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Preface
The focus in this book is on the study of market risk from a quantitative point of view.
The emphasis is on presenting commonly used state-of-the-art quantitative techniques
used in finance for the management of market risk and demonstrate their use employing
the principal two mathematical programming languages, R and Matlab. All the code
in the book can be downloaded from the book’s website at www.financialrisk
forecasting.com
The book brings together three essential fields: finance, statistics and computer

programming. It is assumed that the reader has a basic understanding of statistics
and finance; however, no prior knowledge of computer programming is required.
The book takes a hands-on approach to the issue of financial risk, with the reading
material intermixed between finance, statistics and computer programs.
I have used the material in this book for some years, both for a final year under-

graduate course in quantitative methods and for master level courses in risk forecasting.
In most cases, the students taking this course have no prior knowledge of computer
programming, but emerge after the course with the ability to independently implement
the models and code in this book. All of the material in the book can be covered in about
10 weeks, or 20 lecture hours.
Most chapters demonstrate the way in which the various techniques discussed are

implemented by both R and Matlab. We start by downloading a sample of stock prices,
which are then used for model estimation and evaluation.
The outline of the book is as follows. Chapter 1 begins with an introduction to

financial markets and market prices. The chapter gives a foretaste of what is to come,
discussing market indices and stock prices, the forecasting of risk and prices, and
concludes with the main features of market prices from the point of view of risk.
The main focus of the chapter is introduction of the three stylized facts regarding returns
on financial assets: volatility clusters, fat tails and nonlinear dependence.
Chapters 2 and 3 focus on volatility forecasting: the former on univariate volatility

and the latter on multivariate volatility. The aim is to survey all the methods used
for volatility forecasting, while discussing several models from the GARCH family
in considerable detail. We discuss the models from a theoretical point of view and
demonstrate their implementation and evaluation.
This is followed by two chapters on risk models and risk forecasting: Chapter 4

addresses the theoretical aspects of risk forecasting—in particular, volatility, value-
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at-risk (VaR) and expected shortfall; Chapter 5 addresses the implementation of risk
models.

We then turn to risk analysis in options and bonds; Chapter 6 demonstrates such
analytical methods as delta-normal VaR and duration-normal VaR, while Chapter 7
addresses Monte Carlo simulation methods for derivative pricing and risk forecasting.

After developing risk models their quality needs to be evaluated—this is the topic of
Chapter 8. This chapter demonstrates how backtesting and a number of methodologies
can be used to evaluate and compare the risk forecast methods presented earlier in the
book. The chapter concludes with a comprehensive discussion of stress testing.

The risk forecast methods discussed up to this point in the book are focused on
relatively common events, but in special cases it is necessary to forecast the risk of very
large, yet uncommon events (e.g., the probability of events that happen, say, every 10
years or every 100 years). To do this, we need to employee extreme value theory—the
topic of Chapter 9.

In Chapter 10, the last chapter in the book, we take a step back and consider the
underlying assumptions behind almost every risk model in practical use and discuss
what happens when these assumptions are violated. Because financial risk is funda-
mentally endogenous, financial risk models have the annoying habit of failing when
needed the most. How and why this happens is the topic of this chapter.

There are four appendices: Appendix A introduces the basic concepts in statistics and
the financial time series referred to throughout the book. We give an introduction to R
and Matlab in Appendices B and C, respectively, providing a discussion of the basic
implementation of the software packages. Finally, Appendix D is focused on maximum
likelihood, concept, implementation and testing. A list of the most commonly used
abbreviations in the book can be found on p. xvii. This is followed by a table of the
notation used in the book on p. xix.

Jón Danı́elsson
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Notation
Chapter 1: Financial markets, prices and risk

T Sample size
t ¼ 1; . . . ;T A particular observation period (e.g., a day)

Pt Price at time t

Rt ¼
Pt � Pt�1

Pt�1

Simple return

Yt ¼ log
Pt

Pt�1

Continuously compounded return

yt A sample realization of Yt

� Unconditional volatility
�t Conditional volatility
K Number of assets
� Degrees of freedom of the Student-t
� Tail index

Chapter 2: Univariate volatility modeling

WE Estimation window
� Decay factor in EWMA
Zt Residuals

�; � Main model parameters
	; 
 Other model parameters

L1;L2 Lags in volatility models

Chapter 3: Multivariate volatility models

�t Conditional covariance matrix
Yt;k Return on asset k at time t
yt;k Sample return on asset k at time t

yt ¼ fyt;kg Vector of sample returns on all assets at time t
y ¼ fytg Matrix of sample returns on all assets and dates
A and B Matrices of parameters

R Correlation matrix

Notation



Chapter 4: Risk measures

p Probability
Q Profit and loss
q Observed profit and loss
w Vector of portfolio weights

X and Y Refers to two different assets
’ð�Þ Risk measure
# Portfolio value

Chapter 5: Implementing risk forecasts

�ðpÞ Significance level as a function of probability
� Mean

Chapter 6: Analytical value-at-risk for options and bonds

T Delivery time/maturity
r Annual interest rate
�r Volatility of daily interest rate increments
�a Annual volatility of an underlying asset
�d Daily volatility of an underlying asset

 Cash flow

D� Modified duration
C Convexity
� Option delta
� Option gamma

gð�Þ Generic function name for pricing equation

Chapter 7: Simulation methods for VaR for options and bonds

F Futures price
g Derivative price
S Number of simulations
xb Portfolio holdings (basic assets)
xo Portfolio holdings (derivatives)

Chapter 8: Backtesting and stress testing

WT Testing window size
T ¼ WE þWT Number of observations in a sample

�t ¼ 0; 1 Indicates whether a VaR violation occurs (i.e., �t ¼ 1)
vi; i ¼ 0; 1 Number of violations (i ¼ 1) and no violations (i ¼ 0) observed in f�tg

vi j Number of instances where j follows i in f�tg

xx Notation



Chapter 9: Extreme value theory

� Tail index
� ¼ 1=� Shape parameter

MT Maximum of X
CT Number of observations in the tail
u Threshold value
 Extremal index

Notation xxi





The focus of this chapter is on the statistical techniques used for analyzing prices and
returns in financial markets. The concept of a stock market index is defined followed by
a discussion of prices, returns and volatilities. Volatility clusters, the fat-tailed property
of financial returns and observed sharp increases in correlations between assets during
periods of financial turmoil (i.e., nonlinear dependence) will also be explored.
Various statistical techniques are introduced and used in this chapter for the analysis

of financial returns. While readers may have seen these techniques before, Appendix A
contains an introduction to basic statistics and time series methods for financial applica-
tions. The most common statistical methods presented in this chapter are implemented
in the two programming languages discussed in this book: R and Matlab. These
languages are discussed in more detail in Appendix B for R and Appendix C for Matlab.
We illustrate the application of statistical methods by using observed stock market

data, the S&P 500 for univariate methods and a portfolio of US stocks for multivariate
methods. The data can be downloaded from sources such as finance.yahoo.com
directly within R and Matlab, as demonstrated by the source code in this chapter.
A key conclusion from this chapter is that we are likely to measure risk incorrectly by

using volatility because of the presence of volatility clusters, fat tails and nonlinear
dependence. This impacts on many financial applications, such as portfolio manage-
ment, asset allocation, derivatives pricing, risk management, economic capital and
financial stability.
The specific notation used in this chapter is:

T Sample size

t ¼ 1; . . . ;T A particular observation period (e.g., a dayÞ
Pt Price at time t

Rt ¼
Pt � Pt�1

Pt�1

Simple return

Yt ¼ log
Pt

Pt�1

Continuously compounded return

yt A sample realization of Yt

� Unconditional volatility

�t Conditional volatility

K Number of assets

� Degrees of freedom of the Student-t

t Tail index
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1.1 PRICES, RETURNS AND STOCK INDICES

1.1.1 Stock indices

A stock market index shows how a specified portfolio of share prices changes over time,
giving an indication of market trends. If an index goes up by 1%, that means the total
value of the securities which make up the index has also increased by 1% in value.

Usually, the index value is described in terms of ‘‘points’’—we frequently hear
statements like ‘‘the Dow dropped 500 points today’’. The points by themselves do
not tell us much that is interesting; the correct way to interpret the value of an index is to
compare it with a previous value. One key reason so much attention is paid to indices
today is that they are widely used as benchmarks to evaluate the performance of
professionally managed portfolios such as mutual funds.

There are two main ways to calculate an index. A price-weighted index is an index
where the constituent stocks are weighted based on their price. For example, a stock
trading at $100 will make up 10 times more of the total index than a stock trading at $10.
However, such an index will not accurately reflect the evolution of underlying market
values because the $100 stock might be that of a small company and the $10 stock that of
a large company. A change in the price quote of the small company will thus drive the
price-weighted index while combined market values will remain relatively constant
without changes in the price of the large company. The Dow Jones Industrial Average
(DJIA) and the Nikkei 225 are examples of price-weighted stock market indices.

By contrast, the components of a value-weighted index are weighted according to the
total market value of their outstanding shares. The impact of a component’s price
change is therefore proportional to the issue’s overall market value, which is the product
of the share price and the number of shares outstanding. The weight of each stock
constantly shifts with changes in a stock’s price and the number of shares outstanding,
implying such indices are more informative than price-weighted indices.

Perhaps the most widely used index in the world is the Standard & Poor 500 (S&P
500) which captures the top-500 traded companies in the United States, representing
about 75% of US market capitalization. No asset called S&P 500 is traded on financial
markets, but it is possible to buy derivatives on the index and its volatility VIX. For the
Japanese market the most widely used value-weighted index is the TOPIX, while in the
UK it is the FTSE.

1.1.2 Prices and returns

We denote asset prices by Pt, where the t usually refers to a day, but can indicate any
frequency (e.g., yearly, weekly, hourly). If there are many assets, each asset is indicated
by Pt;k ¼ Ptime;asset, and when referring to portfolios we use the subscript ‘‘port’’.
Normally however, we are more interested in the return we make on an investment—
not the price itself.

Definition 1.1 (Returns) The relative change in the price of a financial asset over a
given time interval, often expressed as a percentage.

2 Financial markets, prices and risk



Returns also have more attractive statistical properties than prices, such as stationarity
and ergodicity. There are two types of returns: simple and compound. We ignore the
dividend component for simplicity.

Definition 1.2 (Simple returns) A simple return is the percentage change in prices,
indicated by R:

Rt ¼
Pt � Pt�1

Pt�1

:

Often, we need to convert daily returns to monthly or annual returns, or vice versa.
A multiperiod (n-period) return is given by:

Rt nð Þ ¼ 1þ Rtð Þ 1þ Rt�1ð Þ 1þ Rt�2ð Þ � � � 1þ Rt�nþ1ð Þ � 1

¼ Pt

Pt�1

Pt�1

Pt�2

� � �Pt�nþ1

Pt�n

� 1 ¼ Pt

Pt�n

� 1

where Rt nð Þ is the return over the most recent n-periods from date t� n to t.
A convenient advantage of simple returns is that the return on a portfolio, Rt;port, is

simply the weighted sum of the returns of individual assets:

Rt;port ¼
XK
k¼1

wkRt;k

where K is the number of assets; and wk is the portfolio weight of asset i. An alternative
return measure is continuously compounded returns.

Definition 1.3 (Continuously compounded returns) The logarithm of gross return,
indicated by Yt:

Yt ¼ log 1þ Rtð Þ ¼ log
Pt

Pt�1

� �
¼ logPt � logPt�1:

The advantages of compound returns become clear when considering multiperiod
returns:

Yt nð Þ ¼ log 1þ Rt nð Þð Þ ¼ log 1þ Rtð Þ 1þ Rt�1ð Þ 1þ Rt�2ð Þ � � � 1þ Rt�nþ1ð Þð Þ
¼ log 1þ Rtð Þ þ log 1þ Rt�1ð Þ þ � � � þ log 1þ Rt�nþ1ð Þ
¼ Yt þ Yt�1 þ � � � þ Yt�nþ1:

Continuously compounded multiperiod returns are the sum of continuously com-
pounded single-period returns. In contrast to simple returns, it is much easier to derive
the time series properties of sums than of products.

Financial Risk Forecasting 3



The situation is different for portfolio returns since the log of a sum does not equal the
sum of logs:

Yt;port ¼ log
Pt;port

Pt�1;port

� �
6¼
XK
k¼1

wk log
Pt;k

Pt�1;k

� �
:

where Pt;port is the portfolio value on day t; and Yt;port is the corresponding return.
The difference between compound and simple returns may not be very significant for
small returns (e.g., daily),

Yport �
XK
k¼1

wkRk

and as the time between observations goes to zero, so does the difference between the
two return measures:

lim
�t!0

Yport ¼ Rport:

It will not usually matter much which measure we choose to use. For example, suppose
Pt ¼ 1,000 and Pt�1 ¼ 950 then:

Rt ¼
1,000

950
� 1 ¼ 0:0526

Yt ¼ log
1,000

950

� �
¼ 0:0513:

The discrepancy between them becomes significant only when percent changes are
high—for example, if Pt ¼ 1,000 and Pt�1 ¼ 700, then:

Rt ¼
1,000

700
� 1 ¼ 0:429

Yt ¼ log
1,000

700

� �
¼ 0:357:

In some situations, such as accounting, simple returns need to be used.
Another common type of returns is excess returns (i.e., returns in excess of some

reference rate, often the risk free rate).
We should think of simple returns and compound returns as two different definitions

of returns. They are also known as arithmetic and logarithmic returns, respectively.
Simple returns are of course correct; investors are primarily interested in simple returns.
But there are reasons for continuously compounded returns being preferable.

A key advantage is that they are symmetric, while simple returns are not. This means
an investment of $100 that yields a simple return of 50% followed by a simple return of
�50% will result in $75, while an investment of $100 that yields a continuously
compounded return of 50% followed by a continuously compounded return of
�50% will remain at $100.
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Continuously compounded returns also play an important role in the background of
many financial calculations. They are a discrete form of continuous time Brownian
motion,1 which is the foundation for derivatives pricing and is used to model the changes
in stock prices in the Black–Scholes model.

1.2 S&P 500 RETURNS

The S&P 500 index has been published since 1957 but Global Financial Data, a
commercial vendor, go back as far as 1791. The log of the monthly close of the S&P
500 from 1791 until 2009 can be seen in Figure 1.1. One needs to be careful when looking
at a long time series of prices as it is easy to reach misleading conclusions.
The first observation is on 1791/08/31 when the index had a value of $2.67, while the

value on the last day of the sample, 2009/12/31, was $1,115.1. This implies that the index
has risen in value by 41,660%, or 2% per year. This analysis, however, overlooks
depreciation in the value of the dollar (i.e., inflation). We can calculate how much
one dollar has increased in value from 1791 to 2009 using the five different techniques
shown in Table 1.1.
Using the CPI, the real increase in the value of the index has actually been a measly

1.4% per year. This does not, however, represent the total returns of an investor as it
ignores dividend yield.
We show the compound returns in Figure 1.2. There is high volatility during the

American Civil War in the 1860s, the Great Depression in the 1930s, the stagflation of
the 1970s and the Asian crisis in 1997, among others. Prolonged periods of high
volatility are generally associated with great uncertainty in the real economy.
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Figure 1.1. S&P 500 index August 1791 to December 2009, log scale.
Data source: Global Financial Data.

1 Brownian motion, also called Wiener process, is a centered, zero mean Gaussian process fWt; tg.



1.2.1 S&P 500 statistics

A selection of summary statistics for daily S&P 500 returns from 1928 to 2009 is
presented in Table 1.2. The daily mean is very small at 0.019% while daily volatility
is around 1.2%. The fact that the daily mean is only one-fiftieth of daily volatility will
simplify the construction of risk measures as we can effectively assume it is zero, without
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Table 1.1. Increase in value of one dollar from 1791 to

2009 using five different techniques.

$23.66 Consumer price index

$22.73 GDP deflator

$397.91 Unskilled wage

$942.48 Nominal GDP per capita

$70,902.74 Relative share of GDP

Calculated from http://www.measuringworth.com/uscompare

Figure 1.2. Returns on the monthly S&P 500 index from August 1791 to December 2009.

Table 1.2. S&P 500 daily return summary statistics, 1928–2009

Mean 0.019%

Standard deviation 1.16%

Min �22.9%

Max 15.4%

Skewness �0.4

Kurtosis 22.5

Autocorrelation (one lag) of returns 3.4%

Autocorrelation (one lag) of squared returns 21.7%

Jarque–Bera ( p-value) 0.0%

Ljung–Box 20 lags ( p-value) 0.0%

Ljung–Box squared returns 20 lags ( p-value) 0.0%



loss of generality. Furthermore, the mean grows at a linear rate while volatility grows
approximately at a square root rate, so over time the mean dominates volatility.
The lowest daily return of�23% corresponds to the stock market crash of 1987, while

the best day in the index, 15%, was at the end of the Great Depression. The returns have
a small negative skewness and, more importantly, quite high kurtosis.
Finally, the returns have a daily autocorrelation of about 3% while squared returns

have an autocorrelation of 22%. Squared returns are a proxy for volatility. The 22%
autocorrelation of squared returns provides very strong evidence of the predictability of
volatility and volatility clusters.
The table also shows a test for normality, the Jarque–Bera (JB) test, first-order

autocorrelations of returns and returns squared, and finally a test for the presence of
an autocorrelation up to 20 lags, a Ljung–Box (LB) test.

1.2.2 S&P 500 statistics in R and Matlab

The results in Table 1.2 can be easily generated using R or Matlab. It is possible to
directly download stock prices into R or Matlab from several websites, such as
finance.yahoo.com. In some of the examples in this chapter we use data going back
to the 1700s; data that old were obtained from Global Financial Data.
The following two R and Matlab code listings demonstrate how S&P 500 daily prices

from 2000 until 2009 can be downloaded from finance.yahoo.com, where the stock
market symbol for the S&P 500 is ˆ gspc. An active internet connection is required for
this code to work, but it is straightforward to save the returns after downloading them.
One issue that comes up is which data field from finance.yahoo.com to use. One
might think it best to use closing prices, but that is usually not correct, because over time
we observe actions that change the prices of equities such as stock splits and stock
buybacks, without affecting the value of the firm. We therefore need to use the adjusted
closing prices which automatically take this into account. For the S&P 500 this makes no
difference, but for most stock prices it does. Therefore, it is good practice to use adjusted
closing prices by default.
We use the R function get.hist.quote()from the tseries library. We then

convert the prices into returns, and plot the returns. By default, get.hist.quote()
returns a four-column matrix with open and closing prices, as well as the high and low
of prices. To get adjusted closing prices in R we need to include quote="AdjClose"
in the get.hist.quote() statement. Note that prices and returns in R are
represented as a time series object while in Matlab they are simply vectors. The function
{\tt coredata} is discussed on p. 94.

Listing 1.1. Download S&P 500 data in R

library("tseries") # load the tseries library

price = get.hist.quote(instrument = "^gspc", start = "

2000-01-01", quote="AdjClose") # download the prices,

from January 1, 2000 until today

y=diff(log(price)) # convert the prices into returns

plot(y) # plot the returns

y=coredata(y) # strip date information from returns
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In Matlab it is equally straightforward to download prices. It is possible to use the
GUI function, FTSTool from the financial and data feed toolboxes; however, it may be
easier to use the Matlab function urlread() which can directly read web pages, such
as finance.yahoo.com. Several free user-contributed functions are available to ease
the process, such as hist_stock_data().2 finance.yahoo.com returns the data
sorted from the newest date to the oldest date, so that the first observation is the newest.
We want it sorted from the oldest to newest, and the R procedure does it automatically;
unfortunately, the Matlab procedure does not, so we have to do it manually by using a
sequence like end:-1:1. Of course, it would be most expedient to just modify the
hist_stock_data() function.

Listing 1.2. Download S&P 500 data in Matlab

price = hist_stock_data(’01012000’,’31122000’,’^gspc’);

% download the prices, from

January 1, 2000 until

December 31, 2009

y=diff(log(price.Close(end:-1:1))) % convert the prices into

returns

plot(y) % plot the returns

After having obtained the returns, y, we can calculate some sample statistics; they are
given in Listing 1.3.

Listing 1.3. Sample statistics in R

library(moments)

sd(y)

min(y)

max(y)

skewness(y)

kurtosis(y)

acf(y,1)

acf(y^2,1)

jarque.bera.test(y)

Box.test(y, lag = 20, type = c("Ljung-Box"))

Box.test(y^2, lag = 20, type = c("Ljung-Box"))

8 Financial markets, prices and risk

2 It can be obtained directly from the webpage of the Matlab vendor http://www.mathworks.com/matlabcentral/
fileexchange/18458-historical-stock-data-downloader.



Listing 1.4. Sample statistics in Matlab

% JPL and MFE toolboxes

mean(y)

std(y)

min(y)

max(y)

skewness(y)

kurtosis(y)

sacf(y,1,[],0)

sacf(y.^2,1,[],0)

jarquebera(y)

[q, pval]=ljungbox(y,20)

[q, pval]=ljungbox(y.^2,20)

1.3 THE STYLIZED FACTS OF FINANCIAL RETURNS

Extensive research on the properties of financial returns has demonstrated that returns
exhibit three statistical properties that are present in most, if not all, financial returns.
These are often called the three stylized facts of financial returns:

Volatility clusters

Fat tails

Nonlinear dependence

The first property, volatility clusters, relates to the observation that the magnitudes of
the volatilities of financial returns tend to cluster together, so that we observe many days
of high volatility, followed by many days of low volatility.
The second property, fat tails, points to the fact that financial returns occasionally

have very large positive or negative returns, which are very unlikely to be observed, if
returns were normally distributed.
Finally, nonlinear dependence (NLD) addresses how multivariate returns relate to

each other. If returns are linearly dependent, the correlation coefficient describes how
they move together. If they are nonlinearly dependent, the correlation between different
returns depends on the magnitudes of outcomes. For example, it is often observed that
correlations are lower in bull markets than in bear markets, while in a financial crisis
they tend to reach 100%.
Each of those stylized facts is discussed in turn in the following sections.

1.4 VOLATILITY

The most common measure of market uncertainty is volatility.

Definition 1.4 (Volatility) The standard deviation of returns.
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We further explore the nature of volatility in the S&P 500 index by calculating volatility
in subperiods of the data. This calculation is repeated for daily returns over decades,
years and months (see Figure 1.3).

Panel (a) of Figure 1.1 shows volatility per decade from 1928 to 2009; we can see
clear evidence of cyclical patterns in volatility from one decade to the next. Volatility is
lowest in the 1960s and highest during the Great Depression in the 1930s. Note that
1920s’ values only contain a part of 1929 and that the Great Depression started in
1929.

Focusing on more recent events, panel (b) shows volatility per year from 1980. The
most volatile year is 2008, during the 2007–2009 crisis, followed by the stock market
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(a) Annualized volatility per decade

(b) Annual volatility

(c) Annualized monthly volatility

Figure 1.3. Volatility cycles.



crash year of 1987. The calmest year is 1995, right before the Asian crisis; 2004–2006 are
also quite relaxed.
However, the fact that volatility was very low in 1995 and 2005 does not imply that

risk in financial markets was low in those years, since volatility can be low while the tails
are fat. In other words, it is possible for a variable with a low volatility to have much
more extreme outcomes than another variable with a higher volatility. This is why
volatility is a misleading measure of risk.
Finally, panel (c) shows average daily volatility per month from 1995. Again, it is clear

that volatility has been trending downwards, and has been very low from 2004. This is
changing as a result of the 2007–2009 crisis.
Taken together, the figures provide substantial evidence that there are both long-run

cycles in volatility spanning decades, and short cycles spanning weeks or months. In
this case, we are observing cycles within cycles within cycles. However, given we have
many fewer observations at lower frequencies—such as monthly—there is much more
statistical uncertainty in that case, and hence the plots are much more jagged.
The crude methods employed here to calculate volatility (i.e., sampling standard

errors) are generally considered unreliable, especially at the highest frequencies; more
sophisticated methods will be introduced in the next chapter.

1.4.1 Volatility clusters

We use two concepts of volatility: unconditional and conditional. While these concepts
are made precise later, for our immediate discussion unconditional volatility is defined
as volatility over an entire time period, while conditional volatility is defined as volatility
in a given time period, conditional on what happened before. Unconditional volatility is
denoted by � and conditional volatility by �t.
Looking at volatility in Figure 1.3, it is evident that it changes over time.

Furthermore, given the apparent cycles, volatility is partially predictable. These
phenomena are known as volatility clusters.
We illustrate volatility clusters by simulations in Figure 1.4, which shows exaggerated

simulated volatility clusters. Panel (a) shows returns and panel (b) shows volatility. In
the beginning, volatility increases and we are in a high-volatility cluster, then around day
180 volatility decreases only to increase again after a while and so on.
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(a) Returns (b) Volatility

Figure 1.4. Exaggerated simulated volatility clusters.



Almost all financial returns exhibit volatility clusters (i.e., the market goes through
periods when volatility is high and other periods when volatility is low). For example, in
the mid-1990s volatility was low, while at the beginning and end of the decade it was
much higher. This feature of financial time series gained widespread recognition with
the publication of Engle (1982) and is now one of the accepted stylized facts about
asset returns. If we can capture predictability in volatility, it may be possible to
improve portfolio decisions, risk management and option pricing, among other
applications.

1.4.2 Volatility clusters and the ACF

A standard graphical method for exploring predictability in statistical data is the
autocorrelation function (ACF). The ACF measures how returns on one day are corre-
lated with returns on previous days. If such correlations are statistically significant, we
have strong evidence for predictability.

Panel (a) of Figure 1.5 shows the ACF of S&P 500 returns along with a 95%
confidence interval, where most autocorrelations lie within the interval. Contrast this
with the ACF of squared returns in panel (b) where it is significant even at long lags,
providing strong evidence for the predictability of volatility.

We can test for the joint significance of autocorrelation coefficients over several lags
by using the Ljung–Box (LB) test. We do the LB test using 21 lags of daily S&P 500
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(a) Returns

(b) Squared returns

Figure 1.5. Autocorrelation plots of daily S&P 500 returns, 1929–2009, along with a �95%

confidence interval.



returns (i.e., approximately the number of trading days in a calendar month). The test is
performed using the full sample size, as well as the most recent 2,500 and 100 observa-
tions; the results are given in Table 1.3. We can also use the Engle LM test to test for
volatility clusters.
Table 1.3 shows there is significant return predictability for the full sample, but not

for the most recent observations. This does not mean a violation of market efficiency,
since we would need to adjust the returns for risk, the risk-free rate and transaction
costs.
The same procedure is repeated for squared returns; the results are shown in Table

1.4. The reason for focusing on squared returns is that they are proxies for volatilities;
most forecast procedures for volatilities, like those in the next chapter, use squared
returns as their main input. The p-value for the smallest sample size of squared returns is
much lower than the corresponding value for returns. Tables 1.3 and 1.4 demonstrate
that it is easier to predict volatility than the mean.
The code necessary to carry out ACF plots and the Ljung–Box test in R andMatlab is

given in the following listings.

Listing 1.5. ACF plots and the Ljung–Box test in R

library(MASS,stats) # load stats and MASS package

q = acf(y,20)

plot(q[2:20])

q = acf(y^2,20)

plot(q[2:20])

b = Box.test(y,lag=21,type="Ljung-Box")
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Table 1.3. Ljung–Box test for daily S&P 500 returns, 1929–2009

T Ljung–Box test, 21 lags p-value

21,334 147.7 <2.2e�16

2,500 110.0 4.763e�14

100 14.5 0.846

Table 1.4. Ljung–Box test for squared S&P 500 returns, 1929–2009

T Ljung–Box test, 21 lags p-value

21,334 9,158.1 <2.2e�16

2,500 3,812.1 <2.2e�16

100 33.2 0.0438



Listing 1.6. ACF plots and the Ljung–Box test in Matlab

sacf(y,20)

sacf(y.^2,20)

ljungbox(y,20)

1.5 NONNORMALITY AND FAT TAILS

Many applications assume that S&P 500 index returns are normally distributed. Table
1.5 shows some return outcomes and probabilities based on this assumption (e.g., where
the probability of a return less than �2% is 3.5%).

Table 1.2 shows that the biggest one-day drop in the index was 23%. If S&P 500 index
returns were indeed normally distributed, then the probability of that one-day crash
would be 2:23� 10�97 according to Table 1.5. In other words, the crash is supposed to
happen once every 1095 years (accounting for weekends and holidays). To put this into
context, scientists generally assume that the earth is about 107 years old and the universe

1013 years old. Assuming normality this
equates to believing that the crash of
1987 only happens in one out of every
12 universes. We are doing slightly better
on the best day of the index which only
has a probability of occurrence once every
1041 years under normality.

However, it can argued that the crash
of 1987 was an anomaly, so assuming
normality for all the other days would
be relatively innocuous. But is this really
the case? Figures 1.6(a, b) show the most
extreme daily returns per decade and year,
respectively. It is clear that there are
still many more extremes than Table 1.5
predicts.

An alternative way of analyzing the distribution of the S&P 500 index is shown in
Figure 1.7. Panel (a) plots the histogram of the returns and superimposes the normal
distribution with the same mean and variance. Panel (b) shows both the normal dis-
tribution and the empirical distribution of the returns, while panel (c) blows up the left
tail of the distributions. We can observe from these three figures that

1. The peak of the return distribution is much higher than for the normal distribution.
2. The sides of the return distribution are lower than for the normal distribution.
3. The tails of the return distribution are much thicker (fatter) than for the normal

distribution.

In other words, there are more days when very little happens in the market than
predicted by the normal and more days when market prices change considerably.
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Table 1.5. Outcomes and probabilities of

daily S&P 500 returns assuming normality,

1929–2009

Returns above or below Probability

1% 0.865

2% 0.035

3% 0.00393

5% 2:74� 10�06

15% 2:70� 10�43

23% 2:23� 10�97
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(a) Per decade

(b) Per year

Figure 1.6. Maximum and minimum daily S&P 500 returns.

(a) Density, tails cut off at �4% (b) Distribution, tails cut off at �4%

(c) A part of the left tail

Figure 1.7. Empirical density and distribution of S&P 500 index returns for 2000–2009 compared

with the normal distribution.



1.6 IDENTIFICATION OF FAT TAILS

There are two main approaches for identifying and analyzing the tails of financial
returns: statistical tests and graphical methods. Statistical tests compare observed
returns with some base distribution, typically but not always the normal. Graphical
methods relate observed returns with values predicted from some distribution, often the
normal.

1.6.1 Statistical tests for fat tails

From the above we can see that one important feature of financial returns is that they
exhibit what is known as fat tails. We give an informal definition of fat tails below, while
the formal definition can be found in Definition 9.1.

Definition 1.5 (Fat tails) A random variable is said to have fat tails if it exhibits more
extreme outcomes than a normally distributed random variable with the same mean
and variance.

This implies that the market has more relatively large and small outcomes than one
would expect under the normal distribution, and conversely fewer returns of an inter-
mediate magnitude. In particular, the probability of large outcomes is much higher than
the normal would predict. The fat-tailed property of returns has been known since
Mandelbrot (1963) and Fama (1963, 1965).

A basic property of normally distributed observations is that they are completely
described statistically by the mean and the variance (i.e., the first and second moments).
This means that both skewness and kurtosis are the same for all normally distributed
variables (i.e., 0 and 3, respectively). Skewness is a measure of the asymmetry of the
probability distribution of a random variable and kurtosis measures the degree of
peakedness of a distribution relative to the tails. High kurtosis generally means that
more of the variance is due to infrequent extreme deviations than predicted by the
normal, and is a strong, but not perfect, signal that a return series has fat tails. Excess
kurtosis is defined as kurtosis over and above 3.

This suggests that a quick and dirty (makeshift) test for fat tails is to see if kurtosis
exceeds 3. Recall that in Table 1.2 we found excess kurtosis to be 20, which is pretty
strong evidence against normality.

Consequently, one can test for normality by seeing if skewness and excess kurtosis are
significantly different from zero. A well-known test in this category is the Jarque–Bera
(JB) test. Another common test for normality is the Kolmogorov–Smirnov test (KS)
which is based on minimum distance estimation comparing a sample with a reference
probability distribution (e.g., the normal distribution).

The KS test has the advantage of making no assumptions about the data distribution
except the continuity of both distribution functions (i.e., technically speaking it is
nonparametric and distribution free). It is sometimes claimed that the KS test is more
powerful than the JB test because it considers the entire distribution. The KS test is
sensitive to differences in both the location and shape of the cumulative distribution
function, and a relatively large number of observations are required to reject the null in
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practice. However, in most cases the KS and JB tests coincide. The KS test is done in R
using the function ks.test(), while in Matlab one can use kstest() from the
statistics toolbox.

1.6.2 Graphical methods for fat tail analysis

A number of graphical methods exist to detect the presence of fat tails. While such
graphical methods cannot provide a precise statistical description of data, they can
indicate if tails are fat or thin and can reveal information about the nature of how data
deviate from normality. We have seen an example of this already in Figure 1.6(a) but
better techniques exist.

QQ plots

Perhaps the most commonly used graphical method for analyzing the tails of
distributions is the QQ plot (quantile–quantile plot). It is similar to the comparison
of distributions in Figure 1.6(a), but is more accurate. QQ plots are used to assess
whether a set of observations have a particular distribution, or whether two datasets
have the same distribution. The QQ plot compares the quantiles of the sample data
against the quantiles of a reference distribution. The code to draw QQ plots in R and
Matlab is given in the following listings.

Listing 1.7. QQ plots in R

library(car)

qq.plot(y, envelope=F) # normal

qq.plot(y,distribution="t", df=5, envelope=F) # Student-t

Listing 1.8. QQ plots in Matlab

% Statistics toolbox

qqplot(y) % only normal available

The QQ plot for the S&P 500 against the normal is shown in Figure 1.8(a).
The x-axis shows the standard normal while the y-axis measures outcomes from the

data. The straight line is the normal prediction. We see that many observations seem to
deviate from normality, both on the downside and on the upside, as the QQ plot has a
clear S shape. The returns seem to have fatter tails than the normal but can we discover
how fat the tails are?
Some idea of tail fatness can be obtained by comparing the data with a fat-tailed

distribution. For example, the Student-t has fat tails, where the degrees of freedom
indicate how fat the tails actually are.
In Figure 1.8(b) the Student-t with 5 degrees of freedom—that is, tð5Þ—is chosen as

the reference distribution. The returns clearly seem to be fat relative to the tð5Þ both on
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the downside and the upside. Next we try the tð4Þ in panel (c)—the data seem to be
getting closer, the upside approximately matches the tð4Þ while the downside is still quite
fat. However, in looking at the tð3Þ in panel (d), the data appear thin relative to the tð3Þ
both on the upside and downside. The conclusion is that S&P 500 returns have tails that
are approximately equal to a tð4Þ, where the lower tail seems to be a tad thicker than the
upper tail. We discuss later how we can estimate the degrees of freedom.

Sequential moments

An alternative graphical technique for detecting fat tails is a sequential moments plot.
It is based on the formal definition of fat tails discussed in Chapter 9, which focuses
on extreme value theory. There, the thickness of the tail of a distribution is measured
by the tail index, indicated by �. The lower the tail index the thicker the tails. In the
special case of the Student-t distribution, the tail index corresponds to the degrees of
freedom.

This suggests a simple graphical method of testing for tail thickness by using sample
moments of data. The mth centered moment is given by:

E ðX � �Þm½ � ¼
Z 1

�1
x� �ð Þmf xð Þdx: ð1:1Þ

This integral does not have a finite solution for all m and all distributions. In particular,
if the distribution is fat tailed, we can only compute the moments for m < �. The
implication is that if the number of bounded moments is finite (i.e., we cannot calculate
the moments in (1.1) for allm > 0), the data must have fat tails. In the case of the normal
distribution we have � ¼ 1, so we can compute all moments in this case.
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(a) Normal (b) Student tð5Þ

(c) Student tð4Þ (d) Student tð3Þ
Figure 1.8. QQ plots for daily S&P 500 returns, 1989–2009.



We can therefore measure tail thickness by graphically plotting the moments of a
dataset as we add more and more observations:

1

t

Xt
i¼1

xmt :

Such sequential moment plots are shown in Figure 1.9, where panels (a) and (b) show
the fifth and third sequential moments for simulated data from a Student-t(4) distribu-
tion. As expected, the third moment converges but the fifth does not. Panel (c) shows the
third and fifth sequential moments for returns on oil prices. Here too we find that the
fifth moment does not converge while the third does, indicating that the tail index of oil
returns is between 3 and 5. More formal methods for estimating the tail index are
presented in Chapter 9.
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(a) Sequential moments from a tð4Þ

Figure 1.9. Sequential moments.
Data source: Datastream.

(b) A few more . . .

(c) Oil price returns 02/01/1990–13/08/2002



1.6.3 Implications of fat tails in finance

The fact that returns are non-normal has important consequences in finance. Many
methods in portfolio theory and derivative pricing assume normality of returns, and
break down in the absence of normality. It is, however, in the field of risk management
where the normality of returns is crucially important. An assumption of normal dis-
tribution for risk calculations leads to a gross underestimation of risk. This has been
widely recognized:

‘‘. . . as you well know, the biggest problems we now have with the whole evolution of
risk is the fat-tail problem, which is really creating very large conceptual difficulties.
Because as we all know, the assumption of normality enables us to drop off the huge
amount of complexity in our equations . . . Because once you start putting in non-
normality assumptions, which is unfortunately what characterizes the real world, then
these issues become extremely difficult.’’

Alan Greenspan (1997)

Financial risk modeling is usually concerned with obtaining the probability of important
but infrequent events, such as market crashes or how much money we may expect to lose
in a worst case scenario. For such applications, the main concern is on the far left tail of
the return distribution. Assuming normality will therefore lead to an underestimation of
risk and may induce the wrong investment choice and perhaps leaving us underhedged,
or overexposed.

Risk managers are in a difficult situation. If they assume normality, they are under-
estimating risk, often with dire consequences. However, the use of non-normal tech-
niques is highly complicated, and unless correctly used, may lead to incorrect outcomes.

Option pricing is also crucially dependent on the underlying distribution. If the return
distribution is indeed fat tailed, then using the Black–Scholes model will lead to
underpricing.

The presence of fat tails has caused problems for many financial institutions. For
example, in the beginning of the 2007–2009 crisis, several banks lost large amounts of
money on their quantitative trading funds, such as Goldman Sachs as reported by the
Financial Times:

‘‘For reasons that are still unclear, shares began tomove in ways that were the opposite
of those predicted by computer models. These moves triggered selling by the funds as
they attempted to cover their losses and meet margin calls from banks. This in turn
exacerbated the share price movements.’’

Financial Times (2007)

This had a strong negative impact on Goldmans. Its GEO fund was down more than
30% and its flagship Global Alpha fund, a quant fund, lost 27% by that point in 2007.

‘‘We were seeing things that were 25-standard deviation moves, several days in a row,’’
said David Viniar, Goldman’s chief financial officer. ‘‘There have been issues in some
of the other quantitative spaces. But nothing like what we saw last week.’’

Financial Times (2007)
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The Wall Street Journal notes the problems facing Lehmans, quoting Mr. Rothman, a
University of Chicago Ph.D,

‘‘Wednesday is the type of day people will remember in quant-land for a very long
time . . . Events that models only predicted would happen once in 10,000 years
happened every day for three days.’’

Wall Street Journal (2007)

1.7 NONLINEAR DEPENDENCE

The final stylized fact of financial returns is nonlinear dependence (i.e., the observation
that the dependence between different return series changes according to market
conditions). For example, most of the time, the prices of assets move relatively
independently of each other, but in a crisis they all drop together.
In practice, joint extreme outcomes are more likely to occur than predicted by

multivariate normality and linear correlations. For example, the probability of the
joint FTSE and S&P 500 crash in 1987 is 10�69 if measured by historical data and
assumptions of bivariate normality.
Most statistical models assume that the relationship between different returns is

linear. Suppose X and Y denote returns on two assets, then—if they are linearly
dependent—the conditional expectation EðY jXÞ is a linear function of X . If this is true,
we can measure the strength of their linear dependence by using correlations, such as
Pearson’s correlation coefficient �.
It is important to keep in mind that if E½Y jX � cannot be expressed as a linear function

of X , then � does not adequately capture the dependence structure between the two
variables.
While it is tempting to conclude that the two data series are independent if the

correlation coefficient is zero, in general this is not true, as illustrated by a simple
example.

Example 1.1 Consider a random variable X which is symmetrically distributed about
zero, such as the normal, and let Y be another random variable defined as Y ¼ X2. In
this case, Y is completely dependent on X while the correlation coefficient between
them is zero, because the correlation coefficient only detects linear dependencies
between two variables.

Considerable recent research has shown that the assumption of linear dependence
does not generally hold for asset returns, where correlations are usually lower in bull
markets than in bear markets. Furthermore, if financial data were jointly normally
distributed, correlations would decrease for extreme events whereas empirically we
see that correlations tend to increase to one in a crisis, as demonstrated by the example
in Section 1.7.1.
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To capture such phenomena, models of nonlinear dependence allow the dependence
structure to change according to market conditions. In this case, linear correlations
overestimate dependence in non-crisis periods and underestimate correlations during
crises.

Research such as Ang et al. (2001) and Patton (2002) has found that these nonlinear
dependence structures command a premium in the market as investors require higher
expected returns for portfolios where assets are highly correlated under bad market
conditions. Aside from asset allocation, applications in risk analysis, economic capital
and financial stability also focus on large outcomes. In such applications it is essential to
address nonlinear dependence.

1.7.1 Sample evidence of nonlinear dependence

We illustrate nonlinear dependence with long-run correlations between the returns of
three (former) investment banks, Morgan Stanley, Goldman Sachs and Bear Stearns,
and one nonfinancial firm, Microsoft, for the time period May 5, 1999–September 12,
2007 (see Table 1.6). Unsurprisingly, financials are relatively highly correlated, while
Microsoft is less correlated with financials at around 40%.

During the first round of the 2007–2009 crisis (August 2007), the correlations of all
stocks increased dramatically. For example, Table 1.6(b) shows the correlations between
Morgan Stanley and Goldman Sachs increasing from 81% to 94%. Such a high correla-
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Table 1.6. Return correlations andmeans forMicrosoft (MSFT),Morgan Stanley (MS), Goldman

Sachs (GS) and Bear Stearns (BSC)

(a) Daily return correlations (May 5, 1999–September 12, 2007)

MSFT MS GS

MS 44%

GS 44% 81%

BSC 38% 74% 71%

(b) Daily return correlations (1 August 2007–15 August 2007)

during the opening events of the 2007 crisis

MSFT MS GS

MS 93%

GS 82% 94%

BSC 82% 92% 89%

(c) Daily mean returns

MSFT MS GS BSC

1999/5/5–2007/9/12 �0.007% 0.028% 0.049% 0.050%

2007/8/1–2007/8/15 �0.252% �1.094% �1.208% �1.468%

Data source: CRSP.



tion indicates that the two stocks almost move in lockstep. Even Microsoft was affected
by this and its correlation with financials increased substantially.
Furthermore, Table 1.6(c) shows how actual stock prices were affected by the crisis.

The effect on Microsoft is relatively insignificant, but all the financials saw their mean
daily return of about 0.05% fall to �1:5%. It is an empirical fact that very high
correlations are usually associated with very negative returns.
It is straightforward to write an R or Matlab program to download stock prices

automatically and calculate correlations. We start by modifying Listings 1.1 and 1.2. We
want to calculate correlations during the period of the financial crisis (i.e., from 2007/6/1
to 2009/12/31). Bear Stearns went into bankruptcy in 2008 so we exclude it from the
sample. First, we show the R code in Listing 1.9, which is then followed by the Matlab
code in Listing 1.10.

Listing 1.9. Download stock prices in R

price1 = get.hist.quote(instrument = "msft",start = "2007-06-01",

end = "2009-12-31",quote="AdjClose")

price2 = get.hist.quote(instrument = "ms", start = "2007-06-01",

end = "2009-12-31",quote="AdjClose")

price3 = get.hist.quote(instrument = "GS", start = "2007-06-01",

end = "2009-12-31",quote="AdjClose")

p=cbind(price1,price2,price3) # combine price vectors into a

matrix

y=diff(log(p))

cor(y) # calculate correlation matrix

Listing 1.10. Download stock prices in Matlab

price = hist_stock_data(’01062007’,’31122009’,’msft’,’ms’,’gs’);

price=[price(1).AdjClose(end:-1:1),price(2).AdjClose(end:-1:1),

price(3).AdjClose(end:-1:1)]

y=diff(log(price))

corr(y) % calculate correlation matrix

1.7.2 Exceedance correlations

One method for documenting the presence of nonlinear dependence is by using
exceedance correlations as proposed by Longin and Solnik (2001) and Ang and Chen
(2002).
Consider two stock returns X and Y which have been standardized (mean zero and

variance one). Exceedance correlations show the correlations of the two stocks as being
conditional on exceeding some threshold, that is:

~�� pð Þ 	 Corr X ;Y jX 
 QX pð Þ and Y 
 QY pð Þ½ �; for p 
 0:5

Corr X ;Y jX > QX pð Þ and Y > QY pð Þ½ �; for p > 0:5,

�
ð1:2Þ
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where QX pð Þ and QY pð Þ are the pth quantiles of X and Y , respectively, given a
distributional assumption. The shape of the exceedance correlation plot depends on
the underlying distribution of data.

Exceedance correlations for the standard bivariate normal and the Student-t
distributions are shown in Figure 1.10. The horizontal axis shows the probability (we
go from 0 to 0.5, and then from 1 to 0.5) and the vertical axis shows the correlation
between the two returns given that both exceed that quantile (i.e., exceedance correla-
tions). The plot is nonlinear in p but symmetric. Exceedance correlations decrease for
the normal as we go out towards extreme quantiles, while they increase for the
Student-t.

Figure 1.11 shows the empirical exceedance correlations for daily returns on Disney
and IBM over 24 years, superimposed with exceedance correlations for the bivariate
normal and the bivariate Student-t(3) distributions with the same correlation coefficient.
The exceedance correlations exhibit substantial asymmetry. The stock returns become
highly correlated at the left extreme, with correlations steadily decreasing when we move
to the right of the distribution. This is precisely the type of dependence structure that
risk-averse investors dislike.
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Normal � ¼ 0:5

Normal � ¼ 0:7

Student-tð3Þ � ¼ 0:5

Figure 1.10. Exceedance plot for the bivariate normal and the Student-t.

Data

Normal

Student-tð3Þ

Figure 1.11. Exceedance plot for Disney and IBM returns (January 1, 1986–November 3, 2009).
Data source: Yahoo Finance.



1.8 COPULAS

The correlation analysis shown in Table 1.6 along with the exceedance plots help in
identifying the nature of nonlinear dependence (NLD). However, this still leaves the
question of how to model NLD more formally. One approach is discussed in Chapter 3
(i.e., multivariate volatility models), but an alternative method is to use copulas. For
more on the application of copulas in finance, see, for example, Patton (2009).
Copulas provide the means to create a multivariate distribution with a range of types

of dependence. We start by taking the returns on each return series separately (called
marginal returns), and transform them to the uniform distribution using the probability
integral transformation discussed below.
Armed with returns transformed to a uniform random variable, we then proceed by

modeling the dependence structure between these uniforms using a copula. Since the
probability integral transform is invertible, the copula also describes the dependence
between the original variables (returns).
In other words, we separate out the distribution of individual assets from the

distribution that links them together. For example, each asset can have a normally
distributed return, but taken jointly the portfolio is much more correlated in adverse
market situations than in bull markets. The copula provides information about how
assets behave together.

1.8.1 The Gaussian copula

Recall the normal (or Gaussian) distribution, where �ð�Þ is the normal distribution, and
��1ð�Þ is the inverse normal distribution. U and V are uniform (U;V 2 ½0; 1�) random
variables, and ��ð�Þ is the bivariate normal distribution with correlation coefficient �.
The function Cð�Þ in

Cðu; vÞ ¼ ��ð��1ðuÞ;��1ðvÞÞÞ
is then known as the Gaussian copula function, made famous by Li (2000), whose work
on the Gaussian copula enabled the pricing of structured credit products (like subprime
CDOs) which subsequently got blamed for the 2007–2009 crisis. The copula provides the
information that links the two univariate (also known as marginal) random variables
together.
For an example of a Gaussian copula see Figure 1.12(a), which shows a cross plot

(scatter plot) from a bivariate normal distribution, while panel (c) shows the joint
distribution and panel (e) the contours.

1.8.2 The theory of copulas

The joint distribution of multiple random variables is composed of information about
each variable separately, as well as information about how the various random variables
are linked together. Suppose X and Y are two random variables representing the returns
of two different stocks,

X � f

Y � g:
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Together, the joint distribution and the marginal distributions are represented by the
joint density:

ðX ;YÞ � h:

The idea behind the copula approach is that that we focus separately on marginal
distributions ðF ;GÞ and the function that combines them into the joint distribution,
H. That function is the copula. In other words, the copula extracts information on the
dependence structure from the joint distribution.
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(a) Gaussian scatterplot (b) Crossplot of Disney against IBM

(c) Fitted Gaussian copula (d) Fitted Student-t copula

(e) Contour of the Gaussian copula (f ) Contour of the Student-t copula

Figure 1.12. Copula plots for daily Disney and IBM returns, 1986–2009.



The probability integral transformation

The first step in applying copulas is to transform X and Y into random variables that are
distributed uniformly between zero and one, which removes individual information from
the bivariate density h. The probability integral transformation due to Fisher (1925) states
that:

Theorem 1.1 Let a random variable X have a continuous distribution F, and define a new
random variable U as:

U ¼ FðXÞ:
Then, regardless of the original distribution F, U � Uniformð0; 1Þ.

The theorem says that any continuous distribution can be transformed into a uniform
variable; therefore, knowing the distribution of the uniform random variable does not
imply anything about the original distribution. The probability integral transformation
is a strictly increasing transformation hence it is invertible. This means that we can
identify the dependence between two variables with the dependence between their
transforms.

On to copulas

Apply Theorem 1.1 to the two returns, X and Y , to obtain two uniform variables:

U ¼ FðXÞ
V ¼ GðYÞ:

A copula is a probability distribution on a unit cube for which every marginal
distribution is uniform on the interval ½0; 1�. The copula contains all the dependence
information in the original bivariate density h, but none of the individual information.
Sklar (1959) provides the main theory for copulas.

Theorem 1.2 Let F be the distribution of X, G the distribution of Y and H the joint
distribution of X ;Yð Þ. Assume that F and G are continuous. Then there exists a unique
copula C such that:

HðX ;YÞ ¼ CðFðXÞ;GðYÞÞ: ð1:3Þ
In applications we are more likely to use densities; Sklar’s theorem allows us to
decompose joint density by:

h X ;Yð Þ ¼ f Xð Þ � g Yð Þ � c F Xð Þ;G Yð Þð Þ:
Nelsen (1999) provides a corollary to the above theorem that allows us to extract the
copula from any given multivariate distribution and use it independently of the original
marginal distributions. In other words, we can construct a joint distribution from any
two marginal distributions and any copula, and extract the implied copula and the
marginal distributions from any joint distribution.

1.8.3 An application of copulas

We illustrate the application of copulas using the same Disney and IBM data as in
Figure 1.11. Recall that the data showed greater dependence in the negative quadrant.
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The results are shown in Figure 1.12. Panel (b) shows a cross plot of stock returns along
with their 0.05% and 99.95% quantiles. The vast majority of data points seem to be
centered around zero, but there are a few outliers from both stocks that lie outside their
sample quantiles.

We can analyze the dependence by comparing simulated data from the bivariate
normal distribution with stock returns where both have the same covariance matrix.
Panel (a) shows that simulated bivariate normal data do not have the same joint
extremes as stock returns.

We estimated both a Gaussian and a Student-t copula for the data. The estimated
parameter for the normal copula is the correlation coefficient, �, while for Student-t, the
estimated parameters are the correlation coefficient and the degrees of freedom, �. Fitted
copula densities are shown in panels (c) and (d). It is hard to compare distributions from
three-dimensional graphs, and the corresponding contour plots in panels (e) and (f )
provide a clearer picture. The t-copula clearly has more correlated extremes, on both the
upside and downside, as the plot is more stretched towards the top right and bottom left
corners.

There are a number of copulas available; we present here the Clayton copula, which is
often used in financial applications of return dependence (see Figure 1.13). The Clayton
copula is from the Archimedean class of copulas and, unlike the normal and the
Student-t, is asymmetric, exhibiting greater dependence in the negative tail than in
the positive tail, with parameter � a measure of the strength of dependence. Panel (a)
shows the Clayton copula with � ¼ 1, while panel (b) shows the estimated copula with
the same Disney and IBM data as above.

1.8.4 Some challenges in using copulas

The main problem with copulas—demonstrated in the example to an extent—is that we
can specify any type of dependence structure we want, where the copula need not be
affected by the marginal densities we choose. In the example above, marginal densities
were assumed to be the normal distribution. Currently, goodness-of-fit tests for copulas
are not common and it is unclear whether a copula that has a good fit yields a good fit
for the distribution of data.
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(a) Clayton’s copula, � ¼ 1 (b) Fitted Clayton’s copula, � ¼ 0:483

Figure 1.13. More examples of copulas, same data as in Figure 1.12.



One example of the possible misuse of copulas is when the rating agencies used
Gaussian copulas to estimate the default correlation in a pool of mortgages, with
damaging consequences, as shown in the 2007–2009 crisis.
No economic theory of copulas exists; hence, there is little guidance in choosing

copulas. In turn, this means we have the freedom to choose any type of dependence
structure we want.

1.9 SUMMARY

Many applications in finance are based on the assumption that returns on financial
assets are IID normally distributed. This assumption has been analyzed in detail in
this chapter. By using a sample of stocks of the most important stock market index in
the world, the S&P 500, as well as a selection of stocks on the New York Stock
Exchange, we have demonstrated that IID normality does not hold. Furthermore, it
is straightforward to show similar results for most financial assets.
It is well known that financial returns follow a complicated and ever-changing

probability distribution function where we can only hope to statistically model a
very small part of the distribution of returns at any one time. Often, the underlying
application dictates which part of the statistical distribution of returns we focus on.
The stylized facts of financial markets we have examined are

Volatility clusters

Fat tails

Nonlinear dependence

These stylized facts seem to hold for most if not all basic (i.e., non-derived) financial
assets regardless of asset type, sampling frequency, observation period or market.
Other empirical results only hold some of the time. For example, return distributions

are usually skewed either to the left or to the right. Returns often have a strong positive
autocorrelation over long periods of time during bull markets such as the internet
bubble, or negative autocorrelation during prolonged bear markets such as the Japanese
stock market since 1990. At the highest frequencies, returns tend to have negative
autocorrelations, but positive autocorrelations at the lowest frequencies. However,
no regular first-moment or third-moment patterns about returns exist and the
overwhelming conclusion is that we cannot profitably forecast prices in a systematic
way using simple methods.
The focus in this chapter has been on empirically identifying these stylized facts using a

range of statistical techniques. In subsequent chapters we focus on statistically modeling
financial returns, primarily for the purpose of forecasting risk.
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One of the most important developments in empirical finance has been the modeling and
forecasting of volatility. It has been spurred on by applications such as the rapid growth
of financial derivatives, quantitative trading and risk modeling.
A key modeling difficulty is that market volatility is not directly observable—unlike

market prices it is a latent variable. Volatility must therefore be inferred by looking at
how much market prices move. If prices fluctuate a lot, we know volatility is high, but
we cannot ascertain precisely how high. One reason is that we cannot distinguish
whether a large shock to prices is transitory or permanent.
The latent nature of volatility means that it must be forecast by a statistical model, a

process that inevitably entails making strong assumptions. Indeed, volatility modeling is
quite demanding, and often seems to be as much an art as a science because of the
challenges posed by the presence of issues such as nonnormalities, volatility clusters and
structural breaks.
The presence of volatility clusters suggests that it may be more efficient to use only the

most recent observations to forecast volatility, or perhaps assign a higher weight to the
most recent observations. Indeed, that is how most of the methods discussed in this
chapter work.
The focus of this chapter is on volatility forecasting for a single return series or

univariate volatility. In Chapter 3 we discuss the forecasting of covariance matrices or
multivariate volatility. In addition to presenting the most common volatility models, we
demonstrate how to implement them in R and Matlab with a sample from the S&P 500.
For a recent survey on volatility models see, for example, Francq and Zakoian (2010).
The most important specific notation used in this chapter is:

WE Estimation window

� Decay factor in EWMA

Zt Residuals

�; � Main model parameters

	; 
 Other model parameters

L1;L2 Lags in volatility models

2.1 MODELING VOLATILITY

A large number of methods for forecasting volatility exist, of which only a small number
are in regular use. In model choice, there is a tradeoff between various factors such as

2
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tractability and robustness. We can classify the most commonly used models in the
following way:

1. Moving average (MA).
2. Exponentially weighted moving average (EWMA) a.k.a. RiskMetricsTM.
3. GARCH and its extension models.
4. Stochastic volatility.
5. Implied volatility.
6. Realized volatility.

In addition, there are many hybrid models that combine different model characteristics,
such as implied volatility in GARCH-type models, or GARCH features in stochastic
volatility models.

We usually assume that mean return is zero. While this is obviously not correct, the
daily mean is orders of magnitude smaller than volatility and therefore can usually be
safely ignored for the purpose of volatility forecasting.

Conditional volatility, �t, is typically, but not always, obtained from application of a
statistical procedure to a sample of previous return observations, making up the estima-
tion window. Such methodologies provide conditional volatility forecasts, represented
by:

�tjpast returns and a model ¼ � yt�1; . . . ; yt�WE

� �
where various methods are used to specify the function �ð�Þ.

2.2 SIMPLE VOLATILITY MODELS

The most obvious and easy way to forecast volatility is simply to calculate the sample
standard error from a sample of returns. Over time, we would keep the sample size
constant, and every day add the newest return to the sample and drop the oldest. This
method is called the moving average (MA) model.

Since the MA model is known to perform badly, it can be improved by exponentially
weighing returns, so that the most recent returns have the biggest weight in forecasting
volatility. The best known such model is the exponentially weighted moving average
(EWMA) model.

The distinguishing feature of these models compared with the others discussed in this
chapter is that there is no parameter or model to be estimated; they are also very simple
in construction.

2.2.1 Moving average models

Possibly the simplest volatility forecast model is the moving average (MA) model:

�̂�2t ¼
1

WE

XWE

i¼1

y2t�i ð2:1Þ

where yt is the observed return on day t; �̂�t is the volatility forecast for day t; and WE is
the length of the estimation window (i.e., the number of observations used in the
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calculation, usually of an arbitrary length for the MA volatility model). Note that only
lagged observations are used in the forecast (i.e., the most recent return used to forecast
day t volatility is for day t� 1).

One key shortcoming of MA models is that observations are equally weighted, which
is problematic when financial returns exhibit volatility clusters, since the most recent
data are more indicative of whether we are in a high-volatility or low-volatility cluster.
In practice, this method should not be used. It is very sensitive to the choice of

estimation window length and will generate volatility forecasts that jump around and
that are generally systematically too high or too low. Furthermore, when used for value-
at-risk, their risk forecasts are usually on average too low.

2.2.2 Exponentially weighted moving average model

The moving average model can be improved by assigning greater weights to more recent
observations. One of the easiest ways to specify the weights is to use an exponentially
weighted moving average (EWMA) model.1

The EWMA model is based on modifying the MA so that weights � exponentially
decline into the past:

�̂�2t ¼
1� �

�ð1� �WE Þ
XWE

i¼1

�iy2t�i

where the first part of the equation ensures the sum of the weights is one.
We demonstrate below that we can rewrite the EWMA model as the weighted sum of

the previous period’s volatility forecast and squared returns, where the sum of the
weights is one:

�̂�2t ¼ ð1� �Þy2t�1 þ ��̂�2t�1: ð2:2Þ
where 0 < � < 1 is the decay factor; and �̂�2t the conditional volatility forecast on day t.
An example of the weights can be seen in Figure 2.1 which contains exponentially

declining weights and fixed weights for a 20-day observation window. The exponential
weights decline to zero very quickly, which is presumably one reason EWMA is not
permitted under the Basel Accords for the purposes of calculating VaR. However, on
the whole, the EWMA model performs well compared with the more complicated
models discussed later in this chapter.

Deriving the EWMA model

Since

ð1� �Þ
XWE

i¼1

�i ¼ ð1� �Þð�1 þ � � � þ �WE Þ ¼ �� �WEþ1

it is straightforward to check that the sum of the weights is one.
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The exponential is a function that decreases rapidly, which means that for WE large
enough (but not necessarily very large) the terms �n are negligible for all n � WE . Hence,
we can approximate this model by its limit as WE tends to infinity:

�̂�2t ¼
1� �

�

X1
i¼1

�iy2t�i

knowing that from a certain i on, the terms can be considered equal to zero. In order to
simplify the model, take the first term out of the sum and get

�̂�2t ¼ ð1� �Þy2t�1 þ
1� �

�

X1
i¼2

�iy2t�i:

Now rearrange the indices and the �s in the second part of the expression

�̂�2t ¼ ð1� �Þy2t�1 þ ð1� �Þ
X1
i¼1

�iy2t�1�i:

This expression is similar to the conditional volatility at time t� 1:

�ð1� �WE Þ
1� �

�̂�2t�1 ¼
XWE

i¼1

�iy2t�1�i:

Substituting this equality we obtain the main EWMA equation, (2.2).

Applying the EWMA

When the model was first proposed by J.P. Morgan it was suggested that � be set at 0.94
for daily returns, and to this day this is the most common assumption. By making
distributional assumptions about residuals it is straightforward to estimate �.

The main disadvantage of the EWMA model is the fact that � is constant and
identical for all assets. This implies that it is not optimal for any asset in the sense that
the GARCH models discussed below are optimal. However, it is clearly not realistic to
expect � to be the same for all assets and time periods.

As a result, the EWMA model by definition gives inferior forecasts compared with
GARCH models, even though the difference can be very small in many cases.

The EWMA model, however, has two key advantages: first, it can be implemented
much more easily than most alternatives. Second, multivariate forms can be applied in a
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straightforward fashion. Coupled with the fact that it often gives reasonable forecasts,
EWMA is often the method of choice.

EWMA unconditional volatility

The conditional volatility of the EWMAmodel is given by (2.2), but it is often of interest
to calculate the unconditional volatility as well. The EWMAmodel is a special version of
the GARCH model discussed in the next section, where we show in (2.9) how to
calculate its unconditional variances.
By considering the EWMAmodel as a special case of the GARCHmodel, the EWMA

unconditional variance is

�2 ¼ 0

0

that is, it is undefined—meaning that the EWMA model is covariance nonstationary.
Therefore, the EWMA unconditional variances cannot be calculated and if a EWMA
process is allowed to run for a while it will explode. We can verify this by simulating the
EWMA model in R and Matlab.

2.3 GARCH AND CONDITIONAL VOLATILITY

The majority of volatility forecast models in regular use belong to the GARCH family of
models. The first such model was the autoregressive conditional heteroskedasticity
(ARCH) model proposed by Engle (1982), but the generalized ARCHmodel (GARCH)
of Bollerslev (1986) is the common denominator for most volatility models. Subse-
quently, a rich family of GARCH models has emerged, most of which see limited use.
The GARCH family of models belong to the category of conditional volatility models

and are based on using optimal exponential weighting of historical returns to obtain a
volatility forecast. Returns on day t are a function of returns on previous days, where
older returns have a lower weight than more recent returns. The parameters of the model
are typically estimated with maximum likelihood.
We want to study the statistical properties of returns given information available at

time t� 1 and create a model of how statistical properties or returns evolve over time.
Lowercase letters yt indicate sample observations and uppercase letters Yt denote
random variables (RVs).
The main object of interest is the conditional volatility of Yt (i.e., �t); however, we

need to address the mean somehow. It is generally more efficient to separate estimation
of the mean from volatility estimation, and consequently most volatility models are
based on using returns that have been de-meaned (i.e., the unconditional mean has
been subtracted from the returns). In what follows we assume that EðYtÞ ¼ 0, unless
otherwise indicated, while the returns used in the applications below are de-meaned.
The innovation in returns is driven by random shocks (i.e., a sequence of IID mean 0,

variance 1 RVs, denoted by fZtg). The return on day t can then be indicated by

Yt ¼ �tZt:

We don’t need to make any further assumptions about the distribution of Zt. In most
cases it is assumed to be normal, but other distributions are frequently used, such as the
Student-t.
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An important feature of GARCH-type models is that unconditional volatility �
depends on the entire sample—while conditional volatilities �t are determined by model
parameters and recent return observations.

2.3.1 ARCH

The first model designed to capture volatility clusters was ARCH

�2t ¼ !þ
XL1

i¼1

�iY
2
t�i ð2:3Þ

where L1 is the number of lags.2 Setting the lag to one in (2.3) will result in the ARCH(1)
model which states that the conditional variance of today’s return is equal to a constant,
plus yesterday’s return squared; that is:

�2t ¼ !þ �Y2
t�1: ð2:4Þ

ARCH(1) unconditional volatility

The moments of any order m are given by:

E Ymð Þ ¼ E Et Y
mð Þð Þ ¼ E Ym

tð Þ
for all t. Therefore:

E Y2
� � ¼ �2 ¼ E Y2

t

� � ¼ E �2t Z
2
t

� � ¼ E �2t
� �

:

Then

�2 ¼ Eð!þ �Y2
t�1Þ ¼ !þ ��2:

So, the unconditional volatility of the ARCH(1) model is given by:

�2 ¼ !

1� �
: ð2:5Þ

ARCH(1) fat tails

The most common distributional assumption for residuals Z is standard normality; that
is:

Zt � Nð0; 1Þ:
In this case, conditional returns are conditionally normal. However, the unconditional
distribution of the returns will be fat, easily demonstrated by showing that
unconditional excess kurtosis exceeds zero:

Kurtosis ¼ E Y4
� �

E Y2ð Þð Þ2
:

For the 4th moment:

E Y4
� � ¼ E Y4

t

� � ¼ E �4t Z
4
t

� � ¼ 3E �4t
� �
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due to the independence of the variables and the normality of Zt. Substituting we get:

EðY4Þ ¼ 3E !þ �Y2
t�1

� �2� �
¼ 3!2 þ 2�!�þ �2EðY4Þ:

Substituting the value of �, we get an expression for EðY4Þ,

EðY4Þ ¼ 3!2ð1þ �Þ
ð1� �Þð1� 3�2Þ :

We can now compute the unconditional kurtosis:

Kurtosis ¼ 3 1� �2
� �
1� 3�2

> 3 if 3�2 < 1: ð2:6Þ

A more formal demonstration of the unconditional fat tails of the ARCH(1) model is
shown in Chapter 9, which focuses on extreme value theory. It is demonstrated there
that we can directly relate � to the tail index �.
For example, the following table from Section 9.5.2 shows that the higher the � the

fatter the tails (lower tail index � implies fatter tails):

Table 2.1. Tail index and ARCH(1) parameter.

� 0.10 0.50 0.90 0.99

� 26.48 4.73 2.30 2.02

Parameter restrictions

There are two main restrictions that are often imposed on the parameters of the ARCH
model:

1. To ensure positive volatility forecasts:

8 i ¼ 1; . . . ;L1; �i; ! > 0:

2. To ensure covariance stationarity so that unconditional volatility is defined, impose:XL1

i¼1

�i < 1:

It is only the nonnegativity constraint that always has to be imposed and, depending on
the final application, we may or may not want to impose covariance stationarity. In the
case of the ARCH(1) model, if � � 1 the unconditional volatility is no longer defined, as
is clear from (2.5).
This does not, however, imply that the covariance stationarity restriction should be

imposed in every case. If the model is correctly specified it may be a good idea to impose
the restriction, but every model is flawed. As a result, allowing the parameters to be free
may provide a better approximation to the true process.
If the restriction is binding, it is as if the top part of the likelihood function were sliced

off, often resulting in more than one parameter combination satisfying the constraint.
This means that the estimated parameters and hence the resulting volatility forecast
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are subject to a degree of arbitrariness. In repeated sequential estimation (e.g., in
backtesting where a moving data window is used) the parameter estimates would then
jump around from one day to the next, causing inconsistency and contributing to the
volatility of volatility.

Usefulness of ARCH

On balance, ARCH models are not well suited for capturing volatility. Consider Figure
1.5(b) which shows the ACF plot of squared S&P 500 returns, where we see that about
600 lags of squared returns are statistically significant, implying that we would need to
estimate an ARCH(600) model to capture the entire volatility structure. This is
infeasible, as no estimation package could get even close to estimating an ARCH(600)
model; a more practical upper limit might be ARCH(20). A similar problem also exists
with autoregressive (AR) models, where it is often solved by introducing a moving
average (MA) component. In the context of ARCH, a comparable solution is given
by the GARCH model.

2.3.2 GARCH

One of the biggest problems with the ARCH model concerns the long lag lengths
required to capture the impact of historical returns on current volatility. By including
lagged volatility during ARCH model creation we have the potential to incorporate the
impact of historical returns. This results in the GARCH(L1;L2) model:

�2t ¼ !þ
XL1

i¼1

�iY
2
t�i þ

XL2

j¼1

�j�
2
t�j: ð2:7Þ

The most common version of (2.7) only employs one lag, resulting in the GARCH(1,1)
model:

�2t ¼ !þ �Y2
t�1 þ ��2t�1: ð2:8Þ

GARCH(1,1) unconditional volatility

Unconditional volatility can be calculated similarly to the way it is done in the ARCH
model, utilizing the same assumptions. Focusing on the GARCH 1; 1ð Þ model:

�2 ¼ Eð!þ �Y2
t�1��

2
t�1Þ ¼ !þ ��2 þ ��2:

where

�2 ¼ !þ ��2 þ ��2:

So, the unconditional volatility is given by:

�2 ¼ !

1� �� �
: ð2:9Þ

GARCH(1,1) parameter restrictions

Similar to the ARCH model, there are two types of restrictions placed on parameters in
the GARCH(1,1) model:
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1. To ensure positive volatility forecasts:

!; �; � > 0:

2. To ensure covariance stationarity:

�þ � < 1:

Therefore, unconditional variance is infinite when �þ � ¼ 1 and undefined when
�þ � > 1. Similar to the ARCH model, we should not impose the constraint
when all we need is a forecast of conditional volatility, but it is necessary to predict
unconditional volatility.

2.3.3 The ‘‘memory’’ of a GARCH model

The unconditional volatility of the GARCH model was given by (2.9), but oftentimes a
very small or very large shock to the return process can cause conditional volatility to
differ greatly from that number. It is often of interest to identify how long it takes for the
impact of the shock to subside.
The ‘‘memory’’ of a GARCH model measures how long a shock to the process takes

to subside. A measure of memory can be developed by looking at multistep-ahead
conditional variance, where �2tþ2;t is the volatility on day tþ 2 given information on
day t. Another approach is to look at the half-life of a shock (i.e., the number of periods,
n�, it takes for conditional variance to revert back halfway towards unconditional
variance).

Multiperiod volatility

First, it is helpful to rewrite the GARCH(1,1) model as a function of unconditional
volatility � rather than of the constant !. Recall (2.9) and rewrite the GARCH(1,1)
model as:

�2tþ1 ¼ EtðY2
tþ1Þ ¼ !þ �Y2

t þ ��2t

¼ !þ ð�þ �Þ�2 þ �ðY2
t � �2Þ þ �ð�2t � �2Þ

¼ �2 þ �ðY2
t � �2Þ þ �ð�2t � �2Þ;

where Etð�2tþ1Þ indicates volatility on day tþ 1 given information on day t. This shows
that the GARCH(1,1) forecast can be thought of as a weighted average of unconditional
variance, the deviation of last period’s forecast from unconditional variance and the
deviation of last period’s squared returns from unconditional variance. We can now
derive two-step-ahead volatility:

�2tþ2;t 	 EtðY2
tþ2Þ

¼ Et Etþ1 Y2
tþ2

� �� �
¼ Et �

2 þ � Y2
tþ1 � �2

� �þ �ð�2tþ1 � �2Þ� �
¼ �2 þ � Et Y2

tþ1Þ � �2
� �þ �ð�2tþ1 � �2

� �
¼ �2 þ �þ �Þð�2tþ1 � �2

� �
:
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Following similar arguments, the general formula for n periods is given as:

�2tþn;t ¼ �2 þ ð�þ �Þn�1 �2tþ1 � �2
� �

; n � 1: ð2:10Þ
The above expression shows that the forecast of one-period volatility n periods from
now is a weighted average of unconditional variance and the deviation of the one-step
forecast from unconditional variance. If �þ � < 1, the second term above goes to zero
as n ! 1, which implies that the longer the forecast horizon, the closer the forecast will
get to unconditional variance. The size of ð�þ �Þ determines how quickly the predict-
ability of the process subsides: if ð�þ �Þ is close to zero, predictability will die out very
quickly. If ð�þ �Þ is close to one, predictability will die out slowly.

Half-life

An alternative way to think about volatility predictability is by considering the ‘‘half-
life’’ of the deviation of conditional variance from unconditional variance. The half-life
is the number of periods, n�, it takes for conditional variance to revert back halfway
towards unconditional variance:

�2tþn�;t � �2 ¼ 1
2 �2tþ1;t � �2
� �

: ð2:11Þ
For the GARCH(1,1) process:

ð�þ �Þn��1 �2tþ1 � �2
� � ¼ 1

2
�2tþ1 � �2
� �

n� ¼ 1þ log 1
2

� �
logð�þ �Þ :

As ð�þ �Þ ! 1, the process approaches a noncovariance-stationary process and the
half-life diverges to infinity. With daily asset returns, it is common to see values of
ð�þ �Þ near one; this prompted the development of ‘‘long memory’’ volatility models.

2.3.4 Normal GARCH

The most common conditional distribution in the GARCH model is the normal; that is,
the shocks Zt follow the distribution

Zt � Nð0; 1Þ:
We denote this model the normal GARCH.

2.3.5 Student-t GARCH

It is often the case that observed returns have fatter tails than would be implied by the
normal GARCH model. This suggests that the normal GARCH model could be
improved by replacing the conditional normal distribution with a conditionally fat
distribution, where the parameters determining fatness are to be estimated along with
other model parameters.

Several distributional proposals have been made; the most common was the Student-t
which resulted in the Student-t GARCH model or simply the t-GARCH:

Zt � t �ð Þ: ð2:12Þ
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The degrees of freedom, �, of the Student-t distribution are here estimated as an extra
parameter. In practice, the degrees of freedom are often estimated to be around 6 to 10.
This value is obviously very different from the normal distribution, which implies that
� ¼ 1. However, the confidence bounds around � are often quite wide.
The left and right tails of return distributions are different in many cases (i.e., the

return distribution is asymmetric or skewed). In this case it may be useful to allow the
conditional distribution to be skewed, such as the so–called skewed Student-t which
resulted in the skew t-GARCH model.

2.3.6 (G)ARCH in mean

A central idea in finance is that the return on a risky security should be positively related
to its risk. This was the motivation that led Engle et al. (1987) to develop the ‘‘ARCH in
mean’’ or ‘‘ARCH-M’’ model which posits that the conditional mean of a return is
dependent on some function of its conditional variance or standard deviation:

Yt ¼ �t þ �tZt

where �t is often a constant or follows an AR process. For example, a common
specification is:

�t ¼ 
�2t

where 
 is the parameter describing the impact volatility has on the mean. Many
applications of the ARCH-M model find that the volatility term in the mean equation
is not significant, perhaps due to the imprecision with which the ARCH model estimates
conditional variance.
The conditional mean is of key importance to many applications such as portfolio

allocation and trading. For most risk applications it is not all that important and, since
estimating the mean can complicate the estimation process considerably, it is
usually better ignored. In all applications in this chapter we assume the mean to be
zero, but it is straightforward to incorporate ARCH-M effects in the estimation
procedures discussed.

2.4 MAXIMUM LIKELIHOOD ESTIMATION OF

VOLATILITY MODELS

The nonlinear nature of the volatility models discussed so far rules out estimation by
standard linear regression methods such as ordinary least squares.
Bollerslev and Wooldridge (1992) demonstrate that using the normal distribution in

maximum likelihood estimation will give consistent parameter estimates if the sole aim is
estimation of conditional variance, even if the true density is nonnormal. This estimator
is known as the quasi-maximum likelihood (QML) estimator. However, QML is not
efficient unless the true density actually is normal.
A broad outline of maximum likelihood (ML) can be found in Appendix D, but we

consider here some of the issues of ML estimation as they pertain to GARCH model
estimation.
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We can avoid having to make the distributional assumptions required by ML by
estimating the model using the generalized method of moments, but this is not a
common approach for volatility models.

2.4.1 The ARCH(1) likelihood function

Suppose the errors, Zt, in an ARCH(1) model are standard normally distributed:

Yt ¼ �tZt

�2t ¼ !þ �Y2
t�1

Zt � Nð0; 1Þ:
The presence of lagged returns means that the density function for t ¼ 1 is unknown
since we do not know y0. The t ¼ 2 density is given by:

f ðy2Þ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2� !þ �y21
� �q exp � 1

2

y22
!þ �y21

 !
:

Higher period densities are derived in a similar way. The joint density of y is:YT
t¼2

f ytð Þ ¼
YT
t¼2

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2� !þ �y2t�1

� �q exp � 1

2

y2t
!þ �y2t�1

 !
:

The log-likelihood follows:

logL ¼ �T � 1

2
log 2�ð Þ|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}

Constant

� 1

2

XT
t¼2

log !þ �y2t�1

� �þ y2t
!þ �y2t�1

 !
:

We can derive the likelihood function for other distributions such as the Student-t in an
analogous fashion. Aside from the Student-t distribution, common choices in finance for
the density include the generalized error distribution and the skewed Student-t.

2.4.2 The GARCH(1,1) likelihood function

The normal GARCH(1,1) model is

�2t ¼ !þ �Y2
t�1 þ ��2t�1:

The same issue as before arises with the presence of lagged returns; therefore, the density
function starts at t ¼ 2. However, the presence of the extra lagged volatility term
presents more difficulties, since there is no estimate of �1. There are two ways to obtain
it.

We could estimate �1 as an additional parameter along with !, � and �. This may be
the theoretically preferred approach, but the parameter �1 is not likely to be estimated
with much precision.

Another way is to set �1 to an arbitrary value, usually the sample variance of fytg.
This is of course not theoretically correct and, depending on the application, may not be
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recommended, especially if the sample size is small, but for large sample sizes adverse
impacts should not be significant in most cases.
Following the latter approach and assuming the normal distribution, the t ¼ 2 density

is given by:

f y2ð Þ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2� !þ �y21 þ ��̂�21
� �q exp � 1

2

y22
!þ �y21 þ ��̂�21

 !
:

The log-likelihood function is then:

logL ¼ �T � 1

2
log 2�ð Þ|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}

Constant

� 1

2

XT
t¼2

log !þ �y2t�1 þ ��̂�2t�1

� �þ y2t
!þ �y2t�1 þ ��̂�2t�1

 !
:

2.4.3 On the importance of �1

The value that �1 is set to can in some cases make a large difference. For example, global
volatility started picking up with the advent of the 2007 crisis, peaking in 2008. In such
cases where there is a clear structural break in volatility, the GARCH model will
experience difficulties, since it is based on the assumption of average volatility being
constant. Unfortunately, it is likely to be difficult to modify the GARCH model to take
this into account.
The impact of the choice of �1 is easily demonstrated by a sample from the S&P 500

spanning the second part of the 2000s. If we use a procedure that sets �1 to uncon-
ditional volatility, such as those demonstrated in Section 2.6, we will get very different
values than from procedures using EWMA to set initial volatility.3

2.4.4 Issues in estimation

Volatility models, whether univariate or multivariate, are estimated by maximum
likelihood (ML) where parameter estimates are obtained by numerically maximizing
the likelihood function with an algorithm called an optimizer. This can lead to numerical
problems that adversely affect maximization.
Some likelihood functions have multiple local minima—as in Figure D.1(b)—or long

flat areas. In such cases, finding the maximum is analogous to finding Mount Everest in
the Himalayas when the only way would be to climb up a number of peaksin the hope
of finding the highest. Eventually, we would find Mount Everest, but it could take
considerable time.
We may also encounter problems with numerical instability. While it may be possible

to evaluate the likelihood function at the peak, we are searching for a solution and need
to evaluate the likelihood for a large number of other combinations of parameters first.
Some of these parameters may cause problems such as dividing two zeros by each other,
resulting in an undefined result called a NaN or not a number.
While such problems might not exist at the peak of the likelihood function, they can

for other parameter sets. Even more disconcertingly, if we run the optimization again
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with different starting values we might not encounter these problem parameters and all
will be fine—or we might even find new problems elsewhere in the parameter space.

These problems are rare for smaller models such as GARCH(1,1), but become
increasingly likely as models become richer.4 One way to guard against this is to try
multiple starting values for the optimization.

Other problems may arise when we impose a binding covariance stationarity
constraint such as �þ � < 1 in a GARCH(1,1) model; this can lead to multiple param-
eter combinations satisfying the constraint, often with serious consequences. Not only
will the parameter solution and hence the volatility forecast be non-unique, but as we
add new observations to the sample and perhaps drop old ones (as in backtesting) the
parameter estimates will bounce around the solutions, causing volatility forecasts to
jump around over time.

Often, one may not even be aware there is a problem, especially if a local minimum is
found, no solution is found or the optimizer provides obscure error messages.

2.5 DIAGNOSING VOLATILITY MODELS

Is there a way of choosing the ‘‘best’’ volatility model? In practice, model choice should
depend on the intended use of the model. For example, if a model is to be used for out-
of-sample volatility forecasting, it should be chosen by considering the out-of-sample
forecast performance of real life applications.

If this is not possible, several statistical methods are available for comparing models.
One could look at the significance of model parameters, test for the significance of a
group of parameters in nested models or evaluate the statistical properties of the
residuals. These methods can also be used to assess the quality of estimation and, more
importantly, the quality of forecasts.

2.5.1 Likelihood ratio tests and parameter significance

If we estimate a model and obtain parameter estimates along with their standard errors,
we can simply use standard methods such as the t-test to see whether the parameters are
statistically significantly different from zero or not. When one model nests inside another
model, tests such as the likelihood ratio test can be used.

If models are nested, then the nested model is strictly a subset of the other. For
example, the GARCH(1,1) nests the ARCH(1)—but not the ARCH(2) model.

Consider two models,MR and MU , where MU is the unrestricted or larger model and
MR is the restricted or smaller model. Suppose the unrestricted model MU has U
parameters and the restricted model has R parameters. The restricted log-likelihood
minus the unrestricted log-likelihood, doubled, follows the chi-squared distribution,
with the degrees of freedom equaling the number of restrictions. If MU is the ARCH(4)
model andMR is the ARCH(1) model, the degrees of freedom of the chi-squared statistic
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equal 3. We can then form a likelihood ratio (LR) test:

LR ¼ 2 LU � LRð Þ � �2
number of restrictionsð Þ:

This test can be applied to more complicated models provided they are nested. Some
examples of nested models and parameter restrictions are shown in Table 2.2.
In out-of-sample forecast comparisons, it is often the case that the more parsimonious

models perform better, even if a more flexible model is significantly better in sample. If
the more flexible model is not significantly better in sample, it is very unlikely to do
better out of sample.

2.5.2 Analysis of model residuals

A different approach is to analyze model residuals. Consider the normal ARCH(1)
model. If the model is correct, the residuals are IID normal. This suggests that if
estimated parameters and forecast volatility �̂�; �̂�; �̂�2t

� �
are obtained, the estimated or

fitted residuals

ẑtzt ¼
yt
�̂t�t

can be tested for normality and clustering, providing an assessment of how well the
model captured stylized facts in the data.

2.5.3 Statistical goodness-of-fit measures

Competing models can be ranked by goodness-of-fit measures, such as mean squared
error (MSE). Normally, in order to judge the accuracy of a model, one requires knowl-
edge of the realized value of the variable of interest—in our case, conditional variance.
But the conditional variance is not observable even ex post, and hence volatility proxies
are required. A volatility proxy is some variable that is useful for estimating the value of
the true volatility. The simplest volatility proxy is the squared return, which can be
justified as a volatility proxy because it is a conditionally unbiased estimator of true
conditional variance and is on average correct.
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Table 2.2. Likelihood ratio tests

Null Alternative Test

ARCH(1) ARCH(4) H0 : �2 ¼ �3 ¼ �4 ¼ 0

GARCH(1,1) ARCH(1) H0 : � ¼ 0

GARCH(2,2) GARCH(1,1) H0 : �2 ¼ �2 ¼ 0

GARCH EWMA H0 : � þ � ¼ 1; ! ¼ 0



If we denote a volatility proxy by st, then two possible goodness-of-fit measures for a
volatility forecast are:

Squared error:
XT
t¼1

ðŝs2t � �̂�2t Þ2

QLIKE:
XT
t¼1

log �̂�2t þ
ŝs2t
�̂�2t

 !
:

Hansen and Lunde (2005) used these two goodness-of-fit measures to compare
numerous out-of-sample ARCH-type models; they concluded that the APARCH(2,2)
model performed the best.

2.6 APPLICATION OF ARCH AND GARCH

We estimate the ARCH and GARCH models discussed above by taking a sample of
daily observations from the S&P 500 index between 2005 and 2009; we evaluate the
estimates using both likelihood ratio tests and residual analysis.

The models compared are the ARCH(1), the ARCH(4), and the GARCH(4,1), as well
as three GARCH(1,1) models with either a normal, a Student-t or a skew Student-t
conditional distribution.

The computer code for the calculations is shown in Listings 2.1 and 2.2.

2.6.1 Estimation results

Estimation results are presented in Table 2.3. Standard errors, or t-tests, are not shown
in the interest of space; instead, we use likelihood ratio (LR) tests to compare the
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Table 2.3. ARCH and GARCH models estimated using daily S&P 500 returns from January 1,

2005 to December 31, 2009

ARCH(1) ARCH(4) GARCH(4,1) GARCH(1,1)

Conditional Normal Normal Normal Normal Student-t Skew

distribution Student-t

Log-likelihood �2,208.4 �1,912.7 �1,825.9 �1,836.9 �1,812.6 �1,804.4

! 1.366 0.332 0.024 0.012 0.007 0.008

�1 0.555 0.058 0.000 0.081 0.084 0.087

�2 0.292 0.017

�3 0.286 0.057

�4 0.297 0.067

�1 0.842 0.910 0.915 0.912

� 6.813 6.706

Skew 0.871

Data source: Yahoo Finance.



models. Such a procedure is equivalent to comparing the significance of one parameter
with a t-test, but has the advantage of allowing testing of the significance of multiple
parameters.
The ARCH models are comfortably stationary, while the normal GARCH(1,1)

has �þ � ¼ 0:991 < 1, and the Student-t variants have �þ � ¼ 0:999. This suggests
that the estimation procedure imposed a covariance stationarity restriction on the
parameters, at least for the nonnormal variants.
For the GARCH(1,1) models, the three common coefficients are quite similar.

The degree-of-freedom parameters are 6.8 and 6.7, and the skew parameter is 0.9.

2.6.2 Likelihood ratio tests

Results from likelihood ratio tests of the estimated models are shown in Table 2.4. The
ARCH(4) model is significantly better than ARCH(1), which is not surprising since we
would expect volatility dependence to last many days. By adding lagged volatility to get
the GARCH(4,1) model, the fit continues to improve, and when GARCH(4,1) is
compared with GARCH(1,1), GARCH(4,1) is significantly better.
Using the Student-t as a conditional distribution significantly improves on the normal

version, while the skew Student-t is better than the symmetric Student-t.
Further testing would enable us to better identify the best model; for example, would a

skew Student-t GARCH(1,1) be equivalent to a skew Student-t GARCH(4,1) or even a
skew Student-t GARCH(2,1)? Furthermore, we did not explore whether more lags of
volatility would improve the model; for example, whether a GARCH(1,2) is better than
a GARCH(1,1).

2.6.3 Residual analysis

Another way of comparing the models is by analyzing the residuals

ẑtzt ¼
yt
�̂t�t

of the models using methods such as the Jarque–Bera test for normality and the Ljung–
Box test for autocorrelations.
We show the residual analysis for the four Gaussian models in Table 2.5. The

ARCH(1) and ARCH(4) models fail to capture volatility clusters and fail the normality
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Table 2.4. Likelihood ratio tests for the results in Table 2.3

Unrestricted Restricted LR Restrictions p-value

model model statistic

ARCH(4) ARCH(1) 591.4 3 0.000

GARCH(4,1) ARCH(4) 173.5 1 0.000

GARCH(4,1) GARCH(1,1) 21.9 3 0.000

t-GARCH(1,1) GARCH(1,1) 48.5 1 0.000

Skew-t-GARCH(1,1) t-GARCH(1,1) 16.4 1 0.000



tests for the residuals. We do not find significant autocorrelations in the residuals of the
GARCH models, but they still failed the test for normality of the residuals. This
indicates that for applications where the tails of the distribution are of importance,
such as value-at-risk, better models are to be preferred, perhaps the Student-t GARCH
model.

2.6.4 Graphical analysis

Figure 2.2 shows graphical analysis of results for the normal GARCH(1,1) model.
Panels (a) and (b) show index values and returns, panel (c) shows conditional volatility
and panel (d) the returns with the doubled positive and negative volatility superimposed.

Superficial graphical inspection indicates that we seem to have done a good job
capturing the salient features of the data. This is confirmed by panel (e) which shows
the ACF of squared residuals, demonstrating that there is little evidence of volatility
clusters in the residuals, which indicates that the model has captured the clustering
phenomenon well. However, panel (f ) shows that the residuals are still fat tailed in
the QQ plot. This is consistent with the residual analysis in Table 2.4.

The QQ plot further seems to indicate that deviation from conditional normality
is stronger on the downside, which is consistent with the Student-t skew parameter
being significant. These results suggest that tail thickness is asymmetric, with the
lower tail thicker than the upper tail. This is also consistent with results from
Section 1.5.

2.6.5 Implementation

It is straightforward to estimate GARCH models in R and Matlab; Listing 2.1 shows
the former and Listing 2.2 the latter. We start by loading the data into vector y. In
both cases the mean is subtracted from the returns, which are also multiplied by
100.

The R function for GARCH estimation is garchFit from the fGarch library, while
Matlab uses the garchfit function from the GARCH toolbox. Other functions exist for
both languages. These functions have a lot of options, and it is advisable to consult the
manual for the functions before using them.
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Table 2.5. Analysis of residuals for results in Table 2.3—p-values

Model Jarque–Bera test Ljung–Box test

(20 squared lags)

ARCH(1) 0.00 0.00

ARCH(4) 0.00 0.00

GARCH(4,1) 0.00 0.99

GARCH(1,1) 0.00 0.53
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(a) S&P 500 index values (b) S&P 500 index returns

(c) Conditional volatility

(d) Returns with �2�̂�t

(e) ACF of squared residuals (f ) QQ plot of residuals

Figure 2.2. Analysis of the GARCH(1,1) results in Table 2.3.



Listing 2.1. ARCH and GARCH estimation in R

p = get.hist.quote(instrument = "^gspc", start = "2005-01-01",

end="2009-12-31",quote="AdjClose",quiet=T

# download the prices

y=diff(log(p))*100 # get returns and multiply them by 100 (so

they are expressed in returns)

y=y-mean(y) # de-mean (set mean to zero)

library(fGarch)

garchFit(~ garch(1,0), data = y,include.mean=FALSE)

garchFit(~ garch(4,0), data = y,include.mean=FALSE)

garchFit(~ garch(4,1), data = y,include.mean=FALSE)

garchFit(~ garch(1,1), data = y,include.mean=FALSE)

garchFit(~ garch(1,1), data = y,include.mean=FALSE,

cond.dist="std",trace=F)

res=garchFit(~ garch(1,1), data =

y,include.mean=FALSE,cond.dist="sstd",trace=F)

# saves output to res

plot(res) # shows various graphical analysis

Listing 2.2. ARCH and GARCH estimation in Matlab

stocks = hist_stock_data(’01012005’,’31122009’,’^gspc’);

p=stocks.AdjClose(end:-1:1);

y=diff(log(p))*100; % get returns and multiply them by 100 (so

they are expressed in returns)

y=y-mean(y) % de-mean (set mean to zero)

% GARCH toolbox

% ARCH(1)

spec = garchset(’P’, 0, ’Q’, 1,’C’,NaN)

garchfit(spec,y) % estimate the model, show estimation

progress and plots

% ARCH(4)

spec = garchset(’P’, 0, ’Q’, 4,’C’,NaN)

garchfit(spec,y)

% GARCH(4,1).

spec = garchset(’P’, 1, ’Q’, 4,’C’,NaN,’Display’,’off’);

% Surpess plot and progress reports

garchfit(spec,y);

% GARCH(1,1)

spec = garchset(’P’, 1, ’Q’, 1,’C’,NaN,’Display’,’off’);

[coeff, errors, LLF, innovations, sigmas,
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summary]=garchfit(spec,y); % Save all output

% t-GARCH(1,1)

spec = garchset(’P’, 1, ’Q’,

1,’C’,NaN,’Distribution’,’T’,’Display’,’off’);

p=garchfit(spec,y) ;

2.7 OTHER GARCH-TYPE MODELS

A large number of extensions to the GARCH model have been proposed, most of which
have seen very limited application. There are, however, two types of extensions that are
sometimes found in models in practical use: asymmetry in the impact of positive and
negative lagged returns (leverage effects) and allowing power in the volatility calculation
to be flexible. These effects are combined in the APARCH model.

2.7.1 Leverage effects and asymmetry

It has been empirically noted that stock returns are sometimes negatively correlated with
changes in volatility: volatility tends to rise following bad news and fall following good
news. This is called the ‘‘leverage effect’’, as it could be explained by firms’ use of
leverage. The leverage effect is not easily detectable in stock indices and is not expected
to be significant in foreign exchange.
Consider the relationship between the stock price and volatility of a corporation that

has high debt. As the stock price of the firm falls, its debt-to-equity ratio rises. This will
raise equity return volatility if the firm’s cash flows are constant.
In this case, one might expect negative returns today to lead to higher volatility

tomorrow, and vice versa for positive returns. This behavior cannot be captured by a
standard GARCH(1,1) model, since from (2.8) tomorrow’s volatility is quadratic in
today’s return, and the sign of today’s return does not matter. We need to introduce
asymmetry to capture leverage effects (i.e., the impacts of negative and positive shocks
have to be different).
A straightforward way to incorporate leverage effects in the GARCH model is to use

the model of Glosten et al. (1993) (GJR-GARCH, also known as threshold-GARCH).
Another widely used GARCH model allowing for leverage effects is the exponential

GARCH (EGARCH) model proposed by Nelson (1991). In this model, volatility
depends on the sign of lagged residuals. It can be written as:

log �2tþ1

� � ¼ !þ � Ztð Þ þ � logð�2t Þ þ 
 jZtj � E jZtjð Þð Þ
where 
 is a parameter to be estimated along with � and �. This equation contains the
difference between absolute residuals and the expectation of absolute residuals, which
gives rise to leverage effects. Another advantage of EGARCH over standard GARCH is
that by modeling log �t rather than �t, a positive estimate of volatility is ensured.
EGARCH is also attractive because it has direct connections with continuous time
finance.
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2.7.2 Power models

In studying the ACF of absolute returns and returns squared, sometimes absolute
returns have stronger autocorrelations than squared returns. Since the main reason
for past squared returns being included in the volatility equation is to capture the
magnitude of market movements, there is no reason to believe that absolute returns
would not serve the same function, or indeed any power of the absolute returns. This
is captured by the power GARCH models proposed by Taylor (1986) and Schwert
(1989).

2.7.3 APARCH

Ding et al. (1993) combine these two effects in the same model, the so-called asymmetric
power GARCH or APARCH model:

�
tþ1 ¼ !þ
XL1

i¼1

�iðjYt�ij � 	i Yt�iÞ
 þ
XL2

j¼1

�j�


t�j : ð2:13Þ

The APARCH model is one of the most complicated models in use. It allows for
leverage effects when 	 6¼ 0 and power effects when 
 6¼ 2.

2.7.4 Application of APARCH models

Unfortunately, it is not all that straightforward to estimate APARCHmodels since they
often suffer from the problems discussed in Section 2.4.4. In many cases estimation will
fail if the data sample is too short or exhibits structural breaks.

This is the case for the sample used in Section 2.6; the structural break in
volatility during the 2007–2009 crisis causes problems for estimation of APARCH
models using daily S&P 500 returns, and the sample size (1,258 observations) is too
short. Consequently, we extended the sample back to 1990 giving a total of 5,042
observations.

If we restrict the asymmetry parameter 	 to a fixed value, perhaps zero, or set the
power parameter 
 to, say, 2, estimation is feasible with a smaller sample. If we impose
both restrictions we just get the GARCH model back. If, however, we use a nonnormal
conditional distribution, like the Student-t, we need to estimate more parameters,
further complicating estimation.

We estimate four versions of the APARCH model: a model with one lag of past
returns and volatility as well as a conditionally normal distribution, a restricted version
of that with 
 ¼ 2 thus ruling out power effects, a model with a Student-t conditional
distribution, and finally a model with two lags.

Table 2.6 shows estimation results and Table 2.7 likelihood ratio test results. The
Student-t version of APARCH(1,1) is preferred over other one-lag variants, while
the conditionally normal APARCH(2,2) significantly improves upon APARCH(1,1)
at the 5% but not the 1% level. It would be of interest to estimate and compare other
versions of the model, such as one where 	 ¼ 0 and another with a skew Student-t
conditional distribution for both the one-lag and two-lag variants.
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2.7.5 Estimation of APARCH

It is straightforward to estimate APARCH models in R and Matlab. Start by taking a
look at Listings 2.1 and 2.2. The R garchFit function from Listing 2.1 has an option
for APARCH. In Matlab we can use the garchfit function from the GARCH toolbox,
but that only supports the GJR variant. The multigarch function from the UCSD
GARCH toolbox5 can be used for APARCH estimation.

Listing 2.3. Advanced ARCH and GARCH estimation in R

# normal APARCH(1,1)

garchFit(~ aparch(1,1),data=y,include.mean=FALSE,trace=F)

# fix delta at 2 (or to any value)
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Table 2.6. APARCH estimation with daily S&P 500 returns from January 1, 1990 to December 31,

2009

GARCH(1,1) APARCH(1,1) APARCH(2,2)


 ¼ 2

Conditional Normal Normal normal Student-t Normal

distribution

Log-likelihood �6,832.8 �6,750.6 �6,762.1 �6,674.1 �6,746.1

! 0.007 0.014 0.011 0.010 0.026

�1 0.063 0.056 0.036 0.051 0.039

�1 0.931 0.937 0.932 0.941 0.164

	1 0.856 0.762 0.912 1.000


 1.231 1.323 1.210

� 8.328

�2 0.070

	2 0.634

�2 0.717

Table 2.7. Likelihood ratio tests for results in Table 2.6

Unrestricted Restricted LR Restrictions p-value

model model statistic

APARCH(1,1) GARCH(1,1) 164.4 2 0.000

APARCH(1,1) APARCH(1,1), 
 ¼ 2 22.9 1 0.000

t-APARCH(1,1) APARCH(1,1) 153.1 1 0.000

APARCH(2,2) APARCH(1,1) 9.1 3 0.028

5 See http://www.kevinsheppard.com. We could have used the aparch() function from version 4.0 of the
Oxford MFE Toolbox available from the same website.



garchFit(~ aparch(1,1),data=y,include.mean=FALSE,trace=F,

include.delta=F,delta=2)

# Student-t conditional distribution

garchFit(~ aparch(1,1),data=y,include.mean=FALSE,cond.dist="std",

trace=F)

# normal APARCH(2,2)

garchFit(~ aparch(2,2),data=y,include.mean=FALSE,trace=F)

Listing 2.4. Advanced ARCH and GARCH estimation in Matlab

% GJR GARCH(1,1)

spec = garchset(’P’, 1,’Q’,1,’C’,NaN,’VarianceModel’,’GJR’)

garchfit(spec,y)

2.8 ALTERNATIVE VOLATILITY MODELS

While the volatility models discussed above are a common way to produce volatility
forecasts, several alternatives have been proposed: primarily, implied volatility, realized
volatility and stochastic volatility. Of these the most frequently used is implied volatility,
which is the primary volatility measure in many applications and is used for firmwide
value-at-risk calculations in many financial institutions.

2.8.1 Implied volatility

Since the Black–Scholes (BS) formula for pricing European options is a function of the
volatility of the underlying asset, one can calculate implied volatility by taking the actual
transaction prices of options traded on an exchange and using the BS equation to back
out the volatility that implied the option price.

One of the attractions of implied volatilities is that they are based on current market
prices rather than historical data, and thus are sometimes termed ‘‘forward-looking’’
estimators of volatility. The biggest drawback is that they hinge critically on the
accuracy of the BS model, which relies on an assumption of constant conditional
volatility and normal innovations, something obviously not consistent with using
implied volatilities for forecasting time-varying volatility. This is associated with the
observed volatility ‘‘smile’’ or ‘‘smirk’’ in options markets.

If we plot implied volatilities from a range of options on the same underlying asset
with the same expiry date, differing only by their strike prices, we would find that deep
out-of-the-money options have implied volatilities that are much higher than at-the-
money options.6 If the BS model were correct, the plot should be a straight horizontal
line. Using implied volatilities for risk analysis also suffers from lack of reliable data,
since some options, especially long-dated ones, are very illiquid and their prices can be
hard to obtain.
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The VIX volatility index for the S&P 500 index is obtained from implied volatility
models.

2.8.2 Realized volatility

Realized volatility measures what actually happened in the past and is based on taking
intraday data, sampled at regular intervals (e.g., every 10 minutes), and using the data to
obtain the covariance matrix. The main advantage is that it is purely data driven and
there is no reliance on parametric models. The downside is that intraday data need to be
available; such data are often difficult to obtain, hard to use, not very clean and
frequently very expensive.
In addition, it is necessary to deal with diurnal patterns in volume and volatility when

using realized volatility (i.e., address systematic changes in observed trading volume and
volatility throughout the day). Moreover, the particular trading platform in use is likely
to impose its own patterns on the data. All these issues complicate the implementation of
realized volatility models.

2.8.3 Stochastic volatility

In the GARCH class of models, conditional volatility �t is known if the parameters
½!; �; �� are specified. In the stochastic volatility7 (SV) model the volatility process is a
function of an exogenous shock as well as past volatilities, so the process �t is itself
random, with an innovation term that is not known at time t.
A common way to express the SV model is:

Yt ¼ Zt�t

Zt � Nð0; 1Þ
�2t ¼ exp 
0 þ 
1 log �

2
t�1 þ 
2�t

� �
where the distribution of shocks is:

Zt

�t

� �
� N 0;

1

	

	

1

� �� �
:

The SV model has two innovation terms: Zt for the return itself and �t for the
conditional variance of the return. The parameter on the latent shock, 
2, provides a
testable hypothesis of the validity of the stochastic component of the SV model, and 	
provides correlation between returns and volatility, giving rise to the leverage effect.
The presence of the additional innovation term in SV models makes both estimation

and forecasting much more difficult than for GARCH models. This is because the
volatility process follows a separate distribution and cannot, therefore, be estimated
by past observations of returns.
Stochastic volatility models have several advantages over GARCH-type models. They

are more closely integrated with financial theory and can be written quite naturally in a
continuous time form, which is useful for option-pricing purposes. Volatility flow can be
interpreted as an exogenous information flow to the markets, and SV models allow for
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easy integration of volume into the model. However, SV models are not as common for
forecasting as GARCH models, and there is little evidence that they produce superior
volatility forecasts than simple GARCH models.

We estimated the SV model—where the leverage term (	) was set at zero—using the
simulated maximum likelihood method proposed by Danı́elsson (1994) from S&P 500
data used in the application in Section 2.6. The results are reported in Table 2.8, where

0; 
1; 
2 are the mean, AR1 parameter and standard deviation of the SV model, respec-
tively. The results from the GARCH(1,1) model in Table 2.3 are similar—here,
! ¼ 0:024, � ¼ 0:00 and � ¼ 0:91 with a log-likelihood of �1,836.9. The SV log-like-
lihood is higher than the GARCH(1,1) log-likelihood, but since the two models are not
nested it does not mean that the SV model is significantly better.

2.9 SUMMARY

This chapter has focused on univariate volatility forecasting. There are a large number
of competing methods available for volatility forecasting. We have identified the main
categories of volatility models and put a special focus on models that are relevant for
practical risk forecasting.

The univariate models the reader is most likely to encounter in practical applications
are EWMA, GARCH(1,1) and implied volatility models.

Some of the other models may be used in more specialized cases. For example,
because the APARCH model allows for more fine-grained modeling of volatility, it
may be used where more accuracy and sensitivity to particular volatility characteristics
is important, such as in portfolio analysis. Similarly, the realized volatility models may
be used in applications involving intraday data if both relevant data feeds and modeling
expertise are available. The reader is most likely to encounter stochastic volatility
models in applications involving derivative pricing.

The emphasis in this chapter has been on univariate models. The next chapter focuses
on multivariate volatility models, while Chapter 5 focuses on implementing risk forecast
models and Chapter 8 on model evaluation. Both Chapters 5 and 8 address the practical
application of models discussed in this chapter.
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Table 2.8. SV estimation results. Log-likelihood¼ �1,814.8

Parameter Estimate Standard error


0 0.000 0.004


1 0.994 0.000


2 0.130 0.016



The models in Chapter 2 addressed the volatility of a single asset. However, most
applications deal with portfolios where it is necessary to forecast the entire covariance
matrix of asset returns. The covariance matrix is important for applications such as asset
allocation, risk management, contagion, systemic risk and portfolio selection. In risk
management, multivariate volatility is an input into the value-at-risk calculation of a
portfolio of assets.
When forecasting a covariance matrix, we need to forecast both covariances and

variances, and at the same time take clustering into account. Furthermore, the returns
of one asset can be expected to affect the future volatilities of other assets in the portfolio
as well as correlations. This means that multivariate volatility models are generally
much more complicated than their univariate counterparts. For a recent survey of
volatility models see Francq and Zakoian (2010).
Because of the complications that arise in the implementation of multivariate vola-

tility models, most models preferred in theory have serious problems in practical
implementation. The emphasis in this chapter is on the more practical models, with
the more theoretically elegant models relegated to the end of the chapter.
The most important notation used in this chapter is:

St Conditional covariance matrix

Yt;k Return on asset k at time t

yt;k Sample return on asset k at time t

yt ¼ fyt;kg Vector of sample returns on all assets at time t

y ¼ fytg Matrix of sample returns on all assets and dates

A and B Matrices of parameters

R Correlation matrix

3.1 MULTIVARIATE VOLATILITY FORECASTING

Consider the univariate volatility model:

Yt ¼ �tZt

where Yt are returns; �t is conditional volatility; and Zt are random shocks. If there are
K > 1 assets under consideration, it is necessary to indicate which asset and parameters

3
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are being referred to, so the notation becomes more cluttered:

Yt;k ¼ �t;kZt;k

where the first subscript indicates the date; and the second subscript the asset.
The convention in the literature on multivariate volatility models is to refer to

multivariate returns (and covariance matrices) by asset followed by time (i.e., Yk;t),
and not time followed by asset as in Yt;k. This means the matrix of returns must be
of dimensions K � T and not T � K . However, the latter would seem more natural
where returns on each asset separately compose the columns, while the rows are all
returns on a given day. Here we set Yt;k ¼ Ytime;asset.

The conditional covariance matrix of returns is denoted by �t and the conditional
covariance between two assets i and j is indicated by:

CovðYt;i;Yt; jÞ 	 �t;ij :

The number of volatility terms (own volatility and covariances) in the covariance matrix
increase more rapidly than the number of assets. There are three unique terms in the
two-asset case (two volatilities and one covariance), six unique terms in the three-asset
case (three volatilities and three covariances), ten unique terms in the four-asset case
(four volatilities and six covariances), etc.

In the three-asset case, the conditional covariance matrix takes the following form
(note that �t;ij ¼ �t; ji):

�t ¼
�t;11 �t;12 �t;13

�t;12 �t;22 �t;23

�t;13 �t;23 �t;33

0B@
1CA:

The explosion in the number of volatility terms, as the number of assets increases, is
known as ‘‘the curse of dimensionality’’. It complicates the estimation of multivariate
volatility models and is the main reason much fewer such models exist than univariate
volatility models.

A difficult problem that often arises in multivariate volatility models is the lack of
positive semi-definiteness. For a single-asset volatility we need to ensure that the variance
is not negative and, similarly, a covariance matrix should be positive semi-definite.

This ensures that portfolio variance will always be nonnegative regardless of the
underlying portfolio. Unfortunately, ensuring positive semi-definiteness can be
challenging for many, otherwise good, models.

3.1.1 Application

We demonstrate implementation of some of the models presented in this chapter from
two daily stock returns, Microsoft and IBM, from January 1, 2000 to December 31,
2009.

Listings 3.1 and 3.2 show how prices can be downloaded into R and Matlab,
respectively, and then transformed into vector y. We subtract the mean from the
returns, which are also multiplied by 100.
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Listing 3.1. Download stock prices in R

library("tseries") # the two prices are downloaded

separately

p1 = get.hist.quote(instrument = "msft",start = "2000-01-01",

end = "2009-12-31",quote="AdjClose")

p2 = get.hist.quote(instrument = "ibm", start = "2000-01-01",

end = "2009-12-31",quote="AdjClose")

p = cbind(p1,p2) # prices combined in one vector

y = diff(log(p))*100 # convert prices to returns

y[,1] = y[,1]-mean(y[,1]) # subtract mean

y[,2] = y[,2]-mean(y[,2])

T = length(y[,1])

Listing 3.2. Download stock prices in Matlab

stocks = hist_stock_data(’01012000’,’31122009’,’msft’,’ibm’)

p1 = stocks(1).AdjClose(end:-1:1); % use the adjusted closing

prices

p2 = stocks(2).AdjClose(end:-1:1);

p = [p1 p2]; % combine the two prices in one

vector

y = diff(log(p))*100; % convert prices to returns

y(:,1)=y(:,1)-mean(y(:,1)); % subtract mean

y(:,2)=y(:,2)-mean(y(:,2));

T = length(y);

It is assumed in the listings that follow that the return vector y has already been loaded
(i.e., that the code in Listings 3.1 and 3.2 has been run).

3.2 EWMA

Perhaps the easiest multivariate volatility model to implement is EWMA. The univariate
form of the model from (2.2) is:

�̂�2t ¼ ��̂�2t�1 þ 1� �ð Þy2t�1;

where the weight � is assumed to be known—often set at 0:94 for daily returns. The
multivariate form of the model is essentially the same:

�̂�t ¼ ��̂�t�1 þ 1� �ð Þy0t�1yt�1 ð3:1Þ
with an individual element given by:

�̂�t;ij ¼ ��̂�t�1;ij þ 1� �ð Þyt�1;i yt�1; j; i; j ¼ 1; . . . ;K: ð3:2Þ
The covariance matrix can be forecast by applying (3.2) separately to each asset and pair
of assets in the portfolio. Implementing the EWMAmodel is thus straightforward, even
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for a large number of assets. Coupled with the fact that the covariance matrix is
guaranteed to be positive semi-definite, it is not surprising that EWMA is often the
chosen method.

The downside is its restrictiveness, both because of the simple structure and the
assumption of a single and usually non-estimated �. In applications, this often means
that covariances seem to move excessively (as suggested by Figure 3.1, see p. 66). It is of
course not hard to estimate � with QML.
It is simple to implement EWMA in R and Matlab. �1 is usually set as the

unconditional volatility of the data and some 30 days of data are used to update the
volatility forecast before it is used. This is sometimes called burn time, and takes into
account the error induced into the model by setting the value of �1 to an arbitrary value.

Listing 3.3. EWMA in R

EWMA = matrix(nrow=T,ncol=3) # create a matrix to hold the

covariance matrix for each t

lambda = 0.94

S = cov(y) # initial (t=1) covariance matrix

EWMA[1,] = c(S)[c(1,4,2)] # extract the variances and

covariance

for (i in 2:T){ # loop though the sample

S = lambda * S + (1-lambda) * t(y[i]) %*% y[i]

EWMA[i,] = c(S)[c(1,4,2)] # convert matrix to vector

}

EWMArho = EWMA[,3]/sqrt(EWMA[,1]*EWMA[,2])

# calculate correlations

Listing 3.4. EWMA in Matlab

EWMA = nan(T,3); % create a matrix to hold the covariance

matrix for each t

lambda = 0.94

S = cov(y) % initial (t=1) covariance matrix

EWMA(1,:) = S([1,4,2]); % extract the variances and covariance

for i = 2:T % loop though the sample

S = lambda * S + (1-lambda) * y(i,:)’ * y(i,:)

EWMA(i,:) = S([1,4,2]); % convert matrix to vector

end

EWMArho = EWMA(:,3) ./ sqrt(EWMA(:,1) .* EWMA(:,2))

% calculate correlations

The three commands

.* ./ .̂

are used for element-by-element operations rather than matrix multiplication.
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Note that the EWMA matrix is initialized as EWMA = nan(T,3) in Matlab. It is
important for reasons of efficiency to predefine the matrix holding the volatilities.
However, we could have set it to ones or zeros but instead chose nan. In both R
and Matlab this stands for not a number (NaN). The main difference between R and
Matlab is that in the former matrix() creates a matrix of NaNs by default. The reason
we prefer to initialize the matrix of volatilities by NaN is so that we know which entries
of the matrix contain the result of a calculation (i.e., those elements of EWMA not set to
NaN after the procedure has run). Ultimately, this helps debugging and ensuring the
code runs correctly. We use the same device throughout this book.

Dimension issues

When doing matrix multiplication, we need to make sure the dimensions of the matrices
match up. In R we use matrix() to transform data into a matrix and can use the
transpose function t() to obtain the correct dimensions. It is necessary that the % sign
precedes and follows the * sign for matrix multiplications in R (i.e., %*% multiplies
matrices). In Matlab when we write x=[2;3] it becomes a column matrix, while
y=[2 3] is a row vector.
Suppose the row matrix a contains returns

a ¼ ð�0:0140; 0:0054Þ:
Depending on the transpose, when multiplied into itself, it either yields a 2-by-2 matrix
or a scalar. First, an example in R:

> a %*% t(a)

[1,] 0.0001958697 �7.625740e-05

[2,] �0.0000762574 2.968908e-05

#

> t(a) %*% a

[,1]

[1,] 0.0002255588

and then Matlab:

>> a

a = �0.0140 0.0054

%

>> a* a’

ans =

2.2556e-04

>> a’* a

ans =

1.0e-03 *

0.1959 �0.0763

�0.0763 0.0297
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If we did the calculation incorrectly with the matrices wrongly transposed—such as
t(a)%*%a or a*a’—we get an incorrect value, but we would not receive any
warning. However, if a was a column vector, we would have to reverse the transpose.
Hence, it is advisable to verify matrix multiplication manually.

3.3 ORTHOGONAL GARCH

This section, and the next, present practical multivariate-volatility-forecasting models
where the forecasting of univariate volatility is separated from correlation forecasting.
The reason is that it is usually very hard to estimate multivariate GARCH models,
suggesting that in practice alternative methodologies for obtaining the covariance
matrix are needed.

The reason one needs to estimate the entire conditional covariance matrix of returns
in one go is that the correlations are not zero. The orthogonal approach addresses this
problem by linearly transforming the observed returns matrix into a set of portfolios
with the key property that they are uncorrelated, implying we can forecast their
volatilities separately. This makes use of principal components analysis (PCA).

This approach is known as orthogonal GARCH, or OGARCH, because it involves
transforming correlated returns into uncorrelated portfolios and then using GARCH to
forecast the volatilities of each uncorrelated portfolio separately.1

3.3.1 Orthogonalizing covariance

The first step in the OGARCH approach is to transform the return matrix y into
uncorrelated portfolios u. Denote the sample correlation matrix of y by R̂R. We then
calculate the K � K matrix of eigenvectors of R̂R, denoted by �. Then u is defined by:

u ¼ �� y:

u has the same dimensions as y and possesses the property that different rows are
uncorrelated so we can run a univariate GARCH or a similar model on each row in
u separately to obtain its conditional variance forecast, denoted by Dt. We then obtain
the forecast of the conditional covariance matrix of the returns by:

�̂�t ¼ �D̂Dt�
0:

This implies that the covariance terms can be ignored when modeling the covariance
matrix of u, and the problem has been reduced to a series of univariate estimations.

3.3.2 Implementation

It is simple to implement OGARCH in R and Matlab. R uses the gogarch library whilst
Matlab uses the UCSD GARCH toolbox.
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Listing 3.5. OGARCH in R

library(gogarch)

res = gogarch(y,formula = �garch(1,1),garchlist =

c(include.mean=FALSE))

OOrho = ccor(res) # gets a vector of correlations

Listing 3.6. OGARCH in Matlab

% UCSD GARCH

[par, Ht] = o_mvgarch(y, 2,1,1);

Ht = reshape(Ht,4,T)’;0 % Ht comes from o_mvgarch as a 3D matrix,

this transforms it into a 2D matrix

OOrho = - Ht(:,3) ./ sqrt(Ht(:,1) .* Ht(:,4));

% gets a vector of correlations

3.3.3 Large-scale implementations

In the procedure outlined above all the principal components (PCs) were used to
construct the conditional covariance matrix. However, it is possible to use just a few
of the columns (i.e., those PCs that correspond to most of the variation in y). The highest
eigenvalue corresponds to the most important principle component—the one that
explains most of the variation in the data.
Such approaches are in widespread use because it is possible to construct the

conditional covariance matrix for a very large number of assets. In a highly correlated
environment, just a few principal components are required to represent system variation
to a very high degree of accuracy. This is much easier than forecasting all volatilities
directly in one go.
This method also allows estimates for volatilities and correlations of variables to be

generated even when data are sparse (e.g., in illiquid markets). Moreover, the use of
PCA guarantees the positive definiteness of the covariance matrix.
PCA also facilitates building a covariance matrix for an entire financial institution by

iteratively combining the covariance matrices of the various trading desks, simply by
using one or perhaps two principal components. For example, one can create the
covariance matrices of small caps and large caps separately and use the first principal
component to combine them into the covariance matrix of all equities. This can then be
combined with the covariance matrix for fixed income assets, etc.

3.4 CCC AND DCC MODELS

A related approach is to separate out correlation modeling from volatility modeling
within a GARCH-type framework. We can divide the estimation into two parts: one for
the correlation matrix and the other for the variances. We discuss two such models
below: the CCC and DCC.
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3.4.1 Constant conditional correlations (CCC)

Bollerslev (1990) proposes the constant conditional correlations (CCC) model where
time-varying covariances are proportional to the conditional standard deviation.

In the CCC model the conditional covariance matrix ŜSt consists of two components
that are estimated separately: sample correlations R̂R and the diagonal matrix of time-
varying volatilities D̂Dt. Then, the covariance forecast is given by:

ŜSt ¼ D̂DtR̂RD̂Dt; ð3:3Þ
where

D̂Dt ¼
�̂�t;1 0 0

0 . .
.

0

0 0 �̂�t;K

0BB@
1CCA:

The volatility of each asset �̂�t;k follows a GARCH process or any of the univariate
models discussed in the last chapter.

This model guarantees the positive definiteness of ŜSt if R̂R is positive definite. The CCC
is a very simple model and easy to implement. Since matrix D̂Dt has only diagonal
elements, we can estimate each volatility separately.

However, simplicity does not come without cost. In particular, the assumption of
correlations being constant over time is at odds with the vast amount of empirical
evidence supporting nonlinear dependence. Consequently, the DCC model below is
preferred to the CCC model.

3.4.2 Dynamic conditional correlations (DCC)

Engle (2002) and Tse and Tsui (2002) propose the dynamic conditional correlations
(DCC) model as an extension to the CCC model to correct the latter’s main defect:
constant correlations. The Engle (2002) model is described below.

Let the correlation matrix from (3.3) be time dependent, so R̂Rt is composed of a
symmetric positive definite autoregressive matrix Q̂Qt:

R̂Rt ¼ Q̂Q0
tQ̂Qt

with Q̂Qt given by:

Q̂Qt ¼ 1� 	 � �ð ÞQþ 	Y 0
t�1Yt�1 þ �Q̂Qt�1

where Q is the K � Kð Þ unconditional covariance matrix of Y ; and 	 and � are
parameters such that 	; � > 0 and 	 þ � < 1 to ensure positive definiteness and
stationarity, respectively.

One advantage of the DCC model is that it can be estimated in two steps. When the
model is estimated by maximum likelihood, we can ‘‘break’’ the log-likelihood function
into two parts: one for parameters determining univariate volatilities and another for
parameters determining the correlations. This is known as the DCC two-step estimation
technique. Large covariance matrices can be consistently estimated using this technique
without requiring too much computational power.

One shortcoming of the DCC model is that parameters 	 and � are constants, which
implies that the conditional correlations of all assets are driven by the same underlying
dynamics—often an unrealistic assumption.
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3.4.3 Implementation

It is simple to implement DCC in R and Matlab. R uses the dcc.estimation
function from the ccgarch library whilst Matlab uses the dcc_mvgarch function from
the UCSD GARCH library. The dcc.estimation function is a bit cumbersome to
use because all starting parameters need to be specified before estimation. It is better to
first estimate a univariate GARCH model in order to use its parameter estimates as
starting values.

Listing 3.7. DCC in R

library(ccgarch)

# estimate univariate GARCH models to get starting values

f1 = garchFit(~ garch(1,1), data=y[,1],include.mean=FALSE)

f1 = f1@fit$coef

f2 = garchFit(~ garch(1,1), data=y[,2],include.mean=FALSE)

f2 = f2@fit$coef

# create vectors and matrices of starting values

a = c(f1[1], f2[1])

A = diag(c(f1[2],f2[2]))

B = diag(c(f1[3], f2[3]))

dccpara = c(0.2,0.6)

# estimate the model

dccresults = dcc.estimation(inia=a, iniA=A, iniB=B,

ini.dcc=dccpara,dvar=y, model="diagonal")

# Parameter estimates and their robust standard errors

dcc.results$out

DCCrho = dccresults$DCC[,2]

Listing 3.8. DCC in Matlab

% UCSD GARCH

[p, lik, Ht] = dcc_mvgarch(y,1,1,1,1)

Ht = reshape(Ht,4,T)’;

DCCrho = Ht(:,3) ./ sqrt(Ht(:,1) .* Ht(:,4)); % correlations

3.5 ESTIMATION COMPARISON

The above listings demonstrate estimation of the EWMA, OGARCH and DCC models
using data discussed in Section 3.1.1.
Instead of showing model parameters or likelihood values—which would not be very

informative since the three models are not nested—we simply show correlations.
Figure 3.1 shows a plot of the stock prices (scaled to start at $100) in panel (a), the two

returns in panel (b) and finally the correlation forecasts in panel (c), which also shows
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(a) Scaled prices

Figure 3.1. Multivariate volatility analysis for dailyMicrosoft and IBM returns from 2000 to 2009.

(c) Correlations, with constant correlation 49%

(b) Returns



the unconditional correlation of the data (49%). We focus on the main year of the crisis
(i.e., 2008) in Figure 3.2, where it is easier to identify individual correlations and their
drivers. Listings 3.9 and 3.10 show how we combine correlations from the three
models—Listings 3.3 to 3.8—into one variable, which is then plotted.

Listing 3.9. Correlation comparison in R

matplot(cbind(EWMArho,DCCrho,OOrho),type=’l’)

legend(’bottomright’,c("EWMA","DCC","OOrho"),lty=1:3)

Listing 3.10. Correlation comparison in Matlab

plot([EWMArho,DCCrho,OOrho])

legend(’EWMA’,’DCC’,’OOrho’,’Location’,’SouthWest’)

The correlation forecasts for EWMA seem to be most volatile, which is not surprising
considering how the correlations are directly modeled in (3.1). A time period of a few
days where one stock appreciates while the other falls in price such that their return
product yt;1 yt;2 is negative sharply drives correlations down—even to the point of
becoming negative.
Not surprisingly, both DCC and OGARCH models have more stable correlations,

with the OGARCH having the lowest fluctuations. The large swings in EWMA correla-
tions might be an overreaction, but significant compromises are the price paid for
tractability by all three models, and all three correlation forecasts reflect these
compromises.
It is easier to see individual correlations in Figure 3.2 which focuses on 2008. For

example, IBM is on an upward trend in July and August, while Microsoft is mostly
falling in price, with both having relatively low volatility during that period. All three
correlation measures fall sharply with EWMA going from about 70% to about 10% in
just a few days in July. The correlations then reach their previous level by August.
Throughout the year, EWMA exhibits the biggest swings and OGARCH the smallest,
with OGARCH having the highest average correlations.

3.6 MULTIVARIATE EXTENSIONS OF GARCH

It is conceptually straightforward to develop multivariate extensions of the univariate
GARCH-type models discussed in the last chapter—such as multivariate GARCH
(MVGARCH). Unfortunately, it is more difficult in practice because the most obvious
model extensions result in the number of parameters exploding as the number of
assets increases. It is sometimes possible to simplify the model structure.2 All such
simplifications come at some cost to model flexibility.
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(a) Scaled prices

Figure 3.2. Focus on the crisis: Microsoft and IBM in 2008.

(c) Correlations, with constant correlation 49%

(b) Returns
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3.6.1 Numerical problems

Estimating MVGARCH models is usually quite challenging because of a range of
numerical problems that arise in estimation—we are much more likely to encounter
numerical problems for multivariate models than for univariate models. Programming
the likelihood function is usually quite straightforward, while addressing all the
subsequent numerical problems is not.
Multivariate stationarity constraints are much more important for MVGARCH

models than in the univariate case. When estimating a univariate GARCH model, even
if covariance stationarity is violated, the estimation proceeds without hindrance with no
numerical problems encountered. This means that we still obtain a volatility forecast
even if �þ � > 1. This is generally not the situation for the MVGARCH models
discussed in this section. The conditions for covariance stationarity for these models
are much more complicated than for univariate models; moreover, a parameter set
resulting in violation of covariance stationarity might also lead to unpleasant numerical
problems. For example, when covariant stationarity conditions are violated, �t may no
longer be invertible leading to a NaN when evaluating the likelihood.
Numerical algorithms need to address these problems, thus complicating the

programming process considerably. Furthermore, for end-users to be aware of them
they will need to be relatively expert. We could not find any reliable implementations of
multivariate GARCH models in either Matlab or R, and for these reasons we simply
show the models, but do not implement them. Perhaps the best implementation is
the G@RCH package for the Ox language, see Laurent (2009) and http://
www.garch.org/.

3.6.2 The BEKK model

There are a number of alternative MVGARCH models available, but the BEKK model
is probably the most widely used.
In the BEKK3 model, proposed by Engle and Kroner (1995), the matrix of

conditional covariances is a function of the outer product of lagged returns and
lagged conditional covariances, each pre-multiplied and post-multiplied by a parameter
matrix. This results in a quadratic function that is guaranteed to be positive semi-
definite.
The BEKK model has several useful features besides positive semi-definiteness. It

allows for interactions between different asset returns and volatilities, and is relatively
parsimonious in terms of parameters required.
The two-asset, one-lag BEKK(1,1,2) model is defined as:

�t ¼ ��0 þ A0Y 0
t�1Yt�1Aþ B0�t�1B

3 The acronym comes from the names of authors proposing this model: Baba, Engle, Kraft and Kroner.
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The general BEKK(L1,L2,K) model is given by:

�t ¼ ��0 þ
XK
k¼1

XL1

i¼1

A0
i;kY

0
t�iYt�iAi;k þ

XK
k¼1

XL2

j¼1

B0
j;k�t�jBj;k: ð3:4Þ

The number of parameters in the BEKK(1,1,2) model is Kð5K þ 1Þ=2 (i.e., 11 in the
two-asset case).

One drawback of the BEKK model is that it contains too many parameters that do
not directly represent the impact of lagged squared returns or lagged volatility forecasts
on elements of the covariance matrix. This implies its parameters may be hard to
interpret. Furthermore, many parameters are often found to be statistically insignificant,
which suggests the model may be overparameterized.

The overwhelming difficulty with estimating BEKK models is the high number of
parameters, leading to the conclusion that the number of assets needs to be quite small
for estimation to be feasible.

3.7 SUMMARY

Estimating multivariate volatility models is considerably more difficult than estimating
univariate models. Consequently, any implementation of multivariate volatility
inevitably implies a number of compromises.

At one end of the scale, we have multivariate extensions to univariate GARCH
models such as general and sophisticated models like the BEKK. They promise rela-
tively accurate covariance forecasts, but have practical limitations that prevent their use
in most applications, especially when the number of assets is not very small. Essentially,
such models are almost impossible to estimate in most cases.

At the other end we have the EWMA model which is easily implemented, but is very
limited in the type of volatility and correlation dynamics it can capture. The weaknesses
of EWMA become especially apparent in correlation forecasting as manifested in
Section 3.5.

The OGARCH and DCC models sit in between, and are based on separating
univariate estimation from correlation estimation. OGARCH is based on estimating
a constant correlation matrix prior to univariate estimations, similar to the CCC model.
The DCC model allows the correlation matrix to be dynamic and therefore is more
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general. However, this limits the number of assets whose covariance matrix can be
forecast at any one time.
One advantage of the OGARCH approach is that it is well suited to large-scale

problems, such as obtaining the covariance matrix for an entire financial institution.
This is because we can use a principal components analysis (PCA) approach to build up
the covariance matrix iteratively, like a house of Lego blocks, and use the first principal
components (PCs) to join them up. However, it would be straightforward to combine a
PCA approach with other methods. For example, one could use DCC for a desk with
many assets and BEKK for a smaller desk whose assets have complicated interactions,
and finally use PCA to create a combined covariance matrix.
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There is no universal definition of what constitutes risk. On a very general level, financial
risk could be defined as ‘‘the chance of losing part or all of an investment’’, but a large
number of such statements could equally be made, most of which would be contra-
dictory. When using the concept of risk within financial institutions, a more formal
definition is required as one of their key functions is to actively manage financial risks.
The objective of this chapter is to introduce theoretical definitions of the most

common measures of risk: volatility, value-at-risk (VaR) and expected shortfall (ES).
Here, we make the simplifying assumption that the underlying statistical distributions
are known so as to focus on the concepts. The issue of estimating risk is dealt with
elsewhere: volatility models are addressed in Chapters 2 and 3 and historical simulation
in Section 5.2.
Furthermore, this chapter focuses on risk in basic assets, while Chapters 6 and 7 are

concerned with risk in options and bonds.
The specific notation used in this chapter is:

p Probability

Q Profit and loss

q Observed profit and loss

w Vector of portfolio weights

X and Y Refer to two different assets

’ð � Þ Risk measure

# Portfolio value

4.1 DEFINING AND MEASURING RISK

Consider Figure 4.1 which plots simulated returns on three different types of assets, all
with the same volatility and mean. Panel (a) shows observations from a normal dis-
tribution, panel (b) is from a Student-t(3) distribution which resembles typical financial
returns. Panel (c) shows returns that are zero most of the time but have occasional
large declines commonly associated with fixed exchange rates subject to sporadic
devaluations, defaultable bonds or certain derivative portfolios.
Standard mean variance analysis indicates that all three assets are equally risky and

preferable because their means and volatilities are the same. However, in reality market
participants view the risk in them quite differently and are likely to have a preference for
one of these assets. This suggests that some objective way to compare the risk in assets
with different distributions is desirable.

4

Risk measures



There is no obvious way to discriminate between the assets in Figure 4.1. We could try
to model the underlying distributions, but even if that could be done successfully it is
unlikely to help in decision-making. After all, each of these distributions has different
parameters and shapes making comparisons difficult.

In practice, the problem of risk comparisons is harder because the underlying
distribution of market prices and returns for various assets is unknown. One can try
to identify the distribution by maximum likelihood methods, or test the distributions
against other distributions by using methods such as the Kolmogorov–Smirnov test, but
generally such methods are not very robust. Practically, it is impossible to accurately
identify the distribution of financial returns.
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(a) Normal

(b) Student-tð3Þ

(c) Jumps

Figure 4.1. Random returns with volatility one and mean zero.



The task of forecasting financial risk is further complicated by the fact that financial
risk cannot be measured directly, but has to be inferred from the behavior of observed
market prices. This means financial risk cannot be measured in the same manner as
temperature is measured by a thermometer: risk is a latent variable. For example, at the
end of a trading day, the day’s return is known while the day’s risk is unknown. All we
can say is that risk is probably high if prices have fluctuated wildly during the day.
Consequently, measuring risk requires statistical modeling, which inevitably entails
making some assumptions.
Even if we knew the distribution of returns, as long as each asset was distributed

differently the comparison of risk between assets would be challenging.
The most common approach to the problem of comparing the risk of assets having

different distributions is to employ a risk measure that represents the risk of an asset as a
single number that is comparable across assets.
A subtle difference exists between the terms risk measure and risk measurement.

The former applies to definition of the method, the latter to a number.

Definition 4.1 (Risk measure) A risk measure is a mathematical method for
computing risk.

We discuss three risk measures below: volatility, value-at-risk and expected shortfall.

Definition 4.2 (Risk measurement) A number that captures risk. It is obtained by
applying data to a risk measure.

The objective of risk measures is to aid decision-making. As a consequence, the best way
to evaluate such measures is by discovering how well they perform at the intended task.
If different risk measures give the same outcome we choose the one that is easiest to
work with. If, on the other hand, they give different rankings of investment choices, we
have to think more carefully about which one to use.

4.2 VOLATILITY

Volatility, or the standard deviation of returns, is the main measure of risk in most
financial analysis. It is sufficient as a risk measure only when financial returns are
normally distributed. The reason is that all statistical properties of the normal dis-
tribution are captured by the mean and variance. However, as discussed in Chapter
1, an assumption of normality for returns is violated for most if not all financial
returns. For that reason the use of volatility as a risk measure can lead to misleading
conclusions.
This is demonstrated in Figure 4.1. If volatility were to be used to determine riskiness,

we would be indifferent between all three assets, as the volatility and mean are the same
in each case. Each asset would be at the same place on a mean–variance diagram.
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However, it is clear from the figures that the risk profiles of the three assets are quite
distinct, and in practice different investors would prefer different assets.

The level of inaccuracy from using volatility depends in practice on specific
applications. In many cases, extreme outcomes are not the concern and the use of
volatility might be relatively innocuous in such cases. The same cannot be said for most
applications in financial risk where volatility is likely to systematically underestimate
risk.

4.3 VALUE-AT-RISK

The most common risk measure after volatility is value-at-risk (VaR). It is a single
summary statistical measure of risk, it is distribution independent and it is a measure of
losses as a result of ‘‘typical’’ market movements.

While VaR has well-documented flaws (discussed below) it has remained the risk
measure of choice in the financial industry. When one considers its theoretical
properties, issues in implementation and ease of backtesting, the reason becomes clear.
VaR provides the best balance among the available risk measures and therefore
underpins most practical risk models.

Definition 4.3 (Value-at-risk) The loss on a trading portfolio such that there is a
probability p of losses equaling or exceeding VaR in a given trading period and a
ð1� pÞ probability of losses being lower than the VaR.

We may write it as VaRðpÞ or VaR100�p% to make the dependence on probability
explicit—for example, VaR(0.05) or VaR5%. The most common probability levels are
1% or 5%, but numbers higher and lower than these are often used in practice.

VaR is a quantile on the distribution of profit and loss (P/L). We indicate profit
and loss P/L on an investment portfolio by the random variable Q, with a particular
realization indicated by q. If we hold one unit of an asset, P/L would be indicated by:

Q ¼ Pt � Pt�1:

More generally, if the portfolio value is #:

Q ¼ #Y :

That is, the P/L is the portfolio value multiplied by the returns. The density of P/L is
denoted by fq �ð Þ. VaR is then given by:

Pr Q 
 �VaRðpÞ½ � ¼ p ð4:1Þ
or

p ¼
Z �VaRðpÞ

�1
fq xð Þdx: ð4:2Þ

We use a minus sign because VaR is a positive number and we are dealing with losses—
that is, the probability of losses being larger (more negative) than negative VaR.
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Example 4.1 The commodities’ trading book is worth £1 billion and daily
VaR1%¼ £10 million. This means we expect to lose £10 million or more once every
100 days, or about once every 5 months.

Figure 4.2 demonstrates how VaR is defined. Panel (a) shows the entire density of P/L,
while panel (b) zooms in on the left tail, where the shaded areas identify the 1% and 5%
probabilities (the area under the curve from negative infinity to negative VaR equals
0.01 and 0.05, respectively). Panel (c) shows the entire distribution of P/L. Finally, panel
(d) shows the left part of the distribution.

4.3.1 Is VaR a negative or positive number?

VaR can be alternatively presented as a negative or a positive number and, equivalently,
probabilities can be stated as close to one or close to zero—for example, VaR(0.95) or
VaR(0.05). This does not imply any inconsistency, it is simply how VaR is dealt with in
the real world.
VaR represents potential losses, but in informal speech both profits and losses can be

referred to as positive numbers. This convention can be confusing in places. Does a VaR
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increase mean a change from �$10 to �$5 or $10 to $15, and if the VaR probability
increases does it mean a change from 10% to 5% or 95% to 99%? Thus, it is safer to say
the numbers become smaller or more extreme implying, respectively, movement into the
distribution or out to the tails.

There is no convention in the literature on how to represent the sign of VaR. In this
book we take the more common approach of referring to VaR as a positive number
using low-probability terminology (e.g., 5%).

4.3.2 The three steps in VaR calculations

There are three steps in VaR calculations. First, the probability of losses exceeding VaR,
p, needs to be specified, with the most common probability level being 1%. Theory
provides little guidance about the choice of p; it is mainly determined by how the user of
the risk management system wishes to interpret the VaR number. Is a ‘‘large’’ loss one
that occurs with a probability of 1% or 5% or even 0.1%? VaR levels of 1%–5% are
very common in practice, but less extreme higher numbers (e.g., 10%) are often used in
risk management on the trading floor and more extreme lower numbers (e.g., 0.1%) may
be used for applications like economic capital, survival analysis or long-run risk analysis
for pension funds.

The second step is the holding period (i.e., the time period over which losses may
occur). This is usually one day, but can be more or less depending on particular
circumstances. Those who actively trade their portfolios may use a one-day holding
period, but longer holding periods are more realistic for institutional investors and
nonfinancial corporations. Many proprietary trading desks focus on intraday VaR,
perhaps from one hour to the next. The longer the holding period, the larger the
VaR. The one-day holding period is the easiest to use.

The third and final step is identification of the probability distribution of the profit and
loss of the portfolio. This is the most difficult and important aspect of risk modeling.
The standard practice is to estimate the distribution by using past observations and a
statistical model.

4.3.3 Interpreting and analyzing VaR

In interpreting and comparing VaR numbers, it is crucial to keep the probability and
holding period in mind since, without them, VaR numbers are meaningless. For
example, an identical portfolio could produce two different VaR estimates if risk
managers choose different values of p and holding periods. Obviously, a loss suffered
with a probability of only 1% exceeds a loss suffered with a probability of 5%.

Whether the VaR of a firm’s portfolio of positions is a relevant measure of the risk of
financial distress over a short period depends on the liquidity of portfolio positions and
the risk of extreme cash outflows. Adverse liquidity conditions lead to high transaction
costs such as wide spreads and large margin calls. VaR is unlikely to capture these
effects.

In risk management, VaR is a significant step forward with respect to traditional
measures based on sensitivities to market variables (e.g., the ‘‘greeks’’1). VaR is a
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universal concept and can be applied to most financial instruments. It summarizes in a
single number all the risks of a portfolio including interest rate risk, foreign exchange
risk, and so on, where we would need many greeks—one for each type of risk. It also
facilitates comparisons between different asset classes. The VaR measure combines loss
(quantile) and probability, whereas the greeks are essentially ‘‘what if ’’ scenarios that
say nothing about the probabilities of the ‘‘if ’’.

4.3.4 VaR and normality

A common misunderstanding among many commentators is that VaR implies
normality of returns. This is, of course, untrue; we can use any distribution in calculating
VaR provided the mean is defined.
Perhaps the most common distributional assumption for returns in the calculation of

VaR is normality—either conditional or unconditional.
In this case, volatility provides the same information as VaR, since in that case VaR is

simply a constant multiplied by volatility. We demonstrate this formally in the next
chapter.

4.3.5 Sign of VaR

In all the discussion on VaR so far, we have implicitly assumed that VaR is positive.
A manifestation of this implicit assumption is shown in Figure 4.2 where VaR is
comfortably positive.
However, there is no intrinsic reason for this to hold in generality. If the mean of the

density of P/L is sufficiently large, the probability p quantile, corresponding to VaR,
might easily end up on the other side of zero. This might happen, say, for very long
holding periods, For example, we demonstrate in Section 5.4 that over time the mean
return grows at rate T while the volatility grows at rate

ffiffiffiffi
T

p
. This means that as the

holding period increases eventually the mean will become so large as to make the VaR
switch signs.
One example of this is shown in Figure 4.3. In this case the VaR is meaningless. VaR is

meant to capture potential losses but here relevant losses have become profits. Conse-
quently, in such situations we need different approaches: either making the probability
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more extreme and hence keeping VaR on the right side of zero or using a different
measure of risk.

Since this can happen for very long holding periods, the usefulness of VaR as a risk
measure for annual, even quarterly, holding periods is very much in doubt.

4.4 ISSUES IN APPLYING VaR

There are three main issues that arise in the implementation of VaR:

1. VaR is only a quantile on the P/L distribution.
2. VaR is not a coherent risk measure.
3. VaR is easy to manipulate.

4.4.1 VaR is only a quantile

VaR is theminimum potential loss that a portfolio can suffer in an adverse outcome. But,
this raises the question: Why should we be interested in such a loss regardless of how
serious all the other losses are? VaR gives the ‘‘best of worst case scenarios’’ and, as
such, it inevitably underestimates the potential losses associated with a probability level.

For example, daily VaR at the 5% confidence level means that for 95 days out of 100
downward asset price movements are expected to be less than the VaR and for 5 days
out of 100 they are expected to exceed the VaR. As a consequence, 5% VaR is incapable
of capturing the risk of extreme movements that have a probability of less than 5%.

Indeed, because VaR is only a quantile on the distribution of P/L, the shape of the tail
before and after VaR need not have any bearing on the actual VaR number. For a
demonstration of this see Figure 4.4 and Example 4.2.

Figure 4.4 shows three possible, but unusual, asset return distributions. In panel (a)
density is bimodal: there is a small bump to the left of the VaR number, which would
mean a concentration of outcomes around that point. Panel (b) shows the uniform
distribution with its bounded tails, where we cannot get outcomes much below the VaR
number. By contrast, panel (c) shows a super-fat tail, where we may observe much more
negative outcomes.

Example 4.2 (A VaR paradox) Consider a portfolio X that consists of long option
positions that have a maximum downside of $100 where the worst 1% of cases over a
week all result in maximum loss. Another portfolio Y, which has the same face value
as X, consists of short futures positions that allow for an unbounded maximum loss.
We can choose Y such that its VaR is $100 over a week.

. In portfolio X, the 1% worst case losses are all $100.

. In portfolio Y, the 1% worst case losses range from $100 to some unknown high
value.

According to 1% VaR, however, both portfolios bear the same risk!
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4.4.2 Coherence

Artzner et al. (1999) study the properties a risk measure should have in order to be
considered a sensible and useful risk measure; they identify four axioms that risk meas-
ures ideally should adhere to. A risk measure that satisfies these four axioms is termed
coherent. Let a risk measure be denoted by ’ð�Þ, which could be volatility, VaR, or
something else.

Definition 4.4 (Coherent risk measures) Consider two real-valued random variables
(RVs): X and Y. A function ’ð�Þ : X ;Y ! R is called a coherent risk measure if it
satisfies for X, Y and constant c.

1. Monotonicity

X ;Y 2 V ; X 
 Y ) ’ðXÞ � ’ðYÞ:
If portfolio X never exceeds the values of portfolio Y (i.e., is always more negative,
hence its losses will be equal or larger), the risk of Y should never exceed the risk
of X.

2. Subadditivity

X ; Y ; X þ Y 2 V ) ’ðX þ YÞ 
 ’ðXÞ þ ’ðYÞ:
The risk to the portfolios of X and Y cannot be worse than the sum of the two
individual risks—a manifestation of the diversification principle.
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3. Positive homogeneity

X 2 V ; c > 0 ) ’ðcXÞ ¼ c’ðXÞ:
For example, if the portfolio value doubles (c ¼ 2) then the risk doubles.

4. Translation invariance

X 2 V ; c 2 R ) ’ðX þ cÞ ¼ ’ðXÞ � c:

Adding c to the portfolio is like adding cash, which acts as insurance, so the risk of
X þ c is less than the risk of X by the amount of cash, c.

The axiom of positive homogeneity is sometimes violated in practice. If it holds, risk is
directly proportional to the value of the portfolio. For example, suppose a portfolio is
worth $1,000 with risk $10, then doubling the portfolio size to $2,000 will double the risk
to $20. This will generally hold for small positions in liquid stocks, but as relative
shareholdings increase and/or the liquidity of a stock decreases, we may end up in a
situation where risk increases more rapidly than the portfolio size. If we try to sell the
stock and hence realize the profits or losses, we would exert a significant price impact.
That is, because we are trying to sell, the price of the stock will fall and the eventual
selling price will therefore be lower than the initial market price. In such a situation
positive homogeneity is violated; that is:

’ðcXÞ > c’ðXÞ:
Of the four axioms, the most relevant for our discussion is subadditivity. If it holds, a
portfolio of assets is measured as less risky than the sum of the risks of individual assets.
For risk measures that violate this axiom, one may erroneously reach the conclusion
that diversification results in an increase in risk.

VaR is not a coherent risk measure, since it does not always satisfy the axiom of
subadditivity (as demonstrated in Example 4.4). VaR is, however, subadditive under the
normal distribution where VaR is proportional to volatility, which is subadditive (as
demonstrated in Example 4.3).

Example 4.3 (Volatility is subadditive) Recall how portfolio variance is calculated
when we have two assets, X and Y, with volatilities �X and �Y , respectively, correla-
tion coefficient � and portfolio weights wX and wY:

�2
port ¼ w2

X�
2
X þ w2

Y�
2
Y þ 2wXwY��X�Y :

Rewriting, we get

�2
port ¼ ðwX�X þ wY�Y Þ2 � 2wXwY�X�Y þ 2wXwY��X�Y

¼ ðwX�X þ wX�YÞ2 � 2wXwYð1� �Þ�X�Y
where the last term is positive. Volatility is therefore subadditive because:

�port 
 wX�X þ wY�Y :
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Example 4.4 Consider an asset X such that there is a 4.9% chance of a return of
�100 and a 95.1% chance of a return of zero. In this case VaR5% ¼ 0 and
VaR1% ¼ 100. An example of this asset can be seen in Figure 4.5.

Suppose we hold an equally weighted portfolio of assets X and Y, where both have
the same distribution and are independent of each other. In this case the 5% VaR of
the portfolio is approximately 50. We therefore have the result:

VaR5%ð0:5X þ 0:5YÞ � 50 > VaR5%ðXÞ þ VaR5%ðYÞ ¼ 0þ 0:

In this example, the portfolio appears to have more risk than if all funds were invested
in a single asset because the probability of a loss is slightly below the VaR probability
for one asset (4.9% compared with 5%), but when we hold two assets the probability
of one asset losing money is higher than the VaR probability:

Prðat least one asset losing moneyÞ ¼ 1� ð0:951� 0:951Þ � 0:096:

4.4.3 Does VaR really violate subadditivity?

VaR is subadditive in the special case of normally distributed returns. Danı́elsson et al.
(2010a) study the subadditivity of VaR further and find that VaR is indeed subadditive
provided the tail index exceeds 2 (i.e., when the second moment, or variance, is defined
under a condition of multivariate regular variation).2 In other words, subadditivity for
the VaR is only violated when the tails are super fat. For example, in Figure 4.1 the
assets in panels (a) and (b) would not lead to violations of subadditivity of the VaR,
while the asset in panel (c) would.
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Figure 4.5. Two independent asset returns over 100 days.

2 See Section 9.2 for a detailed discussion on the meaning of these terms.



In practice, it is important to know whether particular portfolios suffer from
subadditivity violations. Most assets do not have tails that are so fat that subadditivity
may be violated. This includes most equities, exchange rates and commodities.

There are several assets that may suffer from subadditivity violation: those that are
subject to occasional very large negative returns such that their returns are similar to
those in Figure 4.1(c). Examples of such assets include exchange rates in countries that
peg their currency but are subject to occasional devaluations, electricity prices subject to
very extreme price swings and defaultable bonds where most of the time the bonds
deliver a steady positive return but may on occasion default and thus be subject to a
large negative return.

Subadditivity violation may also happen in ‘‘protection seller’’-type portfolios—those
that earn small amounts with a high level of probability and suffer very large losses with
very small probability—such as carry trades. This can also happen in certain derivatives
portfolios—such as those containing short options. Finally, insurance contracts provide
a steady return to the insurer, but occasionally a large loss happens making such
contracts typical of assets that suffer from subadditivity violation.

4.4.4 Manipulating VaR

An important weakness of VaR is how easily it can be manipulated. Because it is only a
quantile on the distribution of profit and loss, a financial institution will often find it easy
to move the quantile around and hence manipulate the VaR.

A simple way to lower the VaR is to reduce holdings of risky assets, but it can equally
well be lowered by using simple trading strategies involving options. In this case, VaR
could be lowered at the expense of overall profitability and even by increasing downside
risk. Hence, the risk reduction implied by lower VaR is illusionary: reported risk
(VaR(p)) is reduced, but actual risk increases and profits decrease.

One example of how this could be done is provided by Danı́elsson (2002) who
demonstrates how judicious use of put options can deliver any VaR desired.

Example 4.5 (VaR manipulation) Suppose the VaR before any manipulation is
VaR0 and that a bank would really like the VaR to be VaR1 where
0 > VaR1 > VaR0 (as in Figure 4.6). One way to achieve this is to write a put option
with a strike price below VaR0 and buy one with a strike above VaR1. The effect of this
will be to lower expected profit and increase downside risk.

Manipulation (as in Example 4.5) only succeeds in lowering the VaR at the target
probability; the VaR may actually increase for most other probability levels. Because
the price of the long put is higher than the price of the short put, the strategy will lead to
lower overall profits.

Generally, a bank is perfectly within its rights to execute such trading strategies as a
part of its normal activities; it might not be obvious to an outside observer that the
objective of the trading strategy is manipulation of reported risk.

While it is clear in Example 4.5 that manipulation has occurred, in most real-world
cases it would be almost impossible to identify such manipulation.
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4.5 EXPECTED SHORTFALL

A number of alternative risk measures have been proposed to overcome the problem of
lack of subadditivity in the VaR and/or provide more information about the tail shape.
Such measures typically summarize the entire tail of the distribution as a single-risk
measurement. The most common alternative risk measure is expected shortfall (ES), also
known as tail VaR, expected tail loss, among others. Artzner et al. (1999) demonstrate
that ES is subadditive. ES answers the question:

What is expected loss when losses exceed VaR?

Assuming the distribution function of the portfolio is continuous, the answer to the
question is given by a conditional expected value below the quantile associated with
probability p. Consequently, ES can distinguish between the levels of riskiness in the
manipulated and non-manipulated assets in Example 4.5. The fact that we are taking an
expectation means that ES is aware of the shape of the tail distribution while VaR is not.

Definition 4.5 (Expected shortfall) Expected loss conditional on VaR being violated
(i.e., expected profit/loss, Q, when it is lower than negative VaR):

ES ¼ �E½QjQ 
 �VaRðpÞ�:

A mathematical expectation is defined by:

EðXÞ ¼
Z 1

�1
xf xð Þdx:

In the case of ES, we are not taking expectation from �1 to 1, but from �1 to
�VaRðpÞ. The area under fqð�Þ in the interval ½�1;�VaRðpÞ� is less than one, implying
fqð�Þ is not a proper density function in this case. This can be overcome by defining a new
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Figure 4.6. Manipulation of the distribution of profit and loss.



density, fVaRð�Þ, obtained by scaling fqð�Þ up so the area under it becomes one (as can be
seen in Figure 4.7).

To derive a mathematical expression for ES, we first identify the correct density to
use:

1 ¼
Z 1

�1
fq xð Þdx

p ¼
Z �VaRðpÞ

�1
fq xð Þdx

so the tail density, fVaRð�Þ, is given by:

1 ¼
Z �VaRðpÞ

�1
fVaR xð Þdx ¼ 1

p

Z �VaRðpÞ

�1
fq xð Þdx:

The ES is then the negative expected value of P/L over the tail density fVaRð�Þ:

ES ¼� ½QjQ 
 �VaRðpÞ�

¼ �
Z �VaRðpÞ

�1
xfVaR xð Þdx: ð4:3Þ
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In Table 4.1, the VaR for different levels of confidence is computed along with the
corresponding ES for a portfolio with a face value of $1 and normally distributed P/L
with mean zero and volatility one. Equation (5.6) shows the formal derivation of ES
under normality. If the portfolio value and volatility equal one, then:

ES ¼ �� ��1 pð Þ� �
p

where � and � are the normal density and distribution, respectively.
Table 4.1 makes it clear that ES is not much lower than VaR itself far away in the tails.

This reflects the fact that the tails of a normal distribution decrease at a very rapid rate.
The ES to VaR ratio actually converges to one as the confidence level increases for the
normal distribution. For other distributions, the ES value can be far removed from the
VaR.
The code that R and Matlab use to compute the VaR and ES values in Table 4.2 is

given in Listings 4.1 and 4.2, respectively, where the normal density and inverse
distribution in R is dnorm and pnorm, respectively, and normpdf and norminv in
Matlab.

Listing 4.1. ES in R

p = c(0.5,0.1,0.05,0.025,0.01,0.001)

VaR = qnorm(p)

ES = dnorm(qnorm(p))/p

Listing 4.2. ES in Matlab

p = [0.5,0.1,0.05,0.025,0.01,0.001]

VaR = norminv(p)

ES = normpdf(norminv(p))./p

We further compare VaR and ES in terms of subadditivity in Example 4.6.
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Table 4.1. VaR and ES for a standard normal distribution

p 0.5 0.1 0.05 0.025 0.01 0.001

VaR 0 1.282 1.645 1.960 2.326 3.090

ES 0.798 1.755 2.063 2.338 2.665 3.367



Example 4.6 Consider two different bonds X and Y where we expect at most one of
them to default. The face value of both bonds is 100. If a bond defaults, there are two
possible outcomes with recovery values 70 and 90 as well as probabilities of 3% and
2%, respectively. All in all, the two bonds can have five possibles outcomes, the first
being when bond X has a loss of 30 and bond Y has no losses. The probability of this
outcome is 0.95� 0.03¼ 0.0285. The five possible outcomes are:

———————————————————————————
Outcome X Y X þ Y Probability
———————————————————————————

1 70 100 170 3%
2 90 100 190 2%
3 100 70 170 3%
4 100 90 190 2%
5 100 100 200 90%

———————————————————————————

Let us suppose that the initial value of each bond is the expected value of the payoff
100� 0.95þ 70� 0.03þ 90� 0.02¼ 98.9 and VaR5% is �(90� 98.9)¼ 8.9. For the
portfolio, VaR5% is �(170� 2 � 98.9)=27.8. The other values are:

———————————————————————————
X Y X+Y

———————————————————————————
Initial value 98.9 98.9 197.8
VaR 5% 8.9 8.9 27.8
ES 5% 20.9 20.9 27.8
———————————————————————————

where the ES calculation for X and Y is:

ð98:9� 70Þ � 0:03þ ð98:9� 90Þ � 0:02

0:05
¼ 20:9:

Given the first five outcomes, Pr(portfolio¼ 190)¼ 0.04, Pr(portfolio¼ 170)¼ 0.06
and Pr(portfolio¼ 200)¼ 0.9. So, at p¼ 0.05 we expect the portfolio value to be 170
and the loss to be 170� 2� 98.9¼ 27.8.

In Example 4.6, the VaR of the portfolio ($27.8) is bigger than the sum of individual
VaRs (2� $8.9¼ $17.8) violating subadditivity, while the ES for the portfolio ($27.8) is
smaller than the sum of individual ESs ($41.8) and does not violate subadditivity.

ES shares many advantages with VaR. It is universal and can be applied to almost any
instrument and almost any underlying source of risk. It is perhaps an even simpler
concept than VaR and any bank that has a VaR-based risk management system could
implement ES without much additional effort. At the same time, ES is subadditive while
VaR is not.

In spite of this theoretical advantage, in practice the vast majority of financial
institutions employ VaR and not ES. Essentially, there are two reasons for this:
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1. ES is measured with more uncertainty than VaR. The first step in ES estimation
is ascertaining the VaR and the second step is obtaining the expectation of tail
observations. This means that there are at least two sources of error in ES.

2. More importantly, ES is much harder to backtest than VaR because the ES
procedure requires estimates of the tail expectation to compare with the ES forecast.
Therefore, in backtesting, ES can only be compared with the output from a model
while VaR can be compared with actual observations.

Many more risk measures have been proposed, with most summarizing the tail in some
way or another. Fundamentally, though, a similar comparison could be made between
these risk measures, resulting in the same conclusion being reached.

4.6 HOLDING PERIODS, SCALING AND

THE SQUARE ROOT OF TIME

4.6.1 Length of holding periods

In practice, the most common holding period is daily, but many other holding periods
are in widespread use.
Shorter holding periods are common for risk management on the trading floor where

risk managers use hourly, 20-minute and even 10-minute holding periods. The reason is
they don’t want to see individual traders take on too much risk in a short period of time.
The focus here is often on 90% risk. Such intraday modeling of VaR is considerably
more difficult than daily risk because we have to take into account intraday patterns in
prices requiring high-frequency data feeds, which can be very costly and/or contain
mistakes. Furthermore, intraday modeling requires specially trained, and expensive, risk
modelers.
Modelling VaR with holding periods exceeding one day is also demanding.

Nonetheless, financial institutions often need to obtain multi-day VaR forecasts, mainly
because the Basel Accords require financial institutions to model risk using 10–day
holding periods.
The reason multi-day VaR forecasting is more difficult than single-day forecasting is

we are estimating events that occur rarely. With 1% VaR we only have one observation
of the event of interest out of a hundred. Most techniques need at least a few hundred
observations to estimate risk accurately. For a 10-day holding period, this means at least
3,000 trading days, or about 12 years.
In some special cases we can use data from 12 years ago (especially for large stock

market indices such as the S&P 500), but in most cases such data are fairly useless even if
available. For annual VaR we would need at least 300 years, and very few assets have
been traded that long. When more extreme probabilities are needed (e.g., 0.1%), data
requirements also increase accordingly.
Consequently, in applications requiring long holding periods and/or extreme

probabilities, different approaches are called for. The majority of risk managers employ
scaling laws to obtain such risk levels. Scaling laws are based on the assumption that as
observations are added together (e.g., going from daily to multi-day returns under
continuous compounding), statistical theory governs how interest properties change
as data are added. The best known scaling law is the central limit theorem, which says
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that the estimated sample mean approaches a normal distribution as the sample size
increases. The central limit theorem does not apply to quantiles, such as VaR, where
more specialized methods are required.

4.6.2 Square-root-of-time scaling

Suppose we observe an IID random variable fXtg with variable �2 over time. The
variance of the sum of two consecutive Xs is then:

Var Xt þ Xtþ1ð Þ ¼ Var Xtð Þ þ Var Xtþ1ð Þ ¼ 2�2:

This implies that volatility scales up by
ffiffiffi
2

p
.

Definition 4.6 (Square-root-of-time rule) Under this rule the statistical
measurements of a random variable, such as volatility or VaR, are obtained by
multiplying a higher frequency measurement by the square root of the number of
observations in the holding period.

The square-root-of-time rule applies to volatility regardless of the underlying
distribution of the data provided returns are IID. It does not apply to VaR unless
we make an additional assumption (i.e., that the returns are normally distributed). This
result is demonstrated in Section 9.4. Therefore, using the square-root-of-time rule to
aggregate VaR is only correct when the returns are IID normal. The problem is we don’t
know whether the square-root-of-time rule is too high or too low. Danı́elsson et al.
(1998) and Danı́elsson and Zigrand (2006) present conflicting opinions on the matter.
For a comprehensive treatment of these topics see Cheng et al. (2010).

Moreover, the aggregation of data over time changes data’s dynamic properties. For
example, daily data exhibit strong volatility clustering, while monthly data have less
clustering. At the same time, the level of clustering depends on the risk level (see
Danı́elsson and Morimoto, 2000). Overall, accurate calculations of risk for longer
holding periods such as 10 days or more require the use of specialist techniques if at
all possible.

For these reasons, multi-day VaR forecasts—obtained by scaling up daily VaR using
the square-root-of-time rule as a proper multi-day VaR—should not be considered.
Instead, it is best to use daily VaR multiplied by a constant. Note that this applies to the
10-day VaR holding periods in the Basel Accords, the 1996 amendment of which
explicitly recommends the square-root-of-time approach.

4.7 SUMMARY

The underlying distribution of financial returns is unknown and impossible to identify
accurately with current technology. This suggests that the use of distribution-free risk
measures is the best way to forecast risk in most cases.

In this chapter we have discussed the three most common risk measures: volatility,
value-at-risk (VaR) and expected shortfall (ES).
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Volatility is the appropriate risk measure as long as returns are normally distributed,
a property that rarely holds in practice. Assuming normality of returns and using
volatility as a risk measure may be justifiable in many cases; however, in most risk
applications it is likely to lead to an underrepresentation of risk. Volatility is the most
common risk measure in practical use.
The second most common risk measure is VaR, which often provides the best balance

between theoretical strength and feasibility of implementation. Its biggest weakness is
the lack of subadditivity for some asset classes, but for most assets VaR remains
subadditive.
Finally, ES is the best known subadditive risk measure and is both theoretically and

intuitively preferable to VaR. However, severe practical deficiencies prevent its wide-
spread use in real world applications. Not only is it estimated with more uncertainty
than VaR, but, even more seriously, backtesting ES requires much larger data samples
than backtesting VaR.
An important conclusion from this chapter is that VaR is most relevant for short

holding periods, especially one day. As holding periods lengthen, we run into time-
scaling problems and the possibility of VaR switching signs. At the other end of the
scale, as holding periods get shorter so issues about the intraday dynamics of financial
markets become increasingly problematic. Consequently, the preferred holding period is
one day, and any other holding period should only be implemented after careful
consideration.
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The theoretical discussion of risk measures in Chapter 4 was based on the assumption
that the distribution of profit and loss (P/L) was known. However, in practice, one needs
to estimate the P/L distribution using historical observations of the asset returns of
interest, where different assumptions inevitably lead to different forecasts of risk.
The focus in this chapter is on implementing two of the risk measures discussed in

Chapter 4: VaR and ES. The third, volatility, was covered earlier in the book.
There are two main methods for forecasting VaR and ES: nonparametric and

parametric. In some special cases we might see a combination of the two. Non-
parametric risk forecasting generally refers to historical simulation (HS), which uses
the empirical distribution of data to compute risk forecasts. No statistical models are
assumed nor are any parameter estimates required for nonparametric methods.
By contrast, parametric methods are based on estimating the underlying distribution

of returns and then obtaining risk forecasts from the estimated distribution. For most
applications, the first step in the process is forecasting the covariance matrix.
The methods used for forecasting the covariance matrix typically include MA,

EWMA or GARCH (as seen in Chapters 2 and 3). They are frequently used with
the normal distribution and occasionally with the Student-t, but other conditional
distributions may also be used. The parametric approach is often referred to as the
variance–
covariance (VCV) method.
In this chapter we only implement risk-forecasting methods, leaving evaluation of the

quality of risk forecasts, typically backtesting, to Chapter 8.
The most important specific notation used in this chapter is:

�ðpÞ Significance level as a function of probability

� Mean

5.1 APPLICATION

We demonstrate implementation of the models presented in this chapter by using two
daily stock returns, Microsoft and IBM, from January 1, 2000 to December 31, 2009.
These are the same dates as used in Chapter 3 on multivariate volatility; a description on
loading the data can be found in Section 3.1.1.
For one of the methods discussed below—historical simulation (HS)—we forecast

risk by the ð p� TÞth observation. Therefore, p� T needs to be an integer. For example,
if the sample size is 250 and we want 1% VaR, we would need to use the 2:5th
observation, which of course does not exist. Interpolating between the 2nd and 3rd
observations might seem the answer, but unfortunately there is no correct way to do

5
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such an interpolation because of the nonlinearity of the distribution. A possible solution
is to discard the first 50 observations to obtain a sample size of 200.

Over the time period under consideration we have 2,515 price observations and
hence 2,514 returns. To ensure that p� T is an integer, the first 14 observations are
discarded. In R this is done by y1=tail(y1,T-14) and in Matlab by
y1=y1(15:end,:).

One potential complication that arises in R is that get.hist.quote() returns a
time series object, meaning that each observation is linked to a specific calendar day. So,
if we plot the prices in R we will get dates on the x-axes. In Matlab we just get the index
of the observations. Usually, this does not cause problems and is often an advantage,
but unfortunately if a time series object is sorted, the sort order is by date—not size. For
historical simulation (HS) we need to sort by size. For this reason we remove the time
series information in R with the function coredata().
VaR is denoted in monetary units and we therefore have to specify the size of the

portfolio. We opted for $1,000, which is specified by value = 1000 in the code. Finally,
the probability level is set at 1%, or p = 0.01. The returns on Microsoft and IBM are
in vectors y1 and y2, respectively, with the matrix of both returns y. Univariate
applications use Microsoft returns. See Section 3.1.1 for more information about the
code.

Listing 5.1. Download stock prices in R

library("tseries") # time series library

# the two prices are downloaded

separately

p1 = get.hist.quote(instrument = "msft",start = "2000-01-01",

end = "2009-12-31",quote = "AdjClose")

p2 = get.hist.quote(instrument = "ibm", start = "2000-01-01",

end = "2009-12-31",quote = "AdjClose")

y1=coredata(diff(log(p1))) # convert prices to returns

y2=coredata(diff(log(p2)))

y1=tail(y1,T-14) # length adjustment

y2=tail(y2,T-14)

T = length(y1)

value = 1000 # portfolio value

y=cbind(y1,y2) # combine returns in one matrix

p = 0.01 # probability

Listing 5.2. Download stock prices in Matlab

stocks = hist_stock_data(’01012000’,’31122009’,’msft’,’ibm’)

p1=stocks(1).AdjClose(end:�1:1);

p2=stocks(2).AdjClose(end:�1:1);

y1 = diff(log(p1)); % convert prices to returns

y2 = diff(log(p2));
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y1 = y1(15:end,:); % length adjustment

y2 = y2(15:end,:);

y = [y1 y2];

T = length(y1)

value = 1000; % portfolio value

p = 0.01; % probability

For all following listings in this chapter it is assumed that the code above has been run
and that all variables in the above code are present.

5.2 HISTORICAL SIMULATION

Historical simulation (HS) is a simple method for forecasting risk and relies on the
assumption that history repeats itself, where one of the observed past returns is expected
to be the next period return.
Each historical observation carries the same weight in HS forecasting. This can be a

disadvantage, particularly when there is a structural break in volatility. However, in the
absence of structural breaks, HS tends to perform better than alternative methods. It is
less sensitive to the odd outlier and does not incorporate estimation error in the same
way as parametric methods. The advantages of HS become especially clear when work-
ing with portfolios because it directly captures nonlinear dependence in a way that other
methods cannot.

Univariate HS

The VaR at probability p is simply the negative ðT � pÞth value in the sorted return
vector multiplied by the monetary value of the portfolio.

Listing 5.3. Univariate HS in R

ys = sort(y1) # sort returns

op = T*p # p % smallest

VaR1 = -ys[op]*value # VaR number

Listing 5.4. Univariate HS in Matlab

ys = sort(y1); % sort returns

op = T*p; % p % smallest

VaR1 = -ys(op)*value % VaR number

Both languages give a VaR1 value of $64.78.
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HS is further illustrated in Figure 5.1 where we show how HS works for an estimation
window of 400 days. Panel (a) shows returns along with a solid line identifying the
observation corresponding to the 99% VaR. Panel (b) shows sorted returns—from the
smallest to the largest—and panel (c) focuses on the 40 most negative observations,
where observations corresponding to the 1% and 5% VaR members are specially
identified (i.e., the 5th and 25th, respectively).

Multivariate HS

HS is only slightly more complicated in the case of multiple assets. First, form a
portfolio of historical returns using current portfolio weights:

yport ¼
XK
k¼1

wk yk ð5:1Þ

where K is the number of assets in the portfolio; port indicates the portfolio;
yk ¼ yt;k

� �T
t¼1

is the matrix of returns on asset k; wk is the weight on asset k; and
yport the historical portfolio return vector.

It is neater to use matrix algebra. Let y be the T � K matrix of historical returns and w
the K � 1 matrix of portfolio weights, then (5.1) could be written as:

yport ¼ yw:
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(a) Line identifies 99% VaR (b) Sorted returns

(c) Blow up left tail and identify VaR for p ¼ 0:002, p ¼ 0:01,
and p ¼ 0:05

Figure 5.1. VaR and 400 daily Microsoft returns, 2008–2009.



Listing 5.5. Multivariate HS in R

w = matrix(c(0.3,0.7)) # vector of portfolio weights

yp = y %*% w # obtain portfolio returns

yps = sort(yp)

VaR2 = -yps[op]*value # VaR number

Listing 5.6. Multivariate HS in Matlab

w = [0.3; 0.7] % vector of portfolio weights

yp = y*w; % portfolio returns

yps = sort(yp);

VaR2 = -yps(op)*value % VaR number

Here the VaR is $51.10.

5.2.1 Expected shortfall estimation

It is straightforward to obtain expected shortfall (ES) by HS. First, VaR is obtained by
HS, then ES is calculated by taking the mean of all observations equal to or more
negative than �VaR.
The downside to this approach is that the sample size needs to be large. For example,

if a sample of 300 observations is used to forecast the 1% VaR, which is the third
smallest observation in the sample, then the ES is forecast by taking the mean of the
three smallest observations, which is clearly not a large sample. A minimum of 10
observations are recommended to calculate ES with HS, which implies a sample size
of 1,000 for 1% ES. It is easy to extend Listings 5.3 and 5.4 to calculate ES.

Listing 5.7. Univariate ES in R

ES1 = �mean(ys[1:op]) * value

Listing 5.8. Univariate ES in Matlab

ES1 = �mean(ys(1:op)) * value

Both languages give an ES1 value of $91.51.

5.2.2 Importance of window size

In the example above we used all 2,500 observations to estimate the VaR. In other
words, the estimation window size,WE , was 2,500. If we had used a smaller window size,
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the VaR forecast most likely would have been different. The VaR corresponds to a
particular return, but observations closer to the extremes are more likely to move by
larger amounts from one day to the next than observations closer to the center of return
distribution; so, the smaller the window size, the bigger the movements in HS.

Bigger window sizes therefore have both advantages and disadvantages. The
advantage is that they are less sensitive to one-off extreme observations, while the
disadvantage is that VaR forecasts take longer to adjust to structural changes in risk.
Furthermore, very old data are unlikely to be representative of current market
conditions.

Since we expect the value equaling or exceeding the VaR to change only in one out of
every 1=p observations, we expect forecast VaR to be constant most of the time. As a
general rule, the minimum recommended sample size for HS is 3=p.

Table 5.1 shows VaR forecasts for four dates spaced 500 days apart and estimation
window sizes ranging from 300 to 1,000. Two observations are immediately clear from
the table. First, the VaRs are highest for the first and last dates. Second, window size can
make a considerable difference to the magnitude of the VaR. In order to make a decision
as to the optimal window size, we would need to backtest the model.

Figure 5.2 provides more detailed information for two window sizes, 300 and 1,000
days, from 2006 until the end of 2009. As expected, forecasts from the smaller window
size move around a lot more and adjust much more sharply to increasing volatility
during the financial crisis. Note how the large volatility cluster in the second part of 2008
takes considerable time to affect the VaR forecasts.

5.3 RISK MEASURES AND PARAMETRIC METHODS

In contrast to nonparametric HS, the first step in parametric methods is estimation of
the covariance matrix.

The primary focus in this section is the derivation of VaR and ES given the
distributional assumptions that are the most common: normality and the Student-t.
For the remainder of this section we assume returns have volatility that is not time
varying so that we can drop the time subscript on variance. We demonstrate in the
subsequent section how the various conditional volatility models can be used for risk
forecasting.

98 Implementing risk forecasts

Table 5.1. HS daily VaR at 1% for Microsoft

VaR forecast for date

WE January 17, 2004 January 12, 2006 January 9, 2008 January 1, 2010

300 $30.2 $12.2 $22.4 $42.3

400 $34.1 $13.6 $20.4 $53.9

600 $36.3 $14.6 $20.1 $37.9

800 $41.5 $20.1 $18.0 $33.7

1,000 $42.5 $29.2 $18.0 $31.4



5.3.1 Deriving VaR

Recall the definition of VaR from (4.1) and (4.2):

p ¼Pr Q 
 �VaRðpÞ½ �

¼
Z �VaRðpÞ

�1
fq xð Þdx:

where Q is the profit/loss (P/L).
We now turn to deriving the VaR for both the return notions discussed in Chapter 1:

simple returns and continuously compounded returns. We start with the former.

VaR for simple returns

We assume initially that we hold one unit of the asset (i.e., the current portfolio value is
Pt). We then derive the VaR for simple returns from Definition 1.2:

Rt ¼
Pt � Pt�1

Pt�1

where—following the discussion in Section 5.4—we assume mean return is zero.
Volatility is indicated by �. Let us start with the definition of VaR from (4.1):

Pr Qt 
 �VaRðpÞ½ � ¼ p:

VaR is then obtained from:

p ¼PrðPt � Pt�1 
 �VaRðpÞÞ
¼PrðPt�1Rt 
 �VaRðpÞÞ

¼Pr
Rt

�

 �VaRðpÞ

Pt�1�

� �
:

Let us denote the distribution of standardized returns (Rt=�) by FRð�Þ and the inverse
distribution by F�1

R ðpÞ. Then it follows that the VaR for holding one unit of the asset is:

VaRðpÞ ¼ ��F�1
R ðpÞPt�1:
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We denote the significance level by �ðpÞ ¼ F�1
R ðpÞ, so the VaR equation can be written

as
VaRðpÞ ¼ ���ðpÞPt�1: ð5:2Þ

VaR for continuously compounded returns

However, if we use the continuously compounded returns from Definition 1.3:

Yt ¼ logPt � logPt�1

then
p ¼PrðPt � Pt�1 
 �VaRðpÞÞ
¼PrðPt�1ðeYt � 1Þ 
 �VaRðpÞÞ

¼Pr
Yt

�

 log �VaRðpÞ

Pt�1

þ 1

� �
1

�

� �
since �VaRðpÞ=Pt�1 
 1. Denoting the distribution of standardized returns (Yt=�) by
Fyð�Þ and the inverse distribution by �ðpÞ ¼ F�1

y ðpÞ, we have:

VaRð pÞ ¼ � exp F�1
y ðpÞ�� �� 1

� �
Pt�1

and for small F�1
y ðpÞ�, the VaR for holding one unit of the asset is given by:

VaRðpÞ � ���ðpÞPt�1:

So, the VaR for continuously compounded returns is approximately the same as the
VaR using simple returns (5.2).

VaR when there is more than one asset

This analysis can be easily extended to a multivariate framework. In the two-asset case:

�2port ¼ ðw1 w2Þ
�11 �12

�12 �22

 !
w1

w2

 !
or

�2port ¼ w2
1�

2
1 þ w2

2�
2
2 þ 2w1w2��1�2:

Note that �11 ¼ �21 is the variance and �12 ¼ ��1�2 is the covariance. Generally, let w be
a K � 1 matrix of portfolio weights and � a K � K covariance matrix, then portfolio
variance is:

�2port ¼ w0�w:
So, the VaR is:

VaRðpÞ ¼ ��port�ðpÞPt�1:

Portfolio value, #

In the discussion above, we held one unit of asset, i.e., the portfolio value is Pt�1. More
generally, it is better to have notation for an arbitrary portfolio value; in this book we
use #.

A more general form of (5.2) is therefore:

VaRðpÞ ¼ ���ðpÞ# ð5:3Þ
where dependence on portfolio value is made explicit.
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5.3.2 VaR when returns are normally distributed

We did not specify the distribution of returns in the derivations above. Let us suppose
returns are (conditionally) normally distributed. The normal distribution is indicated by
�ð�Þ.

Univariate

Suppose # ¼ $1 and � ¼ 1, where returns are normally distributed. If p ¼ 0:05, we get
VaR ¼ ���1ð0:05Þ ¼ 1:64. If � does not equal one, then the VaR is simply:

VaR5% ¼ �1:64

and if the portfolio value does not equal one, then:

VaR5% ¼ �1:64#:

We can either look the inverse distribution up in statistical tables to get the quantile
from the probability or simply use an R or Matlab function, qnorm(p) and nor-
minv(p), respectively.
The following two listings show how to forecast VaR using (5.3) for the Microsoft

returns used in the HS estimation above. We use the sample covariance matrix.

Listing 5.9. Normal VaR in R

sigma = sd(y1) # estimate the volatility

VaR3 = �sigma * qnorm(p) * value # calculate the VaR

Listing 5.10. Normal VaR in Matlab

sigma = std(y1) % estimate the volatility

VaR3 = �sigma * norminv(p) * value % calculate the VaR

For both languages, the VaR is $52.70.

Multivariate normal VaR

Multivariate calculations are similarly straightforward to implement; we proceed as in
the univariate case.

Listing 5.11. Portfolio normal VaR in R

sigma = sqrt(w’ %*% cov(y) %*% w) # portfolio volatility

VaR4 = �sigma * qnorm(p)*value
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Listing 5.12. Portfolio normal VaR in Matlab

sigma = sqrt(w’ * cov(y) * w); % portfolio volatility

VaR4 = -sigma * norminv(p) * value

For both languages the VaR is $41.36.

5.3.3 VaR under the Student-t distribution

Let us suppose returns are Student-t distributed with degrees of freedom �. The
advantage of the Student-t over the normal for VaR forecasting is that it is fat tailed,
where � indicates how fat the tails are. When � ¼ 1 the Student-t becomes the normal.

Adjusting for variance

The variance implied by � of a Student-t distribution is given by:

�

� � 2
: ð5:4Þ

The variance of a Student-t-distributed random variable is not defined when � 
 2, as is
clear from (5.4). The variance of a standard Student-t is not equal to one but the value
from (5.4). If we generate data from, say, a tð4Þ, its sample variance will be around 2. If
we then used that sample variance in the calculation of VaR along with the inverse tð4Þ
distribution, the VaR would be overestimated. Volatility effectively shows up twice—
both in �ðpÞ and �̂�. Consequently, in that case we need to scale the volatility estimate by
�. Define:

�2 	 �

� � 2
~��2 ð5:5Þ

that is, ~��2 is the variance in excess of that implied by the standard Student-t.

Estimation

We want to estimate the Student-t parameters for the Microsoft returns used above
using a maximum likelihood approach. There is a lower chance of numerical problems
in such optimization when the data are scaled so that data volatility is close to one, than
if we run the optimization on unscaled returns. Consequently, we pre-multiply the
returns by 100, and define a variable scy1 for the scaled y1.

The results from both R and Matlab yield parameter estimates of � ¼ 1:301 and
� ¼ 2:56. Since we pre-multiplied the returns by 100, we should divide � by 100 after
estimation.

In R we can use the fit.st() function from the QRMlib library to estimate � while
mle() is the equivalent in Matlab.
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Listing 5.13. Student-t VaR in R

library(QRMlib)

scy1=(y1)*100 # scale the returns

res=fit.st(scy1) # estimate the distribution

parameters

sigma=res$par.ests[3]/100 # rescale the volatility

nu=res$par.ests[1] # extract the degrees of

freedom

VaR5 = -sigma * qt(df=nu,p=p) * value # calculates the VaR

Listing 5.14. Student-t VaR in Matlab

scy1=y1*100; % scale the returns

res=mle(scy1,’distribution’,’tlocationscale’)

sigma = res(2)/100 % rescale the volatility

nu = res(3)

VaR5 = - sigma * tinv(p,nu) * value % VaR calculation

For R the VaR is $67.94 and for Matlab it is $67.87.

5.3.4 Expected shortfall under normality

The derivation of expected shortfall (ES) is more involved than the derivation of VaR
because we need, first, to obtain the VaR and then calculate the conditional expectation.
Recall the definition of expected shortfall (ES) from (4.3):

ES ¼ �
Z �VaRðpÞ

�1
xfVaR xð Þdx:

When returns are normally distributed and the portfolio value is one, we have:

ES ¼ 1

p

Z �VaRðpÞ

�1
x

1ffiffiffiffiffiffiffiffiffiffi
2��2

p exp � 1

2

x2

�2

" #
dx:

Therefore:

ES ¼ 1

p
� �2ffiffiffiffiffiffiffiffiffiffi

2��2
p exp � 1

2

x2

�2

" #" #�VaRðpÞ

�1

that is, the term in brackets only needs to be evaluated at the boundaries. Since the lower

bound is zero, and noting that standard normal density is �ðxÞ ¼ 1ffiffiffiffiffiffi
2�

p exp � x2

2

" #
, we

get:

ES ¼ � �2�ð�VaRðpÞÞ
p

:
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If the portfolio value is # we get:

ES ¼ �#�
2�ð�VaRðpÞÞ

p
: ð5:6Þ

Listings 5.9 and 5.10 can easily be extended to obtain the ES.

Listing 5.15. Normal ES in R

ES2 = sigma*dnorm(qnorm(p))/p * value

Listing 5.16. Normal ES in Matlab

ES2=sigma*normpdf(norminv(p))/p * value

For both the ES is $60.37.
We could also use direct integration, which might be useful generally.

Listing 5.17. Direct integration ES in R

VaR = �qnorm(p)

integrand = function(q){q * dnorm(q)}

ES = -sigma * integrate(integrand,�Inf,�VaR)$value/p * value

Listing 5.18. Direct integration ES in Matlab

VaR = -norminv(p)

ES = -sigma * quad(@(q) q.* normpdf(q),�6,�VaR)/p * value

Since we cannot specify �1 in quad in Matlab, we pick a sufficiently negative number,
here �6.

5.4 WHAT ABOUT EXPECTED RETURNS?

It is frequently assumed that expected return is zero even if we know that the distribution
of returns has a nonzero mean. Is there any justification for assuming � ¼ 0? Recall
Table 1.2, which shows that the daily mean for the S&P 500 was 0:021% and the daily
volatility was 1.1% (i.e., volatility is about 50 times larger than the mean). In VaR
calculations like (5.3), after we multiply the significance level by the volatility, the
volatility component of the equation might be a hundred times larger than the mean
component. Given that statistical uncertainty in most VaR calculations is probably
more than 10%, the VaR calculation is only significant to one digit and the mean is
smaller than that.
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Let us start with the VaR definition from (4.1), stated in terms of returns, and assume
in the remainder of this subsection that the portfolio value is one:

Pr ðQþ EðQÞÞ 
 �VaRðpÞ½ � ¼ p:

For VaR at probability p, this would mean rewriting (5.3) as:

VaRðpÞ ¼ ���ðpÞ � �:

Under an assumption of IID, both the mean and variance aggregate at the same rates.
However, volatility aggregates at the rate of the square root of time. The T-period VaR
is therefore:

VaRðT dayÞ ¼ ��ðT dayÞ�ðpÞ � �ðT dayÞ
¼ �

ffiffiffiffi
T

p
��ðpÞ � T�: ð5:7Þ

Example 5.1 The daily distribution of an asset return is given by:

Y � Nð0:0033; 0:006Þ ð5:8Þ
where returns are assumed to be IID. The annual distribution (assuming 252 trading
days) is therefore:

Yannual � Nð0:832; 1:512Þ:
The daily 1% VaR for a portfolio of value one is:

VaR1% ¼ 2:33�
ffiffiffiffiffiffiffiffiffiffiffi
0:006

p
� 0:0033 � 2:33� �:

The assumption � ¼ 0 is relatively harmless as the error is small at the daily level.
Such an assumption is justified because it simplifies all the calculations and removes
the need to specify the mean, which is not a trivial undertaking.

Figure 5.3 shows the impact of including and excluding the mean when calculating VaR
using time aggregation—assuming the portfolio value is one, of course. The discrepancy
between mean included and mean excluded is not wide below 50 days; for market risk,
VaR is usually calculated for a horizon of at most 10 days.
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5.5 VAR WITH TIME-DEPENDENT VOLATILITY

We argued in Chapter 1 that returns exhibit volatility clusters and assumed in Section
5.3 that returns are IID. In the following sections we discuss several alternative imple-
mentations of risk forecasting using time-dependent volatility models: moving average
(MA), exponentially weighted moving average (EWMA) and GARCH.

5.5.1 Moving average

The easiest way to forecast time-dependent volatility is to use the MA volatility model,
and plug the sample variance of data into the analytical formula for VaR (5.3). MA VaR
should not be implemented in practice as it provides very poor VaR forecasts.

Let us modify Listings 5.9 and 5.10, indicate the estimation window byWE—set at 20
days—and forecast VaR for Microsoft for the last 5 days in the sample.

Listing 5.19. MA normal VaR in R

WE=20

for (t in seq(T�5,T)){

t1= t�WE+1

window = y1[t1:t] # estimation window

sigma = sd(window)

VaR6 = -sigma * qnorm(p) * value

}

Listing 5.20. MA normal VaR in Matlab

WE=20

for t = T�5:T

t1 = t�WE+1;

window = y1(t1:t); % estimation window

sigma = std(window);

VaR6 = �sigma * norminv(p) * value

end

We get results for days 2,496 to 2,501 (recall it is a one-day-ahead forecast):

VaR(2496) = 24.9
VaR(2497) = 24.7
VaR(2498) = 21.7
VaR(2499) = 21.8
VaR(2500) = 21.4
VaR(2501) = 22.7
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5.5.2 EWMA

The MA model assumes that each day in the sample gets the same weight, but we can
improve volatility forecasts by applying more weight to the most recent dates. This can
be done using the EWMA model (3.2) and (3.1):

�̂�t;ij ¼ ��̂�t�1;ij þ 1� �ð Þyt�1;i yt�1; j;

and

�̂�t ¼ ��̂�t�1 þ 1� �ð Þy0t�1yt�1

where � < 1 is known as the decay factor (e.g., 0.94). It is straightforward to implement
both univariate and multivariate forms of the EWMAmodel. The main issue that arises
relates to initialization of the model.
The volatility on the first day, �1, is usually set as the unconditional volatility of the

data. About 30 days need to pass, whilst the volatility is updated, before using the
volatility forecast. This is sometimes called burn time, and takes into account the error
induced into the model by setting the value of S1 to an arbitrary value.

Univariate implementation

For a single asset, the EWMA for day T can be calculated by Listings 5.21 and 5.22.

Listing 5.21. EWMA VaR in R

lambda = 0.94; # weight

s11 = var(y1[1:30]); # initial variance

for (t in 2:T){

s11 = lambda * s11 + (1�lambda) * y1[t-1]^2

}

VaR7 = -sqrt(s11) * qnorm(p) * value

Listing 5.22. EWMA VaR in Matlab

lambda = 0.94;

s11 = var(y1(1:30)); % initial variance

for t = 2:T

s11 = lambda * s11 + (1�lambda) * y1(t�1)^2;

end

VaR7 = -sqrt(s11) * norminv(p) * value

The univariate EWMA VaR is $25.27.

Multivariate implementation

Let us combine Listings 5.11 and 5.12 with Listings 5.21 and 5.22. A two-asset case can
be given by Listings 5.23 and 5.24.

Financial Risk Forecasting 107



Listing 5.23. Two-asset EWMA VaR in R

s = cov(y) # initial covariance

for (t in 2:T){

s = lambda * s + (1-lambda) * y[t�1,] %*% t(y[t�1,])

}

sigma = sqrt(t(w) %*% s %*% w) # portfolio vol

VaR8 = -sigma * qnorm(p) * value

Listing 5.24. Two-asset EWMA VaR in Matlab

s = cov(y); % initial covariance

for t = 2:T

s = lambda * s + (1-lambda) * y(t�1,:)’ * y(t�1,:);

end

sigma = sqrt(w’ * s * w); % portfolio vol

VaR8 = -sigma * norminv(p) * value

The bivariate EWMA VaR is $17.48.

5.5.3 GARCH normal

The EWMA model has a very simple structure. The value of the only parameter, �, is
assumed and not estimated. By contrast, the GARCH family of models allows for richer
specifications of the dynamic properties of volatilities, while at the same time estimating
model parameters for each dataset. Consequently, the GARCH model promises to
provide better volatility forecasts—and hence VaR forecasts—than the other parametric
models discussed in this chapter.

The GARCH(1,1) model from (2.8) is:

�2tþ1 ¼ !þ �Y2
t þ ��2t : ð5:9Þ

The most common conditional distribution in the GARCH model is the normal; that is,
the shocks Zt follow the distribution

Zt � Nð0; 1Þ
so that returns are given by Yt � Nð0; �2t Þ. We denote this model as the normal
GARCH.

VaR implementation is the same as in Section 2.6.5, but there are some additional
steps to obtain volatility forecasts. When implementing VaR forecasts from a
GARCH model, one needs to take the last volatility estimate �̂�t and the parameter
vector to obtain the VaR forecast for day tþ 1. In effect, we have to manually calculate
�̂�2tþ1.
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Listing 5.26. GARCH in R

library(fGarch)

g = garchFit(�garch(1,1),y1,cond.dist = "norm",include.mean =

FALSE,trace = FALSE) # parameter estimates

omega = g@fit$matcoef[1,1]

alpha = g@fit$matcoef[2,1]

beta = g@fit$matcoef[3,1]

sigma2 = omega + alpha * y[T]^2 + beta * g@h.t[T]

# compute sigma2 for t+1

VaR9 = -sqrt(sigma2) * qnorm(p) * value

Listing 5.26. GARCH in Matlab

spec = garchset(’P’, 1, ’Q’, 1,’C’,NaN,’Display’,’off’);

[parameters, errors, LLF, innovations, ht, summary] =

garchfit(spec,y1);

omega = parameters.K

alpha = parameters.ARCH

beta = parameters.GARCH

sigma2 = omega + alpha * y1(end)^2 + beta * ht(end)^2

% compute sigma2 for t + 1

VaR9 = -sqrt(sigma2) * norminv(p) * value

The VaR from R is $30.22, while that from Matlab is $30.21. This discrepancy is simply
because GARCH estimation involves numerical maximization, which is only done to a
certain numerical precision, so parameter estimates are not completely identical. Were
the difference in VaRs much larger than 0.01 it would be a cause for concern.

5.5.4 Other GARCH models

We demonstrated a number of different GARCH-type models in Chapters 2 and 3. It is
straightforward to obtain VaR forecasts from those models by combining the imple-
mentation in Section 5.5.3 with the listings in those two chapters. All it entails is
estimating the model and using the last day’s return and volatility along with the model
structure and parameters to obtain the one-step-ahead volatility forecast. It makes little
difference if the model is univariate or multivariate, normal or Student-t. In every case,
the implementation is essentially the same as in Section 5.5.3.

5.6 SUMMARY

This chapter has focused on implementing the risk measures discussed previously in this
book, primarily VaR but also ES. We have discussed two categories of estimation
methods: nonparametric and parametric.
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In nonparametric methods (usually, HS) no model is specified and no parameters
estimated; however, we do have to assume a window length for estimation. The advan-
tage of HS is that it uses observed data directly, is not subject to estimation error and can
directly capture nonlinear dependence. The disadvantage is that it is based on fixed
weights on returns so that it reacts slowly to structural changes in asset risk.

By contrast, parametric methods are based on estimating some distribution of the
data, from which a VaR forecast is obtained. This inevitably means that estimation error
and model risk become a serious concern, often making the choice of model difficult.
Some parametric models perform quite badly, like the moving window method, but
other methods have the potential to provide better forecasts, albeit at the expense of
increased complexity.

Ultimately, we will need to compare the performance of the various models by
backtesting; this is done in Chapter 8.

The focus in this chapter was basic assets. For options and bonds, the first step is
usually a volatility forecast, followed by either analytical calculation of VaR or, more
typically, Monte Carlo simulation. The following two chapters implement such
methods.
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The implementation of value-at-risk (VaR) in Chapter 5 was for assets where we could
directly calculate the VaR from the asset distribution. This is not possible in the case of
assets such as bonds and options, because their intrinsic value changes with the passing
of time.
For example, the price of a bond converges to a fixed value as time to maturity

elapses, and therefore its inherent risk decreases. This means that when we observe
the same bond over time, we are looking at an asset whose risk characteristics are
constantly changing. A 5-year bond is not the same as a 4-year bond. The same applies
to options. This means that it is not possible to model risk in such assets directly by the
methods discussed so far in Chapters 4 and 5.
The main difficulty arises from the fact that the standard deviation of the returns of a

bond or an option cannot be easily estimated, and we have to rely on a transformation—
or mapping—from a risk factor like interest rates or stock prices to the risk in the bond
or option.
There are two main approaches for such a risk transformation: the analytical methods

discussed in this chapter and the Monte Carlo methods discussed in Chapter 7. For most
applications the Monte Carlo approach is preferred.
The discussion in this chapter is essentially theoretical, focused on the mathematical

derivation and implementation of the various methods. Because the variety of derived
assets is almost infinite, it is hard to provide specific examples with real-world data while
treating the subject matter comprehensively. Consequently, the approach taken in this
chapter is to use a typical, or representative, instrument from which risk is obtained.
The specific notation used in this chapter is:

T Delivery time/maturity

r Annual interest rate

�r Volatility of daily interest rate increments

�a Annual volatility of an underlying asset

�d Daily volatility of an underlying asset


 Cash flow

D� Modified duration

C Convexity

D Option delta

G Option gamma

gð � Þ Generic function name for pricing equation

6
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6.1 BONDS

A bond is a fixed income instrument where the bond issuer is obliged to pay interest (the
coupon) at regular intervals and repay the principal at the maturity date to the bond
holder. The price of a bond is given by the sum of its discounted future cash flows.

We assume in this chapter that the yield curve is flat so that the interest rates, r, for all
maturities are the same. The price of a bond, P, is given by the present value of the cash
flow, f
tgTt¼1 (i.e., the coupon payments), where the last payment, 
T , also includes the
principal:

P ¼ gðr; tÞ ¼
XT
t¼1


t

1þ rð Þt : ð6:1Þ

We denote (6.1) as the bond-pricing equation, gð�Þ, which is a function of both interest
rates and time. As we only consider interest rates here, we therefore write it as gðrÞ. The
R and Matlab codes to price a bond by (6.1) can be seen in Listings 7.5 and 7.6.

Our interest is in mapping the randomness in interest rates to the risk in a bond.
Generally, we would also need to consider the default risk of the bond, but here we
assume the bond is issued by a risk-free entity (e.g., certain governments such as the US
government).

The main problem in bond risk analysis arises because a symmetric change in interest
rates results in an asymmetric change in bond prices. This is illustrated by Example 6.1.

Example 6.1 Consider a bond with face value $1,000, a maturity of 50 years and an
annual coupon of $30. Assuming we have a flat yield curve with interest rates presently
at 3%, then the current price is $484. Consider parallel shifts in the yield curve either
to 5% or 1%:

—————————————————————
Interest rate Price Change in price
—————————————————————

1% $892 $408
3% $484
5% $319 $165

—————————————————————
The change from 3% to 1% makes the bond price increase by $408, while a same
magnitude but positive change in interest rates to 5%makes the bond price fall by only
$165. A symmetric change in interest rates results in an asymmetric change in bond
prices. This is shown graphically in Figure 6.1.

6.1.1 Duration-normal VaR

We need to find a way to approximate the risk in the bond as a function of the risk in
interest rates. There are several ways to do this; for example, we could use Ito’s lemma,
or follow the derivation for options VaR in Section 6.2.2. Regardless of the approach,
we would arrive at the same answer. Here we only present the result, as the derivation
would just repeat that in Section 6.2.2.
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A common way to ascertain the sensitivity of bond prices as a function of the
sensitivity in interest rates is modified duration,D�. Start with the bond pricing function
from (6.1), gðrÞ, where we consider the impact of a small change in r (i.e., dr). We can
then express the impact of the change in r as a function of the first g0ðrÞ derivatives:

gðrþ drÞ � gðrÞ þ ðdrÞg0ðrÞ:

The negative of the first derivative, g0ðrÞ, divided by prices is known as modified
duration, D�, so:

D� ¼ � 1

P
g0ðrÞ

The first step in calculating the VaR for the bond is to identify the distribution of interest
rate changes, dr. Here we assume they are given by

rt � rt�1 ¼ dr � Nð0; �2r Þ

but we could have used almost any distribution.
The next step is mapping the distribution of dr onto the bond prices. Regardless of

whether we use Ito’s lemma or follow the derivation in Section 6.2.2, we arrive at the
duration-normal method to get bond VaR. Here we find that the bond returns are
simply modified duration times the interest rate changes, so the distribution of bond
returns is:

RBond �Approx
Nð0; ðD��rÞ2Þ

The VaR follows directly:

VaRBondðpÞ � D� � �r � �ðpÞ � # ð6:2Þ

where the significance level is the inverse normal distribution for probability p,
�ðpÞ ¼ ��1ðpÞ.

Financial Risk Forecasting 113

Figure 6.1. Bond convexity in Example 6.1.



6.1.2 Accuracy of duration-normal VaR

The accuracy of these approximations depends on the magnitude of duration and the
VaR time horizon. The main sources of error are the assumptions of linearity and a flat
yield curve.

We demonstrate these issues in Figures 6.2 and 6.3. First, Figure 6.2 shows the price–
yield relationship for two bonds, both with a face value of $1,000 and coupon payment
of $50. The bond in panel (a) has a maturity of one year while the bond in panel (b) has a
maturity of 50 years. It is clear from the figure that duration approximation is quite
accurate for the short-dated bond while it is very poor for long-dated bonds. For the
purpose of VaR calculations using duration-normal methods, maturity is a key factor in
calculation accuracy.

The second factor in the accuracy of duration-normal VaR approximation is interest
rate change volatility. Figure 6.3 shows the error in duration-normal VaR calculations,
measured by the ratio of true VaR—denoted as VaR(true) and calculated using Monte
Carlo simulation—to duration-normal VaR, which is denoted as VaR(duration). We let
the maturity increase from one year to 60 years while volatility ranged from 0.1% to 2%.

The figure shows that duration-normal VaR approximation is quite good for low
volatilities, but quality declines sharply with increasing volatility.

This suggests that the accuracy of duration-normal VaR methods is generally highest
for low-maturity, low-volatility bonds.

6.1.3 Convexity and VaR

It is conceptually straightforward to improve the duration approximation by also
incorporating a second-order term (i.e., convexity). In this case the interest rate change,
dr, appears twice, the second time squared. This means that even if dr is normally
distributed, Rbond is not. The distribution of ðdrÞ2 is the chi–squared, and it would be
straightforward to derive a VaR equation with convexity.
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As a practical matter, even incorporating convexity can leave considerable bias in
VaR calculations. We could of course incorporate even higher order terms. This would,
however, further increase mathematical complexity. In addition, if we have a portfolio
of bonds, the presence of these nonlinear transformations of the normal distribution is
likely to make the calculation of portfolio VaR very cumbersome. For this reason, the
Monte Carlo methods in Chapter 7 are generally preferred.

6.2 OPTIONS

An option gives the owner the right but not the obligation to buy (call) or sell (put) an
underlying asset at a fixed date in the future known as the expiry date at a predetermined
price called the strike price.
European options can only be exercised at the expiry date, while American options

can be exercised at any point up to the expiry date at the discretion of the holder. Here
we focus on the simplest options (i.e., European), but the basic analysis can be extended
to many other variants.
European options can be priced using the Black and Scholes (1973) equation:

putt ¼ Xe�rðT�tÞ � Pt þ callt

callt ¼ Pt� d1ð Þ � Xe�r T�tð Þ� d2ð Þ
where

d1 ¼
log Pt=Xð Þ þ rþ �2a=2

� �ðT � tÞ
�a

ffiffiffiffiffiffiffiffiffiffiffiffi
T � t

p

d2 ¼
log Pt=Xð Þ þ r� �2a=2

� �ðT � tÞ
�a

ffiffiffiffiffiffiffiffiffiffiffiffi
T � t

p ¼ d1 � �a
ffiffiffiffiffiffiffiffiffiffiffiffi
T � t

p
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where Pt is the price of the underlying asset at time t, which is measured in years; X is
the strike price; r is the annual risk-free interest rate; T � t is the time until expiration;
�a is the annual volatility of the underlying asset; and � is the standard normal
distribution. We refer to the pricing function by the function name gð�Þ and use the
term g to denote both a call and a put.

The Black–Scholes (BS) equation is often stated using S for prices and K for strike
prices, but since these letters are used for other variables in this book, we have opted to
use P for prices and X for strike prices.

The value of an option is affected by many underlying factors. Nevertheless, under
standard BS assumptions, the underlying asset has continuous IID-normal returns, with
a flat nonrandom yield curve; so, for VaR the only risk factor that matters is P. The risk
in all the other variables can be ignored.

The objective then is to map the risk in the underlying asset onto an option (i.e., the
risk in P). This can be done using the option delta and gamma.

Delta

The first-order sensitivity of an option with respect to the underlying price is called delta,
which is defined as:

� ¼ @gðPÞ
@P

¼ �ðd1Þ > 0 call

�ðd1Þ � 1 < 0 put.

�
Delta is equal to�1 for deep in-the-money options, depending on whether it is a call or a
put, close to �0:5 for at-the-money options and 0 for deep out-of-the-money options.

For small changes in P, the option price will change approximately by �. The
approximation is reasonably good for asset prices close to the price at which delta
was calculated, but it gets gradually worse for prices that deviate significantly from
that price (as Figure 6.4 illustrates).

Figure 6.4 shows the price of a call option for a range of strike prices. Both panels
show the price at expiration, while panel (a) shows the price one month to expiration and
panel (b) the price six months to expiration. In both panels we calculate delta when the
option is at the money and show the tangent at that point. Delta approximation is more
accurate for longer maturity options and when the option is deep in or out of the money.

Gamma

The second-order sensitivity of an option with respect to the price is called gamma,
which is defined as:

� ¼ @2g
@P2

¼ e�rðT�tÞ �ðd1Þ
Pt �a

ffiffiðp T � tÞ :

Gamma for the option payoff in panel (a) of Figure 6.4 can be seen in Figure 6.5. Note
that gamma is highest when an option is a little out of the money, and dropping as the
underlying price moves away from the strike price. This is not surprising since the price
plot increasingly becomes a straight line for deep in-the-money and out-of-the-money
options.
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6.2.1 Implementation

We implement the Black–Scholes equation and calculation of delta and gamma as a
function in R and Matlab called bs. This function takes (X, P, r, sigma, T) as
arguments and returns a structure that holds the call and put prices as well as delta
and gamma. In R this is done by the list command and in Matlab by creating a
structure.

Listing 6.1. Black–Scholes function in R

bs = function(X, P, r, sigma, T){

d1 = (log(P/X) + (r + 0.5 * sigma^2)*(T))/(sigma * sqrt(T))

d2 = d1 � sigma * sqrt(T)

Call = P * pnorm(d1, mean = 0, sd = 1) - X * exp(-r * (T))* pnorm(d2,

Financial Risk Forecasting 117

(a) 1 month (b) 6 months
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mean = 0, sd = 1)

Put = X * exp(�r *(T)) * pnorm(�d2, mean = 0, sd = 1) � P * pnorm(�d1,

mean = 0, sd = 1)

Delta.Call = pnorm(d1, mean = 0, sd = 1)

Delta.Put = Delta.Call � 1

Gamma = dnorm(d1, mean = 0, sd = 1)/(P * sigma * sqrt(T))

return(list(Call = Call,Put = Put,Delta.Call = Delta.Call,

Delta.Put = Delta.Put,Gamma = Gamma))

}

Listing 6.2. Black–Scholes function in Matlab

function res = bs(K,P,r,sigma,T)

d1 = (log(P./K)+(r+(sigma^2)/2) * T)./(sigma * sqrt(T));

d2 = d1 - sigma * sqrt(T);

res.Call = P.* normcdf(d1,0,1)-K.* exp(-r*T).* normcdf(d2,0,1);

res.Put = K.* exp(�r*T).* normcdf(�d2,0,1)-P.*

normcdf(�d1,0,1);

res.Delta.Call = normcdf(d1,0,1);

res.Delta.Put = res.Delta.Call �1;

res.Gamma = normpdf(d1,0,1)./(P * sigma * sqrt(T));

end

By using the element-by-element operators ./ and .* we can pass a vector to the
function in Matlab.

We demonstrate how to use this code in Listings 6.3 and 6.4 where the strike price is
90, the price is 100, the risk-free rate is 5%, volatility is 20% and expiry is half a year.

Listing 6.3. Black–Scholes in R

source(’bs.r’)

f = bs(90,100,0.05,0.2,0.5)

> f

$Call

[1] 13.49852

$Put

[1] 1.276410

$Delta.Call

[1] 0.8395228

$Delta.Put

[1] -0.1604772

$Gamma

[1] 0.01723826
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Listing 6.4. Black–Scholes in R

>> f = bs(90,100,0.05,0.2,0.5)

f =

Call: 13.4985

Put: 1.2764

Delta: [1x1 struct]

Gamma: 0.0172

>> f.Delta

ans =

Call: 0.8395

Put: �0.1605

6.2.2 Delta-normal VaR

We can use delta to approximate changes in the option price as a function of changes in
the price of the underlying.
Let us denote the daily change in stock prices as:

dP ¼ Pt � Pt�1:

The price change dP implies that the option price will change approximately by

dg ¼ gt � gt�1 � �dP ¼ �ðPt � Pt�1Þ;
where � is the option delta at time t� 1; and g is either the price of a call or put.
The simple returns on the underlying are as in Definition 1.2:

Rt ¼
Pt � Pt�1

Pt�1

:

Following the BS assumptions, the returns are IID-normally-distributed:

Rt � Nð0; �2dÞ
with daily volatility �d . The derivation of the VaR for options parallels the VaR
derivation for simple returns in Section 5.3.1.
Let us denote the VaR on the option by VaRoðpÞ, where p is probability:

p ¼Prðgt � gt�1 
 �VaRoðpÞÞ
¼Prð�ðPt � Pt�1Þ 
 �VaRoðpÞÞ
¼Prð�Pt�1Rt 
 �VaRoðpÞÞ

¼Pr
Rt

�d

 � 1

�

VaRoðpÞ
Pt�1�d

� �
:

The distribution of standardized returns (Rt=�d ) is the standard normal, �ð�Þ, so the
significance level is given by �ðpÞ ¼ F�1

R ðpÞ. Then, it follows that the VaR for holding an
option on one unit of the asset is:

VaRoðpÞ � �j�j � �d � �ðpÞ � Pt�1:
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This means that the option VaR is simply delta multiplied by the VaR of the underlying,
VaRu:

VaRoðpÞ � j�jVaRuðpÞ:
We need the absolute value of � because we may either have put or call options, while
VaR is always positive.

The quality of the approximation here depends on the extent of nonlinearities, which
are a function of the type of option, their maturities, the volatility of underlying market
factors and the VaR horizon. The shorter the VaR horizon, the better delta-normal
approximation is. For risk management purposes, poor approximation of delta to the
true option price for large changes in the price of the underlying is clearly a cause of
concern.

6.2.3 Delta and gamma

We can also approximate the option price by the second-order expansion, G. While dP is
normal, ðdPÞ2 is not normal, but chi-squared. This means the same issues apply here as
for the bonds in Section 6.1.4.

6.3 SUMMARY

VaR forecasting for assets such as options and bonds is much more complicated than
VaR forecasting for basic assets like stocks and foreign exchange. We need to employ a
two-step process: first, model the underlying risk factor and, then, use the pricing
equation and a function expansion to obtain the VaR for the option or bond.

In the cases discussed in this chapter, where we only have one derived asset, the
mathematical complexity is not very high, but the accuracy of the approximations is
still low in many cases. To obtain higher accuracy the mathematics become much more
complicated, and in a portfolio situation more complicated still. Expansions have to be
derived for each different type of asset, which is tedious and prone to errors. For these
reasons, in most practical applications the Monte Carlo approaches discussed in the
next chapter are preferred.

120 Analytical value-at-risk for options and bonds



The limitations of the analytical VaR methods discussed in the last chapter, together
with advances in computing power, have made Monte Carlo simulation the method of
choice for VaR forecasting for portfolios containing assets like options and bonds.
Numerical methods that make use of random numbers are called Monte Carlo

(MC) simulation methods—after the city state with the well-known casinos. The
terms Monte Carlo and simulations are used interchangeably, either together or separ-
ately.
The idea behind MC simulations is that we replicate market outcomes on the

computer, based on some model of the evolution of the market. By doing a sufficient
number of simulations, we get a large sample of market outcomes enabling us to
calculate accurately some quantities of interest, such as option prices, bond prices or
VaR. This works because the object of interest (e.g., the price of an option or VaR)
is based on a mathematical expectation of an underlying statistical process.
If we observe a sufficiently large sample from the statistical process and calculate the
average, we can then arrive at a number that approximately equals the mathematical
expectation.
There are two important limitations to this approach. First, it is always based on

some model and the quality of the results is inevitably limited by the quality of the
model. Second, we often need a very large simulation size to do the calculations
accurately, in some cases resulting in significant computation time. However, in the
applications in this chapter, the computation should take no more than a couple of
seconds.
Creating a large sample of high-quality random numbers (RNs) is a demanding task.

In the past, RNs were generated by drawing numbers out of a hat, an approach only
feasible for very small applications. Now computers use an algorithm known as a pseudo
random number generator (RNG) to create outcomes that appear to be random.
The notation used in this chapter will become more cluttered than the notation in

other chapters because here we have to denote variables by time period, asset and
simulation while in other chapters we need no more than the first two. The first subscript
is time, followed by asset and then simulation. For example:

Xtime;asset;simulation ¼ Xt;k;s:

We may skip one or more subscripts when there is only one asset or the quantity is not
simulated.
We assume in this chapter that the covariance matrix of returns is known and that

returns are normally distributed.
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The specific notation used in this chapter is:

F Futures price

g Derivative price

S Number of simulations

xb Portfolio holdings (basic assets)

xo Portfolio holdings (derivatives)

7.1 PSEUDO RANDOM NUMBER GENERATORS

The fundamental input into MC analysis is a long sequence of random numbers (RNs).
A deterministic machine such as a computer uses a pseudo random number generator
(RNG) to produce numbers that, for all practical purposes, are random.

RNGs generally create integer numbers between 0 and some large number from the
uniform distribution. The length of the sequence of unique RNs is called a period, and if
we generate more RNs than the period the numbers repeat themselves.

They are usually generated by a function like uiþ1 ¼ h uið Þ, where ui represents the ith
RN and hð�Þ is the RNG, so that the next random number is a function of the previous
random number.

Definition 7.1 (Period of a random number generator) Random number generators
can only provide a fixed number of different random numbers, after which they repeat
themselves. This fixed number is called a period.

Building high-quality RNGs is a formidable task. While it is easy to create an algorithm
that generates something resembling a random number, getting that number to be
properly random is quite difficult. It is essential that the unconditional distribution
of random numbers be IID-uniform. Symptoms of low-quality RNGs include a low
period, serial dependence or subtle deviations from the uniform distribution.

7.1.1 Linear congruental generators

No numerical algorithm can generate a truly random sequence of numbers; nonetheless,
algorithms exist that generate repeating sequences of integers that are, to a fairly good
approximation, randomly distributed within a range. The best known RNGs are the so-
called linear congruental generators (LCGs), where the formula linking the ith and
ði þ 1Þth integer in the sequence of RNs is given by:

uiþ1 ¼ a� ui þ cð Þmod m ð7:1Þ
where a is known as the multiplier; c is the increment; m is the modulus where all are
integers; and mod is the modulus function (i.e., the remainder after division).
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The first random number in the sequence is called the seed, usually chosen by the user.
It is good practice when doing simulation estimation to set the seed to a fixed value prior
to estimation. This ensures that we always get the same sequence of random numbers
and hence the same estimation outcome.
Serial correlation is generally the main flaw of LCGs and cannot be easily eliminated.

As a result, more complicated RNGs, which introduce nonlinearities, are generally
preferred. The default RNG in R and Matlab is the Mersenne twister.1 Its name comes
from the fact it has a period of 219;937 � 1, a Mersenne prime number. RNGs with a
bigger period do exist, but they are much slower.

7.1.2 Nonuniform RNGs and transformation methods

Most RNGs generate uniform random numbers, ðuÞ, which in most cases are scaled
to be in the interval 0; 1½ � while most practical applications require random numbers
drawn from a different distribution. Transformation methods convert the uniform (i.e.,
uniform number) into an RN drawn from the distribution of interest. The inverse
distribution is the obvious candidate for such a transformation, although this approach
is not recommended since such transformations are often slow and not very accurate,
particularly for the tails.
For an example of an inverse distribution see Figure 7.1, which shows how the inverse

distribution can be used to transform a uniform (on the y-axis) onto some other
distribution (on the x-axis). The figure is easily created in R and Matlab (see Listings
7.1 and 7.2).

Listing 7.1. Transformation in R

x = seq(�3,3,by = 0.1)

plot(x,pnorm(x),type = "l")
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1 The Mersenne twister is a pseudorandom number generator developed by Matsumoto and Nishimura whose name derives
from the period being Mersenne prime. See http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/emt.html
for more information.



Listing 7.2. Transformation in Matlab

x = �3:0.1:3;

plot(x,normcdf(x))

The most common method for generating normal random numbers is the Box–Muller
method. It was developed as a more computationally efficient alternative to the inverse
distribution method. If we generate two uniforms u1; u2ð Þ then we can transform this
pair into a pair of IID normals n1; n2ð Þ by:

n1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 log u1

p
sin 2�u2ð Þ

n2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 log u1

p
cos 2�u2ð Þ:

The Box–Muller method is elegant, reasonably fast and fine for casual computations,
but it may not be the best method. In some circumstances the two normals are not fully
independent, which becomes apparent in the extreme tails.

We generally do not need to worry about transformation methods as both R and
Matlab provide a range of RNGs and transformation methods in the same function. For
example, Listings 7.3 and 7.4 show the R and Matlab code to generate 10 random
numbers from a uniform, a normal and a Student-t(4). Note that each time the code is
run it will generate different answers unless we set the seed first. Also R and Matlab will
not provide the same RNs.

Listing 7.3. Various RNs in R

set.seed(12) # the seed

S = 10

runif(S)

rnorm(S)

rt(S,4)

Listing 7.4. Various RNs in Matlab

randn(’state’,12); % the seed

S = 10

rand(S,1)

randn(S,1)

trnd(4,S,1)

7.2 SIMULATION PRICING

There are several methods available to price assets such as options and bonds. For
relatively simple assets we can use an analytical solution (e.g., the present value formula
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for a standard nondefaultable bond and the Black–Scholes model for a European
option). More complicated derivatives are commonly priced with MC simulations.
The theory underlying the simulation approach is that the price of an asset is the

expectation taken under risk neutrality of its final payoff function. The payoff of a
derivative depends on the price movements of its underlying asset. Therefore, if we
simulate a sufficient number of price paths of the underlying, we can often obtain a very
good estimate of the true price.

7.2.1 Bonds

The price and risk of fixed income assets, such as bonds, is based on market interest
rates. By using a model of the distribution of interest rates, we can simulate random
yield curves from that model and use them to obtain the distribution of bond prices. In
other words, we map the distribution of interest rates on to the distribution of bond
prices.

Pricing

We indicate annual interest rates by rj (i.e., the zero-coupon rate used to discount a
payment received at time j in the future). We can use a modified pricing equation (6.1),
when we do not assume the yield curve is flat (i.e., that all r are the same):

P ¼
XT
j¼1


j

1þ rj
� �j ;

where P is the price of the bond; and 
j is the cash flow from the bond, including the par
value in 
T .
Suppose we have a bond with 10 years to expiration, a par value of $10, and annual

interest of 7%, where the current market interest rates are frtg ¼ ð5.00, 5.69, 6.09, 6.38,
6.61, 6.79, 6.94, 7.07, 7.19, 7.30Þ � 0:01.
The code to price the bond is given in Listing 7.5 for R and Listing 7.6 for Matlab.

Listing 7.5. Price bond in R

yield = c(5.00,5.69,6.09,6.38,6.61,6.79,6.94,7.07,7.19,7.30)

# yield curve

T = length(yield)

r = 0.07 # initial yield rates

Par = 10 # par value

coupon = r * Par # coupon payments

cc = 1:10 * 0 + coupon # vector of cash flows

cc[10] = cc[10] + Par # add par to cash flows

P = sum(cc/((1 + yield/100)^(1:T))) # calculate price

Note that all three vectors—yield, cash flow and time—need to have the same
dimensions in Matlab.
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Listing 7.6. Price bond in Matlab

yield = [5.00 5.69 6.09 6.38 6.61 6.79 6.94 7.07 7.19 7.30];

% initial yield curve

T = length(yield);

r = 0.07; % initial yield

Par = 10; % par value

coupon = r * Par; % coupon payments

cc = zeros(1,T)+coupon; % vector of cash flows

cc(10) = cc(10)+Par; % add par to cash flows

P = sum(cc./((1+yield./100).^(1:T))) % calculate price

We get the current value of the bond as $9.91 in both R and Matlab.

Simulation

We now make a simplifying assumption that the yield curve is restricted so that it can
only shift up and down, not change shape. This simplifies the implementation below;
however, one would generally want to allow yield to change shape as well.

Changes in yields, "i, are normally distributed with standard deviation, �; that is,

�i � Nð0; �2Þ:
Figure 7.2 shows eight simulated yield curves with the initial, or true, curve the one in
Listings 7.5 and 7.6.

The following R and Matlab code demonstrates how we can do the simulation. Note
that for the figure to be legible, it is necessary to keep the number of simulations, S, quite
small, while to actually calculate prices by simulations it needs to be much larger.

In both listings we set the seed before the simulation. The matrix of simulated yields is
ysim. Figure 7.2 shows eight simulated yield curves, simply obtained by setting S=8
and plotting ysim. See the last line of Listings 7.7 and 7.8 for the plot command.
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There are at least two different methods to get ysim: a loop over each simulated yield
curve, or a more complicated statement which calculates ysim with built-in matrix
operators, where the vector of yields and random numbers is duplicated S times into a
matrix. This is done for the yields in R as matrix(matrix(y,T,S),ncol=S) and
repmat(yield,1,S) in Matlab. We show both the loop method and the matrix
approach in the code.

Listing 7.7. Simulate yields in R

set.seed(12) # set seed

sigma = 1.5 # daily yield volatility

S = 8 # number of simulations

r = rnorm(S,0,sigma) # generate random numbers

# There are 2 ways to get matrix of simulated

yields in a loop

ysim = matrix(nrow = T,ncol = S)

for (i in 1:S) ysim[,i] = yield+r[i]

# this way is likely to be much faster

ysim = matrix(matrix(yield,T,S),ncol=S)+ matrix(t(matrix(r,S,T)),

ncol=S)

matplot(ysim,type = ’l’)

Listing 7.8. Simulate yields in Matlab

S = 8 % number of simulations

sigma = 1.5 % daily yield volatility

randn(’state’,123); % set the seed

r = randn(1,S)* sigma; % generate random yield changes in a loop

ysim=nan(T,S);

for i = 1:S

ysim(:,i) = yield + r(i);

end

ysim = repmat(yield’,1,S) + repmat(r,T,1);

% get matrix of random yields

plot(ysim)

The pricing equation is similar to (6.1). The ith simulated price, Pi, is the present value of
cash flows, using simulated interest rates �i:

Pi ¼
XT
j¼1


j

1þ rj þ �i
� �t ; i ¼ 1; . . . ;S

where rj þ �i is the ith simulated interest rate at time j.
After simulating the prices, they are plotted in Figure 7.3 with the histogram of prices

in Figure 7.4, where S=50000, along with the normal distribution with the same mean
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and variance as the simulated prices. Note the slight asymmetry in the simulated
distribution.

The relevant plot commands are indicated in the code. Simulated prices are indicated
by SP.

Listing 7.9. Simulate bond prices in R

SP = vector(length = S)

for (i in 1:S){ # S simulations

SP[i] = sum(cc/((1 + ysim[,i]/100)^(T)))

}

SP = SP � (mean(SP) � P) # correct for mean

barplot(SP) # Figure 7.3

# next 3 lines to make Figure 7.4

hist(SP,probability = TRUE)

x = seq(6,16,length = 100)

lines(x, dnorm(x, mean = mean(SP), sd = sd(SP)))
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Figure 7.3. Eight bond simulations with yields from Figure 7.2.

Figure 7.4. Distribution of 50,000 bond simulations, with the normal distribution superimposed.



Listing 7.10. Simulate bond prices in Matlab

SP = nan(S,1); % vector for sim prices

for s = 1:S % do S simulations

SP(s) = sum(cc./(1 + ysim(:,s)’./100).^((1:T))) ;

end

SP = SP � (mean(SP) - P); % correct for mean

bar(SP) % Figure 7.3

histfit(SP) % Figure 7.4

Allowing the yield curve to change shape

In the application above, we made the simplifying assumption that the yield curve can
only shift up and down, where the random shock was normally distributed. This is
unrealistic in practice, as yield curves do change shape over time, and the distribution of
interest rate changes may not be the normal.
It would be relatively straightforward to modify the approach above to incorporate

such effects. For example, if we want to allow the yield curve to change shape, it might be
useful to use principal components analysis (PCA) and simulate the first two or three
principal components in the simulation. This would provide an efficient way to model
the dynamics of the yield curve.

7.2.2 Options

We want to use MC to obtain the price of a European option on a non-dividend-paying
stock, where all of the Black–Scholes (BS) assumptions hold.
There are two primitive assets in the BS pricing model. A money market account

whose value appreciates at the risk-free rate and the underlying stock which follows a
normally distributed random walk with drift r (i.e., the annual risk-free rate). The latter
is called geometric Brownian motion when in continuous time, which is one of the
underlying assumptions in the Black–Scholes equation.
The no-arbitrage futures price of stock for delivery at time T , at the annual risk-free

rate r, is given by:

F ¼ PerT :

Analytical pricing

We use a European call option as an example below, where the current stock price is $50,
annual volatility is 20%, the annual risk-free rate is 5%, there are 6 months to expiration
and the strike price is $40.
We use results from the analytical calculations in Listings 6.1 and 6.2 for comparison

with the Monte Carlo results below; it is assumed that files containing the code are
present under filenames bs.r and bs.m for R and Matlab, respectively.
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Listing 7.11. Black–Scholes valuation in R

source(’bs.r’) # input the Black Scholes pricing function

P0 = 50 # initial spot price

sigma = 0.2 # annual volatility

r = 0.05 # annual interest

T = 0.5 # time to expiration

X = 40 # strike price

f = bs(X,P0,r,sigma,T) # analytical call price

Listing 7.12. Black–Scholes valuation in Matlab

P0 = 50; % initial spot price

sigma = 0.2; % annual volatility

r = 0.05; % annual interest

T = 0.5; % time to expiration

X = 40; % strike price

f = bs(X,P0,r,sigma,T); % analytical price

The price of the call is $11.0873 in both R and Matlab.

Monte Carlo

We first simulate the returns over the period until expiration and use these values to
calculate the simulated futures prices. Once we have a sufficient sample of futures prices,
it is straightforward to compute the set of payoffs of the option; for example,
maxð0;F � XÞ for the call option. The MC price of the option is then given by the
mean of these payoffs. The only complexity that arises from this procedure is due to the
expectation of a log-normal random variable; that is, if

O � N �; �2
� �

then

E exp Oð Þ½ � ¼ exp �þ 1
2�

2
� �

: ð7:2Þ

Therefore, we have to apply a log-normal correction (i.e., subtract 1
2 �

2 from the simu-
lated stock return) to ensure that the expectation of the simulated futures price is the
same as the theoretical value.

We price a European call by simulation using the R and Matlab code in Listings 7.13
and 7.14.
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Listing 7.13. Black–Scholes simulation in R (cont.)

S = 1e6 # number of simulations

set.seed(12) # set seed

F = P0 * exp(r*T) # futures price

ysim = rnorm(S,-0.5 * sigma * sigma * T,sigma * sqrt(T))

# simulated returns with the log normal

correction

F = F * exp(ysim) # futures price

SP = F � X # payoff

SP[SP < 0] = 0 # set negative outcomes to zero

fsim = SP * exp(�r*T) # discount

Listing 7.14. Black–Scholes simulation in Matlab (cont.)

randn(’state’,0); % set seed

S = 1e6; % number of simulations

F = P0 * exp(r*T); % futures price

ysim = randn(S,1) * sigma * sqrt(T) � 0.5 * T * sigma^2;

% random return, mean corrected

F=F * exp(ysim);

SP = F-X; % simulated future payoff

SP(find(SP < 0)) = 0; % set negative outcomes to 0

fsim = SP * exp(�r*T); % MC call price

We can measure the accuracy of the simulation by how close the MC price is to the
Black–Scholes price, which is $11.0873. R gives $11.08709 and Matlab $11.0996, close
enough for most practical purposes.

Density plots

Figures 7.5 and 7.6 show the density of simulated future prices and option payoffs. Note
the asymmetry in the density in Figure 7.5, as a result of the fact that the prices are log-
normally distributed. Listings 7.15 and 7.16 show how to create the figures.

Listing 7.15. Option density plots in R (cont.)

hist(F,probability = TRUE,ylim = c(0,0.06)) # make Figure 7.5

# make Figure 7.6

x = seq(min(F),max(F),length = 100)

lines(x, dnorm(x, mean = mean(F), sd = sd(SP)))

hist(fsim,nclass = 100,probability = TRUE)
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Listing 7.16. Option density plots in Matlab (cont.)

histfit(F); % make Figure 7.5

hist(fsim,100); % make Figure 7.6

To calculate the VaR, we simply read off the 1% smallest value from the distribution to
obtain the 99% VaR.

7.3 SIMULATION OF VAR FOR ONE ASSET

The methods discussed in Section 7.2 can be used to obtain the VaR, but they are not the
most convenient methods for the purpose. A better approach is to simulate the one-day
return of an asset and then apply analytical pricing formulas to the simulated future
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Figure 7.5. Distribution of 106 simulated futures prices, P ¼ 50, � ¼ 0:2, r ¼ 0:05, T ¼ 0:5,
X ¼ 40, with the normal superimposed.

Figure 7.6. Distribution of option prices from the simulation in Figure 7.5.



price. The difference between tomorrow’s simulated future values and today’s known
value represents the simulated P/L in our portfolio, from which we can calculate the MC
VaR.
Consider an asset with price Pt and IID-normally-distributed returns, with one-day

volatility �, and where the annual risk-free rate is r.
The number of units of the basic asset held in a portfolio is denoted by xb, while xo

indicates the number of options held.
In the following, calendar time (365 days a year) is used for interest rate calculations.

For volatility scaling we use trading time (typically 250 days a year).

7.3.1 Monte Carlo VaR with one basic asset

The procedure for obtaining the MC VaR is summarized in the following steps.

1 Compute the initial portfolio value:

#t ¼ xbPt:

2 Simulate S one-day returns, ytþ1;t, from:

Nð0; �2Þ; i ¼ 1; . . . ;S:

3 Calculate the one-day future price by:

Ptþ1;i ¼ Pte
rð1=365Þ � eytþ1;i � e�0:5�2 ; i ¼ 1; . . . ;S:

Ptþ1;i is the ith simulated value. The last term is the log-normal correction from (7.2).
4 Calculate the simulated futures value of the portfolio by:

#tþ1;i ¼ xbPtþ1;i:

5 The ith simulated profit and loss value is then:

qtþ1;i ¼ #tþ1;i � #t:

6 VaR can be obtained directly from the vector of simulated P/L, fqtþ1;igSi¼1. For
example, VaRð0:01Þ is the 1% smallest value.

It is important to realize that it is the tþ 1 price of the basic asset that is being simulated.
This is calculated by multiplying the exponential of the simulated return by the future
price, then applying a log-normal correction. We use risk-free return because that is
what the Black–Scholes equation assumes, but we can use any number we want. Since it
will be very small, it could simply be set at zero.

Example 7.1 We own one stock with a price of 100, where returns have daily
volatility � ¼ 0.01. The annual risk-free rate is 5%. The MC one-day VaR is
calculated in R andMatlab using 10 million simulations with the code given in Listings
7.17 and 7.18.
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Listing 7.17. Simulate VaR in R

set.seed(1) # set seed

S = 1e7 # number of simulations

s2 = 0.01^2 # daily variance

p = 0.01 # probability

r = 0.05 # annual risk free

P = 100 # today’s price

ysim = rnorm(S,r/365-0.5 * s2,sqrt(s2)) # sim returns

Psim = P * exp(ysim) # future prices

q = sort(Psim � P) # simulated P/L

VaR1 = �q[p*S] # get VaR

Listing 7.18. Simulate VaR in Matlab

randn(’state’,0); % set seed

S = 1e7; % number of simulations

s2 = 0.01^2; % daily variance

p = 0.01; % probability

r = 0.05; % risk free

P = 100; % today’s price

ysim = randn(S,1)* sqrt(s2)+r/365-0.5*s2; % simulate return

Psim = P * exp(ysim); % future prices

q = sort(Psim � P); % sort sim P/L

VaR1 = �q(S * p)

R and Matlab give $2.285 and $2.291, respectively. The answers will be more equal if
more simulations are done.

7.3.2 VaR of an option on a basic asset

For options, the extra step is to apply the Black–Scholes equation to current and
simulated future prices, where we have xo options. gðÞ denotes the Black–Scholes
equation, but could refer to any derivative-pricing equation.

From the list of steps in Section 7.3.1, replace items 1 and 4 with:

1v The initial portfolio value is

#t ¼ xogðPt;X ;T ;
ffiffiffiffiffiffiffiffi
250

p
�; rÞ:

4v The ith simulated future value of the portfolio is then

#tþ1;i ¼ xogðPtþ1;i;X ;T � 1=365;
ffiffiffiffiffiffiffiffi
250

p
�; rÞ:

The other steps are the same.
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Example 7.2 (continuing from Example 7.1) We own one call option with strike
price 100 and an expiration date in 3 months’ time. The MC one-day VaR for the
option is calculated in R and Matlab using the code given in Listings 7.19 and 7.20.
The distribution of the P/L of the simulated option is shown in Figure 7.7.

Listing 7.19. Simulate option VaR in R

T = 0.25; # time to expiration

X = 100; # strike price

sigma = sqrt(s2 * 250); # annual volatility

f = bs(X,P,r,sigma,T) # analytical call price

fsim = bs(X,Psim,r,sigma,T � (1/365)) # simulate option prices

q = sort(fsim$Call - f$Call) # simulated P/L

VaR2 = -q[p * S] # get VaR

Listing 7.20. Simulate option VaR in Matlab

T = 0.25; % time to expiration

X = 100; % strike price

sigma = sqrt(s2*250); % annual volatility

f = bs(X,P,r,sigma,T); % analytical call price

fsim = bs(X,Psim,r,sigma,T � (1/365)); % sim call price

q = sort(fsim.Call � f.Call); % sorted sim P/L

VaR2 = �q(p*S) % p% VaR

The VaR in both R and Matlab is $1.21.

Figure 7.7. Distribution of the P/L of the simulated option from Example 7.2 with the normal

distribution superimposed.



136 Simulation methods for VaR for options and bonds

7.3.3 Options and a stock

This methodology extends directly to a situation where we have a portfolio with both a
stock and an option or even multiple options (put and call and/or many strike prices) on
the same stock. The notation will get messy, so suppose for now that we only have one
type of option. Example 7.3 has two options.

From the list of steps in Section 7.3.2, replace items 1v and 4v with:

1w Initial portfolio value is:

#t ¼ xbPt þ xogðPt;X ;T ;
ffiffiffiffiffiffiffiffi
250

p
�; rÞ:

4w The ith simulated future value of the portfolio is then:

#tþ1;i ¼ xbPtþ1;i þ xogðPtþ1;i;X ;T � 1=365;
ffiffiffiffiffiffiffiffi
250

p
�; rÞ:

The other steps are the same.

Example 7.3 (continuing from Example 7.2) We own one call option with strike
price 100 and a put with strike 110 along with the underlying stock. The MC one-day
VaR for the option is calculated in R and Matlab using the code in Listings 7.19 and
7.20.

Listing 7.21. Example 7.3 in R (continuing from Listing 7.19)

X1 = 100 # call strike

X2 = 110 # put strike

f1 = bs(X1,P,r,sigma,T) # analytical price

f2 = bs(X2,P,r,sigma,T)

f2sim = bs(X2,Psim,r,sigma,T � (1/365))

f1sim = bs(X1,Psim,r,sigma,T � (1/365))

q = sort(f1sim$Call + f2sim$Put + Psim � f1$Call � f2$Put � P);

VaR3 = �q[p * S]

Listing 7.22. Example 7.3 in Matlab (continuing from Listing 7.20)

X1 = 100; % call strike

X2 = 110; % put strike

f1 = bs(X1,P,r,sigma,T); % analytical price

f2 = bs(X2,P,r,sigma,T);

f1sim = bs(X1,Psim,r,sigma,T-(1/365));

f2sim = bs(X2,Psim,r,sigma,T-(1/365));

q = sort(f1sim.Call + f2sim.Put + Psim � f1.Call � f2.Put � P);

VaR3 = �q(p * S)

In both R and Matlab we get $1.50.



Financial Risk Forecasting 137

7.4 SIMULATION OF PORTFOLIO VaR

The main difference in the multivariate case is that, instead of simulating the return of
one asset, we need to simulate correlated returns for all assets. This ensures that
the dependence structure is maintained for the portfolio. Simulated future prices are
calculated in the same way as before, and we obtain the portfolio value by summing up
individual simulated asset holdings.
Suppose there are two non-derivative assets in our portfolio, with the daily return

distribution

N � ¼ 0:05=365

0:05=365

� �
; � ¼ 0:01 0:0005

0:0005 0:02

� �� �
:

The statement in R to simulate multivariate normals is mvrnorm(S,mu,Sigma),
where S is the number of simulations, mu is a vector of means and Sigma is a
K � K covariance matrix. In order to use this function, the MASS library is required.

Listing 7.23. Simulated two-asset returns in R

library (MASS)

mu = c(r/365,r/365) # return mean

Sigma = matrix(c(0.01, 0.0005, 0.0005, 0.02),ncol = 2)

# covariance matrix

set.seed(12) # set seed

y = mvrnorm(S,mu,Sigma) # simulated returns

The equivalent statement in Matlab is mvnrnd(mu,Sigma,S).

Listing 7.24. Simulated two-asset returns in Matlab

mu = [r/365 r/365]’; % return mean

Sigma = [0.01 0.0005; 0.0005 0.02]; % covariance matrix

randn(’state’,12) % set seed

y = mvnrnd(mu,Sigma,S); % simulated returns

In this case each row of y represents a vector of simulated returns on the assets in the
portfolio.

7.4.1 Simulation of portfolio VaR for basic assets

The multivariate version of the method presented in Section 7.3.1 is now given. Here xb

is the vector of holdings, i the simulation index number and k the asset index number,
such that Pt;k;i denotes the ith simulated price of asset k at time t.

1 The initial portfolio value is:

#t ¼
XK
k¼1

xb
kPt;k:
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2 We simulate a vector of one-day returns from today until tomorrow, denoted by
ytþ1;i, from:

N �� 1
2
Diag �; �

� �
where Diag � extracts the diagonal elements of � because of the log-normal
correction.

3 The ith simulated future price of asset k is:

Ptþ1;k;i ¼ Pt;k expðytþ1;k;iÞ:
4 The ith simulated futures value of the portfolio is given by:

#tþ1;i ¼
XK
k¼1

xb
kPtþ1;k;i:

5 The ith simulated profit and loss (P/L) value (q) is then:

qtþ1;i ¼ #tþ1;i � #t:

6 VaR can be obtained directly from the vector of simulated P/L, fqtþ1;igSi¼1, as before.

Let us suppose we hold one unit of each asset. The R and Matlab codes to compute the
P/L of the simulated portfolio is given in Listings 7.25 and 7.26 (i.e., as continuations
from Listings 7.23 and 7.24).

Listing 7.25. Two-asset VaR in R

K=2

P = c(100,50) # prices

x = c(1,1) # number of assets

Port = P %*% x # portfolio at t

Psim = matrix(t(matrix(P,K,S)),ncol=K)* exp(y)

PortSim = Psim %*% x # simulated portfolio

q = sort(PortSim-Port[1,1]) # simulated P/L

VaR4 = -q[S * p]

Note the Port[1,1] from the penultimate line. As Port is a one-by-one matrix, it
cannot be subtracted from a matrix of a different dimension. Port[1,1] extracts the
only element as a real.

Listing 7.26. Two-asset VaR Matlab

K = 2; % 2 assets

P = [100 50]’; % prices

x = [1 1]’; % number of assets

Port = P’* x; % portfolio at t

Psim = repmat(P,1,S)’ .* exp(y); % sim prices

PortSim = Psim * x; % sim portfolio

q = sort(PortSim � Port); % simulated P/L

VaR4 = �q(S * p)

The VaR in both R and Matlab is $25.97.
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7.4.2 Portfolio VaR for options

If there are options in the portfolio, some modifications to the previous procedure along
the lines of the univariate implementation above are required. For simplicity suppose
there is only one option type per stock. Items 1 and 4 from Section 7.4.1 are then
replaced by:

1v The initial portfolio value is:

#t ¼
XK
k¼1

xb
kPt;k þ xo

kgðPt;k;Xk;T ;
ffiffiffiffiffiffiffiffi
250

p
�k; rÞ

� �
:

4v The ith simulated future value of the portfolio is then given by:

#tþ1;i ¼
XK
k¼1

xb
kPtþ1;k;i þ xo

kgðPtþ1;k;i;Xk;T � 1
365
;
ffiffiffiffiffiffiffiffi
250

p
�k; rÞ

� �
:

The other steps remain unchanged.
Suppose we hold one at-the-money call option on the second stock in the example

above, while being long one of the first stock. We can then modify the previous two
listings to Listings 7.27 and 7.28.

Listing 7.27. A two-asset case in R with an option

f = bs(P[2],P[2],r,sigma,T) # analytical price

fsim = bs(P[2],Psim[,2],r,sigma,T-(1/365))

q = sort(fsim$Call + Psim[,1] � f$Call � P[1]);

VaR5 = �q[p*S]

Listing 7.28. A two-asset case in Matlab with an option

f = bs(P(2),P(2),r,sigma,T); % analytical price

fsim=bs(P(2),Psim(:,2),r,sigma,T-(1/365));

q = sort(fsim.Call+Psim(:,1)-f.Call-P(1));

VaR5 = -q(p*S)

The VaR in R is $20.78 and the VaR in Matlab is $20.81.

7.4.3 Richer versions

We kept the examples above relatively simple because, otherwise, the notation would
have got quite cluttered. However, it is straightforward to incorporate much more
complicated examples.
For example, we could have a number of stocks and multiple options on each stock.

The examples above used European options but they could just as easily have been
American or more exotic options. It would be simple to combine fixed income assets
with the stocks and options used here. The general framework is quite flexible.



Furthermore, instead of simulating from a multivariate normal, we could simulate
from a different distribution such as the Student-t, or even use historical simulation to
get future prices.

7.5 ISSUES IN SIMULATION ESTIMATION

There are several issues that need to be addressed in all Monte Carlo simulation
exercises; the most important are the quality of the RNG and the transformation
method as well as the number of simulations.

7.5.1 The quality of the RNG

Monte Carlo simulations are based on replicating the real world on the computer.
As such, the quality of MC simulation is not only dependent on the quality of the
underlying stochastic model, but also the quality of the actual RNG used.

The properties of the RNG drive the entire result; if a low-quality generator is used,
biased or inaccurate results will result. For example, if the period of the RNG is 10 and
we run a simulation of size 100, the same calculation is repeated 10 times.

The desired quality and period of the generator depend on the underlying application.
While simple calculations involving one asset do not make big demands on the gen-
erator, a large number of random numbers is necessary for portfolios consisting of many
exotic options.

Similarly, the quality of the transformation method also plays a key role. Many
transformation methods are only optimally tuned for the center of the distribution; this
can become problematic when simulating extreme events. It is not uncommon for some
transformation methods to use linear approximations for the extreme tails, which will
lead to extreme uniforms being incorrectly transformed.

7.5.2 Number of simulations

It is important to choose the number of simulations correctly. If we choose too few
simulations the resulting answer will be inaccurate; if we choose too many we are
wasting valuable computer resources. Considering that simulations can take quite a
long time to run, even on very-high-end hardware, the choice of simulation size is often
vital.

There are no set rules regarding the number of simulations needed for an accurate
answer. In special cases there are formal statistical tests for the number of simulations
but, for the most part, more informal methods have to be relied upon. Common
proposals stating that the accuracy of simulation is related to the inverse simulation
size are not recommended, because they are based on an assumption of linearity, which
is not correct in the applications in this chapter.

As most MC VaR applications are based on nonlinear transformation of a random
variable and only use a quantile of the outcomes, determination of the number of
simulations is even more complex. The best way, in many cases, is to simply increase
the number of simulations and see how the MC estimate converges. When numbers have
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stopped changing up to three significant digits, the number of simulations is probably
sufficient.
As an example of how to choose the number of simulations, consider MC pricing of a

European option. To determine the optimal number of simulations, we can compare the
true (analytical) price to the MC estimate.
In Figure 7.8 the x-axis shows the number of simulations, ranging from 100 to

5,000,000, on a log scale, while the y-axis shows the simulation estimate of the option
price for the corresponding number of simulations.
The true value is around 11.09; it takes about 5,000 simulations to get that number up

to three significant digits. There are still fluctuations in the estimate for 5 million
simulations. Of course, in most practical applications such precision is unnecessary.
Figure 7.9 shows the MC VaR for a stock with daily volatility 1% as the number of

simulations increases from 100 to hundreds of thousands, along with the 1% and 99%
confidence bounds, where the true VaR is 100.
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Figure 7.8. Cumulative MC estimate, from the simulation in Figure 7.5.

Figure 7.9. Convergence of MC VaR estimates, with �99% confidence intervals.



For the lowest number of simulations, the confidence interval is quite wide but rapidly
narrows. At S ¼ 103 it is ð98:54; 101:57Þ and at S ¼ 104 it is ð99:57; 100:52Þ; so, in 99%
of cases, MC estimates are equal to three significant digits. In light of the fact that
accuracy in the volatility forecast is considerably lower than that, the conclusion is that
100,000 simulations are more than enough here.

7.6 SUMMARY

The starting point in all risk analysis is getting hold of a statistical model of the
underlying risk factors—be they equities, foreign exchange, commodities, interest rates
or something else. With such a model in hand, we can obtain measures of risk, like VaR,
by methods such as those discussed in Chapter 5. However, if we hold options or bonds,
it is necessary to first forecast the risk in the risk factor, and then somehow map that on
to the risk in the bond or option.

Traditionally, this was done using mathematical expansions—such as the methods in
Chapter 6—but nowadays Monte Carlo simulations are much more common. The
reason is that they enable us to outsource most of the heavy calculations to a computer
instead of tediously deriving the risk properties of the myriad derived assets one by one.

In this chapter, we first demonstrated how MC could be used to obtain the price of a
bond or an option. The examples chosen were sufficiently simple such that the analytical
price was known and could therefore be compared with the price obtained by simula-
tions, providing easy verification of the results.

We then implemented a straightforward way to obtain risk by the MC method
whereby we simulated the prices of an underlying asset, applied the analytical pricing
equations where appropriate and from this obtained simulated profit and loss (P/L).
Then, it was an easy matter to obtain the VaR as a probability p quantile of simulated
P/L, similar to historical simulation.
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How do we choose the best model for forecasting risk? Unfortunately, there is no single
correct answer to this question. We can diagnose individual models, perhaps by testing
for parameter significance or analyzing residuals, but these methods often do not
properly address the risk-forecasting property of the models under consideration.
Backtesting is a procedure that can be used to compare the various risk models. It aims

to take ex ante value-at-risk (VaR) forecasts from a particular model and compare them
with ex post realized return (i.e., historical observations). Whenever losses exceed VaR,
a VaR violation is said to have occurred.
Backtesting is useful in identifying the weaknesses of risk-forecasting models and

providing ideas for improvement, but is not informative about the causes of weaknesses.
Models that do not perform well during backtesting should have their assumptions and
parameter estimates questioned. However, backtesting can prevent underestimation of
VaR and, hence, ensure that a bank carries sufficiently high capital. At the same
time backtesting can reduce the likelihood of overestimating VaR, which can lead to
excessive conservatism.
In this chapter, we introduce the procedure of backtesting, statistical techniques for

testing the significance of VaR violations and several common procedures for evaluating
the quality of risk forecasts. Towards the end of the chapter we discuss the backtesting
of expected shortfall (ES) and, finally, stress testing. For a good overview of backtesting
see Campbell (2005).
The specific notation used in this chapter is:

WT Testing window size

T ¼ WE þWT Number of observations in a sample

�t ¼ 0; 1 Indicates whether a VaR violation occurs (i.e., �t ¼ 1)

vi; i ¼ 0; 1 Number of violations ði ¼ 1Þ and no violations ði ¼ 0Þ observed in f�tg
vij Number of instances where j follows i in f�tg

8.1 BACKTESTING

Assessment of the accuracy of VaR forecasts should ideally be done by tracking the
performance of a model in the future using operational criteria. However, as violations
are only observed infrequently, a long period of time would be required. To eliminate
the waiting time, backtesting evaluates VaR forecasts by checking how a VaR forecast
model performs over a period in the past.

8
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Definition 8.1 (Estimation window) The estimation window ðWEÞ is the number of
observations used to forecast risk. If different procedures or assumptions are com-
pared, the estimation window is set to whichever one needs the highest number of
observations.

Definition 8.2 (Testing window) The testing window ðWTÞ is the data sample over
which risk is forecast (i.e., the days where we have made a VaR forecast).

Typically, the entire sample size T is equal to the sum of WE and WT :

t ¼ 1
Entire data sample

t ¼ T

j———————————————————————————————————j
t ¼ 1

First estimation window
t ¼ WE

j———————————————————j VaRðWT þ 1Þ
t ¼ 2

Second estimation window
t ¼ WE þ 1

j———————————————————j VaRðWE þ 2Þ
t ¼ 3

Third estimation window
t ¼ WE þ 2

j———————————————————j VaRðWE þ 3Þ
..
.

t ¼ T �WE
Last estimation window

t ¼ T � 1

j———————————————————j VaRðTÞ

Example 8.1 We have a 10-year sample of daily data from 1999 until the end of
2009. The first two years, 1999 and 2000, are used to forecast daily VaR for the first
day of 2001. The 500 trading days in 1999 and 2000 therefore constitute the first
estimation window. The estimation window is then moved up by one day to obtain the
risk forecast for the second day of 2001, etc. We assume here for simplicity that there
are 250 trading days in the year:

Estimation window in dates
————————————

Start End VaR forecast
———————————————————————
1/1/1999 31/12/2000 VaR(1/1/2001)
2/1/1999 1/1/2001 VaR(2/1/2001)

..

. ..
. ..

.

31/12/2007 30/12/2009 VaR(31/12/2009)
———————————————————————

As the daily returns from 2001–2009 are already known, VaR forecasts can be
compared with the actual outcome.
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Example 8.2 (continuing from Example 8.1) However, instead of referring to
calendar dates (e.g., 1/1/2004), we refer to days by indexing the returns, so y1 is
the return on 1/1/1999 and y2;500 the return on the last day, 31/12/2009, assuming 250
trading days per year. The estimation window WE is set at 500 days, and the testing
window WT is therefore 2,000 days:

Estimation and testing windows
——————————————

t tþWE � 1 VaRðtþWEÞ
—————————————————————————————

1 500 VaR(501)
2 501 VaR(502)

..

. ..
. ..

.

1,999 2,499 VaR(2,500)
—————————————————————————————

In Example 8.2, we have 8 years (or 2,000 days) of VaR forecasts, which is the size of the
testing window. If the actual return on a particular day exceeds the VaR forecast, then
the VaR limit is said to have been violated. We can then make a judgment on the quality
of the VaR forecasts by recording the relative number of violations—a technique called
violation ratios—or use more sophisticated statistical techniques.
We record the violations as �t, which takes the value 1 when a violation occurs and 0

otherwise. The number of violations are collected in the variable v, where v1 is the
number of violations and v0 is the number of days without violations. These two add
up to make the testing period.

Definition 8.3 (VaR violation) An event such that:

�t ¼
1 if yt 
 �VaRt

0 if yt > �VaRt:

�
ð8:1Þ

v1 is the count of �t ¼ 1 and v0 is the count of �t ¼ 0, which are simply obtained by:

v1 ¼
X

�t

v0 ¼WT � v1:

The main tools used in backtesting are violation ratios, where the actual number of VaR
violations are compared with the expected value.

Definition 8.4 (Violation ratio) The violation ratio is:

VR ¼ Observed number of violations

Expected number of violations
¼ v1

p�WT

:
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Intuitively, if the violation ratio is greater than one the VaR model underforecasts risk
and if smaller than one the model overforecasts risk.

Backtesting is based on an important, but sometimes incorrect, assumption. When
estimating daily VaR, it is assumed that the portfolio is ‘‘frozen’’ over the next trading
day. This means that there is no change expected in the composition of the portfolio.
Actual realized returns, however, may reflect revenue and transaction costs from intra-
day trading, miscellaneous fee incomes, rebalancing and other items. Strictly speaking,
the user should use a return for backtesting that represents a frozen portfolio obtained
by applying daily price changes to fixed positions.

8.1.1 Market risk regulations

Financial institutions regulated under the Basel Accords are required to set aside a
certain amount of capital due to market risk, credit risk and operational risk. The
formula for determining the market risk capital was set by the 1996 Market Risk
Amendment to the 1988 Basel I Accords. It is based on multiplying the maximum of
previous day 1% VaR and 60 average VaR by a constant, �, which is determined by the
number of violations that happened previously:

Market risk capitalt ¼ �t max VaR1%
t ;VaR

1%
t

� �
þ Constant:

VaR
1%
t is average reported 1% VaR over the previous 60 trading days. Importantly, the

multiplication factor �t varies with the number of violations, v1, that occurred in
the previous 250 trading days—the required testing window length for backtesting in
the Basel Accords. This is based on three ranges for the number of violations, named
after the three colors of traffic lights:

�t ¼
3 if v1 
 4 Green

3þ 0:2ðv1 � 4Þ if 5 
 v1 
 9 Yellow

4 if 10 
 v1 Red.

8<: ð8:2Þ

A bank experiencing an excess number of violations will be penalized by having to set
aside a larger amount of risk capital. Moreover, if v1 is in the red zone, banks will have to
take immediate action to reduce their risk or improve the VaR model; they may even
lose their banking license.

Fundamentally, this approach is unchanged in Basel II and is not expected to change
much in Basel III.

8.1.2 Estimation window length

The estimation window length is mainly determined by the choice of VaR model and
probability level. Different methods have different data requirements (e.g., EWMA
requires about 30 days, HS needs at least 300 for VaR1%, and GARCH even more).
When making comparisons, the estimation window should be sufficiently large to
accommodate the most stringent data criteria. Even within the same method, it may
be helpful to compare different window lengths. For example, we may want to compare
EWMA, 300-day HS and 500-day HS. In this case the estimation window should be 500
days.
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8.1.3 Testing window length

VaR violations are, by definition, infrequent events. With a 1% VaR, a violation is
expected once every 100 days, so that 2.5 violations are expected per year. Therefore, the
actual sample size of violations is quite small, causing difficulties for statistical inference.
We might need perhaps 10 violations for reliable statistical analysis, or 4 years of data.
This means the size of the testing window needs to increase with the extremity of VaR
levels. Furthermore, when using some of the formal statistical tests discussed below, the
data requirements may increase even more.

8.1.4 Violation ratios

The question of how to interpret violation ratios remains. A VR value of one is expected,
but how can we ascertain whether any value other than one is statistically significant?
We discuss some formal tests below, but a useful rule of thumb is that ifVR 2 ½0:8; 1:2� it
is a good forecast and if VR < 0:5 or VR > 1:5 the model is imprecise. Both bounds
narrow with increasing testing window lengths. As a first attempt, one could plot the
actual returns and VaR together, thereby facilitating a quick visual inspection of the
quality of the VaR forecast.
Backtesting focuses on violation ratios, but it is possible that two different VaR

methods can deliver the same violation ratios yet have major discrepancies in their
VaR forecasts. In this case, it may be useful to consider the volatility of risk forecasts
(i.e., the standard deviation of VaR estimates). Clearly, the model with the lower
standard deviation is preferred. This is discussed in Danı́elsson (2002).

8.2 BACKTESTING THE S&P 500

We demonstrate backtesting by using many of the most common VaR forecast methods
discussed in Chapter 5 and by taking a sample of daily S&P 500 returns from February
2, 1994 to December 31, 2009—4,000 observations in all.
We start by downloading the prices, converting them into returns, and saving them to

vector y. In R we need to convert the time series object using coredata().

Listing 8.1. Load data in R

library("tseries") # time series library

p = get.hist.quote(instrument = "^gspc", start = "1994-02-11",

end = "2009-12-31",quote = "AdjClose",quiet = T)

# download the prices

y = diff(log(p)) # get returns

y = coredata(y) # strip date information from returns
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Listing 8.2. Load data in Matlab

stocks = hist_stock_data(’11021994’,’31122009’,’^gspc’);

price = stocks.AdjClose(end:�1:1);

y = diff(log(price)); % get returns

We then set up the probability (1%), window length (1,000 days) and carry out EWMA
initialization. Finally, we create a matrix, VaR, with dimensions T � 4 to hold the
various forecasts, which are initially set to NaNs.

Listing 8.3. Set backtest up in R

T = length(y) # number of observations for return y

WE = 1000 # estimation window length

p = 0.01 # probability

l1 = WE * p # HS observation

value = 1; # portfolio

VaR = matrix(nrow=T,ncol=4) # matrix to hold VaR forecasts for 4

models

# EWMA setup

lambda = 0.94;

s11 = var(y[1:30]);

for(t in 2:WE) s11 = lambda * s11 + (1 � lambda) * y[t � 1]^2

library(fGarch)

Listing 8.4. Set backtest up in Matlab

T = length(y); % number of observations for return y

WE = 1000; % estimation window length

p = 0.01; % probability

value = 1; % portfolio

l1 = WE * p ; % HS observation

VaR = NaN(T,4); % matrix to hold VaR forecasts for 4 models

% EWMA setup

lambda = 0.94;

s11 = var(y(1:30)); % initial variance

for t = 2:WE

s11 = lambda * s11 + (1 � lambda) * y(t � 1)^2;

end

% GARCH specification

spec = garchset(’P’, 1, ’Q’, 1,’C’,NaN,’Display’,’off’)
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We implement four models: exponential moving average (EWMA), moving average
(MA), historical simulation (HS) and GARCH(1,1). We need to manually update the
GARCH volatility forecasts �̂�tþ1 as discussed in Section 5.5.3.
A potentially important issue arises when GARCH is used for backtesting, since

GARCH estimation takes a nontrivial amount of time. Of course, if we only need to
estimate the model once, it does not matter whether estimation takes half a second or
3 seconds, but in backtesting the model for each different data window has to re-
estimated, which can often involve thousands of estimations. In this case it is desirable
to speed up estimation in some way.
We can achieve this by setting starting values efficiently. After the first estimation we

obtain parameter estimates, which are not likely to change very much when we move the
window through the sample. Therefore, it makes sense to recycle parameter estimates
for the previous window as starting values in the next estimation. In one experiment
using Matlab, this made the program run 2.5 times faster.

Listing 8.5. Running backtest in R

for (t in (WE + 1):T){

t1 = t � WE; # start of the data window

t2 = t � 1; # end of the data window

window = y[t1:t2] # data for estimation

# EWMA

s11 = lambda * s11 + (1 � lambda) * y[t � 1]^2

VaR[t,1] = �qnorm(p) * sqrt(s11) * value

# MA

VaR[t,2] = �sd(window) * qnorm(p)* value

# HS

ys = sort(window) # sort returns

VaR[t,3] = -ys[l1]* value # VaR number

# GARCH(1,1)

g=garchFit(formula = ~ garch(1,1), window ,trace=FALSE,

include.mean=FALSE)

par=g@fit$matcoef # put parameters into vector par

s4=par[1]+par[2]* window[WE]^2+par[3]* g@h.t[WE]

VaR[t,4] = -sqrt(s4) * qnorm(p) * value

}

Listing 8.6. Running backtest in Matlab

for t = WE + 1:T

t1 = t � WE; % start of the data window

t2 = t � 1; % end of data window

window = y(t1:t2) ; % data for estimation

% EWMA

s11 = lambda * s11 + (1 � lambda * y(t � 1)^2;
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VaR(t,1) = �norminv(p) * sqrt(s11) * value ;

% MA

VaR(t,2) = �std(window)* norminv(p)* value;

% HS

ys = sort(window);

VaR(t,3) = �ys(l1)* value;

% GARCH

[par,errors,LLF,innovations,ht] = garchfit(spec,window);

h = par.K + par.ARCH*window(end)^2 + par.GARCH*ht(end)^2;

VaR(t,4) = -sqrt(h) * norminv(p) * value;

end

8.2.1 Analysis

We analyze the results from these VaR forecasts by means of violation ratios, VaR
volatility and graphical methods. In Section 8.3 we consider more formal tests of
violation ratios.

The code below shows how to calculate violation ratios and VaR volatility, how to
print out the results and finally how to make a joint plot with returns and VaRs similar
to the one in Figure 8.1.

Listing 8.7. Backtesting analysis in R

W1 = WE+1

for (i in 1:4){

VR = sum(y[W1:T] < �VaR[W1:T,i])/(p*(T � WE))

s = sd(VaR[W1:T,i]) # VaR volatility

cat(i,"VR",VR,"VaR vol",s,"\n") # print results

}

matplot(cbind(y[W1:T],VaR[W1:T,]),type=’l’)

Listing 8.8. Backtesting analysis in Matlab

for i = 1:4

VR = length(find(y(WE + 1:T)<-VaR(WE + 1:T,i)))/(p *(T � WE));

% violation ratio

s = std(VaR(WE + 1:T,i)); % VaR volatility

disp([i VR s]) % print results

end

plot([y(WE + 1:T) VaR(WE + 1:T,:)])

Numerical results from the backtests are shown in Table 8.1. The two methods that
apply equal weight to historical data, MA and HS, perform abysmally, while the
conditional methods, EWMA and GARCH, are better, but still by no means good.
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(a) Returns and VaR for whole sample

(b) Focus on 2003–4

(c) Focus on 2008

Figure 8.1. Backtesting a $1,000 portfolio of S&P 500 returns.



Not surprisingly, GARCH performs better
than EWMA, but not by much. As expected,
VaRs from conditional methods are much
more volatile. The conclusion from this exer-
cise is that none of these four methods should
be used in this case.

To study these issues in more detail, we
removed the last 1,000 observations from
the sample and repeated the exercise. The
results are presented in Table 8.2. The results
here are much better—the MA method is the
only one that can be considered unacceptable
and both HS and GARCH perform quite
well. This suggests there was a structural
break at the onset of the 2007 crisis causing
difficulties for all methods.

More information on what went wrong can
be seen in Figure 8.1, which shows VaR fore-
casts on a $1,000 portfolio. Panel (a) shows
that there seem to be three different regimes
throughout the sample period. Volatility is

relatively high from the beginning of the sample until around 2003, where it drops
considerably. To explore this in more detail, panel (b) focuses on 2003 and the first
part of 2004. In this case, volatility is steadily dropping with EWMA and GARCH
VaRs following suit, while HS and MA VaRs stay high. In this time period, the number
of violations for the last two methods seem to be much too low.

Volatility stays low until the beginning of the crisis in 2007. Then, volatility steadily
increases until we hit a very large volatility cluster in 2008, after which volatility drops
sharply. The most dramatic events happened at the height of the crisis in the second part
of 2008, coinciding with the failure of Lehmans and AIG. After the main crisis events,
volatility again dropped sharply. Here we see the opposite to what happened in 2003, HS
and MA VaRs stay too low with an excessive number of violations, while EWMA and
GARCH pick up on high volatility much faster and adjust VaR forecasts sharply
upwards.

The abrupt changes in volatilities seen in 2003 and 2008 are likely to cause problems
for most VaRmodels. The models tried here clearly fail during those structural breaks—
some much more than others.

Let us consider the failure of the GARCH model in more detail. Of the four
models used, it performed the best, but still its violation ratio exceeded 1.8 when the
longer testing window was used. This suggests several changes to the procedure we have
implemented here: first, use a fat-tailed conditional distribution such as the Student-t;
second, make the estimation window smaller and study how GARCHmodel parameters
change over time; and, third, it may turn out to be a bad idea to initialize the volatility of
the GARCH using unconditional variance (as proposed in Section 2.4).

An alternative way to initialize the GARCH model can be done by implementing the
tarch() function in the MFE toolbox, where GARCH volatility is initialized by
EWMA implying that estimated parameters may be different from those here.
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Table 8.1. Backtesting S&P 500 returns,

January 30, 1998 to December 31, 2009

(WT ¼ 3,000).

Method VR VaR volatility

EWMA 1.87 0.016

MA 3.03 0.006

HS 2.03 0.009

GARCH 1.83 0.014

Table 8.2. Backtesting S&P 500 returns,

January 30, 1998 to November 1, 2006

(WT ¼ 2,000).

Method VR VaR volatility

EWMA 1.40 0.010

MA 1.60 0.003

HS 1.05 0.003

GARCH 1.25 0.009



More ambitiously, the underlying model could be modified to take into account both
long-run structural changes and short-run volatility dynamics.

8.3 SIGNIFICANCE OF BACKTESTS

The above analysis of VaR violations was conducted by graphical and rule-of-thumb
methods, but ideally one should be able to employ formal statistical tests. Besides simple
violation ratio analysis, a formal test of the significance of the violation ratio would be
useful, as would a test of whether violations cluster, such as we see towards the end of
2008.
Violations over time in a backtest are a sequence of ones and zeros, often called a hit

sequence, indicated by f�tg, which is Bernoulli distributed. We focus on two issues, the
number of violations and clustering, tested by the unconditional coverage and indepen-
dence tests, respectively.
The unconditional coverage property ensures that the theoretical confidence level p

matches the empirical probability of violation. For a 1%VaR backtest, we would expect
to observe a VaR violation 1% of the time. If, instead, violations are observed more
often, say 5% of the time, the VaR model is systematically underestimating risk at the
1% level. In other words, the 1% VaR produced from the model is in reality the 5%
VaR. Graphical analysis and violation ratio analysis provide a quick means of checking
this property.
The independence property is more subtle, requiring any two observations in the

hit sequence to be independent of each other. Intuitively, the fact that a violation has
been observed today should not convey any information about the likelihood of
observing a violation tomorrow. If VaR violations cluster, we can predict a violation
today if there was one yesterday, and therefore the probability of a loss exceeding 1%
VaR today is higher than 1%. In this case, a good VaR model would have increased the
1% VaR forecast following a violation. As illustrated above, models that are not very
responsive to changing volatility in the market, such as HS, generally do not satisfy this
property.
Unfortunately, the form of clustering observed in VaR forecasts is more subtle.

For example, panel (c) in Figure 8.1 shows there is clustering of violations, especially
for HS and MA. However, we don’t seem to observe many sequential violations.
Instead, there seem to be one or more days between them. While this is still a clear
example of clustering, it would not be detected by the independence test discussed
here.
The two properties—unconditional coverage and independence—are distinct and it is

entirely possible that a VaR model satisfying one of them would not satisfy the other.
For example, a hit sequence produced from a 5% VaR can give violations exactly 5% of
the time, but with all violations squeezed into a 3-week period. The risk of bankruptcy
here is clearly much higher than if losses are spread out evenly over time.
The main downside of these tests is that they rely on asymptotic distributions. Given

that violations are rare events, the effective sample size is relatively small and, therefore,
tests may not be as robust as we would like. One may be better off obtaining confidence
bounds by means of simulations.
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8.3.1 Bernoulli coverage test

We indicate whether a violation occurred on day t by �t, which takes values 1 or 0:
1 indicates a violation and 0 no violation. �t is then a sequence of Bernoulli-distributed
random variables.

We then use the Bernoulli coverage test to ascertain the proportion of violations. The
null hypothesis for VaR violations is:

H0 : � � B pð Þ;

where B stands for the Bernoulli distribution. The Bernoulli density is given by:

1� pð Þ1��t pð Þ�t ; �t ¼ 0; 1:

Probability p can be estimated by:

p̂p ¼ v1
WT

: ð8:3Þ

The likelihood function is given by:

LU p̂pð Þ ¼
YT

t¼WEþ1

1� p̂pð Þ1��t p̂pð Þ�t¼ 1� p̂pð Þv0 p̂pð Þv1 :

We denote this as the unrestricted likelihood function because it uses estimated
probability p̂p in contrast to the likelihood function below where we restrict the prob-
ability value to p.

Note we are working with a framework where a data sample is split into a testing and
estimation window. Since the first WE days are reserved for estimation, testing starts on
day WE þ 1.
Under the H0, p ¼ p̂p, so the restricted likelihood function is:

LR pð Þ ¼
YT

t¼WEþ1

1� pð Þ1��t pð Þ�t¼ 1� pð Þv0 pð Þv1

and we can use a likelihood ratio test to see whether LR ¼ LU or, equivalently, whether
p ¼ p̂p:

LR ¼ 2 logLU pð Þ � logLU p̂pð Þð Þ

¼ 2 log
1� p̂pð Þv0 p̂pð Þv1
1� pð Þv0 pð Þv1

�asymptotic
�2

1ð Þ: ð8:4Þ

Choosing a 5% significance level for the test, the null hypothesis is rejected if LR > 3:84,
but in most cases we would simply calculate the p-value. The choice of significance level
affects the power of the test. A low type I error implies a higher type II error and
therefore a lower power for the test.
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We implement the tests as functions and demonstrate their use later in this section.

Listing 8.9. Bernoulli coverage test in R

bern_test = function(p,v){

a=p^(sum(v))*(1 � p)^(length(v) � sum(v))

b = (sum(v)/length(v))^(sum(v))*(1 � (sum(v)/length(v)))^

(length(v) � sum(v))

return(�2*log(a/b))

}

Listing 8.10. Bernoulli coverage test in Matlab

function res=bern_test(p,v)

a = p^(sum(v))*(1 � p)^(length(v)-sum(v));

b = (sum(v)/length(v))^(sum(v))*(1-(sum(v)/length(v)))^

(length(v)-sum(v));

res = �2*log(a/b);

end

The Bernoulli coverage test is nonparametric in the sense that it does not assume a
distribution for the returns and often provides good benchmarks for the assessment of
accuracy of VaR models. However, it does not have much power when sample sizes are
small, like the one-year size specified in the Basel Accords. Consequently, the expected
number of violations should be at least 10.

8.3.2 Testing the independence of violations

The above analysis focused on unconditional coverage which ignores time variation in
the data. It is also of interest to test whether violations cluster (i.e., whether all violations
happen one after the other), indicating a sequence of losses since violations should
theoretically spread out over time. This is important given the strong evidence for
volatility clusters.
A conditional coverage test was developed by Christoffersen (1998). We need to

calculate the probabilities of two consecutive violations (i.e., p11) and the probability
of a violation if there was no violation on the previous day (i.e., p01); more generally, the
probability that:

pi j ¼ Pr �t ¼ ij�t�1 ¼ jð Þ
where i and j are either 0 or 1.
The first-order transition probability matrix is defined as:

	1 ¼
1� p01 p01

1� p11 p11

� �
:
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The restricted likelihood function—where the transition matrix from the null hypothesis
is used since the hit sequence is Bernoulli distributed—is:

LR 	1ð Þ ¼ 1� p01ð Þv00pv0101 1� p11ð Þv10pv1111 ð8:5Þ
where vij is the number of observations where j follows i. Maximum likelihood (ML)
estimates are obtained by maximizing LR 	1ð Þ:

	̂	1 ¼
v00

v00 þ v01

v01
v00 þ v01

v10
v10 þ v11

v11
v10 þ v11

0B@
1CA:

Under the null hypothesis of no clustering, the probability of a violation tomorrow does
not depend on today seeing a violation; then, p01 ¼ p11 ¼ p and the estimated transition
matrix is simply:

	̂	0 ¼
1� p̂p p̂p

1� p̂p p̂p

� �
where

p̂p ¼ v01 þ v11
v00 þ v10 þ v01 þ v11

:

The unrestricted likelihood function according to null hypothesis uses the estimated
transition matrix and is:

LU 	̂	0

� � ¼ 1� p̂pð Þv00þv10 p̂pv01þv11 : ð8:6Þ
The likelihood ratio test is implemented with likelihoods (8.5) and (8.6):

LR ¼ 2 logLU 	̂	0

� �� logLR 	̂	1

� �� � �asymptotic
�2

1ð Þ:

This test does not depend on true p and only tests for independence. The main problem
with tests of this sort is that they must specify the particular way in which independence
is breached. For example, let us assume independence is not satisfied if the probability of
VaR violation today depends on whether or not there was VaR violation yesterday.
However, there are many possible ways in which the independence property is not
fulfilled. This test will have no power to detect departures from independence if the
likelihood of VaR being violated today depends on whether VaR was violated 2 days
ago—not on yesterday’s VaR being violated.

Listing 8.11. Independence coverage test in R

ind_test = function(V){

J = matrix(ncol = 4,nrow = length(V))

for (i in 2:length(V)){

J[i,1] = V[i � 1] == 0 & V[i] == 0

J[i,2] = V[i � 1] ==0 & V[i] == 1

J[i,3] = V[i � 1] == 1 & V[i] == 0

J[i,4] = V[i � 1] == 1 & V[i] == 1

}

V_00 = sum(J[,1],na.rm = TRUE)
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V_01 = sum(J[,2],na.rm = TRUE)

V_10 = sum(J[,3],na.rm = TRUE)

V_11 = sum(J[,4],na.rm = TRUE)

p_00 = V_00/(V_00 + V_01)

p_01 = V_01/(V_00 + V_01)

p_10 = V_10/(V_10 + V_11)

p_11 = V_11/(V_10 + V_11)

hat_p = (V_01 + V_11)/(V_00 + V_01 + V_10 + V_11)

a = (1 � hat_p)^(V_00 + V_10)*(hat_p)^(V_01 + V_11)

b = (p_00)^(V_00)*(p_01)^(V_01)*(p_10)^(V_10)* p_11^(V_11)

return(�2 * log(a/b))

}

Listing 8.12. Independence coverage test in Matlab

function res = ind_test(V)

T = length(V);

J = zeros(T,4);

for i = 2:T

J(i,1) = V(i � 1) == 0 & V(i) == 0;

J(i,2) = V(i � 1) == 0 & V(i) == 1;

J(i,3) = V(i � 1) == 1 & V(i) == 0;

J(i,4) = V(i � 1) == 1 & V(i) == 1;

end

V_00 = sum(J(:,1));

V_01 = sum(J(:,2));

V_10 = sum(J(:,3));

V_11 = sum(J(:,4));

p_00 = V_00/(V_00 + V_01);

p_01 = V_01/(V_00 + V_01);

p_10 = V_10/(V_10 + V_11);

p_11 = V_11/(V_10 +V_11);

hat_p = (V_01 + V_11)/(V_00 + V_01 + V_10 + V_11);

a = (1 � hat_p)^(V_00 + V_10)*(hat_p)^(V_01 +V_11);

b = (p_00)^(V_00)*(p_01)^(V_01)*(p_10)^(V_10)* p_11^(V_11);

res = �2 * log(a/b);

end

8.3.3 Testing VaR for the S&P 500

We apply these tests to the VaR forecasts in Section 8.2 and collect the VaR forecasts in
matrix VaR. Since the first WE days were reserved for the estimation window, the analysis
starts on day WE+1. For simplicity, we create a new matrix VaRa and vector ya where
we have simply removed the first W days.
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Listing 8.13. Backtesting S&P 500 in R

W1 = WE + 1

ya = y[W1:T]

VaRa = VaR[W1:T,]

m = c("EWMA","MA","HS","GARCH")

for (i in 1:4){

q = y[W1:T]< -VaR[W1:T,i]

v = VaRa*0

v[q,i] = 1

ber = bern_test(p,v[,i])

ind = ind_test(v[,i])

cat(i,m[i],’Bernoulli’,ber,1 � pchisq(ber,1),"independence",

ind,1 � pchisq(ind,1),"\n")

}

Listing 8.14. Backtesting S&P 500 in Matlab

ya = y(WE + 1:T);

VaRa = VaR(WE + 1:T,:);

for i = 1:4

q = find(y(WE + 1:T) < �VaR(WE + 1:T,i));

v = VaRa * 0;

v(q,i) = 1;

ber = bern_test(p,v(:,i));

ind = ind_test(v(:,i));

disp([i,ber,1-chi2cdf(ber,1),ind,1-chi2cdf(ind,1)])

end

The results are reported in Table 8.3. Not surprisingly, a violation ratio of 1 is strongly
rejected by both coverage tests for all models, while we also get rejection of indepen-
dence for HS and MA at 5%—but not for EWMA or GARCH. These results are not
that surprising since the violation ratios are quite high, clearly implying rejection.
Conditional models adjust much more sharply to changes in volatility. After considering
Figure 8.1, there is little surprise that independence tests do not reject conditional
models.

Table 8.4 shows the results of discarding the last 1,000 observations (i.e., the
2007–2009 crisis). In this case we only reject the hypothesis of VR ¼ 1 at 5% for
MA—but not the other methods. We find no rejection in the independence tests.

It would be worthwhile to simulate the test statistic to get more accurate confidence
bounds in order to evaluate rejection significance.
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8.3.4 Joint test

We can jointly test whether violations are significantly different from those expected and
whether there is violation clustering by constructing the following test statistic:

LR jointð Þ ¼ LR coverageð Þ þ LR independenceð Þ � �2
2:

The joint test is simply the sum of the two individual tests. At this point, it may seem that
the joint test should be universally preferred to tests of either the coverage property or
the independence property, but this is usually not the case. The joint test has less power
to reject a VaR model which only satisfies one of the two properties. For example, if the
hit sequence produced by a particular VaR model exhibits correct coverage but violates
independence then an independence test has a greater ability to reject this model than a
joint test. Intuitively, the fact that one of the two properties is satisfied makes it difficult
for the joint test to detect inadequacy in the VaR model. Individual tests should be used
if the user has some prior knowledge of weaknesses in the VaR model.

8.3.5 Loss-function-based backtests

Lopez (1998, 1999) suggests that an alternative backtest could be constructed based on a
general loss function, lðVaRtðpÞ; ytÞ, which would take into consideration the magnitude
of VaR violation. An example of such a loss function is:

lðy; xÞ ¼ 1þ ðy� xÞ2 for y 
 x:
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Table 8.3. Comparison of the four VaR models reported in Table 8.2

Model Coverage test Independence test

Test statistic p-value Test statistic p-value

EWMA 18.1 0.00 0.00 0.96

MA 81.2 0.00 7.19 0.01

HS 24.9 0.00 4.11 0.04

GARCH 16.9 0.00 0.00 0.99

Table 8.4. Comparison of the four VaR models reported in Table 8.3

Model Coverage test Independence test

Test statistic p-value Test statistic p-value

EWMA 2.88 0.09 0.68 0.41

MA 6.15 0.01 2.62 0.11

HS 0.05 0.82 1.52 0.22

GARCH 1.17 0.28 0.99 0.32



Otherwise, it takes the value zero. If y indicates returns and x negative VaR, then we
would typically calculate sample average loss as:

L̂L ¼ 1

WT

XT
t¼WEþ1

lðyt;VaRtðpÞÞ:

The functional form of the loss function is flexible and can be tailored to address specific
concerns. The disadvantage is that—in order to determine whether L̂L is ‘‘too large’’
relative to what is expected—an explicit assumption about P/L distribution needs to be
made. A null hypothesis for L̂L should be mandatory.

Given the uncertainty over the true P/L distribution, a finding that L̂L is ‘‘too large’’
relative to what is expected could either be due to inaccuracy in the VaR model or an
inaccurate assumed distribution. In other words, the test is a joint test of the VaR model
and the P/L distribution. This is problematic. Recall that for coverage and indepen-
dence, the hit sequence should be identically and independently distributed as a Ber-
noulli random variable regardless of the P/L distribution, as long as the VaR model is
well designed. Loss-function-based backtests may consequently be better suited for
discriminating among competing VaR models than judging the absolute accuracy of
a single model.

8.4 EXPECTED SHORTFALL BACKTESTING

It is harder to backtest expected shortfall (ES) than VaR because we are testing an
expectation rather than a single quantile. Fortunately, there exists a simple methodology
for backtesting ES that is analogous to the use of violation ratios for VaR.

For days when VaR is violated, normalized shortfall NS is calculated as:

NSt ¼
yt
ESt

where ESt is the observed ES on day t. From the definition of ES, the expected yt—given
VaR is violated—is:

E½YtjYt < �VaRt�
ESt

¼ 1:

Therefore, average NS, denoted by NS, should be one and this forms our null
hypothesis:

H0 : NS ¼ 1:

In what follows, we opted to implement just the EWMA and HS versions, since the
other two (MA and GARCH) are quite similar.
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We assume the code in Section 8.2 has already been run and modify Listings 8.5 and
8.6 to Listings 8.15 and 8.16, respectively.

Listing 8.15. Backtest ES in R

ES = matrix(nrow = T,ncol = 2) # ES forecasts for 2 models

VaR = matrix(nrow = T,ncol = 2) # VaR forecasts for 2 models

for (t in (WE + 1):T){

t1 = t � WE;

t2 = t � 1;

window = y[t1:t2]

# EWMA

s11 = lambda * s11 + (1 � lambda * y[t � 1]^2

VaR[t,1] = -qnorm(p) * sqrt(s11 * value

ES[t,1] = sqrt(s11) * dnorm(qnorm(p)) / p

# HS

ys = sort(window)

VaR[t,2] = �ys[l1]* value

ES[t,2] = �mean(ys[1:l1] * value # ES number

}

Listing 8.16. Backtest ES in Matlab

VaR = NaN(T,2); % VaR forecasts for 2 models

ES = NaN(T,2); % ES forecasts for 2 models

for t = WE + 1:T

t1 = t � WE;

t2 = t � 1;

window = y(t1:t2) ;

% EWMA

s11 = lambda * s11 + (1-lambda) * y(t � 1)^2;

VaR(t,1) = �norminv(p) * sqrt(s11) *value ;

ES(t,1) = sqrt(s11) * normpdf(norminv(p)) / p;

% HS

ys = sort(window);

VaR(t,2) = �ys(l1) * value;

ES(t,2) = �mean(ys(1:l1)) * value; % ES number

end

We then implement the normalized ES test by adapting Listings 8.13 and 8.14 to Listings
8.17 and 8.18.
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Listing 8.17. Backtest ES in R

ESa = ES[W1:T,]

VaRa = VaR[W1:T,]

for (i in 1:2){

q = ya <= -VaRa[,i]

nES = mean(ya[q] / �ESa[q,i])

cat(i,"nES",nES,"\n")

}

Listing 8.18. ES in Matlab

VaRa = VaR(WE + 1:T,:);

ESa = ES(WE + 1:T,:);

for i = 1:2

q = find(ya <= -VaRa(:,i));

nES = mean(ya(q) ./ �ESa(q,i));

disp([i,nES])

end

Both R and Matlab give us 1.11 for EWMA and 1.08 for HS.
With ES, we are testing whether the mean of returns on days when VaR is violated is

the same as average ES on these days. It is much harder to create formal tests to
ascertain whether normalized ES equals one or not than the coverage tests developed
above for VaR violations. The reason is that such a test would be a joint test of the
accuracy of VaR and the expectation beyond VaR, so that errors in estimating VaR also
have to be taken into account, implying inaccuracy in the ES backtest is necessarily
much higher than that in a VaR backtest. This means that the reliability of any ES
backtest procedure is likely to be much lower than that of VaR backtest procedures,
such as coverage tests.

The conclusion is that backtesting ES requires many more observations than
backtesting VaR. In instances where ES is obtained directly from VaR, and gives the
same signal as VaR (i.e., when VaR is subadditive), it is better to simply use VaR.

8.5 PROBLEMS WITH BACKTESTING

There are at least two problems with the overall backtesting approach as outlined above.
Backtesting assumes that there have been no structural breaks in the data throughout
the sample period. Financial markets, on the other hand, are continually evolving, and
new technologies, assets, markets and institutions affect the statistical properties of
market prices. It is unlikely that the statistical properties of market data in the 1990s
are the same as today, implying that a risk model that worked well then might not work
well today. The reason the results in Section 8.2 were so poor is exactly because of the
presence of two important structural breaks in the sample.
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The second problem with backtesting is data mining and intellectual integrity. In
theory, backtesting is only statistically valid if we have no ex ante knowledge of the
data in the testing window (i.e., we create a risk model, run it once on test data we have
never seen and make a decision regarding the model). If we iterate the process—
continually refining the risk model with the same test data and thus learning about
the events in the testing window—the model will be fitted to those particular outcomes,
violating underlying statistical assumptions. Models created in this way are likely to
perform poorly in predicting future risk.

8.6 STRESS TESTING

The purpose of stress testing is to create artificial market outcomes in order to see how
risk management systems and risk models cope with the artificial event, and to assess the
ability of a bank to survive a large shock. For example, suppose that all equity prices in a
bank’s portfolio drop by 10%. We would then look to see how the risk management
system reacts to this. For example, did asset allocations change, does the system
properly integrate the impact of this event on the various subsystems, does the bank
fail and so on?
The gap that stress testing aims to fill is model failure to encounter rare situations that

could cause a severe loss, since backtesting relies on recent historical data. A good
example is devaluation of the Mexican peso in December 1994, when the peso/dollar
exchange rate jumped to 5.64 from 3.45 (as shown in Figure 8.2). This devaluation was
mostly unanticipated and a conventional VaR system would not have been able to
predict the magnitude of the devaluation.

8.6.1 Scenario analysis

The main aim of stress testing is to come up with scenarios that are not well represented
in historical data but are nonetheless possible and detrimental to portfolio performance.
We then revalue the portfolio in this hypothetical environment and obtain an estimate of
maximum loss. This procedure then allows the bank to set aside enough capital for such
an eventuality.
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Berkowitz (2000) classifies scenarios into two broad types:

1. Simulating shocks that have never occurred or are more likely to occur than historical
data suggest.

2. Simulating shocks that reflect permanent or temporary structural breaks—where
historical relationships do not hold.

Stress test scenarios can either be simulated or based on actual historical events like
those in Table 8.5. A simulated scenario is where we create our own customized crisis
periods (e.g., the price of all equities drops by 10% or all the bonds in a portfolio suffer a
downgrade in their credit rating). Given the infinite combinations possible, what are the
most relevant scenarios? The Derivatives Policy Group recommends focusing on a set of
specific movements:

. parallel yield curve shift by �100 bp;

. yield curve twisting by �25 bp;

. equity index values changing by �10%;

. swap spreads changing by �20 bp;

. currencies moving by 6% for major liquid ones and 20% for others.

The goal here is to provide comparable results across institutions. The relevant scenario
should depend on the particular portfolio being stress-tested. A highly leveraged port-
folio with a long position in corporate bonds hedged by a short position in treasuries will
suffer a sharp loss if the yield curve steepens; therefore, the scenarios we are interested in
should concentrate on different steepening situations.

The scenarios in the list above consist of movements in one underlying risk factor.
Scenario analysis can become unmanageable if there are many factors, especially when
portfolios are valued by Monte Carlo methods. In addition, extreme movements may
not be appropriate for some portfolios, such as straddles, where the greatest loss will
occur if the underlying does not move.

Furthermore, correlations between risk factors are ignored if we just pay attention to
one factor or assign the same probability to different scenarios.

Correlations depend on market conditions, as noted in the discussion on nonlinear
dependence in Section 1.7 where the correlations all increased with the onset of the 2007
crisis. The main advantage of using historical scenarios is that correlations are auto-
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Table 8.5. Examples of historical scenarios

Scenario Period

Stock market crash October 1987

ERM crisis September 1992

Bond market crash April 1994

Asian currency crisis Summer 1997

LTCM and Russia crisis August 1998

Global crisis Starting summer 2007



matically taken into account. Ideally, simulated scenarios should also provide a realistic
description of joint movements of market risk factors.

8.6.2 Issues in scenario analysis

An often-cited criticism of scenario analysis in stress tests is that the results indicate that
banks should set aside a large amount of capital to absorb the worst case loss, which is
usually not practical. Nevertheless, there are other actions that a bank can take such as
buying insurance for the events in question and changing the composition of the
portfolio to reduce exposure to a particular market variable.
There are two key problems with stress testing. The first is the lack of a mechanism to

reliably judge the probability of a stress test scenario since they are both highly sub-
jective and difficult to pinpoint. For example, it might sound interesting to create a
scenario in which all bonds in a portfolio have their rating cut by two notches (e.g., from
AAA to A). However, if we do not specify the probability of this happening it may
not be a very useful exercise as it is not clear how the result should be interpreted. If this
scenario only happens once every 10,000 years and we wrongly estimate the probability
to be 5% and reduce our position accordingly, we are overreacting to the scenario.
The problematic task of attributing the correct probability to historical or simulated
scenarios limits the usefulness of stress testing as a tool to evaluate risk models.
The second problem is the potential for feedback effects, or endogenous risk since the

focus is on institution-level risk, where feedback effects are disregarded. Institution-level
stress testing does not address the core problem of endogenous risk or procyclicality.
Ideally, supervisors should run systemwide stress tests. This has been considered by the
Committee on the Global Financial System, but was ultimately dismissed, ‘‘The group
concluded that, under ideal circumstances, aggregate stress tests could potentially
provide useful information in a number of areas. . . . However, the group also noted
that it is as yet unclear whether such ideal circumstances prevail’’ (CGFS, 2000).

8.6.3 Scenario analysis and risk models

It is straightforward to integrate scenario analysis with risk models in use. Assume a risk
manager has assigned a probability � to a particular scenario and the potential loss
arising from it. The probability can be purely a subjective judgment from the manager’s
experience or could be derived from a model.
Berkowitz (2000) suggests that the most consistent method to incorporate stress tests

is to construct a new return probability distribution fnew that attributes probability � to
the scenario distribution and ð1� �Þ to the distribution estimated from data. We draw a
number u from a uniform(0,1) distribution. If the u is greater than � we draw from f ,
otherwise we draw from fstress. By following this procedure, we are effectively creating a
customized dataset that simultaneously reflects available historical data as well as gaps
in the data filled by the scenarios:

fnew ¼ f with probability ð1� �Þ
fstress with probability �.

�
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If relevant scenario probabilities are well chosen, the new combined distribution will
present a more accurate picture, and a better VaR or ES can be estimated. Knowing
probability � also allows us to backtest the new VaR by using data drawn from fnew.
The scenario analysis described above can be undertaken using all VaR calculation

methods. The use of actual historical scenarios lends itself particularly well to the use of
historical simulation for calculating VaR.

Unlike the results of scenario analysis, which investigate the impact on portfolio value
of a sudden and extreme move in market prices, stressing VaR inputs scrutinizes the
consequences of changing the ‘‘status quo’’ as the covariance matrix is measured over a
period of time, rather than a single day. A dramatic change in the covariance matrix is
usually indicative of a structural break. Given that changes in volatilities and correla-
tions are usually not instantaneous, the threat they pose is very different from that posed
by a one-day extreme move.

8.7 SUMMARY

The objective of this chapter has been comparison of the main approaches for analyzing
risk forecast quality. The starting point was backtesting and violation ratios, whereby
the value-at-risk (VaR) methods under consideration were used to forecast VaR over a
historical sample and these VaR forecasts compared with observed returns. On days
when losses exceed the VaR, a violation is said to occur. By doing this for a sufficiently
large sample, we can analyze the quality of the VaR method under consideration.

We focused on three different approaches for analyzing backtests: violation ratios,
graphical analysis and statistical testing of the significance of violations (i.e., coverage
and independence tests). As a practical example, the four most common VaR forecast
methods and a sample from the S&P 500 were used to demonstrate implementation of
the tests. We also studied backtesting of expected shortfall (ES).

Finally, we discussed different approaches for analyzing risk model quality—most
importantly, stress testing—and focused on the pros and cons of such approaches.
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Previous chapters have focused principally on events that occur with a 1% or 5%
probability. This is fine for most day-to-day applications in financial institutions, and
methods such as GARCH and historical simulation are well suited to provide VaR for
these purposes. However, there are circumstances where we care about more extreme
probability levels (e.g., pension fund risk management, economic capital applications
and stress testing). We might be interested in a 0.1% VaR, the probability of a 25% drop
in the stock market, the likelihood that a CDS spread exceeds 10% or other important
but rare events. In these cases, we need more advanced techniques—usually extreme
value theory (EVT).
Many statistical models are based on modeling the entire distribution of the quantity

of interest, where observations in the center of the distribution dominate the estimation
process given the scarcity of extreme observations. Accordingly, we may obtain a good
approximation of the distribution of data for common events, but an inaccurate
estimate of the distribution of the tails.
EVT, on the other hand, focuses explicitly on analyzing the tail regions of

distributions (i.e., the probability of uncommon events); most EVT estimation methods
make full use of extreme observations. An appealing aspect of EVT is that it does not
require a prior assumption about the return distribution because the fundamental result
of EVT identifies three possible distributions for extreme outcomes, but only one for fat-
tailed returns, irrespective of the underlying return distribution.
EVT has a long and successful history in areas such as engineering, where it has been

used to design flood walls and dikes. It was introduced to financial applications by
Koedijk et al. (1990) and Jansen and de Vries (1991).
The theory of EVT is more complicated than the theory of the other methods

discussed in this book; applications of EVT are more specialized. For this reason,
the focus of this chapter is more on providing a basic introduction to the concept of
EVT; however, any serious application of these methods requires more study.
Fortunately, there are many high-quality sources of material dealing with EVT, both

free on the internet and in books. The most comprehensive treatment of EVT is
Embrechts et al. (1997); there is also a condensed version in McNeil et al. (2005, ch.
7). There are excellent libraries in R for applying EVT while the choices in Matlab are
much more limited.
The most important specific notation used in this chapter is:

� Tail index

� ¼ 1=� Shape parameter

9

Extreme value theory



MT Maximum of X

CT Number of observations in the tail

u Threshold value

 Extremal index

9.1 EXTREME VALUE THEORY

All the applications we have seen in this book so far focus on relatively frequent and
common events. Daily 1% VaR very much falls into that category.

However, many applications in finance depend on less common, or more extreme,
outcome probabilities. For example, when doing a stress test, we may want to identify
the expected worst outcome in the stock market in 10 years or identify the probability of
credit spreads widening to 5%. Many investors want to know the probability of a CDS
on government debt in the Eurozone widening to over 15% or the likelihood of the
euro–dollar exchange rate appreciating by more than 20% in one week. Furthermore,
one early indicator that the financial crisis was underfoot in 2007 was the widening of
margins, so it would be of interest to identify the probability of a sharp increase in
margins. All these questions, and many others, represent highly practical, if not special-
ized applications in finance; they have all been tackled using the method discussed in this
chapter: extreme value theory (EVT).

Furthermore, aggregation of outcomes is often important. Because extreme outcomes
aggregate differently from common outcomes, we can use EVT to identify how they
aggregate.

Most statistical methods in applied finance focus on the entire distribution, like most
of the methods discussed in this book so far, with the exception of historical simulation.
For example, GARCH modeling is done with the entire distribution of returns. By
contrast, EVT is explicitly concerned with the behavior of extreme outcomes. Conse-
quently, it promises to be much more accurate for applications focusing on the extremes.
The downside is that by definition we don’t have that many extreme observations to
estimate the quantities of interest, which necessarily limits the practicability of EVT.

9.1.1 Types of tails

EVT is usually presented in terms of the upper tail (positive observations), and we follow
this convention here. Of course, in most risk analysis we are more concerned with the
lower tail (negative observations), but this does not present much of a challenge since we
can always reverse the distribution by pre-multiplying returns by �1.
Furthermore, there is no reason to believe the distribution of returns is symmetric; the

upper and lower tails do not have the same thickness or shape. We saw one example of
this asymmetry in Figure 1.8 where the upper tail of S&P 500 returns was thinner than
the lower tail, and another in the rightmost column of Table 2.3 which dealt with the
skew Student-t parameter. EVT can be useful in such situations as it enables us to
explicitly identify the type of asymmetry in the extreme tails.

Financial returns follow an almost infinite variety of alternative distributions, making
comparison between the risk properties of different returns challenging. However, in
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most risk applications we do not need to focus on the entire distribution of returns since
all we care about are large losses, which usually belong in the tails. In that case, the main
result of EVT states that, regardless of the overall shape of the distribution, the tails of
all distributions fall into one of three categories as long as the distribution of an asset
return series does not change over time. This means that for risk applications we only
need to focus on one of these three categories:

Weibull Thin tails where the distribution has a finite endpoint (e.g., the distribution of
mortality and insurance/re-insurance claims).

Gumbel Tails decline exponentially (e.g., the normal and log-normal distributions).
Fréchet Tails decline by a power law; such tails are known as ‘‘fat tails’’ (e.g., the
Student-t and Pareto distributions).

Figure 9.1 shows the three distributions. The Weibull clearly has a finite endpoint, and
the Fréchet tail is thicker than the Gumbel’s. In most applications in finance, we know
the tails of returns are fat; therefore, we can limit our attention to the Fréchet case.

The key model parameter in EVT analysis is the tail index denoted by �, or the inverse
tail index denoted by � ¼ 1=�, also known as the shape parameter—the lower the tail
index, the thicker the tails. For the Student-t distribution, the tail index corresponds to
the degrees of freedom.1 As the degrees of freedom go to infinity, the Student-t becomes
the normal distribution.

9.1.2 Generalized extreme value distribution

Let X1;X2; . . . ;XT denote IID random variables (RVs). We use the term MT to indicate
maxima in a sample of size T .
The Fisher and Tippett (1928) and Gnedenko (1943) theorems are the fundamental

results in EVT stating that the maximum of a sample of properly normalized IID
random variables converges in distribution to one of three possible distributions: the
Gumbel, Fréchet or the Weibull.
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Figure 9.1. Extreme value distributions.

1 See Danı́elsson and de Vries (2003).



An alternative way of stating this is in terms of the maximum domain of attraction
(MDA) which is the set of limiting distributions for properly normalized maxima as the
sample size goes to infinity.

The theorems by Fisher–Tippet and Gnedenko then state that the distribution of
standardized maxima, MT , is:

lim
T!1

Pr
MT � aT

bT

 x

� 

¼ HðxÞ ð9:1Þ

where the constants aT and bT > 0 exist and are defined as aT ¼ TEðX1Þ and
bT ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

VarðX1Þ
p

. We then get the limiting distribution, Hð�Þ, of the maxima as the
generalized extreme value (GEV) distribution:

H�ðxÞ ¼
exp �ð1þ �xÞ�1

�

n o
; � 6=0

expð�expð�xÞÞ; �=0

(
ð9:2Þ

H�ð�Þ becomes the Fréchet if � > 0, the Weibull if � < 0 and the Gumbel if � ¼ 0.

9.2 ASSET RETURNS AND FAT TAILS

It has been argued by many researchers that asset returns exhibit fat tails. Arguably, the
earliest examples are Mandelbrot (1963) and Fama (1963, 1965).

The term ‘‘fat tails’’ is often used indiscriminately, where it can take on several
meanings, the most common being ‘‘extreme outcomes occur more frequently than
predicted by the normal distribution.’’ While such a statement might make intuitive
sense, it has little mathematical rigor as stated. A more formal definition of fat tails is
required to facilitate the statistical modeling of risk.

The definition one most frequently encounters is kurtosis. Although a kurtosis higher
than 3 may indicate the presence of fat tails, it is not always true. Kurtosis measures
mass in the center relative to the non-center part of the distribution. In other words, it is
more concerned with the sides of the distribution than the heaviness of tails.

The formal definition of fat tails comes from regular variation.

Definition 9.1 (Regular variation) A random variable, X, with distribution Fð�Þ has
fat tails if it varies regularly at infinity; that is, there exists a positive constant � such
that:

lim
t!1

1� FðtxÞ
1� FðtÞ ¼ x��; 8x > 0; � > 0:

We call � the tail index.

In the fat-tailed case, therefore, the tail distribution is Fréchet:

HðxÞ ¼ expð�x��Þ:
Lemma 9.1 then follows.
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Lemma 9.1 A random variable X has regular variation at infinity (i.e., has fat tails) if
and only if its distribution function F satisfies the following condition:

1� FðxÞ ¼ PrfX > xg ¼ Ax�� þ oðx��Þ;
for positive constant A, when x ! 1.

The expression oðx��Þ means that if we Taylor-expand PrfX > xg, the remaining terms
will be of the type Dx�j for constant D with j > �. In other words, in order to study the
tails of the distribution the only term that matters is the first one, the others tend to zero
more quickly.
This means that, as x ! 1, the tails are asymptotically Pareto-distributed:

FðxÞ � 1� Ax�� ð9:3Þ
where A > 0; � > 0; and 8x > A1=�.

We demonstrate various tail thicknesses in Figure 9.2 as we change the tail index for
two distributions: the Student-t and the Pareto.
The definition demonstrates that fat tails are defined by how rapidly the tails of the

distribution decline as we approach infinity. As the tails become thicker, we detect
increasingly large observations that impact the calculation of moments:

EðXmÞ ¼
Z

xmf ðxÞdx: ð9:4Þ

The mth moment of X is the expectation of Xm. The mean is the first moment, while
variance, skewness and kurtosis are all functions of the second, third and fourth
moments, respectively.
If EðXmÞ exists for all positive m, a complete set of moments exist, such as for the

normal distribution. Definition 9.1 implies that moments m � � are not defined for fat-
tailed data. For example, if the tail index is 4, kurtosis is not defined; this explains the
high kurtosis estimates sometimes obtained from financial data.
Many common models suggest returns are fat tailed (e.g., it is straightforward to

derive the tail index of a GARCH process as a function of GARCH parameters). On the
whole, returns on nonderivative financial assets seem to have a tail index between 3 and
5, even though many exceptions to this exist.
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Figure 9.2. Normal and fat distributions.



9.3 APPLYING EVT

There are two main approaches to implementing EVT in practice: block maxima and
peaks over thresholds (POT). The block maxima approach follows directly from (9.1)
where we estimate the GEV by dividing the sample into blocks and using the maxima in
each block for estimation. This procedure is rather wasteful of data and a relatively large
sample is needed for accurate estimation.

Therefore, the POT approach is generally preferred and forms the basis of our
approach below. It is based on models for all large observations that exceed a high
threshold and hence makes better use of data on extreme values. There are two common
approaches to POT:

. fully parametric models (e.g., the generalized Pareto distribution or GPD);

. semi-parametric models (e.g., the Hill estimator).

9.3.1 Generalized Pareto distribution

The generalized Pareto distribution (GPD) approach is based on the idea that EVT
holds sufficiently far out in the tails such that we can obtain the distribution not only of
the maxima but also of other extremely large observations.2 Consider a random variable
X , fix a threshold u and focus on the positive part of X � u (recall we are focusing on the
upper tail). This distribution—that is, FuðxÞ—is:

FuðxÞ ¼ PrðX � u 
 xjX > uÞ: ð9:5Þ

If u is the VaR, then (9.5) asks what is the probability that we exceed VaR by a particular
amount (a shortfall) given that VaR is violated? The key result here is that as the
threshold u ! 1, FuðxÞ converges to the GPD G�;�ðxÞ:

G�;�ðxÞ ¼
1� 1þ �

x

�

� ��1
�

� 6¼ 0

1� exp
x

�

� �
� ¼ 0

8>>><>>>: ð9:6Þ

where � > 0 is the scale parameter; and x � 0 when � � 0 and 0 
 x 
 �ð�=�Þ when
� < 0.

We therefore need to estimate both shape (�) and scale (�) parameters when applying
GPD. If the shape parameter is zero the distribution becomes the Gumbel, if it is
negative it becomes the Weibull and when it is positive it becomes the Fréchet.

To reiterate, the GEV is the limiting distribution of normalized maxima, whereas the
GPD is the limiting distribution of normalized data beyond some high threshold. The
tail index is the same for both GPD and GEV distributions.

It is straightforward to estimate GEV parameters from the log-likelihood function of
the GPD from (9.6).
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The VaR in the GPD case is:3

VaRðpÞ ¼ uþ �

�

1� p

FðuÞ
� ���

�1

" #
:

9.3.2 Hill method

Alternatively, we could use the semi-parametric Hill (1975) estimator for the tail index in
(9.3):

�̂� ¼ 1

�̂�
¼ 1

CT

XCT

i¼1

log
x ið Þ
u
;

where CT is the number of observations in the tail, 2 
 CT 
 T , while T ;CT ! 1, and
CT=T ! 0. The notation xðiÞ indicates sorted data, where the maxima is denoted by xð1Þ,
the second-largest observation by xð2Þ, etc.

Obviously, we would expect the Hill estimator to be sensitive to the choice of
threshold, u; this is discussed in more detail in Section 9.3.3. The Hill estimator attains
the Cramér–Rao lower bound when data are Pareto-distributed, and hence is efficient
and cannot be improved upon in this case.
Which method is chosen—GPD or Hill—depends on factors like how much

knowledge one has of the data. GPD, as the name suggests, is more general than the
Hill method as it can be applied to all three types of tails. By contrast, the Hill method is
in the maximum domain of attraction (MDA) of the Fréchet distribution, and so is only
valid for fat-tailed data—not in the normal or ‘‘relatively’’ fat-tailed distributions such
as the log-normal.

Risk analysis

After estimation of the tail index, the next step is to apply a risk measure. Danı́elsson
and de Vries (1997) propose an estimator for the VaR. Note that while VaR is positive,
it is applied to the left side of the distribution (returns less than zero) and thus applies to
the lower tail, hence the minus.
The problem is finding VaRðpÞ such that:

Pr X 
 �VaRðpÞ½ � ¼ FXð�VaRðpÞÞ ¼ p

for probability level p, where FXðuÞ is the probability of being in the tail (i.e., returns
exceeding the threshold u).
Let G be the distribution of X since we are in the left tail (i.e., X 
 �u). By the Pareto

assumption, (9.3), we have

Gð�VaRðpÞÞ ¼ VaRðpÞ
u

� ���
:

By the definition of conditional probability:

Gð�VaRðpÞÞ ¼ p

FXðuÞ
:
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We equate the two relationships to obtain the expression for VaRðpÞ:

VaRðpÞ ¼ u
FXðuÞ
p

� �1
�

:

FXðuÞ can be estimated by the proportion of data beyond the threshold u, CT=T .
The quantile or VaR estimator is thus:

VaRðpÞ ¼ u
CT=T

p

� �b1=�1=�

:d
The estimator of VaR is driven by choosing the number of extremes CT and the
estimated tail index �̂�. The statistical properties of VaRðpÞ are, however, driven by b��,
as it appears in the power. It is therefore sufficient to study the statistical properties of
the Hill estimator.

9.3.3 Finding the threshold

Actual implementation of EVT is relatively simple and delivers good probability–
quantile estimates where EVT holds. Unfortunately, EVT is often applied inappropri-
ately. It should only be applied in the tails; as we move into the center of the distribution
it becomes increasingly inaccurate. However, there are no rules that tell us when it
becomes inaccurate, because it depends on the underlying distribution of the data.
In some cases, it may be accurate up to 1% or even 5%, while in other cases it is
not reliable even up to 0.1%.

The sample size and probability levels employed in estimation depend on the
underlying distribution of data. As a rule of thumb, the sample size should be no smaller
than 1,000 and the probability levels 0.4% or smaller, which corresponds to an annual
event for daily data. For applications with smaller sample sizes or less extreme
probability levels, other techniques—such as HS or fat-tailed GARCH—should be used.

It can be challenging to estimate EVT parameters given that the effective sample size is
small (i.e., the number of extremes). This relates to choosing the number of observations
in the tail, CT . In general, we face two conflicting directions. As CT become smaller, the
tails become increasingly Pareto like, and hence estimation bias decreases along with
CT . On the other hand, estimation variance increases at the same time. We therefore
reduce bias by lowering CT and reduce variance by increasing CT .
One specific case (demonstrated in Figure 9.3) is when we find the optimal threshold

C�
T at CT ¼ 107.
If we know the underlying distribution, then deriving the optimal threshold is easy,

but of course in such a case EVT is superfluous.
Several methods have been proposed to determine the optimal threshold. The most

common approach is the eyeball method where we look for a region where the tail index
seems to be stable. More formal methods are based on minimizing the mean squared
error (MSE) of the Hill estimator (i.e., finding the optimal point in Figure 9.3), but such
methods are not easy to implement.4

174 Extreme value theory

4 Danı́elsson et al. (2001) and Danı́elsson and de Vries (2003) propose a double-bootstrap technique for this purpose.



9.3.4 Application to the S&P 500 index

We demonstrate application of EVT by using the Hill estimator with a sample of daily
returns from the S&P 500 index from May 21, 1970 to the end of 2009—10,000
observations in all. The returns can be seen in Figure 9.4. When CT is known, it is
straightforward to implement EVT. In Listings 9.1 and 9.2 we have already loaded the
return vector y.

Listing 9.1. Hill estimator in R

ysort = sort(y) # sort the returns

CT = 100 # set the threshold

iota = 1/mean(log(ysort[1:CT]/ysort[CT + 1])) # get the tail index
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Figure 9.3. Bias–variance tradeoff.

Figure 9.4. S&P 500 returns from 1970 to 2009.



Listing 9.2. Hill estimator in Matlab

ysort = sort(y); % sort the returns

CT = 100; % set the threshold

iota = 1/mean(log(ysort(1:CT)/ysort(CT + 1))); % get the tail index

Figure 9.5 shows the empirical distribution of returns where a normal distribution with
the same mean and variance as the data is superimposed. Panel (a) shows the entire
distribution while panel (b) cuts the tails off at 3.

The figure makes it clear how the normal distribution fails to capture the actual
shape of the distribution of the S&P 500. This is exactly the same result we got in
Section 1.5.

Figure 9.6 depicts both the tail index estimate � obtained by the Hill estimator, and the
VaR estimate as the threshold is varied from 5 to 500 in the sample from the S&P 500.
Such plots are aptly known as Hill plots. In Figure 9.6 we find the optimal threshold in
the region ranging from CT ¼ 100 to CT ¼ 200, giving a tail index estimate of about 3
and a VaR of about 2.7.

We estimated the lower and upper tails using the normal distribution and EVT
where CT was set at 70. These distributions are superimposed on the empirical dis-
tribution in Figure 9.7. It is obvious from the figure that the normal distribution
underestimates both tails, where error increases as one moves towards the extremes.
The distribution obtained by EVT, by contrast, runs smoothly through the empirical
distribution.

9.4 AGGREGATION AND CONVOLUTION

The act of adding up observations, either across time (time aggregation) or across
assets (portfolios) is termed convolution. From Feller (1971, theorem VIII.8) we get
Theorem 9.1.
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Figure 9.5. Empirical and normal distribution of daily S&P 500 returns from 1972 to 2009.



Theorem 9.1 Let X1 and X2 be two independent random variables with distribution
functions satisfying

1� FiðxÞ ¼ PrfXi > xg � Aix
��i

for i ¼ 1; 2, when x ! 1. Then, the distribution function F of the variable X ¼ X1 þ X2 in
the positive tail can be approximated as follows.

Case 1 When �1 ¼ �2 we say that the random variables are first-order similar and we set
� ¼ �1 and F satisfies

1� FðxÞ ¼ PrfX > xg � ðA1 þ A2Þx��:
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Figure 9.6. Hill plot for daily S&P 500 returns from 1970 to 2009.

(a) The lower tail (b) The upper tail

Figure 9.7. The upper and lower tails of daily S&P 500 returns from 1970 to 2009. Comparison

of the empirical distribution, the EVT-estimated distribution with CT ¼ 70 and the normal

distribution.



Case 2 When �1 6¼ �2 we set � as the minimum of �1 and �2 and F satisfies

1� FðxÞ ¼ PrfX > xg � Ax��

where A is the corresponding constant.

As a consequence, if two random variables are identically distributed, the distribution
function of the sum will be given by PrfX1 þ X2 > xg � 2Ax��; hence, the probability
doubles when we combine two observations from different days. But if one observation
comes from a fatter tailed distribution than the other, then only the heavier tail matters.

If we are interested in obtaining quantiles (VaR) of fat tail data as we aggregate across
time, then we can use Theorem 9.2 (de Vries, 1998).

Theorem 9.2 (de Vries, 1998) Suppose X has finite variance with a tail index � > 2. At a
constant risk level p, increasing the investment horizon from 1 to T periods increases the
VaR by a factor:

T1=�:

This result has direct implications for aggregating risk over time. Financial institutions
are required under the Basel Accords to calculate VaR for a 10-day holding period,
where the rules allow the 10-day VaR to be calculated by scaling the one-day VaR by the
square root of 10.

EVT distributions retain the same tail index for longer period returns, and Theorem
9.2 shows that the scaling parameter is slower than the square-root-of-time adjustment.
Intuitively, as extreme values are more rare, they should aggregate at a slower rate than
the normal distribution. For example, if � ¼ 4, 100:25 ¼ 1:78, which is less than
100:5 ¼ 3:16.
VaR estimates across various risk levels and across days are compared in Table 9.1.

For one-day horizons, EVT VaR is higher than VaR assuming the normal distribution,
especially for more extreme risk levels. At the 0.05% level, EVT VaR is 3 compared with
a normal VaR of 2. This is balanced by the fact that the 10-day EVT VaR is 5.1 which is
now less than the normal VaR of 6.3. This seems to suggest that the square-root-of-time
rule may be sufficiently prudent for longer horizons.

It is important to keep in mind that the � root rule in Theorem 9.2 only holds
asymptotically (i.e., for probability levels very close to 0%) and that for any other
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Table 9.1. VaR and time aggregation of fat tail distributions

Risk level 5% 1% 0.5% 0.1% 0.05% 0.005%

Extreme value

1 day 0.9 1.5 1.7 2.5 3.0 5.1

10 day 1.6 2.5 3.0 4.3 5.1 8.9

Normal

1 day 1.0 1.4 1.6 1.9 2.0 2.3

10 day 3.2 4.5 4.9 5.9 6.3 7.5

From Danı́elsson and de Vries’ (2000) 10-day VaR prediction on December 30, 1996 in millions of US
dollars for a $100 million trading portfolio.



probability the appropriate scaling factor is somewhere between
ffiffiffiffi
T�

p
and

ffiffiffiffi
T2

p
, and even

exceeds the latter—as in the model of Danı́elsson and Zigrand (2006)—where returns
have a jump component. For a comprehensive treatment of these topics see Cheng et al.
(2010). A simulation experiment shows that for 1% VaR the

ffiffiffiffi
T2

p
is almost correct, while

for probabilities of 0.001% the
ffiffiffiffi
T�

p
is almost correct in the case of Student-t. This issue is

further explored by Danı́elsson et al. (1998).

9.5 TIME DEPENDENCE

When we discussed the theory of EVT in Section 9.1.2, we made the assumption
that returns were IID, suggesting that EVT may not be relevant for financial data.
Fortunately, we do not need an IID assumption.
Not only are EVT estimators consistent and unbiased in the presence of higher

moment dependence, we can also explicitly model extreme dependence using the
extremal index.

Example 9.1 Let us consider extreme dependence in a MA(1) process:

Yt ¼ Xt þ �Xt�1; j�j < 1: ð9:7Þ
Let Xt and Xt�1 be IID such that PrfXt > xg ! Ax�� as x ! 1. Then by Theorem
9.1:

PrfYt � xg � ð1þ ��ÞAx�� as x ! 1:

Dependence enters ‘‘linearly’’ by means of the coefficient ��. But the tail shape is
unchanged.

Example 9.1 suggests that time dependence has the same effect as having an IID sample
with fewer observations. If we record each observation twice:

Y1 ¼ X1;Y2 ¼ X1;Y3 ¼ X2; . . .

it increases the sample size to D ¼ 2. Define MD 	 maxðY1; :::;YDÞ: Evidently:
PrfMD 
 xg ¼ FT ðxÞ ¼ F

D
2 ðxÞ;

supposing aT ¼ 0 and bT ¼ 1. The important result here is that dependence increases
the probability that the maximum is below threshold x:

9.5.1 Extremal index

Dependence in the extremes is measured by the extremal index, 0 <  
 1. If the data
are independent then we get from (9.1) and (9.6):

Pr MT 
 xf g ! e�x�� as T ! 1;

when aT ¼ 0 and bT ¼ 1.
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However, if the data are dependent, the limit distribution changes to:

Pr MD 
 xf g ! e�x��
� � 

¼ e� x
��

where 0 
  
 1 is the extremal index (i.e., a measure of tail dependence); and 1= is a
measure of the cluster size in large samples.
For double-recorded data  ¼ 1=2. For the MA process in (9.7) we obtain:

Pr T�1
�MD 
 x

n o
! exp � 1

1þ ��
x��

� �
where  ¼ 1

1þ ��
:

9.5.2 Dependence in ARCH

Consider the normal ARCH(1) process from Section 2.3.1:

Yt ¼ �tZt

�2t ¼ !þ �Y2
t�1

Zt � Nð0; 1Þ:
Subsequent returns are uncorrelated, Cov½Yt;Yt�1� ¼ 0. Nevertheless, they are not
independent since Cov½Y2

t ;Y
2
t�1� 6¼ 0.

Even when Yt is conditionally normally distributed, we noted in Section 2.3.1 that the
unconditional distribution of Y is fat tailed. de Haan et al. (1989) show that the
unconditional distribution of Y is given by

�
�

2
þ 1

2

� �
¼ ffiffiffi

�
p ð2�Þ��=2:

From which we can easily solve the extremal index for the ARCH(1) process. For
example:

� 0.10 0.50 0.90 0.99

� 26.48 4.73 2.30 2.02
 0.99 0.72 0.46 0.42

Therefore, the higher the �, the fatter the tails and the level of clustering. Similar results
can be obtained for GARCH.5

9.5.3 When does dependence matter?

The importance of extreme dependence and the extremal index  depends on the
underlying application. Extreme dependence can be ignored when dealing with uncon-
ditional probabilities. For example, suppose you are building a flood wall to protect
against a storm, your concern is the water level on the worst day of the storm—not the
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number of days the storm lasts. The extremal index matters when calculating conditional
probabilities. For example, if you are experiencing heavy rain causing floods, cumulative
rain matters as much as the rain in any given day.
For many stochastic processes, including GARCH, the time between tail events

becomes increasingly independent. This means that the strength of dependence
decreases as we move into the tails even if the returns are highly dependent in the center
of the distribution. For detailed examples of this see Danı́elsson and Goodhart (2002).
Let us consider daily S&P 500 index extremes between 1970 and 2009 (as in Figure 9.8)
where we first show 1% extreme outcomes and then 0.1% extreme outcomes. It is clear
that the time between outcomes becomes more independent as we move into the
extremes. There are only two days on which consecutive extremes are observed (towards
the end of 2008); both are on the upside.

9.6 SUMMARY

Most statistical methods for risk analysis in this book are focused on relatively frequent
small events, such as 1% daily VaR. In such cases, the variance–covariance and
historical simulation methods discussed in Chapters 2 and 5 are appropriate.
In some cases our concern relates to more extreme outcomes (e.g., a 0.1% VaR). In

such cases different approaches are needed, the most common of which is extreme value
theory (EVT). EVT is the statistical theory of the behavior of extreme statistical out-
comes and is therefore the appropriate method to use in applications involving extremes.
Because extreme events are by definition uncommon, applications of EVT usually

demand larger sample sizes than the other methods discussed in this book, and it is often
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(a) 1% events (b) 0.1% events

(c) 0.1% events—crisis

Figure 9.8. S&P 500 index extremes from 1970 to 2009.



challenging to identify which observations really are extreme. These issues limit EVT to
niche applications.

Several high-quality libraries for EVT estimation exist in R, such as fExtremes
and evir, and most of the analysis in this chapter can be implemented using them.
Unfortunately, this richness of implementations does not extend to Matlab.
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All the risk models discussed so far in this book have implicitly assumed that, while
market participants are able to forecast risk, their eventual trading decisions do not
affect market prices. Such models implicitly assume that financial risk is exogenous (i.e.,
it arises from shocks arriving from outside the financial system). In this view, the change
in price of an asset is solely due to reasons outside the control of market participants,
such as advances in technology, competitors dropping out, etc. In other words, we
assume that the financial institution using the models in practice is a price taker. In
reality, this is not so—every trade has a price impact, even if infinitely small.
The notion that all financial risk is exogenous is criticized by Danı́elsson and Shin

(2003) who propose the term endogenous risk for risk from shocks that are generated and
amplified within the financial system.1 Endogenous risk emphasizes the importance of
interactions between individuals in determining market outcomes. In financial markets,
all participants are constantly competing against each other, trying to gain advantage by
anticipating each other’s moves.
This has long been understood, with an early example provided by John Maynard

Keynes (1936), in his discussion of a contest run by a London newspaper where entrants
were asked to choose a set of six faces of women they considered the ‘‘most beautiful’’
from 100 photographs. Those who guessed right were rewarded with a prize.

‘‘It is not a case of choosing those faces which, to the best of one’s judgement, are really
the prettiest, nor even those which average opinion genuinely thinks the prettiest. We
have reached the third degree where we devote our intelligences to anticipating what
average opinion expects the average opinion to be. And there are some, I believe, who
practice the fourth, fifth and higher degrees.’’

Keynes, General Theory of Employment, Interest and Money, 1936

Financial markets are subject to both exogenous and endogenous risk, but it is the latter
that is more damaging because it is behind some of the biggest financial crisis episodes in
history, while at the same time being much harder to model. The presence of endogenous
risk means that financial risk models are least reliable when needed the most and can
lead to the conclusion that it may not be optimal from a financial stability point of view
for financial institutions to engage in widespread risk modeling. Financial regulations,
such as the Basel Accords, may have the perverse impact of increasing endogenous risk,
and hence possibly systemic risk. See Danı́elsson et al. (2010b) for more on this issue.
However, endogenous risk is not exclusively confined to financial markets, and we

start with an illuminating example from engineering.

10

Endogenous risk

1 The endogeneity of risk is formally modeled in Danı́elsson et al. (2009).



10.1 THE MILLENNIUM BRIDGE

On June 10th, 2000, Queen Elizabeth opened the Millennium Bridge—the first new
Thames crossing for over a hundred years. Many thousands of people crowded on to the
bridge. The structure was designed to cope easily with this kind of weight. But, within
moments of the bridge being declared open, it began to wobble violently and amid great
embarrassment had to be closed.

The source of the swaying was initially unclear. It is well known that soldiers
marching across bridges can cause them to collapse, but if each person’s step is an
independent event, then the probability of thousands of people ending up walking
synchronously is close to zero. It was discovered later that the bridge had been designed
to swing gently in the breeze but the engineers had not taken adequate account of how
large numbers of people walking across the bridge could exaggerate its movements.

When a bridge moves under your feet, it is a natural reaction to adjust your stance to
regain balance. This movement causes everyone to adjust their stance at the same time.
Such synchronized movement pushes the bridge, making the bridge swing even more.
The increased swinging induces people to adjust their stance even more drastically, and
so on. The swinging of the bridge and the synchronized adjustment of pedestrians are
mutually reinforcing (as shown in Figure 10.1).

The wobble of a bridge is self-sustaining as a result of people’s reactions. It is likely to
continue and intensify even though the initial shock, a gust of wind, has long passed.
This is an example of a force that is generated and amplified within the system. It is
an endogenous response, very different from a shock that comes from a storm or an
earthquake which is exogenous to the system.

10.2 IMPLICATIONS FOR FINANCIAL RISK MANAGEMENT

In general, we can surmise that endogenous risk appears whenever there is the
conjunction of

(i) individuals reacting to their environment; and
(ii) where individual actions affect their environment.

Financial markets are perhaps the supreme example of such an environment. The
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danger of a positive feedback loop of actions to outcomes back to actions, amplifying
the initial shock, is ever present and well understood among market traders and in the
popular financial press. When asset prices fall and traders get closer to their trading
limits, they are forced to sell. But this selling pressure sets off further downward pressure
on asset prices, which induces a further round of selling. The downward spiral in asset
prices here is endogenous.
Most current risk management techniques and regulations, however, are based on the

presumption that risk management is a single-person decision problem (i.e., a game
against nature). The uncertainty of price movements is assumed to be exogenous and
therefore not dependent on the actions of others. A gambling analogy could be made. If
the uncertainty facing a trader is indeed exogenous, modeling risk is akin to a gambler
facing a spin of a roulette wheel, where the bets placed by him and other gamblers do not
affect the outcome of the spin. Whenever an outcome is affected by the actions of others,
risk modeling resembles poker more than roulette.
The roulette view of uncertainty relies on the hypothesis that many heterogeneous

market participants behave in a random fashion, so their actions in aggregate do
not influence the market. Under tranquil market conditions, this view is relatively
innocuous. During periods of crises where information and beliefs become much more
uniform and people behave in a much more similar way, relying on models built on the
assumption of exogeneity is naive. Since many risk management systems are expected to
cope with crisis episodes, what happens during tranquil market conditions is largely
irrelevant.
However, the main reason the roulette view is useful is that it facilitates quantitative

risk modeling by allowing standard statistical techniques to be applied to estimate the
probabilities of various outcomes. The models we have seen so far are different ways of
refining such estimation procedures. The common ingredient is that financial variables
can be represented by a set of equations that are invariant under observation, which
implicitly assumes agents do not react to risk measurements. To the extent that the
stochastic process governing asset prices depends on what traders do, this view of the
world is invalid.

10.2.1 The 2007–2010 crisis

The global financial crisis starting in 2007 was the most severe financial crisis since the
Great Depression in the 1930s. It was initially triggered by turmoil in the subprime
mortgage markets, where the collapse of housing prices forced banks to write down
several hundred billion dollars’ worth of loans. At the same time, massive amounts of
wealth were wiped off all the major stock markets every day; a typical illustration of the
crisis was the 54% fall in the Dow Jones from its peak in 2007 (see Figure 10.2). The
crisis quickly spread to the real economy as all major economies suffered recessions.
US house prices had been rising relentlessly prior to 2007, fueled by the low-interest-

rate environment in America. This was accompanied by an explosion of securitized
products such as collateralized debt obligations and different types of mortgage-backed
securities (MBS), many of which were AAA rated. This was primarily achieved by an
assumption of low default correlations and extrapolation of the recent past to the future.
Rating agencies also worked together with the issuers, allowing models to be manipu-
lated to achieve the desired rating. The popularity of these products ultimately led to a
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flood of cheap credit and allowed NINJA (‘‘no income, no job or assets’’) borrowers to
become home owners—even if only for a short time.

The increase in subprime mortgage defaults was first noted in February 2007. In the
same month, Moody’s put 21 US subprime deals on ‘‘downgrade review’’, indicating an
imminent downgrade on these bonds. This led to deterioration in the prices of mortgage-
related products. There is evidence that holdings of these products were heavily con-
centrated in the hands of leveraged traders such as hedge funds and investment banks.

When a leveraged trader buys an asset, he can use it as collateral and borrow against
its value. However, normally he cannot borrow the entire price. The difference between
the security’s price and the amount of the loan is called the margin or haircut, and must
be financed by the trader’s own capital. Margin requirements can be changed on a daily
basis depending on market conditions, but an increase in margin requirements can lead
to a margin call.

The decline in the price of mortgage-related products led to higher margins being
demanded. To meet this requirement for cash, leveraged traders were forced to
deleverage (i.e., to sell part of their assets). As many market participants faced margin
calls at the same time, these sales inevitably depressed prices further. This then set off
another round of margin increases, prices fell further and so on.

The situation is depicted in Figure 10.3, showing a feedback loop where market
distress feeds on itself. Adrian and Shin (2010) empirically confirm this spiral for
investment banks. In this view, it is endogenous risk that is doing the harm.
Many of the vehicles that purchased MBSs issued asset-backed commercial paper

(ABCP) to fund their purchases. ABCP is a short-term loan that needs to be rolled over
regularly. As prices of MBSs and confidence in their credit rating fell, the market for
ABCP began to dry up (as shown in Figure 10.4). Figure 10.5 shows the cost of insuring
against the default of AAA-rated and AA-rated securities increasing dramatically. The
ABX index is based on a basket of 20 credit default swaps referencing assets backed by
subprime mortgages of different ratings. The protection buyer pays an upfront fee of
(100�ABX price). The fall in ABX mirrors the rise in both realized and implied default
rates on subprime mortgages.

One of the implications of a highly leveraged market going into reversal is that a

186 Endogenous risk

Figure 10.2. Dow Jones 2007–2009.
Data source: Yahoo Finance.



moderate fall in asset value is highly unlikely. Either the asset does not fall in value at all
or the value falls by a large amount. The logic of mutually reinforcing effects of selling in
a falling market dictates this conclusion. In Section 10.3 we study more formally the
effect of a leverage ratio constraint on market prices. The leverage ratio is the inverse of
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Figure 10.4. Commercial paper volume, US billions.
Data source: Federal Reserve Board.

Figure 10.5. ABX 6-1 prices.
Data source: Thomson Reuters.

Figure 10.3. Price margin spiral.



the margin or haircut requirement (i.e., if a lender demands a 2% haircut, then the
maximum leverage that can be achieved is 50).

10.3 ENDOGENOUS MARKET PRICES

Standard models assume that prices reflect fundamentals, where they are commonly
represented as the sum of the present value of future dividends. However, market
participants are subject to many constraints, some of which are imposed by outside
parties, such as regulators or shareholders. If the same constraints are applied to all
market participants, they have the potential to trigger peculiar outcomes (e.g., as in the
model below where the demand function is upward sloping).

Let us consider a large bank that has the potential to impact market prices with its
trading volume and where it operates with a leverage ratio (L) of 5. While there are
several definitions of a leverage ratio, we define it as the ratio of asset values to the value
of equity. Initially, the market price of asset P0 is $10, the bank holds Q0 ¼ 100 units of
it and has D0 ¼$800 in debt. The value of its assets is A0 ¼ Q0 � P0 ¼$1,000, and its
equity is E0=A0 �D0 ¼ 200. The starting balance sheet is therefore:

Assets Liabilities

A0 ¼ 1,000 E0 ¼ 200
D0 ¼ 800

The bank meets its leverage constraint since:

L ¼ A0

E0

¼ 5:

At time 1, a shock causes the price of the asset to fall to P1 ¼ $9, the fall in the value of
the asset is matched by a fall in the bank’s equity. The balance sheet becomes:

Assets Liabilities

A1 ¼ 900 E1 ¼ 100
D1 ¼ 800

and leverage increases from 5 to 9. The bank now exceeds its leverage constraint and
needs to reduce its debt. The easiest way is to sell some assets and use the proceeds to pay
off the debt. We calculate the units of assets that need to be sold in two cases: first, where
the bank is a price taker and, second, where it has significant price impact.

Prices are exogenous

In this case the bank cannot influence market prices no matter how much it chooses to
trade. The bank sells just enough assets to keep its leverage ratio at 5. The new debtD1 is
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the old debt D0 less the value of assets sold at the current market price of P1:

D1 ¼ D0 � P1ðQ0 �Q1Þ:

To calculate Q1:

L ¼ A1

A1 �D1

¼ P1Q1

P1Q1 �D1

¼ P1Q1

P1Q1 �D0 þ P1ðQ0 �Q1Þ

therefore Q1 ¼ �L
D0 � P1Q0

P1

: ð10:1Þ

In our example, the bank now holds Q1 ¼ 500
9 units of assets each valued at $9. By selling

100� 500
9
, the target leverage ratio is reached and the bank needs to do nothing further.

Its balance sheet becomes:

Assets Liabilities

A1 ¼ 500 E1 ¼ 100
D1 ¼ 400

Prices are endogenous

Let us now suppose the bank exerts a significant price impact. This implies that the
market price of the asset will rise if the bank decides to buy and fall if the bank decides to
sell. The effect can be captured by a price impact function:

�P2 ¼ �P1ðQ1 �Q0Þ

where � is the price impact factor;�P2 is the change in price (P1 � P2); and P1ðQ1 �Q0Þ
is the amount the bank wants to sell—in our case $400. If we let � ¼ 0:002, then by
selling $400, prices fall by a further 80 cents to $8.2, and the effect of this ensures the
bank fails to meet its leverage target once again. We can then apply (10.1) again to get
the second-order price impact. Another round of selling depresses the market price once
more and the bank continues to fail to meet its leverage constraint and will have to
continue selling more assets. In Table 10.1 we show the impact of applying (10.1) 10
times (i.e., 10 iterations).
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Table 10.1. A downward spiral

Iteration Q P A

1 100.00 10.00 1,000.00

2 55.556 9.000 500.000
..
. ..

. ..
. ..

.

9 25.986 7.721 200.641

10 25.986 7.721 200.636



Supply and demand functions

From this example we see that the bank sells when the price falls, and if the initial shock
had increased the price of the asset then the bank would be buying more to keep the
leverage ratio at 5. In effect, the demand function for the bank is upward sloping—not
downward sloping as is usually the case. In Figure 10.6 we show the demand function
for both cases (i.e., when the bank exerts a price impact and when it does not). This
simple example illustrates that—in the presence of endogenous risk—we often see large
rather than moderate changes in asset values as a response to a small shock.

Analogy with VaR

The leverage constraint in this example works in the same way as a VaR constraint.
A higher leverage ratio implies a more stringent VaR constraint and vice versa, since the
equity of a highly leveraged bank can be easily wiped off by a small negative price shock.

This example suggests that, if all market participants had the same regulatory VaR
constraint, all would be forced to react to shocks in the same way and therefore their
actions on aggregate would have a significant price impact. By contrast, if each were left
to its own devices, different risk appetites would ensure heterogeneity of actions, so
prices would be less likely to spiral down.

The capacity of VaR constraints to harmonize the way financial institutions see the
world induces them to behave in a similar way and is well documented in the press.
This was succinctly noted in the Economist (2000):

‘‘The trouble is that lots of banks have similar investments and similar VaRmodels. In
periods when markets everywhere decline, the models can tell everybody to sell the
same things at the same time, making market conditions much worse. In effect, they
can, and often do, create a vicious feedback loop.’’

10.4 DUAL ROLE OF PRICES

Financial innovation has meant that banks and other financial institutions now rely on
price-sensitive risk management systems such as VaR. Even accounting has adopted
price-sensitive valuations with the proliferation of marking to market.
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Prices, as seen above, play two roles. On the one hand, they are a passive reflection of
underlying economic fundamentals (an aggregation of all available information), but,
on the other hand, they are also an imperative to action. In the leverage ratio example,
prices fall as more selling takes place, but the lower prices invoke more selling in the
presence of a binding constraint. Some actions induced by price changes are desirable,
but often actions in response to binding constraints are not desirable for the whole
system even if they are sensible for an individual.
The reliance on prices to allocate resources efficiently can lead to distortion of the very

same market prices. Distortion may be so severe that prices cease to convey any
fundamentals and, instead, bring about an amplified spiral of actions that can cause
great damage.
Financial crises are often accompanied by large price changes, but large price changes

by themselves do not constitute a financial crisis. The release of public data such as
interest rate decisions is sometimes marked by large price changes at the time of
announcement; indeed, this is a sign of a well-functioning market, but the market
usually stabilizes quickly after such a move.
The distinguishing feature of crisis episodes is that they seem to gather momentum

from endogenous responses of market participants themselves. Perhaps the best example
of this is the stock market crash of 1987 and the role played by mechanical trading rules
such as delta hedging.

10.4.1 Dynamic trading strategies

October 19, 1987 saw global stock markets drop around 23%, the greatest single-day
loss that the Dow Jones Industrial Average (DJIA) had ever suffered in continuous
trading up to that point. The fall in the DJIA is shown in Figure 10.7.
The Brady Commission (1988) attributed the magnitude and swiftness of the price

decline to practices such as portfolio insurance and dynamic hedging techniques (i.e., the
use of automatic trading strategies). These trading techniques have the property that
they dictate selling an asset when its price falls below certain threshold values, and
buying it when price rises above a threshold. In other words, they dictate a ‘‘sell cheap,
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buy dear’’ strategy that generates precisely the kind of vicious feedback loop that
destabilizes markets.

10.4.2 Delta hedging

Options, which give the holder the right but not the obligation to buy (call) and sell (put)
assets at a pre-agreed price (the strike price, X) at a date in the future, are effective
hedging instruments. However, traded options exist only for well-established markets,
and only for relatively short maturities. For very long-dated options, or for specific
assets, dynamic replication is the only avenue open to traders if they wish to hedge a large
downside exposure, which is equivalent to a short put position.

Dynamic replication is a strategy where we replicate the payoffs of an option by
holding a combination of cash and the underlying asset. A simple technical model is
illustrated below.

The delta (�) of a put option is the rate of change of its price, denoted g, with respect
to a change in price of the underlying asset, P:

� ¼ @g
@P

< 0:

Graphically, � is the slope of a curve representing the option price and the price of the
underlying (as shown in Figure 10.8). Black and Scholes (1973) show that a put can be
replicated by holding � numbers of the underlying asset. Therefore, a portfolio con-
sisting of:

� Underlying asset

�1 Put

�
is risk free with respect to small changes in the underlying price as delta is a linear
approximation. This is because the gain or loss from holding the underlying asset (�)
when the price changes is matched by an exactly offsetting loss or gain from the change
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in price of the put option. An analogous argument can be used to show that the payoff
from the put option can be replicated by holding a suitable portfolio of the underlying
asset and cash as shown by:

1 Put

0 Cash



¼ � Underlying asset

�P�þ g Cash

�
The portfolio on the right-hand side (the replicating portfolio) is financed by selling
short j�j units of the underlying asset at price P and adding the proceeds to the cash
balance. Remember that the � of a put option is always negative. Now, suppose the
price changes to P0. The value of the portfolio at the new price is:

�P 0
z}|{Short asset

þ g� P�
zfflfflfflffl}|fflfflfflffl{Cash holding

¼ gþ�ðP0 � PÞ
� g0

where g 0 is the new price of the put option given P 0. The trader then forms a new
portfolio:

�0 Underlying asset

�P0�0 þ g 0 Cash.

�
This strategy is illustrated in Figure 10.9. The� of the option becomes more negative

as the price of the underlying asset falls and less negative as it rises, implying a larger
short position in the underlying asset when its price falls and a smaller short position
when its price rises. In other words, dynamic replication dictates a ‘‘sell cheap, buy dear’’
strategy similar to the situation with the binding leverage ratio, and it is precisely this
feature that contributes to endogenous risk.
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10.4.3 Simulation of feedback

We can analyze the impact of dynamic trading strategies by simulating delta hedging.
Let us suppose there is a put option with a strike price of $90, the risk-free rate is 10%,
annual volatility is 40% and time to maturity is 20 days. The underlying stock is
currently trading at $100. All the Black–Scholes assumptions hold.

We start at t ¼ 1 by selling � stocks short and keeping the proceeds. For each day
until expiration, we adjust our stock holdings by any change in �. This strategy should
cost the same as just buying the put option at t ¼ 1. Under Black–Scholes assumptions
our delta trading will not impact prices. If, however, a large amount of money in the
financial markets is allocated to the strategy, then such trading will have a significant
price impact. Suppose that for each $100 traded, prices are affected by � ¼ 0:2 times the
amount we buy/sell. The results are presented in Figure 10.10.

Figure 10.10 shows that both prices are roughly identical for the first 10 days, but then
the market is hit by a seemingly small exogenous shock. However, because of the nature
of the dynamic trading strategy, the shock gets amplified and the stock price drops far
more than it would in the absence of the significant price impact, causing a market crash.

The mechanism is described in Figure 10.11. When a large enough number of market
participants follow this strategy, a downward shock to the price generates sales, which
causes the price to fall. But a decline in price entails a fall in the delta of the put which
forces traders to sell more. This type of feedback is typical of financial markets.
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10.4.4 Endogenous risk and the 1987 crash

The stock market crash of 1987 is a classic example of endogenous risk and the
potentially destabilizing feedback effect on market dynamics of concerted-selling
pressure arising from mechanical trading rules.
The analysis above suggests that when a large segment of the market are engaged in

the same trading strategies, the action-inducing role of prices ensures that the initial
shock is amplified, leading to large and rapid declines in prices. Estimates in 1987
indicated that around $100 billion in funds were following formal portfolio insurance
programs like the one described above, representing around 3% of the pre-crash market
value. However, this is almost certainly an underestimate of the total selling pressure
arising from informal hedging techniques such as stop loss orders.
In the period from Wednesday, October 14th to Friday, October 16th, the market

declined around 10%. Sales dictated by dynamic hedging models amounted to around
$12 billion (either in cash or futures), but actual sales were only around $4 billion. This
means that by opening time on Monday morning, there was a substantial amount of
pent-up selling pressure. Both the S&P and the Dow Jones fell over 20% on Monday,
October 19th. At times, the imbalance between purchases and sales meant that much of
the underlying market for stocks did not function. Instead, traders attempted to use the
index futures market to hedge their exposures.
The important lesson to emerge from the 1987 stock market crash is that the

uncertainty governing stock returns is better described as being endogenous rather than
exogenous.

10.5 SUMMARY

Most models for forecasting risk assume that financial risk is exogenous (i.e., that
market participants are affected by the financial system, but do not impact the dynamics
of market prices).
When there are diverse opinions in the market and where these diverse opinions are

reflected in the diversity of trading strategies and positions, treating risk as being
exogenous is appropriate. Endogenous risk is most likely to arise when there is a
prevailing consensus concerning the direction of market outcomes, where such
unanimity leads to similar positions or trading strategies. In such an environment,
uncertainty in the market is generated and modified by the response of individual
traders.
Many, if not most, financial crises have endogenous risk at their heart, such as the

1987 crash and many aspects of the 2007–2010 crisis.
In terms of quantitative risk management and stress testing, the margin of error must

be chosen with endogeneity in mind. When a bank’s portfolio is subjected to a simulated
shock, the margin of error should not be based on the assumption of ceteris paribus (i.e.,
all other market conditions remaining unchanged). If the shock is likely to affect the
actions of other market participants, the system-wide impact of the shock may be much
larger in practice than the initial shock that is being simulated. For the engineers of the
Millennium Bridge, it was not enough simply to subject the model of the bridge to strong
storms or other outside shocks assuming that other things would remain unchanged.
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The financial system has the potential to sustain its own dynamic response, and this
potential should be studied carefully.

How should endogenous risk be accounted for in the current framework of risk
management? A risk manager needs to be able to make an intelligent distinction between
cases where the standard ‘‘roulette wheel’’ view of uncertainty is sufficient and cases
where risk endogeneity is important. Common sense and an intuitive understanding of
underlying pressures in the market are essential complements to any quantitative risk
management tools that merely extrapolate the past.
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Financial forecasting—whether of risk or asset prices—depends on methods from time
series analysis, often requiring specialized versions of standard time series tools. The
objective of this appendix is to provide a foundation to financial time series that is
relevant to this book.
Several high-quality textbooks are available for background reading on financial time

series analysis. Enders (1995, chs. 2, 4 and 6 ) contains a general treatment of time series
models. A more specialized book is Tsay (2005) which is concerned with financial time
series; his chapter 2 covers similar material to this appendix. The R and Matlab codes
for many of the topics below are given in Appendices B and C, respectively.

A.1 RANDOM VARIABLES AND PROBABILITY

DENSITY FUNCTIONS

A.1.1 Distributions and densities

A random variable (RV) is a function that maps the outcomes of random phenomena to
a unique numerical value. For example, suppose the possible outcomes of a discrete RV
are ½�2; 0; 1; 3� with probabilities ½0:2; 0:1; 0:3; 0:4�, respectively.

Panel (a) of Figure A.1 shows outcomes and associated probabilities. The function
that relates outcomes to their probabilities is called a probability density function (PDF);
the graph in panel (a) is referred to as the density. A density is usually denoted in
lowercase letters, such as f ð�Þ. In the example (see previous paragraph), the probability
of outcome 1 is 30%, indicated by f ð1Þ ¼ 0:3. For a function to be considered a density,
it must have nonnegative probabilities that must also sum or integrate to one.
The cumulative distribution function (CDF) shows the probability of receiving an

outcome or a lower one (i.e., cumulative probabilities). Distribution function is a
synonym for CDF. In the example above, we would get ½0:2; 0:3; 0:6; 1:0� for the
cumulative probabilities—shown in panel (b) of Figure A.1. A distribution is usually
denoted in uppercase. Continuing with the example, the probability of receiving an
outcome of 1 or less is 0:6 ¼ 0:2þ 0:1þ 0:3 ¼ Fð1Þ. More generally, we can write:

FðxÞ ¼
X
xt
x

f ðxtÞ

where xt indicates outcome i; and f ðxtÞ is the probability of that outcome.
The distribution function represents the area under (or the sum of) the density. In the

case of continuous densities, F is the primitive function of f and f the derivative of F ,
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where they are related as:

FðqÞ ¼
Z q

�1
f ðxÞdx

A.1.2 Quantiles

We often need to identify an outcome associated with a probability by calculating the
inverse distribution. Continuing with the example above, we might want to know
what outcome has a probability of 0.3 or less. Such an outcome is called a quantile,
and if the distribution is continuous, the inverse distribution is called a quantile func-
tion.

An example of a quantile function is shown in panel (c) in Figure A.1. Another way to
refer to a quantile is the term significance level, �ðpÞ ¼ F�1ðpÞ.
A quantile means the fraction (or percent) of points below a given value. For example,

some quantiles of the normal are shown in Table A.1.

A.1.3 The normal distribution

The most common distribution in statistics is the normal distribution. The normal
distribution is more convenient to work with than most other distributions, and is
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completely described by the first and second moments; moreover, it is mathematically
simple in both univariate and multivariate forms. It also has the convenient property
that any linear combination of normal variables is also distributed normally. � is often
used as the symbol for the normal density and � for the normal distribution.
X is normally distributed if it has the density:

�ðx;�; �Þ ¼ 1ffiffiffiffiffiffi
2�

p
�
exp � 1

2

x� �

�

� �2� �
: ðA:1Þ

A random variable with the density described above is denoted by:

X � Nð�; �2Þ:
The normal distribution is unimodal, symmetric and centered on �. The variance, �2,
governs the spread (or dispersion) of the distribution. We often work with the standard
normal distribution which is illustrated in Figure A.2.

Definition A.1 (Standard normal distribution) Standard normal distribution is the
name given to the normal distribution with mean zero and unit variance—that is, a RV

X has the distribution X � Nð0; 1Þ. It has density �ðxÞ ¼ 1ffiffiffiffiffiffi
2�

p e�x2=2.
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Table A.1. Normal outcomes

Probability Normal predicted outcome (quantile)

1% �2.33

2% �2.05
..
. ..

.

50% 0.00
..
. ..

.

98% 2.05

99% 2.33

(a) Density (b) Distribution

Figure A.2. Standard normal distribution.



A.1.4 Joint distributions

Let us suppose we have two RVs X and Y . Their joint distribution function defines the
probability that X is less than some x, and Y is less than some y:

FX ;Y ðx; yÞ ¼ PrðX 
 x and Y 
 yÞ: ðA:2Þ
This definition can be extended to any number of RVs in the same way.

A.1.5 Multivariate normal distribution

In many cases we have to deal with more than one IID normally distributed variable.
If we have T realizations of a standard normal x ¼ x1; x2; . . . ; xTð Þ0, the joint density,
assuming independence, is given by:

� xð Þ ¼ � x1ð Þ� x2ð Þ � � �� xTð Þ

¼
YT
t¼1

� xtð Þ

¼
YT
t¼1

1ffiffiffiffiffiffi
2�

p exp � 1

2
x2t

� �

¼ 2�ð Þ�T
2 exp � 1

2

XT
t¼1

x2t

" #

¼ 2�ð Þ�T
2 exp � 1

2
x0x

� �
:

If X has a mean vector � ¼ �1; �2; . . . ; �Tð Þ0 and covariance matrix � ¼ �ij
� �

—that is,
X � N �;�ð Þ—then the density is:

� xð Þ ¼ 1

2�ð ÞT=2 �j j12
exp � 1

2
x� �ð Þ0��1 x� �ð Þ

� �
:

If X is multivariate normally distributed, all marginal distributions and conditional
distributions must be normally distributed. The bivariate normal distribution is shown
in Figure A.3.

A.1.6 Conditional distribution

An important application of the joint distribution is calculation of the conditional
distribution (i.e., the distribution of RVs, given one of the RVs takes a particular value).

The conditional probability function of an RV X , given Y takes a particular value y, is
defined as:

fXjYðxÞ ¼
fX ;Yðx; yÞ
fY ðyÞ

:

Alternatively, the joint density can be factored as:

fX;Y x; yð Þ ¼ fX xð Þ � fY jX yð Þ ¼ fY yð Þ � fX jY xð Þ:
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A.1.7 Independence

Suppose we have two RVs, X and Y , with joint distribution FX ;Yðx; yÞ, where X has
marginal distribution FXðxÞ and Y has marginal distribution FY ðyÞ.

Definition A.2 (Independence) X and Y are said to be independent if their joint
probability function is the product of their marginal probability functions:

FX;Yðx; yÞ ¼ FXðxÞFYðyÞ for all possible values of x and y:

From the definition of conditional probability functions, it follows that if X and Y are
independent, the conditional probability function of Y given X is the same as the
marginal probability function of Y :

FY jXðyÞ ¼ FY ðyÞ:

We come across independence and IID frequently throughout the book.

Definition A.3 (IID) Identically and independently distributed, each RV has the
same probability distribution and is independent of every other RV. This implies that
every conditional mean, variance and all higher moments are constant.

A.2 EXPECTATIONS AND VARIANCE

Let us consider a random variable X , for which we have observed a sample
x ¼ fx1; . . . ; xTg of length T . We assume that X has a continuous probability density
function f defined on the real line.

Appendix A: Financial time series 201

Figure A.3. Three-dimensional plot of the bivariate normal distribution.



The expectation of X , �, is the expected value or mean of the variable. It is defined by

� ¼ EðXÞ ¼
Z 1

�1
xf ðxÞdx ðA:3Þ

and is estimated by the sample mean:

�̂� ¼ 
xx ¼ 1

T

XT
t¼1

xt:

The variance of X measures the dispersion/spread of the variable around the mean. It is
defined as the expectation of ðX � �Þ2:

�2 ¼ E ðX � �Þ2
h i

¼
Z 1

�1
ðx� �Þ2f ðxÞdx: ðA:4Þ

If we assume that � is known, we compute sample variance by

�̂�2 ¼ 1

T

XT
t¼1

ðxt � �Þ2:

In the more realistic case in which � is unknown we have to use the sample mean and
adjust the formula in order to find the unbiased estimator for �2:

�̂�2 ¼ 1

T � 1

XT
t¼1

ðxt � �̂�Þ2:

The square root of variance is called standard deviation if � is known and standard error
if � has to be estimated prior to calculating variance. The standard error is sometimes
known as volatility when referring to financial returns.

The mean and variance are defined for most distributions we encounter in practice,
but some distributions such as the Cauchy distribution have an undefined variance and
mean.

A.2.1 Properties of expectation and variance

Suppose we have two RVs X and Y and constants a; b; c, then:

EðaX þ bY þ cÞ ¼ aEðXÞ þ bEðYÞ þ c:

The variance of X is often written as VarðXÞ and has the following properties:

VarðXÞ � 0

Varðaþ bXÞ ¼ b2 VarðXÞ:
If X and Y are independent, then:

VarðX þ YÞ ¼ VarðXÞ þ VarðYÞ:
Otherwise

VarðX þ YÞ ¼ VarðXÞ þ VarðYÞ þ 2 CovðX ;YÞ
where CovðX ;YÞ denotes the covariance of X and Y .
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A.2.2 Covariance and independence

Let us consider two random variables X and Y , with T observations x ¼ fx1; . . . ; xTg
and y ¼ fy1; . . . ; yTg.
The covariance of X and Y is defined by:

�X ;Y ¼ E½ðX � �XÞðY � �YÞ�:
If we assume the means �X and �Y are known, the sample covariance is computed by:

�̂�X ;Y ¼ 1

T

XT
t¼1

ðxt � �XÞðyt � �YÞ:

In the more realistic case where means have to be estimated, we get:

�̂�X ;Y ¼ 1

T � 1

XT
t¼1

ðxt � �̂�X Þðyt � �̂�YÞ:

The magnitude of covariance depends upon the units by which X and Y are measured.
A positive covariance indicates thatX andY tend to move in the same direction and vice
versa.
Pearson’s correlation coefficient measures the strength of linear dependence, it is scale

independent and defined as:

�X ;Y ¼ �X;Y
�X�Y

: ðA:5Þ

The correlation coefficient can be estimated by:

�̂� ¼ �̂�X ;Y
�̂�X �̂�Y

:

� is always less than or equal to 1 in magnitude. If � is greater than 0 it implies that Y
tends to be above average when X is above average, and if � is less than 0 then Y tends to
be below average when X is above average. If � is 0 then there is no linear relationship
between X and Y .
Since � is defined in terms of moments, it only exists for any bivariate probability

distribution whose covariance is defined and whose marginal variances are nonzero and
bounded.
One should be careful when interpreting the value of �. It is a a measure of linear

dependence, and we can come up with two datasets having the same correlation coeffi-
cient that are very differently distributed. This is illustrated in Figure A.4 where four
different datasets are plotted, all with the same correlation coefficient of 0.816, but with
very different dependence. Moreover, � is not invariant to monotonic transformations
and, therefore, is not always a good measure of dependence.

A.3 HIGHER ORDER MOMENTS

The m th moment of a random variable X is defined by:

EðXmÞ:
Definition A.4 describes the m th centered moment of a distribution.
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Definition A.4 (Centered moment) The mth centered moment of an RV is defined by:

E X � �ð Þm½ � ¼
Z 1

�1
ðx� �Þmf ðxÞdx:

The first centered moment is another way of referring to the mean, and the second
centered moment is another way of referring to variance.

A.3.1 Skewness and kurtosis

Skewness (Skew) and kurtosis (Kurt) are functions of the third and fourth moments,
respectively. Skewness gives information on the asymmetry of a distribution where
symmetric distributions have zero skewness. Kurtosis provides information on the
‘‘peakedness’’ of a distribution. If kurtosis is small, this implies the density function
is relatively flat near its center. If kurtosis is large, then density is peaked near the center.
Skewness and kurtosis are shown in Figure A.5. Definitions A.5 and A.6, respectively,
describe them formally.

Definition A.5 (Skewness) The central third moment of a distribution:

SkewðXÞ ¼ EðX � �Þ3
�3

:
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Figure A.4. Cross plots of four sets of bivariate RVs, X and Y , with the same correlation

coefficient.



Definition A.6 (Kurtosis) The central fourth moment of a distribution:

KurtðXÞ ¼ EðX � �Þ4
�4

:

Skewness and kurtosis can be estimated by:

dSkewSkew Xð Þ ¼ 1

T � 1ð Þ�̂�3
XT
t¼1

xt � 
xxð Þ3;

dKurtKurt Xð Þ ¼ 1

T � 1ð Þ�̂�4
XT
t¼1

xt � 
xxð Þ4:

The skewness and kurtosis of the normal distribution are constants that are equal to 0
and 3, respectively. Excess kurtosis is kurtosis� 3, so excess kurtosis is 0 for the normal.
The concepts of kurtosis and excess kurtosis are often confused.
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(a) No skew (symmetric) (b) Negative skew (skewed to the left)

(c) Positive skew (skewed to the right) (d) High and low kurtosis

Figure A.5. Examples of skewness and kurtosis.



A.4 EXAMPLES OF DISTRIBUTIONS

Using knowledge of the normal distribution gleaned from above, we can define other
distributions that we come across throughout the book.

A.4.1 Chi-squared �2
� �

Suppose we have X1;X2; . . . ;X� RVs where each X is independent and normally
distributed with mean 0 and variance 1. Then the variable Z, defined as the sum of
squared Xs, follows a chi-squared distribution, �2

� �
, with degrees of freedom �:

Z ¼
X�
i¼1

X2
i � �2

ð�Þ:

The expectation and variance of Z are given by:

EðZÞ ¼ �

VarðZÞ ¼ 2�:

The chi-squared distribution has support ½0;1� and its density is given by:

f ðx; �Þ ¼ 1

2
�
2�

�

2

� � x�
2�1exp�

x
2

where � denotes the Gamma function, defined as:

�ðxÞ ¼
ð1
0

e�ttx�1dt

Panel (a) of Figure A.6 shows the chi-squared distribution for several values of �.

A.4.2 Student-t

Another distribution which is important in practice is the Student-t. If we have a
standard normal RV X and a �2

ð�Þ RV Z, which are independent of each other, then
the variable U defined below has a Student-t distribution with � degrees of freedom:

U ¼ Xffiffiffiffi
Z

�

r � t �ð Þ:

The expectation and variance of U are given by:

EðUÞ ¼
0 if � > 1

undefined otherwise,

(

VarðUÞ ¼
�

� � 2
for � > 2

1 for � ¼ 2

undefined otherwise.

8><>:
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Figure A.6 shows some densities for the �2
ð�Þ and the Student-t while Figure A.7 shows

some random numbers from the Student-t. Note that fewer extreme observations are
obtained as the degrees of freedom increase. As the degrees of freedom approach
infinity, the Student-t distribution tends to the normal distribution.
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(a) �2 distribution (b) Standardized Student-t distribution

Figure A.6. Distributions related to the normal.

(a) � ¼ 1 (b) � ¼ 3

(c) � ¼ 6 (d) � ¼ 1
Figure A.7. Random draws from a Student-tð�Þ, with variance¼ 1.



The Student-t distribution has support ½�1;1� and its density is:

f x; �ð Þ ¼
�

� þ 1

2

� �
� � 2ð Þ�ð Þ12� �

2

� � 1þ x2

� � 1

 !��þ1
2

; � > 2:

A.4.3 Bernoulli and binomial distributions

We encounter the Bernoulli distribution and binomial distribution when modeling the
sequence of VaR violations—the ‘‘hit sequence’’—used in backtesting. Unlike previous
distributions we have discussed, both are discrete. The Bernoulli distribution applies to
an RV, X , which can only take one of two possible values, for simplicity labeled 0 and 1.
Outcome 1 occurs with probability p and outcome 0 with probability 1� p. Therefore,
the density of the Bernoulli distribution is given by:

f ðxÞ ¼ pxð1� pÞx for x 2 f0; 1g:
The expected value and variance of X is:

EðXÞ ¼ p

VarðXÞ ¼ pð1� pÞ:
The parameter p can be estimated by:

p̂p ¼ v1
T

where v1 is the number of ‘‘ones’’ obtained in the sample.
If we have a sequence of independent RVs, X1;X2; . . . ;XT , each of which is Bernoulli

distributed with parameter p, then the sum of the sequence, Z, is:

Z ¼
XT
t¼1

Xt � BinomialðT ; pÞ:

The binomial distribution models the number of ‘‘ones’’ in a sequence of Bernoulli trials.
For example, if we roll a fair die 10 times, the number of sixes we would get is distributed
binomially with T ¼ 10 and p ¼ 1

6
.

The density of the binomial distribution is given by:

f ðtÞ ¼ T

t

� �
ptð1� pÞT�t;

for t ¼ 1; . . . ;T . The expected value and variance of Z is given by:

EðZÞ ¼ Tp

VarðZÞ ¼ Tpð1� pÞ:

A.5 BASIC TIME SERIES CONCEPTS

It is useful to define a few concepts and operators that form the foundations of time
series analysis. Suppose we have a sequence of IID RVs, fXtg, with mean � and variance
�2. The ith lag of Xt is indicated by Xt�i and the jth lead by Xtþj.

208 Appendix A: Financial time series



A.5.1 Autocovariances and autocorrelations

The autocovariance, &t;i, is the covariance between different observations of the same
variable, i observations apart:

&t;i ¼ E ðXt � �ÞðXt�i � �Þ½ �: ðA:6Þ
Analogous to the definition of the correlation coefficient between two variables, the ith
autocorrelation is defined as:

�t;i ¼
&t;i
&0

where &0 is the variance of X . If X is covariance stationary, the autocorrelation does not
depend on t and we can simply write it as �.
The autocorrelation function (ACF) is a common method of exploring predictability

in statistical data. It measures how returns on one day are correlated with returns on
previous days. If the ACF is statistically significant, we have strong evidence for
predictability.

A.5.2 Stationarity

A stationary process is one where the probability laws that govern the behavior of the
process do not change over time. The statistical properties of a stationary process are
identical wherever we look at the data.
In other words, the joint probability distribution function of fxt�i; . . . ; xt; . . . ; xtþig is

independent of t for all i. This implies, of course, that the mean and variance are fixed
throughout time if the variance is bounded:

E Xtð Þ ¼ �; 8t ¼ 1; . . . ;T

Var Xtð Þ ¼ �2; 8t ¼ 1; . . . ;T :

Similarly, autocovariances and autocorrelations are given by:

�i ¼
Cov Xt�i;Xtð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var Xtð ÞVar Xt�ið Þp ¼ &i

&0

and are only dependent on i—not t.
If we only assume that the first two moments are fixed, the process is said to be weakly

stationary. A stochastic process is said to be covariance stationary if neither its mean nor
autocovariances depend on time.

Definition A.7 (Covariance stationary) A sequence of RVs, Xt, are covariance
stationary if:

EðXtÞ ¼ � <1; 8 t
VarðXtÞ ¼ �2 <1; 8 t

CovðXt;Xt�iÞ ¼ &i <1; 8 t; i:
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A.5.3 White noise

An important example of a stationary process is white noise, which is described in
Definition A.8.

Definition A.8 (White noise) A sequence of RVs, Xt, that have zero mean, constant
variance and zero autocovariance at all lags, that is:

EðXtÞ ¼ 0

VarðXtÞ ¼ �2

CovðXt;XsÞ ¼ 0 8t 6¼ s:

If X � Nð0; �2Þ, then the process is known as Gaussian white noise. Moreover, if a
variable is white noise, its autocorrelations, �i, are asymptotically independent and
follow �i � Nð0;T�1Þ.

A.6 SIMPLE TIME SERIES MODELS

A common way to model predictability is by making use of the ARMA family of models.
These models are relevant to stationary time series and are some of the most frequently
applied models in financial time series analysis.

A.6.1 The moving average model

A first-order moving average MA(1) model is constructed as:

Xt ¼ �þ �t þ ��t�1

where the shocks �t are IID. More generally, the MA(L1) model is:

Xt ¼ �þ �t þ �1�t�1 þ � � � þ �L1
�t�L1

:

If the noise is �t � Nð0; �2Þ for all t ¼ 1; . . . ;T , it is easy to show for the MA(1) that:

EðXtÞ ¼ �

VarðXtÞ ¼ ð1þ �2Þ�2

&1 ¼ ��2

&k ¼ 0; k � 2:

This property is shown in Figure A.8 where we simulate a MA(1) process where � ¼ 0:8.
As expected, we find no significant autocorrelation after lag 1. Moreover, MA(L1)
models are always stationary.
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A.6.2 The autoregressive model

A first-order autoregressive AR(1) process is generated by:

Xt ¼ �þ �Xt�1 þ �t

where the shocks �t are IID. In general, the AR(L2) model is given by:

Xt ¼ �þ �1Xt�1 þ �2Xt�2 þ � � � þ �L2
Xt�L2

þ �t:

The AR(1) model has the following properties, when �t � Nð0; �2Þ:

VarðXtÞ ¼
�2

1� �2

&i ¼ �i
�2

1� �2

�i ¼ �i:

Clearly, for variance to be finite we must have j�j < 1; this is the condition for
stationarity in the AR(1) model which also ensures that autocorrelations of a stationary
AR(1) process decline geometrically. An example of an AR(1) process and its ACF is
shown in Figure A.9.
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(a) Simulated MA(1) process: � ¼ 0:8 (b) ACF of the MA(1) process
with �5% confidence bounds

Figure A.8. Simulated MA(1) process and its ACF.

(a) Simulated AR(1) process: � ¼ 0:8 (b) ACF of the AR(1) process
with �5% confidence bounds

Figure A.9. Simulated AR(1) process and its ACF.



A.6.3 ARMA model

Putting the moving average and autoregressive models together yields the ARMA
(autoregressive moving average) model. The ARMA(1,1) model is written as:

Xt ¼ �þ �Xt�1 þ �t þ ��t�1:

In general, the ARMA(L2;L1) model is:

Xt ¼ �þ �1Xt�1 þ � � � þ �L2
Xt�L2

þ �t þ �1�t�1 þ � � � þ �L1
�t�L1

:

The condition for an ARMA series to be stationary is the same as for the AR series; the
ACF of an ARMA(1,1) model behaves in a similar way to the AR(1) model.

A.6.4 Random walk

The random walk is a special case of the AR(1) model and can be obtained when � ¼ 1
and � ¼ 0, so:

Xt ¼ Xt�1 þ �t:

The random walk suggests that the optimal forecast of the level at tþ 1 is given by the
observed level at t.

When � ¼ 1 the situation is quite different than when � < 1, since Xt retains the entire
history of the process in the former case while in the latter case history is progressively
downweighted. This means that over time the random walk does not settle down around
some long-term mean but, instead, can take any value. The random walk model is a
common model for prices of financial assets.

The random walk can be rewritten in terms of lagged disturbances to give:

Xt ¼ X0 þ
Xt
i¼1

�i ðA:7Þ

where X0 is the starting value of the process. From (A.7), VarðXtÞ ¼ �2t and, hence, the
process is nonstationary. If the process is infinitely long, any outcome is equally likely.
This is sometimes called a unit root process.

Figure A.10 shows 1,000 realizations from both a random walk model and a
stationary AR(1) model. The same random shocks were used in both cases. Both figures
have the same scale.

A.7 STATISTICAL HYPOTHESIS TESTING

Statistical testing is a method for making decisions using observed data. If something is
said to be statistically significant it is unlikely to have happened by chance. We often use
the phrase significance testing to refer to statistical testing.

Generally, a test produces a test statistic with an assumed distribution, often the
normal, chi-squared or Student-t. Many test statistics only have this distribution
asymptotically, perhaps relying on a central limit theorem. In most cases, we compare
the significance of a test statistic by its p-value.
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A.7.1 Central limit theorem

A fundamental result in probability is the central limit theorem (CLT) which states that
the mean of a sufficiently large number of IID random variables will be approximately
normally distributed.
Suppose we have a sequence of independent and identically distributed random

variables X1; . . . ;XT ; with finite expectation � and variance �2. For any T consider
the mean of the first T terms of the sequence


XXT ¼ X1 þ � � � þ XT

T
:

Then, the sequence ð 
XXT � �Þ=ð�= ffiffiffiffi
T

p Þ converges in distribution to the standard normal
distribution. That is,

lim
T!1

Pr

XXT � �

�=
ffiffiffiffi
T

p
( )

¼ �ðxÞ

for all x 2 ð�1;1Þ.
This result is particularly useful in determining the distribution of estimators. It does

depend on the sample being sufficiently large and, for many finite samples, only holds
approximately, with the approximation error increasing as the sample size decreases.
The central limit theorem only applies to the sum or mean of observations, but in risk

modeling the mean is usually of little interest and, for any risk measures such as VaR or
volatility, the CLT no longer applies and the resulting distribution is not necessarily the
normal.

A.7.2 p-values

The p-value is the probability of obtaining a test statistic at least as extreme as the one
observed, assuming that the null hypothesis is true. The lower the p-value, the less likely
it is that the null hypothesis is true and, consequently, the less significant the result is. It is
common to reject the null if the p-value is less than 0.05 or 0.01.
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(a) AR(1) (b) Random walk

Figure A.10. Simulation of an AR(1) with � ¼ 0:9 and a random walk process.



For example, we see many cases of a �2-distributed test statistic in this book. Figure
A.11 shows the density and distribution for a �2

ð1Þ and �2
ð3Þ, identifying both the 5%

probability and quantile. Taking the �2
ð1Þ as an example, we reject at the 5% level if the

test statistic exceeds 3.8. The p-value is the probability associated with the test statistic.
It is easy to calculate the p-value in R and Matlab. Let us suppose the test statistic is

from a �2
ð1Þ and has a value of 5. We can then calculate the p-value as 2.5% in R with

1-pchisq(5,1) and 1-chi2cdf(5,1) in Matlab.

A.7.3 Type 1 and type 2 errors and the power of the test

Type 1 error is the error of rejecting a true null hypothesis, while type 2 error is the error
of failing to reject a null hypothesis when it is in fact not true.

The power of a test is the probability that the test will reject a false null hypothesis
(i.e., not making a type 2 error). As power increases, the chance of a type 2 error
decreases. Power analysis is often used to calculate the minimum sample size required
to accept the outcome of a statistical test with a particular level of confidence.

A.7.4 Testing for normality

We frequently need to test whether a particular sample corresponds to a particular
distribution, perhaps the normal distribution. The two most common tests for distribu-
tions are the Jarque–Bera (JB) test and the Kolmogorov–Smirnov (KS) test. The former
applies only to the normal distribution, while the latter test can be applied to almost any
distribution.

If a dataset is normally distributed, then skewness and excess kurtosis are equal to
zero. In particular, they have the following distributions:

Skewness � N 0;
6

T

� �
; Kurtosis � N 3;

24

T

� �
:

214 Appendix A: Financial time series

(a) Density (b) Distribution

Figure A.11. Chi-squared distribution with degrees of freedom 1 and 3, with the 5% probability

and corresponding quantiles indicated.



We can use this result to form the JB test for normality:

T

6
Skewness2 þ T

24
ðKurtosis� 3Þ2 � �2ð2Þ:

The other common test for normality is the KS test. This tries to determine if two
datasets differ significantly by comparing sample data with an underlying distribution
such as the normal.
The KS test has the advantage of making no assumptions about the distribution of

data. Technically speaking, it is nonparametric and distribution free. More generally,
the KS test can also be used to test against other distributions and samples.

A.7.5 Graphical methods: QQ plots

QQ plots are used to assess whether a dataset has a particular distribution or whether
two datasets have the same distribution. The QQ plot compares the quantiles of a
sample dataset against the quantiles of a reference distribution for a single dataset.
To make a normal QQ plot, we take the lowest observation in a data sample x (i.e.,

xð1Þ). If we sort the vector x from the smallest to largest observation, then the smallest
observation is indicated by xð1Þ, etc. such that xð1Þ 
 xð2Þ 
 � � � 
 xðTÞ.
The empirical cumulative probability of an observation is 1=T . On a graph, draw

one point at coordinates F�1ð1=TÞ; x1
� �

and a second point at F�1ð2=TÞ; xð2Þ
� �

,
and so on. Now superimpose on this a line with the following coordinates,
F�1ðt=TÞ;F�1ðt=TÞ� �

; t ¼ 1; . . . ;T . This is a QQ plot. Examples of QQ plots are given
in Figure 1.8.
An S-shaped QQ plot implies that one distribution has longer tails than the other

because the value for a given quantile is more extreme. A U-shaped QQ plot means that
one distribution is skewed relative to the other. There are no restrictions as to the choice
of reference distribution in a QQ plot.

A.7.6 Testing for autocorrelation

If we have the following model for X:

Xt ¼ �þ
XN
i¼1

�iXt�i þ �t

where � is some mean; and �t is a Gaussian white noise process, then it can be shown
that:

�̂i�i � Nð0;T�1Þ:
This result is used to construct autocorrelation tests. Given the null hypothesis
H0 : �i ¼ 0, a standard normal test statistic, Z, could be derived:

Z ¼
ffiffiffiffi
T

p
�̂�i � Nð0; 1Þ:

It should be emphasized that this result only holds asymptotically. In finite samples, �̂i�i is
negatively biased as deviations from the sample mean must sum to zero by construction;
hence, positive deviations must be followed by negative deviations on average. The
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bias is of the order of 1=T ; therefore, this effect can be significant for small sample
sizes.

We can use these results to derive a common test for autocorrelations: the Ljung–Box
(LB) test. The LB test is based on the autocorrelation plot and tests overall randomness
based on a number of lags, instead of testing randomness at each lag separately.

Let us refer to the LB test statistic by JN , where N is the number of lags. It is defined
by:

JN ¼ N
XN
i¼1

�̂�2i � �2
ðNÞ:

This test is designed to detect departures from zero correlations in either direction and at
all lags; therefore, it has considerable power against a broad range of alternative
hypotheses. However, selection of the number of autocorrelations N merits careful
thought.

A.7.7 Engle LM test for volatility clusters

Engle (1982) proposed a test for volatility clusters in an ARCH model, where the null
hypothesis is that the conditional volatilities are constant. Starting with the distribution
of returns:

Yt ¼ �tZt; Zt � N 0; 1ð Þ:
The test proposed by Engle is a Lagrange multiplier (LM) test known as the ARCH LM
test. Let us regress the squared returns of Y2

t on N lags of itself:

Y2
t ¼ �0 þ �1Y

2
t�1 þ � � � þ �NY

2
t�N þ �t ðA:9Þ

then under null hypothesis there is no predictability in volatility:

H0 : �1 ¼ �2 ¼ � � � ¼ �N ¼ 0

and the test statistic is:

J0 ¼ TR2 � �2
N

where R2 is the estimate of the fit of (A.9). The larger the volatility clusters, the more of
the residuals are picked up by the model, and hence the larger the J0. This test has the
advantage that robust standard errors can be used to test the above null hypothesis,
whereas the Ljung–Box test is based on the assumption that the process is identically
and independently distributed (IID), which is generally not realistic.
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R is a freely available popular language for statistical and mathematical analysis
(RDCT, 2009) and can be downloaded from the R Project for Statistical Computing
at http://www.r-project.org/. It is a descendant of an earlier language called
SPlus, still available commercially. R has become the language of choice for many
econometricians and statisticians, not only because it is free, but more importantly
because of the availability of many high-quality libraries for specialized calculations.
R is a language that allows the user to write programs tailored to specific needs and

has many functions for statistical analysis and excellent graphing capabilities. Indeed,
most of the plots and numerical output in this book have been produced using R.
It comes with a series of default packages. A package is just a collection of functions,

often used for particular tasks; there are hundreds of free user-contributed packages that
are available on the R website, many of a very high quality. To install a package
(e.g., copulas), use the command install.package(copulas) or use the GUI.
Packages only need to be installed once. To load a package, type library(copulas)
or use the GUI. Given the number of packages on offer, many with overlapping
functionality, there is sometimes no easy way to determine which package is the best;
we should experiment with different packages or alternatively check online for other
users’ experiences.
There are a large number of books written about R. Dalgaard (2002) is an elementary-

level introduction to R while Crawley (2007) is a comprehensive book dealing with a
wide variety of statistical methods. Murrell (2006) is for those who want to know more
about R’s graphing facilities, and Adler (2010) gives a good up-to-date overview. Plenty
of guides are also freely available online.
R has a comprehensive set of documentation built in. To learn about the plot

function, for example, type ?plot or help(plot) and the relevant help file will
appear. In the following, we focus on those R commands that are the most relevant
for this book.

B.1 INPUTTING DATA

R stores variables, data, functions and results as objects, then performs operations on
these objects. To create a variable (an object in R terminology) we can use Listing B.1.

Listing B.1. Variables

x = 10 # assigns 10 to x

x # prints contents on x on the screen

10 # the output
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The character # is used to add comments and R ignores what comes after it.
In R there are several ways of inputting data. For portfolios it is important that data

are input as a vector or matrix with the correct dimensions. For small sample sizes, we
can use the concatenate, c(), function. The dim() function returns the dimension of an
object if it is a vector or a matrix, and NULL otherwise.

Listing B.2. Vectors

y = c(1,3,5,7,9)

y

1 3 5 7 9

y[3]

5

dim(y)

NULL # since it’s not a matrix

length(y)

[1] 5

If we want to create a matrix, we need to use the matrix() function. Inputs are data as
well as the number of rows and columns.

Listing B.3. Matrices

y = matrix(nrow = 2,ncol = 3) # defining a matrix with 2 rows and 3

columns

y # nothing has been assigned

[,1] [,2] [,3]

[1,] NA NA NA

[2,] NA NA NA

dim(y)

2 3

y = matrix(c(1,2,3),3,1) # create a column matrix with elements

1,2,3

If we need to create a sequence of numbers, the seq() function is useful.

Listing B.4. Sequences

seq(1:10)

[1] 1 2 3 4 5 6 7 8 9 10

seq(from = 1, to = 10, by = 2)

[1] 1 3 5 7 9

seq(from = 1, to = 10, length = 5)

[1] 1.00 3.25 5.50 7.75 10.00
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Data, saved as a tab-delimited text file or a comma-separated value (CSV) file, can be
imported directly into R as a dataframe by using the functions in Listing B.5.

Listing B.5. Import CSV data

mydata = read.table("data.txt")

mydata = read.csv("data.csv")

The optional argument header=TRUE tells R that the first row of the file contains the
variable names, and the optional sep argument specifies the field separator character.
The default for read.table is ‘‘white space’’ (i.e., one or more spaces, tabs, new lines
or carriage returns). For a .csv the default is sep=",".
Alternatively, we can use the scan() function, which also imports data as a

matrix.

Listing B.6. Import data with scan and matrix

mydata = matrix(scan(file = "data.dat"),byrow = TRUE,ncol = 3)

Finally, we can download prices from a website like finance.yahoo.com and use
the function get.hist.quote() from the tseries library. We then convert the
prices into returns and plot the returns. By default, get.hist.quote() returns a
four-column matrix with open and closing prices, as well as the price high and low.
To get adjusted closing prices we need to include quote="AdjClose" in the
get.hist.quote() statement. Note that prices and returns are represented as a
time series object, and we may need to convert them into regular matrices by
coredata().

Listing B.7. Download S&P 500 data in R

library("tseries") # load the tseries library

price = get.hist.quote(instrument = "^gspc", start = "2000-01-01",

quote="AdjClose") # download the prices, from January 1, 2000

until today

y = diff(log(price)) # convert the prices into returns

y = coredata(y)

plot(y) # plot the returns

B.2 SIMPLE OPERATIONS

There are three main types of operators in R (summarized in Table B.1).
The functions in R for manipulating data are too numerous to be listed, but we

present some of them in Listing B.8.

Appendix B: An introduction to R 219



Listing B.8. Basic data manipulation

sum(y) # sum of elements of y

prod(y) # product of elements of y

max(y) # maximum

min(y) # minimum

range(y) # return minimum and maximum

length(y) # number of elements of y

mean(y) # arithmetic mean

median(y) # median

var(y) # variance

cov(y) # covariance matrix

cor(y) # correlation matrix

sort(y) # sort y in increasing or decreasing order

log(y) # natural logarithm

na.omit(y) # omit missing data NA

unique(y) # remove duplicate elements of y

To calculate skewness and kurtosis, we first need to load the package moments (see
Listing B.9).

Listing B.9. Higher moments

mean(y)

var(y)

sd(y) # standard error

library(moments)

skewness(y)

kurtosis(y)

B.2.1 Matrix computation

When dealing with portfolios, we often need matrices. R has special facilities for matrix
calculations. To perform matrix multiplications, we need to enclose the * between %
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Arithmetic Comparison Logical

+ Addition < Lesser than ! x Logical NOT

- Subtraction > Greater than x & y Logical AND

* Multiplication <= Lesser or equal x j y Logical OR

/ Division >= Greater or equal x || y Identical

^ Power == Exactly equal

%% Modulo != Different



symbols and to ensure matrix dimensions match up by using the t() function to
transpose a matrix if necessary (see Listing B.10).

Listing B.10. Matrix multiplication

z = matrix(c(1,2,3,4),2,2) # 2 by 2 matrix

x = matrix(c(1,2),1,2) # 1 by 2 row matrix

z %*% x

Error in z %*% x : non-conformable arguments

# dimensions of the matrices do not

match

z %*% t(x)

[,1]

[1,] 7

[2,] 10

Other useful functions include rbind() and cbind(), which bind matrices along rows
or columns, respectively. The function diag() can be used to extract or modify the
diagonal of a matrix or to build a diagonal matrix. solve() computes the inverse of a
matrix and eigen() returns both eigenvalues and eigenvectors.

Listing B.11. Matrix manipulation

m1 = matrix(c(1,2,3,4),2,2)

m2 = matrix(1,nrow = 2,ncol = 2)

rbind(m1,m2)

[,1] [,2]

[1,] 1 3

[2,] 2 4

[3,] 1 1

[4,] 1 1

cbind(m1,m2)

[,1] [,2] [,3] [,4]

[1,] 1 3 1 1

[2,] 2 4 1 1

diag(m1)

[1] 1 4

diag(2)

[,1] [,2]

[1,] 1 0

[2,] 0 1

solve(m1)

[,1] [,2]

[1,] -2 1.5

[2,] 1 -0.5
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eigen(m1)

$values

[1] 5.3722813 -0.3722813

$vectors

[,1] [,2]

[1,] -0.5657675 -0.9093767

[2,] -0.8245648 0.4159736

B.3 DISTRIBUTIONS

An abundance of distributions are already programmed into R, albeit we may need to
load different packages to access some multivariate distributions. For each distribution,
there are usually four functions. We can generate random numbers from that distribu-
tion, obtain the density and probability function for given quantiles, and get the quantile
for given probabilities. The four functions are demonstrated in Listing B.12 for the
normal distribution.

Listing B.12. Distribution functions

q = seq(from = �3,to = �3,length = 300) # specify a set of

quantiles

p = seq(from = 0.01,to = 0.99,length = 300) # specify a set of

probabilities

rnorm(100, mean = 0, sd = 1) # generate 100 random

numbers from the

standard normal

pnorm(q, mean = 0, sd = 1) # obtain the CDF for

given quantiles

dnorm(q, mean = 0, sd = 1) # obtain the PDF for

given quantiles

qnorm(p, mean = 0, sd = 1) # obtain the quantile

values for given

probabilities

We demonstrate in Listing B.13 the random data generation functions for other
common distributions that do not require additional packages. Replace the letter r
with d, p or q to get the counterpart functions.

Listing B.13. Common distributions

S=10 # number of simulations

df=3 # degees of freedom

rt(S,df) # Student-t

rlnorm(S) # log-normal
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runif(S,min=0,max=1) # uniform

rchisq(S,df) # chi-squared

rbinom(S,size=4,prob=0.1) # binomial

rpois(S,lambda=0.1) # Poisson

rexp(S,rate=1) # exponential

rgamma(S,shape=2,scale=1) # gamma

rweibull(S,shape=2,scale=1) # Weibull

rcauchy(S,location=0,scale=1) # Cauchy

For multivariate distributions and some others, we need to download external packages.
Sometimes, there are more than one package that offer the same function, and we
present in Listing B.14 the ones that have been used in this book.

Listing B.14. Other distributions

library(MASS)

mu = c(1,1) # mean

Sigma = matrix(c(1, 0.5, 0.5, 2),ncol=2) # covariance matrix

mvrnorm(S,mu,Sigma) # multivariate normal

library(mvtnorm)

rmvt(S,Sigma,df) # multivariate Student-t

library(Rlab)

rbern(S, prob=0.4) # Bernoulli

library(evir)

rgev(S, xi=1, mu=0, sigma=1) # generalized extreme value

rgpd(S, xi=2, mu=0, beta=1) # generalized Pareto

distribution

Section 5.3.3 shows how we can use maximum likelihood to estimate the parameters of
the Student-t, and similar functions can also be used to estimate the parameters of most
common distributions.

B.3.1 Normality tests

To test for normality we can, for example, use the Jarque–Bera test or draw a QQ plot
with the normal as the reference distribution. The Jarque–Bera test returns the test
statistic, the p-value and the alternative hypothesis.

Listing B.15. Testing for normality

library(moments)

jarque.bera.test(y)

Jarque-Bera Normality Test

data: y

Appendix B: An introduction to R 223



JB = 339444.9, p-value < 2.2e-16

library(car)

qq.plot(y, distribution = "norm",mean = 0,sd = 1) # normal QQ

qq.plot(y, distribution = "t",df = 3) # Student-t3 QQ

plot

Different software or even different subroutines within the same software package may
present a QQ plot in different ways. For example, the normal distribution may be on the
x-axis or the y-axis, it may be standardized or have the same variance as the data. While
sometimes confusing, this is not a serious concern.

B.4 TIME SERIES

With time series data, we are often interested in the autocorrelation and partial
autocorrelation of the data. We can also easily implement the Box–Ljung test, which
returns the value of the statistic, degrees of freedom and the p-value of the test.

Listing B.16. ACF

library(stats)

acf(y, lag.max = 20, plot = TRUE) # plot the ACF up to 20 lags

acf(y, lag.max = 20, type = "partial", plot = TRUE)

# plot the partial ACF up

to 20 lags

pacf(y, lag.max = 20, plot = TRUE) # another way to calculate

the PACF

Box.test(y,lag = 20,type = "Ljung-Box") # Box-Ljung test

X-squared = 142.3885, df = 20, p-value < 2.2e-16

After conducting exploratory data analysis, we might want to fit an AR, MA or ARMA
model to the data. R has a built-in function arima() that can help. Estimated
parameters along with their standard errors are returned.

Listing B.17. ARMA models

arima(y, order = c(1, 0, 0),include.mean = TRUE)

# fits an AR(1) with a mean term

arima(y, order = c(0, 0, 1),include.mean = FALSE)

# fits a MA(1) without a mean term

arima(y, order = c(1, 0, 1),include.mean = TRUE)

# fits an ARMA(1,1), output shown
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Call:

arima(x = y, order = c(1, 0, 1), include.mean = TRUE)

Coefficients:

ar1 ma1 intercept

-0.4580 0.5002 2e-04

s.e. 0.0775 0.0754 1e-04

sigma^2 estimated as 0.0001349: log-likelihood = 64926.08,

aic = -129844.2

It is also possible to simulate data from a time series model by using the function
arima.sim().

Listing B.18. Simulate ARMA

x = arima.sim(list(order = c(1,0,0),ar = 0.8),n = 10)

# simulate 10 data points from an AR(1) with parameter 0.8

Time Series:

Start = 1

End = 10

Frequency = 1

[1] -0.3457084 1.6319438 -1.1513445 -1.2760566 0.1160679

0.5026084 1.4810065 0.8608933 -0.3298654 1.3049195

x1 = arima.sim(list(order = c(2,0,2), ar = c(0.9, -0.5),

ma = c(-0.2, 0.2)),n = 300)

# simulate 300 data values from an ARMA(2,2) model

B.5 WRITING FUNCTIONS IN R

One advantage R has over many other software packages is its flexibility to program
specialized functions. Typically, a function is useful when we want to repeat the same
task(s) many times. The input that a function takes are known as arguments. The syntax
for writing a function is: function(arg1,arg2..){body}.
It is best demonstrated by an example. We write a simple function for calculating

excess kurtosis in Listing B.19.

Listing B.19. A simple function

mykurtosis = function(x) {

m4 = mean((x � mean(x))^4)

kurt = m4/(sd(x)^4)-3

kurt
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}

mykurtosis(y)

[1] 7.40799

This simple function only takes one argument x which is a vector of observations. It is
generally good practice to write each statement in the body on a separate line, which
makes for easier editing. We can also assign default values to arguments in a function
such that the function will calculate using the default value if an argument has no value.

Listing B.20. Programming kurtosis

mykurtosis1 = function(x,excess=3) {

m4 = mean((x � mean(x))^4)

kurt = m4/(sd(x)^4)-excess

kurt

}

mykurtosis1(y)

[1] 7.40799

mykurtosis1(y,0)

[1] 10.40799

The excess argument here takes on a default value of 3. Executing this function without
specifying the excess produces the same output as before. Default values can be numeric
or consist of a character string such as ‘‘norm’’, in which case quotation marks are
required or there needs to be a logical value such as TRUE or FALSE. The order in which
we input the arguments is not important if the names of the arguments are used.

Note that customized functions must be loaded into R’s memory to be executed. One
can either type the functions directly into R or save them as a text file with the extension
.r and use the command source() to run it. We can either use the built-in editor in R
or any other text editor.

B.5.1 Loops and repeats

Although it is good programming practice to avoid loops wherever possible, from time
to time it will be unavoidable to repeat some procedures. The main idea in loops is that
we assign an index, perhaps i, to take on a sequence of values; a set of commands are
executed with each different value of i. A simple for loop is shown in Listing B.21.

Listing B.21. A for loop

x = rnorm(5) # generate 5 random numbers

z = numeric(length(x)) # create vector the same length as x

for (i in 1:length(x)){

z[i] = x[i] + 0.5

}
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Each element in vector y is the sum of the corresponding element in vector x and 0.5.
The loop runs until i reaches five. As with functions, several instructions can be
executed if they are placed within curly brackets.
It is common to see if statements such as:

if (some condition is met) do something

The statement if...else.. allows us to further specify commands to be executed
whenever the condition in if is not met. This is illustrated in Listing B.22.

Listing B.22. An if–else loop

a = 10

if (a %% 3 == 0) {

print("a is a multiple of 3")

}

else {

print("a is not a multiple of 3")

}

Another statement used in loops is while, the syntax is similar to if but the index
value needs to change inside the loop.

Listing B.23. A while loop

a = 1

n = 1

while (a < 100){

a = a * n

n = n + 1

}

However, some loops can be easily avoided by using logical subscripts. We present an
example in Listing B.24 where we want to replace all the negative values in a vector by
zero.

Listing B.24. Loop avoidance

x = rnorm(5) # using a loop

for (i in 1:length(x)) if(x[i] < 0) x[i] = 0 # avoiding a loop

x[x < 0] = 0

There are other functions—such as apply, sapply, lapply—that provide ways to
avoid using loops.
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B.6 MAXIMUM LIKELIHOOD ESTIMATION

R is well suited for programming likelihood functions. There are two steps involved in
the estimation process. First, we write the log-likelihood function for general terms and,
then, we optimize the log-likelihood function, given a particular dataset. It is more
common to minimize the negative of the log-likelihood value, and this yields the same
answer as maximizing the log-likelihood. There are several different commands for
optimization, we focus on nlm() here. Others include optim(), constrOptim(),
etc. To illustrate how optimization works, we first program the normal log-likelihood
function and then estimate the mean and variance of simulated data using ML.

Listing B.25. Normal likelihood function

norm_loglik = function(theta,x){

n = length(x)

mu = theta[1]

sigma2 = theta[2]^2

loglike = �0.5 * n * log(sigma2) � 0.5 * (sum((x � mu)^2/sigma2))

return(-loglike)

}

In Listing B.25 theta is a vector containing the mean and the standard deviation.
We set the sample size, specify the log-likelihood function and ensure R returns the
negative of this function. In Listing B.26 we simulate IID data from a normal distribu-
tion with mean 3 and standard deviation 2. The nlm() function requires us to specify
the starting values for optimization; we set them equal to the median and half the
interquartile range of the data. By setting hessian=TRUE, R will return the hessian
matrix evaluated at the optimum, and hence we can obtain the information matrix.
iterlim allows us to set the maximum number of iterations to be performed before the
program is terminated.

Listing B.26. Maximum likelihood example

x = rnorm(100,mean = 3,sd = 2)

theta.start = c(median(x),IQR(x)/2) # starting values

out = nlm(norm_loglik,theta.start,x=x,hessian=TRUE,iterlim=100)

out

$minimum # log-likelihood value at

optimum

[1] 115.8623

$estimate # MLE estimates

[1] 3.130798 -1.932131

$gradient # gradient at optimum

[1] -2.414775e�06 9.414420e�07
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$hessian

[,1] [,2]

[1,] 26.787168484 0.004294851

[2,] 0.004294851 53.588122739

$code

[1] 1

$iterations # no. of iterations to

convergence

[1] 16

solve(out$hessian) # information matrix

[,1] [,2]

[1,] 3.733131e�02 -2.991939e-06

[2,] -2.991939e-06 1.866085e-02

B.7 GRAPHICS

R has versatile graphical facilities, where it is possible to make a wide variety of
statistical graphs and build entirely new types of graph. For an overview of what R
can do, we can visit the R graph gallery at http://addictedtor.free.fr/
graphiques/, where the source code for each graph is available to download. All
the graphs in this book were produced with R in eps format.
One of the most frequently used plotting functions in R is the plot() function; it can

produce line graphs, scatterplots, etc. There are many graphical parameters such as
color, style, headings and axes, as well as other formats that we can either customize
inside the plot() command or by using the par() function. If data are arranged in a
matrix, the matplot() function may be useful. Histograms and bar charts can be
produced with the commands hist() and barplot(), respectively.

There are three basic functions that can handle plots of three variables. The
image(x,y,z...) plot draws a grid of rectangles using different colors to represent
the value of z, the contour(x,y,z..) function draws contour lines to represent
different values of z and finally the persp(x,y,z..) plots 3D surfaces. The copula
plots in Figure 1.12 were produced using these functions.
It is easy to control the size of graphs and store them in a format of choice. For

example, the commands given in Listing B.27 will produce an encapsulated postscript
file of a figure that is 5 inches high and 5 inches wide, which can be included in another
document. Other supported devices include pdf(), png(), jpeg(), tiff(),
bitmap().
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Listing B.27. Save plot in R

postscript("file.eps", horizontal=FALSE, onefile=FALSE, height=5,

width=5, pointsize = 10, useKerning = FALSE)

plot(y,type = ’l’)

dev.off()
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Matlab is a powerful software and language for technical computing, it is a state-of-the-
art software for matrix computation—indeed, the name Matlab stands for matrix
laboratory. It is a popular tool in mathematics, statistics, engineering, finance and
economics.
Matlab comes with a comprehensive family of toolboxes, which are collections of

functions that aim to solve particular problems. However, Matlab does not have good
econometric functions built in. Fortunately, a library of Matlab econometric functions
is available called the Econometrics Toolbox for Matlab. It is available from http://
www.spatial-econometrics.com/ and was developed by James P. LeSage (JPL).
Both the manual and source code is available on JPL’s website and we use functions
from this toolbox throughout this book. Other useful free toolboxes for Matlab are the
UCSD GARCH Toolbox and the Oxford MFE Toolbox; the latter was developed by
Kevin Sheppard and is available from http://www.kevinsheppard.com
Matlab has an extensive set of both online and printed documentation. To obtain

more information about a function (e.g., plot), we can type doc plot or help plot
in the command window. There are also plenty of books on Matlab. Hanselman and
Littlefield (2001) is a good introductory guide as is Hahn and Valentine (2007). For
specific applications to finance and risk measurement, Dowd (2002) is written for
students. Comprehensive help, including demos and videos, are also available online
at http://www.mathworks.com/access/helpdesk/help/helpdesk.html

C.1 INPUTTING DATA

Matlab stores information asMatlab variables. If we can’t recall the name of a variable,
the who command prints a list of available variables; if we end an input with a semicolon
the output is suppressed; and the character % is used to denote comments.

Listing C.1. Variables

x = 10;

y = 5;

z = x + y;

who

Your variables are:

ans x y z
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Creating an array or matrix is simple. Commas or spaces are used to separate elements
in a particular row and semicolons are used to separate individual rows. We can also
create a row vector by using a colon. The command size()returns the dimension of
the matrix.

Listing C.2. Arrays

a = 1:5

a =

1 2 3 4 5

b = [1,2,3,4;5,6,7,8]

b =

1 2 3 4

5 6 7 8

size(b)

ans =

2 4

For sequences of data, we can either use two colons or the linspace() command.
logspace() generates logarithmically spaced vectors:

x = first:increment:last
linspace(first_value, last_value, number_of_values)

Listing C.3. Sequences

x = 0:2:10

x =

0 2 4 6 8 10

x = linspace(0, 10, 6)

x =

0 2 4 6 8 10

x = logspace(0,2,4)

x =

1.0000 4.6416 21.5443 100.0000

Data files saved on a hard drive can be imported using the load() command.

Listing C.4. Load files

sp = load(’sp.dat’); % loads file sp.dat into variable sp
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We can download prices from a website like finance.yahoo.com. We can do this by
using the GUI function, FTSTool, from the financial and data feed toolboxes.
However, it may be easier to use the Matlab function urlread() which can
directly read web pages, such as finance.yahoo.com. Several free user-contributed
functions are available to ease the process, such as hist_stock_data().1 When a
website like finance.yahoo.com returns the data they are sorted from the newest
date to the oldest date, so that the first observation is the newest. If we want it
sorted from the oldest to newest, we will have to do it manually by using a sequence
like end:-1:1. Of course, it would be more expedient just to modify the
hist_stock_data() function.

Listing C.5. Download S&P 500 data in Matlab

price = hist_stock_data(’01012000’,’31122000’,’^gspc’);

% download the prices,

from January 1, 2000

until December 31, 2009

y = diff(log(price.Close(end:-1:1))) % convert the prices into

returns

plot(y) % plot the returns

Section 1.2.2 shows how we can download financial data directly into Matlab.

C.2 SIMPLE OPERATIONS

We present some frequently used Matlab commands in Table C.1—most are similar to
their R counterparts.
Note that ‘‘=’’ and ‘‘==’’ are two different things: ‘‘==’’ compares two variables

and returns ones where they are equal and zeros where they are not; ‘‘=’’, on the other
hand, is used to assign the output of an operation to a variable. The basic functions to
calculate sample statistics are given in Listing C.6.
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Table C.1. Basic operators in Matlab

Arithmetic Comparison Logical

+ Addition < Lesser than � Logical NOT

- Subtraction > Greater than & Logical AND

* Multiplication <= Lesser or equal j Logical OR

/ or \ Division >= Greater or equal xor Exclusive OR

^ Power == Equal to

rem Modulo �= Not equal to

1 This function can be obtained directly from the webpage of the Matlab vendor http://www.mathworks.com/
matlabcentral/fileexchange/18458-historical-stock-data-downloader.



Listing C.6. Basic data analysis

% y has already been loaded

length(y) % number of elements in y

sum(y) % sum of elements

prod(y) % product of elements

range(y) % difference between maximum and minimum

mean(y) % mean

median(y) % medium

var(y) % variance

std(y) % standard error

sqrt(var(y)) % another way to get the s.e.

corrcoef(y) % correlation coefficients

skewness(y) % get the skewness

kurtosis(y) % get the kurtosis (NOT excess)

quantile(y,0.01) % returns the quantiles at p

min(y) % minimum value

max(y) % maximum value

sort(y) % sort in ascending or descending order

abs(y) % absolute value

diff(y) % differences between elements

C.2.1 Matrix algebra

Matlab was originally developed to provide an easy-to-use interface to work with
numerical linear algebra computations and offers a range of valuable matrix algebra
functions. Note that matrix algebra is defined only for 2D arrays—not for higher
dimensional arrays.

Matrix addition and subtraction is straightforward. We need to be a bit more careful
with multiplication and division. The commands .* and ./ are used for element-by-
element multiplication and division and not matrix multiplication. Listing C.7 illustrates
matrix calculations.

Listing C.7. Matrix calculations

A = [2,4;7,3]

B = [3,2;1,4]

A .* B

ans =

6 8

7 12

A * B

ans =

10 20

24 26
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C = [1,2]

A * C

??? Error using ==> mtimes

Inner matrix dimensions must agree.

A * C’ % ’ acts as a transpose operator

ans =

10

13

diag(C) % place elements on the main diagonal

ans =

1 0

0 2

eye(3) % produces identity matrices

ans =

1 0 0

0 1 0

0 0 1

We give a brief description of a selection of matrix functions that are useful for solving
linear algebra problems in Listing C.8.

Listing C.8. Useful matrix functions

M = [1 2;3 6] % enter matrix

rank(M) % matrix rank

inv(M) % matrix inverse

det(M) % determinant

eig(M) % vector of eigenvalues

[V,D] = eig(M) % returns eigenvectors and eigenvalues

sqrtm(M) % matrix square root

trace(M) % sum of diagonal elements

null(M) % null space

poly(M) % characteristic polynomial

chol(M) % Cholesky Factorization

C.3 DISTRIBUTIONS

The statistics toolbox in Matlab supports a wide range of distributions. There are three
useful distribution GUIs in the toolbox: disttool leads to a GUI that allows us to see
the influence of parameter changes on the shapes of PDFs and CDFs; dfittool is
an interactive way of fitting a probability distribution to our data; and randtool
generates random samples from specified probability distributions and displays the
samples as histograms. We type these on the command line to access the GUI.
For each supported distribution, there are seven available functions, but we are

primarily interested in five: the PDF and CDF functions end in pdf and cdf, respec-
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tively; the quantile functions end in inv; random numbers end in rnd; and negative log-
likelihood functions end in like. We illustrate the functions for the normal distribution
in Listing C.9.

Listing C.9. Distribution functions

q = 0 % specify quantiles

p = 0.5 % specify probabilities

mu = 1 % mean

sigma = 2 % standard deviation

normpdf(q,mu,sigma) % return density at q

normcdf(q,mu,sigma) % return cumulative prob at q

norminv(p,mu,sigma) % return quantile at p

normrnd(mu,sigma,10,2) % return m by n matrix

normfit(x) % return estimated parameters

We give the random data generation function for other common continuous and
discrete distributions in Listing C.10.

Listing C.10. Common distributions

trnd(df) % Student–t

chi2rnd(df) % chi–squared

unifrnd(A,B) % continuous uniform

lognrnd(mu,sigma) % log normal

exprnd(mu) % exponential

gevrnd(K,sigma,mu) % generalized extreme value

gprnd(K,sigma,theta) % generalized Pareto

binornd(N,P) % binomial

poissrnd(lambda) % Poisson

It is also easy to work with multivariate distributions (Listing C.11). The statistics
toolbox supports multivariate normal and Student-t as well as the main three bivariate
Archimedean copula families: Clayton, Frank and Gumbel (there are others).

Listing C.11. Multivariate distributions

mvnrnd(mu,sigma) % normal

mvtrnd(C,df) % Student-t, C is correlation matrix

% the lines below generate random numbers from

different copulas, rho is correlation matrix, NU

is degrees of freedom, N random vectors returned

copularnd(’Gaussian’,rho,N)

copularnd(’t’,rho,NU,N)

copularnd(’Clayton’,alpha,N)
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C.3.1 Normality tests

There are several hypothesis tests in the statistics toolbox. To test if data conform to
normality, we can make use of either a Jarque–Bera test or a Kolmogorov–Smirnov test.
The command jbtest() using a Jarque–Bera test of the null hypothesis checks
whether the data sample comes from a normal distribution with unknown mean and
variance or not.
The command kstest() uses a Kolmogorov–Smirnov test to compare sample data

with a standard normal distribution—the default distribution. There is an option to
specify the distribution. Default significance in both tests is 5%. Alternatively, a QQ
plot—a simple graphical tool—can be used to compare sample quantiles against
theoretical quantiles from the normal distribution or another set of sample quantiles.

Listing C.12. Testing for normality

% y is the data

alpha = 0.01

[h,p,jbstat,critval] = jbtest(y,alpha)

% alpha is significance level of test

h % returns 1 if the null is rejected and 0 if not

p % returns the p-value

jbstat = 20.0648 % returns the test statistic

critval = 11.5875 % returns critical value of test, if

jbstat > critval, null is rejected

[h,p,ksstat,critval] = kstest(y,[],alpha)

% [] is the option to specify a distribution

h = 1

p = 0

ksstat = 0.4814

critval = 0.1020

qqplot(y) % QQ plot of x against a normal distribution.

qqplot(x,y) % QQ plot of two samples, where vector x must be

present

C.4 TIME SERIES

To analyze the autocorrelation and partial autocorrelation of the data, we can use
the commands sacf and spacf() from the UCSD GARCH toolbox: they plot the
sample (partial) autocorrelations and standard deviation using either heteroskedasticity-
robust standard errors or classic (homoskedastic) standard errors. The command
sacf(data,lags,robust,graph) has four input arguments: data is self-
explanatory; lags indicates the number of autocorrelations to compute; robust is
an optional logical argument which defaults to using robust standard errors; and graph
can be set equal to zero if we do not want a graph plotted. The syntax of the sample
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partial autocorrelation function spacf() is similar. The Box–Ljung test
ljungbox(data,lags) is also supported by the toolbox.
To estimate an AR, MA or ARMA process, we can make use of the command

armaxfilter(), which has many input and output arguments. We need to study
the help file carefully. One of the optional input arguments, startingvals, allows
the user to specify starting values. Simulation of these models is enabled by the function

armaxsimulate(T,ar,ma,const,ARparams,MAparams)

C.5 BASIC PROGRAMMING AND M-FILES

In order to create our own function inMatlab, it has to be in a separate M-file. AnM-file
is a text file with a .m extension. There are two types of M-files: a script M-file and a
function M-file.

A script M-file is just a collection of Matlab statements that are executed by running
the script, instead of being typed directly into the command window. This is done by
typing the file name (i.e., the part before the .m) in the command window. An example is
given in Listing C.13.

Listing C.13. A script M-file

a = randn(10);

b = a * 5 + 2;

plot(b)

We save this as ‘‘myscript.m’’ in the current directory. This script is run if myscript is
typed in the command window. If we wish to edit, or add a statement to, the script, we
simply type edit myscript in the command window and Matlab will open the text
editor.

A functionM-file is similar to a script M-file in that it also has a .m extension and is an
external text file created using a text editor. We illustrate this in Listing C.14 by writing a
simple function to calculate kurtosis.

Listing C.14. A function M-file

function k = mykurtosis(x)

% PURPOSE: simple function to calculate kurtosis

% RETURNS: excess kurtosis of input data

m4 = mean((x - mean(x)).^4);

k = m4/std(x)^4 - 3

end

A function M-file’s name needs to match that of the function created. In Listing C.14
this should be saved as ‘‘mykurtosis.m’’. The first line of a function M-file defines it as a
function, specifies the function name and defines the input and output variables.
The following comments are displayed if the user calls help mykurtosis or doc
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mykurtosis. We then program the function. Note that no end command is needed
here, the function terminates after the last statement is executed. If the M-file has more
than one function, an end is needed after each one.
To call this function, we need to ensure that the directory in which this M-file is saved

is in Matlab’s search path.2 Listing C.15 shows what we then need to type in the
command window.

Listing C.15. Calling a function M-file

mykurtosis(y)

k = 1.3502

The function can be called within a script M-file. We can modify the kurtosis
function by adding more input and output arguments. The number of input and output
arguments used in a function can be determined by the functions nargin and
nargout. Listing C.16 illustrates the use of nargin, which is also used to assign
default values to input arguments.

Listing C.16. Kurtosis function

function k = mykurtosis1(x,a)

% PURPOSE: simple function to calculate kurtosis

% RETURNS: default: excess kurtosis

if nargin == 1

a = 3;

end

m4 = mean((x - mean(x)).^4);

k = m4/std(x)^4 - a

If the user only specifies the data x, the default value of the a argument is set to
three. Notice that, unlike R, the order in which we input the function arguments is
important.

C.5.1 Loops

Matlab can easily handle programming tasks such as loops and conditional statements.
We start with the for loop where we assign an index i to take on a sequence of values;
the same set of commands are executed for each unique value of i. An example is given
in Listing C.17.
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Listing C.17. A for loop

x = randn(1,5);

z = NaN(1,5); % allocate output vector

for i=1:5

z(i) = x(i) + 0.5;

end

At each iteration, i is assigned to the next column of row vectors x and y. After i=5, the
for loop terminates. To minimize the amount of memory allocation, we should pre-
assign an empty vector to hold the result of each iteration. Note that the for loop
cannot be terminated between for and end by assigning the index i to be 5, but we
could use break.

Each i denotes a different column, x or z, which needs to be created with the right
dimensions. It is of course possible to have nested for loops (i.e., a loop within a loop),
in which case two end commands are required to terminate the loops.

The most frequently used loops involve the if statement, which executes a set of
commands when a particular condition is satisfied. Adding an else argument enables
the decision-making process to be more sophisticated. We provide an example in
Listing C.18 in which statements are used to decide whether 3 is a factor of a given
number.

Listing C.18. An if–else loop

a = 10;

if (rem(a,3)) == 0

disp(’a is a multiple of 3’)

else

disp(’a is not a multiple of 3’)

end

When there are three or more alternatives, we can use the command elseif
(condition) followed by the procedures to be carried out if the condition is true.
For each if, an end is required to terminate the loop. The if..else..end loop can
be embedded within for and while loops. It is good practice to use indents when
programming complex loops to make sure we break out of each loop at the appropriate
time.

A while loop executes a set of commands when some condition is fulfilled. An
example is provided in Listing C.19. A feature of the while loop is that the index
variable changes inside the loop.

240 Appendix C: An introduction to Matlab



Listing C.19. A while loop

a = 1;

n = 1;

while a < 100

a = a * n;

n = n + 1;

end

If the condition after the while command is an array rather than a scalar, then
all elements of the array need to be true for the loop to continue. If you wish the
loop to continue when any element is true, use the function any—that is,
while any(a < 100) where a is an array.

A switch case loop evaluates a set of statements based on the value of a variable.
Listing C.20 demonstrates a simple example of the use of switch case.

Listing C.20. A switch case loop

x = 30;

units=’kg’;

switch units

case{’kilograms’,’kg’}

y = x * 1000;

case{’grams’,’g’}

y = x;

case{’ounce’,’oz’}

y = x * 28.35;

case{’pounds’,’lb’}

y = x * 453.6;

otherwise

disp([’Unknown Units:’ units])

y = NaN;

end

This implementation allows evaluation of at most one set of commands. If the first case
statement is satisfied, then the commands following it are executed and the remaining
statements skipped. If the first comparison is not satisfied, then and only then will the
second case be considered, and so on.
Generally, loops are slow and not examples of efficient programming. They should be

avoided if possible and whenever there is an equivalent approach—usually involving
matrices that are orders of magnitude faster. The difference in the two approaches is
highlighted in Listing C.21. We want to calculate

P1000
i¼1 aibi.
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Listing C.21. Loop avoidance

a = 1:1000

b = 1000 - a

% using loops we have:

ssum = 0;

for i = 1:1000

ssum = ssum + a(i) * b(i);

end

% using matrices:

ssum = a * b’

C.6 MAXIMUM LIKELIHOOD

In maximum likelihood (ML) estimation, we need to write the likelihood function.
To illustrate how Matlab can be used to do this, we maximize the likelihood function
for IID normal observations. In this case only the mean and variance need to be
estimated. We first simulate data from a normal distribution and then ask Matlab to
maximize the likelihood function.

Listing C.22. Maximum likelihood estimation

randn(’seed’,1); % set the seed so we always get same RNs

N = 100; % number of observations

x = randn(N,1) * 2+3; % mean 3, sd 2

theta0 = [-2, 5]; % starting values

global x; % share x with likfunc

[theta, likelihood_value] = fminunc(@likfunc, theta0)

theta = 2.8082 1.9366

likelihood_value = 116.0928

The function fminunc ascertains the minimum of an unconstrained function from
starting values. Various outputs are possible including the Hessian, the number of
iterations required for convergence, etc. We can set the maximum number of
iterations using the MaxIter option. The likelihood function is specified in a separate
M-file.

Listing C.23. Normal log-likelihood

function loglik = likfunc(theta)

% Normal log-likelihood function

global x;

T = length(x);

mu = theta(1);
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sigma2 = theta(2)^2;

loglik = 0.5 * T * log(sigma2);

loglik = loglik + 0.5 * (sum((x-mu).^2 / sigma2));

Note the global statements; they allow us to share a variable between the two parts of
the code. The use of global is not very good programming practice; it would be better
to pass x as an optional parameter, which is straightforward to do.

C.7 GRAPHICS

Matlab provides many high-level graphing functions. These include line plots, bar and
histogram graphs, contour plots, surface plots and animation. The user can exert control
over the general appearance of the graphs such as color, labeling, axis formats, etc.
We can develop our own graphics functions using Handle Graphics, Matlab’s object-
orientated graphics system.
The common function for plotting bivariate data is the plot() function which can

produce different types of line plots. We can make use of the help file for the wide range
of optional arguments. Aside from plot(), hist() plots a histogram, bar() a bar
chart, pie() a pie chart and scatter() produces a scatterplot. To add new plots to
an existing plot, we can use the hold on command and enter hold off to declare the
plot complete. Commands like title, xlabel, ylabel, legend, text—which
work on all graphics—allow the user to customize graphs.
The main function to make 3D graphics is the plot3()—other functions include

mesh(), surf(), contour and contour3. We can adjust many settings on 3D plots
such as size, perspective, shading, etc.
Matlab graphics are usually displayed in a separate figure window, which has a menu

bar at the top. It is possible to save the current figure in one of many formats. Click on
File then Save As and then choose a directory, file name and file type for the graphic.
From the command window, the function print() is responsible for all printing and
exporting. Supported devices/formats include bmp, jpeg, eps and tiff.
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Perhaps the most common statistical model we encounter is the classical linear
regression model, where dependent and explanatory variables have a linear relationship.
The parameters of this model can be easily estimated by ordinary least squares. How-
ever, this technique is not suitable for nonlinear models like the GARCH family of
models where the relationship between volatility and returns is nonlinear.
There are many techniques available for estimating nonlinear models (e.g., the

generalized method of moments), but the most common method is maximum likelihood
(ML). The main idea behind ML—given we observe a sample of data and have a
distribution model in mind—relates to its ability to ascertain the most likely parameter
values that could generate the observed data? In other words, ML estimation (MLE)
finds the parameters that maximize the probability (or likelihood) of observing the
sample data.
For example, suppose we have the following small sample of data which we believe to

have been generated by a normal distribution:

f0.83, 1.06, 1.13, 0.92, 1.12, 1.10, 0.95, 1.01, 0.99, 1.03g
The normal distribution only has two parameters: mean and variance. By looking at this
sample, it is highly unlikely that the mean could be 100 or 1,000; however, we can make a
reasonable guess that the mean must be close to one. Similarly, standard deviation
cannot be 10 or 100, but is somewhere around 0.1. In arriving at these conclusions,
we have used maximum likelihood.
The ML approach can be succinctly summarized according to ‘‘the likelihood

principle’’ as:

‘‘All information about parameters � that can be obtained from a sample is contained
in the likelihood function of � for a given dataset.’’

D.1 LIKELIHOOD FUNCTIONS

Suppose we have an IID random variable (RV) following a parametric distribution with
density f ð�Þ which has a vector of parameters �. We then draw a sample
x ¼ fx1; x2; . . . ; xTg from this RV:

f ðxÞ ¼ f ðx1Þ . . . f ðxT Þ: ðD:1Þ
The joint PDF reveals the probability of outcomes given the parameters. However, our
problem is exactly the opposite: we want to determine the parameters given the
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outcomes or data. For this purpose, we introduce the term likelihood function, L �; xð Þ,
defined as:

Lð�; xÞ ¼
YT
t¼1

f ðxt; �Þ:

This is mathematically identical to (D.1) but the name of the function is different
because our interest is in the parameters which in this case are variables, conditional
on the observations. Estimators of the parameters, �̂�, are then obtained by maximizing
the likelihood function with respect to the parameters. In practice, it is more convenient
to work with the logarithm of the likelihood function (a sum rather than a product but
still monotonically increasing); this, of course, does not change the answer. ML esti-
mates are therefore defined as:

�̂�ML ¼ arg max
�

L �; xð Þ

¼ arg max
�

logL �; xð Þ:

D.1.1 Normal likelihood functions

The normal distribution has been used extensively in this book. A simple derivation of
its log-likelihood function is:

X � N �; �2
� �

f x;�; �ð Þ ¼ 1ffiffiffiffiffiffiffiffiffiffi
2��2

p exp � 1

2

x� �ð Þ2
�2

" #
:

For a sample of T IID observations:

L �; �; xð Þ ¼
YT
t¼1

f xt;�; �ð Þ

¼
YT
t¼1

1ffiffiffiffiffiffiffiffiffiffi
2��2

p exp � 1

2

xt � �ð Þ2
�2

" #
:

Taking logarithm we get:

logL �; �; xð Þ ¼
XT
t¼1

log
1ffiffiffiffiffiffiffiffiffiffi
2��2

p � 1

2

xt � �ð Þ2
�2

 !

¼
XT
t¼1

� log 2�ð Þ
2

� 1

2
log�2 � 1

2

xt � �ð Þ2
�2

 !

¼ �T log 2�ð Þ
2

� T

2
log�2 � 1

2

XT
t¼1

xt � �ð Þ2
�2

 !
:
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We can ignore constant values because they have no effect on the solution, therefore the
log-likelihood function can be shortened to:

logL �; �; xð Þ ¼ �T

2
log�2 � 1

2

XT
t¼1

xt � �ð Þ2
�2

:

This maximization problem can be solved analytically by differentiating the log-
likelihood function with respect to � and �. Setting the log-likelihood function equal
to zero gives the estimators:

�̂�ML ¼ 1

T

XT
t¼1

xt

�̂�2ML ¼ 1

T

XT
t¼1

ðxt � �̂�MLÞ2:

The latter is biased since there is no adjustment to the degrees of freedom, but it is
asymptotically not biased. We can verify the solution by computing the Hessian matrix
and see whether it is negative definite.
In this case, we only need to calculate the sample mean and variance and there is no

need to resort to maximum likelihood.
Generally, we have more complicated likelihood functions and cannot use such

analytical solutions. In these cases, we have to resort to computer algorithms to
numerically maximize the likelihood function.

D.2 OPTIMIZERS

In software packages such as R and Matlab the negative likelihood function is
minimized by using an algorithm called an optimizer. An algorithm is a set of instruc-
tions or steps that lead to the solution of a problem and is iterative in nature. In most
cases, we have to specify starting values �0 and the algorithm calculates an improved
value �1. This process is repeated through a sequence of points �0; �1; . . . ; �n until an
optimal point �� is approached. Each step is an iteration. To demonstrate optimization
in Matlab, type bandem in the command line to see how different numerical algorithms
solve the problem.
Most optimizers work by minimizing a function; hence we need to minimize the

negative log-likelihood.
A well-known algorithm is the Newton–Raphson method, based on finding zeros of

functions; it can be used as an optimization method by applying it to the derivative of the
function. The Newton–Raphson is based on the Taylor expansion up to degree 2 of the
likelihood function.
After the first minimum of the quadratic approximation is found, the process is

repeated. Hence we re-apply the quadratic approximation around the minimum of
the initial quadratic approximation and find a new minimum. This is carried out until
the values converge to the minimum of the objective function. The reason quadratic
models are popular is they are one of the simplest smooth functions with well-defined
first and second derivatives and, usually, a rapid rate of convergence.
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D.3 ISSUES IN ML ESTIMATION

We obtain parameter estimates with maximum likelihood by numerically maximizing
the likelihood function. This is sometimes called hill climbing.

Issues arise when using iterative algorithms. It is not always true that an algorithm
will generate a sequence that will converge to a solution, particularly if the starting value
is far from the solution point. Even if it is known that an algorithm will converge to the
solution, the problem cannot be regarded as solved as it may require an enormous
amount of time before convergence is achieved.

Furthermore, some likelihood functions are not well behaved and can have more than
one peak. This happens frequently for multivariate models. The algorithm may not be
successful in finding the solution or finding a local maxima. Unfortunately, there is no
overall solution to this problem, but the impact can be minimized by trying various
random starting values. One disadvantage of MLE is that parameter estimates can be
very sensitive to the choice of starting values.

MLE can become unstable when there are a large number of parameters, such as
happens in many multivariate volatility models, or the algorithm may terminate with an
unpleasant error message when the user specifies an insufficient number of iterations.
In this instance, we might increase the number of allowed iterations. In R we could look
at the iterlim setting. In Matlab we could search for help on optimset, especially
the MaxFunEvals and MaxIter functions (see Sections 2.4.4 and 3.6.1 for some of the
issues that arise in the context of volatility models).

Let us consider the simple example shown in Figure D.1(a). In this case we wish to
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(a) Unimodal

(b) Bimodal

Figure D.1. Paths up a hill.



maximize some function. We have to start
somewhere: so we choose 2 and get a func-
tion value of 6. Since the first derivative is
positive, we deduce the solution is to the
right: so the algorithm tries another point,
at 13, and finds a higher value of 7. It then
tries 3, 9 and, finally, 6 to yield the correct
answer. At that point the derivative is zero.
It is straightforward in this case to find the
maxima as the function was unimodal and
one dimensional.
What if the function looks like Figure

D.1(b)? The likelihood function here is
bimodal (i.e., it has two maxima: one local at around 8 and one global at around
16). If we naively start searching for the maxima at low values of �, and stop at the
first maxima we find, we will miss the best solution. This is often a big problem in MLE.
The reason is that most computer hill-climbing algorithms can only find the next
maxima.

D.4 INFORMATION MATRIX

The first-order condition of MLE is that the first derivative of the likelihood function
must be zero at the maxima. By intuitively looking at Figure D.2—given the shapes of
two likelihood functions, M1 and M2—there seems to be more uncertainty about the
solution for M2 than there is for M1, and we would expect the standard error of
the parameter estimate for M2 to be higher. Mathematically, this manifests itself in
the second derivative of the likelihood function at the maxima, which must be negative
because the likelihood function is downward sloping in all directions. The flatter the
likelihood function is at the top, the closer the second derivative is to zero. Ultimately,
this means that we can use second derivatives to measure the standard errors of
parameter estimates.
The matrix of second derivatives is called the Hessian matrix. The negative

expectation of the Hessian matrix is named the information matrix.

Definition D.1 (Information matrix)

I �ð Þ ¼ �E
@2 log L � Xjð Þ

@� @� 0

" #
: ðD:2Þ

The Cramér–Rao lower bound gives the maximum sampling precision:

Var �̂�
h i

� I �ð Þ�1:

In maximum likelihood analysis we usually estimate the covariance matrix of
parameters by the negative inverse of the Hessian matrix.
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Figure D.2. Log-likelihood for models M1

and M2.



D.5 PROPERTIES OF MAXIMUM

LIKELIHOOD ESTIMATORS

Maximum likelihood estimators are attractive because of their asymptotic properties.
Under mild regularity conditions, we can establish four main results. We denote the
ML estimator by �̂�ML—which could be a vector or scalar—and the true parameter by �.

Consistency �̂�ML is consistent if it converges in probability to �. As the sample size, T ,
tends to infinity, the distribution of the estimator becomes increasingly concentrated
around the true parameter value. This is expressed as:

plim
T!1

�̂�ML ¼ �:

Asymptotic normality As T tends to infinity, the distribution of �̂�ML approaches a
normal distribution with mean � and variance I �ð Þ�1:

�̂�ML �a Nð�; I �ð Þ�1Þ:
Asymptotic efficiency An estimator is efficient if it is unbiased and achieves minimum

variance for all parameters. �̂�ML attains the Cramér–Rao lower bound for consistent
estimators.

Invariance The MLE is invariant with respect to certain data transformations.

A simple example illustrates some of these properties. A sample of 100 data points is
simulated from a Poisson distribution with hazard rate 2. The ML estimate for the
hazard rate is 2.02 using the simulated sample data. A plot of log-likelihood vs.
parameter values is shown in Figure D.3. At 2.02 the log-likelihood function is at a
maximum. The distribution of estimates, resembling the normal with mean 2, is shown
in Figure D.3(b)—calculated by generating 5,000 samples of size 100. The consistency of
the estimator is demonstrated by Figure D.3(c): as the sample size is increased from 100
to 5,000, the variance of estimates decreases and the distribution1 of estimates becomes
increasingly concentrated around the true parameter value of 2.

D.6 OPTIMAL TESTING PROCEDURES

We discussed testing in Section A.7, where we considered the significance of a test
statistic. Often, these test statistics come from a likelihood-based test, such as the
likelihood ratio tests discussed in Section D.6.1. In these cases, we have some model
and want to test whether a restricted version of that model is statistically significant. We
have seen many examples of such tests throughout this book (e.g., the comparison of
volatility models in Section 2.5.1 and the significance of backtests in Section 8.3).

Having obtained parameter estimates, we often would like to check whether they are
significantly different from some value since there may be other restrictions we wish to
impose. We discuss here the three most commonly used hypothesis testing procedures,
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the likelihood ratio (LR), Wald (W) and Lagrange multiplier (LM) tests. All three
approaches fall within the ML framework. These three tests are asymptotically
equivalent and equally powerful.
In all cases, we start with a model called the ‘‘unrestricted model’’, indicated byU, and

then form a restricted version of that model, indicated by R. Note that the restricted
model must be nested within the unrestricted model.

D.6.1 Likelihood ratio test

We estimate the U model and note its maximized log-likelihood value LU . We then
obtain estimates for the R model and likewise note LR. It is important to keep in mind
that LR can never be larger than LU . If the null hypothesis or restriction is true, then the
distance between LR and LU should not be too large.
The LR test statistic is given by:

LR ¼ 2 LUð�̂�UÞ � LRð�̂�RÞ
� �

� �2
rð Þ

where r is the number of restrictions. Figure D.4 illustrates the LR test, where the impact
of the restriction in this case is to shift the likelihood function left and downwards.
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(a) Log-likelihood (b) Distribution of estimators

(c) Convergence

Figure D.3. Example from a Poisson distribution.



This test is in general easy to construct. A disadvantage of the LR test is that we have
to estimate both the restricted and unrestricted model. However, given the computing
power available, this issue is irrelevant in most applications.

D.6.2 Lagrange multiplier test

The Lagrange multiplier test is based solely on the R model. We maximize the (unre-
stricted) likelihood function with respect to the parameters and subject it to a set of
restrictions defining the Lagrangian function. If the null hypothesis is true, imposing the
restriction will not lead to a significant difference in the maximized value of the like-
lihood function, implying that the value of the Lagrange multiplier � will be small. The
closer the true model is to the restricted model, the lower � is. The LM test’s de facto null
hypothesis is H0 : � ¼ 0. We can formulate the test in a simpler way, however. The
gradient or the first derivative of the unrestricted likelihood function evaluated at �̂�R
should be approximately zero if H0 is true. This is illustrated in Figure D.5.
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Figure D.4. Likelihood ratio test.

Figure D.5. Lagrange multiplier test.



The LM test statistic is given by:

LM ¼ @LUð�̂�RÞ
@�̂�R

 !0
½Ið�̂�RÞ��1 @LUð�̂�RÞ

@�̂�R

 !
� �2

rð Þ:

D.6.3 Wald test (W)

A common test often implemented in econometric packages is the Wald test. In this
approach we estimate the parameters involved in the null hypothesis using the U model.
We then apply the restrictions and check statistically how badly they are violated. If the
restrictions are valid, then �̂�U should approximately satisfy them. The Wald test only
requires us to estimate the U model. Mathematically, we also have to correct for
sampling variability—intuitively, this is curvature of the likelihood function at �̂�U .
Note we would normally use the information matrix to estimate Varð�̂�UÞ. There are

two weaknesses of the Wald test: as a pure significance test it does not take into account
alternative hypotheses, therefore its power may be limited in some circumstances; and it
is sensitive to the formulation of restrictions. However, the Wald test relies on weaker
distributional assumptions than the LR and LM tests.
The choice of test is primarily a matter of convenience. In many cases it is much easier

to calculate the restricted estimator than the unrestricted estimator—as a result some
implementations have preferred the LM approach in the past, but this is much less of an
issue now.
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convergence 18�20, 248�51
convexity 111�20
convolution 176�82
copulas 25�9, 169, 217, 229, 236�7

see also Clayton . . . ; default risks;
Frank . . . ; Gumbel . . . ; marginal returns

application illustration 27�9
challenges 28
critique 28
definition 25�7, 236
Gaussian copula 25�9
nonlinear dependence 25�9
Student-t distributions 26�8
theory 25�7
types 28�9, 236

coredata() 7�9, 94, 147�8, 219
correlation coefficient 1�29, 57�71, 137�42,

166, 203�4, 220, 234
see also autocorrelation; nonlinear
dependence; Pearson . . .

definition 203
exceedance correlations 23�4

correlation matrix 57�71
cov() 60, 108
covariance 31, 37�9, 44, 57�71, 93�110,

137�42, 166, 200, 209�10, 220, 249
see also autocovariance; multivariate
volatility models; variance

definition 202�3
independence 202�3
matrix 57�71, 93�110, 137�42, 166
stationary 37�9, 44, 69, 209�10

CPI see Consumer Price Index
Cramér�Rao lower bound 173, 249, 250
credit default swaps (CDSs) 167�8, 186�8
credit rating agencies 28, 164�5, 185�8
credit risk, capital requirements 146�7, 165
crisis periods, nonlinear dependence 21�9
csv() 219
cumulative distribution functions (CDFs)
concepts 176�9, 197�201, 215, 222�3,
235�7

definition 197�8

data mining, backtesting problems 163
DCC 63�7, 70�1
de-meaned returns 35�41, 51�2
decay factors, EWMA 31�56

decision making, risk management 75, 196
default risks 28, 185�7
see also copulas

degrees of freedom 1�29, 40�1, 44�5,
102�3, 169�70, 206�8, 222�3, 224�5,
247

deleverage, definition 186
delta 111, 116�20, 192�6
see also gamma
definition 116�17
hedging strategies 192�6
Matlab 117�19
R 117�19

delta-normal VaR 119�20
densities
concepts 76�85, 86�91, 103�4, 131�2,
197�201

definition 197�8
density plots, options 131�2
derivatives 2, 5, 12, 20�1, 31�56, 73�5,

78�9, 80�1, 111, 115�20, 121�42, 164,
167, 192�6

see also futures; options; swaps
the ‘‘Greeks’’ 78�9, 111, 115�20, 192�3
stochastic volatility models 56

diag() 65, 221�2, 235
diff() 7�9, 23�4, 50, 59, 94, 147�8, 219, 233,

234
dim() 218
discounted cash flows, bonds 112�15, 125�9
discrete distributions 208, 236�7
see also Bernoulli . . . ; binomial . . .

Disney 24, 26, 27�8
distribution-free risk measures 73�5, 90�1
see also risk measures

distributions 168�70, 197�216, 222�4,
235�7

see also Bernoulli . . . ; binomial . . . ;
Cauchy . . . ; chi-squared . . . ;
cumulative . . . ; exponential . . . ;
Fréchet . . . ; Gamma . . . ; Gumbel . . . ;
joint . . . ; normal . . . ; Pareto . . . ;
Student-t . . . ; Weibull . . .

EVT 168�70
Matlab concepts 235�7
R concepts 222�4

distributions of financial returns,
measurement difficulties 73�5

diversification 81�4
dividend yields 5�6
DJIA see Dow Jones Industrial Average
dnorm() 87, 104, 118�19, 128�9, 131�2,

222�3
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Dow Jones Industrial Average (DJIA) 2,
185�6, 191�2, 195

duration 111�20
see also yield curves

duration-normal VaR, bonds 112�15
dynamic replication strategies 192�6
dynamic trading strategies, endogenous risk

191�6

the Economist 190
efficient estimators, definition 250
EGARCH
see also GARCH . . .
definition 51�2

eigenvalues 222, 235
eigenvectors 222, 235
electricity prices 84
elseif statements, Matlab concepts 240�1
empirical identification of stylized facts of

financial returns 9�29
encapsulated postscript files 229�30
endogenous risk 165, 183�96

Basel Accords 183
definition 165, 183�4, 195
delta hedging strategies 192�6
dynamic trading strategies 191�6
financial crises 185�8, 191�6
gambling analogies 185, 196
global financial crisis from 2007 185�8, 191,
195�6

implications for risk management 184�8
the Millennium Bridge 184, 195�6
stock market crash of 1987 191�6
VaR 190

Engle LM test see Lagrange multiplier test
ergodicity 3
see also returns

ERM crisis 164
ES see expected shortfall
estimation window 31�56, 106�8, 144�66
European options 54, 115�16, 125, 129�42
Evir R library 182
EVT see extreme value theory
EWMA 32�5, 43, 45�6, 56, 59�62, 65�7,

70�1, 93, 106�8, 146�7, 148�53,
158�62

see also RiskMetrics
applications 34�5, 59�62, 65�7, 93, 106�8,
146�7, 148�53, 158�62

backtesting 146�7, 148�53, 158�62
Basel Accords 33
critique 34�5, 56, 60�2, 67, 70, 150�3
decay factors 31�56

definition 32�3, 59�60
derivation 33�4, 59�60
GARCH comparisons 34�5, 43, 150�3
LR 45�6
Matlab 60, 67, 107�8, 148�53
multivariate volatility models 59�62, 65�7,
70�1, 107�8

R 60, 67, 107�8, 148�53
unconditional volatility 35, 43, 60�2
VaR 107�8, 146�7, 148�53, 158�62

exceedance correlations, nonlinear
dependence 23�4

excess kurtosis 16, 36�7, 170�1
see also kurtosis . . .

excess returns
see also returns
definition 4�5

exogenous risk 183, 188�9, 195
exotic options 139�40
exp() 117�19, 131, 134, 137�9
expected returns, concepts 104�5
expected shortfall (ES) 73, 85�90, 93�110,

143, 160�2, 166
see also coherent risk measures; risk
measures

application 93�110, 143, 160�2, 166
backtesting difficulties 89, 91, 143, 160�2
critique 88�9
definition 85�9
HS 97�8, 160�2
Matlab 87�8, 97�8, 104, 161�2
normality issues 103�4 R 87�8, 97�8, 104,
161�2

expected values 201�3, 206�10
see also sample means

exponential distributions 32�5, 223, 236�7
see also EWMA

extremal index 168, 179�82
extreme value theory (EVT) 16�21, 37,

167�82, 236�7
see also fat tails
application 172�82
asset returns 170�1
convolution 176�82
critique 168
definition 167�70, 181�2
distributions 168�70
extremal index 168, 179�82
implementation approaches 172�6
libraries 182
Matlab 182
POT 172�82
R 182
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reading recommendations 167
risk analysis 173�82
S&P 500 sample returns from 1970 to 2009
175�81

threshold considerations 174�5
time dependence 179�82
types of tails 168�9

extreme values 16�21, 37, 163�6, 167�82,
236�7

eye() 235
eyeball method, EVT thresholds 174�5

fat tails 1, 9�29, 36�8, 48�51, 83�9, 102�3,
150�3, 167�82, 204�5, 215

see also extreme value . . . ; kurtosis . . . ;
Pareto distributions; Student-t
distributions; stylized facts of financial
returns

ARCH 36�8, 180�1
definition 9, 14, 16�21, 167�9, 170�1
graphical detection methods 16, 17�21,
48�51, 150�3

implications in finance 20�1, 167�82
low volatility levels 11
nonnormality issues 14�16
QQ plots graphical detection method
17�18, 48�51

sequential moments graphical detection
method 18�21

statistical tests 16�21, 170�1
super-fat tails 83�4
tail index measures 18�21, 37�8, 167�82

feedback effects 165, 184�96
fExtremes R library 182
finance.yahoo.com 1, 7, 219, 233
financial crisis from 2007 5, 10�11, 20�1, 28,

98, 152�3, 164, 168, 185�8, 191, 195�6
financial innovations 190�6
financial markets 1�29, 183�96
endogenous risk 165, 183�96
stylized facts of financial returns 9�29

financial time series 1�29, 94, 197�216
Financial Times 20
find() 131, 158, 162
first centered moment of a distribution
see also means
definition 16, 203�4

fit.st() 102�3
fminunc() 242
for loops 60, 106�8, 127�9, 148�53, 156�8,

161�2, 226�8, 239�42
foreign exchange risks, concepts 79, 84, 142,

164

fourth centered moment of a distribution see
kurtosis . . .

Frank copula 236

Fréchet distributions 169�71, 172�3
‘‘frozen’’ portfolios, backtesting 146

FTSE 2, 21

FTSTool 8, 233

function() 118�19, 155�7
functions 225�7, 238�42
see also arguments; M-files

futures 80�1, 131�2

gambling analogies, endogenous risk 185,
196

gamma 111, 116�20
see also delta

Gamma distributions 223

Gamma function 206

GARCH family of models 32, 34�56, 62�3,
93, 108�10, 146, 148�53, 158�9, 167�8,
171, 174, 180�1, 245

see also conditional volatility; variance;
volatility models

APARCH models 44, 46, 52�4, 56
application 46�51, 93, 108�10, 146,
148�53, 158�9, 167�8, 174, 180�1

backtesting 146, 148�53, 158�9
BEKK 69�71
CCC 63�5, 70�1
critique 34�5, 55�6, 150�3
DCC 63�7, 70�1
definitions 35�6, 38�41
EGARCH 51�2
EVT 167�8, 171, 174, 180�1
EWMA comparisons 34�5, 43, 65�7,
150�3

extensions 51�4, 67�71
GJR-GARCH 51�2, 53�4
graphical analysis 48�51
likelihood functions 42�4, 46�51, 52�3, 56,
69�71

LR 44�51, 52�4
Matlab 48�51, 53�4, 65, 108�10, 148�53
‘‘memory’’ measures 39�41
MLE 41�4, 56, 69�71
multiperiod volatility 39�40
multivariate volatility models 44, 62�3,
65�71

MVGARCH 67�71
normal GARCH 40�1, 56
OGARCH 62�3, 65�7, 70�1
parameter restrictions 38�9, 43�4
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power GARCH models 52 R 48�51, 53�4,
65, 108�10, 148�53

skew t-GARCH model 41, 42�4, 46�51,
52�3

stochastic volatility model comparisons
55�6

t-GARCH model 40�1, 46�51, 109, 152
unconditional volatility 38�9, 43, 152�3
VaR 108�10, 146, 148�53, 158�9, 167, 174

garchfit()
Matlab concepts 48�51, 53�4, 65, 109,
150�3

R concepts 48�51, 53�4, 65, 109, 149�50
garchset() 50�1, 109, 148�53
Gaussian copula 25�9
Gaussian white noise 210, 215
see also white noise

GDP 6
generalized extreme values (GEVs) 169�70,

172�4, 236�7
generalized method of moments 245
generalized Pareto distribution (GPD), POT

concepts 172�4
GEO fund 20
geometric Brownian motion, definition 129
get.hist.quote(), R concepts 7�8, 23, 50, 59,

94, 147�8, 219
GEVs see generalized extreme values
GJR-GARCH 51�2, 53�4

see also GARCH . . .
global financial crisis from 2007 5, 10�11,

20�1, 28, 98, 152�3, 164, 168, 185�8,
191, 195�6

causes 185�8, 191, 195�6
CDOs 185�6
margins 168, 186�7
NINJA borrowers 186
subprime mortgage markets 185�8

Global Financial Data 5, 7
gogarch() 63
Goldman Sachs (GS) 20, 22�3
goodness-of-fit measures 45�51
GPD see generalized Pareto distribution
graphical detection methods for fat tails 16,

17�21, 48�51, 150�3
see also QQ plots; sequential moments . . .

graphics
GARCH family of models 48�51, 150�3
Matlab concepts 243
R concepts 229�30

Great Depression in the 1930s 5�6, 7,
10�11, 185

the ‘‘Greeks’’ 78�9, 111, 115�20, 192�3
see also delta; gamma

Greenspan, Alan 20
Gumbel distributions 169�70, 172�3, 236

haircut 186�8
half-life of a shock, definition 39�40
Handle Graphics Matlab system 243
hazard rates 250
hedge funds 186, 191�2
help() 217, 238�9
Hessian matrix 228�9, 242�3, 247, 249

see also information matrix
heteroskedasticity 237�8
high peaks 6�9, 204�5, 214�15
see also kurtosis . . .

higher moments 201, 203�5, 220
hill climbing, MLE 248�9
Hill estimator method, POT concepts 172,

173�82
hist() 128�9, 131�2
histfit() 129, 132
histograms 14�15, 229�30, 235�7, 243
historical simulations (HS) 11�12, 73, 93�8,

109�10, 142, 146, 149�53, 158�62, 167,
174, 181, 210�12

see also nonparametric estimation methods;
simulations

backtesting 146, 149�53, 158�62
definition 93, 95�8
Matlab 95�7, 149�53
multivariate HS 96�7 R 95�7, 149�53
univariate HS 95�6
window sizes 97�8, 146, 149�53

hist_stock_data(), Matlab concepts 23, 50,
59, 94�5, 148, 233

‘‘hit sequence’’, VaR violations 153�60, 208
holding periods, VaR 76�85, 89�91, 146,

178�9
HS see historical simulations

IBM 24, 26, 27�8, 57�81, 93�110
if . . . else . . . statements 227�8, 240�1
IID 1�29, 35�41, 45�6, 90, 105, 106�10,

116�20, 124, 133, 169�70, 179�80,
200�1, 208�13, 216, 242�3, 245�53

implied volatility models 32, 54�6
in-the-money options 116�20
independence test, backtesting 153, 155�60
ind_test() 156�7
inflation 5
information matrix 228�9, 242�3, 249

see also Hessian matrix
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insurance 82, 186�8
integrate() 104
interest rate risks, concepts 79, 142
interest rates 79, 111�20, 125�9, 133�42,

185�6, 191�2
Internet bubble 5, 29
invariance property, MLE 250
inverse normal distributions, concepts 25,

123�4
investment banks 20, 22�4, 186
Ito’s lemma, concepts 112�13

Jarque�Bera distribution test (JB) 6�9,
16�17, 47�51, 214�15, 223�4, 237

see also p-value . . .
jbtest() 237
joint density 26�9, 42�4, 159, 200, 245�6
see also multivariate normal distributions

joint distributions 25�9, 200, 209�10, 245�6
see also copulas

J.P. Morgan 33, 34�5
see also RiskMetrics

JPL Matlab toolbox 9, 231
jumps 73�4

Keynes, John Maynard 183
Kolmogorov�Smirnov distribution test (KS)

16�17, 74, 214�15, 237
KS see Kolmogorov�Smirnov distribution

test (KS)
kstest() 17, 237
ks.test() 17
kurtosis 6�9, 16�21, 36�8, 170�82, 204�5,

214�15, 220, 225�6, 234, 238�9
see also fat tails
definition 16, 170�1, 204�5
estimation formula 170�1, 205
excess kurtosis 16, 36�7, 170�1
Matlab concepts 9, 238�9
R concepts 8�9, 220, 225�7
S&P 500 summary return statistics from
1928 to 2009 6�9

Lagrange multiplier test (LM) 12, 13�14,
35�6, 216, 251, 252�3

see also ARCH; volatility clusters
lags, volatility models 31�56
lambda 60, 148�53
latent variables 31�56, 75
LB see Ljung�Box test
LCGs see linear congruental generators
legend() 67
Lehmans 21, 152

LeSage, James P. (JPL) 231

leverage effect, concepts 51�2, 56, 186�96
leverage ratios, concepts 188�96
library(), R concepts 7�9, 13�14, 17, 48�51,

59, 63, 94, 102�3, 109, 137, 147�8, 217,
220, 223�4

likelihood functions 37�8, 41�4, 46�51, 64,
69�71, 153�60, 223, 228�9, 242�3,
245�53

see also maximum . . . ; optimizers

APARCH models 52�3
ARCH 42�4, 46�51
definition 245�7
estimation issues 43�4
GARCH 42�4, 46�51, 52�3, 56, 69�71
Matlab concepts 242�3
R concepts 228�9
stochastic volatility models 56

likelihood ratio tests (LR) 44�6, 52�3,
154�60, 250�2

linear algebra computations, Matlab
concepts 234�5

linear congruental generators (LCGs) 122�3,
140

see also random number generators

linear dependence

see also correlation . . .
concepts 9, 21�2, 203

linear regression methods 41

see also ordinary least squares

linear relationships, definition 203

linspace() 232�3
liquidity issues, portfolios 78�9
list() 117�19
Ljung�Box test (LB) 6�9, 13�14, 47�51,

216, 224�5, 238
see also autocorrelation; p-value . . .

LM see Lagrange multiplier test

load() 232�3
log-likelihood function 42�4, 46�51, 56, 64,

172�3, 228�9, 236, 242�3, 246�9,
250�1

log-normal distributions 130�2, 133�42, 173,
222�3, 236�7

logarithm of the likelihood function 246

logarithmic returns see continuously
compounded returns

logspace() 232�3
loops and repeats

inefficiencies 241

Matlab concepts 60, 106�8, 127�9, 148�53,
156�8, 161�2, 239�42
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R concepts 60, 106�8, 127�9, 148�53,
156�8, 161�2, 226�8

loss-function-based backtests 159�60
low peaks 204�5

see also kurtosis . . .
LR see likelihood ratio tests
LTCM 164

M-files, Matlab concepts 238�42
manipulation issues, VaR 80, 84�5
marginal distributions, definition 26�8,

200�1
margins, global financial crisis from 2007

168, 186�7
market efficiencies 13�14
market risks 105, 146�7, 165
marking-to-market valuations 190�1
MAs see moving average models
MASS R library 137
Matlab 1, 7�29, 31, 46�56, 58�71, 87�8,

95�8, 104, 106�8, 112, 117�19, 125�6,
127�32, 135�6, 139�40, 148�53, 156�8,
161�2, 197, 214, 231�43, 247, 248

APARCH models 53�4
ARCH 48�51
ARMA 238
autocorrelation 9, 13�14, 237�8
backtesting 148�53
basic operations 7�9, 233
basic programming 238�42
Bernoulli coverage test 155, 158
Black�Scholes options pricing model
117�19, 129�32, 135�6, 139�40

bond prices 112, 125�6
CCC 65
DCC 65, 67
definition 231
delta 117�19
distributions 235�7
econometrics 231
ES 87�8, 97�8, 104, 161�2
EVT 182
EWMA 60, 67, 107�8, 148�53
financial time series 7�9, 197
gamma 117�19
GARCH family of models 48�51, 53�4, 65,
108�10, 148�53

graphics 243
Hill estimator method 175�6
HS 95�7, 149�53
independence coverage test 156�8
information sources 231

inputting data 7�9, 23, 48�51, 58�9, 94�5,
147�8, 231�3

introductory background 231�43
kurtosis (peakedness of a distribution) 9,
238�9

likelihood functions 242�3
linear algebra computations 234�5
loops and repeats 60, 106�8, 127�9,
148�53, 156�8, 161�2, 239�42

JPL toolbox 9, 231
M-files 238�42
MAs 106�8, 149�53
matrix computations 60�2, 234�5
MFE toolbox 9, 43, 53, 152, 231
MLE 242�3
Monte Carlo simulations 130�2, 133�9
multivariate volatility models 58�71, 108
normality testing 237
OGARCH 62�3, 67
optimizers 247, 248
p-value test statistic 214
reading recommendations 231
RNGs 123�4
S&P 500 index 7�9, 46�56, 233
simple operations 7�9, 233�5
Student-t VaR 102�3
time series 7�9, 237�8
toolboxes Matlab 8�9, 17, 48�51, 53�4,
62�3, 152�3, 231�43

univariate volatility models 46�56, 107�8
UCSD GARCH Matlab toolbox 53�4,
62�3, 231, 237�8

VaR 87�8, 101�3, 106�8, 133�9, 147�53
yield curves 126�9

matplot() 67, 127�9
matrix(), R concepts 97, 127�9, 137�9,

161�2, 218�19, 220�3
matrix algebra, Matlab concepts 234�5
matrix computations 60�2, 218�19, 220�2,

234�5
max() 6�9, 131�2
MaxFunEvals 248
maximum domain of attraction (MDA)

170�3
maximum likelihood (ML)
see also ML estimation; nonlinear models;
Student-t distributions

concepts 41�4, 56, 64, 69�71, 153�60, 223,
228�9, 242�3, 245�53

definition 245�6
MaxIter 248
MBSs see mortgage-backed securities
mean squared error (MSE) 174�5
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mean-variance analysis, concepts 73�5
mean 6�9, 13�14, 32, 35�41, 58�71, 73�6,

93�110, 128�9, 131�2, 161�2, 175�6,
199�201, 204�10, 213, 220, 226, 234,
236�7, 238�9, 242�3, 245�53

ARCH-M model 41
risk models 73�6, 213
S&P 500 summary return statistics from
1928 to 2009 6�9, 13�14

median 234
‘‘memory’’ measures, GARCH family of

models 39�41
Mersenne twister 123�4
Mexican peso devaluation in December 1994

163�4
MFE Matlab toolbox 9, 43, 53, 152-3, 231
Microsoft 22�3, 58�71, 93�110
the Millennium Bridge 184, 195�6
min, S&P 500 summary return statistics

from 1928 to 2009 6�9
ML see maximum likelihood
ML estimation (MLE) 41�3, 56, 64, 69�71,

102�3, 228�9, 242�3, 245�53
definition 228�9, 245�6
GARCH 41�4, 56, 69�71
Hessian matrix 228�9, 242�3, 247, 249
hill climbing 248�9
issues 248�9
Matlab concepts 242�3
properties 250
R concepts 228�9
volatility models 41�4

mle() 102�3
MLE
see also ML estimation

modified duration 111�20
money markets 129�42
monotonic transformations 203
monotonicity axiom of coherent risk

measures 81�2, 203, 246
Monte Carlo simulations 110, 111, 115, 120,

121�42, 164
bonds’ pricing methods 121, 124�9, 142
critique 121
definition 121
issues to be addressed 140�2
Matlab 130�2, 133�9
number of simulations 140�2
options’ pricing methods 121, 124�5,
129�42

portfolio VaR 137�42, 164
R 130�2, 133�9
RNG quality issues 140�2

uses 121�2, 124�42
VaR 110, 111, 115, 120, 121, 132�42

Morgan Stanley (MS) 22�3
mortgage-backed securities (MBSs) 185�6
moving average models (MAs) 32�5, 38, 93,

106�8, 149�53, 158�9, 180, 210�12,
224�5, 238

see also EWMA; stationarity
critique 33, 149�53
definition 32�3, 210�11
Matlab 106�8, 149�53
R 106�8, 149�53
VaR 106�8, 149�53, 158�9

MSE see mean squared error
mth centered moment of a distribution,

definition 18�21, 203�4
multigarch() 53�4
multiperiod volatility, GARCH family of

models 39�40
multivariate HS 96�7
multivariate normal distributions 9�29,

101�2, 199�200, 203, 223, 236�7
see also nonlinear dependence

multivariate volatility models 1, 9�29, 31,
56, 57�71, 93, 100�1, 107�10, 137�42,
199�200, 203, 223, 236�7, 248

see also BEKK; CCC; DCC; EWMA;
GARCH . . . ; MVGARCH; OGARCH;
volatility models

application 58�71, 107�10
complexities 57�8
definition 31, 57�8
estimation comparisons 65�7
extensions of GARCH 67�71
GARCH family of models 44, 62�3, 65�71,
93

Matlab 58�71, 108
nonlinear dependence 25
positive semi-definiteness 58�71
R 58�71, 108

mutual funds 2
MVGARCH 67�71

see also BEKK; GARCH . . .
mvrnorm() 137�9

NaN (not a number) 43�4, 51, 61, 69, 129,
148�53, 161�2

nargin/nargout 239
New York Stock Exchange (NYSE) 1�29
Newton�Raphson method
see also Taylor expansion
definition 247

Nikkei 225 index 2
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NINJA borrowers 186
NLD see nonlinear dependence
nlm() 228�9
nonlinear dependence (NLD) 1, 9, 21�9,

95�8
see also correlation . . . ; multivariate . . . ;
stylized facts of financial returns

copulas 25�9
crisis periods 21�4, 29
definition 9, 21�8
exceedance correlations 23�4
models 25�9
multivariate volatility models 25
sample evidence 21, 22�3

nonlinear models 245�53
see also maximum likelihood

nonnormality issues 14�29, 31�56
see also fat tails

nonparametric estimation methods 93�8,
109�10, 149�53

see also historical simulations
nonuniform RNGs 123�4
normal distributions 1�29, 42�4, 46�51, 56,

64, 73�6, 79, 87�91, 93, 98�9, 101�2,
103�4, 171, 172�3, 176, 198�216,
222�4, 228�9, 236�7, 242�3, 246�53

see also multivariate . . . ; standard . . .
assumptions 1, 16�29, 75�6, 79, 91, 93,
98�9, 101�2

definition 16�21, 25, 198�9
normal GARCH 40�4, 56
see also GARCH . . .

normal likelihood functions 228�9, 246�7
normality testing 6�9, 14�15, 16�21, 47�51,

74�5, 79, 214�15, 223�4, 237
see also fat tails; Jarque�Bera . . . ;
Kolmogorov�Smirnov . . .

critique 20
definition 214�15, 223�4, 237
Matlab concepts 237
R concepts 223�4
S&P 500 summary return statistics from
1928 to 2009 6�9

normcdf() 118�19, 124
norminv() 87, 101�2, 104, 106�9, 161�2
normpdf() 87, 104, 118�19, 161�2
numerical methods 121�42

see also Monte Carlo simulations
NYSE see New York Stock Exchange

objects, R concepts 7�9, 217�30
OGARCH 62�3, 65�7, 70�1
see also GARCH . . .

critique 70�1
definition 62�3
Matlab 62�3, 67
R 62�3, 67

oil price returns 19

operational risk, capital requirements 146�7
optimizers 43�4, 228�9, 247�8
see also likelihood functions

options 5, 12, 20�1, 54, 73, 80�1, 84�5, 110,
111�20, 121, 124�5, 129�42, 192�6

see also American . . . ; call . . . ; derivatives;
European . . . ; put . . .

Black�Scholes options pricing model 5,
20�1, 54, 115�20, 125, 129�42, 192�4

definition 115�16, 192�3
delta 111, 116�20, 192�6
delta-normal VaR 119�20
density plots 131�2
exotic options 139�40
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