently, a value of 0 for this parameter would mean that the postsy-
naptic potential is not affected by the presynaptic spikes. On the other hand, if
modulation factor is 1, then all spikes would equally contribute to the postsynaptic
potential. The modulation factor determines how intensely the order of spike timing
affects a neuron.

Similarity—This parameter defines a threshold value based on which the output
layer neurons are created or updated. If the weights of a new output neuron are
similar to this threshold, then the new neuron is merged with the most similar
neuron in the repository. In this study, the similarity between neuronal weights is
measured using Euclidean distance. The values for similarity are specified between
0 and 1. Lower values for this parameter results in fewer neurons being created and
higher values would create an output neuron for each input sample leading to
overfitting.

Threshold—The firing threshold is calculated as a fraction of the maximum
PSP. This is derived using a parameter c with a value between 0 and 1. Lower
values of the fraction c would result in reducing the firing threshold which in turn
advances the response of a neuron.

The firing threshold 0 could be defined as c � maximum postsynaptic potential.
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Parameter Tuning

To optimise the performance of an algorithm, it is vital to perform parameter
tuning. The success of a learning model depends on the right balance between
accuracy and structural complexity. Several encouraging studies in the past shows
how an optimisation algorithm can be effectively combined with an evolving
spiking neural network. Stefan et al. used a versatile quantum-inspired evolutionary
algorithm in combination with eSNN using the wrapper approach to detect
important attributes and to evolve the eSNN parameters to an optimal configuration
[39]. This approach was referred to as the Quantum-inspired Spiking Neural
Network (QiSNN) [40]. This study was extended by [41] using a binary repre-
sentation for attribute subset optimisation and simultaneously evolving spiking
network configurations. Following this study, another quantum based optimisation
technique integrated with a nature inspired computing method was used by [42]
namely Quantum-inspired Particle Swarm Optimisation for string pattern recogni-
tion, a challenging task that has applications in online security and virus detection.

Using evolutionary algorithms and quantum inspired methods for the optimi-
sation of the parameters of eSNN was discussed in Chap. 7. In [43] differential
evolution was used to identify the optimal number of presynaptic neurons for the
eSNN architecture that defines the complexity of the model, for a given dataset. In
the case of a multilayer perceptron model, this is similar to finding the optimum
number of hidden nodes. The significance of optimising the number of presynaptic
neurons was given by the fact that fewer neurons might reduce the number of spikes
generated resulting in reduced accuracy while increasing the number of neurons
leads to increased computational cost. Simplicity in implementation and fewer
control parameters were pointed out as the advantages of using differential evolu-
tion. The fitness function optimised was the classification accuracy of the eSNN
model. But the overall accuracy cannot be counted as a criterion to measure the
success of a learning model in all situations as sometimes it could be misleading
especially in the case of imbalanced datasets. Further to this study [44] presented a
multi-objective k-means eSNN model intended to improve the performance of
eSNN on clustering problems. Multi-objective in this context referred to the number
of clusters. An integration of k-means, eSNN and multi-objective differential
evolution was implemented to enhance performance and was tested on benchmark
datasets. Furthermore, differential evolution was applied for tuning of eSNN
parameters like modulation factor, similarity factor and threshold factor.

In [45] this hybrid model was built by integrating eSNN with differential evo-
lution using the wrapper technique. Again, overall classification accuracy was
considered to evaluate performance on several benchmark datasets. The results
showed that parameter combination differs depending on the dataset. However, an
evaluation of how these methods would fare on real-world datasets was not spec-
ified in any of these papers.
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Class Imbalance and Overlapping

While performing data classification, if the class distribution is
well-proportioned, most classifiers perform well. Yet it is a rare incidence that a
real-world dataset has a balanced number of data samples of all classes. Class
imbalance is a major issue in data mining. In a binary class problem, class
imbalance could be defined as the condition in which the data instances of one class
greatly exceed the number of data instances in the other class. This would lead to
the machine learning algorithm getting plagued by the majority class and conse-
quently ignoring the minority class samples during training.

Cohen et al. [46] used prototype-based resampling and support vectors with
asymmetrical margins to reduce the effect of class imbalance for nosocomial
infection detection problem. Evaluations done using classifiers including but not
limited to support vector machine, decision tree and naïve bayes showed
improvement in performance using support vectors based method achieving a
sensitivity rate of 92%.

A method involving random undersampling and a cost-sensitive learning, where
the relative cost associated with the misclassification of majority and minority
classes are modified to compensate for the imbalance, was adopted by [47] to
rebalance biomedical documents for cataloguing. [48] introduced a data-level
rebalancing technique for binary classes that requires the temporary re-labelling of
classes, namely TempC. In this two-staged approach, the imbalanced dataset was
first split into train and test subsets. The k nearest instances of the majority class of
all minority class samples were aggregated with the minority class instances to form
a new class.

Further methods for class rebalancing include synthetic minority oversampling,
SMOTE for short [49], a combination of undersampling of majority class and
oversampling of the minority class. The samples of minority class are synthetically
generated based on mean, median or mode of a group of k nearest neighbours.
SPIDER is another data-level class rebalancing approach introduced by [50].
A hybrid of bagging and boosting techniques for rebalancing data was compared by
[51]. The methods compared included RUSBoost, SMOTEBoost, RBBag and
EEBBag and the results claimed that bagging techniques outdid boosting methods
for imbalanced and noisy datasets. However, experiments conducted by [52]
showed that bagging and boosting techniques were not better than random sampling
approaches. The findings of these researches suggest that not all rebalancing
methods are suitable for all datasets.

Reference [53] studied the effects of class imbalance and overlap on the per-
formance of a classifier. eSNN could be used for PM on static, vector based medical
data producing results that are better than traditional machine learning algorithms
provided that the above issues related to parameter optimisation and balancing of
the data are properly dealt with.
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17.3.4 A Case Study of PM for Chronic Kidney Disease
Data Classification

Chronic kidney disease is defined as the gradual degradation of the kidney’s
functions like waste removal, fluid balance and production of vitamin D among
others. Apart from disabling all the functions of the kidney, this disease also leads
to vitamin deficiency, anaemia and increases the risk of cardiovascular disease.
Studies show that around 6% of the people suffer from stage 3 to 5 chronic kidney
disease but this percentage could increase in elderly population. Some of the main
causes for this disease are hypertension and diabetes.

The dataset that have used as a case study here to demonstrate the use of eSNN
for PM, was collected at the Apollo Hospital, India. The age range of the patients
varied from 2 to 90 years. The dataset contained data of 400 individuals out of
which 250 samples represented the disease class and 150 constituted the
non-disease class. There were 24 attributes besides the class label. The class label
was nominal and had one of the two values—ckd (class 1) and nonckd (class 2).
The attributes of the dataset can be seen in Table 17.3. This dataset was down-
loaded from the UCI machine learning repository [54].

Pre-processing—Even though the dataset is slightly imbalanced, no data rebal-
ancing was done on this dataset. On the other hand missing values were replaced
with the median value of each attribute. Figure 17.10 shows a plot of the data in the
2D Principal Components Analysis space (see Chap. 1) and Fig. 17.11 shows the
class distribution of this dataset.

Accuracy

When a PM approach was applied with the use of eSNN, the system accuracy of
classification was approximately 99%. The optimal parameter values of the eSNN
were: number of receptive fields 7; Spiking threshold 1; Mod factor 0.8; Sim
parameter 0.2.

Comparison of Performance

Multilayer Perceptron—(Chap. 2) used in [55]. The accuracy of classification
when a PM was applied was 98%.

Support Vector Machines—(Chap. 1) and first introduced in [10]. The accuracy
of classification using SVM when a PM approach was applied was approximately
96%. Among the compared classification models, eSNN is the simplest and the
most accurate one for the case study as presented in [56].
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Table 17.3 Features of the chronic kidney disease (CKD) dataset and data types

Features Data types

Age Numerical

Blood pressure Numerical

Specific gravity Nominal

Albumin Nominal

Sugar Nominal

Red blood cells Nominal

Pus cell Nominal

Pus cell clumps Nominal

Bacteria Nominal

Blood glucose random Numerical

Blood urea Numerical

Serum creatinine Numerical

Sodium Numerical

Potassium Numerical

Haemoglobin Numerical

Packed cell volume Numerical

White blood cell count Numerical

Red blood cell count Numerical

Hypertension Nominal

Diabetes mellitus Nominal

Coronary artery disease Nominal

Appetite Nominal

Pedal edema Nominal

Anaemia Nominal

Fig. 17.10 A PCA plot of
kidney data Overlapping
samples of CKD—Class 1
(blue) and Class 2 (red) [56]
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17.4 Chapter Summary and Further Readings for Deeper
Knowledge

The chapter introduces a general framework for PM (17.1) and applies it on two
applications:

– PM for integrated feature and model parameter optimisation, based on tradi-
tional ANN (Chap. 2) illustrated on gene expression data classification;

– PM based on eSNN (Chap. 5) for biomedical data, illustrated on a benchmark
clinical data.

The presented methods are compared with traditional machine learning methods,
such as MLP, SVM (see Chap. 2) to demonstrate that not only the output accuracy
is higher, but the methods allow for a personalised profiling that is important for a
better understanding of individual characteristics to help designing a more effective
personalised treatment.

Further readings can be found in several chapters from [57], such as:

– Personalised information modelling for personalised medicine (Chap. 33 in
[57]);

– Health informatics (Chap. 34 in [57]). In the next chapter another PM frame-
work is introduced that can deal with both static and dynamic data and for this
purpose it uses BI-SNN, such as NeuCube (Chap. 6)

Acknowledgements Part of the material in this chapter was previously published as referenced in
the corresponding sections. I would like to acknowledge my co-authors of these publications
Raphael Hu, for some material in Sects. 17.1 and 17.2, and Vinita, and Mary Ann Ribero for some
material in Sect. 17.3.

Fig. 17.11 Class distribution of CKD—blue indicates diseased class and red represents normal
class
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Appendix: Training Algorithm for ESNN (See also Chap. 5)

.
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Chapter 18
Personalised Modelling for Integrated
Static and Dynamic Data. Applications
in Neuroinformatics

The chapter presents methods for building personalised models (PM) for accurate
prediction of an outcome for the individual. The general framework for PM from
Chap. 17 is here further developed for using brain inspired SNN architectures
(BI-SNN). The latter ones facilitate integrated modelling of both static and dynamic
(temporal) data related to an individual and groups of individuals. Case studies on
predicting stroke and response to treatment are presented in details.

The chapter is organised in the following sections:

18:1. A framework for PM based on BI-SNN architecture for integrated static and
dynamic data modelling.

18:2. Personalised deep learning and knowledge representation in time-space.
A case on individual stroke risk prediction.

18:3. PM for predicting response to treatment.
18:4. Chapter summary and further readings for deeper knowledge.

18.1 A Framework for PM Based on BI-SNN Architecture
for Integrated Static and Dynamic Data Modelling

18.1.1 Introduction

Most of the predictive modelling techniques in neuroinformatics have been using
global modelling. Global modelling applied in most conventional machine learning
methods has proven its effectiveness in the past, however it has a limited capability
in producing models that fit each person or each case in the problem space since
global modelling takes all available data in a problem space and produce a single
general function [1]. The produced model is applied to a new individual regardless
of their unique personal features. Common global modelling algorithms include
Support Vector Machine (SVM) [2] and Multilayer Perceptron (MLP) [3] (Chap. 2).
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Therefore, in the case of stroke or any medical condition, personalized modelling
methods are preferred for the reason that they can produce a model for each indi-
vidual based on their personal features. However, classical personalized modelling
methods such as k-Nearest Neighbor (kNN) [4] and weighted k-Nearest Neighbor
(wkNN) [5] are only suitable when classifying vector based and static types of data,
not Spatio-Spectro Temporal Data—SSTD. Therefore we have extended the per-
sonalized modelling methods based on a Spiking Neural Network (SNN) from
Chap. 17, for the analysis and modelling of integrated static and dynamic SSTD.

The concept of using SNN and more specifically BI-SNN for individual pre-
dictive modelling stoke has been considered as an emerging computational
approach [37, 38]. This is because SNN have the potential to represent and integrate
different aspects of information dimension such as time, space and have the ability
to deal with large volumes of data using trains of spikes [6]. SNN models such as
Spike Response Models (SRM) [7]; Leaky Integrate-and-Fire (LIF) Models [8];
Izhikevich models [9]; Evolving SNN (ESNN) [10], have been successfully utilized
in several classification tasks, but they process input data streams as a sequence of
static data vectors, ignoring the potential of SNN to simultaneously consider space
and time dimensions in the input patterns (Chaps. 4 and 5). It can be viewed that
SNN has more potential and is more suitable for SSTD pattern recognition utilizing
emerging new methods such as reservoir computing [11]; Probabilistic Spiking
Neuron Model [12]; Extended Evolving SNN [13]; Recurrent ESNN (reSNN) [14];
Spike Pattern Association Neuron (SPAN) [15]; Dynamic ESNN (deSNN) [16].

In Chap. 17 a framework for PM for integrated feature and model parameter
optimisation using evolutionary algorithms was presented. It was implemented with
the use of:

– Traditional ANN, applied for gene expression classification [1, 17–33];
– eSNN illustrated on a benchmark data [6, 34–68].

In this section we introduce a personalised modelling approach which deals with
person static information as well as the person dynamic information as suggested in
[37, 69]. The model is based on BI-SNN architecture. We demonstrate how
BI-SNN can be used to create efficient personalised modelling systems which reveal
complex dynamic patterns that help understand individual person performance. The
proposed framework has been applied on EEG data case study for comparative
analysis of personalised SNN models created for opiate addict patients versus those
ones under methadone maintenance treatment (the same case study as in Chap. 8
[70], but here a PM approach is developed). The models result in more accurate
classification accuracy and better understanding of individual patient’s response to
methadone maintenance treatment. The results are also compared to global SNN
models trained on the same EEG data, reported in [70].
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In the method in this section we introduce for the first time the integration of
static data (such as clinical data) and dynamic data (such as EEG) using the
NeuCube SNN architecture and the approach from [37, 69].

18.1.2 A NeuCube-Based Framework for PM of Integrated
Static and Dynamic Data

SNN can integrate both spatial and temporal information as locations of synapses
and the time of their spiking activity respectively [11, 44, 71, 72]. Several spiking
neuronal models have been proposed so far. As one implementation, the popular
Leaky-Integrate-and Fire Model (LIFM) is used here (Chap. 4).

The framework presented here uses the BI-SNN architecture NeuCube [44, 73]
that refers also to elements of previous studies [74–80] (see Chap. 6)—Fig. 18.1.

NeuCube consists of several functional modules [44, 73, 81]:

• Input data encoding.
• Input variables spatial mapping and unsupervised learning in a 3D brain-like

SNNcube.
• Supervised learning in an output classification/regression module [6].
• Parameter optimisation.
• Visualisation and knowledge extraction.

Input data encoding: continuous streams of data are encoded into sequences of
spikes using a Threshold-Based Representation method (TBR) as one implemen-
tation (Chap. 4). Figure 18.2 shows an example of single temporal variable
encoding process. Then the encoded spike trains of the data variables will be
entered into the SNNcube module for unsupervised training.

Fig. 18.1 An example illustrating the PM framework using both static and dynamic (temporal)
data in a NeuCube-based system [37, 69]
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The SNNcube has a 3D brain-like structure with recurrent connections. Initial
neuronal connections are generated with the use of the “small world” connectivity
rule. The spatial distance of two neurons is calculated to determine their initial
connection weight. According to this rule, neurons within small area are more
densely connected, and the weight of the connections are depended on the distance
between the neurons.

Each neuron in the SNNcube corresponds to a brain area according to a general
brain template (such as Talairach [82], MNI, etc.). Each input neuron in the
SNNcube has the same (x,y,z) coordinates as the corresponding input data variable
(EEG channel) in the used brain template. The input EEG spike trains are propa-
gated through the SNNcube via the allocated input neurons and unsupervised
learning is applied.

Unsupervised learning in a 3D SNNcube is performed using Spike-Timing
Dependent Plasticity (STDP) learning rule [83] as one implementation. During the
learning, efficacy of synapses is strengthened or weakened based on the timing of
post-synaptic action potential in relation to the pre-synaptic spike. If pre-synaptic
neuron i spikes first and then post-synaptic neuron j spikes, then the connection
weight Wij between these two neurons i and j increases, otherwise it decreases.

Then a supervised learning in an output classification/regression module is
performed using dynamic evolving Spiking Neural Networks (deSNN) [6].

deSNN is computationally efficient model and emphasizes the importance of the
first spike, which has been observed in biological systems. This is performed to
train the output classifier neurons using class label information associated with the
training samples. The output classifier is trained using the Rank-Order
(RO) learning rule to initiate connection weights and a drift parameter to adjust
them according to following spikes on the same synapse (Chap. 5).

Fig. 18.2 An example of a
signal (top row) encoded into
positive and negative spikes
(below row) using a
Threshold-Based
representation method (TBR).
The raw temporal data
belongs to one EEG channel
variable recorded over time. If
the signal increases more than
a threshold, positive spikes
are generated. If the signal
drops more than a threshold,
negative spikes are generated
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During the supervised training of an output deSNN, for every training sample (a
labelled input spatio-temporal pattern), an individual output neuron i is evolved and
connected to all spiking neurons in the SNNcube. An output neuron is trained to
recognize the spatio-temporal pattern of activity in the already trained SNNcube
that is triggered when an individual spatio-temporal input pattern corresponding to
this individual is propagated through the SNNcube.

In this research, instead of building a global model and training it with data of
the whole patient population, for every patient we will build a personalised SNN
model to train it only on data of those patients that have similar static clinical
factors. Patients with similar medical factors (drug types, long term or short term
usage, methadone dos, etc.) fall into a similar data pattern category due to similar
medical effects on their brain functions.

We hypothesize that personalised modelling with SNN could be successfully
used, if the models learn from the most informative static and dynamic data,
selected based on the similarity in the patients data which is also the foundation of
the method proposed in [37, 69].

The proposed NeuCube personalised modelling for static and dynamic data is
performed based on the following steps:

1. Select K-nearest neighbour vectors to a new individual vector x1 from the global
static data and form a cluster of similar samples with close proximity to vector
x1.

2. Select the dynamic data of the selected K-nearest samples.
3. Using the selected dynamic data, train a PSNN model as SNNcube using

unsupervised learning.
4. Train a classifier for the SNN model using deSNN.

During the unsupervised learning process, the neuronal connections are evolved
and adapted in the SNNcube. The more spikes transmitted between two connected
neurons at time t, the stronger the connection is. The SNNcube learns to generate
specific trajectories of spiking activities when a particular input pattern is entered.
The NeuCube SNN-based personalised modelling framework presented here is part
of a development system (see www.kedri.aut.ac.nz/neucube/) [81].

Figure 18.3 shows a block diagram of the NeuCube SNN-based personalised
modelling approach. Vector-based personal static data is available, each vector
represents a person’s static features, such as opiate use duration, methadone dose,
etc. For every new input person xi, K nearest static data vectors to xi are selected.
Then the dynamic data of those K nearest subjects are used to train the personalised
SNNcube using STDP learning [84].

PM with the NeuCube BI-SNN allows to analyse the spiking activity of the input
variables that can be used for ranking the importance of the input variables for a
particular PM. Figure 18.4 shows a diagram of spiking activity of input variables
that can be used to rank features (the larger space is occupied by more important
features).
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18.1.3 Comparative Analysis of the NeuCube Based Method
with Other Methods for PM

The main characteristics of using NeuCube for PM are discussed briefly here.
Overall, the introduced here method for PM has the following advantages when

compared with other methods:

Fig. 18.3 A block diagram of the NeuCube SNN-based personalised modelling approach.
Vector-based personal static data is available, each vector represents a person’s static features,
such as opiate use duration, methadone dose, etc. For every new input person xi, K nearest static
data vectors to xi are selected. Then the dynamic data of those K nearest subjects are used to train
the personalised SNNcube using STDP learning [84]

Fig. 18.4 A diagram of spiking activity of input variables that can be used to rank features (the
larger space is occupied by more important features). Different features can have different
importance for different PM on different subgroups of subjects, in different seasons etc. as
discussed further in this chapter
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– It can accommodate and also integrate both static, vector based, and dynamic,
temporal data for an individual;

– It allows for a better understanding of both static and dynamic factors, in their
integration and interaction, what concerns their importance for the prediction of
the outcome for an individual;

– It allows for a continuous, incremental adaptation of the model based on the
incremental update of the data repository of other individuals;

– It takes into account both the static data (stability) and the changes in the
temporal data (plasticity) to build a better individual predictive model;

– It enables the acquisition of deep spatio-temporal knowledge representation, as
presented in the next section.

18.2 Personalised Deep Learning and Knowledge
Representation in Time-Space. A Case on Individual
Stroke Risk Prediction

18.2.1 The Case Study Data for Individual Stroke Risk
Prediction

According to World Health Organization (WHO) global report, health related
problems like chronic diseases are the major cause of death in almost all countries
and it is projected that 41 million people will die of a chronic disease by 2015 [85].
Chronic disease like stroke, has become a leading cause of death and adult dis-
ability in the world [86].

Statistical methods have been used by many researchers [86–90] to find asso-
ciation with environmental variables and stroke incidents. These are some of the
studies that discovered connections between environmental changes and stroke
occurrences. However none of these methods investigate the combination effect of
these environmental variables. We believe in order to find more meaningful asso-
ciations between stroke occurrences and the external environment it is necessary to
analyze them collectively.

Data Specification

A data from an ARCOS study was chosen which is between 2002 and 2003,
consisting of 1207 subjects [37, 91–93]. These subjects were then divided into
several subgroups stratified by season (summer, autumn, winter, spring), history of
hypertension, smoking status and age to explore the susceptibility of groups to the
influence of environmental changes (see Table 18.1 where 4 groups are selected for
4 PM). Each subject is described by 12 environmental variables (wind speed, wind
chills, temperature dry, temperature wet, temperature max, temperature min,
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humidity, atmospheric pressure, nitrogen dioxide, sulphur dioxide, ozone gas, solar
radiation) measured daily within a time window before the stroke event.

Since the data consists only of stroke subjects, the time window between days 60
and 40 before the event was used as ‘low risk’ and the days between 20 and 1 days
before the event as high risk (see Fig. 18.5).

A first experiment takes the whole time period covering 20 days (prediction of
only one day before stroke occurs). A second experiment looks at 75% of the whole
pattern which means the prediction will be 6 days ahead. Lastly, a third experiment
will take only 50% (11 days earlier) of the whole pattern to predict the stroke event.
The normal class will be referred as Class 1 (Low risk) and Class 2 (High risk).

The following parameter values were selected for optimal classification accuracy
(see Chap. 6):

(1) The size of the SNNr reservoir is 6 � 6 � 6 making a total of 216 neurons;
(2) Threshold for the spike encoding depends on the input data as the input data is

not normalized to minimize error or loss of information;
(3) Small World Connectivity (SWC) used to initialize the connections in the SNN

reservoir, with a radius of initial connections of 0.30. The initial connections
are generated probabilistically, so that closer neurons are more likely to be
connected;

(4) Threshold of the LIFM neurons in the SNN reservoir is 0.5;
(5) The leak parameter of the LIFM neurons is 0.002;
(6) STDP learning rate is 0.01;
(7) Number of training is 2 times;
(8) Mod parameter of the deSNN classifier is 0.04 and the drift is 0.25.

The data as explained above has been used to create personalised models and to cross
validate them in a leave-one-out cross validation. The obtained best accuracy of 1 day
ahead high risk of stroke prediction is 95% (100% for the TP—stroke prediction, class
2; 90% for the TN—no stroke—class 1). Table 18.2 lists the overall accuracy from all
experiments in a comparative study against other machine learning methods [37].

Using BI-SNN, such as NeuCube, for personalised modelling with a higher
predictive accuracy achieved, is one feature of the discussed PM methodology.
Another important feature is the extraction of deep personalised knowledge as
introduced in the next section.

Table 18.1 The used stroke occurrences dataset used to build four PM for the selected group of
subjects (from [91–93])

No. Season Age
range

History of
hypertension

Smoking
status

Number of selected subject
(control and case)

1 Winter 50–70 Yes Current
smoker

20

2 Summer 50–70 Yes NA 46

3 Spring 35–50 Yes NA 26

4 Autumn 25–35 NA NA 16
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18.2.2 Personalised Deep Learning and Knowledge
Representation in NeuCube on the Case of Stroke

Time-space is learned in a BI-SNN in several ways:

• Time between spikes is learned in the connections
• Time between spikes is learned in the neuronal membranes
• Learning whole, deep, spatio-temporal patterns, theoretically of unlimited time

length, as connection pathways between spatially located neurons.

Figure 18.6a illustrates three snapshots of a NeuCube model during training on
temporal climate and air pollution data of 9 variables, measured on each of 20 days
before a stroke event happened to each subject from a group that is similar to
subject X in terms of static data. The subjects in this group have similar clinical and
demographic measurements.

A NeuCube SNN model is spatially initiated with 1000 spiking neurons.
A subset of 9 input climate variables (shown in yellow colour) are mapped into the
3D SNN structure based on their temporal similarity—the more similar they are, the
closer they are allocated in the SNN model structure. Figure 18.6b captures the
evolved structural connectivity in the 3D SNN model after unsupervised training.
Spatio-temporal patterns of connections are learned in the 3D structural dimen-
sionality of the model. Figure 18.6c shows that a dynamic functional pattern is
learned in the functional space of climate variable changes. The pattern indicates a
high risk of stroke for the subject X and the group he/she belongs to when certain
climate and air pollution variables change significantly in a particular sequence
within 20 days. This can be represented as a deep rule in time-space as shown in
Box 18.1.

Fig. 18.5 Time windows to discriminate between ‘low risk’ and ‘high risk’ stroke class

Table 18.2 Comparative experimental results for all modelling methods

Methods SVM MLP kNN wkNN NeuCubeST

1 day earlier (%) 55
(70, 40)

30
(50, 10)

40
(50, 30)

50
(70, 30)

95
(90, 100)

6 days earlier (%) 50
(70, 30)

25
(20, 30)

40
(60, 20)

40
(60, 20)

70
(70, 70)

11 days earlier (%) 50
(50, 50)

25
(30, 20)

45
(60, 30)

45
(60, 30)

70
(70, 70)
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Box 18.1 A deep temporal rule defining a high risk of stroke for a subject and a group of 

subjects extracted from a trained Nue Cube personalised model (from Fig. 18.5)  

_______________________________________________________________________________

IF          (SO2 changes around time T1)  

AND     (Wind Speed changes around time T2) 

AND      (TempMin changes around time T3) 

AND (Pressure changes around time T4) 

AND      (AvTemp changes around time T5) 

AND      (Humidity changes around time T6) 

AND      (NO2 changes around time  T7) 

AND      (O3 changes around time T8) 

AND (Solar eruption changes around T9) 

THEN (High risk of stroke for the individual X from the group she/he belongs to) 

This personalised SNN model and the rule extracted can be used for early
prediction of a high risk of stroke for a person in the same group.

Figure 18.7 shows the spiking activity in a NeuCube model for personalised
stroke prediction after it was trained on environmental data related to a sub-group of
people who suffered a stroke (20 days before the stroke event happens).

This can be used as a predictive sign, the closer to the day of high risk, the higher
the prediction accuracy (from https://kedri.aut.ac.nz/R-and-D-Systems/personalised-
modelling-for-stroke-risk-prediction).

Fig. 18.6 a Three snapshots of a NeuCube model during training on temporal climate and air
pollution data of 9 variables, measured on each of 20 days before a stroke event happened to each
patient from a selected group for a PM; b the evolved connectivity in the 3D SNN model after
training—spatio-temporal structural patterns of connections are learned in the 3D dimensionality
of the model; c a dynamic functional pattern is learned in the functional space of climate variable
changes
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Fig. 18.7 Representation in a NeuCube model trained on environmental data related to a
sub-group of people who suffered a stroke (20 days before the stroke event happens). https://kedri.
aut.ac.nz/R-and-D-Systems/personalised-modelling-for-stroke-risk-prediction (Figs. 18.5 and 18.6
are created by M. Gholami)

Fig. 18.8 Revealing dynamic spatio-temporal patterns as trajectories of major consecutive
changes in the environmental variables presented as a temporal order from 1 to 12, related to Low
Risk and High Risk of stroke prediction for two selected individuals from the data set in [37]:
Subject 6 in the summer season—a low risk trajectory pattern; b high risk trajectory pattern;
subject 12 in the spring season—c low risk trajectory pattern; d high risk trajectory pattern
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In the experiments in Sect. 18.2.1 part of the data (e.g. 20 days back from the
day of stroke) was used a high risk period and part of the data (e.g. between 60 and
40 days before a stroke day) was used as low risk. A trained NeuCube model can be
used to extract patterns related to both high risk and low risk of stroke for an
individual as illustrated in Fig. 18.8. Figure 18.8 reveals dynamic temporal patterns
as trajectories of major consecutive changes in the environmental variables pre-
sented as a temporal order from 1 to 10, related to Low Risk and High Risk of
stroke prediction for two selected individuals: Subject 6 in the summer season—(a)
low risk trajectory pattern; (b) high risk trajectory pattern; Subject 12 in the spring
season—(c) low risk trajectory pattern; (d) high risk trajectory pattern.

These trajectory patterns can be expressed as deep temporal rules as illustrated
above.

18.3 PM for Predicting Response to Treatment Using
Personal Data and EEG Spatio-Temporal Data

18.3.1 The Case Study Problem and Data

To illustrate the proposed NeuCube SNN-based personalised modelling methods
and systems for static and dynamic data, here we used EEG data collected from two
groups of subjects when they performed a cognitive GO- NOGO task. This is the
same case study data used in Chap. 8 [39], but here a PM approach is developed
with the use of both static and dynamic data related to the same subjects. During a
GO/NOGO task, a participant is required to perform an action given certain stimuli
(e.g. press a button-GO) and inhibit that action under a different set of stimuli (e.g.
not press that same button- NOGO).

The collected EEG data consists of 68 samples each representing an EEG data of
one subject, in which 21 samples are labelled as healthy (H), 18 samples are
labelled as opiate addict patients (OP), and 29 samples are labelled as patients
undertaking methadone maintenance treatment (M).

The EEG data was recorded via 26 EEG channels: Fp1, Fp2, Fz, F3, F4, F7, F8,
Cz, C3, C4, CP3, CPz, CP4, FC3, FCz, FC4, T3, T4, T5, T6, Pz, P3, P4, O1, O2,
and Oz.

In addition to the EEG DATA, personal clinical, static information was also
recorded per subject, such as: gender, age, opiate use duration, methadone use
duration, methadone dose, history of overdose, anger level.
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18.3.2 The NeuCube Based PM Model

A NeuCube SNN-based personalised modelling system is developed as part of the
NeuCube integrated platform [81]. The procedure for building a PM for one subject
is illustrated in Fig. 18.9. The EEG data and the person static information is loaded;
subject ID 1 is selected as an example; a cluster of 17 subjects who have over 88%
similarity to subject 1 is detected. The dynamic data of these 17 subjects are
transferred into the SNNcube for the creation of a personalised model of subject 1.
The dynamic data is encoded into spike trains and mapped into a 3D SNNcube and
STDP unsupervised learning is performed. In the output layer, an output neuron is
created and connected to all neurons of the SNNcube. Subject 1 dynamic data is
entered to test the classifier. The blue lines are positive (excitatory) connections,
while the red lines are negative (inhibitory) connections. The brighter the colour of

Fig. 18.9 A NeuCube SNN-based personalised modelling system is developed as part of the
NeuCube integrated platform [81, 84]. The EEG data and the person static information is loaded;
subject ID 1 is selected as an example; a cluster of 17 subjects who have over 88% similarity to
subject 1 is detected. The dynamic data of these 17 subjects are transferred into the SNNcube for the
creation of a personalised model of subject 1. The DATA is encoded into spike trains and mapped
into a 3D SNNcube and STDP unsupervised learning is performed. In the output layer, an output
neuron is created and connected to all neurons of the SNNcube. Subject 1 dynamic data is entered to
test the classifier. The blue lines are positive (excitatory) connections, while the red lines are negative
(inhibitory) connections. The brighter the colour of a neuron, the stronger its activity with
neighbouring neurons. Thickness of the lines also identifies the neuron’s enhanced connectivity. The
1471 neurons of the brain-like SNNc are spatially located according to the Talairach brain atlas [82]
and 26 input neurons are allocated as inputs for the 26 EEG channels [84]
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a neuron, the stronger its activity with neighbouring neurons. Thickness of the lines
also identifies the neuron’s enhanced connectivity. The 1471 neurons of the
brain-like SNNc are spatially located according to the Talairach brain atlas [82] and
26 input neurons are allocated as inputs for the 26 EEG channels.

– The dynamic data of these 17 subjects are transferred into the SNNcube for the
creation of a personalised model of subject 1.

– The dynamic data is encoded into spike trains and mapped into a 3D SNNcube
and STDP unsupervised learning is performed.

– In the output layer, an output neuron is created and connected to all neurons of
the SNNcube. Subject 1 dynamic data is entered to test the classifier. The blue
lines are positive (excitatory) connections, while the red lines are negative
(inhibitory) connections. The brighter the colour of a neuron, the stronger its
activity with neighbouring neurons. Thickness of the lines also identifies the
neuron’s enhanced connectivity. The 1471 neurons of the brain-like SNNc are
spatially located according to the Talairach brain atlas [82] and 26 input neurons
are allocated as inputs for the 26 EEG channels [84].

18.3.3 Experimental Results

In this experiment, for every personalised model creation, SNNcube is trained by
the most informative EEG data corresponding to subjects with similar clinical static
information.

Some experimental results are illustrated in Fig. 18.10 and Table 18.3.
The trained PSNN can be used for a better comparatively analysis across indi-

vidual subject’s performance. Figure 18.10 represents NeuCube SNN-based per-
sonalised modelling user interface, which is developed as part of the NeuCube, for
creating personalised SNN (PSNN) model.

Using the proposed framework for PSNN modelling, we created 47 separate
personalised SNN models (for 18 OP subjects and 29 M subjects), each trained on a
subset of informative EEG data corresponding to a cluster of samples with similar
static data. Then the overall obtained accuracy of all 47 SNNcube models is
compared with the global SNNcube which was trained on the entire dataset and
tested on individual data.

Table 18.3 shows that PSNN models results in a better overall classification
accuracy when compared with global SNN models using the same NeuCube
architecture. Precise interpretation of the person performance can be also obtained
as illustrated on 6 subjects in Fig. 18.10. Figure 18.10 shows six PSNN models,
each of them created for a single person xi. In this figure, the left column represents
the similarity between the clinical static data vector of person xi and other subject’s
static data vectors. The similarity is shown as a bar graph. The green highlighted bar
lines represent those subjects that have over 88% similarity with person xi.
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The EEG data of those subjects are encoded into spike trains and then transferred
into a personalised 3D brain-like SNN cube for STDP unsupervised learning.
During the learning, the connections between the neurons of the SNNcube are
strengthened or weakened based on the timing of post-synaptic action potential in
relation to the pre-synaptic spikes. If pre-synaptic neuron i spikes first and then
post-synaptic neuron j spikes, then the connection weight Wij between these two
neurons i and j increases, otherwise it decreases. Figure 18.10 shows the differences
between 6 randomly subjects in relation to their static, clinical data and brain
activities achieved through building personalised models in NeuCube. The 1471
neurons of the brain-like SNNc are spatially located according to the Talairach
brain atlas [82] and 26 input neurons are allocated as inputs for the 26 EEG
channels. For every individual, one SNNcube is trained by a subset of EEG data
corresponding to the subjects with similar static data [84]. As shown, for M subject
id. 1, stronger neuronal connections are evolved around the input EEG channels
located in the right hemisphere of the PSNN model corresponding to the right
hemisphere. If we compare it with M subjects id. 2 and id. 3, which reveals a
different response to methadone treatment of these 3 subjects, the differences of the
model connectivity are observed.

18.3.4 Discussions

These findings can reveal significant information about the individual person brain
functions against a cognitive task and can be further used to suggest a better
treatment based on the personalised methadone dose-related effects in case of the
experiment presented. This can be used to control individual differences and
pre-existing conditions, and help to predict treatment response.

In contrast to the global modelling, personalised modelling creates a specific
model for each new person based on existing samples closest to this person’s data
from a dataset.

In this study, we propose a framework for personalised modelling based on the
NeuCube SNN architecture [44].

A NeuCube personalised model includes several methods and algorithms that
allow different aspects of EEG data to be studied and analysed: clustering the
subjects’ DATA based on the K-nearest subject vectors; spatial mapping of the
dynamic data into a 3D personalised SNN structure; unsupervised learning in the
SNNcube; visualisation of the connectivity and the spiking activity of the trained
SNNcube for the discovery of new information related to the data and the brain
processes that generated it; supervised learning in a SNN classifier; and model
validation.

Overall, personalised SNN models trained on a subset of informative EEG data
resulted in a better classification accuracy when compared with global SNN models.
In addition, they can be used to reveal individual characteristics on brain activities
that can be used to find the best patient- oriented treatment.
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Fig. 18.10 The differences between 6 randomly selected subjects in relation to their static, clinical
data and brain activities achieved through building personalised models in NeuCube. The 1471
neurons of the brain-like SNNc are spatially located according to the Talairach brain atlas [82] and
26 input neurons are allocated as inputs for the 26 EEG channels. For every individual, one
SNNcube is trained by a subset of EEG data corresponding to the subjects with similar static data
[84]
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18.4 Chapter Summary and Further Readings for Deeper
Knowledge

This chapter further develops the PM methods presented in Chap. 17, here with the
use of the BI-SNN. The method presented here integrates both static (vector based
data) and dynamic, temporal data. The method is illustrated on two real-world
problems in Neuroinformatics:

– Individual prediction of response to treatment;
– Individual stroke occurrence prediction.

Further readings can be found in several chapters of [94], such as:

– Personalised modelling for personalised medicine (Chap. 33 in [94]);
– Information methods for predicting risk and outcome of stroke (Chap. 55 in

[94]);
– Stroke prediction in NeuCube: https://kedri.aut.ac.nz/R-and-D-Systems/

neucube/stroke;
– Using NeuCube for static and dynamic data on stroke prediction: https://kedri.

aut.ac.nz/R-and-D-Systems/personalised-modelling-for-stroke-risk-prediction;
– A multi-cube PM system integrating fMRI and DTI personal data [49] and also

Chap. 11.
– General methods for brain data modelling and SNN for a potential use in

personalised modelling applications [95–102].
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Table 18.3 Classification accuracy obtained via NeuCube personalised modelling versus using a
global classification NeuCube model (reported in our previous study [70])

Methods NeuCube-Personalised
modelling

NeuCube- Global modelling

Classification accuracy
of class M versus class
OP in %

Averaged over 47
trained PSNNcubes:
93.61

One trained SNNcube using all
subjects and tested via leave-one-out
method: 79.00

Each SNNcube is trained by dynamic data of subjects with similar static data and then tested by a
new person’s dynamic data
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Chapter 19
Deep Learning of Multisensory
Streaming Data for Predictive Modelling
with Applications in Finance, Ecology,
Transport and Environment

This chapter presents methods for using eSNN and BI-SNN for deep, incremental
learning and predictive modelling of streaming data and for deep knowledge repre-
sentation. The methods are applied for predictive modelling in the areas of finance,
ecology, transport and environment using respective multisensory streaming data.
Each of these applications require specific model design in terms of data preparation,
SNN model parameters, experimental setting and validation. Each of the methods are
illustrated with case study problems and data, but their applicability can be extended
to a wider class of problems where multisensory streaming data is available. Some of
the material in this chapter was first published in [1, 2]. More details about learning in
SNN, eSNN and BI-SNN can be found in Chaps. 4–6 of the book.

This chapter is organised in the following sections:

19:1. A general framework for deep learning and predictive modelling of multi-
sensory streaming data with SNN.

19:2. eSNN for on-line predictive modelling of stock movement prediction.
19:3. SNN for deep learning and predictive modelling of ecological streaming data.
19:4. SNN for deep learning and predictive modelling of transport streaming data.
19:5. SNN for deep learning and predictive modelling of seismic streaming data.
19:6. Future applications.
19:7. Summary and further readings for deeper knowledge.

19.1 A General Framework for Deep Learning
and Predictive Modelling of Multisensory
Time-Space Streaming Data with SNN

This section presents a general methodology for using SNN for time-space data,
here called spatio-spectro temporal data (SSTD), as multisensory streaming data
and discusses some applications. Some of the material in this section was first
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published in [1]. The application systems built are named evolving spatio-temporal
data machines (eSTDM) as per the definition in Chap. 6.

19.1.1 The Challenges of Pattern Recognition
and Modelling of Multisensory Streaming Data

Most problems in nature require spatio- and/or spectro-temporal data (SSTD) that
include measuring spatial or/and spectral variables over time. SSTD is described by a
triplet (X, Y, F), where: X is a set of independent variables measured over consec-
utive discrete time moments t; Y is the set of dependent output variables, and F is the
association function between whole segments (‘chunks’) of the input data, each
sampled in a time window 1t, and the output variables belonging to Y, such that

F : Xð1tÞ ! Y

where X(t) = (x1(t), x2(t), …, xn(t)) and t = 1, 2, …, m.
It is important for a computational model to capture and learn whole spatio- and

spectro-temporal patterns from data streams in order to most accurately predict future
events from new input data. Examples of problems involving SSTD are: brain
cognitive state evaluation based on spatially distributed EEG electrodes [3], Chaps. 8
and 9; fMRI data [4–8], Chaps. 10 and 11; moving object recognition from video data
[9], Chap.13; evaluating risk of disease, e.g. heart attack, stroke [10], Chap.18;
evaluating response of a disease to treatment based on clinical and environmental
variables, Chap.18; modelling the progression of a neuro-degenerative disease, such
as Alzheimer’s Disease, Chap. 9; modelling and prognosis of the establishment of
invasive species in ecology. The prediction of events in geology, astronomy, eco-
nomics and many other areas also depend on accurate SSTD modelling.

The most commonly used models for dealing with temporal streaming infor-
mation, based on Hidden Markov Models (HMM) (Chap. 1) and traditional arti-
ficial neural networks (ANN), Chap. 2, have limited capacity to achieve the
integration of complex and long temporal spatial/spectral components because they
usually either ignore the temporal dimension or over-simplify its representation.
A new trend in machine learning is currently emerging and is known as deep
machine learning [11]. Most of the proposed models still learn SSTD by entering
single time point frames rather than learning whole SSTD patterns. They are also
limited in addressing adequately the interaction between temporal and spatial
components in SSTD. Some recent developments in SSTD modelling have been
proposed (e.g. [12, 13]) but these are limited in their application—typically these
methods are targeted towards one specific source of data, and do not show the broad
level of application required in the contexts we seek to address.

The human brain has the amazing capacity to learn and recall patterns from
SSTD at different time scales, ranging from milliseconds, to years, and possibly to
millions of years (i.e. genetic information, accumulated through evolution). Thus,
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the brain is the ultimate inspiration for the development of new machine learning
techniques for SSTD modelling. Indeed, brain-inspired Spiking Neural Networks
(SNN) [14–16] have the potential to learn SSTD by using trains of spikes (binary
temporal events) transmitted among spatially located synapses and neurons. Both spatial
and temporal information can be encoded in an SNN as locations of synapses and
neurons and time of their spiking activity, respectively. Spiking neurons send spikes via
connections that have a complex dynamic behaviour, collectively forming an SSTD
memory. Some SNN employ specific learning rules such as Spike-Time-Dependent-
Plasticity (STDP) [17] or Spike Driven Synaptic Plasticity (SDSP) [18].

In [3] a BI-SNN NeuCube framework was presented for spatio-temporal brain
data (see also Chap. 6) and in [1] and in several chapters of the book some specific
methods and applications of BI-SNN were presented. This chapter further extends
these works into a generic and systematic methodology for a new type of solutions
to any spatio-temporal stream data problems and the solution is called here for the
first time—evolving spatiotemporal data machine (eSTDM). It is also demonstrated
in several domain application areas.

19.1.2 Modelling Streaming Data in Evolving SNN (eSNN)

Evolving SNN (eSNN) were presented in details in Chap. 5. Figure 19.1 depicts a
general architecture of an eSNN and the training algorithm is presented as
Appendix 1 to this chapter.

Streaming data here is presented as a sequence of vectors (frames, samples),
each of them representing a measurement of the modelled input variables for a
classification problem.

Each sample is learned in the eSNN model (see training algorithm in the
Appendix) and generates an output node that represents this sample and is allocated
in the corresponding classification output “pool”.

Fig. 19.1 A general
architecture of eSNN for
classification (see also
Chap. 5)
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Output neurons, representing samples of the same class, can be merged as
described in Chap. 5, resulting in a smaller number of output nodes. Each of them
now representing not a single sample, but a prototype of samples as the center of a
cluster of these samples in the connection weight space.

An eSNN can learn in a continuous, on-line, “life-long” way streaming data, by
incrementally creating output neurons and aggregating them.

An eSNN can learn in both supervised and semi-supervised modes. When a new
sample is available, but there is no class label attached to it, the model can create a
new output sample and to allocate it to the class “pool” of the closest prototypes in
it. The similarity is again measured through the connection weights using Euclidian
distance for example.

eSNN can be used not only for classification tasks of streaming data, but for
regression tasks as well. In this case the output nodes are not representing class
labels, but real values. Aggregation of output nodes can be done if both the con-
nection weights and the output values are similar.

19.1.3 A General Methodology for Modelling Multisensory
Streaming Data in Brain-Inspired SNN
for Classification and Regression

Our approach here to modelling large and fast streaming SSTD is based on a
common architecture of evolving spatio-temporal data machine (eSTDM) as
depicted in Fig. 19.2 developed with the use of a BI-SNN NeuCube depicted in
Fig. 19.2 and also discussed in Chap. 6.

In this architecture a SNNcube is used to map input streaming data after its
encoding into spikes. eSNN, deSNN or other SNN models can be used as an output
module for classification or regression.

Fig. 19.2 A general architecture of eSTDM
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The functionality of an eSTDM is based on the following procedures:

• Converting multivariable input stream data into spike sequences;
• Unsupervised learning of spatio-temporal patterns from data in a SNN reservoir

(the ‘‘Cube’’);
• Supervised learning of classification/regression output system for classification/

regression problems;
• Optimisation using the evaluated/tested accuracy of the system as a feedback for

improving the performance of this system in an iterative way (if necessary).

The NeuCube architecture consists of the following modules (Chap. 6):

• Input information encoding module;
• 3D SNN module (the Cube);
• Output classification/regression module; and other optional modules, including:
• Gene regulatory network (GRN) module;
• Parameter optimisation module;
• Visualisation and knowledge extraction module (not shown in Fig. 19.3).

The input module transforms input data into trains of spikes. Spatio-temporal data
(such as EEG, fMRI, climate) is entered into the main module—the 3D SNNcube
(SNNc). Different types of data can be used. This data is entered (‘‘mapped’’) into
pre-designated spatially located areas of the SNNc that correspond to the spatial
location of the origin where data was collected (if such a location exists). Learning
in the SNN is performed in two stages:

• Unsupervised training, where spatio-temporal data is entered into relevant areas
of the SNNc over time. Unsupervised learning is performed to modify the
initially set connection weights. The SNNc will learn to activate same groups of

Fig. 19.3 A general architecture of the NeuCube BI-SNN ([3], see also Chap. 6)
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spiking neurons when similar input stimuli are presented, also known as a
polychronization effect [19].

• Supervised training of the spiking neurons in the output module, where the same
data that was used for unsupervised training is now propagated again through
the trained SNN and the output neurons are trained to classify the
spatio-temporal spiking pattern of the SNNc into pre-defined classes (or output
spike sequences). As a special case, all neurons from the SNN are connected to
every output neuron. Feedback connections from output neurons to neurons in
the SNN can be created for reinforcement learning. Different SNN methods can
be used to learn and classify spiking patterns from the SNNc, including the
deSNN [20, 24] and SPAN models [21]. The latter is suitable for generating
motor control spike trains in response to certain patterns of activity of the Cube.

In an eSTDM similar activation patterns (called ‘polychronous waves’) can be
generated in the SNNc with recurrent connections to represent short term memory.
When using STDP learning, connection weights change to form LTP or LTD,
which constitute long-term memory (see [17] for more detail of STDP). Results of
the use of the NeuCube suggest that the NeuCube architecture can be explored for
learning long spatio-temporal patterns and to be used as associative memory. Once
data is learned, the SNNc retains the connections as a long-term memory. Since the
SNNc learns functional pathways of spiking activities represented as structural
pathways of connections, when only a small initial part of input data is entered the
SNNc will ‘synfire’ and ‘chain-fire’ learned connection pathways to reproduce
learned functional pathways. Thus a NeuCube can be used as an associative
memory and as a predictive system for event prediction when only some initial new
input data is presented.

In order to design an appropriate eSTDM for a given task, a number of factors
must be taken into consideration. Here, we identify these considerations.

• Which input variable mapping into the SNNc is used? Is there some a priori
information we can use to spatially locate these input variables in the SNNc?

• Which learning method do we use in the SNNc?
• Which output function is appropriate? Is it classification or regression?
• How to visualise an eSTDM for an improved understanding?
• Which parameter optimisation method will we apply?

For rapid prototyping and exploration of a NeuCube model, a generic proto-
typing and testing module has been implemented and is discussed in Chap. 20.

Data encoding

There are different coding schemes for SNN, primarily rate (information as mean
firing rates) or temporal (information as temporally significant) coding. For
NeuCube, we use temporal coding to represent information. So far four different
spike encoding algorithms have been integrated into the existing implementation of
the NeuCube, namely the Ben’s Spiker Algorithm (BSA), Temporal Contrast
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(Threshold-based), Step-Forward Spike Encoding Algorithm (SF) and Moving-
Window Spike Encoding Algorithm (MW) (see Chap. 4).

Chapter 4 of this book shows different results of the same data, in this case an
EEG signal, encoded by these four algorithms. Different spike encoding algorithms
have distinct characteristics when representing input data. BSA is suitable for high
frequency signals and because it is based on the Finite Impulse Response technique,
the original signal can be recovered easily from the encoded spike train. Only positive
(excitatory) spikes are generated by BSA, whereas all other techniques mentioned
here can also generate negative (inhibitory) spikes. Temporal Contrast was originally
implemented in hardware [9] in the artificial silicon retina. It represents significant
changes in signal intensity over a given threshold, where the ON and OFF events are
dependent on the sign of the changes. However, if the changes of the signal intensity
vary dramatically, it may not be possible to recover the original signal using the
encoded spike train. Therefore, an improved spike encoding algorithm, SF, to better
represent the signal intensity is described below and also Chap. 4.

For a given signal S(t) where (t = 1, 2,…, n), we define a baseline B(t) variation
during time t with B(1) = S(1). If the incoming signal intensity S(t1) exceeds the
baseline B(t1−1) plus a threshold defined as Th, then a positive spike is encoded at
time t1, and B(t1) is updated as B(t1) = B(t1−1) + Th; and if S(t1) <= B(t1
−1) − Th, a negative spike is generated and B(t1) is assigned as B(t1) = B(t1
−1) − Th. In other situations, no spike is generated and B(t1) = B(t1−1).

As to the Moving-Window Spike Encoding Algorithm, the baseline B(t) is
defined as the mean of previous signal intensities within a time window T, thus this
encoding algorithm can be robust to certain kinds of noise.

Before choosing a proper spike encoding algorithm, we need to figure out what
information the spike trains shall carry for the original signals. After that, the
underlying spike patterns in the spike trains will be better understood.

Input variable mapping

Mapping input variables into spatially located spiking neurons in the SNNc is a new
approach towards modelling SSTD introduced in [3] and is a unique feature of the
eSTDM. The main principle is that if spatial information about the input variables is
known it can help in (a) building more accurate models of the SSTD collected
through these variables and (b) a much better interpretation of the model and a
better understanding of the SSTD. This is very important for data such as brain data
such as EEG (see [3, 22]) and for fMRI data (see Chaps. 10 and 11) where patterns
of interaction of brain signals can be learned and discovered. In some implemen-
tations we have used the Talairach brain template, mapped spatially into the SNNc
(see Fig. 19.3). Another way of mapping, when there is no spatial information
available for the input variables, is to measure the temporal similarity between the
variables to map variables with similar patterns into closer neurons in the SNNc.
This is the vector quantisation principle, where by ‘vector’ here we use time series,
which do not necessarily have the same length [2].
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Learning

Learning in a eSTDM is a two-phase process as it was described in the NeuCube
framework (Chap. 6). The accuracy of a NeuCube model depends a great deal with
the SNNc learning parameters and the classifier/regressor parameters.

Optimisation procedures are discussed in Chap. 7.

Output classification or regression

We use an SNN for the output model of the type eSNN. An eSNN evolves its
structure and functionality in an on-line manner, from incoming information. For
every new input data sample, a new output neuron is dynamically allocated and
connected to the input neurons. The neuron’s connections are initially established
using the RO rule for the output neuron to recognise this vector (frame, static
pattern) or a similar one as a positive example. The weight vectors of the output
neurons represent centres of clusters in the problem space and can be represented as
fuzzy rules [23]. Then these connection weights are further adapted to the following
spikes [24].

In some implementations neurons with similar weight vectors are merged based
on the Euclidean distance between them. That makes it possible to achieve a very
fast learning (only one pass may be sufficient), in both supervised and unsupervised
modes [24]. When in an unsupervised mode, the evolved neurons represent a
learned pattern (or a prototype of patterns). The neurons can be labelled and
grouped according to their class membership if the model performs a classification
task in a supervised mode of learning.

Weights are calculated based on the order of the incoming spikes on the cor-
responding synapses using the RO learning rule:

wi;j ¼ amodorderðj;iÞ ð19:1Þ

where: a is a learning parameter (in a partial case it is equal to 1); mod is a
modulation factor that defines how important the order of the first spike is; wj;i is the
synaptic weight between a pre-synaptic neuron j and the postsynaptic neuron i;
order(j, i) represents the order (the rank) of the first spike at synapse j, i ranked
among all spikes arriving from all synapses to the neuron i; order(j, i) = 0 for the
first spike to neuron i and increases according to the input spike order at other
synapses.

While the input training pattern (example) is presented (all input spikes on
different synapses, encoding the input vector are presented within a time window of
T time units), the spiking threshold H of the neuron i is defined to make this neuron
spike when this or a similar pattern (example) is presented again in the recall mode.
The threshold is calculated as a fraction (C) of the total PSPi (denoted as PSPmax)
accumulated during the presentation of the input pattern:

The eSNN (deSNN) learning is adaptive, incremental, theoretically ‘lifelong’, so
that the system can learn new patterns through creating new output neurons,
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connecting them to the SNNc neurons, and possibly merging the most similar ones.
The deSNN implements the 7 ECOS principles from Chap. 2.

During the recall phase, when a new spike sequence is presented, the spiking
pattern is submitted to all created neurons of the SNNc. An output spike is gen-
erated by neuron i at a time l if the PSPi(l) becomes higher than its threshold
Thi. After the first neuron spikes, the PSP of all neurons are set to an initial value
(e.g. 0) to prepare the system for the next pattern for recall or learning.

Parameter optimisation of NeuCube models

eSTDM behaviour can be optimized by changes in the model parameters as dis-
cussed in Chap. 7. For example, differing neuron reset voltages can lead to a
number of different spiking dynamics, and differing encoding parameters can sig-
nificantly change the information density of the spike trains. Different ‘mod’ and
‘drift’ parameters in a deSNN can result in different classification accuracy. To this
end, a parameter search is usually performed in order to extract the best perfor-
mance. Three primary techniques are discussed here: Grid Search; Genetic
Algorithm search; and the Quantum-Inspired search.

Grid search. Grid search is a straightforward but effective method to tune
parameters. Suppose there are P parameters that have to be optimised simultane-
ously. For each parameter there are three hyper-parameters to be specified manu-
ally: the minimal value m and the maximal value M of the searching interval, and
the searching step size s. Given these three hyper-parameters of each optimizing
parameter, we first create a P-dimension matrix, each dimension of which corre-
sponding to a optimizing parameter, from m to M divided into (M − m)/s entries. In
this case, each entry of the matrix corresponds to a group of values of the opti-
mising parameters. Then we randomly split the training set into two equal-size
parts, a training part and a validation part. For a specific group of values, we run the
NeuCube system in a two-fold cross-validation way and the error rate of the
cross-validation is added to the entry of the P-dimension matrix corresponding to
that group of parameter values.

Genetic algorithms. Standard Genetic Algorithm techniques can be used to
optimise the parameters of a NeuCube model.

Quantum-inspired evolutionary methods. These methods use the principle of
superposition of states to represent and optimise parameters of SNN models [25].
Such a method is the quantum inspired genetic algorithm or QiPSO [26].

Dynamic and immersive visualisation of NeuCube models
The number of neurons and connections within NeuCube as well as the

3-dimensional structure requires a visualisation that goes beyond a simple 2D
connectivity/weight matrix or an orthographic 45° view of the volume. We created
a specialised renderer for NeuCube datasets using JOGL (Java Bindings for
OpenGL) and GLSL (OpenGL Shading Language) shaders to be able to render up
to 1.5 million neurons and their connections with a steady frame rate of 60 fps. In
this view, neurons are displayed as stylised spheres, and connections are rendered
as lines with green colour for excitatory connections and red for inhibitory con-
nections. Spiking activity is shown as signals travelling along the connections.
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In conjunction with a 3D stereoscopic HMD (Head Mounted Display) like the
Oculus Rift, it is easy for users to perceive the spatial structure of the network and
the neuron positions. Furthermore, interaction mechanisms allow for playback of
spiking patterns and the development of connection weights throughout the learning
period. In addition, the visualization includes analysis functionality for the usage of
connections to find ‘hot paths’, connection length analysis, and the ability to view
the 3D structure in ‘slices’. A 3D cursor metaphor is employed to look at neurons
individually, their parameters, and their spiking history.

In comparison to other scientific visualization tools for neural networks such as
BrainGazer [27] and Neuron Navigator (NNG) [28], the solution here differs in that
the user can naturally navigate through the 3D space by simply walking a mouse
and keyboard shortcuts. Closer to this visualization is the work of [29], who are
using a Computer Assisted Virtual Environment (CAVE) to visualization the spatial
structure and activity of a spiking neural network. However, due to the limited
space within a cave environment, navigation by simply walking is not possible and
requires indirect ways, e.g., by using a controller. We developed a VR immersive
visualisation in which people quickly start to move around and look at structures
and point out individual neurons using the 3D cursor (Fig. 19.4) [30].

19.2 Stock Market Movement Prediction Using On-Line
Predictive Modelling with eSNN

Stock price direction prediction is regarded as one of the most difficult and chal-
lenging tasks in the real-world. An accurate prediction can give profit to the
investors and protect them from financial risk. In this section a computational model
for the stock trend prediction using evolving spiking neural networks (eSNN) is
discussed.

For a particular case study data used in [31], the eSNN architecture is shown in
Fig. 19.5.

Fig. 19.4 Each spiking neuron and its connections can be zoomed and analysed for a better
understanding of the created model and how it reflected on the data (from [30])
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Layer 1 is the set of inputs to the model, each of them representing a technical
stock indicator. The research so far has demonstrated that using technical indicators
can lead to better results than using real stock values as time series and also that
there is a lot of research done on selecting the most appropriate technical indicators
[32, 34]. In the model presented in Fig. 19.5 the input technical indicators have
been selected as explained in [31].

Layer 2 is the encoding layer, where the real value of each input variable
(technical indicator) is encoded as trains of spikes generated by several encoding
spiking neurons (or also, pre-synaptic neurons), each of them having a receptive
field. The receptive fields of neighbouring neurons are overlapping as Gaussian or
Logistic functions and all of them covering the whole range of the values of this
variable. The number of these encoding neurons (receptive fields) can vary, and this
is a user defined parameter that is optimised for a better performance of the model.

Layer 3 is the output evolving layer, which evolves output spiking neurons that
represent clusters (prototypes) of input vectors that belong to the same class, in this
case class UP and class DOWN. Each output neuron is connected to all the input
neurons, and the connection weights are subject to learning from data. The

Fig. 19.5 eSNN for stock market prediction. For the used stock indicator, see [31]
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architecture of the eSNN model for stock price direction prediction allows for
incremental learning. It is adaptive to new data when it becomes available. Hence, it
can learn new samples without retraining the model on old data. The details of the
functioning of the eSNN model is presented below.

Neural encoding
To learn real-valued data, each instance or sample (input vector) is encoded in

the form of spikes over time using a neural encoding technique such as rank order
population coding (Chap. 4). Population encoding maps the input value into a series
of spikes over time using an array of Gaussian receptive fields that describe
pre-synaptic neurons. The center and width of each of the Gaussian or Logistic
receptive field of pre-synaptic neurons are defined in Chap. 4.

Learning in the eSNN (see the Appendix 1)
For the context of eSNN, Thorpe’s neuron model has been used since it is simple

and effective. The Thorpe’s model is based on the timing of each spike, that is,
earlier spike defines stronger weight as compared to later spike. Each neuron in this
model can spike at most once. A neuron in this model fires when its post-synaptic
potential reaches the threshold value.

The learning techniques used by the eSNN model is one-pass learning, that is,
the model requires one-time presentation of a sample in a feed-forward manner. It
will create an output neuron for each input sample. The weight vector and a
threshold value for each of the output neuron generated towards the training pattern
are learned and stored in the repository. However, if this weight vector is similar to
the weight vector of the already trained neuron in the repository with some simi-
larity threshold, then it will merge with the most similar one. Merging here means
updating the weights and the threshold value of the merged neurons. The weight
vector and threshold value of the merged neurons update their values by taking the
average value of new output neuron weight vector and merged neuron weight
vector and the average value of new output neuron threshold and merged neuron
threshold respectively.

One approach for on-line training of an eSNN is to use a window of streaming
data to train an eSNN and to predict the output value for the next time point. When
the actual results of the output are available, these results can be added incre-
mentally for an incremental further training of the eSNN. The algorithm is given in
Box 19.1.

1: Train an eSNN model on the whole existing historical data of a stock till time (as per the eSNN algorithm 
in the Appendix and alos in Chapter 5)

2: Recall the model to predict the next time (t+1) stock movement.
3: When the next time results are known, train the model incrementally on this data.
4: Aggregate the output neurons if necessary using the aggregation operator and the sim parameter.
5: Evaluate the classification error and the AUC so far.
6: Optimize parameters to improve future time accuracy.

Box 19.1. Sliding window algorithm for on-line training of eSNN  (SW-eSNN) 

Note: Time could be minutes, hours, days, months etc. 
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Experimental results
Nine benchmark data sets are experimented with in [31], from QUANDL [32–

34]. These datasets cover stock market indices of different countries: BSE,
Nikkei-225, NIFTY-50, S&P-500, Dow-Jones, NYSE-Amex, DAX, NASDAQ and
Shanghai stock exchange. The resulting AUC accuracy evaluation is given in
Table 19.1. Optimising the eSNN parameters (number and type of receptive fields,
Spiking threshold, Mod factor, Sim parameter) can lead to a significant improve-
ment in the prediction results as shown in [31] and in Appendix 2. The accuracy for
the BSE stock has increased to 90%.

19.3 SNN for Deep Learning and Predictive Modelling
of Ecological Streaming Data

Modelling ecological streaming data requires sophisticated methods. Using the
NeuCube BI-SNN is demonstrated here. Some of the material in this section was
first published in [2].

19.3.1 Early Event Prediction in Ecology: General Notions

Early event prediction is very crucial when solving important ecological and social
tasks described by temporal- or/and spatio-temporal data, such as pest population
outbreak prevention, natural disaster warning and financial crisis prediction. The
generic task is to predict early and accurately whether an event will occur in a future

Table 19.1 Average AUC score of SW-eSNN incremental learning and predicting one day ahead
the UP or DOWN the stock for 200 days using both Logistic and Gaussian receptive fields (for a
definition of AUC see Chap. 1)

Dataset eSNN with logistic receptive
fields

eSNN with Gaussian receptive
fields

Average AUC Average AUC

BSE 0.77 0.71

Nikkei-225 0.72 0.69

NASDAQ 0.76 0.77

NIFTY-50 0.69 0.67

S&P-500 0.75 0.73

Sanghai stock
exchange

0.67 0.65

Dow-Jones 0.73 0.7

NYSE-Amex 0.73 0.69

DAX-Index 0.72 0.7
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time based on already observed spatio-temporal data. The time length of the
training data (samples collected in the past) and the test data (samples used for
prediction) can be different as illustrated in Fig. 19.6. Predictive modeling of spatio/
spectro-temporal data (SSTD) is a challenging task because it is difficult to model
both time and space components of the data because of their close interaction and
interrelationship.

19.3.2 A Case Study on Predicting Abundance of Fruit Flies
Using Spatio-temporal Climate Data

Here the problem is the prediction of a possible abundance of aphids
(Rhopalosiphum padi) in the autumn seasons based on climate temporal data [2].
There are fourteen temporal climate variables measured: (1) average rainfall (AR,
mm); (2) cumulative rainfall, the average of 4 weeks (CR, mm); (3) cumulative
degree days (DCT, °C); (4) grass temperature, average of four weeks (GT, °C);
(5) maximum air temperature (MaxT, °C); (6) mean air temperature (MeanT, °C);
(7) minimum air temperature, average of two weeks (MinT, °C); (8) Penman
potential evaporation (PPE, mm); (9) potential deficit of rainfall (PDR), first order
derivative; (10) soil temperature (ST, °C); (11) solar radiation (SR, MG/m2);
(12) vapour pressure, average of five weeks (VP, hPa); (13) wind run (WR4),
average of four weeks (km/day); (14) wind run (WR5), average of five weeks (km/
day). All these variables are measured weekly at the Canterbury Agricultural
research centre, Lincoln, New Zealand from 1982 to 2004, i.e. (52 data points per
year). The aim is to predict whether the aphid amount in autumn will be high (class
1) or low (class 2).

Fig. 19.6 A schematic diagram for early event prediction in Ecology on the example of predicting
the risk of establishment of invasive species
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Figure 19.7 shows the input variable mapping result computed by the proposed
graph matching algorithm on the minimal x coordinate face of the Cube. Note that
the two main groups of weather variables, in other words, temperature (MaxT,
minT, MeanT, DCT, GT, ST) and rainfall (AR, CR, PDR), are mapped to nearby
neurons. The solar radiation (SR) is mapped in the middle of temperature variables
because temperature is greatly determined by solar radiation.

To demonstrate how the optimal mapping suggested by the proposed graph
matching algorithm can influence the overall performance, we designed two
experiments to compare results of optimal mapping with results of random mapping
[2]. In the first experiment, we use the same group of input neurons and run the
NeuCube learning twice: in the first run we randomly mapped the features to the
input neurons while in the second run we used the proposed in this paper graph
matching to compute the optimal input mapping. This process is repeated 10 times
and the accuracies of each run are shown in Fig. 19.8a. In the second experiment,
we also run the NeuCube twice in the same way as in the first experiment, but the
group of input neurons are randomly generated at each time. The accuracies of 10
times experiments are shown in Fig. 19.8b.

In Fig. 19.8a the graph matching is obtained through a deterministic algorithm.
So given the same group of input neurons, it can always produce the same optimal
mapping and the accuracy will not change. But for random mapping, the results
change across experiments because each time the mapping is different. This result
indicates that input mapping plays an important role for the obtained accuracy of
the model. In Fig. 19.8b the group of input neurons is randomly generated at each
time. That’s why the accuracy of the ‘optimal mapping’ is lower than the random
mapping in runs 1 and 4. In runs 5 and 9 the accuracies obtained with the use of the
proposed mapping are much higher (i.e., 36.36 and 27.27% higher, respectively)
than the results with the use of random mapping. This result also indicates that not
only the mapping plays a key role, but the group of input neurons selected is
important. How to optimally choose an optimal set of input neurons in relation to a
specific input data is an interesting problem to address in the future.

Figure 19.9 shows the SNNcube structure after unsupervised training with the
data for this case study. The big solid dots represent input neurons and other
neurons are labeled in the same color as the input neurons from which they receive
most of the spikes. The black dots mean that there are no spikes arrived at these
neurons. In Fig. 19.9 the upper left panel is the spike amount of each variable after
encoding and the upper right panel is the amount of neuronal connections of the
input neurons forming a cluster of connected neurons. From this figure we can see
the consistency between the input signal spike train and the Cube connectivity
structure. It is worth noting that variable 11 (solar radiation) is emphasized in the
Cube that suggests a greater impact of the solar radiation on the aphids amount.
This was observed also in a previous study [2].

We designed three experiments on this data set to show the validity of the
proposed mapping method for early event prediction. In the first experiment, we
used temporal samples over the whole time available, i.e. 52 weeks, for both
training and testing under the assumption that a perfect weather forecast for the
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Fig. 19.7 Input variable mapping result by graph matching algorithm [2] and Chap. 6
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Fig. 19.8 Comparative accuracy of pattern recognition using random mapping (in blue) versus
the proposed mapping method (in red) (see text for explanation)
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autumn season can be obtained which is an ideal case, but not a realistic one. In the
following two experiments, we aimed to show the predictive ability of NeuCube
and how early the model can predict the autumn pattern. In these experiments, we
trained NeuCube using 100% of the time length samples (52 weeks), but temporal
data of only 80 and 75% of the time length of the samples was used to predict the
aphid population pattern in the last 25% time period, as illustrated in Fig. 19.10.
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Fig. 19.9 The SNNcube structure after unsupervised training; input spike amount of each feature
(top left) and neuronal connections created as a result of training of each input neurons (top right)
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The blue bars represent training data length and the yellow bars – the validation
data length.

The experiments are conducted in leave-one-out cross validation way. Figure 19.11
shows the parameters configuration of the NeuCube used in this case study. The early
event prediction accuracy on the aphid data set is shown in Table 19.2, where the
middle row is the time length of test data used for the prediction.

From these experiments we can see that our model can make early prediction before
the peak appears. With 80% of data observed (early in the aphid flight period), we can
have more than 90% confidence to make an early decision. Furthermore, as the time
passes, if new data are collected, it can be added directly to the testing sample to give a
better prediction, without re-training the model using both old and new data as it would

Fig. 19.10 Experimental design for testing the ability of the model for early event prediction.
Blue bars represent the time length of training samples and the yellow bars represent the time
length of testing samples

Fig. 19.11 Parameters of NeuCube in this case study

636 19 Deep Learning of Multisensory, Streaming Data for Predictive …



be the case with SVM or MLP methods. This is the essential difference between the
new method and traditional methods such as SVM and MLP.

We also conducted experiments to compare between traditional modeling
methods and our new modeling method for early event prediction. We used
multiple-linear regression (MLR), support vector machine (SVM), multilayer per-
ceptron (MLP), k nearest neighbors (kNN) and weighted k nearest neighbors
(wkNN) as the baseline algorithms (see Chaps. 1 and 2). Note that for these baseline
algorithms, the time length of training samples and testing samples have to be the
same as these methods cannot tolerate different lengths of feature vectors for
training and recall, so we cut the training samples into same length as the testing
samples. We tune the parameters of the baseline algorithms in a grid search way
and the final parameters are: a degree 2 polynomial kernel for SVM; 100 hidden
neurons and 500 training cycles for MLP; k = 5 for both kNN and wkNN.
Experimental results are shown in Table 19.3.

Comparing Tables 19.2 and 19.3, we can see that NeuCube can perform better
for early event prediction. A realistic early event prediction should be that as the
time length of observed data increases, the prediction accuracy will also increase.
But from table II we can see that as the time length of training data increases,
traditional modeling methods do not necessarily produce better results (some even
worsen), because they cannot model the whole spatio-temporal relationship in the
prediction task. They can only model a certain time segment. Because a NeuCube
model is trained on the whole spatio-temporal relationship in the data, even a small
amount of input data can trigger spiking activities in the SNNcube that will cor-
respond to the learned full temporal pattern resulting in a better prediction.

Table 19.2 Autumn aphid
prediction accuracy (%)

Accuracy of each testing time length
(weeks)

52 (full) 41.6 (early) 39 (earlier)

Accuracy (%) 100 90.91 81.82

Table 19.3 Prediction
accuracy of aphid data set (%)

Accuracy of each training and testing
time length (weeks)

52 41.6 39

MLR 36.36 64.63 72.73

SVM 72.73 72.73 63.64

MLP 81.82 81.82 81.82

kNN 72.73 63.64 63.64

wkNN 72.73 63.64 63.64

Max 81.82 81.82 81.82
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19.4 SNN for Deep Learning and Predictive Modelling
of Transport Streaming Data

Transport systems are complex spatio-temporal systems that required
spatio-temporal modelling techniques. Part of the material in this section was first
published in [2].

19.4.1 A Case Study Transport Modelling Problem

In this case study we consider a benchmark traffic status classification problem and
spatio-temporal data (see [2]). In freeways, vehicle flow is monitored by traffic
sensors with fixed spatial locations and the data collected by these sensors exhibit
spatial and temporal characteristics. Discovering spatial-temporal patterns can be
very meaningful for traffic management and a city traffic plan.

The study area is San Francisco bay area which is shown in Fig. 19.12a. There
are thousands sensors distributed over the road network and the sensors distribution
is indicated in Fig. 19.12b, in which each black dot represents a monitoring sensor.
These sensors monitor lane occupation rate 24-hourly every day. Measurements are
taken every 10 min and normalized between 0 and 1, where 0 means no car
occupation and 1 means full occupation of the lane in the monitoring region. So
there are 144 (24 � 6) data points per day. In this case study we study traffic data
over a period of 15 months and thus, after removing public holidays and sensor
maintenance days, there are 440 days to be classified.

We did some pre-processing of the data: (1) we removed the data of outlier
sensors from the data set, e.g. sensors producing always 1 or 0 in 24 h and sensors
flip from 0 to 1 or 1 to 0 suddenly; (2) nearby sensors that produce almost the same
data sequence are combined into one sensor; (3) the total occupation rate of each
sensor is calculated as a sum of all measurements over 440 days; (4) 50 sensors
corresponding to the largest occupation rate are selected as the final features
(variables) to represent the data set. Figure 19.13 shows the spatial and temporal
distribution of the traffic status of the road network from Monday to Sunday in one
week. We can see that there are some spatial and temporal patterns in the data
samples.

19.4.2 NeuCube Model Creation and Modelling Results

A NeuCube model was created for this problem where input variables were mapped
into a SNNcube using the algorithm presented in Chap. 6. Figure 19.14 shows the
final input mapping result used in this case study. Left: input neuron similarity
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graph (the number beside each vertex is the input neuron ID); right: input feature
similarity graph (the number beside each vertex is the traffic sensor ID).

In Fig. 19.15, we show the neuron firing state of the reservoir corresponding to
the seven days traffic data. The first two plots at the top row represent the spiking
activity of the SNNcube for Monday and Thursday data; the second row—for
Tuesday and Friday; the third row are Wednesday and Saturday and the last one—
for Sunday. In each figure, the horizontal axis is neuron ID and the vertical axis is
time tick, from 0 at the top to 144 at the bottom. NZ is the number of non-zero
entries, i.e. the total firing times of all the neurons in the Cube. One should note that
while in the plot it seems the firing state matrix is very dense, it is actually very
sparse. Take the Thursday (upper right plot) as an example. There are 20,416 firing
times and the firing state matrix size is 486,000 144� 3375ð , where 3375 is the
total neuron number in the Cube), so the firing rate is about 4.20%. We can see that
these sparse firing matrices have different patterns related to the input data.
Meanwhile, since the size of the Cube can be specified according to the problem,
the Cube with highly sparse firing rate has a great power to encode input signals and
patterns, and thus the proposed architecture can potentially model any complex
spatial and temporal relationship jointly.

We compared the 2-fold cross validation experimental result of NeuCube with
the results obtained with the use of traditional methods: MLR, SVM, MLP, kNN
and wkNN as well as the state-of-art method Global Alignment Kernels
(GAK) [35]. The parameter setting for the NeuCube model is displayed in
Fig. 19.16 and experimental results are shown in Table 19.4.

The parameter values used in the classical machine learning methods are: d—
degree of polynomial kernel; n—number of neurons in the hidden layer of MLP; k
—number of nearest neighbors in kNN and wkNN; r—Gaussian kernel width.
From these results we can see that the proposed NeuCube model achieves better

Fig. 19.12 a Map of the study area (from Google map). b A reconstructed topology of the traffic
sensor network
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classification results. This is because traditional machine learning methods are
designed to process static vector data, and they have limited ability to model
spatially correlated and temporally varied data. Meanwhile, MLR, SVM and MLP
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Fig. 19.13 The spatial and temporal patterns of the benchmark traffic data. Left to right, top:
Monday to Wednesday; middle: Thursday to Saturday; bottom: Sunday

Fig. 19.14 The final input mapping result used in this case study. Left: input neuron similarity
graph (the number beside each vertex is the input neuron ID); right: input feature similarity graph
(the number beside each vertex is the traffic sensor ID)
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also show disadvantages while modeling high-dimensional data (e.g. there are 7200
features in each sample of this case study). kNN and wkNN has been widely used in
high-dimension data processing, such as document classification, because they can
approximately reconstruct the underlying manifold whose dimension is usually
much lower than its ambient space and thus they can produce better result than
MLR and SVM. While the recently proposed GAK algorithm is shown to be very
efficient and effective in processing time series, its performance is still lower than
the NeuCube model.

In this section only one case study of modelling transport systems was presented
but the approach can be used in many different scenarios.

Fig. 19.15 Neuron firing state of the reservoir. Top row: Monday and Thursday; second row:
Tuesday and Friday; third row: Wednesday and Saturday; last on is Sunday

Fig. 19.16 Parameters of the NeuCube model for this case study
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19.5 SNN for Predictive Modelling of Seismic Data

Seismic data indicate earth movements and are one of the indicators of hazardous
events, such as earthquakes [36, 37–54]. Part of the material in this section was
presented first in [1].

19.5.1 The Challenge of Predicting Hazardous Events

Hazardous events, such as tsunami, earthquakes, storms, hurricanes, are
spatio-temporal events and a lot of spatio-temporal data has been accumulated to
measure these events over time.

For example, earthquake prediction is a challenging and compelling problem,
especially in New Zealand. Several high-intensity earthquakes have struck highly
populated regions of Canterbury and Wellington and caused a high number of
casualties and loss within the last decade. The immense capacity for destruction of
earthquakes prompts for the ability to predict, within a reasonable time horizon,
their occurrence so that proactive actions could be taken to minimize damage.
However, earthquake prediction in general remains a controversial topic and there
seems to be an overly pessimistic outlook on its success rate, especially in modern
times. This is most likely a product of disappointment from a series of failed
attempts at predicting earthquakes since the height of this field in the 1970s [37],
with some researchers even going to the extent of abandoning the idea of prediction
[38]. Despite a track record of modest success in earthquake prediction, a copious
amount of geological data is continuously being collected and analyzed. This paper
will investigate the feasibility of using Computational Intelligence (CI) based
approaches in predicting the incidence of strong earthquakes using the seismic time
series data recorded from various seismometer sites as the precursor.

19.5.2 Predictive Modelling of Seismic Data for Earthquake
Forecasting Using NeuCube

The basic premise on which earthquake prediction techniques stand is that there are
some phenomena, called pre cursors, which consistently occur before an earth-
quake. One of the most prominent approaches in this area is the measurement of

Table 19.4 Comparative accuracy of spatio-temporal pattern classification

MLR SVM MLP kNN wkNN GAK NeuCube

Param. – d = 2 n = 100 k = 10 k = 10 r ¼ 5 –

Acc. 56.82 43.86 68.18 66.82 71.36 72.27 75.23

642 19 Deep Learning of Multisensory, Streaming Data for Predictive …



anomalies in the different parts of the atmosphere which seems to change due to
seismogenic effects [39], for example, the temperature [36] and density [12] of
electrons in the ionosphere. Other approaches extend from measuring the amount of
radon emissions in the soil and ground water [40] and by observing the behavior of
animals such as mice [41] and common toad [42].

Lately there have been several studies that suggest that the existence of some
signatures in the seismograph readings prior to the occurrence of earthquakes. The
possibility of using high frequency components of micro-seismic noise readings has
been studied in [43], which reports a characteristic change one or two days before
an earthquake. Another study reports that pulsed vibrations are recorded between 5
and 10 days before earthquakes around Russia [44]. Another study done with the
Tottori earthquake in the year 2000 also revealed that there are seismic quiescence
anomalies before the earthquake [45], which are also observed leading to the
massive Taiwan Chi-Chi earthquake in 1999 [46]. Based on these literatures there is
a scientific basis in using the readings of seismographs as precursors for short-term
prediction of strong earthquakes. The challenge is to develop methods that can learn
from the patterns that are hidden in the intricate interactions between spatial and
temporal components.

Despite various precursor variables having been proposed, the application of
Computational Intelligence methods to deal with the problem of earthquake pre-
diction has unfortunately been scarce.

A method employing artificial neural networks has been developed to predict
earthquakes in Chile, by using the b-value, the Baths law, and the Omuri-Utsu’s law
as input parameters [47]. This promising research built and used multiple models
corresponding to the geographical regions or cities it wanted to analyze, and since
classical artificial neural networks are not suitable to work with the temporal aspect
of the data, it employs several fundamental geophysics laws to extract the input
features from the available time-variant data. A study by the same authors using
similar technique has also been done for earthquakes around the Iberian Peninsula
[48].

Another approach using an adaptive neural fuzzy inference system (ANFIS) has
also been proposed, using location of the earthquake as the input and the magnitude
as the out- put on the assumption that the system will tune itself to model the
principle of conservation of energy and momentum of annual earthquakes [49].
Another ANFIS-based approach was proposed by [50] in which historical earth-
quake data is mapped into two kinds of input: spatial and temporal, which are
analyzed separately. Yet another ANFIS based approach was proposed by [51] in
which the inference system is used to predict a time-series of earthquake parameters
of the Sunda region in Indonesia. A rule-based system for earthquake prediction
was also proposed by [52] which claims 100% accuracy within 15 h, although the
spatial resolution of the prediction area is low, covering areas as large as a hemi-
sphere. Almost all of the previous research in employing CI methods seem to
extract features such as the b-value (Gutenberg–Richter law), Baths law, Omoris
law and so forth from a historical sequence of previous earthquakes in a region.
None in particular proposed the use of multiple time series readings of seismic
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activities prior to the earthquakes to capture predictive spatiotemporal patterns. In
this research, we investigate the effectiveness of a spatiotemporal modeling
approach with SNN for prediction, based on the seismicity prior to the occurrence
of the earthquake.

The classifier system used in this research is the NeuCube SNN architecture as
depicted in Fig. 19.17a. Input data is transformed into spike trains using encoding
algorithms like simple thresholding or Ben’s Spiker Algorithm (BSA) introduced in
Chap. 4. These spike trains are then fed into the cube (SNNc) in an unsupervised
learning procedure so that the reservoir’s network can learn to activate the same
groups of spiking neurons when similar spatiotemporal input stimuli are presented.
After the unsupervised training phase, the same data is propagated again and output
neurons are evolved to learn to classify the SNNc activity into predefined classes.
Different SNN methods can be used to learn and classify spiking patterns from the
SNNc, including the deSNN. Figure 19.17b shows examples of connectivity of
trained SNNcubes on seismic streaming data.

19.5.3 Experiment Design

The experiment in this study was designed to investigate whether by building a
model to learn from seismometer readings preceding a seismic event, the immi-
nence of large earthquakes can be predicted. This question can be formulated and
tested as a binary classification problem of differentiating a positive class from a
negative class.

In this study instances in the positive class corresponded to earthquakes which
are historically notable, felt by the general population in the region and classified as
strong or severe in intensity by GNS Science New Zealand as displayed in the
GeoNet website (www.geonet.org.nz). GeoNet provides access to extensive data
recorded by sensors belonging to the New Zealand National Seismograph Network
[54]. As in [46], the location of the earthquake is considered to be known since the
model was built for a specific geographical area, namely the region of Canterbury in
the South Island of New Zealand in which the city of Christchurch is located. The
samples were taken after the year 2010 since most of the strong and well known
earthquakes in the region happened afterwards, and the data quality is more con-
sistent in recent times. It should be noted that strong aftershocks which usually
occur within a few days after a large earthquake were excluded.

For both classes, appropriate samples of earthquakes needed to be selected. The
12 events considered as the positive class are listed in Table 19.5. The small
number of samples is the consequence of the fact that strong earthquakes happen
very rarely throughout history, and more so in a particular region. Another 12
samples were taken from the catalog from around the same time period and region
where there were no big earthquakes and the maximum magnitude experienced in
the surrounding days did not see any significant jump. These samples were the
negative class, representing episodes of low overall seismic activity.
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For the purpose of this study, the reading used is Seismic time-series data from
the Long Period Band Type, which corresponds to a 1 Hz sample rate. The
instrument code used is H, which means High Gain Seismometer. The Orientation
Code is N which means that the displacement measured is along the direction of
North-South horizontal axis. Four seismic stations from the Canterbury area
(McQueen’s Valley, Oxford, Lake Taylor Station, and Kahutara) were selected for
their generally higher uptime. The geographical location of these stations along
with the others in the New Zealand National Seismograph Network can be seen in
Fig. 19.18.

In this study the observation duration length is fixed to 5 days (120 h). After the
raw data is obtained, simple preprocessing steps needed to be applied to prepare the
data to be fed to the models. The input data I of a sample for this earthquake
prediction problem is defined as L1, L2,…, Ls where s is the number of seismic sites
which are taken into account. Each vector L 2 I is a time-series L = a−t−d, a−t−d
+1,…, a−t in which the values are a chronologically ordered set of d real-variables,
d being the duration of observation and t the prediction horizon, i.e. the time before
the earthquake occurs, and assuming a1 is the value at the occurrence of the
earthquake.

Since the seismograph reading is high-resolution spanning over a long period of
time, the standard deviation of the signal is computed in a piecewise manner in
order to reduce the length and dimensionality of the time series.

Data Acquisition and Preparation

The seismometer readings preceding the sample earthquakes data was obtained
from the New Zealand GeoNet’s Continuous Waveform Buffer web services. The

Fig. 19.17 a A general architecture of an eSTDM for seismic data modelling and earthquake
forecasting. As an example for the source of seismic data, seismic centers of New Zealand are
shown. b Examples of connectivity of trained SNNcubes on seismic streaming data for New
Zealand
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website provides access to an immense amount of data collected since digital
recording in New Zealand commenced in 1986 (http://www.geonet.org.nz).

To predict ahead an actual event, data needs to be offset by a certain amount of
time. The duration of the observation also needs to be chosen, which in turn will
determine the length of the prediction horizon. This arrangement is depicted in
Fig. 19.3. In this experiment, the effect of varying the prediction horizon on clas-
sification accuracy is analyzed. For the purpose of this.

The spatiotemporal signals can be directly fed into NeuCube. The signals are
discretized into spike trains as shown in Fig. 19.19, whereas the other classifiers
require the signals to be flattened out of the into one feature vector.

Results

The experiment was carried out by running the data through the different classifiers
and varying the length of the prediction horizon. The parameters for each classifier
were tuned heuristically to obtain the best results from each of them. In addition to
the accuracy, the performance of the classifiers is measured in terms of the balanced
F-score on the positive earthquake.

In Table 19.6 in addition to the True Positive (TP) and False Positive
(FP) results, the F-Score is also calculated as: F = 2TP/(2TP + FP + FN). This
additional measure is important, since overall accuracy alone does not reveal the
actual performance within each of the classes which is of interest in a binary
classification problem. Since the number of samples is small, the training/validation
scheme used is leave—one-out cross validation [54].

The result of the experiment laid in Table 19.5, showed that, as expected, shorter
prediction horizons produced better prognosis. It should be noted that in a balanced
binary classification problem, there is a baseline accuracy of 50%, which can be

Table 19.5 Earthquakes
within the Canterbury region
used as positive samples

Public ID Date Magnitude Depth
(km)

3366146 September 3 2010 7.1 11

3450113 January 19 2011 5.1 9

3468575 February 21 2011 6.3 5

3474093 March 5 2011 5.0 10

3497857 April 16 2011 5.3 9

3505099 April 29 2011 5.2 11

3525264 June 5 2011 5.5 9

3528810 June 13 2011 5.9 9

3591999 October 9 2011 5.6 8

3631359 December 23 2011 5.8 10

2015p012816 January 5 2015 6.0 5

2015p305812 April 24 2015 6.2 52
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achieved statistically by random guessing or giving the same answer to all the
cases. It is safe to say that traditional CI methods like MLP and SVM were not
capable of learning from this type of data. It is interesting to note that no models
were able to differentiate between the two classes 48 h ahead of an earthquake
event, suggesting a certain temporal limit to the prediction horizon in this particular
experiment.

This finding also lends support to previous studies which suggests that there are
certain patterns exhibited by seismicity readings that can be used to predict the
imminence of large earthquakes. The result shown in Table 19.6 gives us confi-
dence that seismicity data is a viable precursor for short-term earthquake prediction.
The best prediction accuracy obtained with the NeuCube model successfully pre-
dicted 11 out of 12 strong earthquakes and raised only 1 false alarm, 1 h prior to the
actual event, which is indeed promising. The connectivity of the 3 � 3 � 3 SNNc
after training is depicted in Fig. 19.20. A connection between the neurons means a
temporal association. The shown trajectory depicts sequence of seismic events that
precede a major earthquake.

Figure 19.21 shows a NeuCube SNN reservoir rendered in a 3D Virtual Reality
environment on top of a map of New Zealand, enabling users to immerse

Fig. 19.18 New Zealand national seismograph network with the 4 selected sites around
Canterbury area grayed
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themselves and walk around the neurons and observe the connection building and
spiking activity in time and space.

19.5.4 Discussions

This research has shown a novel and promising way to predict the occurrence of
strong earthquakes by training a model to differentiate between strong and weak
earthquakes based on spatiotemporal seismicity precursors. This research also
showed that SNN can be successfully used for early and accurate prediction of
hazardous events. The capability of a more advanced SNN-based method like
NeuCube to capture complex spatiotemporal signal has been demonstrated, in
relation to traditional techniques like MLP and SVM. For the latter methods, an
additional step of feature extraction from the time series signal might be needed for
them to work effectively with data of such complexity and dimensionality.

For future works, it is important to further verify the models’ ability to generalize
to unseen data by expanding the dataset to include more samples that represent
real-world situations and/or incorporate other earthquake prone geographical
regions such as Japan, California, Indonesia and Chile. Running the analysis in
real-time as the data is collected will produce a useful and practical disaster pre-
diction system. A more comprehensive experiment should also be done to find the

Fig. 19.19 Preprocessed
seismogram and the resulting
spike train
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best prediction time horizon and observation period. A further interesting aspect
would be the extraction of knowledge in the form of human understandable rules of
the spatiotemporal patterns exhibited by seismicity readings in regards to the
occurrence of earthquakes and our knowledge about the underlying mechanism of
these seismic activities. This is also a promising line of research to be extended for
the prediction and analysis of other disastrous events like tsunami and land slides.

19.6 Future Applications

There are many potential applications of BI-SNN for building eSTDM, some of
them discussed briefly here.

19.6.1 Modelling Multisensory Air Pollution Streaming
Data

Modelling multisensory streaming data from sensors measuring air pollution.
Example of multiple sensors distributed in the Vancouver area is shown in
Fig. 19.22a and the connectivity of a trained NeuCube model—in Fig. 19.22b.
NeuCube 3D spiking neural network map of southwestern British Columbia

Table 19.6 Classification accuracy result with varying prediction horizon [61]

1 h 6 h 24 h 48 h

MLP Accuracy 58.33% 54.16% 41.66% 41.66%

F-score 0.58 0.52 0.41 0.41

TP rate 0.58 0.50 0.41 0.41

FP rate 0.41 0.41 0.58 0.58

SVM Accuracy 54.16% 50% 37.5% 37.5%

F-score 0.58 0.52 0.41 0.41

TP rate 0.58 0.50 0.41 0.41

FP rate 0.41 0.41 0.58 0.58

ECF Accuracy 70.83% 66.67% 66.67% 50%

F-score 0.63 0.60 0.66 0.64

TP rate 0.50 0.50 0.66 0.91

FP rate 0.04 0.16 0.33 0.91

NeuCube Accuracy 91.67% 83.33% 70.83% 54.17%
F-score 0.91 0.80 0.72 0.42

TP rate 0.91 0.83 0.75 0.33

FP rate 0.08 0.25 0.25 0.25
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showing the Lower Fraser Valley network of monitors with regional and govern-
ment fixed monitors (dark green circles). Spatio-temporal relationships (lines) and
activity (light green circles) of ozone (O3) (left cube) and carbon monoxide
(CO) (right cube) concentrations can be analysed simultaneously. In [55] a SNN
computational model is developed for the prediction of air pollution in local areas
of London few hours ahead.

Fig. 19.20 SNN reservoir
with input neurons and
synapses after training of a
SNNcube with seismic
streaming data from 4 seismic
centers around Christchurch

Fig. 19.21 NeuCube SNN
reservoir rendered in a 3D
virtual reality environment on
top of a map of New Zealand,
enabling users to immerse
themselves and walk around
the neurons and observe the
connection building and
spiking activity in time and
space
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19.6.2 Wind Energy Prediction from Wind Turbines

Predicting wind energy from wind measured streaming data sensors, such as wind
speed and wind direction can save energy and bring large benefits. Figure 19.23a
shows Wind turbines in New Zealand and China; (b) The connectivity of a SNN
cube trained on wind speed and wind direction streaming data.

19.6.3 SNN for Radio-Astronomy Data Modelling

With the introduction of the Square Kilometre Array Project, a revolution in the
data available to radioastronomers is occurring. Of particular interest is the iden-
tification of distinctive spectral patterns known as dispersed transients (single,
bright pulses of unknown extraterrestrial origin) or dispersed pulsars (characteristic
signals given off by the rotation of pulsar stars). These signals, if identified and
analysed correctly, can have major implications towards our understanding of
relativistic physics, and therefore, our understanding of the fundamental forces at
work in our universe. However, these signals are highly infrequent (class imbalance
of 1:10,000–12,000 pulsar to noise), highly unpredictable in terms of signal char-
acteristics, and buried in noise. The current state of the art approach requires a brute
force search and is untenable in the face of the volume of data the SKA will
produce—a data stream rate of 1.5–2.5 TBps [56].

An alternative approach using neuromorphic principles (the NeuCube evolving
spatio-temporal data machine) would be a first line candidate. This is appropriate as
NeuCube eSTDM provides compact representation of spatial, spectral, and tem-
poral characteristics, evolving learning, non-linear pattern recognition, and low
computation cost comparative to alternative techniques, particularly when imple-
mented on neuromorphic hardware as it was discussed [1].

19.7 Chapter Summary and Further Readings for Deeper
Knowledge

SNN can learn streaming data as changes of values of input variables (e.g. sensors)
over time, capturing patterns of interactions between these variables that can be
utilized to predict future events.
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This chapter, first presents two methods of using eSNN and BI-SNN respec-
tively, for building eSTDM to deal with streaming data in an incremental way.
These methods are illustrated on applications in four real-world areas:

– Finance;
– Ecology;
– Transport;
– Environment (e.g. seismic data for earthquake forecasting; air pollution mod-

elling; wing energy prediction);
– Prediction of Hourly Air Pollution in London Area Using Evolving Spiking

Neural Networks [55].

Further readings can be found in:

Fig. 19.22 Modelling multisensory streaming data from sensors measuring air pollution. Example
of multiple sensors distributed in the Vancouver area is shown in (a) and the connectivity of a
trained NeuCube model—in (b). NeuCube 3D spiking neural network map of southwestern British
Columbia showing the Lower Fraser Valley network of monitors with regional and government
fixed monitors (dark green circles). Spatio-temporal relationships (lines) and activity (light green
circles) of ozone (O3) (left cube) and carbon monoxide (CO) (right cube) concentrations can be
analysed simultaneously (the figure is created by J. Espinosa)
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– Brain-like information processing for spatio-temporal pattern recognition
(Chap. 47 in [57]);

– Ecological informatics for the prediction and management of invasive species
(Chap. 35 in [57]);

– Demo on modelling seismic data in NeuCube: https://kedri.aut.ac.nz/R-and-D-
Systems/neucube/seismic;

– On–line learning in eSNN over drifting streaming data [62].

Acknowledgements Parts of the material in this chapter have been previously published as
referenced in the relevant sections of this chapter. I would like to acknowledge the contribution to
these publications of my co-authors Enmei Tu, Josafath Israel Espinosa, Sue Worner, Reggio
Hartono, Stefan Marks, Nathan Scott, S. Gulyaev, N. Sengupta, R. Khansam, V. Ravi, A.
Gollahalli, Petr Maciak, Imanol Bilbao-Quintana.

Fig. 19.23 a Wind turbines in New Zealand and China; b the connectivity of a SNN cube trained
on wind speed and wind direction streaming data (the figure is created by J. Espinosa)
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Appendix 1

Algorithm 1: eSNN training algorithm

1: Initialize neuron repository, R = {}

2: Set eSNN parameter mod= [0, 1], C = [0, 1], sim= [0, 1]

3: for input pattern i that belongs to the same class do

4:      Encode input pattern into firing time of multiple pre-synaptic neurons j

5:       Create a new output neuron i for this class and calculate the connection weights as wji = 

modorder(j)

6:       Calculate P SPmax(i) = 
∑

j wji × modorder(j)

7:       Get PSP threshold value γi = P SPmax(i) × C

8:      if The new neuron weight vector ≤ sim of trained output neuron weight

vector in R  

then

9:       Update the weight vector and threshold of the most similar neuron in the same output

class group 

10:           w = wnew +w.N
N+1

N+1
11:           γ = γnew +γ N

12:            where N is the number of previous merges of the most similar neurons

13:       else

14:       Add the weight vector and threshold of the new neuron to the neuron repository R

15:       end if

16: end for

17: Repeat above for all input patterns of other output classes. 

Appendix 2

Improved stock market movement prediction with optimised eSNN parameters on
the same stock data as in 19.2 (Fig. 19.24)
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Part VIII
Future Development in BI-SNN

and BI-AI



Chapter 20
From von Neumann Machines
to Neuromorphic Platforms

Spiking neural networks (SNN), being highly parallel computational systems, can
be implemented on various computational platforms, from the traditional von
Neumann machines to the specialised neuromorphic platforms. This chapter dis-
cusses various implementation strategies of SNN and brain-inspired AI (BI-AI).
Some of the material in the chapter is after [1].

The chapter is organised in the following sections:

20:1. Principles of computation. The von Neumann machines and beyond.
20:2. Neuromorphic computation and neuromorphic machines.
20:3. ANN and SNN development systems. NeuCube as a development system for

spatio-temporal data machines.
20:4. Summary and further readings.

20.1 Principles of Computation. The von Neumann
Machines and Beyond

20.1.1 General Notions

In 19th century Ada Lovelace wrote the first algorithm as a sequence of commands
to be executed by a mechanical machine. The breakthrough work of Alan Turing in
the 1940s, stating the possibility of using just 0’s and 1’s to simulate any process of
formal reasoning [2] lead to massive development in the field of information theory
and computer architecture. Simultaneously, significant progress was made by the
neuroscientists in understanding the most efficient and intelligent machine known to
man, the human brain. These parallel advancements in the middle of the last century
had made man’s imagination of creating ‘intelligent’ systems a possibility. These
rational systems/agents were thought ideally to be able to perceive the external
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environment and take actions accordingly to maximise its goal, mimicking the
human brain.

The field of artificial neural networks and AI have grown strength to strength
from the simple McCalluch and Pitt’s linear threshold based artificial neuron model
[3] to the latest era of deep learning [4], which builds very complex models by
performing a combination of linear and non-linear transformations. This is done
using millions of neurons stacked in a layered fashion forming an interconnected
mesh. The tremendous push of AI towards emulation of real intelligence has been
sustained so far by the realisation of the Moore’s law [5] which states that the
processing power of the of central processing units (CPU) doubles in every couple
of years. But the future development of BI-AI systems would require new com-
putation principles.

The chapter discusses three computation principles and architectures, as follows:

(a) The von Neumann computer architecture, that separates data and programmes
(kept in the memory unit) from the computation (ALU) and the control. It uses
bits as static information. It can be realised as:

– General purpose computers;
– Specialised fast computers: GPUs, TPUs
– Cloud-based computing platforms.

(b) A neuromorphic computational architecture, that integrates data, programs and
computation in a SNN structure, similar to how the brain works. Here, bits
(spikes) are associated with time.

(c) A quantum (inspired) architecture, that uses quantum bits, where bits are in a
quantum superposition between 1 and 0.

SNN and AI models can be simulated using any of the architectures (if available)
but with various efficiency as discussed in this chapter.

20.1.2 The von Neumann Computation Principle
and the Atanassov’s ABC Machine

John von Neumann (1903–1957) introduced a computation principle as discussed
below. Throughout the continuous evolution of the traditional computers, von
Neumann or the stored program architecture has continued to be the standard
architecture for computers. It is a multi-modular design based on rigid physically
separate functional units (Fig. 20.1). It specifically consists of three different
entities:
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• Processing unit: The processing unit can be broken down into a couple of
sub-units, the arithmetic and logical unit (ALU), the processing control unit and
the program counter. The ALU compute the arithmetic logic needed to run
programs. The control unit is used to control the flow of data through the
processor.

• I/O unit: The i/o unit essentially encompasses all I/O the computer could pos-
sibly do (printing to a monitor, to paper, inputs from a mouse or keyboard, and
others).

• Storage unit: The storage unit stores anything the computer would need to store
and retrieve. This includes both volatile and non-volatile memory.

These units are connected over different buses like data bus, address bus and
control bus. The bus allows for the communication between the various logical
units. Though very robust, as shown in Fig. 20.1, this architecture inherently suffers
from the bottleneck created due to the constant shuffling of the data between the
memory unit and the central processing unit. This bottleneck leads to rigidity in the
architecture as the data needs to pass through the bottleneck in a sequential order.
An alternate solution of parallelising the computers has been proposed where
millions of processors are interconnected. This solution, though, increases pro-
cessing power, is still limited by the bottleneck in its core elements [7].

During the 1940s John Atanassov (1905–1993) with the help of one of his
students Clifford E. Berry, at Iowa State College, created the ABC (Atanasoff-Berry
Computer) that was the first electronic digital computer. The ABC computer was
not a general-purpose one, but still, it was the first to implement three of the most
important ideas used in computers nowadays: binary data representation; using
electronics instead of mechanical switches and wheels, using a von Neumann
architecture, where the memory and the computations are separated.

Fig. 20.1 The von Neumann
computational architecture [6]
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20.1.3 Going Beyond von Neumann Principles and ABC
Computer

The saturation in the scalability of the von Neumann architecture led to new
developments in computer and computing architectures. Neuromorphic computing
coined by Carver Mead in the 1980s [8] and further developed recently is one of the
paradigms of computing which has come into prominence. As the name’neuro-
morphic’ suggests, this paradigm of computing is inspired heavily by the human
brain. Based on neuromorphic computing, the first silicon retina was developed by
Misha Mahovald. Neuromorphic chips of silicon retina, called Dynamic Vision
Sensors (DVS) [9] and other brain-inspired devices [10, 11] were further devel-
oped. Moreover, as the existence of AI is complimented by computing architectures
and paradigms, having a real neuromorphic computer architecture oriented pro-
cessing unit is a step towards the development of highly neuromorphic AI leading
to BI-A. This is discussed in the next section.

20.2 Neuromorphic Computation and Platforms

20.2.1 General Principles

The neuromorphic computing paradigm as presented already in this book from the
point of view of computational modelling and here to be presented as hardware
implementation, draws great inspiration from our brain’s ability to manage tens of
billions of processing units connected by the hundreds of trillions of synapses using
tens of watts of power on an average. The vast network of the processing units
(neurons) in the brain is in a true sense a mesh. The data is transmitted over the
network via the mesh of synapses seamlessly. Architecturally the presence of the
memory and the processing unit as a single abstraction is uniquely advantageous
leading to dynamic, self-programmable behaviour in complex environments [7].
The highly stochastic nature of computation in our brain is a very significant
divergence from the bit-precise processing of the traditional CPU. The neuromor-
phic computing hence aspires to move away from the bit-precise computing
paradigm towards the probabilistic models of simple, reliable and power and data
efficient computing [12] by implementing neuromorphic principles such as spiking,
plasticity, dynamic learning and adaptability. This architecture morphs the bio-
logical neurons, where the memory and the processing units are present as part of
the cell body leading to de-centralised presence of memory and processing power
over the network.
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20.2.2 Hardware Platforms for Neuromorphic Computation

With significant commercial interest in sight, research community focused on the
commercial scale development of the neuromorphic chips. The most prominent of
the neuromorphic chips include the TrueNorth [13, 14] from IBM, the Neurogrid
[15] developed by the Stanford University, the SpiNNaker chip [16] from the
University of Manchester, the neuromorphic chips developed in ETH INI, Zurich
[10, 17] and others. All of these neuromorphic chips consist of programmable
neurons and synapses and use a multitude of CMOS technologies to achieve the
neuromorphic behaviour. The details of the neuromorphic chips are well elaborated
in [11].

The SpiNNaker (Fig. 20.2) system is developed by a team from the University of
Manchester lead by Steve Furber. The system is designed around a plastic ball grid
array package which incorporates a custom processing chip and a 128 MB SDRAM
memory chip. The processing chip contains 18 ARM968 processing cores, each
with 23 KBs of instruction memory and 64 KBs of data memory, a multicast packet
router and sundry support components. The SpiNNaker communication fabric is
based on a 2D triangular mesh with each node formed from a processor layer and a
memory layer. The routing is based upon packet-switched Address Event
Representation and relies on the fact that the connections from a particular neuron
are static, or at most slowly changing. Each neuron can route through a unique tree,
though in practice routing is based on populations of neurons rather than individual
neurons, and the restricted size of each routing table makes this optimisation
necessary on most cases. In addition to the hardware system, the project also
developed numerous high level neural description language such as PyNN, and
Nengo for application development on SpiNNaker.

Fig. 20.2 a The SpiNNaker general architecture. b A SpiNNaker board of 64 ARM processors,
capable to process the activations of more than 100,000 spiking neurons in parallel, producing
outputs every millisecond
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IBM TrueNorth [14]. The IBM TrueNorth chip is the hardware developed under
the DARPA SYNAPSE programme aimed at developing dense, power-efficient
hardware for cognitive applications. This hardware consists of a 5.4 million tran-
sistor 28 nm CMOS chip with 4096 cores, where each core is made up of 256
neurons each having 256 synaptic inputs. The design of the TrueNorth core is a
256 � 256 cross-bar which selectively connects incoming neural spike events to
outgoing neurons. The cross-bar inputs are coupled via buffers that can insert
axonal delays. The outputs from the cross-bar couple into the digital neuron model,
which implements a form of IF algorithm with 23 configurable parameters that can
be adjusted to yield a range of different behaviours, and digital pseudo-random
sources are used to generate stochastic behaviours through modulating the synaptic
connections, the neuron threshold and the neuron leakage. Neuron spike event
outputs from each core follow individually-configurable point-to-point routes to the
input to another core, which can be on the same or another TrueNorth chip. Where a
neuron output is required to connect to two or more neurosynaptic cores, the neuron
is simply replicated within the same core. The TrueNorth hardware is supported by
a software emulator which, exploiting the deterministic nature of the hardware, can
be relied upon to predict the performance of the hardware exactly.

Another SNN chip that implements LIF model of a neuron is the recently
proposed programmable SRAM SNN chip [17]. It is characterised by the following:
32 � 32 SRAM matrix of weights, each 5 bits (values between 0 and 31); 32
neurons of the adaptive, exponential IF model of a neuron; each neuron has 2
excitatory and 2 inhibitory inputs to which any of the 32 input dendrites (rows of
weights) can be connected; AER for input data, for changing the connection
weights and for output data streams; does not have any learning rule hardware
implemented, so it allows to experiment with different supervised and unsupervised
learning rules; learning (changing of the synaptic weights) is calculated outside the
chip (in a computer, connected to the chip) in an asynchronous manner (only
synaptic weights that need to change at the current time moment are changed
(calculated) and then loaded into the SRAM) applying suitable learning rule and
parameter settings.

The fact that modifying connection weights is done asynchronously outside the
chip and then the weights are loaded in the SRAM allows for the deSNN learning
algorithm to be implemented on this chip. After an input is applied to the AER
circuits, the output from the neurons is produced and the deSNN learning algorithm
implemented off-chip is then used to change connection weights accordingly. The
new values of the weights are entered into the SRAM also asynchronously [18].

deSNN is also implementable on other recently proposed SNN chips of the same
class, such as the digital IBM SNN chip [14] as well as on FPGA systems [19].
Despite the fast, one-pass learning in the deSNN models, in terms of large scale
modelling of millions and billions of neurons using the SpiNNaker SNN super-
computer system for simulation purposes would be appropriate, especially at the
level of parameter optimisation. A NeuCube implementation on a SpiNNaker
platform is reported in [20].
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20.3 SNN Development Systems. NeuCube
as a Development System for Spatio-temporal Data
Machines

20.3.1 A Brief Overview of SNN Development Systems

Numerous research [20–24] has focused on harnessing the theoretical powers of the
spiking neural network (SNN) as it was done in various chapters of this book.

The number of software implementations that has appeared, as a result of
ongoing research in the area of artificial neural networks, is ever growing. Majority
of the neural network software is implemented to serve two purposes:

• Data analysis: These software packages are aimed at analysing real-world data
derived from practical applications. The data analysis software use a relatively
simple static architecture, hence are easily configurable and easy to use. Few
examples of such software are: multilayer perceptron (MLP) [25], RBF network
[26], Probabilistic network (PNN) [27], Self organizing maps (SOM) [28],
Evolving connectionist systems, such as DENFIS and EFuNN [29]. These
softwares are either available as independent packages, such as NeuCom [29],
PyBrain (python) [30], Fast Artificial Neural Network (C++) [31], or as part of a
data analytics software like Weka [32], Knime [33], Orange [34] and others.

• Research and development systems: As opposed to the data analysis software,
they are complex in behaviour, and require background knowledge for usage
and configuration. The Majority of the existing SNN software, including
NeuCube, belong to this class.

We have briefly reviewed some of the key features of the current SNN devel-
opment systems below.

NEURON [35]: Neuron is aimed at simulating a network of detailed neurological
models. Its ability to simulate biophysical properties such as multiple channel types,
channel distributions, ionic accumulation and so on renders it well suited for bio-
logical modelling. It also supports parallel simulation environment through:
(1) distributing multiple simulations over multiple processors, and (2) distributing
models of individual cells over multiple processors.

PyNEST [36, 37]: The neural simulation tool (NEST) is a software primarily
developed in C++ to simulate a heterogeneous network of spiking neurons. NEST
is implemented to ideally model neurons in the order of 104 and synapses in the
order of 107–109 on a range of devices from single core architectures to super-
computers. NEST interfaces with python via implementation of PyNEST. PyNEST
allows for greater flexibility in simulation setup, stimuli generation and simulation
result analysis. A node and a connection comprise the core elements of the
heterogeneous architecture.

Circuit Simulator [38, 39]: The circuit simulator is a software developed in C++
for simulation of heterogeneous networks with major emphasis on high-level network
modelling and analysis. The C++ core of the software is integrated with Matlab based
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GUI, for ease of use and analysis. CSIM enables the user to operate both spiking and
analogue neuron models along with mechanisms of spike and analogue signal
transmission through its synapse. It also performs dynamic synaptic behaviour by
using short and long-term plasticity. In 2009, circuit simulator was further extended to
parallel circuit simulator (PCSIM) software with the major extension being imple-
mentation on a distributed simulation engine in C++, interfacing with Python based
GUI.

Neocortical Simulator [40]: NCS or Neocortical Simulator is an SNN simulation
software, mainly intended for simulating mammalian neocortex [36]. During its
initial development, NCS was a serial implementation in Matlab but later rewritten
in C++ to integrate distributed modelling capability [41]. As reported in [36], NCS
could simulate in the order of 106 single compartment neuron and 1012 synapses
using STP, LTP and STDP dynamics. Due to the considerable setup overhead of the
ASCII-based files used for the I/O, a Python-based GUI scripting tool called
BRAINLAB [40] was later developed to process I/O specifications for large scale
modelling.

Oger Toolbox [42]: Oger toolbox is a Python-based toolbox, which implements
modular learning architecture on large datasets. Apart from traditional machine
learning methods such as Principal Component Analysis and Independent
Component Analysis, it also implements SNN based reservoir computing paradigm
for learning from sequential data. This software uses a single neuron as its building
block, similar to the implementation in [37]. A Major highlight of this software in
cludes the ability to customise the network with several non-linear functions and
weight topologies, and a GPU optimised reservoir using CUDA.

BRIAN [23, 43]: Brian is an SNN simulator application programming interface
written in Python. The purpose of developing this API is to provide users with the
ability to write quick and easy simulation code [23], including custom neuron
models and architecture. The model definition equations are separated from the
implementation for better readability and reproducibility. The authors in [43], also
emphasises the use of this software in teaching a neuroinformatics course [44].

The aforementioned discussion of the existing software highlights the suitability
for building highly accurate neurological models but lacks a general framework for
modelling temporal or SSTD, such as brain data, ecological and environmental
data. Further in the line of the neural network development systems, and more
specifically for SNN, where not only an SNN simulator can be developed, but a
whole prototype system (also called spatio-temporal data machine) can be gener-
ated for solving a complex problem defined by SSTD, the NeuCube framework is
discussed as a development system for SNN applications on SSTD [45] (Chap. 6).
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20.3.2 The NeuCube Development System
for Spatio-temporal Data Machines

The NeuCube framework for spatio-spectro temporal data (SSTD), is depicted in
Fig. 20.3 [45] and explained in Chap. 6. A brief description is given below.

• Data encoding: The temporal information generated from the source (e.g. brain,
earthquake sites) is passed through a data encoder component using a suitable
encoding method, [24, 46]. It transforms the continuous information stream to
discrete spike n � t trains f : Rn�t ! f0; 1gð Þ:

• Mapping spike encoded data and unsupervised learning: The spike trains are
then entered into a scalable three dimensional space of hundreds, thousands or
millions of spiking neurons, called SNNcube (SNNc), so that the spatial coor-
dinates of the input variables (e.g. EEG channels; seismic sites, and so on) are
mapped into spatially allocated neurons in the Cube, and an unsupervised
time-dependent learning rule [47, 48] is applied ðg : f0; 1gn�t ! 0;
1m�tjm � nÞ.

• Supervised learning: After unsupervised learning is applied, the second phase of
learning is performed, when the input data is propagated again, now through the
trained SNNc, and an SNN output classifier/regressor is trained in a supervised
mode ŷ :¼ h b;u 0; 1ð Þð Þ [49]. For this purpose, various SNN classifiers,
regressors or spike pattern associators can be used, such as deSNN [49] and
SPAN [50].

The NeuCube software development system architecture uses the above men-
tioned core pattern recognition block described in Fig. 20.4 as the central com-
ponent and wraps a set of pluggable modules around it. The pluggable modules are
mainly developed for: (1) Using fast and scalable hardware components running
large scale applications; (2) Immersive model visualisation for in-depth under-
standing and analysis of the SSTD and its SNN model; (3) Specific applications like

Fig. 20.3 The NeuCube computational architecture for SSTD. The brain, shown as a source of
SSTD is only exemplary, rather than restrictive (after [1]) (see also Chap. 6)
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personalised modelling, brain computer interfaces and so on (4) Hyperparameter
optimisation; and others.

Figure 20.3 shows the NeuCube computational architecture for SSTD. The
brain, shown as a source of SSTD is only exemplary, rather than restrictive (after
[1]) (see also Chap. 6).

Figure 20.4 shows a modular structure of the NeuCube development system.
Each module is designed for different application oriented SNN systems and
evolving spatio-temporal data machines (eSTDM).

Figure 20.5 shows a NeuCube development environment, also showing some
application oriented devices, such as Oculus for 3D visualisation, a SpiNNaker
small neuromorphic board, EEG device, an EEG-controlled mobile robot WITH
from Kyushu Institute of Technology.

Each module in Fig. 20.4 is designed to perform an independent task and in
some instances, written in a different language and suited to the specific computer
platform and for specific application as briefly described below:

– Module M1 It is a generic prototyping and testing module.
– Module M2 is a python based simulator of NeuCube for large scale applications

or implementation on a neuromorphic hardware (Module M3). This application
is developed on top of PyNN package, which is a Python-based
simulator-independent language for building SNN. The NeuCube-PyNN [18]
module is not only compatible with existing SNN simulators described previ-

Fig. 20.4 A modular structure of the NeuCube development system. Each module is designed for
different application oriented SNN systems (http://www.kedri.aut.ac.nz/neucube/)
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ously (e.g., Neuron, Brian), but can also be ported to a large neuromorphic
hardware such as the SpiNNaker, or on any neuromorphic chip, such as the
ETH INI chip, the Zhejiang University chip, and others.

– Module M3 is dedicated for hardware implementations of NeuCube.
– Module M4 allows for a dynamic visualisation of the 3D structure and con-

nectivity of the NeuCube SNN [51, 52]. Due to the 3-dimensional structure as
well as the large number of neurons and connections within NeuCube a simple
2D connectivity/weight matrix or an orthographic 45-degree view of the volume
is insufficient. A specialised visualisation engine using JOGL (Java Bindings for
OpenGL) and GLSL (OpenGL Shading Language) can render the structural
connectivity as well as the dynamic spiking activity. Using 3D stereoscopic
head-mounted displays such as the Oculus Rift, the perception and under-
standing of the spatial structure can be improved even further.

– Module M5 is the input/output and the information exchange module. This
module is responsible for binding all the NeuCube modules together irrespective
of the programming language or platform. Experiments that are run on any
module produces prototype descriptors containing all the relevant information,
which are exported and imported as structured text files, and is compatible with
all the modules. We have used language independent JSON (Javascript object
notation) format as a structured text, which is lightweight, human readable and
can be parsed easily. The present implementation of the I/O module supports the
use of three types of data and SNN prototype descriptors. They are: (1) Dataset
descriptor, which consist of all the information relevant to the raw and encoded
dataset; (2) Parameter descriptor, which is responsible for storing all the user
defined and changeable parameters of the software; and, (3) SNN application

Fig. 20.5 NeuCube development environment, also showing some application oriented devices,
such as Oculus for 3D visualisation, a SpiNNaker small neuromorphic board, EEG device, an
EEG-controlled mobile robot WITH from Kyushu Institute of Technology
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system descriptor, which stores information related to the NeuCube SNN
application system.

– Module M6 extends the functionality of module M1, by adding functions for
prototyping and testing of neurogenetic data modelling. These functions include
models for genetic and proteomic influences in conjunction with brain data.

– Module M7 facilitates the creation and the testing of a personalised SNN sys-
tem. It extends module M1 by including additional functionalities for person-
alised modelling which is based on first clustering of integrated static-dynamic
data using new algorithm dWWKNN (dynamic weighted-weighted distance
K-nearest neighbours) and then learning from the most informative subset of
dynamic data for the best possible prediction of output for an individual. This
module is for optional use in the context of specific applications [53, 54].

– Module M8 is for multimodal brain data analysis. It aims to integrate different
modalities of brain activity information (e.g., EEG, fMRI, MEG) and structural
(DTI) information, in NeuCube, for the purpose of better modelling and
learning. This module is also bound to specific applications.

– Module M9 is a data encoding and optimisation. This module includes several
data encoding algorithms for mapping analogue signals to spike trains based on
different data sources [46, 55].

– Module M10 provides an additional feature of online learning for real-time data
analysis and prediction. In this module, continuous data streams are processed in
the form of continuous data blocks.

20.3.3 Implementation of NeuCube-Based Spatio-temporal
Data Machines on Traditional and on Neuromorphic
Hardware Platforms

A NeuCube developed SNN for a specific application can be implemented using a
different software platform or a hardware platform, including PC, GPU,
RaspberryPi, Treu North, SpiNNaker, any neuromorphic chip. Etc.

An example of a large scale of SNNcube of 25,000 neurons representing MNI
brain template implemented in a von Neumann architecture is shown in Fig. 20.6
[56].

As traditional von-Neumann computational architectures reach their limits [57,
58] in terms of power consumption, transistor size, and communication, new
approaches must be sought. Neuromorphic hardware systems, especially designed
to solve neuron dynamics and able to be highly accelerated compared to biological
time, are a response to these concerns [59–61]. Systems such as analogue VLSI or
the SpiNNaker are advantageous by comparison to software based simulations on
commodity computing hardware in areas such as biophysical realism; density of
neurons per unit of processing power; and significantly lowered power consumption
[10, 59].
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To address this opportunity, a cross-platform version utilising the PyNN API in
Python has been written in [60]. This version is targeted primarily towards neu-
romorphic hardware platforms but is also applicable to commodity distributed
hardware systems depending on the simulation backend chosen.

PyNN [60] is a generic SNN simulation markup framework that allows the user
to run arbitrary SNN models on a number of different simulation platforms,
including software simulators PyNEST and Brian, and some neuromorphic hard-
ware systems such as SpiNNaker and FACETS/BrainScaleS. It provides a write
once, run anywhere (where anywhere is the list of simulators it supports) facility for
the development of SNN simulations.

One neuromorphic platform for the implementation of a NeuCube SNN proto-
type system developed in module M1 or in any other modules of the NeuCube
architecture, is the SpiNNaker device [20].

Alternative implementations of the NeuCube systems on neuromorphic hard-
ware are being pursued on the INI Neuromorphic VLSI chips and the Zhejiang
University FPGA system.

20.4 Chapter Summary and Further Readings

The chapter describes main principles of computation applied to implementing
SNN application systems. NeuCube is used as an example of a SNN development
system for a wide scope of applications. A free copy and open source of the main

Fig. 20.6 An example of a SNNcube of 25,000 neurons representing MNI brain template
implemented in a von Neumann architecture [56]. The red dots represent active neurons at the
moment of the snapshot from a simulation and the little squares represent input neurons
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NeuCube module as a limited and trial version is available from: http://www.kedri.
aut.ac.nz/neucube/.

Further readings on specific topics can be found in:

• Neuromorphic Architectures for Spiking Deep Neural Networks [61].
• Memory and information processing in neuromorphic systems [11].
• Overview of the spinnaker system architecture [16].
• A VLSI network of spiking neurons with an asynchronous static random access

memory [17].
• NeuCube Neuromorphic Framework for Spatio-temporal Brain Data and its

Python Implementation [18].
• Software for selection and optimisation of encoding algorithm for SNN appli-

cations [55].
• General information about SNN [62, 21].
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Chapter 21
From Claude Shannon’s Information
Entropy to Spike-Time Data
Compression Theory

This chapter of the book proposes a new information theory for temporal data
compression through spike-time encoding for the purpose of reducing the amount
of raw data from time series but preserving the information in terms of accuracy of
pattern recognition and pattern classification. Most of the data in information sci-
ences are temporal or spatio/spectro temporal, such as brain data, audio and video
data, environmental and ecological data, financial and social data, etc. as discussed
in the other chapters of the book and the proposed data compression method is
applicable to all of them. It is illustrated in this chapter on compressing and clas-
sification of patterns from fMRI data (more about fMRI data can be found in
Chaps. 10 and 11). The presented here theory and experimental results were first
published in [1].

The chapter is organised in the following sections:

21:1. Claud Shannon classical information theory.
21:2. The proposed information theory for temporal data compression for classi-

fication tasks based on spike-time encoding.
21:3. A spike-time encoding and compression method for fMRI spatio-temporal

data classification.
21:4. Chapter summary and further readings.

21.1 Claude Shannon’s Classical Information Theory

The brilliant mathematician Claude Shannon (1916–2011) introduced an infor-
mation theory based on entropy.

A random variable x is characterized at any moment of time by its uncertainty in
terms of what value this variable will take in the next moment—its entropy.
A measure of uncertainty h(xi) can be associated with each random value xi of a
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random variable x, and the total uncertainty H(x), called entropy, measures our lack
of knowledge, the seeming disorder in the space of the variable x:

H Xð Þ ¼
X

i¼1;...;n

pi : h xið Þ; ð21:1Þ

where pi is the probability of the variable x taking the value of xi.
The following axioms for the entropy H(x) apply:

– monotonicity: if n > n′ are number of events (values) that a variable x can take,
then.

– Hn(x) > Hn′(x), so the more values x can take, the greater the entropy.
– additivity: if x and y are independent random variables, then the joint entropy H

(x, y), meaning H(x AND y), is equal to the sum of H(x) and H(y).

The following log function satisfies the above two axioms:

h xið Þ ¼ log 1=pið Þ ð21:2Þ

If the log has a basis of 2, the uncertainty is measured in [bits], and if it is the
natural logarithm ln, then the uncertainty is measured in [nats].

H Xð Þ ¼
X

i¼1;...;n

pi : h xið Þð Þ ¼ �c :
X

i¼1;...;n

pi : log pið Þ; ð21:3Þ

where c is a constant.
Based on the Cloud Shannon’s measure of uncertainty—entropy, we can cal-

culate an overall probability for a successful prediction for all states of a random
variable x, or the predictability of the variable as a whole:

P xð Þ ¼ 2�H xð Þ ð21:4Þ

The max entropy is calculated when all the n values of the random variable x are
equiprobable, i.e. they have the same probability 1/n—a uniform probability
distribution:

H Xð Þ ¼ �
X

i¼1;...;n

pi : log pi � log n ð21:5Þ

Joint entropy between two random variables x and y (for example, an input and an
output variable in a system) is defined by the formulas:

H x,yð Þ ¼ �
X

i¼1;...;n
p xi AND yj
� �

: log p xiANDyj
� �

ð21:6Þ

H x,yð Þ�H xð ÞþH yð Þ ð21:7Þ
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Conditional entropy, i.e. measuring the uncertainty of a variable y (output variable)
after observing the value of a variable x (input variable), is defined as follows:

H yjxð Þ ¼ �
X

i¼1;...;n

p xi; yj
� �

: log p yjjxi
� �

ð21:8Þ

0�H yjxð Þ�H yð Þ ð21:9Þ

Entropy can be used as a measure of the information associated with a random
variable x, its uncertainty, and its predictability.

The mutual information between two random variables, also simply called in-
formation, can be measured as follows:

I y; xð Þ ¼ H yð Þ � H yjxð Þ ð21:10Þ

Information measured as entropy was the basis for all data compression techniques
developed so far, which aimed at reducing the raw data but preserving the infor-
mation. In the next section we will introduce a new theory that preserves infor-
mation for temporal pattern recognition from temporal data using spike-time
encoding. There is analogy between entropy and spike time encoding as both
measure changes in the data, but there are significant differences as well, as shown
in the next sections.

21.2 The Proposed Information Theory for Temporal
Data Compression for Classification Tasks Based
on Spike-Time Encoding

Human brains ability to efficiently detect patterns from continuous streaming
information in the form of sensory stimulus is an inspiration to the field of artificial
intelligence. Efficient encoding of continuous input information into discrete
spike-times play a decisive role in the ability of the spiking neurons present inside
the human brain to compress, transmit and recognise information presented by the
external environment. This compact encoding of information in the brain is
non-conformative to the classical information theory developed by Claude
Shannon.

In this chapter, we introduce spike-time encoding as an efficient general
approach to data compression that minimises dramatically the information repre-
sentation of streaming, temporal data and achieves similar or even better pattern
recognition and classification accuracy when compared with the use of the whole
raw data for this purpose. We also introduce a specific encoding algorithm
GAGamma that leads to efficient compression of spatiotemporal data for the pur-
pose of storage, transmission and accurate pattern recognition of brain fMRI data in
particular. We have evaluated and compared the algorithm with other methods on a
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benchmark fMRI dataset. The results show the temporal encoding algorithm’s
ability to achieve significant data compression without sacrificing the performance
of the recognition of the compressed patterns. Using specific spike-time encoding
algorithm for a class of data, such as the GAGamma for fMRI data, leads to a better
signal reconstruction when compared with the use of standard spike encoding
methods.

The human brain is considered to be the most resourceful and efficient system
that can recognise patterns in millisecond resolutions. This is done by crunching
massive volumes of real continuous stimuli/data captured by the sensory organs. It
is also observed that the human brain cells when presented with an external stimuli
propagates the signal efficiently over large distances using electrical impulses
known as synaptic action potential. In neurobiology, the process of analog to digital
signal transformation is known as neural encoding [2]. It is very intriguing that the
process of neural encoding not only converts the big streaming continuous data
space into a compressed space of spikes, but brain cells also recognise the patterns
in the compressed space. The biological organization of our brain tends to create
signals with a very specific class of distributions and it is from the perspective of
evolution understandable that these distributions are optimized for fast analysis.
The most popular hypothesis states that the signal strength is encoded by the mean
firing rate, i.e. stronger signal gives rise to higher average firing rate. A wide range
of studies [3, 4] in the sensory and motor-neuronal system in several species
supports the validity of mean firing rate hypothesis. The major drawback of this
theory, however, lies in the association of information with spike density.
Determine the spike density in millisecond resolution from large volume of spikes
lead to a level of computational inefficiency. As per an alternate theory on neural
encoding, neurons carry information in the precise timing of the spikes. This is
known as the temporal encoding. Numerous research [5, 6] has shown the presence
of temporal encoding in different parts of the human brain. Temporal encoding
supports the efficient representation of information that is required for very fast
processing (in millisecond scale) of the stimulus presented to the human brain. As
opposed to the rate coding scheme, high fluctuations in mean firing rate, also known
as inter spike interval (ISI) probability distribution is considered to be informative
rather than noise in this scheme. The temporal spike time representation of the data
acts as a lossy compression of information. Most forms of learning, though, can be
seen as forms of data compression. In fact we can, in terms of pattern recognition,
only learn something from data when there is redundancy in the data. In many data
analysis project the data is preprocessed or recoded in a way that could be seen as a
form of data compression. If such a preprocessing does not destroy the patterns we
are interested in this will in general result in an equal of better performance of our
learning algorithms. The motivation of the temporal encoding in this context is to
reduce large volume of data into a compressed state with minimal loss and the
maximal presence of discriminable information. Examples of such data sources are
pulsar data in radioastronomy, seismic activity data, and so on.

From computational theory viewpoint, the data encoding problem directly
relates to the concepts of information theory. In 1948, in the seminal paper of
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information theory [7], Claude P. Shannon proposed a complete form of mathe-
matical theory to quantify information transmission in a communication channel.
A conclusive finding that the amount of information in any object can be estimated
as the description length of the object continues to set the stage for the development
of communications, data storage and processing, and other information technolo-
gies. Shannon’s information theory is built on a presupposition that the computable
information in an object is the characteristic of a random source with known
probability distribution of which the object is part of. To realise this idea Shannon
derived the ‘entropy’ from the first principle, which is the measure of average
information emitted by an object when observed. Entropy is the functional mapping
of the random variable to a real number. A.N. Kolmogorov on the other hand
proposed a complementary research on algorithmic information theory aiming to
provide means of measuring information. Contrary to Shannon’s theory,
Kolmogorov complexity [8, 9] considers information as the property of an object in
isolation irrespective of the manner in which the object arose [10]. More formally, it
is defined as the minimum number of bits from which a particular message or file
can effectively be reconstructed, i.e. the minimum number of bits suffice to store a
reproducible file.

A computational neuron responsible for emitting spikes from sensory data can
be regarded as a logical transmission medium responsible for broadcasting con-
tinuous information received from the data source. The two neural coding
hypotheses hence can be seen in the light of the information theory. We observe
that the rate coding scheme is much adherent to Shannon’s interpretation of
encoding. The inherent assumption of the presence of a random source with a
known probability distribution in Shannon’s theory is much apposite to the mean
firing rate as it relates to the frequency of spikes over time. However, our interest in
efficient compression of a large volume of data by a sequence of spike-timings and
further use the spike timings for the purpose of pattern recognition is much more in
sync with Kolmogorov’s notion of object representation by minimal description
length using computer programs.

The data encoding problem in the spiking neural network (SNN) is a relatively
less researched topic compared to the neuron dynamics and learning in SNN. ATR
Human Information Processing Research Laboratory’s artificial brain (Cellular
Automata Machine Brain) project [11] used data encoding as a part of its large-scale
brain-like neural architecture. Hardware accelerated implementation of spike
encoding for image and video processing was performed in [12]. The literature on
spike encoding technique applicable to real world data is restricted to a few algo-
rithms like Temporal-contrast (also known as Address event representation
encoding [13]), Hough Spiker Algorithm (HSA) [14] and Ben Spiker Algorithm
(BSA) [15]. All these algorithms are generally event-driven i.e. to say, they follow
the temporal encoding scheme giving importance to the time of the occurrence of an
event (spike). The temporal contrast algorithm, which is inspired from the human
visual cochlea, uses threshold based method to detect signal contrast (change).
A user-defined contrast threshold determines the spike events in temporal contrast.
The HSA and BSA algorithm, however, determines a spike event using a
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deconvolution operation between the observed signal and a predefined filter. The
deconvolution in HSA is based on the assumption that the convolution function
produces a biased converted signal which always stays below the original signal
yielding an error [16]. Bens Spiker Algorithm (BSA) [17] on the other hand, uses a
finite reconstruction filter (FIR) for predicted signal generation (see Chap. 4).

We formalise the data encoding problem for pattern recognition as a data
compression problem. The compression function is defined as the map
f : RT ! ft f1 ; t f2 ; . . .t fn jti 2 I

þ g, where the f(�) releases a spike at firing times tf. The
proposed encoding algorithm primarily assumes that the discriminatory information
is encoded by the sequence of spike timings rather than the sequence of spikes. As a
consequence of this assumption, it is important to achieve large compression by
minimising the number of spikes and thus is a distinct contradiction with the rate
coding hypothesis. The generalised framework for data encoding used here for the
experiments is extended from our previously published work [18].

We denote the source signal as S 2 RT. In order to simplify the formalisation, we
define the encoded spike train B 2 {0, 1}T as a fixed-length binary sequence of
length T as opposed to the variable length sequence of spike timings

t f1 ; t
f
2 ; . . .t

f
n jti 2 I

þ
n o

defined earlier without any loss of generality. Here T defines

the length of the temporal data to be encoded in spikes. The background
knowledge-driven optimisation based encoding algorithm is built on the premise
that existing knowledge about the data generation model or in other words prop-
erties of the data generation source is possible to be injected to predict the signal Sˆ.
For example, fMRI data generation process behaves like a linear time invariant
system, where an event in the brain gives rise to a signal mimicking the gamma
function [19], whereas EEG data generation can be modelled as a phase varying
mixture model of sinusoidal waves or multisource Gaussian noise model [20]. The
notion of knowledge injection is further elaborated in Sect. 21.3 using fMRI as an
example. If it is possible to formalise the decompression function Sˆ from the spike
sequence B, the optimal encoding of data can be formulated as an optimisation
problem, which minimises the root mean squared decompression error between the
observed signal S and the predicted signal Sˆ: = f(B, H), H being the set of addi-
tional parameters required along with B to describe the prediction function. The
optimisation problem can be written down as:

min
B;h

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
t
S�Ŝ B;Hð Þð Þ2

t

r

s.t. B :¼ I
þ

0�B� 1P
t
Bt � a

b�H\c

ð21:11Þ

The aforementioned optimisation problem belongs to the paradigm of
mixed-integer programming, where a subset of parameter or decision variables to
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be optimised, are integers. Numerous methods have been developed over the years
to solve such problems [16, 21, 22]. In our implementation, however, we have used
the mixed integer genetic algorithm proposed by [23, 24]. The constraints in
Eq. 2.11 are imposed on the parameters of Sˆ. The first couple of constraints
reduces the possible values of B to {0, 1}. We have used the hyper-parameter a to
control the maximum number of spikes in the optimal spike sequence. The other
sets of hyper-parameters {b, c} are used to control the upper and lower bounds of
the model parameter H.

The formulation above for the proposed framework for data encoding is a
generic, flexible and driven by knowledge-injection from the data source. It can be
further extended to include systematic noise model as part of Sˆ. We hypothesise
that a sufficiently good choice of Sˆ preserves and in some cases enhances the
discriminative property of the data in a greatly compressed space. It must also be
noted that this formulation adheres to the concept of non-existence of a universal
compression algorithm for all the data sources. The general framework described
above can be used to derive specific methods for encoding of special types of data
for which background knowledge is available. One such case is fMRI data based on
blood-oxygen level dependent response (BOLD). This is further introduced and
illustrated.

21.3 A Spike-Time Encoding and Compression Method
for fMRI Spatio-Temporal Data Classification

The fMRI BOLD response is modelled here as a linear time invariant system, which
is described by the convolution of the spikes B and the haemodynamic response
function (HRF) H(H). This operation is characterised by Eqs. 21.12 and 21.13.

Ŝ :¼
Z t

0

BðsÞhðt � sÞds ð21:12Þ

S^ B;Hð Þ :¼ B � H Hð Þ ð21:13Þ

Hðh1; h2Þ :¼ 1

hh12 sðh1Þ
th1�1e�

t
h2 ð21:14Þ

Numerous mathematical models for HRF has been proposed in the earlier research
[25–27]. Majority of the mathematical models for the canonical HRF are found to
be some variant of the gamma function. In all our experiments we have used the
gamma distribution function as the HRF model described by the Eq. 21.14. This
function is characterised by the parameter set H : = {h1, h2}, where h1 2 R+ and
h2 2 R+ controls the shape and the scale of the function respectively. By fitting
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Eqs. 21.13 and 21.14 in Eq. 21.11, the encoding problem boils down to solving
Eq. 21.5 and will be referred to as GAGamma encoding hereinafter.

min
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

t
ðS�ŜðB;h1;h2ÞÞ2

t

q
B :¼ I

þ

B; h1; h2 0�B� 1
s:t:

P
t
Bt � a

ð21:15Þ

where

b1 � h1 � c1
b1 � h1 � c2

ŜðB; hÞ :¼ B � 1
h
h1
2 sðh1Þ

th1�1e� t
h2

At this point, it is imperative to make distinctions between the GAGamma and
the existing HSA and BSA algorithms. The HSA and BSA algorithm for spike
encoding are built on the premise of stimulus estimation using finite impulse
response resembling the GAGamma method. The knowledge injection component
of GAGamma as part of Sˆ and the optimisation approach has two distinct benefits
over the deconvolution based methods:

• We have used a generic Gamma function as the knowledge injection component
Sˆ in GAGamma which is driven by the existing knowledge about the fMRI data
as opposed to the sinusoidal waves used as the FIR in BSA. We also argue that
this formalism allows the inclusion of additional knowledge about the data
source (such as systematic noise) providing greater flexibility in the encoding of
the data.

• The optimisation problem formulation in GAGamma jointly optimises for the
parameter set H and B. This formulation thus includes the parameter set H of
the prediction model Sˆ along with the spike B for each individual voxel or
feature. In HSA and BSA, the equivalent filter parameters need to be prede-
termined and fixed for the whole set of voxels.

All the experiments described here were performed on the publicly available
benchmark starplus fMRI dataset [28] collected by The Centre for Cognitive Brain
Imaging, Carnegie Mellon University. The starplus experiment was conducted on a
set of 7 subjects. Each subject had undergone multiple trials of the exact same
cognitive experiment. At every trial, lasting for 27 s, a set of stimuli were presented
in the following order:

1. The first stimulus (Picture or Sentence) was presented at the beginning for 4 s.
2. A blank screen was presented during the interval of 5–8 s.
3. The second stimulus (Sentence or Picture) was presented during the interval of

9–12 s.
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4. A rest period of 20 s was added after the second stimulus.

While the subject performed the cognitive tasks, fMRI images of a fraction of
the brain were collected at every 500 ms interval. The final preprocessed fMRI
dataset corresponds to a classification task of detecting binary cognitive states
namely, ‘seeing a picture’ versus ‘reading a sentence’. We have chosen two sub-
jects (id: 04847 and 07510) randomly and used two spatial regions of interest
(ROI); Calcarine Sulcus (‘CALC’) and Left Intra-Parietal Sulcus (‘LIPL’) for our
pattern recognition experiments. The choice of the ROI’s is based on previous work
[29] that found these ROIs to be amongst the most discriminatory in the continuous
space. The dataset is composed of 40 samples (trials) of each class and each sample
is made up of 452 and 483 voxels in subject 04847 and 05710 respectively. Each
cognitive task was a total of 8 s duration emitting 16 fMRI images for each class
within a trial.

For the reason that this encoded data is intended to be used for pattern recog-
nition problems, conservation and possible enhancement of the discriminatory
information in the spike-timings is as crucial as efficient compression of the data.
This is a distinctly different approach from the existing approaches of pattern
recognition, where a massive amount of data is crunched by intelligent algorithms
to achieve better predictive models producing highly accurate prediction perfor-
mance. By keeping both compressibility and preservation of discriminatory infor-
mation as the criteria of evaluation, we are aiming to benefit efficient resource usage
along with the classification performance. It is thus important to have a balance
between compression and conservation of discriminatory information in the
encoded data. We have used three metrics to evaluate the encoding techniques
along with traditional ‘no encoding’ (raw data) approach. A brief description of the
metrics and the baseline encoding techniques are described below:

• Symbol rate: The symbol rate is measured by the bits/symbol unit. As the data
(raw or encoded) is represented as bits (0 or 1) in the storage medium, bits/
symbol measures the average number of bits required to represent a symbol,
where symbol is the value in the value space. In a fixed-length encoding of data
(like ASCII), it is evident that the fixed-length L defines the symbol rate. For a
variable-length, however, the symbol rate is calculated by dividing the total
number of bits by the number of symbols. For example, if a raw dataset, given
by {x1, x2, … xn|xi 2 R} is encoded by an encoding algorithm to an encoded
dataset {y1, y2, … ym|yi 2 I+}, then the symbol rate of the encoding algorithm
for the dataset is n

m � Size of ðIÞ:
• Decoding error: The decoding error metric is the measure of the reliability of

decompression, i.e. the ability to reliably recover the original signal from the
compressed spike-timings. We have used the root mean squared error (RMSE)
of signal reconstruction between the original signal S, and the predicted signal
Sˆ. A low RMSE of the signal reconstruction indicates high preservation of
information in the spike-timings. It must be noted that the classification model is
built on the spike-time data and has no knowledge of the raw real data. Hence,
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although this metric has a significant role in evaluating the robustness of the
encoding algorithm in respect to reconstruct the raw data, the effect on the
quality of pattern recognition performance is not affected.

• Classification performance: From pattern recognition viewpoint, the classifica-
tion performance is the most important measure of success. To evaluate the
classification performance, we have used the combination of mean classification
accuracy and precision metric.

Figure 21.1 shows a flowchart of the pattern recognition and evaluation process.
In the first step, real time series data is fed into the different data encoding algo-
rithms which produce the spikes. In the second step, a simple K-NN model is built
using the spikes. The K-NN model is used for prediction of a new sample. The
traditional protocol of pattern recognition of the real data using a
Euclidean-distance based K-NN is also compared with the previous protocol.

The mean accuracy is estimated from thirty independent runs of 50/50 train/test
split of the binary classification data described previously. Figure 21.1 shows a
flowchart of the stepwise process of pattern recognition with and without using the
encoding algorithms. The best results are reported after optimisation of the K
parameter using grid search method.

Spike asynchronicity based distance function for K-NN algorithm. As discussed
earlier, we have used the non-parametric K-NN algorithm for building a classifi-
cation model from the data. The prediction of a class label of a new sample (in our
case a spike train) in K-NN is a majority vote between the neighbours of the new
sample, with the sample being assigned to the class label most common among its k
nearest neighbours. To assign neighbourhood to a sample, it is hence necessary to
calculate pairwise distances between the sample to be predicted and the training

Fig. 21.1 A flowchart of the pattern recognition and evaluation process. In the first step, real time
series data is fed into the different data encoding algorithms which produce the spikes. In the
second step, a simple K-NN model is built using the spikes. The K-NN model is used for
prediction of a new sample. The traditional protocol of pattern recognition of the real data using a
Euclidean-distance based K-NN is also compared with the previous protocol (after [1])
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samples. Here we propose a distance function that can capture relative distance
between a pair of spike-train sample. Since we are concerned with using spike
timings as a carrier of information, a useful way to capture similarity between a pair
of spike-train samples is to record if the two samples have spiked at the same time
instance. We have used mean absolute asynchronicity as the distance function. The
mean absolute asynchronicity based distance function between two spike-train
samples B1 2 {0, 1}T�M and B2 2 {0, 1}T�M is formally defined as:

d :¼
P

ðT�MÞ B1 � B2

T �M
ð21:16Þ

where, T and M are the time-length of the signal and number of features (in our case
voxels) respectively. The ⊕ symbol represents an XOR operation applied on the
spike train matrices B1 and B2. The XOR operation in effect identifies element by
element mismatches/asynchronicity between the two matrices. The distance func-
tion calculates the mean asynchronicity between a pair of samples.

In this study three different encoding methods are compared and evaluated. It
must be noted that for each encoding or compression algorithm, there also exists a
decoding algorithm which can decompress the spike-trains into the reconstructed
signal Sˆ.

• GAGamma: This is the proposed encoding method which is outlined in
Sect. 21.3. The encoding and decoding equations are given by Eqs. 21.13 and
21.15.

• BSA: The BSA encoding and decoding algorithms [15] are formalised in
Algorithms 1 and 2, respectively in the Appendix. The BSA algorithm takes a
filter function and a threshold value as input along with the signal S (Chap. 4).

• Temporal contrast: The temporal contrast algorithm captures the greater than
average changes in the data as spikes. Algorithms 3 and 4 in the Appendix
present the temporal contrast encoding and decoding algorithms respectively.
One major characteristic and deviation of temporal contrast algorithm from the
temporal encoding framework is its ability to generate spikes with positive and
negative polarity. Since we are only interested in the spike timings, during the
classification, we ignore the polarity of the spikes. The algorithm takes the
factor 2 {0, 1} parameter as input. This parameter controls the estimate of the
thresholdTC variable, which is responsible for determining the spike timings.

Figure 21.2 shows a comparison of signal reconstruction(Sˆ) from a spike
sequence by GAGamma decoding algorithm, BSA decoding algorithm (algorithm
2) and Temporal contrast decoding algorithm (algorithm 4). The true signal is
randomly selected from subject 04847′ (10th trial and 23rd voxel).

For the comparative evaluation of the encoding methods and the classical ‘no
encoding’ method, we have replicated experiments for the subjects 04847 and
07510. For each subject we have compared the proposed GAGamma encoding
method with BSA and Temporal contrast. For the GAGamma encoding, we have
used the hyper-parameter values [a = 16, b = 0, c = 10] in Eq. 21.15. The BSA
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encoding algorithm takes a finite impulse response (FIR) filter and a thresholdBSA as
input. In our experiments, we have used the low pass FIR filter of size 10 and the
thresholdBSA = 0.95. These values are guided by the earlier work done on brain data
by [30]. For the Temporal contrast encoding, we have used the hyper-parameter
factor = 0.6. It must be noted that the presented results are non-exhaustive in the
hyper-parameters space of different encoding methods. As a baseline, we have also
included a randomly generated spike-train dataset. The random spike timing dataset
is created using a Poisson’s distribution with k = 0.6. Varying the k parameter
effects the symbol rate directly for random spike generation. In the ‘no encoding’
method, the raw dataset was created by transforming each multidimensional time
series (set of images) within a trial into a single static observation by concatenating
the feature values across the 16 time intervals [31].

A comparative analysis of our analysis is tabulated in Table 21.1. The results show
a significant improvement in the bits/symbol column. The BSA and the GAGamma
methods achieved a compression ranging within 6 and 24 times compared to the ‘no
encoding’ method. This is due to the ability of the encoding algorithm to represent the
information into the spike timings and thus present the data in a concise fashion to the
classifier. Moreover, the GAGamma encoded data achieved a nearly comparable
classification accuracy of 87.41 ± 4.80% and 76.00 ± 5.89% against 89.55 ± 4.60%
and 79.11 ± 3.99% of ‘no encoding’ in 04847 and 07510 respectively. Between the
encoding algorithms, the GAGamma and BSA shows the best overall performance, in
that, they achieve high accuracy and compression. Figure 21.3 plots the accuracy and
bits/symbol landscape for all the methods compared in the experiment across the two
subjects. The green area is an approximate visual guide of the region we are aiming to
achieve in the accuracy-compression space by concisely presenting information as the
spike-times. Nevertheless, the reconstruction of the signal by the GAGamma decoding
algorithm is superior in comparison with BSA. Figure 21.2 shows the comparison of
different Sˆ predicted by various decoding algorithms on a randomly chosen temporal
signal.

Data point 

Fig. 21.2 A comparison of
signal reconstruction(Sˆ) from
a spike sequence by
GAGamma decoding
algorithm, BSA decoding
algorithm (Algorithm 2) and
Temporal contrast decoding
algorithm (Algorithm 4). The
true signal is randomly
selected from subject 04847′
(10th trial and 23rd voxel)
(after [1])
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Table 21.1 Comparative evaluation of data encoding techniques applied to subject 04847 and
07510 in the starplus fMRI dataset (after [1])

Subject
id

Method Data
type

Bits/
symbol

Decoding
error

Accuracy (K1)

04847 GAGamma Integer 4.96 0.07 87.41 ± 4.80%
(16)

BSA Integer 1.33 0.20 84.50 ± 4.47%
(3)

Temporal
Contrast

Integer 1.95 0.23 54.16 ± 5.77%
(1)

Random Integer 3.63 − 52.58 ± 4.79%
(1)

No encoding Float 32.0 − 89.55 ± 4.60%
(1)

07510 GAGamma Integer 4.97 0.06 76.00 ± 5.89(8)

BSA Integer 1.28 0.20 74.08 ± 6.71%
(8)

Temporal
Contrast

Integer 1.82 0.26 52.75 ± 5.84%
(2)

Random Integer 3.63 − 52.58 ± 4.79%
(1)

No encoding Float 32.0 − 79.11 ± 3.99%
(5)

For each subject we evaluated five different methods. They are, the proposed GAGamma encoding,
the state of the art encoding techniques BSA and temporal contrast, a random spike generator and ‘no
encoding’ or the raw data. These methods are evaluated by the bits/symbol, decoding error and
accuracy as the measures of success. The decoding error metric is not relevant for the ‘random’ and
‘no encoding’ method. In the ‘no encoding’ method we use the raw data for pattern recognition and
hence no encoding principle is involved in this method. The ‘random’ method being a random spike
generator also does not have any decoding algorithm associated with it
K Number of nearest neighbours used in K-NN algorithm

Fig. 21.3 Plot showing the
comparative performance of
the encoding methods against
the ‘no encoding’ applied on
the fMRI dataset collected
from subject id 04847 and
07510. The evaluation metrics
bits/symbol (compression
rate) and average accuracy are
plotted in the X and the Y axis
respectively (after [1])
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Additionally, GAGamma encoded spikes for the ‘picture’ and the ‘sentence’
stimuli were independently analysed for interpreting the discriminating
spatio-temporal influence of the spikes. As described earlier in the experimental
protocol, the presentation of a certain stimuli within a trial follows an order, i.e. for
each stimuli class there exist subclasses of ‘presented first’ or ‘presented second’.
To analyse the effect of the first or second presentation of stimuli, we have sepa-
rated the encoded dataset into four classes, ‘picture presented first’, ‘picture pre-
sented second’, ‘sentence presented first’ and ‘sentence presented second’.
Figures 21.4 and 21.5 show the comparison of the mean spike percentage across the
trials for the four subclasses in subject 04847 and subject 07510. The two clusters in
the 3D plots relate to the two ROI’s (top left is ‘LIPL’ and bottom right is ‘CALC’)
of the brain structure. Functionally, the ‘CALC’ region is responsible for central
and peripheral vision whereas the ‘LIPL’ region is related to visual attention. In
both the subjects it can be seen that ‘seeing a sentence second’ after ‘seeing a
picture first’ has more spike activity on average across the trials than the other way
around, especially in the ‘LIPL’ region.

The mean spike activity in the ‘LIPL’ is observed to be relatively higher (0.59
and 0.57) when the subjects were seeing a ‘sentence’ than when the subjects were
seeing a ‘picture’ (0.54 and 0.55). A two sample T-test was conducted between the
‘picture’ and the ‘sentence’ class in the ‘LIPL’ region for the subjects to validate the
previous result. The null hypothesis for the test conducted was the following, H0:
‘there is no difference between the picture spike activity and sentence spike
activity’. The null hypothesis was rejected at 5% significance level with
p = 5.27 � 10−18 for subject 04847 and with p = 7.05 � 10−12 for subject 07510.
Hence, according to the Ttest, the average spike activity across the trials over time
for ‘seeing a picture’ is significantly different from the average spike activity across
trials over time for ‘seeing a sentence’. Further, it must also be noted the sentences
shown as part of the experiment (e.g. “It is not true that the dollar is below the
plus.”) are image oriented in nature and requires high imagery comprehension
ability as part of the subject. This result is consistent with the experimental results
[32] obtained earlier which shows a greater degree of activation and functional
connectivity in the ‘LIPL’ region during cognitive tasks associated with high
imagery sentence comprehension. This, in fact, validates the ability of the proposed
encoding algorithm to preserve the useful discriminatory information in the com-
pressed encoded data.

Figure 21.3 is showing the comparative performance of the encoding methods
against the ‘no encoding’ applied on the fMRI dataset collected from subject id
04847 and 07510. The evaluation metrics bits/symbol (compression rate) and
average accuracy are plotted in the X and the Y axis respectively.

Table 21.2 shows average pairwise asynchronicity of three different voxels at the
end of ten independent runs of GAGamma based data encoding. Table 21.2 relates
to the reproducibility of the spike timings produced by the mixed integer genetic
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algorithm solver for the GAGamma method. It is a known fact that GA being an
evolutionary optimisation solver, do not reproduce the same set of parameters when
it is run multiple times. Nevertheless, it reaches near optimal fitness value each
time. We have conducted ten independent runs of GAGamma encoding using three
random voxels (30,468 and 3429) from trial 12 of subject 04847. Table 21.2
compares the similarity of the spike trains produced by the GAGamma encoding
using two spike asynchronicity measures. They are percentage asynchronicity
(described earlier) dp and Victor Purpura distance dvp respectively. The Victor
Purpura distance (dvp) [33] metric is a cost based distance measure. The distance is
defined by the minimum cost of converting one spike train into the other using three
operations; insertion (cost 1), deletion (cost 1) and shifting a spike by an interval dt
(cost q|dt|). For the smaller value of q the distance metric approximates the spike
count difference and hence supports rate coding. A higher penalty value of q, on the

(a) seeing ‘picture’ first during trial (b) seeing ‘picture’ second during trial

(c) seeing ‘sentence’ first during trial (d) seeing ‘sentence’ second during trial

Fig. 21.4 Comparative analysis of spike frequencies of the subject 04847 seeing picture versus
seeing a sentence. The points in the 3D plot correspond to the spatial location of the voxels used in
the dataset. Each voxel belongs to two physiologically defined clusters or regions of interest,
namely ‘CALC’ and ‘LIPL’. The top row shows the mean spike rate across the ‘picture’ trials as
opposed to the ‘sentence’ trials in the bottom row. The first and the second column corresponds to
the stimulus (‘picture’ or ‘sentence’) being presented first or second (after [1])
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contrary, supports the number of non-coincidental spikes and hence temporal
encoding. The comparison shows that the spike timings are correct approximately 7
to 8 out of 10 times.

Figure 21.4 shows a comparative analysis of spike frequencies of the subject
04847 seeing picture versus seeing a sentence. The points in the 3D plot correspond

(a) seeing ‘picture’ first during trial (b) seeing ‘picture’ second during trial

(c) seeing ‘sentence’ first during trial (d) seeing ‘sentence’ second during trial

Fig. 21.5 Comparative analysis of spike frequencies of the subject 07510 seeing picture versus
seeing a sentence. The points in the 3D plot correspond to the spatial location of the voxels used in
the dataset. Each voxel belongs to two physiologically defined clusters or regions of interest,
namely ‘CALC’ and ‘LIPL’. The top row shows the mean spike rate across the ‘picture’ trials as
opposed to the ‘sentence’ trials in the bottom row. The first and the second column corresponds to
the stimulus (‘picture’ or ‘sentence’) being presented first or second (after [1])

Table 21.2 Average pairwise asynchronicity of three different voxels at the end of ten
independent runs of GAGamma based data encoding (after [1])

Voxel ID dp dvp

30 24.18 ± 10.20 0.23 ± 0.09

468 27.78 ± 11.96 0.26 ± 0.10

3429 28.03 ± 11.31 0.28 ± 0.11
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to the spatial location of the voxels used in the dataset. Each voxel belongs to two
physiologically defined clusters or regions of interest, namely ‘CALC’ and ‘LIPL’.
The top row shows the mean spike rate across the ‘picture’ trials as opposed to the
‘sentence’ trials in the bottom row. The first and the second column correspond to
the stimulus (‘picture’ or ‘sentence’) being presented first or second.

Figure 21.5 shows a comparative analysis of spike frequencies of the subject
07510 seeing picture versus seeing a sentence. The points in the 3D plot correspond
to the spatial location of the voxels used in the dataset. Each voxel belongs to two
physiologically defined clusters or regions of interest, namely ‘CALC’ and ‘LIPL’.
The top row shows the mean spike rate across the ‘picture’ trials as opposed to the
‘sentence’ trials in the bottom row. The first and the second column correspond to
the stimulus (‘picture’ or ‘sentence’) being presented first or second.

21.4 Chapter Summary and Further Readings

In this chapter our direction of work was focused on using temporal encoding as a
framework to concisely represent large volumes of data by spike-timings and by
doing so, preserve the existing spatio-temporal information for pattern recognition
and classification tasks. Here a temporal encoding framework is presented and a
specific encoding method for fMRI data, called GAGamma. The GAGamma
encoding was evaluated on the benchmark cognitive pattern recognition problem
using fMRI data. Further, we have compared the compressibility, pattern recog-
nition performance and signal reconstruction performance of the GAGamma with
the state of the art encoding algorithms and the raw data for their ability to
recognise patterns with efficient resource usage.

The experimental evaluation on the benchmark fMRI dataset shows the ability of
the encoding techniques to represent the fMRI data in a compressed space as a
sequence of spike timings without losing any appreciable amount of information.
This is crucially important especially in storing, processing and transmitting large
scale streaming data. The flexibility of the proposed encoding framework lies in its
ability to inject known structure information about the data source and thus provide
the compression/encoding algorithms sufficient redundancy to represent the large
dataset in an optimally concise manner, which is both highly reliable in terms of
signal recovery and discriminatory information preservation in the compressed data.

Future work is planned in the application of the general framework proposed
here on large radio-astronomy streaming data and geophysical data, including
multi-sensory earthquake data. The proposed spike-time encoding method is suit-
able and is intended to be used for neuromorphic computation based on spiking
neural network architecture, such as NeuCube [13, 34].

Further readings can be found in:

– Understanding nature through the symbiosis between information science,
bioinformatics and neuroinformatics (Chap. 1 from [35]);
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– Spike-time encoding as a data compression technique for pattern recognition of
temporal data [1];

– More details of the proposed method can be found in [36].
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Appendix

Algorithm 1 BSA encoding algorithm

1: input: S,filter,thresholdBSA
2: output: B
3: B  0 
4: L = length(S) 
5: F = length(filter) 
6: for t = 1 : (L − F + 1) do
7: e1← 0
8: e2← 0
9: for k = 1 : F do

10: e1 += |S(t + k) − filter(k)|
11: e2 += |S(t + k − 1)|
12: end for
13: if e1≤ (e2− thresholdBSA) then
14: B(t) ← 1
20: for k = 1 : F do
16: S(i + j − 1) −= filter(k) 
17: end for
18: end if
19: end for

Algorithm 2 BSA decoding algorithm

1: input: B,filter
2: output: Sˆ

3: L = length(B) 
4: F = length(filter) 
5: for t=1:L-F+1 do
6: if B(t) == 1 then 
7: for k = 1 : F do
8: Sˆ(t + k − 1) += filter(k) 
9: end for

10: end if
11: end for
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Algorithm 3 Temporal contrast encoding algorithm

1: input: S, factor 
2: output:B,thresholdTC
3: L ← length(S) 
4: for t = 1 : L − 1 do
5: diff ← |S(t + 1) − S(t)|
6: end for
7: thresholdTC ← mean(diff) + factor · std(diff) 
8: diff [0,diff] 
9: for t = 1 : L do

10: if diff(t) > thresholdTC then
11: B(t) ← 1
12: else if diff(t) < −thresholdTC then
13: B(t) ← −1
14: else
20: B(t) ← 0
16: end if
17: end for

Algorithm 4 Temporal contrast decoding algorithm

1: input: B,thresholdTC
2: output: Sˆ

3: Sˆ← 0
4: L ← length(B) 
5: for t = 2 : L do
6: if Sˆ(t) > 0 then
7: Sˆ(t) ← Sˆ(t − 1) + thresholdTC 
8: else if Sˆ(t) < 0 then
9: Sˆ(t) ← Sˆ(t − 1) − thresholdTC

10: else
11: Sˆ(t) ← Sˆ(t − 1)
12: end if
13: end for
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Chapter 22
From Brain-Inspired AI to a Symbiosis
of Human Intelligence and Artificial
Intelligence

This chapter represents the essence of the book, which put in one sentence is:

Inspired by the oneness in nature in time-space we aim to achieve oneness in data mod-
elling using brain-inspired computation.

The chapter argues that SNN allow for the integration of all levels of information
processing in the brain and in nature, from quantum, molecular and neuro-genetic,
to brain signals, evolution and consciousness. The chapter presents future directions
for using SNN to build brain-inspired AI systems that are able to both receive and
communicate knowledge with humans for a symbiotic and collaborative work, led
by the human intelligence (HI). The chapter is organised in the following sections:

22:1. Towards integrated quantum-molecular-neurogenetic-brain-inspired models.
22:2. Towards a symbiosis of Human Intelligence and Artificial Intelligence

(HI + AI), led by the HI.
22:3. Concluding summary and discussions.

22.1 Towards Integrated
Quantum-Molecular-Neurogenetic-Brain-Inspired
Models

This section hypothesis is that based on SNN and their brain-inspired properties, we
can be aiming at the creation of integrated quantum-neurogenetic-brain-inspired
models.

© Springer-Verlag GmbH Germany, part of Springer Nature 2019
N. K. Kasabov, Time-Space, Spiking Neural Networks and Brain-Inspired
Artificial Intelligence, Springer Series on Bio- and Neurosystems 7,
https://doi.org/10.1007/978-3-662-57715-8_22

701

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-662-57715-8_22&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-662-57715-8_22&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-662-57715-8_22&amp;domain=pdf


22.1.1 Quantum Computation

Quantum computation is based upon physical principles from the theory of quantum
mechanics [1]. One of the basic principles, that is likely to trigger the development of
new methods in information sciences, is the linear superposition of states.

At a macroscopic or classical level a system exists only in a single basis state as
energy, momentum, position, spin and so on. However, at microscopic or quantum
level, the system at any time represents a superposition of all possible basis states.
At the microscopic level any particle can assume different positions at the same
time, can have different values of energy, can have two values of the spins and so
on. This superposition phenomenon is counterintuitive because in the classical
physics one particle has only one position, energy, spin and so on.

If the system interacts in any way with its environment, the superposition is
destroyed and the system collapses into one single real state as in the classical
physics. This process is governed by a probability amplitude [1]. The square of the
intensity for the probability amplitude is the quantum probability to observe the
state.

The concept of quantum computing utilizes the special non-local properties of
the quantum phenomena. A quantum atomic or sub-atomic particle (e.g. atoms,
electrons, protons, neutrons, bosons, fermions, photons) exists in a probabilistic
superposition of states rather than in a single definite state. For example, an electron
circling around a nucleus, jumps to different orbits—states, due to absorbing or
releasing energy.

Particles in general are characterized by: charge, spin, position, velocity, energy.
Some principles, assumptions and facts in quantum information processing are

listed below:

• The Heisenberg’s uncertainty principle: Both the position and the momentum of
an electron, or generally—of a particle, can not be known, because to know it
means to measure it, but measuring causes interfering and change of both the
position and the momentum. Making an observation of the system “collapses”
the system to one possible state, or universe.

• The superposition principle, meaning that a particle can be in several states at
the same time, with certain probabilities. It is illustrated by Schroedinger by his
famous thought experiment of seeing with one eye open, a creature (a cat) in
both alive and dead states with certain probabilities (see also [2]).

• The entanglement principle, means that two or more particles, regardless of their
location, are in the same state with the same probability. The two particles can
be viewed as “correlated”, undistinguishable, “synchronized”, coherent. An
example is a laser beam consisting of millions of photons having same char-
acteristics and states.

• Electro-magnetic radiation is emitted in discrete quanta whose energy E is
proportional to the frequency:
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E ¼ h: f ; ð22:1Þ

where h is the Max Planck constant (appr. 6.62608 � 10−34) and f is the frequency.
The advantage of quantum computing is that, while a system is uncollapsed, it

can carry out more computing than a collapsed system, because, in a sense, it is
computing in an infinite number of universes at once.

Ordinary computers are based on bits, which always take one of the two values 0
or 1. Quantum computations are based instead on what are called Q-bits (or qubits).
A Q-bit may be simply considered as the spin state of an electron. An electron can
have spin Up or spin Down; or three quarters Up and one quarter Down. A Q-bit
contains more information than a bit but in a strange sense, not in the same sense in
which two bits contain more information than a bit.

The state of a Q-bit can be represented as below, where a and b are complex
numbers that specify the probability amplitudes of the corresponding states “0” and
“1”.

wj i ¼ a 0j i þ b 1j i ð22:2Þ

Since the Q-bit can only be in these two states, it should satisfy the condition:

aj j2 þ bj j2¼ 1 ð22:3Þ

Example A 3 bit register can store 000 or 001 or 010 or 100 or 011 or 101 or 110 or
111, while a 3-qubit register can store 000 and 001 and 010 and 100 and 011 and
101 and 110 and 111 at the same time, each to different probabilities. Storage
capacity increases exponentially, 2N where N is the size of the register. Since the
numbers are stored simultaneously in the same register, operations with them can be
done also simultaneously, so a quantum “computer” has 2N processors working in
parallel.

The state of a Q-bit can be changed by an operation called a quantum gate.
A quantum gate is a reversible gate and can be represented as a unitary operator
U acting on the Q-bit basis states. The defining property of a unitary matrix is that
its conjugate transpose is equal to its inverse. There are several quantum gates
already introduced, such as the NOT gate, controlled NOT gate, rotation gate,
Hadamard gate, etc. For example, a rotation gate is represented as:

UðhÞ ¼ cos h � sin h
sin h cos h

� �
ð22:4Þ
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22.1.2 The Concept of an Integrated
Quantum-Neurogenetic-Brain-Inspired Model Based
on SNN

In the section on computational neurogenetic modelling (Chap. 16) we presented a
model that links the level of expression of genes and proteins in a neuron to the
neuronal spiking activity, and then—to the information processing of a neuronal
ensemble that is measured as local field potentials (LFP).

But how do quantum information processes in the atoms and particles (ions,
electrons, etc.), that make the large protein molecules, relate to the spiking activity
of a neuron and to the activity of a neuronal ensemble? This is a challenging
question that is not possible to answer now, but here we can make some speculative
steps, hopefully in the right direction.

The spiking activity of a neuron relates to the transmission of thousands of ions
and neurotransmitter molecules across the synaptic cleft and to the emission of
spikes. Spikes, as carriers of information, are electrical signals made of ions and
electrons that are emitted in one neuron and transmitted along the nerves to many
other neurons. But ions and electrons are characterised by their quantum properties
as discussed in a previous section of this chapter. So, quantum properties would
influence the spiking activity of neurons and the whole brain and therefore brains
obey the laws of quantum mechanics.

Similarly to a chemical effect of a drug to protein and gene expression levels in
the brain, that may affect the spiking activity and the functioning of the whole brain
(modelling of these effects is subject of the computational neurogenetic modelling
CNGM—see Chap. 16), external factors like radiation, high frequency signals etc.
can influence the quantum properties of the particles in the brain through gate
operators. According to [3], microtubules in the neurons are associated with
quantum gates.

So, the challenge is, similar to the CNGM, to create quantum-inspired CNGM
(QiCNGM) that also takes into account quantum properties of the particles in a
neuron and in the brain as a whole.

In the first instance, is it possible at all? At this stage the answer is not known,
but we will describe the above relationships in an abstract theoretical way, hoping
to be able to refine this framework, modify it, proof it and use it in the future, at
least partially.

Figure 22.1 shows different levels of information processing in the brain and
also that they all are functionally connected and integrated (see also Chap. 1).

Here the interaction at different levels is shown as hypothetical aggregated
functions as suggested in [4]:

Q0 ¼ FqðQ;EqÞ; ð22:5Þ

a future state Q′ of a particle of group of particles (e.g. ions, electrons, etc.) depends
on the current state Q and on the frequency spectrum Eq of an external signal
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M0 ¼ FmðQ;M;EmÞ; ð22:6Þ

a future state of a molecule M′ or a group of molecules (e.g. genes, proteins)
depends on its current state M, on the quantum state Q of the particles and on an
external signal Em;

N0 ¼ Fn N;M;Q;Enð Þ; ð22:7Þ

a future state N′ of a spiking neuron or an ensemble of neurons will depend on its
current state N, on the state of the molecules M, on the state of the particles Q and
on external signals En.

C0 ¼ FcðC;N;M;Q;EcÞ; ð22:8Þ

a future cognitive state C′ of the brain will depend on its current state C and also on
the neuronal—N, on the molecular—M, and on the quantum—Q states of the brain.

We can support the above hypothetical model of integrated representation, by
stating the following assumptions, some of them already supported by experimental
results [3]:

(1) A large amount of atoms are characterised by the same quantum properties,
possibly related to the same gene/protein expression profile of a large amount
of neurons characterised by spiking activity;

(2) A large neuronal ensemble can be represented by a single Local Field Potential
—LFP, and

(3) A cognitive process can be represented perhaps as a complex, but single
function Fc that depends on all previous levels.

The model above is too simplistic, and at the same time—to complex to
implement at this stage, but even linking two levels of information processing in a

6.  Evolutionary (population/generation) processes 
__________________________________________________
5.   Brain cognitive processes  
 _________________________________________________ 
4.  System information processing (e.g. neural ensemble) 
___________  _____________________________________
3.   Information processing in a cell (neuron) 
_________________________________________________
2 Molecular information processing (genes, proteins)
_________________________________________________      
1.    Quantum information processing

Fig. 22.1 Different levels of information processing in the brain are functionally connected and
integrated
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computational model may be useful for the further understanding of complex
information processes and for modelling complex brain functions.

Creating quantum inspired models can lead to:

– Using quantum principles to create more powerful information processing
methods and systems; and

– Understanding the quantum level information processing in Nature
– Understanding molecular and quantum information processing as important for

all areas of science;
– Modelling molecular processes needed for biology, chemistry and physics.
– Using these processes as inspiration for new computer devices—million times

faster and more accurate BI-AI.
– Deutsch [5, 6] argues that NP-hard problems (e.g. time complexity grows

exponentially with the size of the problem) can be solved by a quantum
computer.

– Penrose [3] argues that solving the quantum measurement problem is
pre-requisite for understanding the mind.

– Hameroff [7] argues that consciousness emerges as a macroscopic quantum state
due to a coherence of quantum-level events within neurons.

Many open questions need to be answered in this respect. Some of them are listed
below:

• How quantum processes affect the functioning of a living system in general?
• How quantum processes affect cognitive and mental functions?
• Is the brain a quantum machine, working in a probabilistic space with many

states (e.g. thoughts) being in a superposition all the time and only when we
formulate our thought through speech or writing then the brain “collapses” in a
single state?

• Is the fast pattern recognition process in brain, involving far away segments, a
result of both parallel spike transmissions and particle entanglement across areas
of the brain?

• Is communication between people, and living organisms in general, also a result
of entanglement processes? What about connecting with “ghosts”, or with
extraterrestrial intelligence?

• How does the energy in the atoms relate to the energy of the proteins, the cells
and the whole living system?

• How energy relates to information?
• Would it be beneficial to develop different quantum inspired (QI) computational

intelligence techniques, such as QI-SVM, QI-GA, QI-decision trees, QI-logistic
regression, QI-cellular automata in addition to the presented in Chap. 7 QiEA
and QiPSO?

• How do we implement the QI computational intelligence algorithms on existing
computer platforms in order to benefit from their high potential speed and
accuracy? Should we wait for the quantum computers to be realised many years
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from now, or we can implement them efficiently on specialised computing
devices based on classical principles of physics?

22.2 Towards a Symbiosis Between Human Intelligence
and Artificial Intelligence (HI + AI), Led by HI

22.2.1 Some Notions About AGI

Artificial General Intelligence (AGI) is a trend in AI that is concerned with the idea
that eventually machines can perform any intellectual task that humans can do.

The ideas promoted by the AGI led to the creation of the concept of techno-
logical singularity, i.e. machines become super intelligent that they take over from
humans and develop on their own, beyond which point the human societies may
collapse in their present forms, which may ultimately lead to the perish of the
humanity.

Stephen Hawking commented “I believe there is no real difference between what
can be achieved by a biological brain and what can be achieved by a computer. AI
will be able to redesign itself at an ever-increasing rate. Humans, who are limited by
slow biological evolution, couldn’’t compete and could be superseded by AI. AI
could be either the best or the worst thing ever to happen to humanity…”

We take the view that the technological future and the global future of our
society will rely on the symbiosis between humans and machines, as discussed in
the next sub-section, for the benefit of the humanity, helping to solve many chal-
lenging, global problems, such as:

• Early disease diagnosis and disease prevention
• Predicting and preventing ecological and environmental disasters
• Robots for homes and for elderly
• Improved productivity
• Improved human intelligence and creativity
• Improved lives and longevity
• Better understanding of ourselves and the world we live in

At the same time we have to be aware of the disastrous consequences that can
follow if AI is not controlled and used properly.

22.2.2 Towards a Symbiosis Between Human Intelligence
and Artificial Intelligence (HI + AI), Led by HI

We are overwhelmed by the multiple modalities and sources of data and by the lack
of methods to integrate and model them continuously, to extract new knowledge
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and to transfer it to humans. On the other hand, there is a tremendous amount of
knowledge and skills humans have accumulated over years and there are no effi-
cient methods to directly transfer them to machines. Transfer of knowledge between
humans and machines has been identified as a key issue for the future of Artificial
Intelligence (AI) [4, 8–16]. Recently, deep learning neural networks have gained
momentum as potential ‘silver bullets’ [17, 18]. Despite their impressive results in
image recognition, medical classification systems and game playing [19–24], cur-
rent methods are incapable of dynamic, adaptive, and fast learning from multimodal
data from different sources at different times, and integrating the acquired infor-
mation, due to their rigid, inflexible structures. They are not suitable for humans to
transfer their knowledge in a direct and unstructured way and for machines to
efficiently solve problems [25]. The human brain evolves by incrementally inte-
grating multiple modalities and creating deep, flexible structures of spiking neural
networks [26].

Our hypothesis is that by using principles of information and knowledge rep-
resentation and learning in the human brain, we can create a theoretical and
computational framework for integrated Human and Artificial Intelligence
(HI + AI) that enables both incremental learning from multimodal data and
knowledge transfer between humans and machines. One of the tasks in this
direction will be to develop a framework for multimodal learning and knowledge
transfer and to test it on audio, visual and brain data representing human activities.

As discussed in previous chapters a BI-AI system will have a 3D scalable,
spatially organised spiking neural network (SNN) [27–30] structure following a
brain template, such as MNI and Talairach [31–33]. It will learn multimodal data,
including brain signals, using brain-inspired learning rules (e.g., [27–30]). Single,
or multiple BI-AI systems can learn different modalities from various sources at
different times and their learned connections can be merged to integrate the learned
knowledge. They will learn brain signals from humans when humans perceive or
express emotions, or solve procedural or cognitive tasks, so that acquired human
knowledge can be applied by a machine.

Previous experience [34–36] using the brain-inspired SNN (Chap. 6) and the
methods already presented in other chapters of this book, indicate that such BI-AI
can be developed.

First, it is possible to create systems for integrated multimodal learning of
auditory and visual information and to apply them for person identification problem
[36], activity detection in videos [36–39] and for other intelligent tasks. A stereo
tonotopic/retinotopic mapping can be used for audio/visual data to be entered into
areas of a BI-AI model that correspond to the auditory/visual cortex in the brain
template [32, 33, 40] (Chap. 13).

Second, systems can be developed for emotion and preference recognition using
facial expression data and EEG (Electroencephalogram) brain data [41, 42]
(Chaps. 8 and 9).

Third, methods and systems for transfer of procedural and cognitive knowledge
from humans to machines can be developed for tasks such as moving objects in
space, target detection, game playing [23, 24], using integrated audio/visual, EEG
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and/or fMRI (functional magnetic resonance imaging) data [43–52]. A system will
learn to perform tasks using visual and human brain data. After training the system,
its performance can be communicated to humans, following a new knowledge
exchange protocol. The learning can continue incrementally. This departs signifi-
cantly from the traditional brain-computer interfaces (BCI) where human brain
signals are classified in a “black box” [53–55], rather than learned in a system as
evolving knowledge which is the case of the brain inspired BCI presented in
Chap. 14 of this book and also illustrated in Fig. 22.2.

The overall applicability and the limits of the proposed BI-AI approach are still
to be determined and challenges are anticipated in dealing with different
spatio-temporal scales of multimodal data, but preliminary experiments [41, 45, 49,
54, 55] indicated that not only would this BI-AI approach lead to a much better
accuracy of data analysis than current deep neural networks [17–21] or other
machine learning techniques, but it could also become a universal approach for the
much anticipated knowledge transfer and human-machine symbiosis [7–16], with a
significant impact on the future development in brain-computer interfaces, affective
computing, home robotics, cognitive sciences and cognitive computing.

The hypothesis for integrating human intelligence and AI (HI + AI) is illustrated
in Fig. 22.3. A BI-AI (such as BI-SNN) can be trained on brain data of different
modalities, e.g. EEG, fMRI, sensory audio-visual etc. as discussed in previous
chapters of the book. Such integrated system will have the same brain template as
the human brain (e.g. Talairach template). This will enable the human and the
machine to exchange information and to work together.

Fig. 22.2 A simple example of BI-AI in the form of BI-BCI. Human brain signals, recorded when
the human is performing a task, are not only classified, but learned in a brain-like machine that has
the same template of neurons and connections (not the same number) as the human (e.g.
NeuCube). After learning, the machine can perform the same task without the human as the human
has already ‘transferred’ the required knowledge for the task. The figure is created by K.
Kumarasinghe [57]
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The fact that AI is brain-inspired does not mean that it cannot surpass the human
brain. A BI-AI system will be faster to process more information within a time
frame, to perform complex calculations that are not brain-inspired, to do fast
number crunching, searching, mapping, pattern recognition, precise calculations to
a high accuracy of the results. While the human brain is the best evolved so far
system for integrating information, extracting knowledge and understanding the
meaning of the information and its implications as a whole. The human general
knowledge, the understanding of the complexity in nature and human societies, that
have evolved for millions of years of evolution, will be impossible to be surpassed
by AI, thus the leading role of the HI in a future symbiosis. And it is up to the HI to
decide what BI-AI to create to complement and to enhance the human knowledge.

At the same time BI-AI systems are created not to be fixed, but to evolve and to
incorporate new data and new information and to modify their structure and
functionality accordingly. Evolvability is an essential quality of BI-AI systems. In
this way they can evolve deep knowledge representation in particular areas, which
is adapting, changing evolving in time-space. This knowledge can be comple-
mentary to the human knowledge. Twenty four century after Aristotles’ episte-
mology, we can create systems that can learn knowledge from data, can evolve this

Mul modal BAI

Fig. 22.3 The hypothesis for the symbiosis of human intelligence and AI into HI + AI. A BI-AI
can be trained on brain data of different modalities, e.g. EEG, fMRI, sensory audio-visual etc. as
discussed in previous chapters of the book. Such integrated system will have the same brain
template as the human brain (e.g. Talairach template). This will enable the human and the machine
to exchange information and to work together. The figure was created by M. Doborjeh
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knowledge in time-space and communicate this knowledge with humans for a better
understanding of nature and who we are.

This complementarity of HI and AI makes their symbiosis, led by the HI, a realistic
pathway to take in the future, which is also an evolving process in time-space, with no
foreseeable end….

22.3 Summary and Further Readings for a Deeper
Knowledge

This chapter raises some hypotheses for future directions, through introducing some
ideas about:

– Creating unified quantum-neuro-genetic-brain-inspired computational models;
– Creating a symbiosis between BI-AI and human intelligence, towards HI + AI.

The above hypotheses are inspired by the unity of the world and the need to better
understand it through unity of the computational models and human intelligence.

Further readings can be found in:

– Quantum and biocomputing—common notions and targets (Chap. 59 in [56]);
– Brain, gene and quantum inspired computational intelligence (Chap. 60 in [54]);
– Brain-like robotics (Chap. 57 in [56]);
– Brain and creativity (Chap. 61 in [56]);
– Neurocomputational models of natural language (Chap. 48 in [56]).
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Epilogue

The book started with a moto:

Inspired by the oneness in nature in time-space we aim to achieve oneness in data mod-
elling using brain-inspired computation,

and ends with a vision:

The complementarity of HI and AI makes their symbiosis, led by the HI, a realistic pathway
to take in the future, which is also an evolving process in time-space, which needs more
light to be shed on how the brain works in order to develop new BI-AI technologies.

They say that the great German philosopher, writer and poet Johann Wolfgang
Goethe (1749–1832) whispered before he died: “Licht, mehr Licht.” (“Light, more
Light.”)

Indeed, we all need light, above all else. Light not only as a source of energy and
that by which we see the beauty of each morning, but as metaphor.

Light is knowledge,
Light is understanding,
Light is creation,
Light is hope,
Light is love,
Light is passion,
Light is music,
Light is a poem,
Light is the time given to us,
Light is what we give to people,
Light is the strength we get from them,
Light is the meaning that infuses life,
… at least for me.

© Springer-Verlag GmbH Germany, part of Springer Nature 2019
N. K. Kasabov, Time-Space, Spiking Neural Networks and Brain-Inspired
Artificial Intelligence, Springer Series on Bio- and Neurosystems 7,
https://doi.org/10.1007/978-3-662-57715-8
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I hope this book gives readers a bit of Light of knowledge, Light of under-
standing and Light of meaning on the contemporary issues related to information
sciences and more specifically, the role of SNN and brain-inspired AI. I also hope
that the book gives Light of passion and Light of creation to young scientists and
students for them to go further in time-space and to shed more Light in the future.
One of the most prolific thinkers of all times, the Greek philosopher Socrates
(4century BC) used to say “True knowledge exists in knowing that you know
nothing. I know that I am intelligent, because I know that I know nothing”. Now, in
the 21st century we can metaphorically say again that “we know nothing”. Literally,
we can say that we know something, but it is still very little. And is BI-AI a good
direction for the future? Yes, I believe so!

Nikola Kasabov
Auckland
12 August 2018
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Glossary

A

Adaptation The process of structural and functional changes of a system in order
to improve its performance in a changing environment.

Alzheimer’s disease (AD) A brain disorder that is clinically characterized by a
global decline of cognitive function that progresses slowly and leaves end-stage
patients in custodial care. All of the currently used drugs are of limited benefit,
because they have only modest symptomatic effects. Other drugs are used to
manage mood disorder, agitation, and psychosis in later stages of the disease, but
no treatment with a strong disease-modifying effect is currently available.

Approximate reasoning A process of achieving approximate, imprecise solutions
and/or conclusions often based on inexact facts and uncertain rules.

ART (adaptive resonance theory) Refers to both a cognitive and computational
theory of the brain.

Artificial intelligence (AI) An information system that manifests features of
intelligence, such as learning, generalization, reasoning, adaptation, knowledge
discovery, and applies these to complex tasks such as decision making, adaptive
control, pattern recognition, speech, image and multimodal information pro-
cessing, etc.

Artificial life A modeling paradigm that assumes that many individuals are gov-
erned by the same or similar rules to grow, die, and communicate with each
other. Ensembles of such individuals exhibit repetitive patterns of behavior.

Artificial neural network (ANN) Biologically inspired computational model
which consists of processing elements (neurons) and connections between them
with coefficients (weights) bound to the connections. Training and recall algo-
rithms are also attached to the structure.

© Springer-Verlag GmbH Germany, part of Springer Nature 2019
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Atom The smallest particle of a chemical element that retains its chemical prop-
erties. Most atoms are composed of three types of subatomic particles which
govern their properties: electrons (with a negative charge), protons (with a
positive charge), and neutrons (without charge).

Automatic speech recognition system (ASRS) A computer system which aims at
providing enhanced access to machines via voice commands. Some speech
recognition systems need to be trained by the voice of the intended user and are
known as speaker dependent systems. Other systems do not need to be trained
and are known as speaker independent.

B

Backpropagation training algorithm An algorithm for supervised learning in
artificial neural networks. During a training phase, after input data is entered and
propagated forwards to the output of the model, the difference between the
current output value and the expected output value is propagated backwards
through the network as an error to adjusts the connection weights so that the next
time the same data is entered, the error will be smaller. A gradient descent rule is
used for finding the optimal connection weights wij that minimize the global
error E. A change of a weight Dwij at a cycle (t + 1) is in the direction of the
negative gradient of the error E.

Bayesian probability The following formula, which represents the conditional
probability between two events C and A, is known as Bayes’ formula (Tamas
Bayes, eighteenth century): p(A|C) = p(C|A) . p(A)/p(C). Using Bayes’ formula
involves difficulties, mainly concerning the evaluation of the prior probabilities
p(A), p(C), p(C|A). In practice (for example, in statistical pattern recognition), the
latter is assumed to be of a Gaussian type. Bayes’ theorem also assumes that if
the condition C consists of condition elements C1,C2, … , Ck they are inde-
pendent (which may not be the case in some applications).

Blue brain project A research project hosted by EPFL in Lausanne, aiming at the
development of biologically adequate brain models (http://bluebrainproject.epfl.
org).

Brain Atlas A repository of data and knowledge and software tools to explore
different brain structures and functions and genes related to them produced by
the Allen Brain Science Institute (http://www.brain-map.org) inspired.

Brain-inspired artificial intelligence (BI-AI) An AI system that has its structure,
functionality and properties inspired by the human brain.
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C

Calcium ions Ca2+ ions are stored in the synapses and enter the neuron via
voltage-gated calcium channels and the NMDA receptor-channel complex. The
intracellular calcium concentration Ca2+ is the principal trigger for the induction
of LTD/LTP.

Catastrophic forgetting A phenomenon which represents the inability of a
learning system to retain previously learned signals in order to keep the
object/process in desirable states.

D

Data analysis Data analysis aims at answering important questions about a process
(or an object) under investigation. Some exemplar questions are: What are the
statistical parameters of the data representing the process, e.g. mean, standard
deviation, distribution? What is the nature of the process, random, chaotic,
periodic, stable, etc.? How is the available data distributed in the problem space,
e.g., clustered into groups, sparse, covering only patches of the problem space
and, therefore, not enough to rely on fully when solving the problem, uniformly
distributed? Is there missing data? Is there a critical obstacle which could make
the process of solving the problem by using data impossible? What other
methods can be used either in addition to, or instead of, methods based on data?

Data information, and knowledge Data are the numbers, the characters, the
quantities operated on by a computer. Information is the ordered, structured,
interpreted data. Knowledge is the theoretical or practical understanding of a
subject, gained experience, true and justified belief, the way we do things. For
example, the number 34 is data; 34° of temperature in Auckland today is
information; the expression IF temperature is too high THEN risk of stroke
increases is a piece of knowledge.

Decision support system An intelligent system that supports the human decision
making process. Such a system analyses available data in a given problem space
and suggests decisions. Examples are automated trading systems on the Internet,
systems that grant loans through electronic submissions, and medical decision
support systems for cardiovascular event prediction.

Defuzzification The process of calculating a single output numerical value for a
fuzzy variable in a fuzzy system when a fuzzy membership function for this
variable is given.

Destructive learning A learning technique, usually in artificial neural network
models, that modifies an initial neural network architecture, e.g., removes con-
nections, for the purpose of better future learning.

Discrete Fourier transform (DFT) The transformation of a discrete input function
(usually in the time domain) into another function in the frequency domain.
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Distance between data points The distance between two data points a and b in an
n-dimensional geometrical space can be measured in several ways. The most
widely used formulas are: Hamming distance, Dab = R|ai − bi| and Euclidean
distance, Eab = _R(ai − bi)2/n.

Distributed representation A way of encoding information, usually in a neural
network model, where a concept or a value for a variable is represented by the
collective activation of a group of neurons.

DNA (deoxyribonucleic acid) This is a chemical chain, present in the nucleus of
each cell of an organism. It consists of pairs of small chemical molecules (bases)
ordered in a double helix, which are: adenine (A), cytidine (C), guanidine (G),
and thymidine (T), linked together by a deoxyribose sugar phosphate nucleic
acid backbone. Almost all cells in an organism contain the same DNA infor-
mation, but different parts of the DNA, different genes, express in different parts
of the organism and produce different proteins.

E

Electroencephalography (EEG) An EEG is a recording of electrical signals from
the brain made by attaching surface electrodes to the subject’s scalp. These
electrodes record electric signals naturally produced by the brain, called brain-
waves. EEGs allow researchers to follow electrical potentials across the surface
of the brain and observe changes over split seconds of time.

Elitism (in genetic algorithms and other evolutionary optimization algo-
rithms) The fittest members of a population at generation (t) is copied unmodified

into the population of the next generation (t + 1). The intention of this strategy is
to reduce the chance of losing the best genotypes. If elitism were a principle of
human evolution, we would still have Leonardo da Vinci among artists and
scientists nowadays.

Evolutionary computation A computational paradigm that uses principles from
natural evolution, such as genetic representation, mutation, survival of the fittest,
population of individuals, and generations of populations. Evolutionary com-
putation is mainly used as a population-generation based optimization technique
where the best or close to it solution to a problem is achieved through evaluating
many individual solutions in a population over generations.

Evolutionary programming Evolutionary algorithms applied for the automatic
creation or optimization of computer programs.

Evolutionary strategies Strategies that use evolutionary algorithms to represent a
solution to a problem as a single chromosome and evaluate different mutations
of this chromosome over generations through a fitness function. This process is
carried out until a satisfactory solution is found.

720 Glossary



Evolving connectionist systems (ECOS) Artificial neural networks proposed by
Kasabov (1998) that develop (evolve) their structure and functionality from
incoming data in an adaptive, incremental way.

Evolving intelligent systems (EIS) Intelligent systems that are characterized by
adaptation and incremental evolving of knowledge. The methods used in such
systems are mainly based on neural networks, but may include many other
techniques from the area of computational intelligence.

Evolving spiking neural networks Spiking neural networks that evolve their
structure of spiking neurons following the principles of ECOS and applying
spike-time learning rules.

Evolving processes in nature Processes that change, develop, unfold in
time-space.

Expert system Knowledge-based systems that provide expertise, similar to that of
human experts in a restricted application area, for the solution of problems in
that area. An expert system consists of the following main blocks: knowledge
base, data base, inference engine, explanation module, user interface, and
knowledge acquisition module.

Explanation in an AI system This is a desirable property for many AI systems. It
means tracing, in a contextually comprehensible way, the process of inferring the
solution and reporting it. Explanation is easier for AI symbolic systems where
sequential inference takes place.

F

Fast Fourier transformation (FFT) This is a fast algorithm for discrete Fourier
transformation (DFT). A nonlinear transformation applied on time series data to
transform the signal taken within a small portion of time (the time scale domain)
into a vector in the frequency scale domain.

Feed-forward neural network A neural network in which there are no connec-
tions back from the output to the input neurons.

Finite automaton A computational model represented by a set X of inputs, a set
Y of outputs, a set Q of internal states, and two functions f1 (state transfer
function) and f2 (output function): f1: X � Q ! Q, i.e., [x, q(t)] ! q(t + 1), f2:
X � Q ! Y, i.e., [x, q(t)] ! y(t + 1), where x 2 X, q 2 Q, y 2 Y, t, and (t + 1)
represent two consecutive time moments.

Fractal An object which occupies a fraction (called embedding space) of a stan-
dard space (i.e., space with integer numbers for dimensions). The dimensionality
of fractal can be, e.g., 2.4, rather than the standard 3-D.
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Functional MRI (fMRI) This combines visualization of brain anatomy with the
dynamic image of brain activity into one comprehensive scan. This noninvasive
technique measures the ratio of oxygenated to deoxygenated haemoglobin which
have different magnetic properties. Active brain areas have higher levels of
oxygenated haemoglobin than less active areas. An fMRI can produce images of
brain activity at the time scale of a second with very precise spatial resolution of
about 1–2 mm. Thus, fMRI provides both an anatomical and functional view of
the brain.

Fuzzification The process of finding the membership degree lA(x_)to which a
value x_ of a fuzzy variable x belongs to a fuzzy set A defined on the same
universe as the variable x.

Fuzzy clustering A procedure of clustering data into possibly overlapping clusters,
such that each of the data elements may belong to each of the clusters to a certain
degree. The procedure aims at finding the cluster centers Vi (i = 1, 2, …, c) and
the cluster membership functions li which define to what degree each of the
n data elements belongs to the i-th cluster. The number of clusters c is either
defined a priori or chosen by the clustering procedure (evolving clustering). The
result of a clustering procedure can be represented as a fuzzy relation li,k, such
that: (i) Rli, k = 1, for each k = 1, 2, … , n (the total membership of an instance
to all the clusters equals 1); (ii) Rli, k > 0, for each i = 1, 2, … , c (there are no
empty clusters).

Fuzzy control The application of fuzzy logic to control problems. A fuzzy control
system is a fuzzy system applied to solve a control problem.

Fuzzy expert system An expert system to which methods of fuzzy logic are
applied. Fuzzy expert systems use fuzzy data, fuzzy rules, and fuzzy inference,
in addition to the standard ones implemented in ordinary expert systems.

Fuzzy logic A logic system that is based on fuzzy relations and fuzzy propositions,
the latter being defined on the basis of fuzzy sets.

Fuzzy neural network An artificial neural network model that can be interpreted
as a fuzzy system. The model can have neurons that represent fuzzy concept
(e.g., small).

Fuzzy propositions Propositions which contain fuzzy variables with their fuzzy
values. The truth value of a fuzzy proposition X is A is given by a membership
function lA.

Fuzzy relations Fuzzy relations link two fuzzy sets or two fuzzy variables in a
predefined manner. Fuzzy relations make it possible to represent ambiguous
relationships, such as: the grades of the 3rd and 2nd year classes are similar,
team A performed slightly better than team B, or the more fat you eat, the higher
your risk of heart attack.
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G

GenBank A repository of genes and their functions across species and diseases,
maintained by the NCBI (http://www.ncbi.nlm.nih.gov/Genbank/index.html).

Gene expression atlas A repository of gene expression data across species and
diseases (http://expression.gnf.org/cgi-bin/index.cgi).

Gene ontology An ontology knowledge repository system designed to produce a
controlled vocabulary that can be applied to all organisms even if knowledge of
genes and proteins is changing.

Gene regulatory network (GRN) A biological or computational network of genes
connected between each other according to their interaction in time.

Gene-brain ontology An ontology knowledge repository system that includes
knowledge, data and known relationships between brain structures and functions
and genes that are related to them.

Generalization The process of matching new input data to a model, system, or in
principle, to an existing set of problem knowledge, in order to obtain an output
value (e.g., solution) that corresponds to this input data.

Genes Parts of a DNA sequence that are transcribed into RNA and translated into
proteins or alternatively produce microRNA (not translated into proteins). Genes
are the carrier of information that is passed from one generation of species to
another in an evolutionary process.

Genetic algorithms (GA) These are algorithms for solving complex multivariant
combinatorial and organizational problems by employing methods of evolu-
tionary computation that are analogous to evolution in nature. There are several
general steps that a genetic algorithm cycles through: generate a population of
individuals; evaluate the fitness (goodness) of each individual; select the best
individuals; perform cross-over operation between these individuals; mutate
individuals, if necessary. These steps are repeated all over again until an
acceptable solution is found or the time for performing the algorithm has
expired.

Glutamate neurotransmitters Molecules released in the synapses during afferent
activity that bind to AMPA, NMDA, and metabotropic glutamate (mGlu)
receptors to produce postsynaptic response.

Goodness function (fitness function) A function that can be used to measure the
appropriateness of an individual element from a population of individuals at a
certain generation over time. An individual element would represent a possible
solution to a problem, e.g., the shortest path from one city to another, or a set of
genes to diagnose cancer.
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H

Hebbian learning law A generic learning principle which states that a synapse
connecting two neurons i and j increases its strength wij if the two neurons i and
j are repeatedly and simultaneously activated by input stimuli.

Hopfield network A fully connected feedback neural network which is an
auto-associative memory. It can be trained to recognize input patterns and to
recover them if they are presented only partially at a later stage. It is named after
its inventor John Hopfield.

I

Image filtering A transformation of an original image through a set of operations
that use the original pixel intensities of the image and apply two-dimensional
array of numbers, which is known as a kernel. This process is also called
convolution.

Independent component analysis The process of separating independent com-
ponents of multidimensional time series data, such as signal and noise.

Inference in an AI system The process of matching new data from a domain space
to the knowledge existing in an AI system and obtaining output values.

Information entropy A measure for the level of uncertainty (or unpredictability)
associated with a random variable. The more unpredictable an event is, the
higher the information entropy.

Information retrieval The process of retrieving relevant information from a data
base.

Information science This is the area of science that develops methods and systems
for information and knowledge processing regardless of the domain specificity
of this information. Information science includes the following subject areas:
data collection and data communication (sensors and networking); information
storage and retrieval (data base systems); methods for information processing
(information theory); creating computer programs and information systems
(software engineering and system development); acquiring, representing, and
processing knowledge (knowledge-based systems); and creating intelligent
systems and machines (artificial intelligence, knowledge engineering).

Information Collection of structured data. In its broad meaning it includes
knowledge as well as simple meaningful data.

Initialization in ANN The process of setting the connection weights in an ANN to
some initial values before starting the training algorithm.

Intelligent system (IS) An information system that manifests features of intelli-
gence, such as learning, generalization, reasoning, adaptation, knowledge
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discovery, and applies these to complex tasks such as decision making, adaptive
control, pattern recognition, speech, image and multimodal information pro-
cessing, etc.

Interaction (human–computer) Communication between a user and a computer
system.

K

Knowledge engineering The area of science and engineering that deals with data,
information and knowledge representation in machines, information processing,
and finally, knowledge elucidation and knowledge discovery.

Knowledge Concise presentation of facts, skills, previous experience, principles,
definitions, etc., that is interpretable under different conditions. Knowledge
resides in the human brain. As a term it is used to represent information in a
computer system that can be interpreted by humans.

Knowledge-based neural networks (KBNN) These are pre-structured ANN that
allow for data and machine knowledge manipulation, including learning from
data, rule insertion, rule extraction, adaptation, and reasoning. KBNN have been
developed either as a combination of symbolic AI systems and ANN, or as a
combination of fuzzy logic systems and ANN, or as other hybrid systems. Rule
insertion and rule extraction are typical operations for a KBNN to accommodate
existing knowledge along with data, and to produce an explanation of what the
system has learned.

Kohonen self-organizing map (SOM) A self-organized ANN that uses unsu-
pervised learning to map multidimensional input vectors into low-dimensional
matrix known as map. The concept of SOM was first introduced and developed
by the Finish scientist Prof. Teuvo Kohonen.

L

Laws of inference in fuzzy logic The way fuzzy propositions are used to make
inference over new facts. The following are the two most used laws illustrated on
two fuzzy propositions A and B. (a) Generalized modus ponens: A! B, and A_∴
B_, where B_ = A_o(A ! B); (b) generalized modus tollens (law of the con-
trapositive): A ! B, and B’, ∴ A’, where A_ = (A ! B)oB.

Learning vector quantization algorithm (LVQ) A supervised learning algo-
rithm, which is an extension of the unsupervised Kohonen self-organized net-
work learning algorithm.

Learning Process of obtaining new information (possibly interpretable as
knowledge) from data and existing information.

Linear transformation Transformation f (x) of a variable x such that f is a linear
function of x, for example, f (x) = 2x + 1.
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Linguistic variable A variable that takes fuzzy values that have linguistic mean-
ing, e.g. the variable temperature can take a fuzzy value of very high
temperature.

Local representation in a neural network A way of encoding information in an
ANN in which every neuron represents one concept or one variable.

Logic system An abstract system that consists of four parts: an alphabet—a set of
basic symbols from which more complex sentences (constructions) can be made;
syntax—a set of rules or operators for constructing sentences (expressions) or
other more complex structures from the alphabet elements; semantics—define
the meaning of the constructions in the logic system; laws of inference—a set of
rules or laws for constructing semantically equivalent but syntactically different
sentences; this set of laws is also called a set of inference rules.

Long-term depression (LTD) A process of a long-lasting decrease in the strength
of synaptic transmission, produced by low-frequency stimulation of presynaptic
afferents. The majority of synapses in many brain regions and in many species
that express LTP also express LTD.

Long-term potentiation (LTP) This is a process of a long-lasting increase in
synaptic efficacy, produced by high-frequency stimulation of presynaptic affer-
ents or by pairing presynaptic stimulation with postsynaptic depolarization.

M

Machine learning An area of information and computer science concerned with
the methods for accumulating, changing, and updating information and obtain-
ing machine knowledge through algorithms.

Magnetic resonance imaging (MRI) This uses the properties of magnetism.
A large cylindrical magnet creates a magnetic field around the subject’s head.
Detectors measure local magnetic fields caused by alignment of atoms in the
brain with the externally applied magnetic field. The degree of alignment
depends upon the structural properties of the scanned tissue. MRI provides a
precise anatomical image of both surface and deep brain structures.

Magnetoencephalography (MEG) This measures millisecond-long changes in
magnetic fields created by the brain’s electrical currents. MEG machines use a
noninvasive, whole-head, 248-channel, super-conducting-quantum-interference-
device (SQUID) to measure small magnetic signals reflecting changes in the
electrical signals in the human brain.

Mel-scale filter bank transformations The process of filtering a signal through a
set of frequency bands represented by triangular filter functions similar to the
functions that describe the function of the human inner ear.

Membership function Generalized characteristic function which defines the
degree to which an object from a universe belongs to a given fuzzy concept.
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Memory capacity of an ANN The maximum number m of patterns that can be
learned properly in a network.

Mental retardation A developmental deficit, beginning in childhood, which
results in significant limitation of intellect and cognition and poor adaptation to
the demands of everyday life.

Methods for feature extraction Methods used for reducing the dimensionality of
raw data by transforming it from the original space into a space of selected
features.

Microarray for gene expression A device that evaluates the level of transcription
(expression) of a predefined set of genes in a single biological cell or a piece of
tissue. The five principal steps in the microarray technology are: tissue collec-
tion, RNA extraction, microarray gene expression evaluation, scanning and
image processing, and data analysis.

Monitoring The process of interpreting continuous input information and rec-
ommending intervention if appropriate.

Moving averages A moving average of a time series is calculated by using MAt =
(RSt − i )/n, for i = 1, 2,… , n, where n is the number of the data points, St − i is
the value of the series at a time moment (t − i), and MAt is the moving average
at a time moment t. Moving averages are often used in an information system as
input features in addition to, or in substitution of, the real values of a time series.

Multilayer perceptron (MLP) An ANN that consists of an input layer, at least
one intermediate or hidden layer, and one output layer where the neurons from
each layer are fully connected to the neurons from the next layer. In some
particular applications they may be partially connected.

Mutation A random change in the value of a gene; this relates to both biological
genes and to gene parameters of an evolutionary algorithm.

N

Neural networks (NN) See artificial neural network.

Neurotransmitters Molecules that are produced in neurons in the brain and reside
in synapses. When a synapse receives a spike, the synapse transfers neuro-
transmitters across the synaptic cleft so they can bind to receptors in the post-
synaptic membrane that causes ion gates to open and to receive ions that change
the membrane potential of the postsynaptic neuron. It is estimated that there are
about 50 different neurotransmitters acting in the human brain.
Neurotransmitters control and are vital for neuronal functions, including learn-
ing, memory, emotions, and decision making. The three major categories of
substances that act as neurotransmitters are: (1) amino acids (primarily gluta-
mate, GABA, aspartic acid and glycine); (2) peptides (vasopressin, somatostatin,
neurotensin, etc.); and (3) monoamines (norepinephrine, dopamine and
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serotonin) plus acetylcholine. There are also other categories like opioids,
tachykinins, and so on. The vast majority of neurotransmitters is produced in
evolutionary older subcortical nuclei.

Noise A random value without meaning that is added to the general function that
describes the underlying behavior of a process or a signal.

Nonlinear dynamical system A system whose next state on the time scale can be
expressed by a nonlinear function of its previous time states.

Nonlinear transformation Transformation f of a variable x, where f is a nonlinear
function of x, for example, f (x) = 1/(1 + e − xc), where c is a constant.

Normalization Transforming data from its original range into another, predefined
range, e.g., [0, 1].

Nyquist sampling frequency A Nyquist sampling frequency for a particular signal
is defined as twice the highest frequency contained within the signal (e.g., if
Fsignal = 10.025 Hz then FNyqSampling = 22.050 Hz). When a signal is
sampled at Nyquist frequency, the numeric sequence obtained completely
determines the signal.

O

Ontology systems This is both a data and a knowledge repository. Ontology is
defined in the artificial intelligence literature as a specification of a conceptu-
alization. Ontology specifies at a higher level the classes of concepts that are
relevant to the domain and the relations that exist between these classes.
Ontology captures the intrinsic conceptual structure of a domain along with the
data that is available. For any given domain, the ontology forms the heart of the
knowledge representation.

Optimization The process of finding such values for the parameters of an object,
system, or a process that would minimize an objective (cost) for this
object/system/process.

Overfitting A phenomenon that indicates that an ANN has approximated (or
learned) a set of data examples too closely, and as a result the network cannot
generalize well on new examples.

P

Pattern matching The process of matching a feature vector to already existing
ones and finding the best match among them.

Phonemes A basic distinctive unit of speech sound in a specified language.

Photon In physics, a photon is a quantum of electromagnetic field, for instance,
light. The term photon was coined by Gilbert Lewis in 1926. A photon can be
perceived as a wave or a particle, depending on how it is measured. The photon
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is an elementary particle. Its interactions with electrons and atomic nuclei
account for a great many of the features of matter, such as the existence and
stability of atoms, molecules, and solids.

Planning An important biological process and also AI-problem which is about
generating a sequence of actions in order to achieve a given goal when a
description of the current situation is available.

Positron emission tomography (PET) This is used to study living brain activity.
This noninvasive method involves an on-site use of a machine called a cyclotron
to label specific drugs or analogs of natural body compounds (such as glucose or
oxygen) with small amounts of radioactivity. The labelled compound (a radio-
tracer) is then injected into the bloodstream, which carries it into the brain.
Radiotracers break down, giving off subatomic particles (positrons). By sur-
rounding the subject’s head with a detector array, it is possible to build up
images of the brain showing different levels of radioactivity, and therefore,
cortical activity.

Prediction Generating information for possible future development of a process
from data that represents its past and present development.

Principle component analysis (PCA) A statistical procedure for finding a smaller
number of m components Y = (y1, y2, …, ym) (aggregated variables, eigen-
vectors) that can represent a function F(x1, x2, …, xn) of n variables, where n >
m, to a desired degree of accuracy H, i.e., F =M�Y + H whereM is a matrix that
must be found through PCA.

Probability automata Finite automata whose transitions are defined as probabil-
ities. They are also known as stochastic automata.

Probability theory The theory is based on the following three axioms: Axiom 1
defines the probability p(E) of an event E as a real number in the closed interval
[0, 1], i.e. 0 � p(E) � 1. A probability p(E) = 1 indicates a certain event while
p(E) = 0 indicates an impossible event. Axiom 2 is expressed as_ p(Ei ) = 1, E1
[ E2 […[ Ek = U, where U denotes the problem space (universe) as an union
as subspaces. Axiom 3 indicates that if two independent events E1 and E2
cannot occur simultaneously, the probability of one or the other happening is the
sum of their probabilities, i.e., p(E1 _ E2) = p(E1) + p(E2), where E1 and E2 are
mutually exclusive events.

Propositional logic A logic system that can be dated back to Aristotle (384–322 B.C.).
There are three types of symbols in the propositional logic: propositional sym-
bols (the alphabet), connective symbols, and symbols denoting the meaning of
the sentences. There are rules in propositional logic to construct syntactically
correct sentences (called well-formed formulas) and rules to evaluate the
semantics of the sentences. A proposition represents a statement about the world,
for example: The temperature is over 40. The semantic meaning of a proposition
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is expressed by two possible semantic symbols—true and false. Statements or
propositions can be only true or untrue (false), nothing in between.

Proteins Biological molecules that result from RNA translation. Proteins provide
the majority of the structural and functional components of a cell. The area of
molecular biology that deals with all aspects of proteins is called proteomics.
A protein is a sequence of amino acids, each of them defined by a group of three
nucleotides (codons). There are 20 amino acids all together, denoted by letters
(A,C-H,I,K-N,P-T,V,W,Y). The length of a protein in number of amino acids is
from tens to several thousands. Each protein is characterized by some charac-
teristics, for example: structure, function, charge, acidity, hydrophilicity, and
molecular weight. An initiation codon defines the start position of a gene in an
mRNA where the translation of the mRNA into protein begins. A stop codon
defines the end position.

Pruning in ANN Technique where during the training procedure of the ANN
weak connections (i.e., connections that have weights around 0) and the neurons
connected by them are gradually removed.

R

Recall process The process of using a trained ANN where new data is entered and
results are calculated.

Recurrent fuzzy rule A fuzzy rule that uses in its antecedent part one or more
previous time-moment values of the output fuzzy variable.

Recurrent networks ANN with feedback connections from neurons in one layer
to neurons in a previous layer.

Reinforcement learning A learning method that is based on presenting input data
x to a learning system and observing the produced output. If this output is
evaluated as good, then a reward is given to the learning system, e.g., con-
nection weights of a neural network model increase in values, otherwise the
system is punished, e.g., connection weights decrease.

RNA (ribonucleic acid) A transcribed copy of part of an DNA that has a similar
structure to the DNA, but here thymidine (T) is substituted by uridine
(U) nucleotide. In the pre-RNA only segments that contain genes are extracted
from the DNA. Each gene consists of two types of segments—exons, that are
segments translated into proteins, and introns—segments that are considered
redundant and do not take part in the protein production. Removing the introns
and ordering only the exon parts of the genes in a sequence is called splicing and
this process results in the production of messenger RNA (or mRNA) sequences.
mRNAs are directly translated into proteins.
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Roulette wheel selection (in genetic algorithms) A selection strategy according to
which each individual from a population of individuals at a certain generation is
assigned a sector in an imaginary roulette wheel, with the size of the sector
depending on the fitness of the individual. The size of the sector represents the
probability of the individual to be selected when a random number is generated.
Therefore, the fitter the individual, the higher the chance of it being selected for
cross-over with other selected individuals to produce the population of indi-
viduals for the next generation.

S

Sampling A process of selecting a subset of data from a larger data set. Sampling
can be applied on continuous time-series data (e.g., speech data can be sampled
at a frequency of 22 kHz), or on static data where only a smaller subset of the
data is selected at a time for processing.

Schizophrenia A brain disorder that has typical characteristic symptoms such as:
delusions, hallucinations, and various thinking and perceptual disorders.
Schizophrenic withdrawal from reality can manifest itself in many peculiar
ways. Disorder is accompanied by serious deterioration of the previous level of
functioning in such areas as work, social relations, and self-care.

Sensitivity to initial conditions A characteristic of a chaotic process which means
that a slight difference in the initial values of some parameters will result in
different trends in a future development of the chaotic process.

Spatio-temporal ANN These networks can learn and represent spatio-temporal
patterns from data.

Spatio-temporal data data that is characterized by spatially distributed variables
that are measured over time, e.g., electroencephalogram data.

Spike time dependent plasticity (STDP) A method for learning in spiking neural
networks that modifies the connection weight between two neurons, so that if the
presynaptic neuron spikes first and then, within a certain time interval, spikes the
postsynaptic neuron—the connection weight increases, otherwise—the connec-
tion weight decreases.

Spiking neural networks Biological or artificial neural networks that consist of
spiking neurons and connections. The information is represented as trains of
spikes (binary events over time).

Spiking neuron A biological or artificial neuron model that receives binary input
signals (spikes) over time from many inputs (dendrites). It emits a spike (action
potential) when the cumulative input (the membrane potential) of this neurons
has reached a threshold. After that the neuronal membrane potential is set to a
reset value and the process continues.
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Stability/plasticity dilemma The ability of a system to keep the balance between
retaining previously learned information and patterns and learning new
information/patterns.

Statistical analysis methods Methods used for discovering repetitiveness in data
based on probability estimation.

Subcortical structure of the brain This consists of brain areas excluding the
cortex, such as: basal ganglia, thalamus, hypothalamus, amygdala, and dozens of
other groups of neurons with more or less specific functions in operations of the
whole brain.

Supervised learning A process of inferring a function from a set of training data
with known outputs (labels). The training data set consists of data items each of
which contains values for attributes (features)—independent variables, labeled
by the desired value(s) for the dependant variables. Supervised learning can be
viewed as approximating a mapping between a domain and a solution space of a
problem: X ! Y, when samples (examples) of (input vector–output vector) pairs
(x, y) are known, and x 2 X, y 2 Y, x = (x1, x2, …, xn), y = (y1, y2, …, ym).

Supervised training algorithm for an ANN Training of an ANN when the
training examples comprise input vectors x and the desired output vectors y;
training is performed until the neural network learns to associate each input
vector x to its corresponding and desired output vector y to a desired accuracy.

Synaptic efficacy The level of concentration of ions in a synapse that can be
transmitted to the postsynaptic neuronal membrane through ion channels that
become open after certain neurotransmitters bind to them.

Synaptic plasticity The process of changing synaptic efficacy through LTP/LTD
learning.

System biology An approach to treat and understand complex biological systems
in their entirety, i.e., at a system level. It involves the integration of different
data, knowledge, data analysis approaches, and tools. One of the major chal-
lenges of systems biology is the identification of the logic and dynamics of
gene-regulatory and biochemical networks. The most feasible application of
systems biology is to create a detailed model of a cell regulation to provide
system-level insights into mechanism-based drug discovery.

T

Test error An error that is calculated for a learning system that is trained with a set
of training data. When a test (or validation) data set, for which the results are
known, is applied in a recall procedure the test error is calculated.

Time alignment A process where a sequence of input vectors recognized in a
system over time are aligned to represent a meaningful output (e.g., a phoneme,
word, or trend in stock).
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Time-series prediction Prediction of time series events.

Training error The error of a learning system that is evaluated on the data used for
training.

Training of a neural network A procedure for presenting training examples to a
neural network, which results in changing the network’s connection weights
according to a certain learning law.

Turing test Test of the ability of a digital computer to demonstrate intelligent
behavior or, more precisely, whether it can imitate a human. The test was first
described by the British mathematician Alan Turing in his 1950 paper
Computing Machinery and Intelligence. The Turing test has been highly
influential in the area of artificial intelligence and at the same time has been very
controversial. The idea of the test is that an interrogator communicates with an
entity in written form and, based on the reactions of the entity, decides whether it
is another human or a computer. If a computer can trick the interrogator into
believing that it is a human, then the machine has passed the test.

U

Universal function approximator (for ANN) A theorem that was proved by
Hornik (1989), Cybenko (1989), and Funahashy (1989). It states that an MLP
with one hidden layer can approximate any continuous function to any desired
accuracy, subject to sufficient number of hidden nodes. As a corollary, any
Boolean function of n Boolean variables can be approximated by an MLP.

Unsupervised learning algorithm A learning procedure where only input vectors
x are supplied to a learning system (e.g., a neural network). The system learns
some internal characteristics, e.g., clusters, for the whole set of input vectors
presented to it. An example of such an algorithm is the self-organizing maps.

V

Validation Process of testing how good the solutions produced by a system are.
The solutions are usually compared to the results obtained either by experts or by
other systems.

Vector quantization A process of representing data from n-dimensional problem
space into the m-dimensional one, where m < n, in a way that preserves the
distance between data examples (points) from the original space.

W

Wavelet transformation A nonlinear transformation that can be used to represent
slight changes of a time series within a chosen time interval.
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